xhci: refactor TRB_NEC_GET_FW case into function
[deliverable/linux.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
71
72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
73 struct xhci_virt_device *virt_dev,
74 struct xhci_event_cmd *event);
75
76 /*
77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
78 * address of the TRB.
79 */
80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
81 union xhci_trb *trb)
82 {
83 unsigned long segment_offset;
84
85 if (!seg || !trb || trb < seg->trbs)
86 return 0;
87 /* offset in TRBs */
88 segment_offset = trb - seg->trbs;
89 if (segment_offset > TRBS_PER_SEGMENT)
90 return 0;
91 return seg->dma + (segment_offset * sizeof(*trb));
92 }
93
94 /* Does this link TRB point to the first segment in a ring,
95 * or was the previous TRB the last TRB on the last segment in the ERST?
96 */
97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
98 struct xhci_segment *seg, union xhci_trb *trb)
99 {
100 if (ring == xhci->event_ring)
101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
102 (seg->next == xhci->event_ring->first_seg);
103 else
104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
105 }
106
107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
108 * segment? I.e. would the updated event TRB pointer step off the end of the
109 * event seg?
110 */
111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
112 struct xhci_segment *seg, union xhci_trb *trb)
113 {
114 if (ring == xhci->event_ring)
115 return trb == &seg->trbs[TRBS_PER_SEGMENT];
116 else
117 return TRB_TYPE_LINK_LE32(trb->link.control);
118 }
119
120 static int enqueue_is_link_trb(struct xhci_ring *ring)
121 {
122 struct xhci_link_trb *link = &ring->enqueue->link;
123 return TRB_TYPE_LINK_LE32(link->control);
124 }
125
126 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring)
127 {
128 /* Enqueue pointer can be left pointing to the link TRB,
129 * we must handle that
130 */
131 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control))
132 return ring->enq_seg->next->trbs;
133 return ring->enqueue;
134 }
135
136 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
137 * TRB is in a new segment. This does not skip over link TRBs, and it does not
138 * effect the ring dequeue or enqueue pointers.
139 */
140 static void next_trb(struct xhci_hcd *xhci,
141 struct xhci_ring *ring,
142 struct xhci_segment **seg,
143 union xhci_trb **trb)
144 {
145 if (last_trb(xhci, ring, *seg, *trb)) {
146 *seg = (*seg)->next;
147 *trb = ((*seg)->trbs);
148 } else {
149 (*trb)++;
150 }
151 }
152
153 /*
154 * See Cycle bit rules. SW is the consumer for the event ring only.
155 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
156 */
157 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
158 {
159 unsigned long long addr;
160
161 ring->deq_updates++;
162
163 /*
164 * If this is not event ring, and the dequeue pointer
165 * is not on a link TRB, there is one more usable TRB
166 */
167 if (ring->type != TYPE_EVENT &&
168 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
169 ring->num_trbs_free++;
170
171 do {
172 /*
173 * Update the dequeue pointer further if that was a link TRB or
174 * we're at the end of an event ring segment (which doesn't have
175 * link TRBS)
176 */
177 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
178 if (ring->type == TYPE_EVENT &&
179 last_trb_on_last_seg(xhci, ring,
180 ring->deq_seg, ring->dequeue)) {
181 ring->cycle_state = (ring->cycle_state ? 0 : 1);
182 }
183 ring->deq_seg = ring->deq_seg->next;
184 ring->dequeue = ring->deq_seg->trbs;
185 } else {
186 ring->dequeue++;
187 }
188 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
189
190 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
191 }
192
193 /*
194 * See Cycle bit rules. SW is the consumer for the event ring only.
195 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
196 *
197 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
198 * chain bit is set), then set the chain bit in all the following link TRBs.
199 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
200 * have their chain bit cleared (so that each Link TRB is a separate TD).
201 *
202 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
203 * set, but other sections talk about dealing with the chain bit set. This was
204 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
205 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
206 *
207 * @more_trbs_coming: Will you enqueue more TRBs before calling
208 * prepare_transfer()?
209 */
210 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
211 bool more_trbs_coming)
212 {
213 u32 chain;
214 union xhci_trb *next;
215 unsigned long long addr;
216
217 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
218 /* If this is not event ring, there is one less usable TRB */
219 if (ring->type != TYPE_EVENT &&
220 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
221 ring->num_trbs_free--;
222 next = ++(ring->enqueue);
223
224 ring->enq_updates++;
225 /* Update the dequeue pointer further if that was a link TRB or we're at
226 * the end of an event ring segment (which doesn't have link TRBS)
227 */
228 while (last_trb(xhci, ring, ring->enq_seg, next)) {
229 if (ring->type != TYPE_EVENT) {
230 /*
231 * If the caller doesn't plan on enqueueing more
232 * TDs before ringing the doorbell, then we
233 * don't want to give the link TRB to the
234 * hardware just yet. We'll give the link TRB
235 * back in prepare_ring() just before we enqueue
236 * the TD at the top of the ring.
237 */
238 if (!chain && !more_trbs_coming)
239 break;
240
241 /* If we're not dealing with 0.95 hardware or
242 * isoc rings on AMD 0.96 host,
243 * carry over the chain bit of the previous TRB
244 * (which may mean the chain bit is cleared).
245 */
246 if (!(ring->type == TYPE_ISOC &&
247 (xhci->quirks & XHCI_AMD_0x96_HOST))
248 && !xhci_link_trb_quirk(xhci)) {
249 next->link.control &=
250 cpu_to_le32(~TRB_CHAIN);
251 next->link.control |=
252 cpu_to_le32(chain);
253 }
254 /* Give this link TRB to the hardware */
255 wmb();
256 next->link.control ^= cpu_to_le32(TRB_CYCLE);
257
258 /* Toggle the cycle bit after the last ring segment. */
259 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
260 ring->cycle_state = (ring->cycle_state ? 0 : 1);
261 }
262 }
263 ring->enq_seg = ring->enq_seg->next;
264 ring->enqueue = ring->enq_seg->trbs;
265 next = ring->enqueue;
266 }
267 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
268 }
269
270 /*
271 * Check to see if there's room to enqueue num_trbs on the ring and make sure
272 * enqueue pointer will not advance into dequeue segment. See rules above.
273 */
274 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
275 unsigned int num_trbs)
276 {
277 int num_trbs_in_deq_seg;
278
279 if (ring->num_trbs_free < num_trbs)
280 return 0;
281
282 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
283 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
284 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
285 return 0;
286 }
287
288 return 1;
289 }
290
291 /* Ring the host controller doorbell after placing a command on the ring */
292 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
293 {
294 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
295 return;
296
297 xhci_dbg(xhci, "// Ding dong!\n");
298 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
299 /* Flush PCI posted writes */
300 xhci_readl(xhci, &xhci->dba->doorbell[0]);
301 }
302
303 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
304 {
305 u64 temp_64;
306 int ret;
307
308 xhci_dbg(xhci, "Abort command ring\n");
309
310 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
311 xhci_dbg(xhci, "The command ring isn't running, "
312 "Have the command ring been stopped?\n");
313 return 0;
314 }
315
316 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
317 if (!(temp_64 & CMD_RING_RUNNING)) {
318 xhci_dbg(xhci, "Command ring had been stopped\n");
319 return 0;
320 }
321 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
322 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
323 &xhci->op_regs->cmd_ring);
324
325 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
326 * time the completion od all xHCI commands, including
327 * the Command Abort operation. If software doesn't see
328 * CRR negated in a timely manner (e.g. longer than 5
329 * seconds), then it should assume that the there are
330 * larger problems with the xHC and assert HCRST.
331 */
332 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
333 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
334 if (ret < 0) {
335 xhci_err(xhci, "Stopped the command ring failed, "
336 "maybe the host is dead\n");
337 xhci->xhc_state |= XHCI_STATE_DYING;
338 xhci_quiesce(xhci);
339 xhci_halt(xhci);
340 return -ESHUTDOWN;
341 }
342
343 return 0;
344 }
345
346 static int xhci_queue_cd(struct xhci_hcd *xhci,
347 struct xhci_command *command,
348 union xhci_trb *cmd_trb)
349 {
350 struct xhci_cd *cd;
351 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
352 if (!cd)
353 return -ENOMEM;
354 INIT_LIST_HEAD(&cd->cancel_cmd_list);
355
356 cd->command = command;
357 cd->cmd_trb = cmd_trb;
358 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
359
360 return 0;
361 }
362
363 /*
364 * Cancel the command which has issue.
365 *
366 * Some commands may hang due to waiting for acknowledgement from
367 * usb device. It is outside of the xHC's ability to control and
368 * will cause the command ring is blocked. When it occurs software
369 * should intervene to recover the command ring.
370 * See Section 4.6.1.1 and 4.6.1.2
371 */
372 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
373 union xhci_trb *cmd_trb)
374 {
375 int retval = 0;
376 unsigned long flags;
377
378 spin_lock_irqsave(&xhci->lock, flags);
379
380 if (xhci->xhc_state & XHCI_STATE_DYING) {
381 xhci_warn(xhci, "Abort the command ring,"
382 " but the xHCI is dead.\n");
383 retval = -ESHUTDOWN;
384 goto fail;
385 }
386
387 /* queue the cmd desriptor to cancel_cmd_list */
388 retval = xhci_queue_cd(xhci, command, cmd_trb);
389 if (retval) {
390 xhci_warn(xhci, "Queuing command descriptor failed.\n");
391 goto fail;
392 }
393
394 /* abort command ring */
395 retval = xhci_abort_cmd_ring(xhci);
396 if (retval) {
397 xhci_err(xhci, "Abort command ring failed\n");
398 if (unlikely(retval == -ESHUTDOWN)) {
399 spin_unlock_irqrestore(&xhci->lock, flags);
400 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
401 xhci_dbg(xhci, "xHCI host controller is dead.\n");
402 return retval;
403 }
404 }
405
406 fail:
407 spin_unlock_irqrestore(&xhci->lock, flags);
408 return retval;
409 }
410
411 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
412 unsigned int slot_id,
413 unsigned int ep_index,
414 unsigned int stream_id)
415 {
416 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
417 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
418 unsigned int ep_state = ep->ep_state;
419
420 /* Don't ring the doorbell for this endpoint if there are pending
421 * cancellations because we don't want to interrupt processing.
422 * We don't want to restart any stream rings if there's a set dequeue
423 * pointer command pending because the device can choose to start any
424 * stream once the endpoint is on the HW schedule.
425 * FIXME - check all the stream rings for pending cancellations.
426 */
427 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
428 (ep_state & EP_HALTED))
429 return;
430 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
431 /* The CPU has better things to do at this point than wait for a
432 * write-posting flush. It'll get there soon enough.
433 */
434 }
435
436 /* Ring the doorbell for any rings with pending URBs */
437 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
438 unsigned int slot_id,
439 unsigned int ep_index)
440 {
441 unsigned int stream_id;
442 struct xhci_virt_ep *ep;
443
444 ep = &xhci->devs[slot_id]->eps[ep_index];
445
446 /* A ring has pending URBs if its TD list is not empty */
447 if (!(ep->ep_state & EP_HAS_STREAMS)) {
448 if (ep->ring && !(list_empty(&ep->ring->td_list)))
449 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
450 return;
451 }
452
453 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
454 stream_id++) {
455 struct xhci_stream_info *stream_info = ep->stream_info;
456 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
457 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
458 stream_id);
459 }
460 }
461
462 /*
463 * Find the segment that trb is in. Start searching in start_seg.
464 * If we must move past a segment that has a link TRB with a toggle cycle state
465 * bit set, then we will toggle the value pointed at by cycle_state.
466 */
467 static struct xhci_segment *find_trb_seg(
468 struct xhci_segment *start_seg,
469 union xhci_trb *trb, int *cycle_state)
470 {
471 struct xhci_segment *cur_seg = start_seg;
472 struct xhci_generic_trb *generic_trb;
473
474 while (cur_seg->trbs > trb ||
475 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
476 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
477 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
478 *cycle_state ^= 0x1;
479 cur_seg = cur_seg->next;
480 if (cur_seg == start_seg)
481 /* Looped over the entire list. Oops! */
482 return NULL;
483 }
484 return cur_seg;
485 }
486
487
488 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
489 unsigned int slot_id, unsigned int ep_index,
490 unsigned int stream_id)
491 {
492 struct xhci_virt_ep *ep;
493
494 ep = &xhci->devs[slot_id]->eps[ep_index];
495 /* Common case: no streams */
496 if (!(ep->ep_state & EP_HAS_STREAMS))
497 return ep->ring;
498
499 if (stream_id == 0) {
500 xhci_warn(xhci,
501 "WARN: Slot ID %u, ep index %u has streams, "
502 "but URB has no stream ID.\n",
503 slot_id, ep_index);
504 return NULL;
505 }
506
507 if (stream_id < ep->stream_info->num_streams)
508 return ep->stream_info->stream_rings[stream_id];
509
510 xhci_warn(xhci,
511 "WARN: Slot ID %u, ep index %u has "
512 "stream IDs 1 to %u allocated, "
513 "but stream ID %u is requested.\n",
514 slot_id, ep_index,
515 ep->stream_info->num_streams - 1,
516 stream_id);
517 return NULL;
518 }
519
520 /* Get the right ring for the given URB.
521 * If the endpoint supports streams, boundary check the URB's stream ID.
522 * If the endpoint doesn't support streams, return the singular endpoint ring.
523 */
524 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
525 struct urb *urb)
526 {
527 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
528 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
529 }
530
531 /*
532 * Move the xHC's endpoint ring dequeue pointer past cur_td.
533 * Record the new state of the xHC's endpoint ring dequeue segment,
534 * dequeue pointer, and new consumer cycle state in state.
535 * Update our internal representation of the ring's dequeue pointer.
536 *
537 * We do this in three jumps:
538 * - First we update our new ring state to be the same as when the xHC stopped.
539 * - Then we traverse the ring to find the segment that contains
540 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
541 * any link TRBs with the toggle cycle bit set.
542 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
543 * if we've moved it past a link TRB with the toggle cycle bit set.
544 *
545 * Some of the uses of xhci_generic_trb are grotty, but if they're done
546 * with correct __le32 accesses they should work fine. Only users of this are
547 * in here.
548 */
549 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
550 unsigned int slot_id, unsigned int ep_index,
551 unsigned int stream_id, struct xhci_td *cur_td,
552 struct xhci_dequeue_state *state)
553 {
554 struct xhci_virt_device *dev = xhci->devs[slot_id];
555 struct xhci_ring *ep_ring;
556 struct xhci_generic_trb *trb;
557 struct xhci_ep_ctx *ep_ctx;
558 dma_addr_t addr;
559
560 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
561 ep_index, stream_id);
562 if (!ep_ring) {
563 xhci_warn(xhci, "WARN can't find new dequeue state "
564 "for invalid stream ID %u.\n",
565 stream_id);
566 return;
567 }
568 state->new_cycle_state = 0;
569 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
570 "Finding segment containing stopped TRB.");
571 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
572 dev->eps[ep_index].stopped_trb,
573 &state->new_cycle_state);
574 if (!state->new_deq_seg) {
575 WARN_ON(1);
576 return;
577 }
578
579 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
580 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
581 "Finding endpoint context");
582 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
583 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
584
585 state->new_deq_ptr = cur_td->last_trb;
586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
587 "Finding segment containing last TRB in TD.");
588 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
589 state->new_deq_ptr,
590 &state->new_cycle_state);
591 if (!state->new_deq_seg) {
592 WARN_ON(1);
593 return;
594 }
595
596 trb = &state->new_deq_ptr->generic;
597 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
598 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
599 state->new_cycle_state ^= 0x1;
600 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
601
602 /*
603 * If there is only one segment in a ring, find_trb_seg()'s while loop
604 * will not run, and it will return before it has a chance to see if it
605 * needs to toggle the cycle bit. It can't tell if the stalled transfer
606 * ended just before the link TRB on a one-segment ring, or if the TD
607 * wrapped around the top of the ring, because it doesn't have the TD in
608 * question. Look for the one-segment case where stalled TRB's address
609 * is greater than the new dequeue pointer address.
610 */
611 if (ep_ring->first_seg == ep_ring->first_seg->next &&
612 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
613 state->new_cycle_state ^= 0x1;
614 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
615 "Cycle state = 0x%x", state->new_cycle_state);
616
617 /* Don't update the ring cycle state for the producer (us). */
618 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
619 "New dequeue segment = %p (virtual)",
620 state->new_deq_seg);
621 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
622 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
623 "New dequeue pointer = 0x%llx (DMA)",
624 (unsigned long long) addr);
625 }
626
627 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
628 * (The last TRB actually points to the ring enqueue pointer, which is not part
629 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
630 */
631 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
632 struct xhci_td *cur_td, bool flip_cycle)
633 {
634 struct xhci_segment *cur_seg;
635 union xhci_trb *cur_trb;
636
637 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
638 true;
639 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
640 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
641 /* Unchain any chained Link TRBs, but
642 * leave the pointers intact.
643 */
644 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
645 /* Flip the cycle bit (link TRBs can't be the first
646 * or last TRB).
647 */
648 if (flip_cycle)
649 cur_trb->generic.field[3] ^=
650 cpu_to_le32(TRB_CYCLE);
651 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
652 "Cancel (unchain) link TRB");
653 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
654 "Address = %p (0x%llx dma); "
655 "in seg %p (0x%llx dma)",
656 cur_trb,
657 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
658 cur_seg,
659 (unsigned long long)cur_seg->dma);
660 } else {
661 cur_trb->generic.field[0] = 0;
662 cur_trb->generic.field[1] = 0;
663 cur_trb->generic.field[2] = 0;
664 /* Preserve only the cycle bit of this TRB */
665 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
666 /* Flip the cycle bit except on the first or last TRB */
667 if (flip_cycle && cur_trb != cur_td->first_trb &&
668 cur_trb != cur_td->last_trb)
669 cur_trb->generic.field[3] ^=
670 cpu_to_le32(TRB_CYCLE);
671 cur_trb->generic.field[3] |= cpu_to_le32(
672 TRB_TYPE(TRB_TR_NOOP));
673 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
674 "TRB to noop at offset 0x%llx",
675 (unsigned long long)
676 xhci_trb_virt_to_dma(cur_seg, cur_trb));
677 }
678 if (cur_trb == cur_td->last_trb)
679 break;
680 }
681 }
682
683 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
684 unsigned int ep_index, unsigned int stream_id,
685 struct xhci_segment *deq_seg,
686 union xhci_trb *deq_ptr, u32 cycle_state);
687
688 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
689 unsigned int slot_id, unsigned int ep_index,
690 unsigned int stream_id,
691 struct xhci_dequeue_state *deq_state)
692 {
693 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
694
695 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
696 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
697 "new deq ptr = %p (0x%llx dma), new cycle = %u",
698 deq_state->new_deq_seg,
699 (unsigned long long)deq_state->new_deq_seg->dma,
700 deq_state->new_deq_ptr,
701 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
702 deq_state->new_cycle_state);
703 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
704 deq_state->new_deq_seg,
705 deq_state->new_deq_ptr,
706 (u32) deq_state->new_cycle_state);
707 /* Stop the TD queueing code from ringing the doorbell until
708 * this command completes. The HC won't set the dequeue pointer
709 * if the ring is running, and ringing the doorbell starts the
710 * ring running.
711 */
712 ep->ep_state |= SET_DEQ_PENDING;
713 }
714
715 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
716 struct xhci_virt_ep *ep)
717 {
718 ep->ep_state &= ~EP_HALT_PENDING;
719 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
720 * timer is running on another CPU, we don't decrement stop_cmds_pending
721 * (since we didn't successfully stop the watchdog timer).
722 */
723 if (del_timer(&ep->stop_cmd_timer))
724 ep->stop_cmds_pending--;
725 }
726
727 /* Must be called with xhci->lock held in interrupt context */
728 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
729 struct xhci_td *cur_td, int status)
730 {
731 struct usb_hcd *hcd;
732 struct urb *urb;
733 struct urb_priv *urb_priv;
734
735 urb = cur_td->urb;
736 urb_priv = urb->hcpriv;
737 urb_priv->td_cnt++;
738 hcd = bus_to_hcd(urb->dev->bus);
739
740 /* Only giveback urb when this is the last td in urb */
741 if (urb_priv->td_cnt == urb_priv->length) {
742 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
743 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
744 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
745 if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 usb_amd_quirk_pll_enable();
747 }
748 }
749 usb_hcd_unlink_urb_from_ep(hcd, urb);
750
751 spin_unlock(&xhci->lock);
752 usb_hcd_giveback_urb(hcd, urb, status);
753 xhci_urb_free_priv(xhci, urb_priv);
754 spin_lock(&xhci->lock);
755 }
756 }
757
758 /*
759 * When we get a command completion for a Stop Endpoint Command, we need to
760 * unlink any cancelled TDs from the ring. There are two ways to do that:
761 *
762 * 1. If the HW was in the middle of processing the TD that needs to be
763 * cancelled, then we must move the ring's dequeue pointer past the last TRB
764 * in the TD with a Set Dequeue Pointer Command.
765 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
766 * bit cleared) so that the HW will skip over them.
767 */
768 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci,
769 union xhci_trb *trb, struct xhci_event_cmd *event)
770 {
771 unsigned int slot_id;
772 unsigned int ep_index;
773 struct xhci_virt_device *virt_dev;
774 struct xhci_ring *ep_ring;
775 struct xhci_virt_ep *ep;
776 struct list_head *entry;
777 struct xhci_td *cur_td = NULL;
778 struct xhci_td *last_unlinked_td;
779
780 struct xhci_dequeue_state deq_state;
781
782 if (unlikely(TRB_TO_SUSPEND_PORT(
783 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
784 slot_id = TRB_TO_SLOT_ID(
785 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
786 virt_dev = xhci->devs[slot_id];
787 if (virt_dev)
788 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
789 event);
790 else
791 xhci_warn(xhci, "Stop endpoint command "
792 "completion for disabled slot %u\n",
793 slot_id);
794 return;
795 }
796
797 memset(&deq_state, 0, sizeof(deq_state));
798 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
799 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
800 ep = &xhci->devs[slot_id]->eps[ep_index];
801
802 if (list_empty(&ep->cancelled_td_list)) {
803 xhci_stop_watchdog_timer_in_irq(xhci, ep);
804 ep->stopped_td = NULL;
805 ep->stopped_trb = NULL;
806 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
807 return;
808 }
809
810 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
811 * We have the xHCI lock, so nothing can modify this list until we drop
812 * it. We're also in the event handler, so we can't get re-interrupted
813 * if another Stop Endpoint command completes
814 */
815 list_for_each(entry, &ep->cancelled_td_list) {
816 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
817 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
818 "Removing canceled TD starting at 0x%llx (dma).",
819 (unsigned long long)xhci_trb_virt_to_dma(
820 cur_td->start_seg, cur_td->first_trb));
821 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
822 if (!ep_ring) {
823 /* This shouldn't happen unless a driver is mucking
824 * with the stream ID after submission. This will
825 * leave the TD on the hardware ring, and the hardware
826 * will try to execute it, and may access a buffer
827 * that has already been freed. In the best case, the
828 * hardware will execute it, and the event handler will
829 * ignore the completion event for that TD, since it was
830 * removed from the td_list for that endpoint. In
831 * short, don't muck with the stream ID after
832 * submission.
833 */
834 xhci_warn(xhci, "WARN Cancelled URB %p "
835 "has invalid stream ID %u.\n",
836 cur_td->urb,
837 cur_td->urb->stream_id);
838 goto remove_finished_td;
839 }
840 /*
841 * If we stopped on the TD we need to cancel, then we have to
842 * move the xHC endpoint ring dequeue pointer past this TD.
843 */
844 if (cur_td == ep->stopped_td)
845 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
846 cur_td->urb->stream_id,
847 cur_td, &deq_state);
848 else
849 td_to_noop(xhci, ep_ring, cur_td, false);
850 remove_finished_td:
851 /*
852 * The event handler won't see a completion for this TD anymore,
853 * so remove it from the endpoint ring's TD list. Keep it in
854 * the cancelled TD list for URB completion later.
855 */
856 list_del_init(&cur_td->td_list);
857 }
858 last_unlinked_td = cur_td;
859 xhci_stop_watchdog_timer_in_irq(xhci, ep);
860
861 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
862 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
863 xhci_queue_new_dequeue_state(xhci,
864 slot_id, ep_index,
865 ep->stopped_td->urb->stream_id,
866 &deq_state);
867 xhci_ring_cmd_db(xhci);
868 } else {
869 /* Otherwise ring the doorbell(s) to restart queued transfers */
870 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
871 }
872
873 /* Clear stopped_td and stopped_trb if endpoint is not halted */
874 if (!(ep->ep_state & EP_HALTED)) {
875 ep->stopped_td = NULL;
876 ep->stopped_trb = NULL;
877 }
878
879 /*
880 * Drop the lock and complete the URBs in the cancelled TD list.
881 * New TDs to be cancelled might be added to the end of the list before
882 * we can complete all the URBs for the TDs we already unlinked.
883 * So stop when we've completed the URB for the last TD we unlinked.
884 */
885 do {
886 cur_td = list_entry(ep->cancelled_td_list.next,
887 struct xhci_td, cancelled_td_list);
888 list_del_init(&cur_td->cancelled_td_list);
889
890 /* Clean up the cancelled URB */
891 /* Doesn't matter what we pass for status, since the core will
892 * just overwrite it (because the URB has been unlinked).
893 */
894 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
895
896 /* Stop processing the cancelled list if the watchdog timer is
897 * running.
898 */
899 if (xhci->xhc_state & XHCI_STATE_DYING)
900 return;
901 } while (cur_td != last_unlinked_td);
902
903 /* Return to the event handler with xhci->lock re-acquired */
904 }
905
906 /* Watchdog timer function for when a stop endpoint command fails to complete.
907 * In this case, we assume the host controller is broken or dying or dead. The
908 * host may still be completing some other events, so we have to be careful to
909 * let the event ring handler and the URB dequeueing/enqueueing functions know
910 * through xhci->state.
911 *
912 * The timer may also fire if the host takes a very long time to respond to the
913 * command, and the stop endpoint command completion handler cannot delete the
914 * timer before the timer function is called. Another endpoint cancellation may
915 * sneak in before the timer function can grab the lock, and that may queue
916 * another stop endpoint command and add the timer back. So we cannot use a
917 * simple flag to say whether there is a pending stop endpoint command for a
918 * particular endpoint.
919 *
920 * Instead we use a combination of that flag and a counter for the number of
921 * pending stop endpoint commands. If the timer is the tail end of the last
922 * stop endpoint command, and the endpoint's command is still pending, we assume
923 * the host is dying.
924 */
925 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
926 {
927 struct xhci_hcd *xhci;
928 struct xhci_virt_ep *ep;
929 struct xhci_virt_ep *temp_ep;
930 struct xhci_ring *ring;
931 struct xhci_td *cur_td;
932 int ret, i, j;
933 unsigned long flags;
934
935 ep = (struct xhci_virt_ep *) arg;
936 xhci = ep->xhci;
937
938 spin_lock_irqsave(&xhci->lock, flags);
939
940 ep->stop_cmds_pending--;
941 if (xhci->xhc_state & XHCI_STATE_DYING) {
942 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
943 "Stop EP timer ran, but another timer marked "
944 "xHCI as DYING, exiting.");
945 spin_unlock_irqrestore(&xhci->lock, flags);
946 return;
947 }
948 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
949 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
950 "Stop EP timer ran, but no command pending, "
951 "exiting.");
952 spin_unlock_irqrestore(&xhci->lock, flags);
953 return;
954 }
955
956 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
957 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
958 /* Oops, HC is dead or dying or at least not responding to the stop
959 * endpoint command.
960 */
961 xhci->xhc_state |= XHCI_STATE_DYING;
962 /* Disable interrupts from the host controller and start halting it */
963 xhci_quiesce(xhci);
964 spin_unlock_irqrestore(&xhci->lock, flags);
965
966 ret = xhci_halt(xhci);
967
968 spin_lock_irqsave(&xhci->lock, flags);
969 if (ret < 0) {
970 /* This is bad; the host is not responding to commands and it's
971 * not allowing itself to be halted. At least interrupts are
972 * disabled. If we call usb_hc_died(), it will attempt to
973 * disconnect all device drivers under this host. Those
974 * disconnect() methods will wait for all URBs to be unlinked,
975 * so we must complete them.
976 */
977 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
978 xhci_warn(xhci, "Completing active URBs anyway.\n");
979 /* We could turn all TDs on the rings to no-ops. This won't
980 * help if the host has cached part of the ring, and is slow if
981 * we want to preserve the cycle bit. Skip it and hope the host
982 * doesn't touch the memory.
983 */
984 }
985 for (i = 0; i < MAX_HC_SLOTS; i++) {
986 if (!xhci->devs[i])
987 continue;
988 for (j = 0; j < 31; j++) {
989 temp_ep = &xhci->devs[i]->eps[j];
990 ring = temp_ep->ring;
991 if (!ring)
992 continue;
993 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
994 "Killing URBs for slot ID %u, "
995 "ep index %u", i, j);
996 while (!list_empty(&ring->td_list)) {
997 cur_td = list_first_entry(&ring->td_list,
998 struct xhci_td,
999 td_list);
1000 list_del_init(&cur_td->td_list);
1001 if (!list_empty(&cur_td->cancelled_td_list))
1002 list_del_init(&cur_td->cancelled_td_list);
1003 xhci_giveback_urb_in_irq(xhci, cur_td,
1004 -ESHUTDOWN);
1005 }
1006 while (!list_empty(&temp_ep->cancelled_td_list)) {
1007 cur_td = list_first_entry(
1008 &temp_ep->cancelled_td_list,
1009 struct xhci_td,
1010 cancelled_td_list);
1011 list_del_init(&cur_td->cancelled_td_list);
1012 xhci_giveback_urb_in_irq(xhci, cur_td,
1013 -ESHUTDOWN);
1014 }
1015 }
1016 }
1017 spin_unlock_irqrestore(&xhci->lock, flags);
1018 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1019 "Calling usb_hc_died()");
1020 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1021 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1022 "xHCI host controller is dead.");
1023 }
1024
1025
1026 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1027 struct xhci_virt_device *dev,
1028 struct xhci_ring *ep_ring,
1029 unsigned int ep_index)
1030 {
1031 union xhci_trb *dequeue_temp;
1032 int num_trbs_free_temp;
1033 bool revert = false;
1034
1035 num_trbs_free_temp = ep_ring->num_trbs_free;
1036 dequeue_temp = ep_ring->dequeue;
1037
1038 /* If we get two back-to-back stalls, and the first stalled transfer
1039 * ends just before a link TRB, the dequeue pointer will be left on
1040 * the link TRB by the code in the while loop. So we have to update
1041 * the dequeue pointer one segment further, or we'll jump off
1042 * the segment into la-la-land.
1043 */
1044 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1045 ep_ring->deq_seg = ep_ring->deq_seg->next;
1046 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1047 }
1048
1049 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1050 /* We have more usable TRBs */
1051 ep_ring->num_trbs_free++;
1052 ep_ring->dequeue++;
1053 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1054 ep_ring->dequeue)) {
1055 if (ep_ring->dequeue ==
1056 dev->eps[ep_index].queued_deq_ptr)
1057 break;
1058 ep_ring->deq_seg = ep_ring->deq_seg->next;
1059 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1060 }
1061 if (ep_ring->dequeue == dequeue_temp) {
1062 revert = true;
1063 break;
1064 }
1065 }
1066
1067 if (revert) {
1068 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1069 ep_ring->num_trbs_free = num_trbs_free_temp;
1070 }
1071 }
1072
1073 /*
1074 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1075 * we need to clear the set deq pending flag in the endpoint ring state, so that
1076 * the TD queueing code can ring the doorbell again. We also need to ring the
1077 * endpoint doorbell to restart the ring, but only if there aren't more
1078 * cancellations pending.
1079 */
1080 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci,
1081 struct xhci_event_cmd *event, union xhci_trb *trb)
1082 {
1083 unsigned int slot_id;
1084 unsigned int ep_index;
1085 unsigned int stream_id;
1086 struct xhci_ring *ep_ring;
1087 struct xhci_virt_device *dev;
1088 struct xhci_ep_ctx *ep_ctx;
1089 struct xhci_slot_ctx *slot_ctx;
1090
1091 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1092 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1093 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1094 dev = xhci->devs[slot_id];
1095
1096 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1097 if (!ep_ring) {
1098 xhci_warn(xhci, "WARN Set TR deq ptr command for "
1099 "freed stream ID %u\n",
1100 stream_id);
1101 /* XXX: Harmless??? */
1102 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1103 return;
1104 }
1105
1106 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1107 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1108
1109 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
1110 unsigned int ep_state;
1111 unsigned int slot_state;
1112
1113 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
1114 case COMP_TRB_ERR:
1115 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
1116 "of stream ID configuration\n");
1117 break;
1118 case COMP_CTX_STATE:
1119 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
1120 "to incorrect slot or ep state.\n");
1121 ep_state = le32_to_cpu(ep_ctx->ep_info);
1122 ep_state &= EP_STATE_MASK;
1123 slot_state = le32_to_cpu(slot_ctx->dev_state);
1124 slot_state = GET_SLOT_STATE(slot_state);
1125 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1126 "Slot state = %u, EP state = %u",
1127 slot_state, ep_state);
1128 break;
1129 case COMP_EBADSLT:
1130 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
1131 "slot %u was not enabled.\n", slot_id);
1132 break;
1133 default:
1134 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
1135 "completion code of %u.\n",
1136 GET_COMP_CODE(le32_to_cpu(event->status)));
1137 break;
1138 }
1139 /* OK what do we do now? The endpoint state is hosed, and we
1140 * should never get to this point if the synchronization between
1141 * queueing, and endpoint state are correct. This might happen
1142 * if the device gets disconnected after we've finished
1143 * cancelling URBs, which might not be an error...
1144 */
1145 } else {
1146 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1147 "Successful Set TR Deq Ptr cmd, deq = @%08llx",
1148 le64_to_cpu(ep_ctx->deq));
1149 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1150 dev->eps[ep_index].queued_deq_ptr) ==
1151 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1152 /* Update the ring's dequeue segment and dequeue pointer
1153 * to reflect the new position.
1154 */
1155 update_ring_for_set_deq_completion(xhci, dev,
1156 ep_ring, ep_index);
1157 } else {
1158 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1159 "Ptr command & xHCI internal state.\n");
1160 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1161 dev->eps[ep_index].queued_deq_seg,
1162 dev->eps[ep_index].queued_deq_ptr);
1163 }
1164 }
1165
1166 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1167 dev->eps[ep_index].queued_deq_seg = NULL;
1168 dev->eps[ep_index].queued_deq_ptr = NULL;
1169 /* Restart any rings with pending URBs */
1170 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1171 }
1172
1173 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci,
1174 struct xhci_event_cmd *event, union xhci_trb *trb)
1175 {
1176 int slot_id;
1177 unsigned int ep_index;
1178
1179 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1180 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1181 /* This command will only fail if the endpoint wasn't halted,
1182 * but we don't care.
1183 */
1184 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1185 "Ignoring reset ep completion code of %u",
1186 GET_COMP_CODE(le32_to_cpu(event->status)));
1187
1188 /* HW with the reset endpoint quirk needs to have a configure endpoint
1189 * command complete before the endpoint can be used. Queue that here
1190 * because the HW can't handle two commands being queued in a row.
1191 */
1192 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1193 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1194 "Queueing configure endpoint command");
1195 xhci_queue_configure_endpoint(xhci,
1196 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1197 false);
1198 xhci_ring_cmd_db(xhci);
1199 } else {
1200 /* Clear our internal halted state and restart the ring(s) */
1201 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1202 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1203 }
1204 }
1205
1206 /* Complete the command and detele it from the devcie's command queue.
1207 */
1208 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1209 struct xhci_command *command, u32 status)
1210 {
1211 command->status = status;
1212 list_del(&command->cmd_list);
1213 if (command->completion)
1214 complete(command->completion);
1215 else
1216 xhci_free_command(xhci, command);
1217 }
1218
1219
1220 /* Check to see if a command in the device's command queue matches this one.
1221 * Signal the completion or free the command, and return 1. Return 0 if the
1222 * completed command isn't at the head of the command list.
1223 */
1224 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1225 struct xhci_virt_device *virt_dev,
1226 struct xhci_event_cmd *event)
1227 {
1228 struct xhci_command *command;
1229
1230 if (list_empty(&virt_dev->cmd_list))
1231 return 0;
1232
1233 command = list_entry(virt_dev->cmd_list.next,
1234 struct xhci_command, cmd_list);
1235 if (xhci->cmd_ring->dequeue != command->command_trb)
1236 return 0;
1237
1238 xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1239 GET_COMP_CODE(le32_to_cpu(event->status)));
1240 return 1;
1241 }
1242
1243 /*
1244 * Finding the command trb need to be cancelled and modifying it to
1245 * NO OP command. And if the command is in device's command wait
1246 * list, finishing and freeing it.
1247 *
1248 * If we can't find the command trb, we think it had already been
1249 * executed.
1250 */
1251 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1252 {
1253 struct xhci_segment *cur_seg;
1254 union xhci_trb *cmd_trb;
1255 u32 cycle_state;
1256
1257 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1258 return;
1259
1260 /* find the current segment of command ring */
1261 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1262 xhci->cmd_ring->dequeue, &cycle_state);
1263
1264 if (!cur_seg) {
1265 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1266 xhci->cmd_ring->dequeue,
1267 (unsigned long long)
1268 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1269 xhci->cmd_ring->dequeue));
1270 xhci_debug_ring(xhci, xhci->cmd_ring);
1271 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1272 return;
1273 }
1274
1275 /* find the command trb matched by cd from command ring */
1276 for (cmd_trb = xhci->cmd_ring->dequeue;
1277 cmd_trb != xhci->cmd_ring->enqueue;
1278 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1279 /* If the trb is link trb, continue */
1280 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1281 continue;
1282
1283 if (cur_cd->cmd_trb == cmd_trb) {
1284
1285 /* If the command in device's command list, we should
1286 * finish it and free the command structure.
1287 */
1288 if (cur_cd->command)
1289 xhci_complete_cmd_in_cmd_wait_list(xhci,
1290 cur_cd->command, COMP_CMD_STOP);
1291
1292 /* get cycle state from the origin command trb */
1293 cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1294 & TRB_CYCLE;
1295
1296 /* modify the command trb to NO OP command */
1297 cmd_trb->generic.field[0] = 0;
1298 cmd_trb->generic.field[1] = 0;
1299 cmd_trb->generic.field[2] = 0;
1300 cmd_trb->generic.field[3] = cpu_to_le32(
1301 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1302 break;
1303 }
1304 }
1305 }
1306
1307 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1308 {
1309 struct xhci_cd *cur_cd, *next_cd;
1310
1311 if (list_empty(&xhci->cancel_cmd_list))
1312 return;
1313
1314 list_for_each_entry_safe(cur_cd, next_cd,
1315 &xhci->cancel_cmd_list, cancel_cmd_list) {
1316 xhci_cmd_to_noop(xhci, cur_cd);
1317 list_del(&cur_cd->cancel_cmd_list);
1318 kfree(cur_cd);
1319 }
1320 }
1321
1322 /*
1323 * traversing the cancel_cmd_list. If the command descriptor according
1324 * to cmd_trb is found, the function free it and return 1, otherwise
1325 * return 0.
1326 */
1327 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1328 union xhci_trb *cmd_trb)
1329 {
1330 struct xhci_cd *cur_cd, *next_cd;
1331
1332 if (list_empty(&xhci->cancel_cmd_list))
1333 return 0;
1334
1335 list_for_each_entry_safe(cur_cd, next_cd,
1336 &xhci->cancel_cmd_list, cancel_cmd_list) {
1337 if (cur_cd->cmd_trb == cmd_trb) {
1338 if (cur_cd->command)
1339 xhci_complete_cmd_in_cmd_wait_list(xhci,
1340 cur_cd->command, COMP_CMD_STOP);
1341 list_del(&cur_cd->cancel_cmd_list);
1342 kfree(cur_cd);
1343 return 1;
1344 }
1345 }
1346
1347 return 0;
1348 }
1349
1350 /*
1351 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1352 * trb pointed by the command ring dequeue pointer is the trb we want to
1353 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1354 * traverse the cancel_cmd_list to trun the all of the commands according
1355 * to command descriptor to NO-OP trb.
1356 */
1357 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1358 int cmd_trb_comp_code)
1359 {
1360 int cur_trb_is_good = 0;
1361
1362 /* Searching the cmd trb pointed by the command ring dequeue
1363 * pointer in command descriptor list. If it is found, free it.
1364 */
1365 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1366 xhci->cmd_ring->dequeue);
1367
1368 if (cmd_trb_comp_code == COMP_CMD_ABORT)
1369 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1370 else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1371 /* traversing the cancel_cmd_list and canceling
1372 * the command according to command descriptor
1373 */
1374 xhci_cancel_cmd_in_cd_list(xhci);
1375
1376 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1377 /*
1378 * ring command ring doorbell again to restart the
1379 * command ring
1380 */
1381 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1382 xhci_ring_cmd_db(xhci);
1383 }
1384 return cur_trb_is_good;
1385 }
1386
1387 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1388 u32 cmd_comp_code)
1389 {
1390 if (cmd_comp_code == COMP_SUCCESS)
1391 xhci->slot_id = slot_id;
1392 else
1393 xhci->slot_id = 0;
1394 complete(&xhci->addr_dev);
1395 }
1396
1397 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1398 {
1399 struct xhci_virt_device *virt_dev;
1400
1401 virt_dev = xhci->devs[slot_id];
1402 if (!virt_dev)
1403 return;
1404 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1405 /* Delete default control endpoint resources */
1406 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1407 xhci_free_virt_device(xhci, slot_id);
1408 }
1409
1410 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id,
1411 u32 cmd_comp_code)
1412 {
1413 xhci->devs[slot_id]->cmd_status = cmd_comp_code;
1414 complete(&xhci->addr_dev);
1415 }
1416
1417 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1418 struct xhci_event_cmd *event)
1419 {
1420 struct xhci_virt_device *virt_dev;
1421
1422 xhci_dbg(xhci, "Completed reset device command.\n");
1423 virt_dev = xhci->devs[slot_id];
1424 if (virt_dev)
1425 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1426 else
1427 xhci_warn(xhci, "Reset device command completion "
1428 "for disabled slot %u\n", slot_id);
1429 }
1430
1431 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1432 struct xhci_event_cmd *event)
1433 {
1434 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1435 xhci->error_bitmask |= 1 << 6;
1436 return;
1437 }
1438 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1439 "NEC firmware version %2x.%02x",
1440 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1441 NEC_FW_MINOR(le32_to_cpu(event->status)));
1442 }
1443
1444 static void handle_cmd_completion(struct xhci_hcd *xhci,
1445 struct xhci_event_cmd *event)
1446 {
1447 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1448 u64 cmd_dma;
1449 dma_addr_t cmd_dequeue_dma;
1450 struct xhci_input_control_ctx *ctrl_ctx;
1451 struct xhci_virt_device *virt_dev;
1452 unsigned int ep_index;
1453 struct xhci_ring *ep_ring;
1454 unsigned int ep_state;
1455
1456 cmd_dma = le64_to_cpu(event->cmd_trb);
1457 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1458 xhci->cmd_ring->dequeue);
1459 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1460 if (cmd_dequeue_dma == 0) {
1461 xhci->error_bitmask |= 1 << 4;
1462 return;
1463 }
1464 /* Does the DMA address match our internal dequeue pointer address? */
1465 if (cmd_dma != (u64) cmd_dequeue_dma) {
1466 xhci->error_bitmask |= 1 << 5;
1467 return;
1468 }
1469
1470 trace_xhci_cmd_completion(&xhci->cmd_ring->dequeue->generic,
1471 (struct xhci_generic_trb *) event);
1472
1473 if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) ||
1474 (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) {
1475 /* If the return value is 0, we think the trb pointed by
1476 * command ring dequeue pointer is a good trb. The good
1477 * trb means we don't want to cancel the trb, but it have
1478 * been stopped by host. So we should handle it normally.
1479 * Otherwise, driver should invoke inc_deq() and return.
1480 */
1481 if (handle_stopped_cmd_ring(xhci,
1482 GET_COMP_CODE(le32_to_cpu(event->status)))) {
1483 inc_deq(xhci, xhci->cmd_ring);
1484 return;
1485 }
1486 /* There is no command to handle if we get a stop event when the
1487 * command ring is empty, event->cmd_trb points to the next
1488 * unset command
1489 */
1490 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1491 return;
1492 }
1493
1494 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1495 & TRB_TYPE_BITMASK) {
1496 case TRB_TYPE(TRB_ENABLE_SLOT):
1497 xhci_handle_cmd_enable_slot(xhci, slot_id,
1498 GET_COMP_CODE(le32_to_cpu(event->status)));
1499 break;
1500 case TRB_TYPE(TRB_DISABLE_SLOT):
1501 xhci_handle_cmd_disable_slot(xhci, slot_id);
1502 break;
1503 case TRB_TYPE(TRB_CONFIG_EP):
1504 virt_dev = xhci->devs[slot_id];
1505 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1506 break;
1507 /*
1508 * Configure endpoint commands can come from the USB core
1509 * configuration or alt setting changes, or because the HW
1510 * needed an extra configure endpoint command after a reset
1511 * endpoint command or streams were being configured.
1512 * If the command was for a halted endpoint, the xHCI driver
1513 * is not waiting on the configure endpoint command.
1514 */
1515 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1516 virt_dev->in_ctx);
1517 if (!ctrl_ctx) {
1518 xhci_warn(xhci, "Could not get input context, bad type.\n");
1519 break;
1520 }
1521 /* Input ctx add_flags are the endpoint index plus one */
1522 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1523 /* A usb_set_interface() call directly after clearing a halted
1524 * condition may race on this quirky hardware. Not worth
1525 * worrying about, since this is prototype hardware. Not sure
1526 * if this will work for streams, but streams support was
1527 * untested on this prototype.
1528 */
1529 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1530 ep_index != (unsigned int) -1 &&
1531 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1532 le32_to_cpu(ctrl_ctx->drop_flags)) {
1533 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1534 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1535 if (!(ep_state & EP_HALTED))
1536 goto bandwidth_change;
1537 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1538 "Completed config ep cmd - "
1539 "last ep index = %d, state = %d",
1540 ep_index, ep_state);
1541 /* Clear internal halted state and restart ring(s) */
1542 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1543 ~EP_HALTED;
1544 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1545 break;
1546 }
1547 bandwidth_change:
1548 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1549 "Completed config ep cmd");
1550 xhci->devs[slot_id]->cmd_status =
1551 GET_COMP_CODE(le32_to_cpu(event->status));
1552 complete(&xhci->devs[slot_id]->cmd_completion);
1553 break;
1554 case TRB_TYPE(TRB_EVAL_CONTEXT):
1555 virt_dev = xhci->devs[slot_id];
1556 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1557 break;
1558 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1559 complete(&xhci->devs[slot_id]->cmd_completion);
1560 break;
1561 case TRB_TYPE(TRB_ADDR_DEV):
1562 xhci_handle_cmd_addr_dev(xhci, slot_id,
1563 GET_COMP_CODE(le32_to_cpu(event->status)));
1564 break;
1565 case TRB_TYPE(TRB_STOP_RING):
1566 xhci_handle_cmd_stop_ep(xhci, xhci->cmd_ring->dequeue, event);
1567 break;
1568 case TRB_TYPE(TRB_SET_DEQ):
1569 xhci_handle_cmd_set_deq(xhci, event, xhci->cmd_ring->dequeue);
1570 break;
1571 case TRB_TYPE(TRB_CMD_NOOP):
1572 break;
1573 case TRB_TYPE(TRB_RESET_EP):
1574 xhci_handle_cmd_reset_ep(xhci, event, xhci->cmd_ring->dequeue);
1575 break;
1576 case TRB_TYPE(TRB_RESET_DEV):
1577 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1578 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])));
1579 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1580 break;
1581 case TRB_TYPE(TRB_NEC_GET_FW):
1582 xhci_handle_cmd_nec_get_fw(xhci, event);
1583 break;
1584 default:
1585 /* Skip over unknown commands on the event ring */
1586 xhci->error_bitmask |= 1 << 6;
1587 break;
1588 }
1589 inc_deq(xhci, xhci->cmd_ring);
1590 }
1591
1592 static void handle_vendor_event(struct xhci_hcd *xhci,
1593 union xhci_trb *event)
1594 {
1595 u32 trb_type;
1596
1597 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1598 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1599 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1600 handle_cmd_completion(xhci, &event->event_cmd);
1601 }
1602
1603 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1604 * port registers -- USB 3.0 and USB 2.0).
1605 *
1606 * Returns a zero-based port number, which is suitable for indexing into each of
1607 * the split roothubs' port arrays and bus state arrays.
1608 * Add one to it in order to call xhci_find_slot_id_by_port.
1609 */
1610 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1611 struct xhci_hcd *xhci, u32 port_id)
1612 {
1613 unsigned int i;
1614 unsigned int num_similar_speed_ports = 0;
1615
1616 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1617 * and usb2_ports are 0-based indexes. Count the number of similar
1618 * speed ports, up to 1 port before this port.
1619 */
1620 for (i = 0; i < (port_id - 1); i++) {
1621 u8 port_speed = xhci->port_array[i];
1622
1623 /*
1624 * Skip ports that don't have known speeds, or have duplicate
1625 * Extended Capabilities port speed entries.
1626 */
1627 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1628 continue;
1629
1630 /*
1631 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1632 * 1.1 ports are under the USB 2.0 hub. If the port speed
1633 * matches the device speed, it's a similar speed port.
1634 */
1635 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1636 num_similar_speed_ports++;
1637 }
1638 return num_similar_speed_ports;
1639 }
1640
1641 static void handle_device_notification(struct xhci_hcd *xhci,
1642 union xhci_trb *event)
1643 {
1644 u32 slot_id;
1645 struct usb_device *udev;
1646
1647 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1648 if (!xhci->devs[slot_id]) {
1649 xhci_warn(xhci, "Device Notification event for "
1650 "unused slot %u\n", slot_id);
1651 return;
1652 }
1653
1654 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1655 slot_id);
1656 udev = xhci->devs[slot_id]->udev;
1657 if (udev && udev->parent)
1658 usb_wakeup_notification(udev->parent, udev->portnum);
1659 }
1660
1661 static void handle_port_status(struct xhci_hcd *xhci,
1662 union xhci_trb *event)
1663 {
1664 struct usb_hcd *hcd;
1665 u32 port_id;
1666 u32 temp, temp1;
1667 int max_ports;
1668 int slot_id;
1669 unsigned int faked_port_index;
1670 u8 major_revision;
1671 struct xhci_bus_state *bus_state;
1672 __le32 __iomem **port_array;
1673 bool bogus_port_status = false;
1674
1675 /* Port status change events always have a successful completion code */
1676 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1677 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1678 xhci->error_bitmask |= 1 << 8;
1679 }
1680 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1681 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1682
1683 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1684 if ((port_id <= 0) || (port_id > max_ports)) {
1685 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1686 inc_deq(xhci, xhci->event_ring);
1687 return;
1688 }
1689
1690 /* Figure out which usb_hcd this port is attached to:
1691 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1692 */
1693 major_revision = xhci->port_array[port_id - 1];
1694
1695 /* Find the right roothub. */
1696 hcd = xhci_to_hcd(xhci);
1697 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1698 hcd = xhci->shared_hcd;
1699
1700 if (major_revision == 0) {
1701 xhci_warn(xhci, "Event for port %u not in "
1702 "Extended Capabilities, ignoring.\n",
1703 port_id);
1704 bogus_port_status = true;
1705 goto cleanup;
1706 }
1707 if (major_revision == DUPLICATE_ENTRY) {
1708 xhci_warn(xhci, "Event for port %u duplicated in"
1709 "Extended Capabilities, ignoring.\n",
1710 port_id);
1711 bogus_port_status = true;
1712 goto cleanup;
1713 }
1714
1715 /*
1716 * Hardware port IDs reported by a Port Status Change Event include USB
1717 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1718 * resume event, but we first need to translate the hardware port ID
1719 * into the index into the ports on the correct split roothub, and the
1720 * correct bus_state structure.
1721 */
1722 bus_state = &xhci->bus_state[hcd_index(hcd)];
1723 if (hcd->speed == HCD_USB3)
1724 port_array = xhci->usb3_ports;
1725 else
1726 port_array = xhci->usb2_ports;
1727 /* Find the faked port hub number */
1728 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1729 port_id);
1730
1731 temp = xhci_readl(xhci, port_array[faked_port_index]);
1732 if (hcd->state == HC_STATE_SUSPENDED) {
1733 xhci_dbg(xhci, "resume root hub\n");
1734 usb_hcd_resume_root_hub(hcd);
1735 }
1736
1737 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1738 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1739
1740 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1741 if (!(temp1 & CMD_RUN)) {
1742 xhci_warn(xhci, "xHC is not running.\n");
1743 goto cleanup;
1744 }
1745
1746 if (DEV_SUPERSPEED(temp)) {
1747 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1748 /* Set a flag to say the port signaled remote wakeup,
1749 * so we can tell the difference between the end of
1750 * device and host initiated resume.
1751 */
1752 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1753 xhci_test_and_clear_bit(xhci, port_array,
1754 faked_port_index, PORT_PLC);
1755 xhci_set_link_state(xhci, port_array, faked_port_index,
1756 XDEV_U0);
1757 /* Need to wait until the next link state change
1758 * indicates the device is actually in U0.
1759 */
1760 bogus_port_status = true;
1761 goto cleanup;
1762 } else {
1763 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1764 bus_state->resume_done[faked_port_index] = jiffies +
1765 msecs_to_jiffies(20);
1766 set_bit(faked_port_index, &bus_state->resuming_ports);
1767 mod_timer(&hcd->rh_timer,
1768 bus_state->resume_done[faked_port_index]);
1769 /* Do the rest in GetPortStatus */
1770 }
1771 }
1772
1773 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1774 DEV_SUPERSPEED(temp)) {
1775 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1776 /* We've just brought the device into U0 through either the
1777 * Resume state after a device remote wakeup, or through the
1778 * U3Exit state after a host-initiated resume. If it's a device
1779 * initiated remote wake, don't pass up the link state change,
1780 * so the roothub behavior is consistent with external
1781 * USB 3.0 hub behavior.
1782 */
1783 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1784 faked_port_index + 1);
1785 if (slot_id && xhci->devs[slot_id])
1786 xhci_ring_device(xhci, slot_id);
1787 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1788 bus_state->port_remote_wakeup &=
1789 ~(1 << faked_port_index);
1790 xhci_test_and_clear_bit(xhci, port_array,
1791 faked_port_index, PORT_PLC);
1792 usb_wakeup_notification(hcd->self.root_hub,
1793 faked_port_index + 1);
1794 bogus_port_status = true;
1795 goto cleanup;
1796 }
1797 }
1798
1799 /*
1800 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1801 * RExit to a disconnect state). If so, let the the driver know it's
1802 * out of the RExit state.
1803 */
1804 if (!DEV_SUPERSPEED(temp) &&
1805 test_and_clear_bit(faked_port_index,
1806 &bus_state->rexit_ports)) {
1807 complete(&bus_state->rexit_done[faked_port_index]);
1808 bogus_port_status = true;
1809 goto cleanup;
1810 }
1811
1812 if (hcd->speed != HCD_USB3)
1813 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1814 PORT_PLC);
1815
1816 cleanup:
1817 /* Update event ring dequeue pointer before dropping the lock */
1818 inc_deq(xhci, xhci->event_ring);
1819
1820 /* Don't make the USB core poll the roothub if we got a bad port status
1821 * change event. Besides, at that point we can't tell which roothub
1822 * (USB 2.0 or USB 3.0) to kick.
1823 */
1824 if (bogus_port_status)
1825 return;
1826
1827 /*
1828 * xHCI port-status-change events occur when the "or" of all the
1829 * status-change bits in the portsc register changes from 0 to 1.
1830 * New status changes won't cause an event if any other change
1831 * bits are still set. When an event occurs, switch over to
1832 * polling to avoid losing status changes.
1833 */
1834 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1835 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1836 spin_unlock(&xhci->lock);
1837 /* Pass this up to the core */
1838 usb_hcd_poll_rh_status(hcd);
1839 spin_lock(&xhci->lock);
1840 }
1841
1842 /*
1843 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1844 * at end_trb, which may be in another segment. If the suspect DMA address is a
1845 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1846 * returns 0.
1847 */
1848 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1849 union xhci_trb *start_trb,
1850 union xhci_trb *end_trb,
1851 dma_addr_t suspect_dma)
1852 {
1853 dma_addr_t start_dma;
1854 dma_addr_t end_seg_dma;
1855 dma_addr_t end_trb_dma;
1856 struct xhci_segment *cur_seg;
1857
1858 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1859 cur_seg = start_seg;
1860
1861 do {
1862 if (start_dma == 0)
1863 return NULL;
1864 /* We may get an event for a Link TRB in the middle of a TD */
1865 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1866 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1867 /* If the end TRB isn't in this segment, this is set to 0 */
1868 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1869
1870 if (end_trb_dma > 0) {
1871 /* The end TRB is in this segment, so suspect should be here */
1872 if (start_dma <= end_trb_dma) {
1873 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1874 return cur_seg;
1875 } else {
1876 /* Case for one segment with
1877 * a TD wrapped around to the top
1878 */
1879 if ((suspect_dma >= start_dma &&
1880 suspect_dma <= end_seg_dma) ||
1881 (suspect_dma >= cur_seg->dma &&
1882 suspect_dma <= end_trb_dma))
1883 return cur_seg;
1884 }
1885 return NULL;
1886 } else {
1887 /* Might still be somewhere in this segment */
1888 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1889 return cur_seg;
1890 }
1891 cur_seg = cur_seg->next;
1892 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1893 } while (cur_seg != start_seg);
1894
1895 return NULL;
1896 }
1897
1898 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1899 unsigned int slot_id, unsigned int ep_index,
1900 unsigned int stream_id,
1901 struct xhci_td *td, union xhci_trb *event_trb)
1902 {
1903 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1904 ep->ep_state |= EP_HALTED;
1905 ep->stopped_td = td;
1906 ep->stopped_trb = event_trb;
1907 ep->stopped_stream = stream_id;
1908
1909 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1910 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1911
1912 ep->stopped_td = NULL;
1913 ep->stopped_trb = NULL;
1914 ep->stopped_stream = 0;
1915
1916 xhci_ring_cmd_db(xhci);
1917 }
1918
1919 /* Check if an error has halted the endpoint ring. The class driver will
1920 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1921 * However, a babble and other errors also halt the endpoint ring, and the class
1922 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1923 * Ring Dequeue Pointer command manually.
1924 */
1925 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1926 struct xhci_ep_ctx *ep_ctx,
1927 unsigned int trb_comp_code)
1928 {
1929 /* TRB completion codes that may require a manual halt cleanup */
1930 if (trb_comp_code == COMP_TX_ERR ||
1931 trb_comp_code == COMP_BABBLE ||
1932 trb_comp_code == COMP_SPLIT_ERR)
1933 /* The 0.96 spec says a babbling control endpoint
1934 * is not halted. The 0.96 spec says it is. Some HW
1935 * claims to be 0.95 compliant, but it halts the control
1936 * endpoint anyway. Check if a babble halted the
1937 * endpoint.
1938 */
1939 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1940 cpu_to_le32(EP_STATE_HALTED))
1941 return 1;
1942
1943 return 0;
1944 }
1945
1946 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1947 {
1948 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1949 /* Vendor defined "informational" completion code,
1950 * treat as not-an-error.
1951 */
1952 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1953 trb_comp_code);
1954 xhci_dbg(xhci, "Treating code as success.\n");
1955 return 1;
1956 }
1957 return 0;
1958 }
1959
1960 /*
1961 * Finish the td processing, remove the td from td list;
1962 * Return 1 if the urb can be given back.
1963 */
1964 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1965 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1966 struct xhci_virt_ep *ep, int *status, bool skip)
1967 {
1968 struct xhci_virt_device *xdev;
1969 struct xhci_ring *ep_ring;
1970 unsigned int slot_id;
1971 int ep_index;
1972 struct urb *urb = NULL;
1973 struct xhci_ep_ctx *ep_ctx;
1974 int ret = 0;
1975 struct urb_priv *urb_priv;
1976 u32 trb_comp_code;
1977
1978 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1979 xdev = xhci->devs[slot_id];
1980 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1981 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1982 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1983 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1984
1985 if (skip)
1986 goto td_cleanup;
1987
1988 if (trb_comp_code == COMP_STOP_INVAL ||
1989 trb_comp_code == COMP_STOP) {
1990 /* The Endpoint Stop Command completion will take care of any
1991 * stopped TDs. A stopped TD may be restarted, so don't update
1992 * the ring dequeue pointer or take this TD off any lists yet.
1993 */
1994 ep->stopped_td = td;
1995 ep->stopped_trb = event_trb;
1996 return 0;
1997 } else {
1998 if (trb_comp_code == COMP_STALL) {
1999 /* The transfer is completed from the driver's
2000 * perspective, but we need to issue a set dequeue
2001 * command for this stalled endpoint to move the dequeue
2002 * pointer past the TD. We can't do that here because
2003 * the halt condition must be cleared first. Let the
2004 * USB class driver clear the stall later.
2005 */
2006 ep->stopped_td = td;
2007 ep->stopped_trb = event_trb;
2008 ep->stopped_stream = ep_ring->stream_id;
2009 } else if (xhci_requires_manual_halt_cleanup(xhci,
2010 ep_ctx, trb_comp_code)) {
2011 /* Other types of errors halt the endpoint, but the
2012 * class driver doesn't call usb_reset_endpoint() unless
2013 * the error is -EPIPE. Clear the halted status in the
2014 * xHCI hardware manually.
2015 */
2016 xhci_cleanup_halted_endpoint(xhci,
2017 slot_id, ep_index, ep_ring->stream_id,
2018 td, event_trb);
2019 } else {
2020 /* Update ring dequeue pointer */
2021 while (ep_ring->dequeue != td->last_trb)
2022 inc_deq(xhci, ep_ring);
2023 inc_deq(xhci, ep_ring);
2024 }
2025
2026 td_cleanup:
2027 /* Clean up the endpoint's TD list */
2028 urb = td->urb;
2029 urb_priv = urb->hcpriv;
2030
2031 /* Do one last check of the actual transfer length.
2032 * If the host controller said we transferred more data than
2033 * the buffer length, urb->actual_length will be a very big
2034 * number (since it's unsigned). Play it safe and say we didn't
2035 * transfer anything.
2036 */
2037 if (urb->actual_length > urb->transfer_buffer_length) {
2038 xhci_warn(xhci, "URB transfer length is wrong, "
2039 "xHC issue? req. len = %u, "
2040 "act. len = %u\n",
2041 urb->transfer_buffer_length,
2042 urb->actual_length);
2043 urb->actual_length = 0;
2044 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2045 *status = -EREMOTEIO;
2046 else
2047 *status = 0;
2048 }
2049 list_del_init(&td->td_list);
2050 /* Was this TD slated to be cancelled but completed anyway? */
2051 if (!list_empty(&td->cancelled_td_list))
2052 list_del_init(&td->cancelled_td_list);
2053
2054 urb_priv->td_cnt++;
2055 /* Giveback the urb when all the tds are completed */
2056 if (urb_priv->td_cnt == urb_priv->length) {
2057 ret = 1;
2058 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2059 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
2060 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
2061 == 0) {
2062 if (xhci->quirks & XHCI_AMD_PLL_FIX)
2063 usb_amd_quirk_pll_enable();
2064 }
2065 }
2066 }
2067 }
2068
2069 return ret;
2070 }
2071
2072 /*
2073 * Process control tds, update urb status and actual_length.
2074 */
2075 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2076 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2077 struct xhci_virt_ep *ep, int *status)
2078 {
2079 struct xhci_virt_device *xdev;
2080 struct xhci_ring *ep_ring;
2081 unsigned int slot_id;
2082 int ep_index;
2083 struct xhci_ep_ctx *ep_ctx;
2084 u32 trb_comp_code;
2085
2086 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2087 xdev = xhci->devs[slot_id];
2088 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2089 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2090 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2091 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2092
2093 switch (trb_comp_code) {
2094 case COMP_SUCCESS:
2095 if (event_trb == ep_ring->dequeue) {
2096 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
2097 "without IOC set??\n");
2098 *status = -ESHUTDOWN;
2099 } else if (event_trb != td->last_trb) {
2100 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
2101 "without IOC set??\n");
2102 *status = -ESHUTDOWN;
2103 } else {
2104 *status = 0;
2105 }
2106 break;
2107 case COMP_SHORT_TX:
2108 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2109 *status = -EREMOTEIO;
2110 else
2111 *status = 0;
2112 break;
2113 case COMP_STOP_INVAL:
2114 case COMP_STOP:
2115 return finish_td(xhci, td, event_trb, event, ep, status, false);
2116 default:
2117 if (!xhci_requires_manual_halt_cleanup(xhci,
2118 ep_ctx, trb_comp_code))
2119 break;
2120 xhci_dbg(xhci, "TRB error code %u, "
2121 "halted endpoint index = %u\n",
2122 trb_comp_code, ep_index);
2123 /* else fall through */
2124 case COMP_STALL:
2125 /* Did we transfer part of the data (middle) phase? */
2126 if (event_trb != ep_ring->dequeue &&
2127 event_trb != td->last_trb)
2128 td->urb->actual_length =
2129 td->urb->transfer_buffer_length -
2130 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2131 else
2132 td->urb->actual_length = 0;
2133
2134 xhci_cleanup_halted_endpoint(xhci,
2135 slot_id, ep_index, 0, td, event_trb);
2136 return finish_td(xhci, td, event_trb, event, ep, status, true);
2137 }
2138 /*
2139 * Did we transfer any data, despite the errors that might have
2140 * happened? I.e. did we get past the setup stage?
2141 */
2142 if (event_trb != ep_ring->dequeue) {
2143 /* The event was for the status stage */
2144 if (event_trb == td->last_trb) {
2145 if (td->urb->actual_length != 0) {
2146 /* Don't overwrite a previously set error code
2147 */
2148 if ((*status == -EINPROGRESS || *status == 0) &&
2149 (td->urb->transfer_flags
2150 & URB_SHORT_NOT_OK))
2151 /* Did we already see a short data
2152 * stage? */
2153 *status = -EREMOTEIO;
2154 } else {
2155 td->urb->actual_length =
2156 td->urb->transfer_buffer_length;
2157 }
2158 } else {
2159 /* Maybe the event was for the data stage? */
2160 td->urb->actual_length =
2161 td->urb->transfer_buffer_length -
2162 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2163 xhci_dbg(xhci, "Waiting for status "
2164 "stage event\n");
2165 return 0;
2166 }
2167 }
2168
2169 return finish_td(xhci, td, event_trb, event, ep, status, false);
2170 }
2171
2172 /*
2173 * Process isochronous tds, update urb packet status and actual_length.
2174 */
2175 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2176 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2177 struct xhci_virt_ep *ep, int *status)
2178 {
2179 struct xhci_ring *ep_ring;
2180 struct urb_priv *urb_priv;
2181 int idx;
2182 int len = 0;
2183 union xhci_trb *cur_trb;
2184 struct xhci_segment *cur_seg;
2185 struct usb_iso_packet_descriptor *frame;
2186 u32 trb_comp_code;
2187 bool skip_td = false;
2188
2189 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2190 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2191 urb_priv = td->urb->hcpriv;
2192 idx = urb_priv->td_cnt;
2193 frame = &td->urb->iso_frame_desc[idx];
2194
2195 /* handle completion code */
2196 switch (trb_comp_code) {
2197 case COMP_SUCCESS:
2198 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2199 frame->status = 0;
2200 break;
2201 }
2202 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2203 trb_comp_code = COMP_SHORT_TX;
2204 case COMP_SHORT_TX:
2205 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2206 -EREMOTEIO : 0;
2207 break;
2208 case COMP_BW_OVER:
2209 frame->status = -ECOMM;
2210 skip_td = true;
2211 break;
2212 case COMP_BUFF_OVER:
2213 case COMP_BABBLE:
2214 frame->status = -EOVERFLOW;
2215 skip_td = true;
2216 break;
2217 case COMP_DEV_ERR:
2218 case COMP_STALL:
2219 case COMP_TX_ERR:
2220 frame->status = -EPROTO;
2221 skip_td = true;
2222 break;
2223 case COMP_STOP:
2224 case COMP_STOP_INVAL:
2225 break;
2226 default:
2227 frame->status = -1;
2228 break;
2229 }
2230
2231 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2232 frame->actual_length = frame->length;
2233 td->urb->actual_length += frame->length;
2234 } else {
2235 for (cur_trb = ep_ring->dequeue,
2236 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2237 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2238 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2239 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2240 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2241 }
2242 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2243 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2244
2245 if (trb_comp_code != COMP_STOP_INVAL) {
2246 frame->actual_length = len;
2247 td->urb->actual_length += len;
2248 }
2249 }
2250
2251 return finish_td(xhci, td, event_trb, event, ep, status, false);
2252 }
2253
2254 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2255 struct xhci_transfer_event *event,
2256 struct xhci_virt_ep *ep, int *status)
2257 {
2258 struct xhci_ring *ep_ring;
2259 struct urb_priv *urb_priv;
2260 struct usb_iso_packet_descriptor *frame;
2261 int idx;
2262
2263 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2264 urb_priv = td->urb->hcpriv;
2265 idx = urb_priv->td_cnt;
2266 frame = &td->urb->iso_frame_desc[idx];
2267
2268 /* The transfer is partly done. */
2269 frame->status = -EXDEV;
2270
2271 /* calc actual length */
2272 frame->actual_length = 0;
2273
2274 /* Update ring dequeue pointer */
2275 while (ep_ring->dequeue != td->last_trb)
2276 inc_deq(xhci, ep_ring);
2277 inc_deq(xhci, ep_ring);
2278
2279 return finish_td(xhci, td, NULL, event, ep, status, true);
2280 }
2281
2282 /*
2283 * Process bulk and interrupt tds, update urb status and actual_length.
2284 */
2285 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2286 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2287 struct xhci_virt_ep *ep, int *status)
2288 {
2289 struct xhci_ring *ep_ring;
2290 union xhci_trb *cur_trb;
2291 struct xhci_segment *cur_seg;
2292 u32 trb_comp_code;
2293
2294 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2295 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2296
2297 switch (trb_comp_code) {
2298 case COMP_SUCCESS:
2299 /* Double check that the HW transferred everything. */
2300 if (event_trb != td->last_trb ||
2301 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2302 xhci_warn(xhci, "WARN Successful completion "
2303 "on short TX\n");
2304 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2305 *status = -EREMOTEIO;
2306 else
2307 *status = 0;
2308 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2309 trb_comp_code = COMP_SHORT_TX;
2310 } else {
2311 *status = 0;
2312 }
2313 break;
2314 case COMP_SHORT_TX:
2315 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2316 *status = -EREMOTEIO;
2317 else
2318 *status = 0;
2319 break;
2320 default:
2321 /* Others already handled above */
2322 break;
2323 }
2324 if (trb_comp_code == COMP_SHORT_TX)
2325 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2326 "%d bytes untransferred\n",
2327 td->urb->ep->desc.bEndpointAddress,
2328 td->urb->transfer_buffer_length,
2329 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2330 /* Fast path - was this the last TRB in the TD for this URB? */
2331 if (event_trb == td->last_trb) {
2332 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2333 td->urb->actual_length =
2334 td->urb->transfer_buffer_length -
2335 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2336 if (td->urb->transfer_buffer_length <
2337 td->urb->actual_length) {
2338 xhci_warn(xhci, "HC gave bad length "
2339 "of %d bytes left\n",
2340 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2341 td->urb->actual_length = 0;
2342 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2343 *status = -EREMOTEIO;
2344 else
2345 *status = 0;
2346 }
2347 /* Don't overwrite a previously set error code */
2348 if (*status == -EINPROGRESS) {
2349 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2350 *status = -EREMOTEIO;
2351 else
2352 *status = 0;
2353 }
2354 } else {
2355 td->urb->actual_length =
2356 td->urb->transfer_buffer_length;
2357 /* Ignore a short packet completion if the
2358 * untransferred length was zero.
2359 */
2360 if (*status == -EREMOTEIO)
2361 *status = 0;
2362 }
2363 } else {
2364 /* Slow path - walk the list, starting from the dequeue
2365 * pointer, to get the actual length transferred.
2366 */
2367 td->urb->actual_length = 0;
2368 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2369 cur_trb != event_trb;
2370 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2371 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2372 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2373 td->urb->actual_length +=
2374 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2375 }
2376 /* If the ring didn't stop on a Link or No-op TRB, add
2377 * in the actual bytes transferred from the Normal TRB
2378 */
2379 if (trb_comp_code != COMP_STOP_INVAL)
2380 td->urb->actual_length +=
2381 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2382 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2383 }
2384
2385 return finish_td(xhci, td, event_trb, event, ep, status, false);
2386 }
2387
2388 /*
2389 * If this function returns an error condition, it means it got a Transfer
2390 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2391 * At this point, the host controller is probably hosed and should be reset.
2392 */
2393 static int handle_tx_event(struct xhci_hcd *xhci,
2394 struct xhci_transfer_event *event)
2395 __releases(&xhci->lock)
2396 __acquires(&xhci->lock)
2397 {
2398 struct xhci_virt_device *xdev;
2399 struct xhci_virt_ep *ep;
2400 struct xhci_ring *ep_ring;
2401 unsigned int slot_id;
2402 int ep_index;
2403 struct xhci_td *td = NULL;
2404 dma_addr_t event_dma;
2405 struct xhci_segment *event_seg;
2406 union xhci_trb *event_trb;
2407 struct urb *urb = NULL;
2408 int status = -EINPROGRESS;
2409 struct urb_priv *urb_priv;
2410 struct xhci_ep_ctx *ep_ctx;
2411 struct list_head *tmp;
2412 u32 trb_comp_code;
2413 int ret = 0;
2414 int td_num = 0;
2415
2416 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2417 xdev = xhci->devs[slot_id];
2418 if (!xdev) {
2419 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2420 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2421 (unsigned long long) xhci_trb_virt_to_dma(
2422 xhci->event_ring->deq_seg,
2423 xhci->event_ring->dequeue),
2424 lower_32_bits(le64_to_cpu(event->buffer)),
2425 upper_32_bits(le64_to_cpu(event->buffer)),
2426 le32_to_cpu(event->transfer_len),
2427 le32_to_cpu(event->flags));
2428 xhci_dbg(xhci, "Event ring:\n");
2429 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2430 return -ENODEV;
2431 }
2432
2433 /* Endpoint ID is 1 based, our index is zero based */
2434 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2435 ep = &xdev->eps[ep_index];
2436 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2437 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2438 if (!ep_ring ||
2439 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2440 EP_STATE_DISABLED) {
2441 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2442 "or incorrect stream ring\n");
2443 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2444 (unsigned long long) xhci_trb_virt_to_dma(
2445 xhci->event_ring->deq_seg,
2446 xhci->event_ring->dequeue),
2447 lower_32_bits(le64_to_cpu(event->buffer)),
2448 upper_32_bits(le64_to_cpu(event->buffer)),
2449 le32_to_cpu(event->transfer_len),
2450 le32_to_cpu(event->flags));
2451 xhci_dbg(xhci, "Event ring:\n");
2452 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2453 return -ENODEV;
2454 }
2455
2456 /* Count current td numbers if ep->skip is set */
2457 if (ep->skip) {
2458 list_for_each(tmp, &ep_ring->td_list)
2459 td_num++;
2460 }
2461
2462 event_dma = le64_to_cpu(event->buffer);
2463 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2464 /* Look for common error cases */
2465 switch (trb_comp_code) {
2466 /* Skip codes that require special handling depending on
2467 * transfer type
2468 */
2469 case COMP_SUCCESS:
2470 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2471 break;
2472 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2473 trb_comp_code = COMP_SHORT_TX;
2474 else
2475 xhci_warn_ratelimited(xhci,
2476 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2477 case COMP_SHORT_TX:
2478 break;
2479 case COMP_STOP:
2480 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2481 break;
2482 case COMP_STOP_INVAL:
2483 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2484 break;
2485 case COMP_STALL:
2486 xhci_dbg(xhci, "Stalled endpoint\n");
2487 ep->ep_state |= EP_HALTED;
2488 status = -EPIPE;
2489 break;
2490 case COMP_TRB_ERR:
2491 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2492 status = -EILSEQ;
2493 break;
2494 case COMP_SPLIT_ERR:
2495 case COMP_TX_ERR:
2496 xhci_dbg(xhci, "Transfer error on endpoint\n");
2497 status = -EPROTO;
2498 break;
2499 case COMP_BABBLE:
2500 xhci_dbg(xhci, "Babble error on endpoint\n");
2501 status = -EOVERFLOW;
2502 break;
2503 case COMP_DB_ERR:
2504 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2505 status = -ENOSR;
2506 break;
2507 case COMP_BW_OVER:
2508 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2509 break;
2510 case COMP_BUFF_OVER:
2511 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2512 break;
2513 case COMP_UNDERRUN:
2514 /*
2515 * When the Isoch ring is empty, the xHC will generate
2516 * a Ring Overrun Event for IN Isoch endpoint or Ring
2517 * Underrun Event for OUT Isoch endpoint.
2518 */
2519 xhci_dbg(xhci, "underrun event on endpoint\n");
2520 if (!list_empty(&ep_ring->td_list))
2521 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2522 "still with TDs queued?\n",
2523 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2524 ep_index);
2525 goto cleanup;
2526 case COMP_OVERRUN:
2527 xhci_dbg(xhci, "overrun event on endpoint\n");
2528 if (!list_empty(&ep_ring->td_list))
2529 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2530 "still with TDs queued?\n",
2531 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2532 ep_index);
2533 goto cleanup;
2534 case COMP_DEV_ERR:
2535 xhci_warn(xhci, "WARN: detect an incompatible device");
2536 status = -EPROTO;
2537 break;
2538 case COMP_MISSED_INT:
2539 /*
2540 * When encounter missed service error, one or more isoc tds
2541 * may be missed by xHC.
2542 * Set skip flag of the ep_ring; Complete the missed tds as
2543 * short transfer when process the ep_ring next time.
2544 */
2545 ep->skip = true;
2546 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2547 goto cleanup;
2548 default:
2549 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2550 status = 0;
2551 break;
2552 }
2553 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2554 "busted\n");
2555 goto cleanup;
2556 }
2557
2558 do {
2559 /* This TRB should be in the TD at the head of this ring's
2560 * TD list.
2561 */
2562 if (list_empty(&ep_ring->td_list)) {
2563 /*
2564 * A stopped endpoint may generate an extra completion
2565 * event if the device was suspended. Don't print
2566 * warnings.
2567 */
2568 if (!(trb_comp_code == COMP_STOP ||
2569 trb_comp_code == COMP_STOP_INVAL)) {
2570 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2571 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2572 ep_index);
2573 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2574 (le32_to_cpu(event->flags) &
2575 TRB_TYPE_BITMASK)>>10);
2576 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2577 }
2578 if (ep->skip) {
2579 ep->skip = false;
2580 xhci_dbg(xhci, "td_list is empty while skip "
2581 "flag set. Clear skip flag.\n");
2582 }
2583 ret = 0;
2584 goto cleanup;
2585 }
2586
2587 /* We've skipped all the TDs on the ep ring when ep->skip set */
2588 if (ep->skip && td_num == 0) {
2589 ep->skip = false;
2590 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2591 "Clear skip flag.\n");
2592 ret = 0;
2593 goto cleanup;
2594 }
2595
2596 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2597 if (ep->skip)
2598 td_num--;
2599
2600 /* Is this a TRB in the currently executing TD? */
2601 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2602 td->last_trb, event_dma);
2603
2604 /*
2605 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2606 * is not in the current TD pointed by ep_ring->dequeue because
2607 * that the hardware dequeue pointer still at the previous TRB
2608 * of the current TD. The previous TRB maybe a Link TD or the
2609 * last TRB of the previous TD. The command completion handle
2610 * will take care the rest.
2611 */
2612 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2613 ret = 0;
2614 goto cleanup;
2615 }
2616
2617 if (!event_seg) {
2618 if (!ep->skip ||
2619 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2620 /* Some host controllers give a spurious
2621 * successful event after a short transfer.
2622 * Ignore it.
2623 */
2624 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2625 ep_ring->last_td_was_short) {
2626 ep_ring->last_td_was_short = false;
2627 ret = 0;
2628 goto cleanup;
2629 }
2630 /* HC is busted, give up! */
2631 xhci_err(xhci,
2632 "ERROR Transfer event TRB DMA ptr not "
2633 "part of current TD\n");
2634 return -ESHUTDOWN;
2635 }
2636
2637 ret = skip_isoc_td(xhci, td, event, ep, &status);
2638 goto cleanup;
2639 }
2640 if (trb_comp_code == COMP_SHORT_TX)
2641 ep_ring->last_td_was_short = true;
2642 else
2643 ep_ring->last_td_was_short = false;
2644
2645 if (ep->skip) {
2646 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2647 ep->skip = false;
2648 }
2649
2650 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2651 sizeof(*event_trb)];
2652 /*
2653 * No-op TRB should not trigger interrupts.
2654 * If event_trb is a no-op TRB, it means the
2655 * corresponding TD has been cancelled. Just ignore
2656 * the TD.
2657 */
2658 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2659 xhci_dbg(xhci,
2660 "event_trb is a no-op TRB. Skip it\n");
2661 goto cleanup;
2662 }
2663
2664 /* Now update the urb's actual_length and give back to
2665 * the core
2666 */
2667 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2668 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2669 &status);
2670 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2671 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2672 &status);
2673 else
2674 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2675 ep, &status);
2676
2677 cleanup:
2678 /*
2679 * Do not update event ring dequeue pointer if ep->skip is set.
2680 * Will roll back to continue process missed tds.
2681 */
2682 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2683 inc_deq(xhci, xhci->event_ring);
2684 }
2685
2686 if (ret) {
2687 urb = td->urb;
2688 urb_priv = urb->hcpriv;
2689 /* Leave the TD around for the reset endpoint function
2690 * to use(but only if it's not a control endpoint,
2691 * since we already queued the Set TR dequeue pointer
2692 * command for stalled control endpoints).
2693 */
2694 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2695 (trb_comp_code != COMP_STALL &&
2696 trb_comp_code != COMP_BABBLE))
2697 xhci_urb_free_priv(xhci, urb_priv);
2698 else
2699 kfree(urb_priv);
2700
2701 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2702 if ((urb->actual_length != urb->transfer_buffer_length &&
2703 (urb->transfer_flags &
2704 URB_SHORT_NOT_OK)) ||
2705 (status != 0 &&
2706 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2707 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2708 "expected = %d, status = %d\n",
2709 urb, urb->actual_length,
2710 urb->transfer_buffer_length,
2711 status);
2712 spin_unlock(&xhci->lock);
2713 /* EHCI, UHCI, and OHCI always unconditionally set the
2714 * urb->status of an isochronous endpoint to 0.
2715 */
2716 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2717 status = 0;
2718 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2719 spin_lock(&xhci->lock);
2720 }
2721
2722 /*
2723 * If ep->skip is set, it means there are missed tds on the
2724 * endpoint ring need to take care of.
2725 * Process them as short transfer until reach the td pointed by
2726 * the event.
2727 */
2728 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2729
2730 return 0;
2731 }
2732
2733 /*
2734 * This function handles all OS-owned events on the event ring. It may drop
2735 * xhci->lock between event processing (e.g. to pass up port status changes).
2736 * Returns >0 for "possibly more events to process" (caller should call again),
2737 * otherwise 0 if done. In future, <0 returns should indicate error code.
2738 */
2739 static int xhci_handle_event(struct xhci_hcd *xhci)
2740 {
2741 union xhci_trb *event;
2742 int update_ptrs = 1;
2743 int ret;
2744
2745 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2746 xhci->error_bitmask |= 1 << 1;
2747 return 0;
2748 }
2749
2750 event = xhci->event_ring->dequeue;
2751 /* Does the HC or OS own the TRB? */
2752 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2753 xhci->event_ring->cycle_state) {
2754 xhci->error_bitmask |= 1 << 2;
2755 return 0;
2756 }
2757
2758 /*
2759 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2760 * speculative reads of the event's flags/data below.
2761 */
2762 rmb();
2763 /* FIXME: Handle more event types. */
2764 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2765 case TRB_TYPE(TRB_COMPLETION):
2766 handle_cmd_completion(xhci, &event->event_cmd);
2767 break;
2768 case TRB_TYPE(TRB_PORT_STATUS):
2769 handle_port_status(xhci, event);
2770 update_ptrs = 0;
2771 break;
2772 case TRB_TYPE(TRB_TRANSFER):
2773 ret = handle_tx_event(xhci, &event->trans_event);
2774 if (ret < 0)
2775 xhci->error_bitmask |= 1 << 9;
2776 else
2777 update_ptrs = 0;
2778 break;
2779 case TRB_TYPE(TRB_DEV_NOTE):
2780 handle_device_notification(xhci, event);
2781 break;
2782 default:
2783 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2784 TRB_TYPE(48))
2785 handle_vendor_event(xhci, event);
2786 else
2787 xhci->error_bitmask |= 1 << 3;
2788 }
2789 /* Any of the above functions may drop and re-acquire the lock, so check
2790 * to make sure a watchdog timer didn't mark the host as non-responsive.
2791 */
2792 if (xhci->xhc_state & XHCI_STATE_DYING) {
2793 xhci_dbg(xhci, "xHCI host dying, returning from "
2794 "event handler.\n");
2795 return 0;
2796 }
2797
2798 if (update_ptrs)
2799 /* Update SW event ring dequeue pointer */
2800 inc_deq(xhci, xhci->event_ring);
2801
2802 /* Are there more items on the event ring? Caller will call us again to
2803 * check.
2804 */
2805 return 1;
2806 }
2807
2808 /*
2809 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2810 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2811 * indicators of an event TRB error, but we check the status *first* to be safe.
2812 */
2813 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2814 {
2815 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2816 u32 status;
2817 u64 temp_64;
2818 union xhci_trb *event_ring_deq;
2819 dma_addr_t deq;
2820
2821 spin_lock(&xhci->lock);
2822 /* Check if the xHC generated the interrupt, or the irq is shared */
2823 status = xhci_readl(xhci, &xhci->op_regs->status);
2824 if (status == 0xffffffff)
2825 goto hw_died;
2826
2827 if (!(status & STS_EINT)) {
2828 spin_unlock(&xhci->lock);
2829 return IRQ_NONE;
2830 }
2831 if (status & STS_FATAL) {
2832 xhci_warn(xhci, "WARNING: Host System Error\n");
2833 xhci_halt(xhci);
2834 hw_died:
2835 spin_unlock(&xhci->lock);
2836 return -ESHUTDOWN;
2837 }
2838
2839 /*
2840 * Clear the op reg interrupt status first,
2841 * so we can receive interrupts from other MSI-X interrupters.
2842 * Write 1 to clear the interrupt status.
2843 */
2844 status |= STS_EINT;
2845 xhci_writel(xhci, status, &xhci->op_regs->status);
2846 /* FIXME when MSI-X is supported and there are multiple vectors */
2847 /* Clear the MSI-X event interrupt status */
2848
2849 if (hcd->irq) {
2850 u32 irq_pending;
2851 /* Acknowledge the PCI interrupt */
2852 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2853 irq_pending |= IMAN_IP;
2854 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2855 }
2856
2857 if (xhci->xhc_state & XHCI_STATE_DYING) {
2858 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2859 "Shouldn't IRQs be disabled?\n");
2860 /* Clear the event handler busy flag (RW1C);
2861 * the event ring should be empty.
2862 */
2863 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2864 xhci_write_64(xhci, temp_64 | ERST_EHB,
2865 &xhci->ir_set->erst_dequeue);
2866 spin_unlock(&xhci->lock);
2867
2868 return IRQ_HANDLED;
2869 }
2870
2871 event_ring_deq = xhci->event_ring->dequeue;
2872 /* FIXME this should be a delayed service routine
2873 * that clears the EHB.
2874 */
2875 while (xhci_handle_event(xhci) > 0) {}
2876
2877 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2878 /* If necessary, update the HW's version of the event ring deq ptr. */
2879 if (event_ring_deq != xhci->event_ring->dequeue) {
2880 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2881 xhci->event_ring->dequeue);
2882 if (deq == 0)
2883 xhci_warn(xhci, "WARN something wrong with SW event "
2884 "ring dequeue ptr.\n");
2885 /* Update HC event ring dequeue pointer */
2886 temp_64 &= ERST_PTR_MASK;
2887 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2888 }
2889
2890 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2891 temp_64 |= ERST_EHB;
2892 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2893
2894 spin_unlock(&xhci->lock);
2895
2896 return IRQ_HANDLED;
2897 }
2898
2899 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2900 {
2901 return xhci_irq(hcd);
2902 }
2903
2904 /**** Endpoint Ring Operations ****/
2905
2906 /*
2907 * Generic function for queueing a TRB on a ring.
2908 * The caller must have checked to make sure there's room on the ring.
2909 *
2910 * @more_trbs_coming: Will you enqueue more TRBs before calling
2911 * prepare_transfer()?
2912 */
2913 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2914 bool more_trbs_coming,
2915 u32 field1, u32 field2, u32 field3, u32 field4)
2916 {
2917 struct xhci_generic_trb *trb;
2918
2919 trb = &ring->enqueue->generic;
2920 trb->field[0] = cpu_to_le32(field1);
2921 trb->field[1] = cpu_to_le32(field2);
2922 trb->field[2] = cpu_to_le32(field3);
2923 trb->field[3] = cpu_to_le32(field4);
2924 inc_enq(xhci, ring, more_trbs_coming);
2925 }
2926
2927 /*
2928 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2929 * FIXME allocate segments if the ring is full.
2930 */
2931 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2932 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2933 {
2934 unsigned int num_trbs_needed;
2935
2936 /* Make sure the endpoint has been added to xHC schedule */
2937 switch (ep_state) {
2938 case EP_STATE_DISABLED:
2939 /*
2940 * USB core changed config/interfaces without notifying us,
2941 * or hardware is reporting the wrong state.
2942 */
2943 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2944 return -ENOENT;
2945 case EP_STATE_ERROR:
2946 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2947 /* FIXME event handling code for error needs to clear it */
2948 /* XXX not sure if this should be -ENOENT or not */
2949 return -EINVAL;
2950 case EP_STATE_HALTED:
2951 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2952 case EP_STATE_STOPPED:
2953 case EP_STATE_RUNNING:
2954 break;
2955 default:
2956 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2957 /*
2958 * FIXME issue Configure Endpoint command to try to get the HC
2959 * back into a known state.
2960 */
2961 return -EINVAL;
2962 }
2963
2964 while (1) {
2965 if (room_on_ring(xhci, ep_ring, num_trbs))
2966 break;
2967
2968 if (ep_ring == xhci->cmd_ring) {
2969 xhci_err(xhci, "Do not support expand command ring\n");
2970 return -ENOMEM;
2971 }
2972
2973 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2974 "ERROR no room on ep ring, try ring expansion");
2975 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2976 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2977 mem_flags)) {
2978 xhci_err(xhci, "Ring expansion failed\n");
2979 return -ENOMEM;
2980 }
2981 }
2982
2983 if (enqueue_is_link_trb(ep_ring)) {
2984 struct xhci_ring *ring = ep_ring;
2985 union xhci_trb *next;
2986
2987 next = ring->enqueue;
2988
2989 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2990 /* If we're not dealing with 0.95 hardware or isoc rings
2991 * on AMD 0.96 host, clear the chain bit.
2992 */
2993 if (!xhci_link_trb_quirk(xhci) &&
2994 !(ring->type == TYPE_ISOC &&
2995 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2996 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2997 else
2998 next->link.control |= cpu_to_le32(TRB_CHAIN);
2999
3000 wmb();
3001 next->link.control ^= cpu_to_le32(TRB_CYCLE);
3002
3003 /* Toggle the cycle bit after the last ring segment. */
3004 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
3005 ring->cycle_state = (ring->cycle_state ? 0 : 1);
3006 }
3007 ring->enq_seg = ring->enq_seg->next;
3008 ring->enqueue = ring->enq_seg->trbs;
3009 next = ring->enqueue;
3010 }
3011 }
3012
3013 return 0;
3014 }
3015
3016 static int prepare_transfer(struct xhci_hcd *xhci,
3017 struct xhci_virt_device *xdev,
3018 unsigned int ep_index,
3019 unsigned int stream_id,
3020 unsigned int num_trbs,
3021 struct urb *urb,
3022 unsigned int td_index,
3023 gfp_t mem_flags)
3024 {
3025 int ret;
3026 struct urb_priv *urb_priv;
3027 struct xhci_td *td;
3028 struct xhci_ring *ep_ring;
3029 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3030
3031 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
3032 if (!ep_ring) {
3033 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
3034 stream_id);
3035 return -EINVAL;
3036 }
3037
3038 ret = prepare_ring(xhci, ep_ring,
3039 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3040 num_trbs, mem_flags);
3041 if (ret)
3042 return ret;
3043
3044 urb_priv = urb->hcpriv;
3045 td = urb_priv->td[td_index];
3046
3047 INIT_LIST_HEAD(&td->td_list);
3048 INIT_LIST_HEAD(&td->cancelled_td_list);
3049
3050 if (td_index == 0) {
3051 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
3052 if (unlikely(ret))
3053 return ret;
3054 }
3055
3056 td->urb = urb;
3057 /* Add this TD to the tail of the endpoint ring's TD list */
3058 list_add_tail(&td->td_list, &ep_ring->td_list);
3059 td->start_seg = ep_ring->enq_seg;
3060 td->first_trb = ep_ring->enqueue;
3061
3062 urb_priv->td[td_index] = td;
3063
3064 return 0;
3065 }
3066
3067 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
3068 {
3069 int num_sgs, num_trbs, running_total, temp, i;
3070 struct scatterlist *sg;
3071
3072 sg = NULL;
3073 num_sgs = urb->num_mapped_sgs;
3074 temp = urb->transfer_buffer_length;
3075
3076 num_trbs = 0;
3077 for_each_sg(urb->sg, sg, num_sgs, i) {
3078 unsigned int len = sg_dma_len(sg);
3079
3080 /* Scatter gather list entries may cross 64KB boundaries */
3081 running_total = TRB_MAX_BUFF_SIZE -
3082 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
3083 running_total &= TRB_MAX_BUFF_SIZE - 1;
3084 if (running_total != 0)
3085 num_trbs++;
3086
3087 /* How many more 64KB chunks to transfer, how many more TRBs? */
3088 while (running_total < sg_dma_len(sg) && running_total < temp) {
3089 num_trbs++;
3090 running_total += TRB_MAX_BUFF_SIZE;
3091 }
3092 len = min_t(int, len, temp);
3093 temp -= len;
3094 if (temp == 0)
3095 break;
3096 }
3097 return num_trbs;
3098 }
3099
3100 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
3101 {
3102 if (num_trbs != 0)
3103 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
3104 "TRBs, %d left\n", __func__,
3105 urb->ep->desc.bEndpointAddress, num_trbs);
3106 if (running_total != urb->transfer_buffer_length)
3107 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3108 "queued %#x (%d), asked for %#x (%d)\n",
3109 __func__,
3110 urb->ep->desc.bEndpointAddress,
3111 running_total, running_total,
3112 urb->transfer_buffer_length,
3113 urb->transfer_buffer_length);
3114 }
3115
3116 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3117 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3118 struct xhci_generic_trb *start_trb)
3119 {
3120 /*
3121 * Pass all the TRBs to the hardware at once and make sure this write
3122 * isn't reordered.
3123 */
3124 wmb();
3125 if (start_cycle)
3126 start_trb->field[3] |= cpu_to_le32(start_cycle);
3127 else
3128 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3129 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3130 }
3131
3132 /*
3133 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3134 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3135 * (comprised of sg list entries) can take several service intervals to
3136 * transmit.
3137 */
3138 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3139 struct urb *urb, int slot_id, unsigned int ep_index)
3140 {
3141 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3142 xhci->devs[slot_id]->out_ctx, ep_index);
3143 int xhci_interval;
3144 int ep_interval;
3145
3146 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3147 ep_interval = urb->interval;
3148 /* Convert to microframes */
3149 if (urb->dev->speed == USB_SPEED_LOW ||
3150 urb->dev->speed == USB_SPEED_FULL)
3151 ep_interval *= 8;
3152 /* FIXME change this to a warning and a suggestion to use the new API
3153 * to set the polling interval (once the API is added).
3154 */
3155 if (xhci_interval != ep_interval) {
3156 dev_dbg_ratelimited(&urb->dev->dev,
3157 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3158 ep_interval, ep_interval == 1 ? "" : "s",
3159 xhci_interval, xhci_interval == 1 ? "" : "s");
3160 urb->interval = xhci_interval;
3161 /* Convert back to frames for LS/FS devices */
3162 if (urb->dev->speed == USB_SPEED_LOW ||
3163 urb->dev->speed == USB_SPEED_FULL)
3164 urb->interval /= 8;
3165 }
3166 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3167 }
3168
3169 /*
3170 * The TD size is the number of bytes remaining in the TD (including this TRB),
3171 * right shifted by 10.
3172 * It must fit in bits 21:17, so it can't be bigger than 31.
3173 */
3174 static u32 xhci_td_remainder(unsigned int remainder)
3175 {
3176 u32 max = (1 << (21 - 17 + 1)) - 1;
3177
3178 if ((remainder >> 10) >= max)
3179 return max << 17;
3180 else
3181 return (remainder >> 10) << 17;
3182 }
3183
3184 /*
3185 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3186 * packets remaining in the TD (*not* including this TRB).
3187 *
3188 * Total TD packet count = total_packet_count =
3189 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3190 *
3191 * Packets transferred up to and including this TRB = packets_transferred =
3192 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3193 *
3194 * TD size = total_packet_count - packets_transferred
3195 *
3196 * It must fit in bits 21:17, so it can't be bigger than 31.
3197 * The last TRB in a TD must have the TD size set to zero.
3198 */
3199 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3200 unsigned int total_packet_count, struct urb *urb,
3201 unsigned int num_trbs_left)
3202 {
3203 int packets_transferred;
3204
3205 /* One TRB with a zero-length data packet. */
3206 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3207 return 0;
3208
3209 /* All the TRB queueing functions don't count the current TRB in
3210 * running_total.
3211 */
3212 packets_transferred = (running_total + trb_buff_len) /
3213 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3214
3215 if ((total_packet_count - packets_transferred) > 31)
3216 return 31 << 17;
3217 return (total_packet_count - packets_transferred) << 17;
3218 }
3219
3220 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3221 struct urb *urb, int slot_id, unsigned int ep_index)
3222 {
3223 struct xhci_ring *ep_ring;
3224 unsigned int num_trbs;
3225 struct urb_priv *urb_priv;
3226 struct xhci_td *td;
3227 struct scatterlist *sg;
3228 int num_sgs;
3229 int trb_buff_len, this_sg_len, running_total;
3230 unsigned int total_packet_count;
3231 bool first_trb;
3232 u64 addr;
3233 bool more_trbs_coming;
3234
3235 struct xhci_generic_trb *start_trb;
3236 int start_cycle;
3237
3238 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3239 if (!ep_ring)
3240 return -EINVAL;
3241
3242 num_trbs = count_sg_trbs_needed(xhci, urb);
3243 num_sgs = urb->num_mapped_sgs;
3244 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3245 usb_endpoint_maxp(&urb->ep->desc));
3246
3247 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3248 ep_index, urb->stream_id,
3249 num_trbs, urb, 0, mem_flags);
3250 if (trb_buff_len < 0)
3251 return trb_buff_len;
3252
3253 urb_priv = urb->hcpriv;
3254 td = urb_priv->td[0];
3255
3256 /*
3257 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3258 * until we've finished creating all the other TRBs. The ring's cycle
3259 * state may change as we enqueue the other TRBs, so save it too.
3260 */
3261 start_trb = &ep_ring->enqueue->generic;
3262 start_cycle = ep_ring->cycle_state;
3263
3264 running_total = 0;
3265 /*
3266 * How much data is in the first TRB?
3267 *
3268 * There are three forces at work for TRB buffer pointers and lengths:
3269 * 1. We don't want to walk off the end of this sg-list entry buffer.
3270 * 2. The transfer length that the driver requested may be smaller than
3271 * the amount of memory allocated for this scatter-gather list.
3272 * 3. TRBs buffers can't cross 64KB boundaries.
3273 */
3274 sg = urb->sg;
3275 addr = (u64) sg_dma_address(sg);
3276 this_sg_len = sg_dma_len(sg);
3277 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3278 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3279 if (trb_buff_len > urb->transfer_buffer_length)
3280 trb_buff_len = urb->transfer_buffer_length;
3281
3282 first_trb = true;
3283 /* Queue the first TRB, even if it's zero-length */
3284 do {
3285 u32 field = 0;
3286 u32 length_field = 0;
3287 u32 remainder = 0;
3288
3289 /* Don't change the cycle bit of the first TRB until later */
3290 if (first_trb) {
3291 first_trb = false;
3292 if (start_cycle == 0)
3293 field |= 0x1;
3294 } else
3295 field |= ep_ring->cycle_state;
3296
3297 /* Chain all the TRBs together; clear the chain bit in the last
3298 * TRB to indicate it's the last TRB in the chain.
3299 */
3300 if (num_trbs > 1) {
3301 field |= TRB_CHAIN;
3302 } else {
3303 /* FIXME - add check for ZERO_PACKET flag before this */
3304 td->last_trb = ep_ring->enqueue;
3305 field |= TRB_IOC;
3306 }
3307
3308 /* Only set interrupt on short packet for IN endpoints */
3309 if (usb_urb_dir_in(urb))
3310 field |= TRB_ISP;
3311
3312 if (TRB_MAX_BUFF_SIZE -
3313 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3314 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3315 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3316 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3317 (unsigned int) addr + trb_buff_len);
3318 }
3319
3320 /* Set the TRB length, TD size, and interrupter fields. */
3321 if (xhci->hci_version < 0x100) {
3322 remainder = xhci_td_remainder(
3323 urb->transfer_buffer_length -
3324 running_total);
3325 } else {
3326 remainder = xhci_v1_0_td_remainder(running_total,
3327 trb_buff_len, total_packet_count, urb,
3328 num_trbs - 1);
3329 }
3330 length_field = TRB_LEN(trb_buff_len) |
3331 remainder |
3332 TRB_INTR_TARGET(0);
3333
3334 if (num_trbs > 1)
3335 more_trbs_coming = true;
3336 else
3337 more_trbs_coming = false;
3338 queue_trb(xhci, ep_ring, more_trbs_coming,
3339 lower_32_bits(addr),
3340 upper_32_bits(addr),
3341 length_field,
3342 field | TRB_TYPE(TRB_NORMAL));
3343 --num_trbs;
3344 running_total += trb_buff_len;
3345
3346 /* Calculate length for next transfer --
3347 * Are we done queueing all the TRBs for this sg entry?
3348 */
3349 this_sg_len -= trb_buff_len;
3350 if (this_sg_len == 0) {
3351 --num_sgs;
3352 if (num_sgs == 0)
3353 break;
3354 sg = sg_next(sg);
3355 addr = (u64) sg_dma_address(sg);
3356 this_sg_len = sg_dma_len(sg);
3357 } else {
3358 addr += trb_buff_len;
3359 }
3360
3361 trb_buff_len = TRB_MAX_BUFF_SIZE -
3362 (addr & (TRB_MAX_BUFF_SIZE - 1));
3363 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3364 if (running_total + trb_buff_len > urb->transfer_buffer_length)
3365 trb_buff_len =
3366 urb->transfer_buffer_length - running_total;
3367 } while (running_total < urb->transfer_buffer_length);
3368
3369 check_trb_math(urb, num_trbs, running_total);
3370 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3371 start_cycle, start_trb);
3372 return 0;
3373 }
3374
3375 /* This is very similar to what ehci-q.c qtd_fill() does */
3376 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3377 struct urb *urb, int slot_id, unsigned int ep_index)
3378 {
3379 struct xhci_ring *ep_ring;
3380 struct urb_priv *urb_priv;
3381 struct xhci_td *td;
3382 int num_trbs;
3383 struct xhci_generic_trb *start_trb;
3384 bool first_trb;
3385 bool more_trbs_coming;
3386 int start_cycle;
3387 u32 field, length_field;
3388
3389 int running_total, trb_buff_len, ret;
3390 unsigned int total_packet_count;
3391 u64 addr;
3392
3393 if (urb->num_sgs)
3394 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3395
3396 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3397 if (!ep_ring)
3398 return -EINVAL;
3399
3400 num_trbs = 0;
3401 /* How much data is (potentially) left before the 64KB boundary? */
3402 running_total = TRB_MAX_BUFF_SIZE -
3403 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3404 running_total &= TRB_MAX_BUFF_SIZE - 1;
3405
3406 /* If there's some data on this 64KB chunk, or we have to send a
3407 * zero-length transfer, we need at least one TRB
3408 */
3409 if (running_total != 0 || urb->transfer_buffer_length == 0)
3410 num_trbs++;
3411 /* How many more 64KB chunks to transfer, how many more TRBs? */
3412 while (running_total < urb->transfer_buffer_length) {
3413 num_trbs++;
3414 running_total += TRB_MAX_BUFF_SIZE;
3415 }
3416 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3417
3418 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3419 ep_index, urb->stream_id,
3420 num_trbs, urb, 0, mem_flags);
3421 if (ret < 0)
3422 return ret;
3423
3424 urb_priv = urb->hcpriv;
3425 td = urb_priv->td[0];
3426
3427 /*
3428 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3429 * until we've finished creating all the other TRBs. The ring's cycle
3430 * state may change as we enqueue the other TRBs, so save it too.
3431 */
3432 start_trb = &ep_ring->enqueue->generic;
3433 start_cycle = ep_ring->cycle_state;
3434
3435 running_total = 0;
3436 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3437 usb_endpoint_maxp(&urb->ep->desc));
3438 /* How much data is in the first TRB? */
3439 addr = (u64) urb->transfer_dma;
3440 trb_buff_len = TRB_MAX_BUFF_SIZE -
3441 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3442 if (trb_buff_len > urb->transfer_buffer_length)
3443 trb_buff_len = urb->transfer_buffer_length;
3444
3445 first_trb = true;
3446
3447 /* Queue the first TRB, even if it's zero-length */
3448 do {
3449 u32 remainder = 0;
3450 field = 0;
3451
3452 /* Don't change the cycle bit of the first TRB until later */
3453 if (first_trb) {
3454 first_trb = false;
3455 if (start_cycle == 0)
3456 field |= 0x1;
3457 } else
3458 field |= ep_ring->cycle_state;
3459
3460 /* Chain all the TRBs together; clear the chain bit in the last
3461 * TRB to indicate it's the last TRB in the chain.
3462 */
3463 if (num_trbs > 1) {
3464 field |= TRB_CHAIN;
3465 } else {
3466 /* FIXME - add check for ZERO_PACKET flag before this */
3467 td->last_trb = ep_ring->enqueue;
3468 field |= TRB_IOC;
3469 }
3470
3471 /* Only set interrupt on short packet for IN endpoints */
3472 if (usb_urb_dir_in(urb))
3473 field |= TRB_ISP;
3474
3475 /* Set the TRB length, TD size, and interrupter fields. */
3476 if (xhci->hci_version < 0x100) {
3477 remainder = xhci_td_remainder(
3478 urb->transfer_buffer_length -
3479 running_total);
3480 } else {
3481 remainder = xhci_v1_0_td_remainder(running_total,
3482 trb_buff_len, total_packet_count, urb,
3483 num_trbs - 1);
3484 }
3485 length_field = TRB_LEN(trb_buff_len) |
3486 remainder |
3487 TRB_INTR_TARGET(0);
3488
3489 if (num_trbs > 1)
3490 more_trbs_coming = true;
3491 else
3492 more_trbs_coming = false;
3493 queue_trb(xhci, ep_ring, more_trbs_coming,
3494 lower_32_bits(addr),
3495 upper_32_bits(addr),
3496 length_field,
3497 field | TRB_TYPE(TRB_NORMAL));
3498 --num_trbs;
3499 running_total += trb_buff_len;
3500
3501 /* Calculate length for next transfer */
3502 addr += trb_buff_len;
3503 trb_buff_len = urb->transfer_buffer_length - running_total;
3504 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3505 trb_buff_len = TRB_MAX_BUFF_SIZE;
3506 } while (running_total < urb->transfer_buffer_length);
3507
3508 check_trb_math(urb, num_trbs, running_total);
3509 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3510 start_cycle, start_trb);
3511 return 0;
3512 }
3513
3514 /* Caller must have locked xhci->lock */
3515 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3516 struct urb *urb, int slot_id, unsigned int ep_index)
3517 {
3518 struct xhci_ring *ep_ring;
3519 int num_trbs;
3520 int ret;
3521 struct usb_ctrlrequest *setup;
3522 struct xhci_generic_trb *start_trb;
3523 int start_cycle;
3524 u32 field, length_field;
3525 struct urb_priv *urb_priv;
3526 struct xhci_td *td;
3527
3528 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3529 if (!ep_ring)
3530 return -EINVAL;
3531
3532 /*
3533 * Need to copy setup packet into setup TRB, so we can't use the setup
3534 * DMA address.
3535 */
3536 if (!urb->setup_packet)
3537 return -EINVAL;
3538
3539 /* 1 TRB for setup, 1 for status */
3540 num_trbs = 2;
3541 /*
3542 * Don't need to check if we need additional event data and normal TRBs,
3543 * since data in control transfers will never get bigger than 16MB
3544 * XXX: can we get a buffer that crosses 64KB boundaries?
3545 */
3546 if (urb->transfer_buffer_length > 0)
3547 num_trbs++;
3548 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3549 ep_index, urb->stream_id,
3550 num_trbs, urb, 0, mem_flags);
3551 if (ret < 0)
3552 return ret;
3553
3554 urb_priv = urb->hcpriv;
3555 td = urb_priv->td[0];
3556
3557 /*
3558 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3559 * until we've finished creating all the other TRBs. The ring's cycle
3560 * state may change as we enqueue the other TRBs, so save it too.
3561 */
3562 start_trb = &ep_ring->enqueue->generic;
3563 start_cycle = ep_ring->cycle_state;
3564
3565 /* Queue setup TRB - see section 6.4.1.2.1 */
3566 /* FIXME better way to translate setup_packet into two u32 fields? */
3567 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3568 field = 0;
3569 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3570 if (start_cycle == 0)
3571 field |= 0x1;
3572
3573 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3574 if (xhci->hci_version == 0x100) {
3575 if (urb->transfer_buffer_length > 0) {
3576 if (setup->bRequestType & USB_DIR_IN)
3577 field |= TRB_TX_TYPE(TRB_DATA_IN);
3578 else
3579 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3580 }
3581 }
3582
3583 queue_trb(xhci, ep_ring, true,
3584 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3585 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3586 TRB_LEN(8) | TRB_INTR_TARGET(0),
3587 /* Immediate data in pointer */
3588 field);
3589
3590 /* If there's data, queue data TRBs */
3591 /* Only set interrupt on short packet for IN endpoints */
3592 if (usb_urb_dir_in(urb))
3593 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3594 else
3595 field = TRB_TYPE(TRB_DATA);
3596
3597 length_field = TRB_LEN(urb->transfer_buffer_length) |
3598 xhci_td_remainder(urb->transfer_buffer_length) |
3599 TRB_INTR_TARGET(0);
3600 if (urb->transfer_buffer_length > 0) {
3601 if (setup->bRequestType & USB_DIR_IN)
3602 field |= TRB_DIR_IN;
3603 queue_trb(xhci, ep_ring, true,
3604 lower_32_bits(urb->transfer_dma),
3605 upper_32_bits(urb->transfer_dma),
3606 length_field,
3607 field | ep_ring->cycle_state);
3608 }
3609
3610 /* Save the DMA address of the last TRB in the TD */
3611 td->last_trb = ep_ring->enqueue;
3612
3613 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3614 /* If the device sent data, the status stage is an OUT transfer */
3615 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3616 field = 0;
3617 else
3618 field = TRB_DIR_IN;
3619 queue_trb(xhci, ep_ring, false,
3620 0,
3621 0,
3622 TRB_INTR_TARGET(0),
3623 /* Event on completion */
3624 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3625
3626 giveback_first_trb(xhci, slot_id, ep_index, 0,
3627 start_cycle, start_trb);
3628 return 0;
3629 }
3630
3631 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3632 struct urb *urb, int i)
3633 {
3634 int num_trbs = 0;
3635 u64 addr, td_len;
3636
3637 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3638 td_len = urb->iso_frame_desc[i].length;
3639
3640 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3641 TRB_MAX_BUFF_SIZE);
3642 if (num_trbs == 0)
3643 num_trbs++;
3644
3645 return num_trbs;
3646 }
3647
3648 /*
3649 * The transfer burst count field of the isochronous TRB defines the number of
3650 * bursts that are required to move all packets in this TD. Only SuperSpeed
3651 * devices can burst up to bMaxBurst number of packets per service interval.
3652 * This field is zero based, meaning a value of zero in the field means one
3653 * burst. Basically, for everything but SuperSpeed devices, this field will be
3654 * zero. Only xHCI 1.0 host controllers support this field.
3655 */
3656 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3657 struct usb_device *udev,
3658 struct urb *urb, unsigned int total_packet_count)
3659 {
3660 unsigned int max_burst;
3661
3662 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3663 return 0;
3664
3665 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3666 return roundup(total_packet_count, max_burst + 1) - 1;
3667 }
3668
3669 /*
3670 * Returns the number of packets in the last "burst" of packets. This field is
3671 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3672 * the last burst packet count is equal to the total number of packets in the
3673 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3674 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3675 * contain 1 to (bMaxBurst + 1) packets.
3676 */
3677 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3678 struct usb_device *udev,
3679 struct urb *urb, unsigned int total_packet_count)
3680 {
3681 unsigned int max_burst;
3682 unsigned int residue;
3683
3684 if (xhci->hci_version < 0x100)
3685 return 0;
3686
3687 switch (udev->speed) {
3688 case USB_SPEED_SUPER:
3689 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3690 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3691 residue = total_packet_count % (max_burst + 1);
3692 /* If residue is zero, the last burst contains (max_burst + 1)
3693 * number of packets, but the TLBPC field is zero-based.
3694 */
3695 if (residue == 0)
3696 return max_burst;
3697 return residue - 1;
3698 default:
3699 if (total_packet_count == 0)
3700 return 0;
3701 return total_packet_count - 1;
3702 }
3703 }
3704
3705 /* This is for isoc transfer */
3706 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3707 struct urb *urb, int slot_id, unsigned int ep_index)
3708 {
3709 struct xhci_ring *ep_ring;
3710 struct urb_priv *urb_priv;
3711 struct xhci_td *td;
3712 int num_tds, trbs_per_td;
3713 struct xhci_generic_trb *start_trb;
3714 bool first_trb;
3715 int start_cycle;
3716 u32 field, length_field;
3717 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3718 u64 start_addr, addr;
3719 int i, j;
3720 bool more_trbs_coming;
3721
3722 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3723
3724 num_tds = urb->number_of_packets;
3725 if (num_tds < 1) {
3726 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3727 return -EINVAL;
3728 }
3729
3730 start_addr = (u64) urb->transfer_dma;
3731 start_trb = &ep_ring->enqueue->generic;
3732 start_cycle = ep_ring->cycle_state;
3733
3734 urb_priv = urb->hcpriv;
3735 /* Queue the first TRB, even if it's zero-length */
3736 for (i = 0; i < num_tds; i++) {
3737 unsigned int total_packet_count;
3738 unsigned int burst_count;
3739 unsigned int residue;
3740
3741 first_trb = true;
3742 running_total = 0;
3743 addr = start_addr + urb->iso_frame_desc[i].offset;
3744 td_len = urb->iso_frame_desc[i].length;
3745 td_remain_len = td_len;
3746 total_packet_count = DIV_ROUND_UP(td_len,
3747 GET_MAX_PACKET(
3748 usb_endpoint_maxp(&urb->ep->desc)));
3749 /* A zero-length transfer still involves at least one packet. */
3750 if (total_packet_count == 0)
3751 total_packet_count++;
3752 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3753 total_packet_count);
3754 residue = xhci_get_last_burst_packet_count(xhci,
3755 urb->dev, urb, total_packet_count);
3756
3757 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3758
3759 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3760 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3761 if (ret < 0) {
3762 if (i == 0)
3763 return ret;
3764 goto cleanup;
3765 }
3766
3767 td = urb_priv->td[i];
3768 for (j = 0; j < trbs_per_td; j++) {
3769 u32 remainder = 0;
3770 field = 0;
3771
3772 if (first_trb) {
3773 field = TRB_TBC(burst_count) |
3774 TRB_TLBPC(residue);
3775 /* Queue the isoc TRB */
3776 field |= TRB_TYPE(TRB_ISOC);
3777 /* Assume URB_ISO_ASAP is set */
3778 field |= TRB_SIA;
3779 if (i == 0) {
3780 if (start_cycle == 0)
3781 field |= 0x1;
3782 } else
3783 field |= ep_ring->cycle_state;
3784 first_trb = false;
3785 } else {
3786 /* Queue other normal TRBs */
3787 field |= TRB_TYPE(TRB_NORMAL);
3788 field |= ep_ring->cycle_state;
3789 }
3790
3791 /* Only set interrupt on short packet for IN EPs */
3792 if (usb_urb_dir_in(urb))
3793 field |= TRB_ISP;
3794
3795 /* Chain all the TRBs together; clear the chain bit in
3796 * the last TRB to indicate it's the last TRB in the
3797 * chain.
3798 */
3799 if (j < trbs_per_td - 1) {
3800 field |= TRB_CHAIN;
3801 more_trbs_coming = true;
3802 } else {
3803 td->last_trb = ep_ring->enqueue;
3804 field |= TRB_IOC;
3805 if (xhci->hci_version == 0x100 &&
3806 !(xhci->quirks &
3807 XHCI_AVOID_BEI)) {
3808 /* Set BEI bit except for the last td */
3809 if (i < num_tds - 1)
3810 field |= TRB_BEI;
3811 }
3812 more_trbs_coming = false;
3813 }
3814
3815 /* Calculate TRB length */
3816 trb_buff_len = TRB_MAX_BUFF_SIZE -
3817 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3818 if (trb_buff_len > td_remain_len)
3819 trb_buff_len = td_remain_len;
3820
3821 /* Set the TRB length, TD size, & interrupter fields. */
3822 if (xhci->hci_version < 0x100) {
3823 remainder = xhci_td_remainder(
3824 td_len - running_total);
3825 } else {
3826 remainder = xhci_v1_0_td_remainder(
3827 running_total, trb_buff_len,
3828 total_packet_count, urb,
3829 (trbs_per_td - j - 1));
3830 }
3831 length_field = TRB_LEN(trb_buff_len) |
3832 remainder |
3833 TRB_INTR_TARGET(0);
3834
3835 queue_trb(xhci, ep_ring, more_trbs_coming,
3836 lower_32_bits(addr),
3837 upper_32_bits(addr),
3838 length_field,
3839 field);
3840 running_total += trb_buff_len;
3841
3842 addr += trb_buff_len;
3843 td_remain_len -= trb_buff_len;
3844 }
3845
3846 /* Check TD length */
3847 if (running_total != td_len) {
3848 xhci_err(xhci, "ISOC TD length unmatch\n");
3849 ret = -EINVAL;
3850 goto cleanup;
3851 }
3852 }
3853
3854 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3855 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3856 usb_amd_quirk_pll_disable();
3857 }
3858 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3859
3860 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3861 start_cycle, start_trb);
3862 return 0;
3863 cleanup:
3864 /* Clean up a partially enqueued isoc transfer. */
3865
3866 for (i--; i >= 0; i--)
3867 list_del_init(&urb_priv->td[i]->td_list);
3868
3869 /* Use the first TD as a temporary variable to turn the TDs we've queued
3870 * into No-ops with a software-owned cycle bit. That way the hardware
3871 * won't accidentally start executing bogus TDs when we partially
3872 * overwrite them. td->first_trb and td->start_seg are already set.
3873 */
3874 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3875 /* Every TRB except the first & last will have its cycle bit flipped. */
3876 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3877
3878 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3879 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3880 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3881 ep_ring->cycle_state = start_cycle;
3882 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3883 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3884 return ret;
3885 }
3886
3887 /*
3888 * Check transfer ring to guarantee there is enough room for the urb.
3889 * Update ISO URB start_frame and interval.
3890 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3891 * update the urb->start_frame by now.
3892 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3893 */
3894 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3895 struct urb *urb, int slot_id, unsigned int ep_index)
3896 {
3897 struct xhci_virt_device *xdev;
3898 struct xhci_ring *ep_ring;
3899 struct xhci_ep_ctx *ep_ctx;
3900 int start_frame;
3901 int xhci_interval;
3902 int ep_interval;
3903 int num_tds, num_trbs, i;
3904 int ret;
3905
3906 xdev = xhci->devs[slot_id];
3907 ep_ring = xdev->eps[ep_index].ring;
3908 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3909
3910 num_trbs = 0;
3911 num_tds = urb->number_of_packets;
3912 for (i = 0; i < num_tds; i++)
3913 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3914
3915 /* Check the ring to guarantee there is enough room for the whole urb.
3916 * Do not insert any td of the urb to the ring if the check failed.
3917 */
3918 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3919 num_trbs, mem_flags);
3920 if (ret)
3921 return ret;
3922
3923 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3924 start_frame &= 0x3fff;
3925
3926 urb->start_frame = start_frame;
3927 if (urb->dev->speed == USB_SPEED_LOW ||
3928 urb->dev->speed == USB_SPEED_FULL)
3929 urb->start_frame >>= 3;
3930
3931 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3932 ep_interval = urb->interval;
3933 /* Convert to microframes */
3934 if (urb->dev->speed == USB_SPEED_LOW ||
3935 urb->dev->speed == USB_SPEED_FULL)
3936 ep_interval *= 8;
3937 /* FIXME change this to a warning and a suggestion to use the new API
3938 * to set the polling interval (once the API is added).
3939 */
3940 if (xhci_interval != ep_interval) {
3941 dev_dbg_ratelimited(&urb->dev->dev,
3942 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3943 ep_interval, ep_interval == 1 ? "" : "s",
3944 xhci_interval, xhci_interval == 1 ? "" : "s");
3945 urb->interval = xhci_interval;
3946 /* Convert back to frames for LS/FS devices */
3947 if (urb->dev->speed == USB_SPEED_LOW ||
3948 urb->dev->speed == USB_SPEED_FULL)
3949 urb->interval /= 8;
3950 }
3951 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3952
3953 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3954 }
3955
3956 /**** Command Ring Operations ****/
3957
3958 /* Generic function for queueing a command TRB on the command ring.
3959 * Check to make sure there's room on the command ring for one command TRB.
3960 * Also check that there's room reserved for commands that must not fail.
3961 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3962 * then only check for the number of reserved spots.
3963 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3964 * because the command event handler may want to resubmit a failed command.
3965 */
3966 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3967 u32 field3, u32 field4, bool command_must_succeed)
3968 {
3969 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3970 int ret;
3971
3972 if (!command_must_succeed)
3973 reserved_trbs++;
3974
3975 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3976 reserved_trbs, GFP_ATOMIC);
3977 if (ret < 0) {
3978 xhci_err(xhci, "ERR: No room for command on command ring\n");
3979 if (command_must_succeed)
3980 xhci_err(xhci, "ERR: Reserved TRB counting for "
3981 "unfailable commands failed.\n");
3982 return ret;
3983 }
3984 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3985 field4 | xhci->cmd_ring->cycle_state);
3986 return 0;
3987 }
3988
3989 /* Queue a slot enable or disable request on the command ring */
3990 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3991 {
3992 return queue_command(xhci, 0, 0, 0,
3993 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3994 }
3995
3996 /* Queue an address device command TRB */
3997 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3998 u32 slot_id)
3999 {
4000 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4001 upper_32_bits(in_ctx_ptr), 0,
4002 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
4003 false);
4004 }
4005
4006 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
4007 u32 field1, u32 field2, u32 field3, u32 field4)
4008 {
4009 return queue_command(xhci, field1, field2, field3, field4, false);
4010 }
4011
4012 /* Queue a reset device command TRB */
4013 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
4014 {
4015 return queue_command(xhci, 0, 0, 0,
4016 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4017 false);
4018 }
4019
4020 /* Queue a configure endpoint command TRB */
4021 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4022 u32 slot_id, bool command_must_succeed)
4023 {
4024 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4025 upper_32_bits(in_ctx_ptr), 0,
4026 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4027 command_must_succeed);
4028 }
4029
4030 /* Queue an evaluate context command TRB */
4031 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4032 u32 slot_id, bool command_must_succeed)
4033 {
4034 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4035 upper_32_bits(in_ctx_ptr), 0,
4036 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4037 command_must_succeed);
4038 }
4039
4040 /*
4041 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4042 * activity on an endpoint that is about to be suspended.
4043 */
4044 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
4045 unsigned int ep_index, int suspend)
4046 {
4047 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4048 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4049 u32 type = TRB_TYPE(TRB_STOP_RING);
4050 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4051
4052 return queue_command(xhci, 0, 0, 0,
4053 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4054 }
4055
4056 /* Set Transfer Ring Dequeue Pointer command.
4057 * This should not be used for endpoints that have streams enabled.
4058 */
4059 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
4060 unsigned int ep_index, unsigned int stream_id,
4061 struct xhci_segment *deq_seg,
4062 union xhci_trb *deq_ptr, u32 cycle_state)
4063 {
4064 dma_addr_t addr;
4065 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4066 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4067 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4068 u32 type = TRB_TYPE(TRB_SET_DEQ);
4069 struct xhci_virt_ep *ep;
4070
4071 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
4072 if (addr == 0) {
4073 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4074 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4075 deq_seg, deq_ptr);
4076 return 0;
4077 }
4078 ep = &xhci->devs[slot_id]->eps[ep_index];
4079 if ((ep->ep_state & SET_DEQ_PENDING)) {
4080 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4081 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4082 return 0;
4083 }
4084 ep->queued_deq_seg = deq_seg;
4085 ep->queued_deq_ptr = deq_ptr;
4086 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
4087 upper_32_bits(addr), trb_stream_id,
4088 trb_slot_id | trb_ep_index | type, false);
4089 }
4090
4091 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
4092 unsigned int ep_index)
4093 {
4094 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4095 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4096 u32 type = TRB_TYPE(TRB_RESET_EP);
4097
4098 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
4099 false);
4100 }
This page took 0.115981 seconds and 5 git commands to generate.