fbdev: Modify vsync timing calculation in wm8505fb
[deliverable/linux.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
47 *
48 * Returns negative errno, or zero on success
49 *
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
53 */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 u32 mask, u32 done, int usec)
56 {
57 u32 result;
58
59 do {
60 result = xhci_readl(xhci, ptr);
61 if (result == ~(u32)0) /* card removed */
62 return -ENODEV;
63 result &= mask;
64 if (result == done)
65 return 0;
66 udelay(1);
67 usec--;
68 } while (usec > 0);
69 return -ETIMEDOUT;
70 }
71
72 /*
73 * Disable interrupts and begin the xHCI halting process.
74 */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 u32 halted;
78 u32 cmd;
79 u32 mask;
80
81 mask = ~(XHCI_IRQS);
82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 if (!halted)
84 mask &= ~CMD_RUN;
85
86 cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 cmd &= mask;
88 xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92 * Force HC into halt state.
93 *
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 microframes of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
98 * XXX: shouldn't we set HC_STATE_HALT here somewhere?
99 */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 xhci_dbg(xhci, "// Halt the HC\n");
103 xhci_quiesce(xhci);
104
105 return handshake(xhci, &xhci->op_regs->status,
106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 }
108
109 /*
110 * Set the run bit and wait for the host to be running.
111 */
112 int xhci_start(struct xhci_hcd *xhci)
113 {
114 u32 temp;
115 int ret;
116
117 temp = xhci_readl(xhci, &xhci->op_regs->command);
118 temp |= (CMD_RUN);
119 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
120 temp);
121 xhci_writel(xhci, temp, &xhci->op_regs->command);
122
123 /*
124 * Wait for the HCHalted Status bit to be 0 to indicate the host is
125 * running.
126 */
127 ret = handshake(xhci, &xhci->op_regs->status,
128 STS_HALT, 0, XHCI_MAX_HALT_USEC);
129 if (ret == -ETIMEDOUT)
130 xhci_err(xhci, "Host took too long to start, "
131 "waited %u microseconds.\n",
132 XHCI_MAX_HALT_USEC);
133 return ret;
134 }
135
136 /*
137 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
138 *
139 * This resets pipelines, timers, counters, state machines, etc.
140 * Transactions will be terminated immediately, and operational registers
141 * will be set to their defaults.
142 */
143 int xhci_reset(struct xhci_hcd *xhci)
144 {
145 u32 command;
146 u32 state;
147 int ret;
148
149 state = xhci_readl(xhci, &xhci->op_regs->status);
150 if ((state & STS_HALT) == 0) {
151 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
152 return 0;
153 }
154
155 xhci_dbg(xhci, "// Reset the HC\n");
156 command = xhci_readl(xhci, &xhci->op_regs->command);
157 command |= CMD_RESET;
158 xhci_writel(xhci, command, &xhci->op_regs->command);
159 /* XXX: Why does EHCI set this here? Shouldn't other code do this? */
160 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
161
162 ret = handshake(xhci, &xhci->op_regs->command,
163 CMD_RESET, 0, 250 * 1000);
164 if (ret)
165 return ret;
166
167 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
168 /*
169 * xHCI cannot write to any doorbells or operational registers other
170 * than status until the "Controller Not Ready" flag is cleared.
171 */
172 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
173 }
174
175 /*
176 * Free IRQs
177 * free all IRQs request
178 */
179 static void xhci_free_irq(struct xhci_hcd *xhci)
180 {
181 int i;
182 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
183
184 /* return if using legacy interrupt */
185 if (xhci_to_hcd(xhci)->irq >= 0)
186 return;
187
188 if (xhci->msix_entries) {
189 for (i = 0; i < xhci->msix_count; i++)
190 if (xhci->msix_entries[i].vector)
191 free_irq(xhci->msix_entries[i].vector,
192 xhci_to_hcd(xhci));
193 } else if (pdev->irq >= 0)
194 free_irq(pdev->irq, xhci_to_hcd(xhci));
195
196 return;
197 }
198
199 /*
200 * Set up MSI
201 */
202 static int xhci_setup_msi(struct xhci_hcd *xhci)
203 {
204 int ret;
205 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
206
207 ret = pci_enable_msi(pdev);
208 if (ret) {
209 xhci_err(xhci, "failed to allocate MSI entry\n");
210 return ret;
211 }
212
213 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
214 0, "xhci_hcd", xhci_to_hcd(xhci));
215 if (ret) {
216 xhci_err(xhci, "disable MSI interrupt\n");
217 pci_disable_msi(pdev);
218 }
219
220 return ret;
221 }
222
223 /*
224 * Set up MSI-X
225 */
226 static int xhci_setup_msix(struct xhci_hcd *xhci)
227 {
228 int i, ret = 0;
229 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
230
231 /*
232 * calculate number of msi-x vectors supported.
233 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
234 * with max number of interrupters based on the xhci HCSPARAMS1.
235 * - num_online_cpus: maximum msi-x vectors per CPUs core.
236 * Add additional 1 vector to ensure always available interrupt.
237 */
238 xhci->msix_count = min(num_online_cpus() + 1,
239 HCS_MAX_INTRS(xhci->hcs_params1));
240
241 xhci->msix_entries =
242 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
243 GFP_KERNEL);
244 if (!xhci->msix_entries) {
245 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
246 return -ENOMEM;
247 }
248
249 for (i = 0; i < xhci->msix_count; i++) {
250 xhci->msix_entries[i].entry = i;
251 xhci->msix_entries[i].vector = 0;
252 }
253
254 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
255 if (ret) {
256 xhci_err(xhci, "Failed to enable MSI-X\n");
257 goto free_entries;
258 }
259
260 for (i = 0; i < xhci->msix_count; i++) {
261 ret = request_irq(xhci->msix_entries[i].vector,
262 (irq_handler_t)xhci_msi_irq,
263 0, "xhci_hcd", xhci_to_hcd(xhci));
264 if (ret)
265 goto disable_msix;
266 }
267
268 return ret;
269
270 disable_msix:
271 xhci_err(xhci, "disable MSI-X interrupt\n");
272 xhci_free_irq(xhci);
273 pci_disable_msix(pdev);
274 free_entries:
275 kfree(xhci->msix_entries);
276 xhci->msix_entries = NULL;
277 return ret;
278 }
279
280 /* Free any IRQs and disable MSI-X */
281 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
282 {
283 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
284
285 xhci_free_irq(xhci);
286
287 if (xhci->msix_entries) {
288 pci_disable_msix(pdev);
289 kfree(xhci->msix_entries);
290 xhci->msix_entries = NULL;
291 } else {
292 pci_disable_msi(pdev);
293 }
294
295 return;
296 }
297
298 /*
299 * Initialize memory for HCD and xHC (one-time init).
300 *
301 * Program the PAGESIZE register, initialize the device context array, create
302 * device contexts (?), set up a command ring segment (or two?), create event
303 * ring (one for now).
304 */
305 int xhci_init(struct usb_hcd *hcd)
306 {
307 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
308 int retval = 0;
309
310 xhci_dbg(xhci, "xhci_init\n");
311 spin_lock_init(&xhci->lock);
312 if (link_quirk) {
313 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
314 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
315 } else {
316 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
317 }
318 retval = xhci_mem_init(xhci, GFP_KERNEL);
319 xhci_dbg(xhci, "Finished xhci_init\n");
320
321 return retval;
322 }
323
324 /*-------------------------------------------------------------------------*/
325
326
327 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
328 void xhci_event_ring_work(unsigned long arg)
329 {
330 unsigned long flags;
331 int temp;
332 u64 temp_64;
333 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
334 int i, j;
335
336 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
337
338 spin_lock_irqsave(&xhci->lock, flags);
339 temp = xhci_readl(xhci, &xhci->op_regs->status);
340 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
341 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
342 xhci_dbg(xhci, "HW died, polling stopped.\n");
343 spin_unlock_irqrestore(&xhci->lock, flags);
344 return;
345 }
346
347 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
348 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
349 xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
350 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
351 xhci->error_bitmask = 0;
352 xhci_dbg(xhci, "Event ring:\n");
353 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
354 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
355 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
356 temp_64 &= ~ERST_PTR_MASK;
357 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
358 xhci_dbg(xhci, "Command ring:\n");
359 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
360 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
361 xhci_dbg_cmd_ptrs(xhci);
362 for (i = 0; i < MAX_HC_SLOTS; ++i) {
363 if (!xhci->devs[i])
364 continue;
365 for (j = 0; j < 31; ++j) {
366 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
367 }
368 }
369
370 if (xhci->noops_submitted != NUM_TEST_NOOPS)
371 if (xhci_setup_one_noop(xhci))
372 xhci_ring_cmd_db(xhci);
373 spin_unlock_irqrestore(&xhci->lock, flags);
374
375 if (!xhci->zombie)
376 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
377 else
378 xhci_dbg(xhci, "Quit polling the event ring.\n");
379 }
380 #endif
381
382 /*
383 * Start the HC after it was halted.
384 *
385 * This function is called by the USB core when the HC driver is added.
386 * Its opposite is xhci_stop().
387 *
388 * xhci_init() must be called once before this function can be called.
389 * Reset the HC, enable device slot contexts, program DCBAAP, and
390 * set command ring pointer and event ring pointer.
391 *
392 * Setup MSI-X vectors and enable interrupts.
393 */
394 int xhci_run(struct usb_hcd *hcd)
395 {
396 u32 temp;
397 u64 temp_64;
398 u32 ret;
399 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
400 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
401 void (*doorbell)(struct xhci_hcd *) = NULL;
402
403 hcd->uses_new_polling = 1;
404
405 xhci_dbg(xhci, "xhci_run\n");
406 /* unregister the legacy interrupt */
407 if (hcd->irq)
408 free_irq(hcd->irq, hcd);
409 hcd->irq = -1;
410
411 ret = xhci_setup_msix(xhci);
412 if (ret)
413 /* fall back to msi*/
414 ret = xhci_setup_msi(xhci);
415
416 if (ret) {
417 /* fall back to legacy interrupt*/
418 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
419 hcd->irq_descr, hcd);
420 if (ret) {
421 xhci_err(xhci, "request interrupt %d failed\n",
422 pdev->irq);
423 return ret;
424 }
425 hcd->irq = pdev->irq;
426 }
427
428 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
429 init_timer(&xhci->event_ring_timer);
430 xhci->event_ring_timer.data = (unsigned long) xhci;
431 xhci->event_ring_timer.function = xhci_event_ring_work;
432 /* Poll the event ring */
433 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
434 xhci->zombie = 0;
435 xhci_dbg(xhci, "Setting event ring polling timer\n");
436 add_timer(&xhci->event_ring_timer);
437 #endif
438
439 xhci_dbg(xhci, "Command ring memory map follows:\n");
440 xhci_debug_ring(xhci, xhci->cmd_ring);
441 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
442 xhci_dbg_cmd_ptrs(xhci);
443
444 xhci_dbg(xhci, "ERST memory map follows:\n");
445 xhci_dbg_erst(xhci, &xhci->erst);
446 xhci_dbg(xhci, "Event ring:\n");
447 xhci_debug_ring(xhci, xhci->event_ring);
448 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
449 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
450 temp_64 &= ~ERST_PTR_MASK;
451 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
452
453 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
454 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
455 temp &= ~ER_IRQ_INTERVAL_MASK;
456 temp |= (u32) 160;
457 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
458
459 /* Set the HCD state before we enable the irqs */
460 hcd->state = HC_STATE_RUNNING;
461 temp = xhci_readl(xhci, &xhci->op_regs->command);
462 temp |= (CMD_EIE);
463 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
464 temp);
465 xhci_writel(xhci, temp, &xhci->op_regs->command);
466
467 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
468 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
469 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
470 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
471 &xhci->ir_set->irq_pending);
472 xhci_print_ir_set(xhci, xhci->ir_set, 0);
473
474 if (NUM_TEST_NOOPS > 0)
475 doorbell = xhci_setup_one_noop(xhci);
476 if (xhci->quirks & XHCI_NEC_HOST)
477 xhci_queue_vendor_command(xhci, 0, 0, 0,
478 TRB_TYPE(TRB_NEC_GET_FW));
479
480 if (xhci_start(xhci)) {
481 xhci_halt(xhci);
482 return -ENODEV;
483 }
484
485 if (doorbell)
486 (*doorbell)(xhci);
487 if (xhci->quirks & XHCI_NEC_HOST)
488 xhci_ring_cmd_db(xhci);
489
490 xhci_dbg(xhci, "Finished xhci_run\n");
491 return 0;
492 }
493
494 /*
495 * Stop xHCI driver.
496 *
497 * This function is called by the USB core when the HC driver is removed.
498 * Its opposite is xhci_run().
499 *
500 * Disable device contexts, disable IRQs, and quiesce the HC.
501 * Reset the HC, finish any completed transactions, and cleanup memory.
502 */
503 void xhci_stop(struct usb_hcd *hcd)
504 {
505 u32 temp;
506 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
507
508 spin_lock_irq(&xhci->lock);
509 xhci_halt(xhci);
510 xhci_reset(xhci);
511 xhci_cleanup_msix(xhci);
512 spin_unlock_irq(&xhci->lock);
513
514 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
515 /* Tell the event ring poll function not to reschedule */
516 xhci->zombie = 1;
517 del_timer_sync(&xhci->event_ring_timer);
518 #endif
519
520 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
521 temp = xhci_readl(xhci, &xhci->op_regs->status);
522 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
523 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
524 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
525 &xhci->ir_set->irq_pending);
526 xhci_print_ir_set(xhci, xhci->ir_set, 0);
527
528 xhci_dbg(xhci, "cleaning up memory\n");
529 xhci_mem_cleanup(xhci);
530 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
531 xhci_readl(xhci, &xhci->op_regs->status));
532 }
533
534 /*
535 * Shutdown HC (not bus-specific)
536 *
537 * This is called when the machine is rebooting or halting. We assume that the
538 * machine will be powered off, and the HC's internal state will be reset.
539 * Don't bother to free memory.
540 */
541 void xhci_shutdown(struct usb_hcd *hcd)
542 {
543 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
544
545 spin_lock_irq(&xhci->lock);
546 xhci_halt(xhci);
547 xhci_cleanup_msix(xhci);
548 spin_unlock_irq(&xhci->lock);
549
550 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
551 xhci_readl(xhci, &xhci->op_regs->status));
552 }
553
554 #ifdef CONFIG_PM
555 static void xhci_save_registers(struct xhci_hcd *xhci)
556 {
557 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
558 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
559 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
560 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
561 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
562 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
563 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
564 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
565 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
566 }
567
568 static void xhci_restore_registers(struct xhci_hcd *xhci)
569 {
570 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
571 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
572 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
573 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
574 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
575 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
576 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
577 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
578 }
579
580 /*
581 * Stop HC (not bus-specific)
582 *
583 * This is called when the machine transition into S3/S4 mode.
584 *
585 */
586 int xhci_suspend(struct xhci_hcd *xhci)
587 {
588 int rc = 0;
589 struct usb_hcd *hcd = xhci_to_hcd(xhci);
590 u32 command;
591
592 spin_lock_irq(&xhci->lock);
593 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
594 /* step 1: stop endpoint */
595 /* skipped assuming that port suspend has done */
596
597 /* step 2: clear Run/Stop bit */
598 command = xhci_readl(xhci, &xhci->op_regs->command);
599 command &= ~CMD_RUN;
600 xhci_writel(xhci, command, &xhci->op_regs->command);
601 if (handshake(xhci, &xhci->op_regs->status,
602 STS_HALT, STS_HALT, 100*100)) {
603 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
604 spin_unlock_irq(&xhci->lock);
605 return -ETIMEDOUT;
606 }
607
608 /* step 3: save registers */
609 xhci_save_registers(xhci);
610
611 /* step 4: set CSS flag */
612 command = xhci_readl(xhci, &xhci->op_regs->command);
613 command |= CMD_CSS;
614 xhci_writel(xhci, command, &xhci->op_regs->command);
615 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
616 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
617 spin_unlock_irq(&xhci->lock);
618 return -ETIMEDOUT;
619 }
620 /* step 5: remove core well power */
621 xhci_cleanup_msix(xhci);
622 spin_unlock_irq(&xhci->lock);
623
624 return rc;
625 }
626
627 /*
628 * start xHC (not bus-specific)
629 *
630 * This is called when the machine transition from S3/S4 mode.
631 *
632 */
633 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
634 {
635 u32 command, temp = 0;
636 struct usb_hcd *hcd = xhci_to_hcd(xhci);
637 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
638 u64 val_64;
639 int old_state, retval;
640
641 old_state = hcd->state;
642 if (time_before(jiffies, xhci->next_statechange))
643 msleep(100);
644
645 spin_lock_irq(&xhci->lock);
646
647 if (!hibernated) {
648 /* step 1: restore register */
649 xhci_restore_registers(xhci);
650 /* step 2: initialize command ring buffer */
651 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
652 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
653 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
654 xhci->cmd_ring->dequeue) &
655 (u64) ~CMD_RING_RSVD_BITS) |
656 xhci->cmd_ring->cycle_state;
657 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
658 (long unsigned long) val_64);
659 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
660 /* step 3: restore state and start state*/
661 /* step 3: set CRS flag */
662 command = xhci_readl(xhci, &xhci->op_regs->command);
663 command |= CMD_CRS;
664 xhci_writel(xhci, command, &xhci->op_regs->command);
665 if (handshake(xhci, &xhci->op_regs->status,
666 STS_RESTORE, 0, 10*100)) {
667 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
668 spin_unlock_irq(&xhci->lock);
669 return -ETIMEDOUT;
670 }
671 temp = xhci_readl(xhci, &xhci->op_regs->status);
672 }
673
674 /* If restore operation fails, re-initialize the HC during resume */
675 if ((temp & STS_SRE) || hibernated) {
676 usb_root_hub_lost_power(hcd->self.root_hub);
677
678 xhci_dbg(xhci, "Stop HCD\n");
679 xhci_halt(xhci);
680 xhci_reset(xhci);
681 if (hibernated)
682 xhci_cleanup_msix(xhci);
683 spin_unlock_irq(&xhci->lock);
684
685 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
686 /* Tell the event ring poll function not to reschedule */
687 xhci->zombie = 1;
688 del_timer_sync(&xhci->event_ring_timer);
689 #endif
690
691 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
692 temp = xhci_readl(xhci, &xhci->op_regs->status);
693 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
694 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
695 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
696 &xhci->ir_set->irq_pending);
697 xhci_print_ir_set(xhci, xhci->ir_set, 0);
698
699 xhci_dbg(xhci, "cleaning up memory\n");
700 xhci_mem_cleanup(xhci);
701 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
702 xhci_readl(xhci, &xhci->op_regs->status));
703
704 xhci_dbg(xhci, "Initialize the HCD\n");
705 retval = xhci_init(hcd);
706 if (retval)
707 return retval;
708
709 xhci_dbg(xhci, "Start the HCD\n");
710 retval = xhci_run(hcd);
711 if (!retval)
712 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
713 hcd->state = HC_STATE_SUSPENDED;
714 return retval;
715 }
716
717 /* Re-setup MSI-X */
718 if (hcd->irq)
719 free_irq(hcd->irq, hcd);
720 hcd->irq = -1;
721
722 retval = xhci_setup_msix(xhci);
723 if (retval)
724 /* fall back to msi*/
725 retval = xhci_setup_msi(xhci);
726
727 if (retval) {
728 /* fall back to legacy interrupt*/
729 retval = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
730 hcd->irq_descr, hcd);
731 if (retval) {
732 xhci_err(xhci, "request interrupt %d failed\n",
733 pdev->irq);
734 return retval;
735 }
736 hcd->irq = pdev->irq;
737 }
738
739 /* step 4: set Run/Stop bit */
740 command = xhci_readl(xhci, &xhci->op_regs->command);
741 command |= CMD_RUN;
742 xhci_writel(xhci, command, &xhci->op_regs->command);
743 handshake(xhci, &xhci->op_regs->status, STS_HALT,
744 0, 250 * 1000);
745
746 /* step 5: walk topology and initialize portsc,
747 * portpmsc and portli
748 */
749 /* this is done in bus_resume */
750
751 /* step 6: restart each of the previously
752 * Running endpoints by ringing their doorbells
753 */
754
755 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
756 if (!hibernated)
757 hcd->state = old_state;
758 else
759 hcd->state = HC_STATE_SUSPENDED;
760
761 spin_unlock_irq(&xhci->lock);
762 return 0;
763 }
764 #endif /* CONFIG_PM */
765
766 /*-------------------------------------------------------------------------*/
767
768 /**
769 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
770 * HCDs. Find the index for an endpoint given its descriptor. Use the return
771 * value to right shift 1 for the bitmask.
772 *
773 * Index = (epnum * 2) + direction - 1,
774 * where direction = 0 for OUT, 1 for IN.
775 * For control endpoints, the IN index is used (OUT index is unused), so
776 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
777 */
778 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
779 {
780 unsigned int index;
781 if (usb_endpoint_xfer_control(desc))
782 index = (unsigned int) (usb_endpoint_num(desc)*2);
783 else
784 index = (unsigned int) (usb_endpoint_num(desc)*2) +
785 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
786 return index;
787 }
788
789 /* Find the flag for this endpoint (for use in the control context). Use the
790 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
791 * bit 1, etc.
792 */
793 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
794 {
795 return 1 << (xhci_get_endpoint_index(desc) + 1);
796 }
797
798 /* Find the flag for this endpoint (for use in the control context). Use the
799 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
800 * bit 1, etc.
801 */
802 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
803 {
804 return 1 << (ep_index + 1);
805 }
806
807 /* Compute the last valid endpoint context index. Basically, this is the
808 * endpoint index plus one. For slot contexts with more than valid endpoint,
809 * we find the most significant bit set in the added contexts flags.
810 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
811 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
812 */
813 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
814 {
815 return fls(added_ctxs) - 1;
816 }
817
818 /* Returns 1 if the arguments are OK;
819 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
820 */
821 int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
822 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
823 const char *func) {
824 struct xhci_hcd *xhci;
825 struct xhci_virt_device *virt_dev;
826
827 if (!hcd || (check_ep && !ep) || !udev) {
828 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
829 func);
830 return -EINVAL;
831 }
832 if (!udev->parent) {
833 printk(KERN_DEBUG "xHCI %s called for root hub\n",
834 func);
835 return 0;
836 }
837
838 if (check_virt_dev) {
839 xhci = hcd_to_xhci(hcd);
840 if (!udev->slot_id || !xhci->devs
841 || !xhci->devs[udev->slot_id]) {
842 printk(KERN_DEBUG "xHCI %s called with unaddressed "
843 "device\n", func);
844 return -EINVAL;
845 }
846
847 virt_dev = xhci->devs[udev->slot_id];
848 if (virt_dev->udev != udev) {
849 printk(KERN_DEBUG "xHCI %s called with udev and "
850 "virt_dev does not match\n", func);
851 return -EINVAL;
852 }
853 }
854
855 return 1;
856 }
857
858 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
859 struct usb_device *udev, struct xhci_command *command,
860 bool ctx_change, bool must_succeed);
861
862 /*
863 * Full speed devices may have a max packet size greater than 8 bytes, but the
864 * USB core doesn't know that until it reads the first 8 bytes of the
865 * descriptor. If the usb_device's max packet size changes after that point,
866 * we need to issue an evaluate context command and wait on it.
867 */
868 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
869 unsigned int ep_index, struct urb *urb)
870 {
871 struct xhci_container_ctx *in_ctx;
872 struct xhci_container_ctx *out_ctx;
873 struct xhci_input_control_ctx *ctrl_ctx;
874 struct xhci_ep_ctx *ep_ctx;
875 int max_packet_size;
876 int hw_max_packet_size;
877 int ret = 0;
878
879 out_ctx = xhci->devs[slot_id]->out_ctx;
880 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
881 hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
882 max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
883 if (hw_max_packet_size != max_packet_size) {
884 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
885 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
886 max_packet_size);
887 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
888 hw_max_packet_size);
889 xhci_dbg(xhci, "Issuing evaluate context command.\n");
890
891 /* Set up the modified control endpoint 0 */
892 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
893 xhci->devs[slot_id]->out_ctx, ep_index);
894 in_ctx = xhci->devs[slot_id]->in_ctx;
895 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
896 ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
897 ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);
898
899 /* Set up the input context flags for the command */
900 /* FIXME: This won't work if a non-default control endpoint
901 * changes max packet sizes.
902 */
903 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
904 ctrl_ctx->add_flags = EP0_FLAG;
905 ctrl_ctx->drop_flags = 0;
906
907 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
908 xhci_dbg_ctx(xhci, in_ctx, ep_index);
909 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
910 xhci_dbg_ctx(xhci, out_ctx, ep_index);
911
912 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
913 true, false);
914
915 /* Clean up the input context for later use by bandwidth
916 * functions.
917 */
918 ctrl_ctx->add_flags = SLOT_FLAG;
919 }
920 return ret;
921 }
922
923 /*
924 * non-error returns are a promise to giveback() the urb later
925 * we drop ownership so next owner (or urb unlink) can get it
926 */
927 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
928 {
929 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
930 unsigned long flags;
931 int ret = 0;
932 unsigned int slot_id, ep_index;
933 struct urb_priv *urb_priv;
934 int size, i;
935
936 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
937 true, true, __func__) <= 0)
938 return -EINVAL;
939
940 slot_id = urb->dev->slot_id;
941 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
942
943 if (!HCD_HW_ACCESSIBLE(hcd)) {
944 if (!in_interrupt())
945 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
946 ret = -ESHUTDOWN;
947 goto exit;
948 }
949
950 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
951 size = urb->number_of_packets;
952 else
953 size = 1;
954
955 urb_priv = kzalloc(sizeof(struct urb_priv) +
956 size * sizeof(struct xhci_td *), mem_flags);
957 if (!urb_priv)
958 return -ENOMEM;
959
960 for (i = 0; i < size; i++) {
961 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
962 if (!urb_priv->td[i]) {
963 urb_priv->length = i;
964 xhci_urb_free_priv(xhci, urb_priv);
965 return -ENOMEM;
966 }
967 }
968
969 urb_priv->length = size;
970 urb_priv->td_cnt = 0;
971 urb->hcpriv = urb_priv;
972
973 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
974 /* Check to see if the max packet size for the default control
975 * endpoint changed during FS device enumeration
976 */
977 if (urb->dev->speed == USB_SPEED_FULL) {
978 ret = xhci_check_maxpacket(xhci, slot_id,
979 ep_index, urb);
980 if (ret < 0)
981 return ret;
982 }
983
984 /* We have a spinlock and interrupts disabled, so we must pass
985 * atomic context to this function, which may allocate memory.
986 */
987 spin_lock_irqsave(&xhci->lock, flags);
988 if (xhci->xhc_state & XHCI_STATE_DYING)
989 goto dying;
990 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
991 slot_id, ep_index);
992 spin_unlock_irqrestore(&xhci->lock, flags);
993 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
994 spin_lock_irqsave(&xhci->lock, flags);
995 if (xhci->xhc_state & XHCI_STATE_DYING)
996 goto dying;
997 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
998 EP_GETTING_STREAMS) {
999 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1000 "is transitioning to using streams.\n");
1001 ret = -EINVAL;
1002 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1003 EP_GETTING_NO_STREAMS) {
1004 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1005 "is transitioning to "
1006 "not having streams.\n");
1007 ret = -EINVAL;
1008 } else {
1009 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1010 slot_id, ep_index);
1011 }
1012 spin_unlock_irqrestore(&xhci->lock, flags);
1013 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1014 spin_lock_irqsave(&xhci->lock, flags);
1015 if (xhci->xhc_state & XHCI_STATE_DYING)
1016 goto dying;
1017 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1018 slot_id, ep_index);
1019 spin_unlock_irqrestore(&xhci->lock, flags);
1020 } else {
1021 spin_lock_irqsave(&xhci->lock, flags);
1022 if (xhci->xhc_state & XHCI_STATE_DYING)
1023 goto dying;
1024 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1025 slot_id, ep_index);
1026 spin_unlock_irqrestore(&xhci->lock, flags);
1027 }
1028 exit:
1029 return ret;
1030 dying:
1031 xhci_urb_free_priv(xhci, urb_priv);
1032 urb->hcpriv = NULL;
1033 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1034 "non-responsive xHCI host.\n",
1035 urb->ep->desc.bEndpointAddress, urb);
1036 spin_unlock_irqrestore(&xhci->lock, flags);
1037 return -ESHUTDOWN;
1038 }
1039
1040 /* Get the right ring for the given URB.
1041 * If the endpoint supports streams, boundary check the URB's stream ID.
1042 * If the endpoint doesn't support streams, return the singular endpoint ring.
1043 */
1044 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1045 struct urb *urb)
1046 {
1047 unsigned int slot_id;
1048 unsigned int ep_index;
1049 unsigned int stream_id;
1050 struct xhci_virt_ep *ep;
1051
1052 slot_id = urb->dev->slot_id;
1053 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1054 stream_id = urb->stream_id;
1055 ep = &xhci->devs[slot_id]->eps[ep_index];
1056 /* Common case: no streams */
1057 if (!(ep->ep_state & EP_HAS_STREAMS))
1058 return ep->ring;
1059
1060 if (stream_id == 0) {
1061 xhci_warn(xhci,
1062 "WARN: Slot ID %u, ep index %u has streams, "
1063 "but URB has no stream ID.\n",
1064 slot_id, ep_index);
1065 return NULL;
1066 }
1067
1068 if (stream_id < ep->stream_info->num_streams)
1069 return ep->stream_info->stream_rings[stream_id];
1070
1071 xhci_warn(xhci,
1072 "WARN: Slot ID %u, ep index %u has "
1073 "stream IDs 1 to %u allocated, "
1074 "but stream ID %u is requested.\n",
1075 slot_id, ep_index,
1076 ep->stream_info->num_streams - 1,
1077 stream_id);
1078 return NULL;
1079 }
1080
1081 /*
1082 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1083 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1084 * should pick up where it left off in the TD, unless a Set Transfer Ring
1085 * Dequeue Pointer is issued.
1086 *
1087 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1088 * the ring. Since the ring is a contiguous structure, they can't be physically
1089 * removed. Instead, there are two options:
1090 *
1091 * 1) If the HC is in the middle of processing the URB to be canceled, we
1092 * simply move the ring's dequeue pointer past those TRBs using the Set
1093 * Transfer Ring Dequeue Pointer command. This will be the common case,
1094 * when drivers timeout on the last submitted URB and attempt to cancel.
1095 *
1096 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1097 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1098 * HC will need to invalidate the any TRBs it has cached after the stop
1099 * endpoint command, as noted in the xHCI 0.95 errata.
1100 *
1101 * 3) The TD may have completed by the time the Stop Endpoint Command
1102 * completes, so software needs to handle that case too.
1103 *
1104 * This function should protect against the TD enqueueing code ringing the
1105 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1106 * It also needs to account for multiple cancellations on happening at the same
1107 * time for the same endpoint.
1108 *
1109 * Note that this function can be called in any context, or so says
1110 * usb_hcd_unlink_urb()
1111 */
1112 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1113 {
1114 unsigned long flags;
1115 int ret, i;
1116 u32 temp;
1117 struct xhci_hcd *xhci;
1118 struct urb_priv *urb_priv;
1119 struct xhci_td *td;
1120 unsigned int ep_index;
1121 struct xhci_ring *ep_ring;
1122 struct xhci_virt_ep *ep;
1123
1124 xhci = hcd_to_xhci(hcd);
1125 spin_lock_irqsave(&xhci->lock, flags);
1126 /* Make sure the URB hasn't completed or been unlinked already */
1127 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1128 if (ret || !urb->hcpriv)
1129 goto done;
1130 temp = xhci_readl(xhci, &xhci->op_regs->status);
1131 if (temp == 0xffffffff) {
1132 xhci_dbg(xhci, "HW died, freeing TD.\n");
1133 urb_priv = urb->hcpriv;
1134
1135 usb_hcd_unlink_urb_from_ep(hcd, urb);
1136 spin_unlock_irqrestore(&xhci->lock, flags);
1137 usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, -ESHUTDOWN);
1138 xhci_urb_free_priv(xhci, urb_priv);
1139 return ret;
1140 }
1141 if (xhci->xhc_state & XHCI_STATE_DYING) {
1142 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1143 "non-responsive xHCI host.\n",
1144 urb->ep->desc.bEndpointAddress, urb);
1145 /* Let the stop endpoint command watchdog timer (which set this
1146 * state) finish cleaning up the endpoint TD lists. We must
1147 * have caught it in the middle of dropping a lock and giving
1148 * back an URB.
1149 */
1150 goto done;
1151 }
1152
1153 xhci_dbg(xhci, "Cancel URB %p\n", urb);
1154 xhci_dbg(xhci, "Event ring:\n");
1155 xhci_debug_ring(xhci, xhci->event_ring);
1156 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1157 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1158 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1159 if (!ep_ring) {
1160 ret = -EINVAL;
1161 goto done;
1162 }
1163
1164 xhci_dbg(xhci, "Endpoint ring:\n");
1165 xhci_debug_ring(xhci, ep_ring);
1166
1167 urb_priv = urb->hcpriv;
1168
1169 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1170 td = urb_priv->td[i];
1171 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1172 }
1173
1174 /* Queue a stop endpoint command, but only if this is
1175 * the first cancellation to be handled.
1176 */
1177 if (!(ep->ep_state & EP_HALT_PENDING)) {
1178 ep->ep_state |= EP_HALT_PENDING;
1179 ep->stop_cmds_pending++;
1180 ep->stop_cmd_timer.expires = jiffies +
1181 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1182 add_timer(&ep->stop_cmd_timer);
1183 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1184 xhci_ring_cmd_db(xhci);
1185 }
1186 done:
1187 spin_unlock_irqrestore(&xhci->lock, flags);
1188 return ret;
1189 }
1190
1191 /* Drop an endpoint from a new bandwidth configuration for this device.
1192 * Only one call to this function is allowed per endpoint before
1193 * check_bandwidth() or reset_bandwidth() must be called.
1194 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1195 * add the endpoint to the schedule with possibly new parameters denoted by a
1196 * different endpoint descriptor in usb_host_endpoint.
1197 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1198 * not allowed.
1199 *
1200 * The USB core will not allow URBs to be queued to an endpoint that is being
1201 * disabled, so there's no need for mutual exclusion to protect
1202 * the xhci->devs[slot_id] structure.
1203 */
1204 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1205 struct usb_host_endpoint *ep)
1206 {
1207 struct xhci_hcd *xhci;
1208 struct xhci_container_ctx *in_ctx, *out_ctx;
1209 struct xhci_input_control_ctx *ctrl_ctx;
1210 struct xhci_slot_ctx *slot_ctx;
1211 unsigned int last_ctx;
1212 unsigned int ep_index;
1213 struct xhci_ep_ctx *ep_ctx;
1214 u32 drop_flag;
1215 u32 new_add_flags, new_drop_flags, new_slot_info;
1216 int ret;
1217
1218 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1219 if (ret <= 0)
1220 return ret;
1221 xhci = hcd_to_xhci(hcd);
1222 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1223
1224 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1225 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1226 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1227 __func__, drop_flag);
1228 return 0;
1229 }
1230
1231 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1232 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1233 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1234 ep_index = xhci_get_endpoint_index(&ep->desc);
1235 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1236 /* If the HC already knows the endpoint is disabled,
1237 * or the HCD has noted it is disabled, ignore this request
1238 */
1239 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
1240 ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
1241 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1242 __func__, ep);
1243 return 0;
1244 }
1245
1246 ctrl_ctx->drop_flags |= drop_flag;
1247 new_drop_flags = ctrl_ctx->drop_flags;
1248
1249 ctrl_ctx->add_flags &= ~drop_flag;
1250 new_add_flags = ctrl_ctx->add_flags;
1251
1252 last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
1253 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1254 /* Update the last valid endpoint context, if we deleted the last one */
1255 if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
1256 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1257 slot_ctx->dev_info |= LAST_CTX(last_ctx);
1258 }
1259 new_slot_info = slot_ctx->dev_info;
1260
1261 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1262
1263 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1264 (unsigned int) ep->desc.bEndpointAddress,
1265 udev->slot_id,
1266 (unsigned int) new_drop_flags,
1267 (unsigned int) new_add_flags,
1268 (unsigned int) new_slot_info);
1269 return 0;
1270 }
1271
1272 /* Add an endpoint to a new possible bandwidth configuration for this device.
1273 * Only one call to this function is allowed per endpoint before
1274 * check_bandwidth() or reset_bandwidth() must be called.
1275 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1276 * add the endpoint to the schedule with possibly new parameters denoted by a
1277 * different endpoint descriptor in usb_host_endpoint.
1278 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1279 * not allowed.
1280 *
1281 * The USB core will not allow URBs to be queued to an endpoint until the
1282 * configuration or alt setting is installed in the device, so there's no need
1283 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1284 */
1285 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1286 struct usb_host_endpoint *ep)
1287 {
1288 struct xhci_hcd *xhci;
1289 struct xhci_container_ctx *in_ctx, *out_ctx;
1290 unsigned int ep_index;
1291 struct xhci_ep_ctx *ep_ctx;
1292 struct xhci_slot_ctx *slot_ctx;
1293 struct xhci_input_control_ctx *ctrl_ctx;
1294 u32 added_ctxs;
1295 unsigned int last_ctx;
1296 u32 new_add_flags, new_drop_flags, new_slot_info;
1297 int ret = 0;
1298
1299 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1300 if (ret <= 0) {
1301 /* So we won't queue a reset ep command for a root hub */
1302 ep->hcpriv = NULL;
1303 return ret;
1304 }
1305 xhci = hcd_to_xhci(hcd);
1306
1307 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1308 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1309 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1310 /* FIXME when we have to issue an evaluate endpoint command to
1311 * deal with ep0 max packet size changing once we get the
1312 * descriptors
1313 */
1314 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1315 __func__, added_ctxs);
1316 return 0;
1317 }
1318
1319 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1320 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1321 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1322 ep_index = xhci_get_endpoint_index(&ep->desc);
1323 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1324 /* If the HCD has already noted the endpoint is enabled,
1325 * ignore this request.
1326 */
1327 if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
1328 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1329 __func__, ep);
1330 return 0;
1331 }
1332
1333 /*
1334 * Configuration and alternate setting changes must be done in
1335 * process context, not interrupt context (or so documenation
1336 * for usb_set_interface() and usb_set_configuration() claim).
1337 */
1338 if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
1339 udev, ep, GFP_NOIO) < 0) {
1340 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1341 __func__, ep->desc.bEndpointAddress);
1342 return -ENOMEM;
1343 }
1344
1345 ctrl_ctx->add_flags |= added_ctxs;
1346 new_add_flags = ctrl_ctx->add_flags;
1347
1348 /* If xhci_endpoint_disable() was called for this endpoint, but the
1349 * xHC hasn't been notified yet through the check_bandwidth() call,
1350 * this re-adds a new state for the endpoint from the new endpoint
1351 * descriptors. We must drop and re-add this endpoint, so we leave the
1352 * drop flags alone.
1353 */
1354 new_drop_flags = ctrl_ctx->drop_flags;
1355
1356 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1357 /* Update the last valid endpoint context, if we just added one past */
1358 if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
1359 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1360 slot_ctx->dev_info |= LAST_CTX(last_ctx);
1361 }
1362 new_slot_info = slot_ctx->dev_info;
1363
1364 /* Store the usb_device pointer for later use */
1365 ep->hcpriv = udev;
1366
1367 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1368 (unsigned int) ep->desc.bEndpointAddress,
1369 udev->slot_id,
1370 (unsigned int) new_drop_flags,
1371 (unsigned int) new_add_flags,
1372 (unsigned int) new_slot_info);
1373 return 0;
1374 }
1375
1376 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1377 {
1378 struct xhci_input_control_ctx *ctrl_ctx;
1379 struct xhci_ep_ctx *ep_ctx;
1380 struct xhci_slot_ctx *slot_ctx;
1381 int i;
1382
1383 /* When a device's add flag and drop flag are zero, any subsequent
1384 * configure endpoint command will leave that endpoint's state
1385 * untouched. Make sure we don't leave any old state in the input
1386 * endpoint contexts.
1387 */
1388 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1389 ctrl_ctx->drop_flags = 0;
1390 ctrl_ctx->add_flags = 0;
1391 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1392 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1393 /* Endpoint 0 is always valid */
1394 slot_ctx->dev_info |= LAST_CTX(1);
1395 for (i = 1; i < 31; ++i) {
1396 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1397 ep_ctx->ep_info = 0;
1398 ep_ctx->ep_info2 = 0;
1399 ep_ctx->deq = 0;
1400 ep_ctx->tx_info = 0;
1401 }
1402 }
1403
1404 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1405 struct usb_device *udev, int *cmd_status)
1406 {
1407 int ret;
1408
1409 switch (*cmd_status) {
1410 case COMP_ENOMEM:
1411 dev_warn(&udev->dev, "Not enough host controller resources "
1412 "for new device state.\n");
1413 ret = -ENOMEM;
1414 /* FIXME: can we allocate more resources for the HC? */
1415 break;
1416 case COMP_BW_ERR:
1417 dev_warn(&udev->dev, "Not enough bandwidth "
1418 "for new device state.\n");
1419 ret = -ENOSPC;
1420 /* FIXME: can we go back to the old state? */
1421 break;
1422 case COMP_TRB_ERR:
1423 /* the HCD set up something wrong */
1424 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1425 "add flag = 1, "
1426 "and endpoint is not disabled.\n");
1427 ret = -EINVAL;
1428 break;
1429 case COMP_SUCCESS:
1430 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1431 ret = 0;
1432 break;
1433 default:
1434 xhci_err(xhci, "ERROR: unexpected command completion "
1435 "code 0x%x.\n", *cmd_status);
1436 ret = -EINVAL;
1437 break;
1438 }
1439 return ret;
1440 }
1441
1442 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1443 struct usb_device *udev, int *cmd_status)
1444 {
1445 int ret;
1446 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1447
1448 switch (*cmd_status) {
1449 case COMP_EINVAL:
1450 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1451 "context command.\n");
1452 ret = -EINVAL;
1453 break;
1454 case COMP_EBADSLT:
1455 dev_warn(&udev->dev, "WARN: slot not enabled for"
1456 "evaluate context command.\n");
1457 case COMP_CTX_STATE:
1458 dev_warn(&udev->dev, "WARN: invalid context state for "
1459 "evaluate context command.\n");
1460 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1461 ret = -EINVAL;
1462 break;
1463 case COMP_SUCCESS:
1464 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1465 ret = 0;
1466 break;
1467 default:
1468 xhci_err(xhci, "ERROR: unexpected command completion "
1469 "code 0x%x.\n", *cmd_status);
1470 ret = -EINVAL;
1471 break;
1472 }
1473 return ret;
1474 }
1475
1476 /* Issue a configure endpoint command or evaluate context command
1477 * and wait for it to finish.
1478 */
1479 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1480 struct usb_device *udev,
1481 struct xhci_command *command,
1482 bool ctx_change, bool must_succeed)
1483 {
1484 int ret;
1485 int timeleft;
1486 unsigned long flags;
1487 struct xhci_container_ctx *in_ctx;
1488 struct completion *cmd_completion;
1489 int *cmd_status;
1490 struct xhci_virt_device *virt_dev;
1491
1492 spin_lock_irqsave(&xhci->lock, flags);
1493 virt_dev = xhci->devs[udev->slot_id];
1494 if (command) {
1495 in_ctx = command->in_ctx;
1496 cmd_completion = command->completion;
1497 cmd_status = &command->status;
1498 command->command_trb = xhci->cmd_ring->enqueue;
1499 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1500 } else {
1501 in_ctx = virt_dev->in_ctx;
1502 cmd_completion = &virt_dev->cmd_completion;
1503 cmd_status = &virt_dev->cmd_status;
1504 }
1505 init_completion(cmd_completion);
1506
1507 if (!ctx_change)
1508 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1509 udev->slot_id, must_succeed);
1510 else
1511 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1512 udev->slot_id);
1513 if (ret < 0) {
1514 if (command)
1515 list_del(&command->cmd_list);
1516 spin_unlock_irqrestore(&xhci->lock, flags);
1517 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1518 return -ENOMEM;
1519 }
1520 xhci_ring_cmd_db(xhci);
1521 spin_unlock_irqrestore(&xhci->lock, flags);
1522
1523 /* Wait for the configure endpoint command to complete */
1524 timeleft = wait_for_completion_interruptible_timeout(
1525 cmd_completion,
1526 USB_CTRL_SET_TIMEOUT);
1527 if (timeleft <= 0) {
1528 xhci_warn(xhci, "%s while waiting for %s command\n",
1529 timeleft == 0 ? "Timeout" : "Signal",
1530 ctx_change == 0 ?
1531 "configure endpoint" :
1532 "evaluate context");
1533 /* FIXME cancel the configure endpoint command */
1534 return -ETIME;
1535 }
1536
1537 if (!ctx_change)
1538 return xhci_configure_endpoint_result(xhci, udev, cmd_status);
1539 return xhci_evaluate_context_result(xhci, udev, cmd_status);
1540 }
1541
1542 /* Called after one or more calls to xhci_add_endpoint() or
1543 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1544 * to call xhci_reset_bandwidth().
1545 *
1546 * Since we are in the middle of changing either configuration or
1547 * installing a new alt setting, the USB core won't allow URBs to be
1548 * enqueued for any endpoint on the old config or interface. Nothing
1549 * else should be touching the xhci->devs[slot_id] structure, so we
1550 * don't need to take the xhci->lock for manipulating that.
1551 */
1552 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1553 {
1554 int i;
1555 int ret = 0;
1556 struct xhci_hcd *xhci;
1557 struct xhci_virt_device *virt_dev;
1558 struct xhci_input_control_ctx *ctrl_ctx;
1559 struct xhci_slot_ctx *slot_ctx;
1560
1561 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1562 if (ret <= 0)
1563 return ret;
1564 xhci = hcd_to_xhci(hcd);
1565
1566 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1567 virt_dev = xhci->devs[udev->slot_id];
1568
1569 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1570 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1571 ctrl_ctx->add_flags |= SLOT_FLAG;
1572 ctrl_ctx->add_flags &= ~EP0_FLAG;
1573 ctrl_ctx->drop_flags &= ~SLOT_FLAG;
1574 ctrl_ctx->drop_flags &= ~EP0_FLAG;
1575 xhci_dbg(xhci, "New Input Control Context:\n");
1576 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1577 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1578 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1579
1580 ret = xhci_configure_endpoint(xhci, udev, NULL,
1581 false, false);
1582 if (ret) {
1583 /* Callee should call reset_bandwidth() */
1584 return ret;
1585 }
1586
1587 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1588 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1589 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1590
1591 xhci_zero_in_ctx(xhci, virt_dev);
1592 /* Install new rings and free or cache any old rings */
1593 for (i = 1; i < 31; ++i) {
1594 if (!virt_dev->eps[i].new_ring)
1595 continue;
1596 /* Only cache or free the old ring if it exists.
1597 * It may not if this is the first add of an endpoint.
1598 */
1599 if (virt_dev->eps[i].ring) {
1600 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1601 }
1602 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1603 virt_dev->eps[i].new_ring = NULL;
1604 }
1605
1606 return ret;
1607 }
1608
1609 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1610 {
1611 struct xhci_hcd *xhci;
1612 struct xhci_virt_device *virt_dev;
1613 int i, ret;
1614
1615 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1616 if (ret <= 0)
1617 return;
1618 xhci = hcd_to_xhci(hcd);
1619
1620 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1621 virt_dev = xhci->devs[udev->slot_id];
1622 /* Free any rings allocated for added endpoints */
1623 for (i = 0; i < 31; ++i) {
1624 if (virt_dev->eps[i].new_ring) {
1625 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1626 virt_dev->eps[i].new_ring = NULL;
1627 }
1628 }
1629 xhci_zero_in_ctx(xhci, virt_dev);
1630 }
1631
1632 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1633 struct xhci_container_ctx *in_ctx,
1634 struct xhci_container_ctx *out_ctx,
1635 u32 add_flags, u32 drop_flags)
1636 {
1637 struct xhci_input_control_ctx *ctrl_ctx;
1638 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1639 ctrl_ctx->add_flags = add_flags;
1640 ctrl_ctx->drop_flags = drop_flags;
1641 xhci_slot_copy(xhci, in_ctx, out_ctx);
1642 ctrl_ctx->add_flags |= SLOT_FLAG;
1643
1644 xhci_dbg(xhci, "Input Context:\n");
1645 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1646 }
1647
1648 void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1649 unsigned int slot_id, unsigned int ep_index,
1650 struct xhci_dequeue_state *deq_state)
1651 {
1652 struct xhci_container_ctx *in_ctx;
1653 struct xhci_ep_ctx *ep_ctx;
1654 u32 added_ctxs;
1655 dma_addr_t addr;
1656
1657 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1658 xhci->devs[slot_id]->out_ctx, ep_index);
1659 in_ctx = xhci->devs[slot_id]->in_ctx;
1660 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1661 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1662 deq_state->new_deq_ptr);
1663 if (addr == 0) {
1664 xhci_warn(xhci, "WARN Cannot submit config ep after "
1665 "reset ep command\n");
1666 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1667 deq_state->new_deq_seg,
1668 deq_state->new_deq_ptr);
1669 return;
1670 }
1671 ep_ctx->deq = addr | deq_state->new_cycle_state;
1672
1673 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1674 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1675 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1676 }
1677
1678 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1679 struct usb_device *udev, unsigned int ep_index)
1680 {
1681 struct xhci_dequeue_state deq_state;
1682 struct xhci_virt_ep *ep;
1683
1684 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1685 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1686 /* We need to move the HW's dequeue pointer past this TD,
1687 * or it will attempt to resend it on the next doorbell ring.
1688 */
1689 xhci_find_new_dequeue_state(xhci, udev->slot_id,
1690 ep_index, ep->stopped_stream, ep->stopped_td,
1691 &deq_state);
1692
1693 /* HW with the reset endpoint quirk will use the saved dequeue state to
1694 * issue a configure endpoint command later.
1695 */
1696 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1697 xhci_dbg(xhci, "Queueing new dequeue state\n");
1698 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1699 ep_index, ep->stopped_stream, &deq_state);
1700 } else {
1701 /* Better hope no one uses the input context between now and the
1702 * reset endpoint completion!
1703 * XXX: No idea how this hardware will react when stream rings
1704 * are enabled.
1705 */
1706 xhci_dbg(xhci, "Setting up input context for "
1707 "configure endpoint command\n");
1708 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1709 ep_index, &deq_state);
1710 }
1711 }
1712
1713 /* Deal with stalled endpoints. The core should have sent the control message
1714 * to clear the halt condition. However, we need to make the xHCI hardware
1715 * reset its sequence number, since a device will expect a sequence number of
1716 * zero after the halt condition is cleared.
1717 * Context: in_interrupt
1718 */
1719 void xhci_endpoint_reset(struct usb_hcd *hcd,
1720 struct usb_host_endpoint *ep)
1721 {
1722 struct xhci_hcd *xhci;
1723 struct usb_device *udev;
1724 unsigned int ep_index;
1725 unsigned long flags;
1726 int ret;
1727 struct xhci_virt_ep *virt_ep;
1728
1729 xhci = hcd_to_xhci(hcd);
1730 udev = (struct usb_device *) ep->hcpriv;
1731 /* Called with a root hub endpoint (or an endpoint that wasn't added
1732 * with xhci_add_endpoint()
1733 */
1734 if (!ep->hcpriv)
1735 return;
1736 ep_index = xhci_get_endpoint_index(&ep->desc);
1737 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1738 if (!virt_ep->stopped_td) {
1739 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1740 ep->desc.bEndpointAddress);
1741 return;
1742 }
1743 if (usb_endpoint_xfer_control(&ep->desc)) {
1744 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
1745 return;
1746 }
1747
1748 xhci_dbg(xhci, "Queueing reset endpoint command\n");
1749 spin_lock_irqsave(&xhci->lock, flags);
1750 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1751 /*
1752 * Can't change the ring dequeue pointer until it's transitioned to the
1753 * stopped state, which is only upon a successful reset endpoint
1754 * command. Better hope that last command worked!
1755 */
1756 if (!ret) {
1757 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
1758 kfree(virt_ep->stopped_td);
1759 xhci_ring_cmd_db(xhci);
1760 }
1761 virt_ep->stopped_td = NULL;
1762 virt_ep->stopped_trb = NULL;
1763 virt_ep->stopped_stream = 0;
1764 spin_unlock_irqrestore(&xhci->lock, flags);
1765
1766 if (ret)
1767 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1768 }
1769
1770 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
1771 struct usb_device *udev, struct usb_host_endpoint *ep,
1772 unsigned int slot_id)
1773 {
1774 int ret;
1775 unsigned int ep_index;
1776 unsigned int ep_state;
1777
1778 if (!ep)
1779 return -EINVAL;
1780 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
1781 if (ret <= 0)
1782 return -EINVAL;
1783 if (ep->ss_ep_comp.bmAttributes == 0) {
1784 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
1785 " descriptor for ep 0x%x does not support streams\n",
1786 ep->desc.bEndpointAddress);
1787 return -EINVAL;
1788 }
1789
1790 ep_index = xhci_get_endpoint_index(&ep->desc);
1791 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1792 if (ep_state & EP_HAS_STREAMS ||
1793 ep_state & EP_GETTING_STREAMS) {
1794 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
1795 "already has streams set up.\n",
1796 ep->desc.bEndpointAddress);
1797 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
1798 "dynamic stream context array reallocation.\n");
1799 return -EINVAL;
1800 }
1801 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
1802 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
1803 "endpoint 0x%x; URBs are pending.\n",
1804 ep->desc.bEndpointAddress);
1805 return -EINVAL;
1806 }
1807 return 0;
1808 }
1809
1810 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
1811 unsigned int *num_streams, unsigned int *num_stream_ctxs)
1812 {
1813 unsigned int max_streams;
1814
1815 /* The stream context array size must be a power of two */
1816 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
1817 /*
1818 * Find out how many primary stream array entries the host controller
1819 * supports. Later we may use secondary stream arrays (similar to 2nd
1820 * level page entries), but that's an optional feature for xHCI host
1821 * controllers. xHCs must support at least 4 stream IDs.
1822 */
1823 max_streams = HCC_MAX_PSA(xhci->hcc_params);
1824 if (*num_stream_ctxs > max_streams) {
1825 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
1826 max_streams);
1827 *num_stream_ctxs = max_streams;
1828 *num_streams = max_streams;
1829 }
1830 }
1831
1832 /* Returns an error code if one of the endpoint already has streams.
1833 * This does not change any data structures, it only checks and gathers
1834 * information.
1835 */
1836 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
1837 struct usb_device *udev,
1838 struct usb_host_endpoint **eps, unsigned int num_eps,
1839 unsigned int *num_streams, u32 *changed_ep_bitmask)
1840 {
1841 unsigned int max_streams;
1842 unsigned int endpoint_flag;
1843 int i;
1844 int ret;
1845
1846 for (i = 0; i < num_eps; i++) {
1847 ret = xhci_check_streams_endpoint(xhci, udev,
1848 eps[i], udev->slot_id);
1849 if (ret < 0)
1850 return ret;
1851
1852 max_streams = USB_SS_MAX_STREAMS(
1853 eps[i]->ss_ep_comp.bmAttributes);
1854 if (max_streams < (*num_streams - 1)) {
1855 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
1856 eps[i]->desc.bEndpointAddress,
1857 max_streams);
1858 *num_streams = max_streams+1;
1859 }
1860
1861 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
1862 if (*changed_ep_bitmask & endpoint_flag)
1863 return -EINVAL;
1864 *changed_ep_bitmask |= endpoint_flag;
1865 }
1866 return 0;
1867 }
1868
1869 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
1870 struct usb_device *udev,
1871 struct usb_host_endpoint **eps, unsigned int num_eps)
1872 {
1873 u32 changed_ep_bitmask = 0;
1874 unsigned int slot_id;
1875 unsigned int ep_index;
1876 unsigned int ep_state;
1877 int i;
1878
1879 slot_id = udev->slot_id;
1880 if (!xhci->devs[slot_id])
1881 return 0;
1882
1883 for (i = 0; i < num_eps; i++) {
1884 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1885 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1886 /* Are streams already being freed for the endpoint? */
1887 if (ep_state & EP_GETTING_NO_STREAMS) {
1888 xhci_warn(xhci, "WARN Can't disable streams for "
1889 "endpoint 0x%x\n, "
1890 "streams are being disabled already.",
1891 eps[i]->desc.bEndpointAddress);
1892 return 0;
1893 }
1894 /* Are there actually any streams to free? */
1895 if (!(ep_state & EP_HAS_STREAMS) &&
1896 !(ep_state & EP_GETTING_STREAMS)) {
1897 xhci_warn(xhci, "WARN Can't disable streams for "
1898 "endpoint 0x%x\n, "
1899 "streams are already disabled!",
1900 eps[i]->desc.bEndpointAddress);
1901 xhci_warn(xhci, "WARN xhci_free_streams() called "
1902 "with non-streams endpoint\n");
1903 return 0;
1904 }
1905 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
1906 }
1907 return changed_ep_bitmask;
1908 }
1909
1910 /*
1911 * The USB device drivers use this function (though the HCD interface in USB
1912 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
1913 * coordinate mass storage command queueing across multiple endpoints (basically
1914 * a stream ID == a task ID).
1915 *
1916 * Setting up streams involves allocating the same size stream context array
1917 * for each endpoint and issuing a configure endpoint command for all endpoints.
1918 *
1919 * Don't allow the call to succeed if one endpoint only supports one stream
1920 * (which means it doesn't support streams at all).
1921 *
1922 * Drivers may get less stream IDs than they asked for, if the host controller
1923 * hardware or endpoints claim they can't support the number of requested
1924 * stream IDs.
1925 */
1926 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
1927 struct usb_host_endpoint **eps, unsigned int num_eps,
1928 unsigned int num_streams, gfp_t mem_flags)
1929 {
1930 int i, ret;
1931 struct xhci_hcd *xhci;
1932 struct xhci_virt_device *vdev;
1933 struct xhci_command *config_cmd;
1934 unsigned int ep_index;
1935 unsigned int num_stream_ctxs;
1936 unsigned long flags;
1937 u32 changed_ep_bitmask = 0;
1938
1939 if (!eps)
1940 return -EINVAL;
1941
1942 /* Add one to the number of streams requested to account for
1943 * stream 0 that is reserved for xHCI usage.
1944 */
1945 num_streams += 1;
1946 xhci = hcd_to_xhci(hcd);
1947 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
1948 num_streams);
1949
1950 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
1951 if (!config_cmd) {
1952 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
1953 return -ENOMEM;
1954 }
1955
1956 /* Check to make sure all endpoints are not already configured for
1957 * streams. While we're at it, find the maximum number of streams that
1958 * all the endpoints will support and check for duplicate endpoints.
1959 */
1960 spin_lock_irqsave(&xhci->lock, flags);
1961 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
1962 num_eps, &num_streams, &changed_ep_bitmask);
1963 if (ret < 0) {
1964 xhci_free_command(xhci, config_cmd);
1965 spin_unlock_irqrestore(&xhci->lock, flags);
1966 return ret;
1967 }
1968 if (num_streams <= 1) {
1969 xhci_warn(xhci, "WARN: endpoints can't handle "
1970 "more than one stream.\n");
1971 xhci_free_command(xhci, config_cmd);
1972 spin_unlock_irqrestore(&xhci->lock, flags);
1973 return -EINVAL;
1974 }
1975 vdev = xhci->devs[udev->slot_id];
1976 /* Mark each endpoint as being in transistion, so
1977 * xhci_urb_enqueue() will reject all URBs.
1978 */
1979 for (i = 0; i < num_eps; i++) {
1980 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1981 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
1982 }
1983 spin_unlock_irqrestore(&xhci->lock, flags);
1984
1985 /* Setup internal data structures and allocate HW data structures for
1986 * streams (but don't install the HW structures in the input context
1987 * until we're sure all memory allocation succeeded).
1988 */
1989 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
1990 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
1991 num_stream_ctxs, num_streams);
1992
1993 for (i = 0; i < num_eps; i++) {
1994 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1995 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
1996 num_stream_ctxs,
1997 num_streams, mem_flags);
1998 if (!vdev->eps[ep_index].stream_info)
1999 goto cleanup;
2000 /* Set maxPstreams in endpoint context and update deq ptr to
2001 * point to stream context array. FIXME
2002 */
2003 }
2004
2005 /* Set up the input context for a configure endpoint command. */
2006 for (i = 0; i < num_eps; i++) {
2007 struct xhci_ep_ctx *ep_ctx;
2008
2009 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2010 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2011
2012 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2013 vdev->out_ctx, ep_index);
2014 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2015 vdev->eps[ep_index].stream_info);
2016 }
2017 /* Tell the HW to drop its old copy of the endpoint context info
2018 * and add the updated copy from the input context.
2019 */
2020 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2021 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2022
2023 /* Issue and wait for the configure endpoint command */
2024 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2025 false, false);
2026
2027 /* xHC rejected the configure endpoint command for some reason, so we
2028 * leave the old ring intact and free our internal streams data
2029 * structure.
2030 */
2031 if (ret < 0)
2032 goto cleanup;
2033
2034 spin_lock_irqsave(&xhci->lock, flags);
2035 for (i = 0; i < num_eps; i++) {
2036 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2037 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2038 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2039 udev->slot_id, ep_index);
2040 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2041 }
2042 xhci_free_command(xhci, config_cmd);
2043 spin_unlock_irqrestore(&xhci->lock, flags);
2044
2045 /* Subtract 1 for stream 0, which drivers can't use */
2046 return num_streams - 1;
2047
2048 cleanup:
2049 /* If it didn't work, free the streams! */
2050 for (i = 0; i < num_eps; i++) {
2051 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2052 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2053 vdev->eps[ep_index].stream_info = NULL;
2054 /* FIXME Unset maxPstreams in endpoint context and
2055 * update deq ptr to point to normal string ring.
2056 */
2057 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2058 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2059 xhci_endpoint_zero(xhci, vdev, eps[i]);
2060 }
2061 xhci_free_command(xhci, config_cmd);
2062 return -ENOMEM;
2063 }
2064
2065 /* Transition the endpoint from using streams to being a "normal" endpoint
2066 * without streams.
2067 *
2068 * Modify the endpoint context state, submit a configure endpoint command,
2069 * and free all endpoint rings for streams if that completes successfully.
2070 */
2071 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2072 struct usb_host_endpoint **eps, unsigned int num_eps,
2073 gfp_t mem_flags)
2074 {
2075 int i, ret;
2076 struct xhci_hcd *xhci;
2077 struct xhci_virt_device *vdev;
2078 struct xhci_command *command;
2079 unsigned int ep_index;
2080 unsigned long flags;
2081 u32 changed_ep_bitmask;
2082
2083 xhci = hcd_to_xhci(hcd);
2084 vdev = xhci->devs[udev->slot_id];
2085
2086 /* Set up a configure endpoint command to remove the streams rings */
2087 spin_lock_irqsave(&xhci->lock, flags);
2088 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2089 udev, eps, num_eps);
2090 if (changed_ep_bitmask == 0) {
2091 spin_unlock_irqrestore(&xhci->lock, flags);
2092 return -EINVAL;
2093 }
2094
2095 /* Use the xhci_command structure from the first endpoint. We may have
2096 * allocated too many, but the driver may call xhci_free_streams() for
2097 * each endpoint it grouped into one call to xhci_alloc_streams().
2098 */
2099 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2100 command = vdev->eps[ep_index].stream_info->free_streams_command;
2101 for (i = 0; i < num_eps; i++) {
2102 struct xhci_ep_ctx *ep_ctx;
2103
2104 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2105 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2106 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2107 EP_GETTING_NO_STREAMS;
2108
2109 xhci_endpoint_copy(xhci, command->in_ctx,
2110 vdev->out_ctx, ep_index);
2111 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2112 &vdev->eps[ep_index]);
2113 }
2114 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2115 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2116 spin_unlock_irqrestore(&xhci->lock, flags);
2117
2118 /* Issue and wait for the configure endpoint command,
2119 * which must succeed.
2120 */
2121 ret = xhci_configure_endpoint(xhci, udev, command,
2122 false, true);
2123
2124 /* xHC rejected the configure endpoint command for some reason, so we
2125 * leave the streams rings intact.
2126 */
2127 if (ret < 0)
2128 return ret;
2129
2130 spin_lock_irqsave(&xhci->lock, flags);
2131 for (i = 0; i < num_eps; i++) {
2132 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2133 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2134 vdev->eps[ep_index].stream_info = NULL;
2135 /* FIXME Unset maxPstreams in endpoint context and
2136 * update deq ptr to point to normal string ring.
2137 */
2138 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2139 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2140 }
2141 spin_unlock_irqrestore(&xhci->lock, flags);
2142
2143 return 0;
2144 }
2145
2146 /*
2147 * This submits a Reset Device Command, which will set the device state to 0,
2148 * set the device address to 0, and disable all the endpoints except the default
2149 * control endpoint. The USB core should come back and call
2150 * xhci_address_device(), and then re-set up the configuration. If this is
2151 * called because of a usb_reset_and_verify_device(), then the old alternate
2152 * settings will be re-installed through the normal bandwidth allocation
2153 * functions.
2154 *
2155 * Wait for the Reset Device command to finish. Remove all structures
2156 * associated with the endpoints that were disabled. Clear the input device
2157 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
2158 *
2159 * If the virt_dev to be reset does not exist or does not match the udev,
2160 * it means the device is lost, possibly due to the xHC restore error and
2161 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2162 * re-allocate the device.
2163 */
2164 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2165 {
2166 int ret, i;
2167 unsigned long flags;
2168 struct xhci_hcd *xhci;
2169 unsigned int slot_id;
2170 struct xhci_virt_device *virt_dev;
2171 struct xhci_command *reset_device_cmd;
2172 int timeleft;
2173 int last_freed_endpoint;
2174
2175 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2176 if (ret <= 0)
2177 return ret;
2178 xhci = hcd_to_xhci(hcd);
2179 slot_id = udev->slot_id;
2180 virt_dev = xhci->devs[slot_id];
2181 if (!virt_dev) {
2182 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2183 "not exist. Re-allocate the device\n", slot_id);
2184 ret = xhci_alloc_dev(hcd, udev);
2185 if (ret == 1)
2186 return 0;
2187 else
2188 return -EINVAL;
2189 }
2190
2191 if (virt_dev->udev != udev) {
2192 /* If the virt_dev and the udev does not match, this virt_dev
2193 * may belong to another udev.
2194 * Re-allocate the device.
2195 */
2196 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2197 "not match the udev. Re-allocate the device\n",
2198 slot_id);
2199 ret = xhci_alloc_dev(hcd, udev);
2200 if (ret == 1)
2201 return 0;
2202 else
2203 return -EINVAL;
2204 }
2205
2206 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2207 /* Allocate the command structure that holds the struct completion.
2208 * Assume we're in process context, since the normal device reset
2209 * process has to wait for the device anyway. Storage devices are
2210 * reset as part of error handling, so use GFP_NOIO instead of
2211 * GFP_KERNEL.
2212 */
2213 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2214 if (!reset_device_cmd) {
2215 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2216 return -ENOMEM;
2217 }
2218
2219 /* Attempt to submit the Reset Device command to the command ring */
2220 spin_lock_irqsave(&xhci->lock, flags);
2221 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2222 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2223 ret = xhci_queue_reset_device(xhci, slot_id);
2224 if (ret) {
2225 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2226 list_del(&reset_device_cmd->cmd_list);
2227 spin_unlock_irqrestore(&xhci->lock, flags);
2228 goto command_cleanup;
2229 }
2230 xhci_ring_cmd_db(xhci);
2231 spin_unlock_irqrestore(&xhci->lock, flags);
2232
2233 /* Wait for the Reset Device command to finish */
2234 timeleft = wait_for_completion_interruptible_timeout(
2235 reset_device_cmd->completion,
2236 USB_CTRL_SET_TIMEOUT);
2237 if (timeleft <= 0) {
2238 xhci_warn(xhci, "%s while waiting for reset device command\n",
2239 timeleft == 0 ? "Timeout" : "Signal");
2240 spin_lock_irqsave(&xhci->lock, flags);
2241 /* The timeout might have raced with the event ring handler, so
2242 * only delete from the list if the item isn't poisoned.
2243 */
2244 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2245 list_del(&reset_device_cmd->cmd_list);
2246 spin_unlock_irqrestore(&xhci->lock, flags);
2247 ret = -ETIME;
2248 goto command_cleanup;
2249 }
2250
2251 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2252 * unless we tried to reset a slot ID that wasn't enabled,
2253 * or the device wasn't in the addressed or configured state.
2254 */
2255 ret = reset_device_cmd->status;
2256 switch (ret) {
2257 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2258 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2259 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2260 slot_id,
2261 xhci_get_slot_state(xhci, virt_dev->out_ctx));
2262 xhci_info(xhci, "Not freeing device rings.\n");
2263 /* Don't treat this as an error. May change my mind later. */
2264 ret = 0;
2265 goto command_cleanup;
2266 case COMP_SUCCESS:
2267 xhci_dbg(xhci, "Successful reset device command.\n");
2268 break;
2269 default:
2270 if (xhci_is_vendor_info_code(xhci, ret))
2271 break;
2272 xhci_warn(xhci, "Unknown completion code %u for "
2273 "reset device command.\n", ret);
2274 ret = -EINVAL;
2275 goto command_cleanup;
2276 }
2277
2278 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
2279 last_freed_endpoint = 1;
2280 for (i = 1; i < 31; ++i) {
2281 if (!virt_dev->eps[i].ring)
2282 continue;
2283 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2284 last_freed_endpoint = i;
2285 }
2286 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2287 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2288 ret = 0;
2289
2290 command_cleanup:
2291 xhci_free_command(xhci, reset_device_cmd);
2292 return ret;
2293 }
2294
2295 /*
2296 * At this point, the struct usb_device is about to go away, the device has
2297 * disconnected, and all traffic has been stopped and the endpoints have been
2298 * disabled. Free any HC data structures associated with that device.
2299 */
2300 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2301 {
2302 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2303 struct xhci_virt_device *virt_dev;
2304 unsigned long flags;
2305 u32 state;
2306 int i, ret;
2307
2308 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2309 if (ret <= 0)
2310 return;
2311
2312 virt_dev = xhci->devs[udev->slot_id];
2313
2314 /* Stop any wayward timer functions (which may grab the lock) */
2315 for (i = 0; i < 31; ++i) {
2316 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2317 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2318 }
2319
2320 spin_lock_irqsave(&xhci->lock, flags);
2321 /* Don't disable the slot if the host controller is dead. */
2322 state = xhci_readl(xhci, &xhci->op_regs->status);
2323 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
2324 xhci_free_virt_device(xhci, udev->slot_id);
2325 spin_unlock_irqrestore(&xhci->lock, flags);
2326 return;
2327 }
2328
2329 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2330 spin_unlock_irqrestore(&xhci->lock, flags);
2331 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2332 return;
2333 }
2334 xhci_ring_cmd_db(xhci);
2335 spin_unlock_irqrestore(&xhci->lock, flags);
2336 /*
2337 * Event command completion handler will free any data structures
2338 * associated with the slot. XXX Can free sleep?
2339 */
2340 }
2341
2342 /*
2343 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2344 * timed out, or allocating memory failed. Returns 1 on success.
2345 */
2346 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2347 {
2348 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2349 unsigned long flags;
2350 int timeleft;
2351 int ret;
2352
2353 spin_lock_irqsave(&xhci->lock, flags);
2354 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2355 if (ret) {
2356 spin_unlock_irqrestore(&xhci->lock, flags);
2357 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2358 return 0;
2359 }
2360 xhci_ring_cmd_db(xhci);
2361 spin_unlock_irqrestore(&xhci->lock, flags);
2362
2363 /* XXX: how much time for xHC slot assignment? */
2364 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2365 USB_CTRL_SET_TIMEOUT);
2366 if (timeleft <= 0) {
2367 xhci_warn(xhci, "%s while waiting for a slot\n",
2368 timeleft == 0 ? "Timeout" : "Signal");
2369 /* FIXME cancel the enable slot request */
2370 return 0;
2371 }
2372
2373 if (!xhci->slot_id) {
2374 xhci_err(xhci, "Error while assigning device slot ID\n");
2375 return 0;
2376 }
2377 /* xhci_alloc_virt_device() does not touch rings; no need to lock */
2378 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) {
2379 /* Disable slot, if we can do it without mem alloc */
2380 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2381 spin_lock_irqsave(&xhci->lock, flags);
2382 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2383 xhci_ring_cmd_db(xhci);
2384 spin_unlock_irqrestore(&xhci->lock, flags);
2385 return 0;
2386 }
2387 udev->slot_id = xhci->slot_id;
2388 /* Is this a LS or FS device under a HS hub? */
2389 /* Hub or peripherial? */
2390 return 1;
2391 }
2392
2393 /*
2394 * Issue an Address Device command (which will issue a SetAddress request to
2395 * the device).
2396 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2397 * we should only issue and wait on one address command at the same time.
2398 *
2399 * We add one to the device address issued by the hardware because the USB core
2400 * uses address 1 for the root hubs (even though they're not really devices).
2401 */
2402 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2403 {
2404 unsigned long flags;
2405 int timeleft;
2406 struct xhci_virt_device *virt_dev;
2407 int ret = 0;
2408 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2409 struct xhci_slot_ctx *slot_ctx;
2410 struct xhci_input_control_ctx *ctrl_ctx;
2411 u64 temp_64;
2412
2413 if (!udev->slot_id) {
2414 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2415 return -EINVAL;
2416 }
2417
2418 virt_dev = xhci->devs[udev->slot_id];
2419
2420 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2421 /*
2422 * If this is the first Set Address since device plug-in or
2423 * virt_device realloaction after a resume with an xHCI power loss,
2424 * then set up the slot context.
2425 */
2426 if (!slot_ctx->dev_info)
2427 xhci_setup_addressable_virt_dev(xhci, udev);
2428 /* Otherwise, update the control endpoint ring enqueue pointer. */
2429 else
2430 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2431 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2432 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2433
2434 spin_lock_irqsave(&xhci->lock, flags);
2435 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2436 udev->slot_id);
2437 if (ret) {
2438 spin_unlock_irqrestore(&xhci->lock, flags);
2439 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2440 return ret;
2441 }
2442 xhci_ring_cmd_db(xhci);
2443 spin_unlock_irqrestore(&xhci->lock, flags);
2444
2445 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2446 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2447 USB_CTRL_SET_TIMEOUT);
2448 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
2449 * the SetAddress() "recovery interval" required by USB and aborting the
2450 * command on a timeout.
2451 */
2452 if (timeleft <= 0) {
2453 xhci_warn(xhci, "%s while waiting for a slot\n",
2454 timeleft == 0 ? "Timeout" : "Signal");
2455 /* FIXME cancel the address device command */
2456 return -ETIME;
2457 }
2458
2459 switch (virt_dev->cmd_status) {
2460 case COMP_CTX_STATE:
2461 case COMP_EBADSLT:
2462 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2463 udev->slot_id);
2464 ret = -EINVAL;
2465 break;
2466 case COMP_TX_ERR:
2467 dev_warn(&udev->dev, "Device not responding to set address.\n");
2468 ret = -EPROTO;
2469 break;
2470 case COMP_SUCCESS:
2471 xhci_dbg(xhci, "Successful Address Device command\n");
2472 break;
2473 default:
2474 xhci_err(xhci, "ERROR: unexpected command completion "
2475 "code 0x%x.\n", virt_dev->cmd_status);
2476 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2477 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2478 ret = -EINVAL;
2479 break;
2480 }
2481 if (ret) {
2482 return ret;
2483 }
2484 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2485 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2486 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2487 udev->slot_id,
2488 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2489 (unsigned long long)
2490 xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
2491 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2492 (unsigned long long)virt_dev->out_ctx->dma);
2493 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2494 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2495 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2496 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2497 /*
2498 * USB core uses address 1 for the roothubs, so we add one to the
2499 * address given back to us by the HC.
2500 */
2501 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2502 /* Use kernel assigned address for devices; store xHC assigned
2503 * address locally. */
2504 virt_dev->address = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
2505 /* Zero the input context control for later use */
2506 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2507 ctrl_ctx->add_flags = 0;
2508 ctrl_ctx->drop_flags = 0;
2509
2510 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2511
2512 return 0;
2513 }
2514
2515 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2516 * internal data structures for the device.
2517 */
2518 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2519 struct usb_tt *tt, gfp_t mem_flags)
2520 {
2521 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2522 struct xhci_virt_device *vdev;
2523 struct xhci_command *config_cmd;
2524 struct xhci_input_control_ctx *ctrl_ctx;
2525 struct xhci_slot_ctx *slot_ctx;
2526 unsigned long flags;
2527 unsigned think_time;
2528 int ret;
2529
2530 /* Ignore root hubs */
2531 if (!hdev->parent)
2532 return 0;
2533
2534 vdev = xhci->devs[hdev->slot_id];
2535 if (!vdev) {
2536 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2537 return -EINVAL;
2538 }
2539 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2540 if (!config_cmd) {
2541 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2542 return -ENOMEM;
2543 }
2544
2545 spin_lock_irqsave(&xhci->lock, flags);
2546 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2547 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2548 ctrl_ctx->add_flags |= SLOT_FLAG;
2549 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2550 slot_ctx->dev_info |= DEV_HUB;
2551 if (tt->multi)
2552 slot_ctx->dev_info |= DEV_MTT;
2553 if (xhci->hci_version > 0x95) {
2554 xhci_dbg(xhci, "xHCI version %x needs hub "
2555 "TT think time and number of ports\n",
2556 (unsigned int) xhci->hci_version);
2557 slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild);
2558 /* Set TT think time - convert from ns to FS bit times.
2559 * 0 = 8 FS bit times, 1 = 16 FS bit times,
2560 * 2 = 24 FS bit times, 3 = 32 FS bit times.
2561 */
2562 think_time = tt->think_time;
2563 if (think_time != 0)
2564 think_time = (think_time / 666) - 1;
2565 slot_ctx->tt_info |= TT_THINK_TIME(think_time);
2566 } else {
2567 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
2568 "TT think time or number of ports\n",
2569 (unsigned int) xhci->hci_version);
2570 }
2571 slot_ctx->dev_state = 0;
2572 spin_unlock_irqrestore(&xhci->lock, flags);
2573
2574 xhci_dbg(xhci, "Set up %s for hub device.\n",
2575 (xhci->hci_version > 0x95) ?
2576 "configure endpoint" : "evaluate context");
2577 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
2578 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
2579
2580 /* Issue and wait for the configure endpoint or
2581 * evaluate context command.
2582 */
2583 if (xhci->hci_version > 0x95)
2584 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2585 false, false);
2586 else
2587 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2588 true, false);
2589
2590 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
2591 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
2592
2593 xhci_free_command(xhci, config_cmd);
2594 return ret;
2595 }
2596
2597 int xhci_get_frame(struct usb_hcd *hcd)
2598 {
2599 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2600 /* EHCI mods by the periodic size. Why? */
2601 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
2602 }
2603
2604 MODULE_DESCRIPTION(DRIVER_DESC);
2605 MODULE_AUTHOR(DRIVER_AUTHOR);
2606 MODULE_LICENSE("GPL");
2607
2608 static int __init xhci_hcd_init(void)
2609 {
2610 #ifdef CONFIG_PCI
2611 int retval = 0;
2612
2613 retval = xhci_register_pci();
2614
2615 if (retval < 0) {
2616 printk(KERN_DEBUG "Problem registering PCI driver.");
2617 return retval;
2618 }
2619 #endif
2620 /*
2621 * Check the compiler generated sizes of structures that must be laid
2622 * out in specific ways for hardware access.
2623 */
2624 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2625 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
2626 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
2627 /* xhci_device_control has eight fields, and also
2628 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
2629 */
2630 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
2631 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
2632 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
2633 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
2634 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
2635 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
2636 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
2637 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2638 return 0;
2639 }
2640 module_init(xhci_hcd_init);
2641
2642 static void __exit xhci_hcd_cleanup(void)
2643 {
2644 #ifdef CONFIG_PCI
2645 xhci_unregister_pci();
2646 #endif
2647 }
2648 module_exit(xhci_hcd_cleanup);
This page took 0.086797 seconds and 5 git commands to generate.