Merge branch 'for-linus' of git://neil.brown.name/md
[deliverable/linux.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
74
75 /*
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
78 */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
81 {
82 unsigned long segment_offset;
83
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
91 }
92
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
95 */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
109 */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
117 }
118
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
123 }
124
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
128 */
129 static void next_trb(struct xhci_hcd *xhci,
130 struct xhci_ring *ring,
131 struct xhci_segment **seg,
132 union xhci_trb **trb)
133 {
134 if (last_trb(xhci, ring, *seg, *trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
139 }
140 }
141
142 /*
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
145 */
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
147 {
148 union xhci_trb *next = ++(ring->dequeue);
149 unsigned long long addr;
150
151 ring->deq_updates++;
152 /* Update the dequeue pointer further if that was a link TRB or we're at
153 * the end of an event ring segment (which doesn't have link TRBS)
154 */
155 while (last_trb(xhci, ring, ring->deq_seg, next)) {
156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
157 ring->cycle_state = (ring->cycle_state ? 0 : 1);
158 if (!in_interrupt())
159 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
160 ring,
161 (unsigned int) ring->cycle_state);
162 }
163 ring->deq_seg = ring->deq_seg->next;
164 ring->dequeue = ring->deq_seg->trbs;
165 next = ring->dequeue;
166 }
167 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
168 }
169
170 /*
171 * See Cycle bit rules. SW is the consumer for the event ring only.
172 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
173 *
174 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
175 * chain bit is set), then set the chain bit in all the following link TRBs.
176 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
177 * have their chain bit cleared (so that each Link TRB is a separate TD).
178 *
179 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
180 * set, but other sections talk about dealing with the chain bit set. This was
181 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
182 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
183 *
184 * @more_trbs_coming: Will you enqueue more TRBs before calling
185 * prepare_transfer()?
186 */
187 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
188 bool consumer, bool more_trbs_coming)
189 {
190 u32 chain;
191 union xhci_trb *next;
192 unsigned long long addr;
193
194 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195 next = ++(ring->enqueue);
196
197 ring->enq_updates++;
198 /* Update the dequeue pointer further if that was a link TRB or we're at
199 * the end of an event ring segment (which doesn't have link TRBS)
200 */
201 while (last_trb(xhci, ring, ring->enq_seg, next)) {
202 if (!consumer) {
203 if (ring != xhci->event_ring) {
204 /*
205 * If the caller doesn't plan on enqueueing more
206 * TDs before ringing the doorbell, then we
207 * don't want to give the link TRB to the
208 * hardware just yet. We'll give the link TRB
209 * back in prepare_ring() just before we enqueue
210 * the TD at the top of the ring.
211 */
212 if (!chain && !more_trbs_coming)
213 break;
214
215 /* If we're not dealing with 0.95 hardware,
216 * carry over the chain bit of the previous TRB
217 * (which may mean the chain bit is cleared).
218 */
219 if (!xhci_link_trb_quirk(xhci)) {
220 next->link.control &=
221 cpu_to_le32(~TRB_CHAIN);
222 next->link.control |=
223 cpu_to_le32(chain);
224 }
225 /* Give this link TRB to the hardware */
226 wmb();
227 next->link.control ^= cpu_to_le32(TRB_CYCLE);
228 }
229 /* Toggle the cycle bit after the last ring segment. */
230 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
231 ring->cycle_state = (ring->cycle_state ? 0 : 1);
232 if (!in_interrupt())
233 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
234 ring,
235 (unsigned int) ring->cycle_state);
236 }
237 }
238 ring->enq_seg = ring->enq_seg->next;
239 ring->enqueue = ring->enq_seg->trbs;
240 next = ring->enqueue;
241 }
242 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
243 }
244
245 /*
246 * Check to see if there's room to enqueue num_trbs on the ring. See rules
247 * above.
248 * FIXME: this would be simpler and faster if we just kept track of the number
249 * of free TRBs in a ring.
250 */
251 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
252 unsigned int num_trbs)
253 {
254 int i;
255 union xhci_trb *enq = ring->enqueue;
256 struct xhci_segment *enq_seg = ring->enq_seg;
257 struct xhci_segment *cur_seg;
258 unsigned int left_on_ring;
259
260 /* If we are currently pointing to a link TRB, advance the
261 * enqueue pointer before checking for space */
262 while (last_trb(xhci, ring, enq_seg, enq)) {
263 enq_seg = enq_seg->next;
264 enq = enq_seg->trbs;
265 }
266
267 /* Check if ring is empty */
268 if (enq == ring->dequeue) {
269 /* Can't use link trbs */
270 left_on_ring = TRBS_PER_SEGMENT - 1;
271 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
272 cur_seg = cur_seg->next)
273 left_on_ring += TRBS_PER_SEGMENT - 1;
274
275 /* Always need one TRB free in the ring. */
276 left_on_ring -= 1;
277 if (num_trbs > left_on_ring) {
278 xhci_warn(xhci, "Not enough room on ring; "
279 "need %u TRBs, %u TRBs left\n",
280 num_trbs, left_on_ring);
281 return 0;
282 }
283 return 1;
284 }
285 /* Make sure there's an extra empty TRB available */
286 for (i = 0; i <= num_trbs; ++i) {
287 if (enq == ring->dequeue)
288 return 0;
289 enq++;
290 while (last_trb(xhci, ring, enq_seg, enq)) {
291 enq_seg = enq_seg->next;
292 enq = enq_seg->trbs;
293 }
294 }
295 return 1;
296 }
297
298 /* Ring the host controller doorbell after placing a command on the ring */
299 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
300 {
301 xhci_dbg(xhci, "// Ding dong!\n");
302 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
303 /* Flush PCI posted writes */
304 xhci_readl(xhci, &xhci->dba->doorbell[0]);
305 }
306
307 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
308 unsigned int slot_id,
309 unsigned int ep_index,
310 unsigned int stream_id)
311 {
312 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
313 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
314 unsigned int ep_state = ep->ep_state;
315
316 /* Don't ring the doorbell for this endpoint if there are pending
317 * cancellations because we don't want to interrupt processing.
318 * We don't want to restart any stream rings if there's a set dequeue
319 * pointer command pending because the device can choose to start any
320 * stream once the endpoint is on the HW schedule.
321 * FIXME - check all the stream rings for pending cancellations.
322 */
323 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
324 (ep_state & EP_HALTED))
325 return;
326 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
327 /* The CPU has better things to do at this point than wait for a
328 * write-posting flush. It'll get there soon enough.
329 */
330 }
331
332 /* Ring the doorbell for any rings with pending URBs */
333 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
334 unsigned int slot_id,
335 unsigned int ep_index)
336 {
337 unsigned int stream_id;
338 struct xhci_virt_ep *ep;
339
340 ep = &xhci->devs[slot_id]->eps[ep_index];
341
342 /* A ring has pending URBs if its TD list is not empty */
343 if (!(ep->ep_state & EP_HAS_STREAMS)) {
344 if (!(list_empty(&ep->ring->td_list)))
345 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
346 return;
347 }
348
349 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
350 stream_id++) {
351 struct xhci_stream_info *stream_info = ep->stream_info;
352 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
353 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
354 stream_id);
355 }
356 }
357
358 /*
359 * Find the segment that trb is in. Start searching in start_seg.
360 * If we must move past a segment that has a link TRB with a toggle cycle state
361 * bit set, then we will toggle the value pointed at by cycle_state.
362 */
363 static struct xhci_segment *find_trb_seg(
364 struct xhci_segment *start_seg,
365 union xhci_trb *trb, int *cycle_state)
366 {
367 struct xhci_segment *cur_seg = start_seg;
368 struct xhci_generic_trb *generic_trb;
369
370 while (cur_seg->trbs > trb ||
371 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
372 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
373 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
374 *cycle_state ^= 0x1;
375 cur_seg = cur_seg->next;
376 if (cur_seg == start_seg)
377 /* Looped over the entire list. Oops! */
378 return NULL;
379 }
380 return cur_seg;
381 }
382
383
384 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
385 unsigned int slot_id, unsigned int ep_index,
386 unsigned int stream_id)
387 {
388 struct xhci_virt_ep *ep;
389
390 ep = &xhci->devs[slot_id]->eps[ep_index];
391 /* Common case: no streams */
392 if (!(ep->ep_state & EP_HAS_STREAMS))
393 return ep->ring;
394
395 if (stream_id == 0) {
396 xhci_warn(xhci,
397 "WARN: Slot ID %u, ep index %u has streams, "
398 "but URB has no stream ID.\n",
399 slot_id, ep_index);
400 return NULL;
401 }
402
403 if (stream_id < ep->stream_info->num_streams)
404 return ep->stream_info->stream_rings[stream_id];
405
406 xhci_warn(xhci,
407 "WARN: Slot ID %u, ep index %u has "
408 "stream IDs 1 to %u allocated, "
409 "but stream ID %u is requested.\n",
410 slot_id, ep_index,
411 ep->stream_info->num_streams - 1,
412 stream_id);
413 return NULL;
414 }
415
416 /* Get the right ring for the given URB.
417 * If the endpoint supports streams, boundary check the URB's stream ID.
418 * If the endpoint doesn't support streams, return the singular endpoint ring.
419 */
420 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
421 struct urb *urb)
422 {
423 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
424 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
425 }
426
427 /*
428 * Move the xHC's endpoint ring dequeue pointer past cur_td.
429 * Record the new state of the xHC's endpoint ring dequeue segment,
430 * dequeue pointer, and new consumer cycle state in state.
431 * Update our internal representation of the ring's dequeue pointer.
432 *
433 * We do this in three jumps:
434 * - First we update our new ring state to be the same as when the xHC stopped.
435 * - Then we traverse the ring to find the segment that contains
436 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
437 * any link TRBs with the toggle cycle bit set.
438 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
439 * if we've moved it past a link TRB with the toggle cycle bit set.
440 *
441 * Some of the uses of xhci_generic_trb are grotty, but if they're done
442 * with correct __le32 accesses they should work fine. Only users of this are
443 * in here.
444 */
445 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
446 unsigned int slot_id, unsigned int ep_index,
447 unsigned int stream_id, struct xhci_td *cur_td,
448 struct xhci_dequeue_state *state)
449 {
450 struct xhci_virt_device *dev = xhci->devs[slot_id];
451 struct xhci_ring *ep_ring;
452 struct xhci_generic_trb *trb;
453 struct xhci_ep_ctx *ep_ctx;
454 dma_addr_t addr;
455
456 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
457 ep_index, stream_id);
458 if (!ep_ring) {
459 xhci_warn(xhci, "WARN can't find new dequeue state "
460 "for invalid stream ID %u.\n",
461 stream_id);
462 return;
463 }
464 state->new_cycle_state = 0;
465 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
466 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
467 dev->eps[ep_index].stopped_trb,
468 &state->new_cycle_state);
469 if (!state->new_deq_seg) {
470 WARN_ON(1);
471 return;
472 }
473
474 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
475 xhci_dbg(xhci, "Finding endpoint context\n");
476 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
477 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
478
479 state->new_deq_ptr = cur_td->last_trb;
480 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
481 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
482 state->new_deq_ptr,
483 &state->new_cycle_state);
484 if (!state->new_deq_seg) {
485 WARN_ON(1);
486 return;
487 }
488
489 trb = &state->new_deq_ptr->generic;
490 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
491 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
492 state->new_cycle_state ^= 0x1;
493 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
494
495 /*
496 * If there is only one segment in a ring, find_trb_seg()'s while loop
497 * will not run, and it will return before it has a chance to see if it
498 * needs to toggle the cycle bit. It can't tell if the stalled transfer
499 * ended just before the link TRB on a one-segment ring, or if the TD
500 * wrapped around the top of the ring, because it doesn't have the TD in
501 * question. Look for the one-segment case where stalled TRB's address
502 * is greater than the new dequeue pointer address.
503 */
504 if (ep_ring->first_seg == ep_ring->first_seg->next &&
505 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
506 state->new_cycle_state ^= 0x1;
507 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
508
509 /* Don't update the ring cycle state for the producer (us). */
510 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
511 state->new_deq_seg);
512 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
513 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
514 (unsigned long long) addr);
515 }
516
517 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
518 struct xhci_td *cur_td)
519 {
520 struct xhci_segment *cur_seg;
521 union xhci_trb *cur_trb;
522
523 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
524 true;
525 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
526 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
527 /* Unchain any chained Link TRBs, but
528 * leave the pointers intact.
529 */
530 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
531 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
532 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
533 "in seg %p (0x%llx dma)\n",
534 cur_trb,
535 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
536 cur_seg,
537 (unsigned long long)cur_seg->dma);
538 } else {
539 cur_trb->generic.field[0] = 0;
540 cur_trb->generic.field[1] = 0;
541 cur_trb->generic.field[2] = 0;
542 /* Preserve only the cycle bit of this TRB */
543 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
544 cur_trb->generic.field[3] |= cpu_to_le32(
545 TRB_TYPE(TRB_TR_NOOP));
546 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
547 "in seg %p (0x%llx dma)\n",
548 cur_trb,
549 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
550 cur_seg,
551 (unsigned long long)cur_seg->dma);
552 }
553 if (cur_trb == cur_td->last_trb)
554 break;
555 }
556 }
557
558 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
559 unsigned int ep_index, unsigned int stream_id,
560 struct xhci_segment *deq_seg,
561 union xhci_trb *deq_ptr, u32 cycle_state);
562
563 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
564 unsigned int slot_id, unsigned int ep_index,
565 unsigned int stream_id,
566 struct xhci_dequeue_state *deq_state)
567 {
568 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
569
570 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
571 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
572 deq_state->new_deq_seg,
573 (unsigned long long)deq_state->new_deq_seg->dma,
574 deq_state->new_deq_ptr,
575 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
576 deq_state->new_cycle_state);
577 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
578 deq_state->new_deq_seg,
579 deq_state->new_deq_ptr,
580 (u32) deq_state->new_cycle_state);
581 /* Stop the TD queueing code from ringing the doorbell until
582 * this command completes. The HC won't set the dequeue pointer
583 * if the ring is running, and ringing the doorbell starts the
584 * ring running.
585 */
586 ep->ep_state |= SET_DEQ_PENDING;
587 }
588
589 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
590 struct xhci_virt_ep *ep)
591 {
592 ep->ep_state &= ~EP_HALT_PENDING;
593 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
594 * timer is running on another CPU, we don't decrement stop_cmds_pending
595 * (since we didn't successfully stop the watchdog timer).
596 */
597 if (del_timer(&ep->stop_cmd_timer))
598 ep->stop_cmds_pending--;
599 }
600
601 /* Must be called with xhci->lock held in interrupt context */
602 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
603 struct xhci_td *cur_td, int status, char *adjective)
604 {
605 struct usb_hcd *hcd;
606 struct urb *urb;
607 struct urb_priv *urb_priv;
608
609 urb = cur_td->urb;
610 urb_priv = urb->hcpriv;
611 urb_priv->td_cnt++;
612 hcd = bus_to_hcd(urb->dev->bus);
613
614 /* Only giveback urb when this is the last td in urb */
615 if (urb_priv->td_cnt == urb_priv->length) {
616 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
617 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
618 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
619 if (xhci->quirks & XHCI_AMD_PLL_FIX)
620 usb_amd_quirk_pll_enable();
621 }
622 }
623 usb_hcd_unlink_urb_from_ep(hcd, urb);
624
625 spin_unlock(&xhci->lock);
626 usb_hcd_giveback_urb(hcd, urb, status);
627 xhci_urb_free_priv(xhci, urb_priv);
628 spin_lock(&xhci->lock);
629 }
630 }
631
632 /*
633 * When we get a command completion for a Stop Endpoint Command, we need to
634 * unlink any cancelled TDs from the ring. There are two ways to do that:
635 *
636 * 1. If the HW was in the middle of processing the TD that needs to be
637 * cancelled, then we must move the ring's dequeue pointer past the last TRB
638 * in the TD with a Set Dequeue Pointer Command.
639 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
640 * bit cleared) so that the HW will skip over them.
641 */
642 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
643 union xhci_trb *trb, struct xhci_event_cmd *event)
644 {
645 unsigned int slot_id;
646 unsigned int ep_index;
647 struct xhci_virt_device *virt_dev;
648 struct xhci_ring *ep_ring;
649 struct xhci_virt_ep *ep;
650 struct list_head *entry;
651 struct xhci_td *cur_td = NULL;
652 struct xhci_td *last_unlinked_td;
653
654 struct xhci_dequeue_state deq_state;
655
656 if (unlikely(TRB_TO_SUSPEND_PORT(
657 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
658 slot_id = TRB_TO_SLOT_ID(
659 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
660 virt_dev = xhci->devs[slot_id];
661 if (virt_dev)
662 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
663 event);
664 else
665 xhci_warn(xhci, "Stop endpoint command "
666 "completion for disabled slot %u\n",
667 slot_id);
668 return;
669 }
670
671 memset(&deq_state, 0, sizeof(deq_state));
672 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
673 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
674 ep = &xhci->devs[slot_id]->eps[ep_index];
675
676 if (list_empty(&ep->cancelled_td_list)) {
677 xhci_stop_watchdog_timer_in_irq(xhci, ep);
678 ep->stopped_td = NULL;
679 ep->stopped_trb = NULL;
680 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
681 return;
682 }
683
684 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
685 * We have the xHCI lock, so nothing can modify this list until we drop
686 * it. We're also in the event handler, so we can't get re-interrupted
687 * if another Stop Endpoint command completes
688 */
689 list_for_each(entry, &ep->cancelled_td_list) {
690 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
691 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
692 cur_td->first_trb,
693 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
694 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
695 if (!ep_ring) {
696 /* This shouldn't happen unless a driver is mucking
697 * with the stream ID after submission. This will
698 * leave the TD on the hardware ring, and the hardware
699 * will try to execute it, and may access a buffer
700 * that has already been freed. In the best case, the
701 * hardware will execute it, and the event handler will
702 * ignore the completion event for that TD, since it was
703 * removed from the td_list for that endpoint. In
704 * short, don't muck with the stream ID after
705 * submission.
706 */
707 xhci_warn(xhci, "WARN Cancelled URB %p "
708 "has invalid stream ID %u.\n",
709 cur_td->urb,
710 cur_td->urb->stream_id);
711 goto remove_finished_td;
712 }
713 /*
714 * If we stopped on the TD we need to cancel, then we have to
715 * move the xHC endpoint ring dequeue pointer past this TD.
716 */
717 if (cur_td == ep->stopped_td)
718 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
719 cur_td->urb->stream_id,
720 cur_td, &deq_state);
721 else
722 td_to_noop(xhci, ep_ring, cur_td);
723 remove_finished_td:
724 /*
725 * The event handler won't see a completion for this TD anymore,
726 * so remove it from the endpoint ring's TD list. Keep it in
727 * the cancelled TD list for URB completion later.
728 */
729 list_del(&cur_td->td_list);
730 }
731 last_unlinked_td = cur_td;
732 xhci_stop_watchdog_timer_in_irq(xhci, ep);
733
734 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
735 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
736 xhci_queue_new_dequeue_state(xhci,
737 slot_id, ep_index,
738 ep->stopped_td->urb->stream_id,
739 &deq_state);
740 xhci_ring_cmd_db(xhci);
741 } else {
742 /* Otherwise ring the doorbell(s) to restart queued transfers */
743 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
744 }
745 ep->stopped_td = NULL;
746 ep->stopped_trb = NULL;
747
748 /*
749 * Drop the lock and complete the URBs in the cancelled TD list.
750 * New TDs to be cancelled might be added to the end of the list before
751 * we can complete all the URBs for the TDs we already unlinked.
752 * So stop when we've completed the URB for the last TD we unlinked.
753 */
754 do {
755 cur_td = list_entry(ep->cancelled_td_list.next,
756 struct xhci_td, cancelled_td_list);
757 list_del(&cur_td->cancelled_td_list);
758
759 /* Clean up the cancelled URB */
760 /* Doesn't matter what we pass for status, since the core will
761 * just overwrite it (because the URB has been unlinked).
762 */
763 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
764
765 /* Stop processing the cancelled list if the watchdog timer is
766 * running.
767 */
768 if (xhci->xhc_state & XHCI_STATE_DYING)
769 return;
770 } while (cur_td != last_unlinked_td);
771
772 /* Return to the event handler with xhci->lock re-acquired */
773 }
774
775 /* Watchdog timer function for when a stop endpoint command fails to complete.
776 * In this case, we assume the host controller is broken or dying or dead. The
777 * host may still be completing some other events, so we have to be careful to
778 * let the event ring handler and the URB dequeueing/enqueueing functions know
779 * through xhci->state.
780 *
781 * The timer may also fire if the host takes a very long time to respond to the
782 * command, and the stop endpoint command completion handler cannot delete the
783 * timer before the timer function is called. Another endpoint cancellation may
784 * sneak in before the timer function can grab the lock, and that may queue
785 * another stop endpoint command and add the timer back. So we cannot use a
786 * simple flag to say whether there is a pending stop endpoint command for a
787 * particular endpoint.
788 *
789 * Instead we use a combination of that flag and a counter for the number of
790 * pending stop endpoint commands. If the timer is the tail end of the last
791 * stop endpoint command, and the endpoint's command is still pending, we assume
792 * the host is dying.
793 */
794 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
795 {
796 struct xhci_hcd *xhci;
797 struct xhci_virt_ep *ep;
798 struct xhci_virt_ep *temp_ep;
799 struct xhci_ring *ring;
800 struct xhci_td *cur_td;
801 int ret, i, j;
802
803 ep = (struct xhci_virt_ep *) arg;
804 xhci = ep->xhci;
805
806 spin_lock(&xhci->lock);
807
808 ep->stop_cmds_pending--;
809 if (xhci->xhc_state & XHCI_STATE_DYING) {
810 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
811 "xHCI as DYING, exiting.\n");
812 spin_unlock(&xhci->lock);
813 return;
814 }
815 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
816 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
817 "exiting.\n");
818 spin_unlock(&xhci->lock);
819 return;
820 }
821
822 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
823 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
824 /* Oops, HC is dead or dying or at least not responding to the stop
825 * endpoint command.
826 */
827 xhci->xhc_state |= XHCI_STATE_DYING;
828 /* Disable interrupts from the host controller and start halting it */
829 xhci_quiesce(xhci);
830 spin_unlock(&xhci->lock);
831
832 ret = xhci_halt(xhci);
833
834 spin_lock(&xhci->lock);
835 if (ret < 0) {
836 /* This is bad; the host is not responding to commands and it's
837 * not allowing itself to be halted. At least interrupts are
838 * disabled. If we call usb_hc_died(), it will attempt to
839 * disconnect all device drivers under this host. Those
840 * disconnect() methods will wait for all URBs to be unlinked,
841 * so we must complete them.
842 */
843 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
844 xhci_warn(xhci, "Completing active URBs anyway.\n");
845 /* We could turn all TDs on the rings to no-ops. This won't
846 * help if the host has cached part of the ring, and is slow if
847 * we want to preserve the cycle bit. Skip it and hope the host
848 * doesn't touch the memory.
849 */
850 }
851 for (i = 0; i < MAX_HC_SLOTS; i++) {
852 if (!xhci->devs[i])
853 continue;
854 for (j = 0; j < 31; j++) {
855 temp_ep = &xhci->devs[i]->eps[j];
856 ring = temp_ep->ring;
857 if (!ring)
858 continue;
859 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
860 "ep index %u\n", i, j);
861 while (!list_empty(&ring->td_list)) {
862 cur_td = list_first_entry(&ring->td_list,
863 struct xhci_td,
864 td_list);
865 list_del(&cur_td->td_list);
866 if (!list_empty(&cur_td->cancelled_td_list))
867 list_del(&cur_td->cancelled_td_list);
868 xhci_giveback_urb_in_irq(xhci, cur_td,
869 -ESHUTDOWN, "killed");
870 }
871 while (!list_empty(&temp_ep->cancelled_td_list)) {
872 cur_td = list_first_entry(
873 &temp_ep->cancelled_td_list,
874 struct xhci_td,
875 cancelled_td_list);
876 list_del(&cur_td->cancelled_td_list);
877 xhci_giveback_urb_in_irq(xhci, cur_td,
878 -ESHUTDOWN, "killed");
879 }
880 }
881 }
882 spin_unlock(&xhci->lock);
883 xhci_dbg(xhci, "Calling usb_hc_died()\n");
884 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
885 xhci_dbg(xhci, "xHCI host controller is dead.\n");
886 }
887
888 /*
889 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
890 * we need to clear the set deq pending flag in the endpoint ring state, so that
891 * the TD queueing code can ring the doorbell again. We also need to ring the
892 * endpoint doorbell to restart the ring, but only if there aren't more
893 * cancellations pending.
894 */
895 static void handle_set_deq_completion(struct xhci_hcd *xhci,
896 struct xhci_event_cmd *event,
897 union xhci_trb *trb)
898 {
899 unsigned int slot_id;
900 unsigned int ep_index;
901 unsigned int stream_id;
902 struct xhci_ring *ep_ring;
903 struct xhci_virt_device *dev;
904 struct xhci_ep_ctx *ep_ctx;
905 struct xhci_slot_ctx *slot_ctx;
906
907 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
908 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
909 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
910 dev = xhci->devs[slot_id];
911
912 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
913 if (!ep_ring) {
914 xhci_warn(xhci, "WARN Set TR deq ptr command for "
915 "freed stream ID %u\n",
916 stream_id);
917 /* XXX: Harmless??? */
918 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
919 return;
920 }
921
922 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
923 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
924
925 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
926 unsigned int ep_state;
927 unsigned int slot_state;
928
929 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
930 case COMP_TRB_ERR:
931 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
932 "of stream ID configuration\n");
933 break;
934 case COMP_CTX_STATE:
935 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
936 "to incorrect slot or ep state.\n");
937 ep_state = le32_to_cpu(ep_ctx->ep_info);
938 ep_state &= EP_STATE_MASK;
939 slot_state = le32_to_cpu(slot_ctx->dev_state);
940 slot_state = GET_SLOT_STATE(slot_state);
941 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
942 slot_state, ep_state);
943 break;
944 case COMP_EBADSLT:
945 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
946 "slot %u was not enabled.\n", slot_id);
947 break;
948 default:
949 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
950 "completion code of %u.\n",
951 GET_COMP_CODE(le32_to_cpu(event->status)));
952 break;
953 }
954 /* OK what do we do now? The endpoint state is hosed, and we
955 * should never get to this point if the synchronization between
956 * queueing, and endpoint state are correct. This might happen
957 * if the device gets disconnected after we've finished
958 * cancelling URBs, which might not be an error...
959 */
960 } else {
961 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
962 le64_to_cpu(ep_ctx->deq));
963 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
964 dev->eps[ep_index].queued_deq_ptr) ==
965 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
966 /* Update the ring's dequeue segment and dequeue pointer
967 * to reflect the new position.
968 */
969 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
970 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
971 } else {
972 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
973 "Ptr command & xHCI internal state.\n");
974 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
975 dev->eps[ep_index].queued_deq_seg,
976 dev->eps[ep_index].queued_deq_ptr);
977 }
978 }
979
980 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
981 dev->eps[ep_index].queued_deq_seg = NULL;
982 dev->eps[ep_index].queued_deq_ptr = NULL;
983 /* Restart any rings with pending URBs */
984 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
985 }
986
987 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
988 struct xhci_event_cmd *event,
989 union xhci_trb *trb)
990 {
991 int slot_id;
992 unsigned int ep_index;
993
994 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
995 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
996 /* This command will only fail if the endpoint wasn't halted,
997 * but we don't care.
998 */
999 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1000 GET_COMP_CODE(le32_to_cpu(event->status)));
1001
1002 /* HW with the reset endpoint quirk needs to have a configure endpoint
1003 * command complete before the endpoint can be used. Queue that here
1004 * because the HW can't handle two commands being queued in a row.
1005 */
1006 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1007 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1008 xhci_queue_configure_endpoint(xhci,
1009 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1010 false);
1011 xhci_ring_cmd_db(xhci);
1012 } else {
1013 /* Clear our internal halted state and restart the ring(s) */
1014 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1015 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1016 }
1017 }
1018
1019 /* Check to see if a command in the device's command queue matches this one.
1020 * Signal the completion or free the command, and return 1. Return 0 if the
1021 * completed command isn't at the head of the command list.
1022 */
1023 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1024 struct xhci_virt_device *virt_dev,
1025 struct xhci_event_cmd *event)
1026 {
1027 struct xhci_command *command;
1028
1029 if (list_empty(&virt_dev->cmd_list))
1030 return 0;
1031
1032 command = list_entry(virt_dev->cmd_list.next,
1033 struct xhci_command, cmd_list);
1034 if (xhci->cmd_ring->dequeue != command->command_trb)
1035 return 0;
1036
1037 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1038 list_del(&command->cmd_list);
1039 if (command->completion)
1040 complete(command->completion);
1041 else
1042 xhci_free_command(xhci, command);
1043 return 1;
1044 }
1045
1046 static void handle_cmd_completion(struct xhci_hcd *xhci,
1047 struct xhci_event_cmd *event)
1048 {
1049 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1050 u64 cmd_dma;
1051 dma_addr_t cmd_dequeue_dma;
1052 struct xhci_input_control_ctx *ctrl_ctx;
1053 struct xhci_virt_device *virt_dev;
1054 unsigned int ep_index;
1055 struct xhci_ring *ep_ring;
1056 unsigned int ep_state;
1057
1058 cmd_dma = le64_to_cpu(event->cmd_trb);
1059 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1060 xhci->cmd_ring->dequeue);
1061 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1062 if (cmd_dequeue_dma == 0) {
1063 xhci->error_bitmask |= 1 << 4;
1064 return;
1065 }
1066 /* Does the DMA address match our internal dequeue pointer address? */
1067 if (cmd_dma != (u64) cmd_dequeue_dma) {
1068 xhci->error_bitmask |= 1 << 5;
1069 return;
1070 }
1071 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1072 & TRB_TYPE_BITMASK) {
1073 case TRB_TYPE(TRB_ENABLE_SLOT):
1074 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1075 xhci->slot_id = slot_id;
1076 else
1077 xhci->slot_id = 0;
1078 complete(&xhci->addr_dev);
1079 break;
1080 case TRB_TYPE(TRB_DISABLE_SLOT):
1081 if (xhci->devs[slot_id]) {
1082 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1083 /* Delete default control endpoint resources */
1084 xhci_free_device_endpoint_resources(xhci,
1085 xhci->devs[slot_id], true);
1086 xhci_free_virt_device(xhci, slot_id);
1087 }
1088 break;
1089 case TRB_TYPE(TRB_CONFIG_EP):
1090 virt_dev = xhci->devs[slot_id];
1091 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1092 break;
1093 /*
1094 * Configure endpoint commands can come from the USB core
1095 * configuration or alt setting changes, or because the HW
1096 * needed an extra configure endpoint command after a reset
1097 * endpoint command or streams were being configured.
1098 * If the command was for a halted endpoint, the xHCI driver
1099 * is not waiting on the configure endpoint command.
1100 */
1101 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1102 virt_dev->in_ctx);
1103 /* Input ctx add_flags are the endpoint index plus one */
1104 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1105 /* A usb_set_interface() call directly after clearing a halted
1106 * condition may race on this quirky hardware. Not worth
1107 * worrying about, since this is prototype hardware. Not sure
1108 * if this will work for streams, but streams support was
1109 * untested on this prototype.
1110 */
1111 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1112 ep_index != (unsigned int) -1 &&
1113 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1114 le32_to_cpu(ctrl_ctx->drop_flags)) {
1115 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1116 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1117 if (!(ep_state & EP_HALTED))
1118 goto bandwidth_change;
1119 xhci_dbg(xhci, "Completed config ep cmd - "
1120 "last ep index = %d, state = %d\n",
1121 ep_index, ep_state);
1122 /* Clear internal halted state and restart ring(s) */
1123 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1124 ~EP_HALTED;
1125 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1126 break;
1127 }
1128 bandwidth_change:
1129 xhci_dbg(xhci, "Completed config ep cmd\n");
1130 xhci->devs[slot_id]->cmd_status =
1131 GET_COMP_CODE(le32_to_cpu(event->status));
1132 complete(&xhci->devs[slot_id]->cmd_completion);
1133 break;
1134 case TRB_TYPE(TRB_EVAL_CONTEXT):
1135 virt_dev = xhci->devs[slot_id];
1136 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1137 break;
1138 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1139 complete(&xhci->devs[slot_id]->cmd_completion);
1140 break;
1141 case TRB_TYPE(TRB_ADDR_DEV):
1142 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1143 complete(&xhci->addr_dev);
1144 break;
1145 case TRB_TYPE(TRB_STOP_RING):
1146 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1147 break;
1148 case TRB_TYPE(TRB_SET_DEQ):
1149 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1150 break;
1151 case TRB_TYPE(TRB_CMD_NOOP):
1152 break;
1153 case TRB_TYPE(TRB_RESET_EP):
1154 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1155 break;
1156 case TRB_TYPE(TRB_RESET_DEV):
1157 xhci_dbg(xhci, "Completed reset device command.\n");
1158 slot_id = TRB_TO_SLOT_ID(
1159 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1160 virt_dev = xhci->devs[slot_id];
1161 if (virt_dev)
1162 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1163 else
1164 xhci_warn(xhci, "Reset device command completion "
1165 "for disabled slot %u\n", slot_id);
1166 break;
1167 case TRB_TYPE(TRB_NEC_GET_FW):
1168 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1169 xhci->error_bitmask |= 1 << 6;
1170 break;
1171 }
1172 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1173 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1174 NEC_FW_MINOR(le32_to_cpu(event->status)));
1175 break;
1176 default:
1177 /* Skip over unknown commands on the event ring */
1178 xhci->error_bitmask |= 1 << 6;
1179 break;
1180 }
1181 inc_deq(xhci, xhci->cmd_ring, false);
1182 }
1183
1184 static void handle_vendor_event(struct xhci_hcd *xhci,
1185 union xhci_trb *event)
1186 {
1187 u32 trb_type;
1188
1189 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1190 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1191 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1192 handle_cmd_completion(xhci, &event->event_cmd);
1193 }
1194
1195 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1196 * port registers -- USB 3.0 and USB 2.0).
1197 *
1198 * Returns a zero-based port number, which is suitable for indexing into each of
1199 * the split roothubs' port arrays and bus state arrays.
1200 */
1201 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1202 struct xhci_hcd *xhci, u32 port_id)
1203 {
1204 unsigned int i;
1205 unsigned int num_similar_speed_ports = 0;
1206
1207 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1208 * and usb2_ports are 0-based indexes. Count the number of similar
1209 * speed ports, up to 1 port before this port.
1210 */
1211 for (i = 0; i < (port_id - 1); i++) {
1212 u8 port_speed = xhci->port_array[i];
1213
1214 /*
1215 * Skip ports that don't have known speeds, or have duplicate
1216 * Extended Capabilities port speed entries.
1217 */
1218 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1219 continue;
1220
1221 /*
1222 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1223 * 1.1 ports are under the USB 2.0 hub. If the port speed
1224 * matches the device speed, it's a similar speed port.
1225 */
1226 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1227 num_similar_speed_ports++;
1228 }
1229 return num_similar_speed_ports;
1230 }
1231
1232 static void handle_port_status(struct xhci_hcd *xhci,
1233 union xhci_trb *event)
1234 {
1235 struct usb_hcd *hcd;
1236 u32 port_id;
1237 u32 temp, temp1;
1238 int max_ports;
1239 int slot_id;
1240 unsigned int faked_port_index;
1241 u8 major_revision;
1242 struct xhci_bus_state *bus_state;
1243 __le32 __iomem **port_array;
1244 bool bogus_port_status = false;
1245
1246 /* Port status change events always have a successful completion code */
1247 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1248 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1249 xhci->error_bitmask |= 1 << 8;
1250 }
1251 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1252 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1253
1254 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1255 if ((port_id <= 0) || (port_id > max_ports)) {
1256 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1257 bogus_port_status = true;
1258 goto cleanup;
1259 }
1260
1261 /* Figure out which usb_hcd this port is attached to:
1262 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1263 */
1264 major_revision = xhci->port_array[port_id - 1];
1265 if (major_revision == 0) {
1266 xhci_warn(xhci, "Event for port %u not in "
1267 "Extended Capabilities, ignoring.\n",
1268 port_id);
1269 bogus_port_status = true;
1270 goto cleanup;
1271 }
1272 if (major_revision == DUPLICATE_ENTRY) {
1273 xhci_warn(xhci, "Event for port %u duplicated in"
1274 "Extended Capabilities, ignoring.\n",
1275 port_id);
1276 bogus_port_status = true;
1277 goto cleanup;
1278 }
1279
1280 /*
1281 * Hardware port IDs reported by a Port Status Change Event include USB
1282 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1283 * resume event, but we first need to translate the hardware port ID
1284 * into the index into the ports on the correct split roothub, and the
1285 * correct bus_state structure.
1286 */
1287 /* Find the right roothub. */
1288 hcd = xhci_to_hcd(xhci);
1289 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1290 hcd = xhci->shared_hcd;
1291 bus_state = &xhci->bus_state[hcd_index(hcd)];
1292 if (hcd->speed == HCD_USB3)
1293 port_array = xhci->usb3_ports;
1294 else
1295 port_array = xhci->usb2_ports;
1296 /* Find the faked port hub number */
1297 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1298 port_id);
1299
1300 temp = xhci_readl(xhci, port_array[faked_port_index]);
1301 if (hcd->state == HC_STATE_SUSPENDED) {
1302 xhci_dbg(xhci, "resume root hub\n");
1303 usb_hcd_resume_root_hub(hcd);
1304 }
1305
1306 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1307 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1308
1309 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1310 if (!(temp1 & CMD_RUN)) {
1311 xhci_warn(xhci, "xHC is not running.\n");
1312 goto cleanup;
1313 }
1314
1315 if (DEV_SUPERSPEED(temp)) {
1316 xhci_dbg(xhci, "resume SS port %d\n", port_id);
1317 temp = xhci_port_state_to_neutral(temp);
1318 temp &= ~PORT_PLS_MASK;
1319 temp |= PORT_LINK_STROBE | XDEV_U0;
1320 xhci_writel(xhci, temp, port_array[faked_port_index]);
1321 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1322 faked_port_index);
1323 if (!slot_id) {
1324 xhci_dbg(xhci, "slot_id is zero\n");
1325 goto cleanup;
1326 }
1327 xhci_ring_device(xhci, slot_id);
1328 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1329 /* Clear PORT_PLC */
1330 temp = xhci_readl(xhci, port_array[faked_port_index]);
1331 temp = xhci_port_state_to_neutral(temp);
1332 temp |= PORT_PLC;
1333 xhci_writel(xhci, temp, port_array[faked_port_index]);
1334 } else {
1335 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1336 bus_state->resume_done[faked_port_index] = jiffies +
1337 msecs_to_jiffies(20);
1338 mod_timer(&hcd->rh_timer,
1339 bus_state->resume_done[faked_port_index]);
1340 /* Do the rest in GetPortStatus */
1341 }
1342 }
1343
1344 cleanup:
1345 /* Update event ring dequeue pointer before dropping the lock */
1346 inc_deq(xhci, xhci->event_ring, true);
1347
1348 /* Don't make the USB core poll the roothub if we got a bad port status
1349 * change event. Besides, at that point we can't tell which roothub
1350 * (USB 2.0 or USB 3.0) to kick.
1351 */
1352 if (bogus_port_status)
1353 return;
1354
1355 spin_unlock(&xhci->lock);
1356 /* Pass this up to the core */
1357 usb_hcd_poll_rh_status(hcd);
1358 spin_lock(&xhci->lock);
1359 }
1360
1361 /*
1362 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1363 * at end_trb, which may be in another segment. If the suspect DMA address is a
1364 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1365 * returns 0.
1366 */
1367 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1368 union xhci_trb *start_trb,
1369 union xhci_trb *end_trb,
1370 dma_addr_t suspect_dma)
1371 {
1372 dma_addr_t start_dma;
1373 dma_addr_t end_seg_dma;
1374 dma_addr_t end_trb_dma;
1375 struct xhci_segment *cur_seg;
1376
1377 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1378 cur_seg = start_seg;
1379
1380 do {
1381 if (start_dma == 0)
1382 return NULL;
1383 /* We may get an event for a Link TRB in the middle of a TD */
1384 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1385 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1386 /* If the end TRB isn't in this segment, this is set to 0 */
1387 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1388
1389 if (end_trb_dma > 0) {
1390 /* The end TRB is in this segment, so suspect should be here */
1391 if (start_dma <= end_trb_dma) {
1392 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1393 return cur_seg;
1394 } else {
1395 /* Case for one segment with
1396 * a TD wrapped around to the top
1397 */
1398 if ((suspect_dma >= start_dma &&
1399 suspect_dma <= end_seg_dma) ||
1400 (suspect_dma >= cur_seg->dma &&
1401 suspect_dma <= end_trb_dma))
1402 return cur_seg;
1403 }
1404 return NULL;
1405 } else {
1406 /* Might still be somewhere in this segment */
1407 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1408 return cur_seg;
1409 }
1410 cur_seg = cur_seg->next;
1411 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1412 } while (cur_seg != start_seg);
1413
1414 return NULL;
1415 }
1416
1417 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1418 unsigned int slot_id, unsigned int ep_index,
1419 unsigned int stream_id,
1420 struct xhci_td *td, union xhci_trb *event_trb)
1421 {
1422 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1423 ep->ep_state |= EP_HALTED;
1424 ep->stopped_td = td;
1425 ep->stopped_trb = event_trb;
1426 ep->stopped_stream = stream_id;
1427
1428 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1429 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1430
1431 ep->stopped_td = NULL;
1432 ep->stopped_trb = NULL;
1433 ep->stopped_stream = 0;
1434
1435 xhci_ring_cmd_db(xhci);
1436 }
1437
1438 /* Check if an error has halted the endpoint ring. The class driver will
1439 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1440 * However, a babble and other errors also halt the endpoint ring, and the class
1441 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1442 * Ring Dequeue Pointer command manually.
1443 */
1444 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1445 struct xhci_ep_ctx *ep_ctx,
1446 unsigned int trb_comp_code)
1447 {
1448 /* TRB completion codes that may require a manual halt cleanup */
1449 if (trb_comp_code == COMP_TX_ERR ||
1450 trb_comp_code == COMP_BABBLE ||
1451 trb_comp_code == COMP_SPLIT_ERR)
1452 /* The 0.96 spec says a babbling control endpoint
1453 * is not halted. The 0.96 spec says it is. Some HW
1454 * claims to be 0.95 compliant, but it halts the control
1455 * endpoint anyway. Check if a babble halted the
1456 * endpoint.
1457 */
1458 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1459 cpu_to_le32(EP_STATE_HALTED))
1460 return 1;
1461
1462 return 0;
1463 }
1464
1465 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1466 {
1467 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1468 /* Vendor defined "informational" completion code,
1469 * treat as not-an-error.
1470 */
1471 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1472 trb_comp_code);
1473 xhci_dbg(xhci, "Treating code as success.\n");
1474 return 1;
1475 }
1476 return 0;
1477 }
1478
1479 /*
1480 * Finish the td processing, remove the td from td list;
1481 * Return 1 if the urb can be given back.
1482 */
1483 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1484 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1485 struct xhci_virt_ep *ep, int *status, bool skip)
1486 {
1487 struct xhci_virt_device *xdev;
1488 struct xhci_ring *ep_ring;
1489 unsigned int slot_id;
1490 int ep_index;
1491 struct urb *urb = NULL;
1492 struct xhci_ep_ctx *ep_ctx;
1493 int ret = 0;
1494 struct urb_priv *urb_priv;
1495 u32 trb_comp_code;
1496
1497 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1498 xdev = xhci->devs[slot_id];
1499 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1500 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1501 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1502 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1503
1504 if (skip)
1505 goto td_cleanup;
1506
1507 if (trb_comp_code == COMP_STOP_INVAL ||
1508 trb_comp_code == COMP_STOP) {
1509 /* The Endpoint Stop Command completion will take care of any
1510 * stopped TDs. A stopped TD may be restarted, so don't update
1511 * the ring dequeue pointer or take this TD off any lists yet.
1512 */
1513 ep->stopped_td = td;
1514 ep->stopped_trb = event_trb;
1515 return 0;
1516 } else {
1517 if (trb_comp_code == COMP_STALL) {
1518 /* The transfer is completed from the driver's
1519 * perspective, but we need to issue a set dequeue
1520 * command for this stalled endpoint to move the dequeue
1521 * pointer past the TD. We can't do that here because
1522 * the halt condition must be cleared first. Let the
1523 * USB class driver clear the stall later.
1524 */
1525 ep->stopped_td = td;
1526 ep->stopped_trb = event_trb;
1527 ep->stopped_stream = ep_ring->stream_id;
1528 } else if (xhci_requires_manual_halt_cleanup(xhci,
1529 ep_ctx, trb_comp_code)) {
1530 /* Other types of errors halt the endpoint, but the
1531 * class driver doesn't call usb_reset_endpoint() unless
1532 * the error is -EPIPE. Clear the halted status in the
1533 * xHCI hardware manually.
1534 */
1535 xhci_cleanup_halted_endpoint(xhci,
1536 slot_id, ep_index, ep_ring->stream_id,
1537 td, event_trb);
1538 } else {
1539 /* Update ring dequeue pointer */
1540 while (ep_ring->dequeue != td->last_trb)
1541 inc_deq(xhci, ep_ring, false);
1542 inc_deq(xhci, ep_ring, false);
1543 }
1544
1545 td_cleanup:
1546 /* Clean up the endpoint's TD list */
1547 urb = td->urb;
1548 urb_priv = urb->hcpriv;
1549
1550 /* Do one last check of the actual transfer length.
1551 * If the host controller said we transferred more data than
1552 * the buffer length, urb->actual_length will be a very big
1553 * number (since it's unsigned). Play it safe and say we didn't
1554 * transfer anything.
1555 */
1556 if (urb->actual_length > urb->transfer_buffer_length) {
1557 xhci_warn(xhci, "URB transfer length is wrong, "
1558 "xHC issue? req. len = %u, "
1559 "act. len = %u\n",
1560 urb->transfer_buffer_length,
1561 urb->actual_length);
1562 urb->actual_length = 0;
1563 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1564 *status = -EREMOTEIO;
1565 else
1566 *status = 0;
1567 }
1568 list_del(&td->td_list);
1569 /* Was this TD slated to be cancelled but completed anyway? */
1570 if (!list_empty(&td->cancelled_td_list))
1571 list_del(&td->cancelled_td_list);
1572
1573 urb_priv->td_cnt++;
1574 /* Giveback the urb when all the tds are completed */
1575 if (urb_priv->td_cnt == urb_priv->length) {
1576 ret = 1;
1577 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1578 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1579 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1580 == 0) {
1581 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1582 usb_amd_quirk_pll_enable();
1583 }
1584 }
1585 }
1586 }
1587
1588 return ret;
1589 }
1590
1591 /*
1592 * Process control tds, update urb status and actual_length.
1593 */
1594 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1595 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1596 struct xhci_virt_ep *ep, int *status)
1597 {
1598 struct xhci_virt_device *xdev;
1599 struct xhci_ring *ep_ring;
1600 unsigned int slot_id;
1601 int ep_index;
1602 struct xhci_ep_ctx *ep_ctx;
1603 u32 trb_comp_code;
1604
1605 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1606 xdev = xhci->devs[slot_id];
1607 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1608 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1609 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1610 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1611
1612 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1613 switch (trb_comp_code) {
1614 case COMP_SUCCESS:
1615 if (event_trb == ep_ring->dequeue) {
1616 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1617 "without IOC set??\n");
1618 *status = -ESHUTDOWN;
1619 } else if (event_trb != td->last_trb) {
1620 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1621 "without IOC set??\n");
1622 *status = -ESHUTDOWN;
1623 } else {
1624 *status = 0;
1625 }
1626 break;
1627 case COMP_SHORT_TX:
1628 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1629 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1630 *status = -EREMOTEIO;
1631 else
1632 *status = 0;
1633 break;
1634 case COMP_STOP_INVAL:
1635 case COMP_STOP:
1636 return finish_td(xhci, td, event_trb, event, ep, status, false);
1637 default:
1638 if (!xhci_requires_manual_halt_cleanup(xhci,
1639 ep_ctx, trb_comp_code))
1640 break;
1641 xhci_dbg(xhci, "TRB error code %u, "
1642 "halted endpoint index = %u\n",
1643 trb_comp_code, ep_index);
1644 /* else fall through */
1645 case COMP_STALL:
1646 /* Did we transfer part of the data (middle) phase? */
1647 if (event_trb != ep_ring->dequeue &&
1648 event_trb != td->last_trb)
1649 td->urb->actual_length =
1650 td->urb->transfer_buffer_length
1651 - TRB_LEN(le32_to_cpu(event->transfer_len));
1652 else
1653 td->urb->actual_length = 0;
1654
1655 xhci_cleanup_halted_endpoint(xhci,
1656 slot_id, ep_index, 0, td, event_trb);
1657 return finish_td(xhci, td, event_trb, event, ep, status, true);
1658 }
1659 /*
1660 * Did we transfer any data, despite the errors that might have
1661 * happened? I.e. did we get past the setup stage?
1662 */
1663 if (event_trb != ep_ring->dequeue) {
1664 /* The event was for the status stage */
1665 if (event_trb == td->last_trb) {
1666 if (td->urb->actual_length != 0) {
1667 /* Don't overwrite a previously set error code
1668 */
1669 if ((*status == -EINPROGRESS || *status == 0) &&
1670 (td->urb->transfer_flags
1671 & URB_SHORT_NOT_OK))
1672 /* Did we already see a short data
1673 * stage? */
1674 *status = -EREMOTEIO;
1675 } else {
1676 td->urb->actual_length =
1677 td->urb->transfer_buffer_length;
1678 }
1679 } else {
1680 /* Maybe the event was for the data stage? */
1681 td->urb->actual_length =
1682 td->urb->transfer_buffer_length -
1683 TRB_LEN(le32_to_cpu(event->transfer_len));
1684 xhci_dbg(xhci, "Waiting for status "
1685 "stage event\n");
1686 return 0;
1687 }
1688 }
1689
1690 return finish_td(xhci, td, event_trb, event, ep, status, false);
1691 }
1692
1693 /*
1694 * Process isochronous tds, update urb packet status and actual_length.
1695 */
1696 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1697 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1698 struct xhci_virt_ep *ep, int *status)
1699 {
1700 struct xhci_ring *ep_ring;
1701 struct urb_priv *urb_priv;
1702 int idx;
1703 int len = 0;
1704 union xhci_trb *cur_trb;
1705 struct xhci_segment *cur_seg;
1706 struct usb_iso_packet_descriptor *frame;
1707 u32 trb_comp_code;
1708 bool skip_td = false;
1709
1710 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1711 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1712 urb_priv = td->urb->hcpriv;
1713 idx = urb_priv->td_cnt;
1714 frame = &td->urb->iso_frame_desc[idx];
1715
1716 /* handle completion code */
1717 switch (trb_comp_code) {
1718 case COMP_SUCCESS:
1719 frame->status = 0;
1720 break;
1721 case COMP_SHORT_TX:
1722 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1723 -EREMOTEIO : 0;
1724 break;
1725 case COMP_BW_OVER:
1726 frame->status = -ECOMM;
1727 skip_td = true;
1728 break;
1729 case COMP_BUFF_OVER:
1730 case COMP_BABBLE:
1731 frame->status = -EOVERFLOW;
1732 skip_td = true;
1733 break;
1734 case COMP_DEV_ERR:
1735 case COMP_STALL:
1736 frame->status = -EPROTO;
1737 skip_td = true;
1738 break;
1739 case COMP_STOP:
1740 case COMP_STOP_INVAL:
1741 break;
1742 default:
1743 frame->status = -1;
1744 break;
1745 }
1746
1747 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1748 frame->actual_length = frame->length;
1749 td->urb->actual_length += frame->length;
1750 } else {
1751 for (cur_trb = ep_ring->dequeue,
1752 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1753 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1754 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1755 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1756 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1757 }
1758 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1759 TRB_LEN(le32_to_cpu(event->transfer_len));
1760
1761 if (trb_comp_code != COMP_STOP_INVAL) {
1762 frame->actual_length = len;
1763 td->urb->actual_length += len;
1764 }
1765 }
1766
1767 return finish_td(xhci, td, event_trb, event, ep, status, false);
1768 }
1769
1770 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1771 struct xhci_transfer_event *event,
1772 struct xhci_virt_ep *ep, int *status)
1773 {
1774 struct xhci_ring *ep_ring;
1775 struct urb_priv *urb_priv;
1776 struct usb_iso_packet_descriptor *frame;
1777 int idx;
1778
1779 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1780 urb_priv = td->urb->hcpriv;
1781 idx = urb_priv->td_cnt;
1782 frame = &td->urb->iso_frame_desc[idx];
1783
1784 /* The transfer is partly done. */
1785 frame->status = -EXDEV;
1786
1787 /* calc actual length */
1788 frame->actual_length = 0;
1789
1790 /* Update ring dequeue pointer */
1791 while (ep_ring->dequeue != td->last_trb)
1792 inc_deq(xhci, ep_ring, false);
1793 inc_deq(xhci, ep_ring, false);
1794
1795 return finish_td(xhci, td, NULL, event, ep, status, true);
1796 }
1797
1798 /*
1799 * Process bulk and interrupt tds, update urb status and actual_length.
1800 */
1801 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1802 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1803 struct xhci_virt_ep *ep, int *status)
1804 {
1805 struct xhci_ring *ep_ring;
1806 union xhci_trb *cur_trb;
1807 struct xhci_segment *cur_seg;
1808 u32 trb_comp_code;
1809
1810 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1811 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1812
1813 switch (trb_comp_code) {
1814 case COMP_SUCCESS:
1815 /* Double check that the HW transferred everything. */
1816 if (event_trb != td->last_trb) {
1817 xhci_warn(xhci, "WARN Successful completion "
1818 "on short TX\n");
1819 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1820 *status = -EREMOTEIO;
1821 else
1822 *status = 0;
1823 } else {
1824 *status = 0;
1825 }
1826 break;
1827 case COMP_SHORT_TX:
1828 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1829 *status = -EREMOTEIO;
1830 else
1831 *status = 0;
1832 break;
1833 default:
1834 /* Others already handled above */
1835 break;
1836 }
1837 if (trb_comp_code == COMP_SHORT_TX)
1838 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1839 "%d bytes untransferred\n",
1840 td->urb->ep->desc.bEndpointAddress,
1841 td->urb->transfer_buffer_length,
1842 TRB_LEN(le32_to_cpu(event->transfer_len)));
1843 /* Fast path - was this the last TRB in the TD for this URB? */
1844 if (event_trb == td->last_trb) {
1845 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1846 td->urb->actual_length =
1847 td->urb->transfer_buffer_length -
1848 TRB_LEN(le32_to_cpu(event->transfer_len));
1849 if (td->urb->transfer_buffer_length <
1850 td->urb->actual_length) {
1851 xhci_warn(xhci, "HC gave bad length "
1852 "of %d bytes left\n",
1853 TRB_LEN(le32_to_cpu(event->transfer_len)));
1854 td->urb->actual_length = 0;
1855 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1856 *status = -EREMOTEIO;
1857 else
1858 *status = 0;
1859 }
1860 /* Don't overwrite a previously set error code */
1861 if (*status == -EINPROGRESS) {
1862 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1863 *status = -EREMOTEIO;
1864 else
1865 *status = 0;
1866 }
1867 } else {
1868 td->urb->actual_length =
1869 td->urb->transfer_buffer_length;
1870 /* Ignore a short packet completion if the
1871 * untransferred length was zero.
1872 */
1873 if (*status == -EREMOTEIO)
1874 *status = 0;
1875 }
1876 } else {
1877 /* Slow path - walk the list, starting from the dequeue
1878 * pointer, to get the actual length transferred.
1879 */
1880 td->urb->actual_length = 0;
1881 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1882 cur_trb != event_trb;
1883 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1884 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1885 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1886 td->urb->actual_length +=
1887 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1888 }
1889 /* If the ring didn't stop on a Link or No-op TRB, add
1890 * in the actual bytes transferred from the Normal TRB
1891 */
1892 if (trb_comp_code != COMP_STOP_INVAL)
1893 td->urb->actual_length +=
1894 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1895 TRB_LEN(le32_to_cpu(event->transfer_len));
1896 }
1897
1898 return finish_td(xhci, td, event_trb, event, ep, status, false);
1899 }
1900
1901 /*
1902 * If this function returns an error condition, it means it got a Transfer
1903 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1904 * At this point, the host controller is probably hosed and should be reset.
1905 */
1906 static int handle_tx_event(struct xhci_hcd *xhci,
1907 struct xhci_transfer_event *event)
1908 {
1909 struct xhci_virt_device *xdev;
1910 struct xhci_virt_ep *ep;
1911 struct xhci_ring *ep_ring;
1912 unsigned int slot_id;
1913 int ep_index;
1914 struct xhci_td *td = NULL;
1915 dma_addr_t event_dma;
1916 struct xhci_segment *event_seg;
1917 union xhci_trb *event_trb;
1918 struct urb *urb = NULL;
1919 int status = -EINPROGRESS;
1920 struct urb_priv *urb_priv;
1921 struct xhci_ep_ctx *ep_ctx;
1922 u32 trb_comp_code;
1923 int ret = 0;
1924
1925 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1926 xdev = xhci->devs[slot_id];
1927 if (!xdev) {
1928 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1929 return -ENODEV;
1930 }
1931
1932 /* Endpoint ID is 1 based, our index is zero based */
1933 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1934 ep = &xdev->eps[ep_index];
1935 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1936 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1937 if (!ep_ring ||
1938 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1939 EP_STATE_DISABLED) {
1940 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1941 "or incorrect stream ring\n");
1942 return -ENODEV;
1943 }
1944
1945 event_dma = le64_to_cpu(event->buffer);
1946 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1947 /* Look for common error cases */
1948 switch (trb_comp_code) {
1949 /* Skip codes that require special handling depending on
1950 * transfer type
1951 */
1952 case COMP_SUCCESS:
1953 case COMP_SHORT_TX:
1954 break;
1955 case COMP_STOP:
1956 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1957 break;
1958 case COMP_STOP_INVAL:
1959 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1960 break;
1961 case COMP_STALL:
1962 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1963 ep->ep_state |= EP_HALTED;
1964 status = -EPIPE;
1965 break;
1966 case COMP_TRB_ERR:
1967 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1968 status = -EILSEQ;
1969 break;
1970 case COMP_SPLIT_ERR:
1971 case COMP_TX_ERR:
1972 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1973 status = -EPROTO;
1974 break;
1975 case COMP_BABBLE:
1976 xhci_warn(xhci, "WARN: babble error on endpoint\n");
1977 status = -EOVERFLOW;
1978 break;
1979 case COMP_DB_ERR:
1980 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
1981 status = -ENOSR;
1982 break;
1983 case COMP_BW_OVER:
1984 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
1985 break;
1986 case COMP_BUFF_OVER:
1987 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
1988 break;
1989 case COMP_UNDERRUN:
1990 /*
1991 * When the Isoch ring is empty, the xHC will generate
1992 * a Ring Overrun Event for IN Isoch endpoint or Ring
1993 * Underrun Event for OUT Isoch endpoint.
1994 */
1995 xhci_dbg(xhci, "underrun event on endpoint\n");
1996 if (!list_empty(&ep_ring->td_list))
1997 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
1998 "still with TDs queued?\n",
1999 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2000 ep_index);
2001 goto cleanup;
2002 case COMP_OVERRUN:
2003 xhci_dbg(xhci, "overrun event on endpoint\n");
2004 if (!list_empty(&ep_ring->td_list))
2005 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2006 "still with TDs queued?\n",
2007 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2008 ep_index);
2009 goto cleanup;
2010 case COMP_DEV_ERR:
2011 xhci_warn(xhci, "WARN: detect an incompatible device");
2012 status = -EPROTO;
2013 break;
2014 case COMP_MISSED_INT:
2015 /*
2016 * When encounter missed service error, one or more isoc tds
2017 * may be missed by xHC.
2018 * Set skip flag of the ep_ring; Complete the missed tds as
2019 * short transfer when process the ep_ring next time.
2020 */
2021 ep->skip = true;
2022 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2023 goto cleanup;
2024 default:
2025 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2026 status = 0;
2027 break;
2028 }
2029 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2030 "busted\n");
2031 goto cleanup;
2032 }
2033
2034 do {
2035 /* This TRB should be in the TD at the head of this ring's
2036 * TD list.
2037 */
2038 if (list_empty(&ep_ring->td_list)) {
2039 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2040 "with no TDs queued?\n",
2041 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2042 ep_index);
2043 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2044 (le32_to_cpu(event->flags) &
2045 TRB_TYPE_BITMASK)>>10);
2046 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2047 if (ep->skip) {
2048 ep->skip = false;
2049 xhci_dbg(xhci, "td_list is empty while skip "
2050 "flag set. Clear skip flag.\n");
2051 }
2052 ret = 0;
2053 goto cleanup;
2054 }
2055
2056 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2057
2058 /* Is this a TRB in the currently executing TD? */
2059 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2060 td->last_trb, event_dma);
2061
2062 /*
2063 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2064 * is not in the current TD pointed by ep_ring->dequeue because
2065 * that the hardware dequeue pointer still at the previous TRB
2066 * of the current TD. The previous TRB maybe a Link TD or the
2067 * last TRB of the previous TD. The command completion handle
2068 * will take care the rest.
2069 */
2070 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2071 ret = 0;
2072 goto cleanup;
2073 }
2074
2075 if (!event_seg) {
2076 if (!ep->skip ||
2077 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2078 /* Some host controllers give a spurious
2079 * successful event after a short transfer.
2080 * Ignore it.
2081 */
2082 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2083 ep_ring->last_td_was_short) {
2084 ep_ring->last_td_was_short = false;
2085 ret = 0;
2086 goto cleanup;
2087 }
2088 /* HC is busted, give up! */
2089 xhci_err(xhci,
2090 "ERROR Transfer event TRB DMA ptr not "
2091 "part of current TD\n");
2092 return -ESHUTDOWN;
2093 }
2094
2095 ret = skip_isoc_td(xhci, td, event, ep, &status);
2096 goto cleanup;
2097 }
2098 if (trb_comp_code == COMP_SHORT_TX)
2099 ep_ring->last_td_was_short = true;
2100 else
2101 ep_ring->last_td_was_short = false;
2102
2103 if (ep->skip) {
2104 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2105 ep->skip = false;
2106 }
2107
2108 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2109 sizeof(*event_trb)];
2110 /*
2111 * No-op TRB should not trigger interrupts.
2112 * If event_trb is a no-op TRB, it means the
2113 * corresponding TD has been cancelled. Just ignore
2114 * the TD.
2115 */
2116 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2117 xhci_dbg(xhci,
2118 "event_trb is a no-op TRB. Skip it\n");
2119 goto cleanup;
2120 }
2121
2122 /* Now update the urb's actual_length and give back to
2123 * the core
2124 */
2125 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2126 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2127 &status);
2128 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2129 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2130 &status);
2131 else
2132 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2133 ep, &status);
2134
2135 cleanup:
2136 /*
2137 * Do not update event ring dequeue pointer if ep->skip is set.
2138 * Will roll back to continue process missed tds.
2139 */
2140 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2141 inc_deq(xhci, xhci->event_ring, true);
2142 }
2143
2144 if (ret) {
2145 urb = td->urb;
2146 urb_priv = urb->hcpriv;
2147 /* Leave the TD around for the reset endpoint function
2148 * to use(but only if it's not a control endpoint,
2149 * since we already queued the Set TR dequeue pointer
2150 * command for stalled control endpoints).
2151 */
2152 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2153 (trb_comp_code != COMP_STALL &&
2154 trb_comp_code != COMP_BABBLE))
2155 xhci_urb_free_priv(xhci, urb_priv);
2156
2157 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2158 if ((urb->actual_length != urb->transfer_buffer_length &&
2159 (urb->transfer_flags &
2160 URB_SHORT_NOT_OK)) ||
2161 status != 0)
2162 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2163 "expected = %x, status = %d\n",
2164 urb, urb->actual_length,
2165 urb->transfer_buffer_length,
2166 status);
2167 spin_unlock(&xhci->lock);
2168 /* EHCI, UHCI, and OHCI always unconditionally set the
2169 * urb->status of an isochronous endpoint to 0.
2170 */
2171 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2172 status = 0;
2173 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2174 spin_lock(&xhci->lock);
2175 }
2176
2177 /*
2178 * If ep->skip is set, it means there are missed tds on the
2179 * endpoint ring need to take care of.
2180 * Process them as short transfer until reach the td pointed by
2181 * the event.
2182 */
2183 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2184
2185 return 0;
2186 }
2187
2188 /*
2189 * This function handles all OS-owned events on the event ring. It may drop
2190 * xhci->lock between event processing (e.g. to pass up port status changes).
2191 * Returns >0 for "possibly more events to process" (caller should call again),
2192 * otherwise 0 if done. In future, <0 returns should indicate error code.
2193 */
2194 static int xhci_handle_event(struct xhci_hcd *xhci)
2195 {
2196 union xhci_trb *event;
2197 int update_ptrs = 1;
2198 int ret;
2199
2200 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2201 xhci->error_bitmask |= 1 << 1;
2202 return 0;
2203 }
2204
2205 event = xhci->event_ring->dequeue;
2206 /* Does the HC or OS own the TRB? */
2207 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2208 xhci->event_ring->cycle_state) {
2209 xhci->error_bitmask |= 1 << 2;
2210 return 0;
2211 }
2212
2213 /*
2214 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2215 * speculative reads of the event's flags/data below.
2216 */
2217 rmb();
2218 /* FIXME: Handle more event types. */
2219 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2220 case TRB_TYPE(TRB_COMPLETION):
2221 handle_cmd_completion(xhci, &event->event_cmd);
2222 break;
2223 case TRB_TYPE(TRB_PORT_STATUS):
2224 handle_port_status(xhci, event);
2225 update_ptrs = 0;
2226 break;
2227 case TRB_TYPE(TRB_TRANSFER):
2228 ret = handle_tx_event(xhci, &event->trans_event);
2229 if (ret < 0)
2230 xhci->error_bitmask |= 1 << 9;
2231 else
2232 update_ptrs = 0;
2233 break;
2234 default:
2235 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2236 TRB_TYPE(48))
2237 handle_vendor_event(xhci, event);
2238 else
2239 xhci->error_bitmask |= 1 << 3;
2240 }
2241 /* Any of the above functions may drop and re-acquire the lock, so check
2242 * to make sure a watchdog timer didn't mark the host as non-responsive.
2243 */
2244 if (xhci->xhc_state & XHCI_STATE_DYING) {
2245 xhci_dbg(xhci, "xHCI host dying, returning from "
2246 "event handler.\n");
2247 return 0;
2248 }
2249
2250 if (update_ptrs)
2251 /* Update SW event ring dequeue pointer */
2252 inc_deq(xhci, xhci->event_ring, true);
2253
2254 /* Are there more items on the event ring? Caller will call us again to
2255 * check.
2256 */
2257 return 1;
2258 }
2259
2260 /*
2261 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2262 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2263 * indicators of an event TRB error, but we check the status *first* to be safe.
2264 */
2265 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2266 {
2267 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2268 u32 status;
2269 union xhci_trb *trb;
2270 u64 temp_64;
2271 union xhci_trb *event_ring_deq;
2272 dma_addr_t deq;
2273
2274 spin_lock(&xhci->lock);
2275 trb = xhci->event_ring->dequeue;
2276 /* Check if the xHC generated the interrupt, or the irq is shared */
2277 status = xhci_readl(xhci, &xhci->op_regs->status);
2278 if (status == 0xffffffff)
2279 goto hw_died;
2280
2281 if (!(status & STS_EINT)) {
2282 spin_unlock(&xhci->lock);
2283 return IRQ_NONE;
2284 }
2285 if (status & STS_FATAL) {
2286 xhci_warn(xhci, "WARNING: Host System Error\n");
2287 xhci_halt(xhci);
2288 hw_died:
2289 spin_unlock(&xhci->lock);
2290 return -ESHUTDOWN;
2291 }
2292
2293 /*
2294 * Clear the op reg interrupt status first,
2295 * so we can receive interrupts from other MSI-X interrupters.
2296 * Write 1 to clear the interrupt status.
2297 */
2298 status |= STS_EINT;
2299 xhci_writel(xhci, status, &xhci->op_regs->status);
2300 /* FIXME when MSI-X is supported and there are multiple vectors */
2301 /* Clear the MSI-X event interrupt status */
2302
2303 if (hcd->irq != -1) {
2304 u32 irq_pending;
2305 /* Acknowledge the PCI interrupt */
2306 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2307 irq_pending |= 0x3;
2308 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2309 }
2310
2311 if (xhci->xhc_state & XHCI_STATE_DYING) {
2312 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2313 "Shouldn't IRQs be disabled?\n");
2314 /* Clear the event handler busy flag (RW1C);
2315 * the event ring should be empty.
2316 */
2317 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2318 xhci_write_64(xhci, temp_64 | ERST_EHB,
2319 &xhci->ir_set->erst_dequeue);
2320 spin_unlock(&xhci->lock);
2321
2322 return IRQ_HANDLED;
2323 }
2324
2325 event_ring_deq = xhci->event_ring->dequeue;
2326 /* FIXME this should be a delayed service routine
2327 * that clears the EHB.
2328 */
2329 while (xhci_handle_event(xhci) > 0) {}
2330
2331 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2332 /* If necessary, update the HW's version of the event ring deq ptr. */
2333 if (event_ring_deq != xhci->event_ring->dequeue) {
2334 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2335 xhci->event_ring->dequeue);
2336 if (deq == 0)
2337 xhci_warn(xhci, "WARN something wrong with SW event "
2338 "ring dequeue ptr.\n");
2339 /* Update HC event ring dequeue pointer */
2340 temp_64 &= ERST_PTR_MASK;
2341 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2342 }
2343
2344 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2345 temp_64 |= ERST_EHB;
2346 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2347
2348 spin_unlock(&xhci->lock);
2349
2350 return IRQ_HANDLED;
2351 }
2352
2353 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2354 {
2355 irqreturn_t ret;
2356 struct xhci_hcd *xhci;
2357
2358 xhci = hcd_to_xhci(hcd);
2359 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2360 if (xhci->shared_hcd)
2361 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2362
2363 ret = xhci_irq(hcd);
2364
2365 return ret;
2366 }
2367
2368 /**** Endpoint Ring Operations ****/
2369
2370 /*
2371 * Generic function for queueing a TRB on a ring.
2372 * The caller must have checked to make sure there's room on the ring.
2373 *
2374 * @more_trbs_coming: Will you enqueue more TRBs before calling
2375 * prepare_transfer()?
2376 */
2377 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2378 bool consumer, bool more_trbs_coming,
2379 u32 field1, u32 field2, u32 field3, u32 field4)
2380 {
2381 struct xhci_generic_trb *trb;
2382
2383 trb = &ring->enqueue->generic;
2384 trb->field[0] = cpu_to_le32(field1);
2385 trb->field[1] = cpu_to_le32(field2);
2386 trb->field[2] = cpu_to_le32(field3);
2387 trb->field[3] = cpu_to_le32(field4);
2388 inc_enq(xhci, ring, consumer, more_trbs_coming);
2389 }
2390
2391 /*
2392 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2393 * FIXME allocate segments if the ring is full.
2394 */
2395 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2396 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2397 {
2398 /* Make sure the endpoint has been added to xHC schedule */
2399 switch (ep_state) {
2400 case EP_STATE_DISABLED:
2401 /*
2402 * USB core changed config/interfaces without notifying us,
2403 * or hardware is reporting the wrong state.
2404 */
2405 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2406 return -ENOENT;
2407 case EP_STATE_ERROR:
2408 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2409 /* FIXME event handling code for error needs to clear it */
2410 /* XXX not sure if this should be -ENOENT or not */
2411 return -EINVAL;
2412 case EP_STATE_HALTED:
2413 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2414 case EP_STATE_STOPPED:
2415 case EP_STATE_RUNNING:
2416 break;
2417 default:
2418 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2419 /*
2420 * FIXME issue Configure Endpoint command to try to get the HC
2421 * back into a known state.
2422 */
2423 return -EINVAL;
2424 }
2425 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2426 /* FIXME allocate more room */
2427 xhci_err(xhci, "ERROR no room on ep ring\n");
2428 return -ENOMEM;
2429 }
2430
2431 if (enqueue_is_link_trb(ep_ring)) {
2432 struct xhci_ring *ring = ep_ring;
2433 union xhci_trb *next;
2434
2435 next = ring->enqueue;
2436
2437 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2438 /* If we're not dealing with 0.95 hardware,
2439 * clear the chain bit.
2440 */
2441 if (!xhci_link_trb_quirk(xhci))
2442 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2443 else
2444 next->link.control |= cpu_to_le32(TRB_CHAIN);
2445
2446 wmb();
2447 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2448
2449 /* Toggle the cycle bit after the last ring segment. */
2450 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2451 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2452 if (!in_interrupt()) {
2453 xhci_dbg(xhci, "queue_trb: Toggle cycle "
2454 "state for ring %p = %i\n",
2455 ring, (unsigned int)ring->cycle_state);
2456 }
2457 }
2458 ring->enq_seg = ring->enq_seg->next;
2459 ring->enqueue = ring->enq_seg->trbs;
2460 next = ring->enqueue;
2461 }
2462 }
2463
2464 return 0;
2465 }
2466
2467 static int prepare_transfer(struct xhci_hcd *xhci,
2468 struct xhci_virt_device *xdev,
2469 unsigned int ep_index,
2470 unsigned int stream_id,
2471 unsigned int num_trbs,
2472 struct urb *urb,
2473 unsigned int td_index,
2474 gfp_t mem_flags)
2475 {
2476 int ret;
2477 struct urb_priv *urb_priv;
2478 struct xhci_td *td;
2479 struct xhci_ring *ep_ring;
2480 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2481
2482 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2483 if (!ep_ring) {
2484 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2485 stream_id);
2486 return -EINVAL;
2487 }
2488
2489 ret = prepare_ring(xhci, ep_ring,
2490 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2491 num_trbs, mem_flags);
2492 if (ret)
2493 return ret;
2494
2495 urb_priv = urb->hcpriv;
2496 td = urb_priv->td[td_index];
2497
2498 INIT_LIST_HEAD(&td->td_list);
2499 INIT_LIST_HEAD(&td->cancelled_td_list);
2500
2501 if (td_index == 0) {
2502 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2503 if (unlikely(ret)) {
2504 xhci_urb_free_priv(xhci, urb_priv);
2505 urb->hcpriv = NULL;
2506 return ret;
2507 }
2508 }
2509
2510 td->urb = urb;
2511 /* Add this TD to the tail of the endpoint ring's TD list */
2512 list_add_tail(&td->td_list, &ep_ring->td_list);
2513 td->start_seg = ep_ring->enq_seg;
2514 td->first_trb = ep_ring->enqueue;
2515
2516 urb_priv->td[td_index] = td;
2517
2518 return 0;
2519 }
2520
2521 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2522 {
2523 int num_sgs, num_trbs, running_total, temp, i;
2524 struct scatterlist *sg;
2525
2526 sg = NULL;
2527 num_sgs = urb->num_sgs;
2528 temp = urb->transfer_buffer_length;
2529
2530 xhci_dbg(xhci, "count sg list trbs: \n");
2531 num_trbs = 0;
2532 for_each_sg(urb->sg, sg, num_sgs, i) {
2533 unsigned int previous_total_trbs = num_trbs;
2534 unsigned int len = sg_dma_len(sg);
2535
2536 /* Scatter gather list entries may cross 64KB boundaries */
2537 running_total = TRB_MAX_BUFF_SIZE -
2538 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2539 running_total &= TRB_MAX_BUFF_SIZE - 1;
2540 if (running_total != 0)
2541 num_trbs++;
2542
2543 /* How many more 64KB chunks to transfer, how many more TRBs? */
2544 while (running_total < sg_dma_len(sg) && running_total < temp) {
2545 num_trbs++;
2546 running_total += TRB_MAX_BUFF_SIZE;
2547 }
2548 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2549 i, (unsigned long long)sg_dma_address(sg),
2550 len, len, num_trbs - previous_total_trbs);
2551
2552 len = min_t(int, len, temp);
2553 temp -= len;
2554 if (temp == 0)
2555 break;
2556 }
2557 xhci_dbg(xhci, "\n");
2558 if (!in_interrupt())
2559 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2560 "num_trbs = %d\n",
2561 urb->ep->desc.bEndpointAddress,
2562 urb->transfer_buffer_length,
2563 num_trbs);
2564 return num_trbs;
2565 }
2566
2567 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2568 {
2569 if (num_trbs != 0)
2570 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2571 "TRBs, %d left\n", __func__,
2572 urb->ep->desc.bEndpointAddress, num_trbs);
2573 if (running_total != urb->transfer_buffer_length)
2574 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2575 "queued %#x (%d), asked for %#x (%d)\n",
2576 __func__,
2577 urb->ep->desc.bEndpointAddress,
2578 running_total, running_total,
2579 urb->transfer_buffer_length,
2580 urb->transfer_buffer_length);
2581 }
2582
2583 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2584 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2585 struct xhci_generic_trb *start_trb)
2586 {
2587 /*
2588 * Pass all the TRBs to the hardware at once and make sure this write
2589 * isn't reordered.
2590 */
2591 wmb();
2592 if (start_cycle)
2593 start_trb->field[3] |= cpu_to_le32(start_cycle);
2594 else
2595 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2596 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2597 }
2598
2599 /*
2600 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2601 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2602 * (comprised of sg list entries) can take several service intervals to
2603 * transmit.
2604 */
2605 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2606 struct urb *urb, int slot_id, unsigned int ep_index)
2607 {
2608 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2609 xhci->devs[slot_id]->out_ctx, ep_index);
2610 int xhci_interval;
2611 int ep_interval;
2612
2613 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2614 ep_interval = urb->interval;
2615 /* Convert to microframes */
2616 if (urb->dev->speed == USB_SPEED_LOW ||
2617 urb->dev->speed == USB_SPEED_FULL)
2618 ep_interval *= 8;
2619 /* FIXME change this to a warning and a suggestion to use the new API
2620 * to set the polling interval (once the API is added).
2621 */
2622 if (xhci_interval != ep_interval) {
2623 if (printk_ratelimit())
2624 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2625 " (%d microframe%s) than xHCI "
2626 "(%d microframe%s)\n",
2627 ep_interval,
2628 ep_interval == 1 ? "" : "s",
2629 xhci_interval,
2630 xhci_interval == 1 ? "" : "s");
2631 urb->interval = xhci_interval;
2632 /* Convert back to frames for LS/FS devices */
2633 if (urb->dev->speed == USB_SPEED_LOW ||
2634 urb->dev->speed == USB_SPEED_FULL)
2635 urb->interval /= 8;
2636 }
2637 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2638 }
2639
2640 /*
2641 * The TD size is the number of bytes remaining in the TD (including this TRB),
2642 * right shifted by 10.
2643 * It must fit in bits 21:17, so it can't be bigger than 31.
2644 */
2645 static u32 xhci_td_remainder(unsigned int remainder)
2646 {
2647 u32 max = (1 << (21 - 17 + 1)) - 1;
2648
2649 if ((remainder >> 10) >= max)
2650 return max << 17;
2651 else
2652 return (remainder >> 10) << 17;
2653 }
2654
2655 /*
2656 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2657 * the TD (*not* including this TRB).
2658 *
2659 * Total TD packet count = total_packet_count =
2660 * roundup(TD size in bytes / wMaxPacketSize)
2661 *
2662 * Packets transferred up to and including this TRB = packets_transferred =
2663 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2664 *
2665 * TD size = total_packet_count - packets_transferred
2666 *
2667 * It must fit in bits 21:17, so it can't be bigger than 31.
2668 */
2669
2670 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2671 unsigned int total_packet_count, struct urb *urb)
2672 {
2673 int packets_transferred;
2674
2675 /* All the TRB queueing functions don't count the current TRB in
2676 * running_total.
2677 */
2678 packets_transferred = (running_total + trb_buff_len) /
2679 le16_to_cpu(urb->ep->desc.wMaxPacketSize);
2680
2681 return xhci_td_remainder(total_packet_count - packets_transferred);
2682 }
2683
2684 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2685 struct urb *urb, int slot_id, unsigned int ep_index)
2686 {
2687 struct xhci_ring *ep_ring;
2688 unsigned int num_trbs;
2689 struct urb_priv *urb_priv;
2690 struct xhci_td *td;
2691 struct scatterlist *sg;
2692 int num_sgs;
2693 int trb_buff_len, this_sg_len, running_total;
2694 unsigned int total_packet_count;
2695 bool first_trb;
2696 u64 addr;
2697 bool more_trbs_coming;
2698
2699 struct xhci_generic_trb *start_trb;
2700 int start_cycle;
2701
2702 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2703 if (!ep_ring)
2704 return -EINVAL;
2705
2706 num_trbs = count_sg_trbs_needed(xhci, urb);
2707 num_sgs = urb->num_sgs;
2708 total_packet_count = roundup(urb->transfer_buffer_length,
2709 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
2710
2711 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2712 ep_index, urb->stream_id,
2713 num_trbs, urb, 0, mem_flags);
2714 if (trb_buff_len < 0)
2715 return trb_buff_len;
2716
2717 urb_priv = urb->hcpriv;
2718 td = urb_priv->td[0];
2719
2720 /*
2721 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2722 * until we've finished creating all the other TRBs. The ring's cycle
2723 * state may change as we enqueue the other TRBs, so save it too.
2724 */
2725 start_trb = &ep_ring->enqueue->generic;
2726 start_cycle = ep_ring->cycle_state;
2727
2728 running_total = 0;
2729 /*
2730 * How much data is in the first TRB?
2731 *
2732 * There are three forces at work for TRB buffer pointers and lengths:
2733 * 1. We don't want to walk off the end of this sg-list entry buffer.
2734 * 2. The transfer length that the driver requested may be smaller than
2735 * the amount of memory allocated for this scatter-gather list.
2736 * 3. TRBs buffers can't cross 64KB boundaries.
2737 */
2738 sg = urb->sg;
2739 addr = (u64) sg_dma_address(sg);
2740 this_sg_len = sg_dma_len(sg);
2741 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2742 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2743 if (trb_buff_len > urb->transfer_buffer_length)
2744 trb_buff_len = urb->transfer_buffer_length;
2745 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2746 trb_buff_len);
2747
2748 first_trb = true;
2749 /* Queue the first TRB, even if it's zero-length */
2750 do {
2751 u32 field = 0;
2752 u32 length_field = 0;
2753 u32 remainder = 0;
2754
2755 /* Don't change the cycle bit of the first TRB until later */
2756 if (first_trb) {
2757 first_trb = false;
2758 if (start_cycle == 0)
2759 field |= 0x1;
2760 } else
2761 field |= ep_ring->cycle_state;
2762
2763 /* Chain all the TRBs together; clear the chain bit in the last
2764 * TRB to indicate it's the last TRB in the chain.
2765 */
2766 if (num_trbs > 1) {
2767 field |= TRB_CHAIN;
2768 } else {
2769 /* FIXME - add check for ZERO_PACKET flag before this */
2770 td->last_trb = ep_ring->enqueue;
2771 field |= TRB_IOC;
2772 }
2773
2774 /* Only set interrupt on short packet for IN endpoints */
2775 if (usb_urb_dir_in(urb))
2776 field |= TRB_ISP;
2777
2778 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2779 "64KB boundary at %#x, end dma = %#x\n",
2780 (unsigned int) addr, trb_buff_len, trb_buff_len,
2781 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2782 (unsigned int) addr + trb_buff_len);
2783 if (TRB_MAX_BUFF_SIZE -
2784 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2785 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2786 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2787 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2788 (unsigned int) addr + trb_buff_len);
2789 }
2790
2791 /* Set the TRB length, TD size, and interrupter fields. */
2792 if (xhci->hci_version < 0x100) {
2793 remainder = xhci_td_remainder(
2794 urb->transfer_buffer_length -
2795 running_total);
2796 } else {
2797 remainder = xhci_v1_0_td_remainder(running_total,
2798 trb_buff_len, total_packet_count, urb);
2799 }
2800 length_field = TRB_LEN(trb_buff_len) |
2801 remainder |
2802 TRB_INTR_TARGET(0);
2803
2804 if (num_trbs > 1)
2805 more_trbs_coming = true;
2806 else
2807 more_trbs_coming = false;
2808 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2809 lower_32_bits(addr),
2810 upper_32_bits(addr),
2811 length_field,
2812 field | TRB_TYPE(TRB_NORMAL));
2813 --num_trbs;
2814 running_total += trb_buff_len;
2815
2816 /* Calculate length for next transfer --
2817 * Are we done queueing all the TRBs for this sg entry?
2818 */
2819 this_sg_len -= trb_buff_len;
2820 if (this_sg_len == 0) {
2821 --num_sgs;
2822 if (num_sgs == 0)
2823 break;
2824 sg = sg_next(sg);
2825 addr = (u64) sg_dma_address(sg);
2826 this_sg_len = sg_dma_len(sg);
2827 } else {
2828 addr += trb_buff_len;
2829 }
2830
2831 trb_buff_len = TRB_MAX_BUFF_SIZE -
2832 (addr & (TRB_MAX_BUFF_SIZE - 1));
2833 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2834 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2835 trb_buff_len =
2836 urb->transfer_buffer_length - running_total;
2837 } while (running_total < urb->transfer_buffer_length);
2838
2839 check_trb_math(urb, num_trbs, running_total);
2840 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2841 start_cycle, start_trb);
2842 return 0;
2843 }
2844
2845 /* This is very similar to what ehci-q.c qtd_fill() does */
2846 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2847 struct urb *urb, int slot_id, unsigned int ep_index)
2848 {
2849 struct xhci_ring *ep_ring;
2850 struct urb_priv *urb_priv;
2851 struct xhci_td *td;
2852 int num_trbs;
2853 struct xhci_generic_trb *start_trb;
2854 bool first_trb;
2855 bool more_trbs_coming;
2856 int start_cycle;
2857 u32 field, length_field;
2858
2859 int running_total, trb_buff_len, ret;
2860 unsigned int total_packet_count;
2861 u64 addr;
2862
2863 if (urb->num_sgs)
2864 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2865
2866 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2867 if (!ep_ring)
2868 return -EINVAL;
2869
2870 num_trbs = 0;
2871 /* How much data is (potentially) left before the 64KB boundary? */
2872 running_total = TRB_MAX_BUFF_SIZE -
2873 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2874 running_total &= TRB_MAX_BUFF_SIZE - 1;
2875
2876 /* If there's some data on this 64KB chunk, or we have to send a
2877 * zero-length transfer, we need at least one TRB
2878 */
2879 if (running_total != 0 || urb->transfer_buffer_length == 0)
2880 num_trbs++;
2881 /* How many more 64KB chunks to transfer, how many more TRBs? */
2882 while (running_total < urb->transfer_buffer_length) {
2883 num_trbs++;
2884 running_total += TRB_MAX_BUFF_SIZE;
2885 }
2886 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2887
2888 if (!in_interrupt())
2889 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2890 "addr = %#llx, num_trbs = %d\n",
2891 urb->ep->desc.bEndpointAddress,
2892 urb->transfer_buffer_length,
2893 urb->transfer_buffer_length,
2894 (unsigned long long)urb->transfer_dma,
2895 num_trbs);
2896
2897 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2898 ep_index, urb->stream_id,
2899 num_trbs, urb, 0, mem_flags);
2900 if (ret < 0)
2901 return ret;
2902
2903 urb_priv = urb->hcpriv;
2904 td = urb_priv->td[0];
2905
2906 /*
2907 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2908 * until we've finished creating all the other TRBs. The ring's cycle
2909 * state may change as we enqueue the other TRBs, so save it too.
2910 */
2911 start_trb = &ep_ring->enqueue->generic;
2912 start_cycle = ep_ring->cycle_state;
2913
2914 running_total = 0;
2915 total_packet_count = roundup(urb->transfer_buffer_length,
2916 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
2917 /* How much data is in the first TRB? */
2918 addr = (u64) urb->transfer_dma;
2919 trb_buff_len = TRB_MAX_BUFF_SIZE -
2920 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2921 if (trb_buff_len > urb->transfer_buffer_length)
2922 trb_buff_len = urb->transfer_buffer_length;
2923
2924 first_trb = true;
2925
2926 /* Queue the first TRB, even if it's zero-length */
2927 do {
2928 u32 remainder = 0;
2929 field = 0;
2930
2931 /* Don't change the cycle bit of the first TRB until later */
2932 if (first_trb) {
2933 first_trb = false;
2934 if (start_cycle == 0)
2935 field |= 0x1;
2936 } else
2937 field |= ep_ring->cycle_state;
2938
2939 /* Chain all the TRBs together; clear the chain bit in the last
2940 * TRB to indicate it's the last TRB in the chain.
2941 */
2942 if (num_trbs > 1) {
2943 field |= TRB_CHAIN;
2944 } else {
2945 /* FIXME - add check for ZERO_PACKET flag before this */
2946 td->last_trb = ep_ring->enqueue;
2947 field |= TRB_IOC;
2948 }
2949
2950 /* Only set interrupt on short packet for IN endpoints */
2951 if (usb_urb_dir_in(urb))
2952 field |= TRB_ISP;
2953
2954 /* Set the TRB length, TD size, and interrupter fields. */
2955 if (xhci->hci_version < 0x100) {
2956 remainder = xhci_td_remainder(
2957 urb->transfer_buffer_length -
2958 running_total);
2959 } else {
2960 remainder = xhci_v1_0_td_remainder(running_total,
2961 trb_buff_len, total_packet_count, urb);
2962 }
2963 length_field = TRB_LEN(trb_buff_len) |
2964 remainder |
2965 TRB_INTR_TARGET(0);
2966
2967 if (num_trbs > 1)
2968 more_trbs_coming = true;
2969 else
2970 more_trbs_coming = false;
2971 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2972 lower_32_bits(addr),
2973 upper_32_bits(addr),
2974 length_field,
2975 field | TRB_TYPE(TRB_NORMAL));
2976 --num_trbs;
2977 running_total += trb_buff_len;
2978
2979 /* Calculate length for next transfer */
2980 addr += trb_buff_len;
2981 trb_buff_len = urb->transfer_buffer_length - running_total;
2982 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
2983 trb_buff_len = TRB_MAX_BUFF_SIZE;
2984 } while (running_total < urb->transfer_buffer_length);
2985
2986 check_trb_math(urb, num_trbs, running_total);
2987 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2988 start_cycle, start_trb);
2989 return 0;
2990 }
2991
2992 /* Caller must have locked xhci->lock */
2993 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2994 struct urb *urb, int slot_id, unsigned int ep_index)
2995 {
2996 struct xhci_ring *ep_ring;
2997 int num_trbs;
2998 int ret;
2999 struct usb_ctrlrequest *setup;
3000 struct xhci_generic_trb *start_trb;
3001 int start_cycle;
3002 u32 field, length_field;
3003 struct urb_priv *urb_priv;
3004 struct xhci_td *td;
3005
3006 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3007 if (!ep_ring)
3008 return -EINVAL;
3009
3010 /*
3011 * Need to copy setup packet into setup TRB, so we can't use the setup
3012 * DMA address.
3013 */
3014 if (!urb->setup_packet)
3015 return -EINVAL;
3016
3017 if (!in_interrupt())
3018 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
3019 slot_id, ep_index);
3020 /* 1 TRB for setup, 1 for status */
3021 num_trbs = 2;
3022 /*
3023 * Don't need to check if we need additional event data and normal TRBs,
3024 * since data in control transfers will never get bigger than 16MB
3025 * XXX: can we get a buffer that crosses 64KB boundaries?
3026 */
3027 if (urb->transfer_buffer_length > 0)
3028 num_trbs++;
3029 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3030 ep_index, urb->stream_id,
3031 num_trbs, urb, 0, mem_flags);
3032 if (ret < 0)
3033 return ret;
3034
3035 urb_priv = urb->hcpriv;
3036 td = urb_priv->td[0];
3037
3038 /*
3039 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3040 * until we've finished creating all the other TRBs. The ring's cycle
3041 * state may change as we enqueue the other TRBs, so save it too.
3042 */
3043 start_trb = &ep_ring->enqueue->generic;
3044 start_cycle = ep_ring->cycle_state;
3045
3046 /* Queue setup TRB - see section 6.4.1.2.1 */
3047 /* FIXME better way to translate setup_packet into two u32 fields? */
3048 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3049 field = 0;
3050 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3051 if (start_cycle == 0)
3052 field |= 0x1;
3053
3054 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3055 if (xhci->hci_version == 0x100) {
3056 if (urb->transfer_buffer_length > 0) {
3057 if (setup->bRequestType & USB_DIR_IN)
3058 field |= TRB_TX_TYPE(TRB_DATA_IN);
3059 else
3060 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3061 }
3062 }
3063
3064 queue_trb(xhci, ep_ring, false, true,
3065 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3066 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3067 TRB_LEN(8) | TRB_INTR_TARGET(0),
3068 /* Immediate data in pointer */
3069 field);
3070
3071 /* If there's data, queue data TRBs */
3072 /* Only set interrupt on short packet for IN endpoints */
3073 if (usb_urb_dir_in(urb))
3074 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3075 else
3076 field = TRB_TYPE(TRB_DATA);
3077
3078 length_field = TRB_LEN(urb->transfer_buffer_length) |
3079 xhci_td_remainder(urb->transfer_buffer_length) |
3080 TRB_INTR_TARGET(0);
3081 if (urb->transfer_buffer_length > 0) {
3082 if (setup->bRequestType & USB_DIR_IN)
3083 field |= TRB_DIR_IN;
3084 queue_trb(xhci, ep_ring, false, true,
3085 lower_32_bits(urb->transfer_dma),
3086 upper_32_bits(urb->transfer_dma),
3087 length_field,
3088 field | ep_ring->cycle_state);
3089 }
3090
3091 /* Save the DMA address of the last TRB in the TD */
3092 td->last_trb = ep_ring->enqueue;
3093
3094 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3095 /* If the device sent data, the status stage is an OUT transfer */
3096 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3097 field = 0;
3098 else
3099 field = TRB_DIR_IN;
3100 queue_trb(xhci, ep_ring, false, false,
3101 0,
3102 0,
3103 TRB_INTR_TARGET(0),
3104 /* Event on completion */
3105 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3106
3107 giveback_first_trb(xhci, slot_id, ep_index, 0,
3108 start_cycle, start_trb);
3109 return 0;
3110 }
3111
3112 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3113 struct urb *urb, int i)
3114 {
3115 int num_trbs = 0;
3116 u64 addr, td_len, running_total;
3117
3118 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3119 td_len = urb->iso_frame_desc[i].length;
3120
3121 running_total = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3122 running_total &= TRB_MAX_BUFF_SIZE - 1;
3123 if (running_total != 0)
3124 num_trbs++;
3125
3126 while (running_total < td_len) {
3127 num_trbs++;
3128 running_total += TRB_MAX_BUFF_SIZE;
3129 }
3130
3131 return num_trbs;
3132 }
3133
3134 /*
3135 * The transfer burst count field of the isochronous TRB defines the number of
3136 * bursts that are required to move all packets in this TD. Only SuperSpeed
3137 * devices can burst up to bMaxBurst number of packets per service interval.
3138 * This field is zero based, meaning a value of zero in the field means one
3139 * burst. Basically, for everything but SuperSpeed devices, this field will be
3140 * zero. Only xHCI 1.0 host controllers support this field.
3141 */
3142 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3143 struct usb_device *udev,
3144 struct urb *urb, unsigned int total_packet_count)
3145 {
3146 unsigned int max_burst;
3147
3148 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3149 return 0;
3150
3151 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3152 return roundup(total_packet_count, max_burst + 1) - 1;
3153 }
3154
3155 /*
3156 * Returns the number of packets in the last "burst" of packets. This field is
3157 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3158 * the last burst packet count is equal to the total number of packets in the
3159 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3160 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3161 * contain 1 to (bMaxBurst + 1) packets.
3162 */
3163 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3164 struct usb_device *udev,
3165 struct urb *urb, unsigned int total_packet_count)
3166 {
3167 unsigned int max_burst;
3168 unsigned int residue;
3169
3170 if (xhci->hci_version < 0x100)
3171 return 0;
3172
3173 switch (udev->speed) {
3174 case USB_SPEED_SUPER:
3175 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3176 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3177 residue = total_packet_count % (max_burst + 1);
3178 /* If residue is zero, the last burst contains (max_burst + 1)
3179 * number of packets, but the TLBPC field is zero-based.
3180 */
3181 if (residue == 0)
3182 return max_burst;
3183 return residue - 1;
3184 default:
3185 if (total_packet_count == 0)
3186 return 0;
3187 return total_packet_count - 1;
3188 }
3189 }
3190
3191 /* This is for isoc transfer */
3192 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3193 struct urb *urb, int slot_id, unsigned int ep_index)
3194 {
3195 struct xhci_ring *ep_ring;
3196 struct urb_priv *urb_priv;
3197 struct xhci_td *td;
3198 int num_tds, trbs_per_td;
3199 struct xhci_generic_trb *start_trb;
3200 bool first_trb;
3201 int start_cycle;
3202 u32 field, length_field;
3203 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3204 u64 start_addr, addr;
3205 int i, j;
3206 bool more_trbs_coming;
3207
3208 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3209
3210 num_tds = urb->number_of_packets;
3211 if (num_tds < 1) {
3212 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3213 return -EINVAL;
3214 }
3215
3216 if (!in_interrupt())
3217 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3218 " addr = %#llx, num_tds = %d\n",
3219 urb->ep->desc.bEndpointAddress,
3220 urb->transfer_buffer_length,
3221 urb->transfer_buffer_length,
3222 (unsigned long long)urb->transfer_dma,
3223 num_tds);
3224
3225 start_addr = (u64) urb->transfer_dma;
3226 start_trb = &ep_ring->enqueue->generic;
3227 start_cycle = ep_ring->cycle_state;
3228
3229 /* Queue the first TRB, even if it's zero-length */
3230 for (i = 0; i < num_tds; i++) {
3231 unsigned int total_packet_count;
3232 unsigned int burst_count;
3233 unsigned int residue;
3234
3235 first_trb = true;
3236 running_total = 0;
3237 addr = start_addr + urb->iso_frame_desc[i].offset;
3238 td_len = urb->iso_frame_desc[i].length;
3239 td_remain_len = td_len;
3240 /* FIXME: Ignoring zero-length packets, can those happen? */
3241 total_packet_count = roundup(td_len,
3242 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
3243 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3244 total_packet_count);
3245 residue = xhci_get_last_burst_packet_count(xhci,
3246 urb->dev, urb, total_packet_count);
3247
3248 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3249
3250 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3251 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3252 if (ret < 0)
3253 return ret;
3254
3255 urb_priv = urb->hcpriv;
3256 td = urb_priv->td[i];
3257
3258 for (j = 0; j < trbs_per_td; j++) {
3259 u32 remainder = 0;
3260 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3261
3262 if (first_trb) {
3263 /* Queue the isoc TRB */
3264 field |= TRB_TYPE(TRB_ISOC);
3265 /* Assume URB_ISO_ASAP is set */
3266 field |= TRB_SIA;
3267 if (i == 0) {
3268 if (start_cycle == 0)
3269 field |= 0x1;
3270 } else
3271 field |= ep_ring->cycle_state;
3272 first_trb = false;
3273 } else {
3274 /* Queue other normal TRBs */
3275 field |= TRB_TYPE(TRB_NORMAL);
3276 field |= ep_ring->cycle_state;
3277 }
3278
3279 /* Only set interrupt on short packet for IN EPs */
3280 if (usb_urb_dir_in(urb))
3281 field |= TRB_ISP;
3282
3283 /* Chain all the TRBs together; clear the chain bit in
3284 * the last TRB to indicate it's the last TRB in the
3285 * chain.
3286 */
3287 if (j < trbs_per_td - 1) {
3288 field |= TRB_CHAIN;
3289 more_trbs_coming = true;
3290 } else {
3291 td->last_trb = ep_ring->enqueue;
3292 field |= TRB_IOC;
3293 if (xhci->hci_version == 0x100) {
3294 /* Set BEI bit except for the last td */
3295 if (i < num_tds - 1)
3296 field |= TRB_BEI;
3297 }
3298 more_trbs_coming = false;
3299 }
3300
3301 /* Calculate TRB length */
3302 trb_buff_len = TRB_MAX_BUFF_SIZE -
3303 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3304 if (trb_buff_len > td_remain_len)
3305 trb_buff_len = td_remain_len;
3306
3307 /* Set the TRB length, TD size, & interrupter fields. */
3308 if (xhci->hci_version < 0x100) {
3309 remainder = xhci_td_remainder(
3310 td_len - running_total);
3311 } else {
3312 remainder = xhci_v1_0_td_remainder(
3313 running_total, trb_buff_len,
3314 total_packet_count, urb);
3315 }
3316 length_field = TRB_LEN(trb_buff_len) |
3317 remainder |
3318 TRB_INTR_TARGET(0);
3319
3320 queue_trb(xhci, ep_ring, false, more_trbs_coming,
3321 lower_32_bits(addr),
3322 upper_32_bits(addr),
3323 length_field,
3324 field);
3325 running_total += trb_buff_len;
3326
3327 addr += trb_buff_len;
3328 td_remain_len -= trb_buff_len;
3329 }
3330
3331 /* Check TD length */
3332 if (running_total != td_len) {
3333 xhci_err(xhci, "ISOC TD length unmatch\n");
3334 return -EINVAL;
3335 }
3336 }
3337
3338 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3339 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3340 usb_amd_quirk_pll_disable();
3341 }
3342 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3343
3344 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3345 start_cycle, start_trb);
3346 return 0;
3347 }
3348
3349 /*
3350 * Check transfer ring to guarantee there is enough room for the urb.
3351 * Update ISO URB start_frame and interval.
3352 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3353 * update the urb->start_frame by now.
3354 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3355 */
3356 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3357 struct urb *urb, int slot_id, unsigned int ep_index)
3358 {
3359 struct xhci_virt_device *xdev;
3360 struct xhci_ring *ep_ring;
3361 struct xhci_ep_ctx *ep_ctx;
3362 int start_frame;
3363 int xhci_interval;
3364 int ep_interval;
3365 int num_tds, num_trbs, i;
3366 int ret;
3367
3368 xdev = xhci->devs[slot_id];
3369 ep_ring = xdev->eps[ep_index].ring;
3370 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3371
3372 num_trbs = 0;
3373 num_tds = urb->number_of_packets;
3374 for (i = 0; i < num_tds; i++)
3375 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3376
3377 /* Check the ring to guarantee there is enough room for the whole urb.
3378 * Do not insert any td of the urb to the ring if the check failed.
3379 */
3380 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3381 num_trbs, mem_flags);
3382 if (ret)
3383 return ret;
3384
3385 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3386 start_frame &= 0x3fff;
3387
3388 urb->start_frame = start_frame;
3389 if (urb->dev->speed == USB_SPEED_LOW ||
3390 urb->dev->speed == USB_SPEED_FULL)
3391 urb->start_frame >>= 3;
3392
3393 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3394 ep_interval = urb->interval;
3395 /* Convert to microframes */
3396 if (urb->dev->speed == USB_SPEED_LOW ||
3397 urb->dev->speed == USB_SPEED_FULL)
3398 ep_interval *= 8;
3399 /* FIXME change this to a warning and a suggestion to use the new API
3400 * to set the polling interval (once the API is added).
3401 */
3402 if (xhci_interval != ep_interval) {
3403 if (printk_ratelimit())
3404 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3405 " (%d microframe%s) than xHCI "
3406 "(%d microframe%s)\n",
3407 ep_interval,
3408 ep_interval == 1 ? "" : "s",
3409 xhci_interval,
3410 xhci_interval == 1 ? "" : "s");
3411 urb->interval = xhci_interval;
3412 /* Convert back to frames for LS/FS devices */
3413 if (urb->dev->speed == USB_SPEED_LOW ||
3414 urb->dev->speed == USB_SPEED_FULL)
3415 urb->interval /= 8;
3416 }
3417 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3418 }
3419
3420 /**** Command Ring Operations ****/
3421
3422 /* Generic function for queueing a command TRB on the command ring.
3423 * Check to make sure there's room on the command ring for one command TRB.
3424 * Also check that there's room reserved for commands that must not fail.
3425 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3426 * then only check for the number of reserved spots.
3427 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3428 * because the command event handler may want to resubmit a failed command.
3429 */
3430 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3431 u32 field3, u32 field4, bool command_must_succeed)
3432 {
3433 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3434 int ret;
3435
3436 if (!command_must_succeed)
3437 reserved_trbs++;
3438
3439 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3440 reserved_trbs, GFP_ATOMIC);
3441 if (ret < 0) {
3442 xhci_err(xhci, "ERR: No room for command on command ring\n");
3443 if (command_must_succeed)
3444 xhci_err(xhci, "ERR: Reserved TRB counting for "
3445 "unfailable commands failed.\n");
3446 return ret;
3447 }
3448 queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3,
3449 field4 | xhci->cmd_ring->cycle_state);
3450 return 0;
3451 }
3452
3453 /* Queue a slot enable or disable request on the command ring */
3454 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3455 {
3456 return queue_command(xhci, 0, 0, 0,
3457 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3458 }
3459
3460 /* Queue an address device command TRB */
3461 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3462 u32 slot_id)
3463 {
3464 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3465 upper_32_bits(in_ctx_ptr), 0,
3466 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3467 false);
3468 }
3469
3470 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3471 u32 field1, u32 field2, u32 field3, u32 field4)
3472 {
3473 return queue_command(xhci, field1, field2, field3, field4, false);
3474 }
3475
3476 /* Queue a reset device command TRB */
3477 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3478 {
3479 return queue_command(xhci, 0, 0, 0,
3480 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3481 false);
3482 }
3483
3484 /* Queue a configure endpoint command TRB */
3485 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3486 u32 slot_id, bool command_must_succeed)
3487 {
3488 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3489 upper_32_bits(in_ctx_ptr), 0,
3490 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3491 command_must_succeed);
3492 }
3493
3494 /* Queue an evaluate context command TRB */
3495 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3496 u32 slot_id)
3497 {
3498 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3499 upper_32_bits(in_ctx_ptr), 0,
3500 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3501 false);
3502 }
3503
3504 /*
3505 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3506 * activity on an endpoint that is about to be suspended.
3507 */
3508 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3509 unsigned int ep_index, int suspend)
3510 {
3511 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3512 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3513 u32 type = TRB_TYPE(TRB_STOP_RING);
3514 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3515
3516 return queue_command(xhci, 0, 0, 0,
3517 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3518 }
3519
3520 /* Set Transfer Ring Dequeue Pointer command.
3521 * This should not be used for endpoints that have streams enabled.
3522 */
3523 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3524 unsigned int ep_index, unsigned int stream_id,
3525 struct xhci_segment *deq_seg,
3526 union xhci_trb *deq_ptr, u32 cycle_state)
3527 {
3528 dma_addr_t addr;
3529 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3530 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3531 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3532 u32 type = TRB_TYPE(TRB_SET_DEQ);
3533 struct xhci_virt_ep *ep;
3534
3535 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3536 if (addr == 0) {
3537 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3538 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3539 deq_seg, deq_ptr);
3540 return 0;
3541 }
3542 ep = &xhci->devs[slot_id]->eps[ep_index];
3543 if ((ep->ep_state & SET_DEQ_PENDING)) {
3544 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3545 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3546 return 0;
3547 }
3548 ep->queued_deq_seg = deq_seg;
3549 ep->queued_deq_ptr = deq_ptr;
3550 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3551 upper_32_bits(addr), trb_stream_id,
3552 trb_slot_id | trb_ep_index | type, false);
3553 }
3554
3555 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3556 unsigned int ep_index)
3557 {
3558 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3559 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3560 u32 type = TRB_TYPE(TRB_RESET_EP);
3561
3562 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3563 false);
3564 }
This page took 0.163485 seconds and 6 git commands to generate.