Merge branch 'next' of git://git.infradead.org/users/vkoul/slave-dma
[deliverable/linux.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43 * handshake - spin reading hc until handshake completes or fails
44 * @ptr: address of hc register to be read
45 * @mask: bits to look at in result of read
46 * @done: value of those bits when handshake succeeds
47 * @usec: timeout in microseconds
48 *
49 * Returns negative errno, or zero on success
50 *
51 * Success happens when the "mask" bits have the specified value (hardware
52 * handshake done). There are two failure modes: "usec" have passed (major
53 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 */
55 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 u32 mask, u32 done, int usec)
57 {
58 u32 result;
59
60 do {
61 result = xhci_readl(xhci, ptr);
62 if (result == ~(u32)0) /* card removed */
63 return -ENODEV;
64 result &= mask;
65 if (result == done)
66 return 0;
67 udelay(1);
68 usec--;
69 } while (usec > 0);
70 return -ETIMEDOUT;
71 }
72
73 /*
74 * Disable interrupts and begin the xHCI halting process.
75 */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78 u32 halted;
79 u32 cmd;
80 u32 mask;
81
82 mask = ~(XHCI_IRQS);
83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 if (!halted)
85 mask &= ~CMD_RUN;
86
87 cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 cmd &= mask;
89 xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93 * Force HC into halt state.
94 *
95 * Disable any IRQs and clear the run/stop bit.
96 * HC will complete any current and actively pipelined transactions, and
97 * should halt within 16 ms of the run/stop bit being cleared.
98 * Read HC Halted bit in the status register to see when the HC is finished.
99 */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 int ret;
103 xhci_dbg(xhci, "// Halt the HC\n");
104 xhci_quiesce(xhci);
105
106 ret = handshake(xhci, &xhci->op_regs->status,
107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 if (!ret) {
109 xhci->xhc_state |= XHCI_STATE_HALTED;
110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 } else
112 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 XHCI_MAX_HALT_USEC);
114 return ret;
115 }
116
117 /*
118 * Set the run bit and wait for the host to be running.
119 */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122 u32 temp;
123 int ret;
124
125 temp = xhci_readl(xhci, &xhci->op_regs->command);
126 temp |= (CMD_RUN);
127 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 temp);
129 xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131 /*
132 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 * running.
134 */
135 ret = handshake(xhci, &xhci->op_regs->status,
136 STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 if (ret == -ETIMEDOUT)
138 xhci_err(xhci, "Host took too long to start, "
139 "waited %u microseconds.\n",
140 XHCI_MAX_HALT_USEC);
141 if (!ret)
142 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143 return ret;
144 }
145
146 /*
147 * Reset a halted HC.
148 *
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
152 */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 u32 command;
156 u32 state;
157 int ret, i;
158
159 state = xhci_readl(xhci, &xhci->op_regs->status);
160 if ((state & STS_HALT) == 0) {
161 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 return 0;
163 }
164
165 xhci_dbg(xhci, "// Reset the HC\n");
166 command = xhci_readl(xhci, &xhci->op_regs->command);
167 command |= CMD_RESET;
168 xhci_writel(xhci, command, &xhci->op_regs->command);
169
170 ret = handshake(xhci, &xhci->op_regs->command,
171 CMD_RESET, 0, 10 * 1000 * 1000);
172 if (ret)
173 return ret;
174
175 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 /*
177 * xHCI cannot write to any doorbells or operational registers other
178 * than status until the "Controller Not Ready" flag is cleared.
179 */
180 ret = handshake(xhci, &xhci->op_regs->status,
181 STS_CNR, 0, 10 * 1000 * 1000);
182
183 for (i = 0; i < 2; ++i) {
184 xhci->bus_state[i].port_c_suspend = 0;
185 xhci->bus_state[i].suspended_ports = 0;
186 xhci->bus_state[i].resuming_ports = 0;
187 }
188
189 return ret;
190 }
191
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195 int i;
196
197 if (!xhci->msix_entries)
198 return -EINVAL;
199
200 for (i = 0; i < xhci->msix_count; i++)
201 if (xhci->msix_entries[i].vector)
202 free_irq(xhci->msix_entries[i].vector,
203 xhci_to_hcd(xhci));
204 return 0;
205 }
206
207 /*
208 * Set up MSI
209 */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212 int ret;
213 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215 ret = pci_enable_msi(pdev);
216 if (ret) {
217 xhci_dbg(xhci, "failed to allocate MSI entry\n");
218 return ret;
219 }
220
221 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222 0, "xhci_hcd", xhci_to_hcd(xhci));
223 if (ret) {
224 xhci_dbg(xhci, "disable MSI interrupt\n");
225 pci_disable_msi(pdev);
226 }
227
228 return ret;
229 }
230
231 /*
232 * Free IRQs
233 * free all IRQs request
234 */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 int ret;
239
240 /* return if using legacy interrupt */
241 if (xhci_to_hcd(xhci)->irq > 0)
242 return;
243
244 ret = xhci_free_msi(xhci);
245 if (!ret)
246 return;
247 if (pdev->irq > 0)
248 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250 return;
251 }
252
253 /*
254 * Set up MSI-X
255 */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 int i, ret = 0;
259 struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262 /*
263 * calculate number of msi-x vectors supported.
264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 * with max number of interrupters based on the xhci HCSPARAMS1.
266 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 * Add additional 1 vector to ensure always available interrupt.
268 */
269 xhci->msix_count = min(num_online_cpus() + 1,
270 HCS_MAX_INTRS(xhci->hcs_params1));
271
272 xhci->msix_entries =
273 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 GFP_KERNEL);
275 if (!xhci->msix_entries) {
276 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 return -ENOMEM;
278 }
279
280 for (i = 0; i < xhci->msix_count; i++) {
281 xhci->msix_entries[i].entry = i;
282 xhci->msix_entries[i].vector = 0;
283 }
284
285 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 if (ret) {
287 xhci_dbg(xhci, "Failed to enable MSI-X\n");
288 goto free_entries;
289 }
290
291 for (i = 0; i < xhci->msix_count; i++) {
292 ret = request_irq(xhci->msix_entries[i].vector,
293 (irq_handler_t)xhci_msi_irq,
294 0, "xhci_hcd", xhci_to_hcd(xhci));
295 if (ret)
296 goto disable_msix;
297 }
298
299 hcd->msix_enabled = 1;
300 return ret;
301
302 disable_msix:
303 xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 xhci_free_irq(xhci);
305 pci_disable_msix(pdev);
306 free_entries:
307 kfree(xhci->msix_entries);
308 xhci->msix_entries = NULL;
309 return ret;
310 }
311
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315 struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317
318 xhci_free_irq(xhci);
319
320 if (xhci->msix_entries) {
321 pci_disable_msix(pdev);
322 kfree(xhci->msix_entries);
323 xhci->msix_entries = NULL;
324 } else {
325 pci_disable_msi(pdev);
326 }
327
328 hcd->msix_enabled = 0;
329 return;
330 }
331
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334 int i;
335
336 if (xhci->msix_entries) {
337 for (i = 0; i < xhci->msix_count; i++)
338 synchronize_irq(xhci->msix_entries[i].vector);
339 }
340 }
341
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346 int ret;
347
348 /*
349 * Some Fresco Logic host controllers advertise MSI, but fail to
350 * generate interrupts. Don't even try to enable MSI.
351 */
352 if (xhci->quirks & XHCI_BROKEN_MSI)
353 return 0;
354
355 /* unregister the legacy interrupt */
356 if (hcd->irq)
357 free_irq(hcd->irq, hcd);
358 hcd->irq = 0;
359
360 ret = xhci_setup_msix(xhci);
361 if (ret)
362 /* fall back to msi*/
363 ret = xhci_setup_msi(xhci);
364
365 if (!ret)
366 /* hcd->irq is 0, we have MSI */
367 return 0;
368
369 if (!pdev->irq) {
370 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371 return -EINVAL;
372 }
373
374 /* fall back to legacy interrupt*/
375 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
376 hcd->irq_descr, hcd);
377 if (ret) {
378 xhci_err(xhci, "request interrupt %d failed\n",
379 pdev->irq);
380 return ret;
381 }
382 hcd->irq = pdev->irq;
383 return 0;
384 }
385
386 #else
387
388 static int xhci_try_enable_msi(struct usb_hcd *hcd)
389 {
390 return 0;
391 }
392
393 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
394 {
395 }
396
397 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
398 {
399 }
400
401 #endif
402
403 static void compliance_mode_recovery(unsigned long arg)
404 {
405 struct xhci_hcd *xhci;
406 struct usb_hcd *hcd;
407 u32 temp;
408 int i;
409
410 xhci = (struct xhci_hcd *)arg;
411
412 for (i = 0; i < xhci->num_usb3_ports; i++) {
413 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
414 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
415 /*
416 * Compliance Mode Detected. Letting USB Core
417 * handle the Warm Reset
418 */
419 xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
420 i + 1);
421 xhci_dbg(xhci, "Attempting Recovery routine!\n");
422 hcd = xhci->shared_hcd;
423
424 if (hcd->state == HC_STATE_SUSPENDED)
425 usb_hcd_resume_root_hub(hcd);
426
427 usb_hcd_poll_rh_status(hcd);
428 }
429 }
430
431 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
432 mod_timer(&xhci->comp_mode_recovery_timer,
433 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
434 }
435
436 /*
437 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
438 * that causes ports behind that hardware to enter compliance mode sometimes.
439 * The quirk creates a timer that polls every 2 seconds the link state of
440 * each host controller's port and recovers it by issuing a Warm reset
441 * if Compliance mode is detected, otherwise the port will become "dead" (no
442 * device connections or disconnections will be detected anymore). Becasue no
443 * status event is generated when entering compliance mode (per xhci spec),
444 * this quirk is needed on systems that have the failing hardware installed.
445 */
446 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
447 {
448 xhci->port_status_u0 = 0;
449 init_timer(&xhci->comp_mode_recovery_timer);
450
451 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
452 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
453 xhci->comp_mode_recovery_timer.expires = jiffies +
454 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
455
456 set_timer_slack(&xhci->comp_mode_recovery_timer,
457 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
458 add_timer(&xhci->comp_mode_recovery_timer);
459 xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
460 }
461
462 /*
463 * This function identifies the systems that have installed the SN65LVPE502CP
464 * USB3.0 re-driver and that need the Compliance Mode Quirk.
465 * Systems:
466 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
467 */
468 static bool compliance_mode_recovery_timer_quirk_check(void)
469 {
470 const char *dmi_product_name, *dmi_sys_vendor;
471
472 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
473 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
474 if (!dmi_product_name || !dmi_sys_vendor)
475 return false;
476
477 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
478 return false;
479
480 if (strstr(dmi_product_name, "Z420") ||
481 strstr(dmi_product_name, "Z620") ||
482 strstr(dmi_product_name, "Z820"))
483 return true;
484
485 return false;
486 }
487
488 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
489 {
490 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
491 }
492
493
494 /*
495 * Initialize memory for HCD and xHC (one-time init).
496 *
497 * Program the PAGESIZE register, initialize the device context array, create
498 * device contexts (?), set up a command ring segment (or two?), create event
499 * ring (one for now).
500 */
501 int xhci_init(struct usb_hcd *hcd)
502 {
503 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
504 int retval = 0;
505
506 xhci_dbg(xhci, "xhci_init\n");
507 spin_lock_init(&xhci->lock);
508 if (xhci->hci_version == 0x95 && link_quirk) {
509 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
510 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
511 } else {
512 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
513 }
514 retval = xhci_mem_init(xhci, GFP_KERNEL);
515 xhci_dbg(xhci, "Finished xhci_init\n");
516
517 /* Initializing Compliance Mode Recovery Data If Needed */
518 if (compliance_mode_recovery_timer_quirk_check()) {
519 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
520 compliance_mode_recovery_timer_init(xhci);
521 }
522
523 return retval;
524 }
525
526 /*-------------------------------------------------------------------------*/
527
528
529 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
530 static void xhci_event_ring_work(unsigned long arg)
531 {
532 unsigned long flags;
533 int temp;
534 u64 temp_64;
535 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
536 int i, j;
537
538 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
539
540 spin_lock_irqsave(&xhci->lock, flags);
541 temp = xhci_readl(xhci, &xhci->op_regs->status);
542 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
543 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
544 (xhci->xhc_state & XHCI_STATE_HALTED)) {
545 xhci_dbg(xhci, "HW died, polling stopped.\n");
546 spin_unlock_irqrestore(&xhci->lock, flags);
547 return;
548 }
549
550 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
551 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
552 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
553 xhci->error_bitmask = 0;
554 xhci_dbg(xhci, "Event ring:\n");
555 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
556 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
557 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
558 temp_64 &= ~ERST_PTR_MASK;
559 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
560 xhci_dbg(xhci, "Command ring:\n");
561 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
562 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
563 xhci_dbg_cmd_ptrs(xhci);
564 for (i = 0; i < MAX_HC_SLOTS; ++i) {
565 if (!xhci->devs[i])
566 continue;
567 for (j = 0; j < 31; ++j) {
568 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
569 }
570 }
571 spin_unlock_irqrestore(&xhci->lock, flags);
572
573 if (!xhci->zombie)
574 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
575 else
576 xhci_dbg(xhci, "Quit polling the event ring.\n");
577 }
578 #endif
579
580 static int xhci_run_finished(struct xhci_hcd *xhci)
581 {
582 if (xhci_start(xhci)) {
583 xhci_halt(xhci);
584 return -ENODEV;
585 }
586 xhci->shared_hcd->state = HC_STATE_RUNNING;
587 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
588
589 if (xhci->quirks & XHCI_NEC_HOST)
590 xhci_ring_cmd_db(xhci);
591
592 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
593 return 0;
594 }
595
596 /*
597 * Start the HC after it was halted.
598 *
599 * This function is called by the USB core when the HC driver is added.
600 * Its opposite is xhci_stop().
601 *
602 * xhci_init() must be called once before this function can be called.
603 * Reset the HC, enable device slot contexts, program DCBAAP, and
604 * set command ring pointer and event ring pointer.
605 *
606 * Setup MSI-X vectors and enable interrupts.
607 */
608 int xhci_run(struct usb_hcd *hcd)
609 {
610 u32 temp;
611 u64 temp_64;
612 int ret;
613 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
614
615 /* Start the xHCI host controller running only after the USB 2.0 roothub
616 * is setup.
617 */
618
619 hcd->uses_new_polling = 1;
620 if (!usb_hcd_is_primary_hcd(hcd))
621 return xhci_run_finished(xhci);
622
623 xhci_dbg(xhci, "xhci_run\n");
624
625 ret = xhci_try_enable_msi(hcd);
626 if (ret)
627 return ret;
628
629 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
630 init_timer(&xhci->event_ring_timer);
631 xhci->event_ring_timer.data = (unsigned long) xhci;
632 xhci->event_ring_timer.function = xhci_event_ring_work;
633 /* Poll the event ring */
634 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
635 xhci->zombie = 0;
636 xhci_dbg(xhci, "Setting event ring polling timer\n");
637 add_timer(&xhci->event_ring_timer);
638 #endif
639
640 xhci_dbg(xhci, "Command ring memory map follows:\n");
641 xhci_debug_ring(xhci, xhci->cmd_ring);
642 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
643 xhci_dbg_cmd_ptrs(xhci);
644
645 xhci_dbg(xhci, "ERST memory map follows:\n");
646 xhci_dbg_erst(xhci, &xhci->erst);
647 xhci_dbg(xhci, "Event ring:\n");
648 xhci_debug_ring(xhci, xhci->event_ring);
649 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
650 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
651 temp_64 &= ~ERST_PTR_MASK;
652 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
653
654 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
655 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
656 temp &= ~ER_IRQ_INTERVAL_MASK;
657 temp |= (u32) 160;
658 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
659
660 /* Set the HCD state before we enable the irqs */
661 temp = xhci_readl(xhci, &xhci->op_regs->command);
662 temp |= (CMD_EIE);
663 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
664 temp);
665 xhci_writel(xhci, temp, &xhci->op_regs->command);
666
667 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
668 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
669 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
670 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
671 &xhci->ir_set->irq_pending);
672 xhci_print_ir_set(xhci, 0);
673
674 if (xhci->quirks & XHCI_NEC_HOST)
675 xhci_queue_vendor_command(xhci, 0, 0, 0,
676 TRB_TYPE(TRB_NEC_GET_FW));
677
678 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
679 return 0;
680 }
681
682 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
683 {
684 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
685
686 spin_lock_irq(&xhci->lock);
687 xhci_halt(xhci);
688
689 /* The shared_hcd is going to be deallocated shortly (the USB core only
690 * calls this function when allocation fails in usb_add_hcd(), or
691 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
692 */
693 xhci->shared_hcd = NULL;
694 spin_unlock_irq(&xhci->lock);
695 }
696
697 /*
698 * Stop xHCI driver.
699 *
700 * This function is called by the USB core when the HC driver is removed.
701 * Its opposite is xhci_run().
702 *
703 * Disable device contexts, disable IRQs, and quiesce the HC.
704 * Reset the HC, finish any completed transactions, and cleanup memory.
705 */
706 void xhci_stop(struct usb_hcd *hcd)
707 {
708 u32 temp;
709 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
710
711 if (!usb_hcd_is_primary_hcd(hcd)) {
712 xhci_only_stop_hcd(xhci->shared_hcd);
713 return;
714 }
715
716 spin_lock_irq(&xhci->lock);
717 /* Make sure the xHC is halted for a USB3 roothub
718 * (xhci_stop() could be called as part of failed init).
719 */
720 xhci_halt(xhci);
721 xhci_reset(xhci);
722 spin_unlock_irq(&xhci->lock);
723
724 xhci_cleanup_msix(xhci);
725
726 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
727 /* Tell the event ring poll function not to reschedule */
728 xhci->zombie = 1;
729 del_timer_sync(&xhci->event_ring_timer);
730 #endif
731
732 /* Deleting Compliance Mode Recovery Timer */
733 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
734 (!(xhci_all_ports_seen_u0(xhci))))
735 del_timer_sync(&xhci->comp_mode_recovery_timer);
736
737 if (xhci->quirks & XHCI_AMD_PLL_FIX)
738 usb_amd_dev_put();
739
740 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
741 temp = xhci_readl(xhci, &xhci->op_regs->status);
742 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
743 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
744 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
745 &xhci->ir_set->irq_pending);
746 xhci_print_ir_set(xhci, 0);
747
748 xhci_dbg(xhci, "cleaning up memory\n");
749 xhci_mem_cleanup(xhci);
750 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
751 xhci_readl(xhci, &xhci->op_regs->status));
752 }
753
754 /*
755 * Shutdown HC (not bus-specific)
756 *
757 * This is called when the machine is rebooting or halting. We assume that the
758 * machine will be powered off, and the HC's internal state will be reset.
759 * Don't bother to free memory.
760 *
761 * This will only ever be called with the main usb_hcd (the USB3 roothub).
762 */
763 void xhci_shutdown(struct usb_hcd *hcd)
764 {
765 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
766
767 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
768 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
769
770 spin_lock_irq(&xhci->lock);
771 xhci_halt(xhci);
772 spin_unlock_irq(&xhci->lock);
773
774 xhci_cleanup_msix(xhci);
775
776 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
777 xhci_readl(xhci, &xhci->op_regs->status));
778 }
779
780 #ifdef CONFIG_PM
781 static void xhci_save_registers(struct xhci_hcd *xhci)
782 {
783 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
784 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
785 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
786 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
787 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
788 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
789 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
790 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
791 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
792 }
793
794 static void xhci_restore_registers(struct xhci_hcd *xhci)
795 {
796 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
797 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
798 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
799 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
800 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
801 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
802 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
803 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
804 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
805 }
806
807 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
808 {
809 u64 val_64;
810
811 /* step 2: initialize command ring buffer */
812 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
813 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
814 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
815 xhci->cmd_ring->dequeue) &
816 (u64) ~CMD_RING_RSVD_BITS) |
817 xhci->cmd_ring->cycle_state;
818 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
819 (long unsigned long) val_64);
820 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
821 }
822
823 /*
824 * The whole command ring must be cleared to zero when we suspend the host.
825 *
826 * The host doesn't save the command ring pointer in the suspend well, so we
827 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
828 * aligned, because of the reserved bits in the command ring dequeue pointer
829 * register. Therefore, we can't just set the dequeue pointer back in the
830 * middle of the ring (TRBs are 16-byte aligned).
831 */
832 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
833 {
834 struct xhci_ring *ring;
835 struct xhci_segment *seg;
836
837 ring = xhci->cmd_ring;
838 seg = ring->deq_seg;
839 do {
840 memset(seg->trbs, 0,
841 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
842 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
843 cpu_to_le32(~TRB_CYCLE);
844 seg = seg->next;
845 } while (seg != ring->deq_seg);
846
847 /* Reset the software enqueue and dequeue pointers */
848 ring->deq_seg = ring->first_seg;
849 ring->dequeue = ring->first_seg->trbs;
850 ring->enq_seg = ring->deq_seg;
851 ring->enqueue = ring->dequeue;
852
853 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
854 /*
855 * Ring is now zeroed, so the HW should look for change of ownership
856 * when the cycle bit is set to 1.
857 */
858 ring->cycle_state = 1;
859
860 /*
861 * Reset the hardware dequeue pointer.
862 * Yes, this will need to be re-written after resume, but we're paranoid
863 * and want to make sure the hardware doesn't access bogus memory
864 * because, say, the BIOS or an SMI started the host without changing
865 * the command ring pointers.
866 */
867 xhci_set_cmd_ring_deq(xhci);
868 }
869
870 /*
871 * Stop HC (not bus-specific)
872 *
873 * This is called when the machine transition into S3/S4 mode.
874 *
875 */
876 int xhci_suspend(struct xhci_hcd *xhci)
877 {
878 int rc = 0;
879 struct usb_hcd *hcd = xhci_to_hcd(xhci);
880 u32 command;
881
882 spin_lock_irq(&xhci->lock);
883 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
884 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
885 /* step 1: stop endpoint */
886 /* skipped assuming that port suspend has done */
887
888 /* step 2: clear Run/Stop bit */
889 command = xhci_readl(xhci, &xhci->op_regs->command);
890 command &= ~CMD_RUN;
891 xhci_writel(xhci, command, &xhci->op_regs->command);
892 if (handshake(xhci, &xhci->op_regs->status,
893 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
894 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
895 spin_unlock_irq(&xhci->lock);
896 return -ETIMEDOUT;
897 }
898 xhci_clear_command_ring(xhci);
899
900 /* step 3: save registers */
901 xhci_save_registers(xhci);
902
903 /* step 4: set CSS flag */
904 command = xhci_readl(xhci, &xhci->op_regs->command);
905 command |= CMD_CSS;
906 xhci_writel(xhci, command, &xhci->op_regs->command);
907 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
908 xhci_warn(xhci, "WARN: xHC save state timeout\n");
909 spin_unlock_irq(&xhci->lock);
910 return -ETIMEDOUT;
911 }
912 spin_unlock_irq(&xhci->lock);
913
914 /*
915 * Deleting Compliance Mode Recovery Timer because the xHCI Host
916 * is about to be suspended.
917 */
918 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
919 (!(xhci_all_ports_seen_u0(xhci)))) {
920 del_timer_sync(&xhci->comp_mode_recovery_timer);
921 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
922 }
923
924 /* step 5: remove core well power */
925 /* synchronize irq when using MSI-X */
926 xhci_msix_sync_irqs(xhci);
927
928 return rc;
929 }
930
931 /*
932 * start xHC (not bus-specific)
933 *
934 * This is called when the machine transition from S3/S4 mode.
935 *
936 */
937 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
938 {
939 u32 command, temp = 0;
940 struct usb_hcd *hcd = xhci_to_hcd(xhci);
941 struct usb_hcd *secondary_hcd;
942 int retval = 0;
943
944 /* Wait a bit if either of the roothubs need to settle from the
945 * transition into bus suspend.
946 */
947 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
948 time_before(jiffies,
949 xhci->bus_state[1].next_statechange))
950 msleep(100);
951
952 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
953 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
954
955 spin_lock_irq(&xhci->lock);
956 if (xhci->quirks & XHCI_RESET_ON_RESUME)
957 hibernated = true;
958
959 if (!hibernated) {
960 /* step 1: restore register */
961 xhci_restore_registers(xhci);
962 /* step 2: initialize command ring buffer */
963 xhci_set_cmd_ring_deq(xhci);
964 /* step 3: restore state and start state*/
965 /* step 3: set CRS flag */
966 command = xhci_readl(xhci, &xhci->op_regs->command);
967 command |= CMD_CRS;
968 xhci_writel(xhci, command, &xhci->op_regs->command);
969 if (handshake(xhci, &xhci->op_regs->status,
970 STS_RESTORE, 0, 10 * 1000)) {
971 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
972 spin_unlock_irq(&xhci->lock);
973 return -ETIMEDOUT;
974 }
975 temp = xhci_readl(xhci, &xhci->op_regs->status);
976 }
977
978 /* If restore operation fails, re-initialize the HC during resume */
979 if ((temp & STS_SRE) || hibernated) {
980 /* Let the USB core know _both_ roothubs lost power. */
981 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
982 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
983
984 xhci_dbg(xhci, "Stop HCD\n");
985 xhci_halt(xhci);
986 xhci_reset(xhci);
987 spin_unlock_irq(&xhci->lock);
988 xhci_cleanup_msix(xhci);
989
990 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
991 /* Tell the event ring poll function not to reschedule */
992 xhci->zombie = 1;
993 del_timer_sync(&xhci->event_ring_timer);
994 #endif
995
996 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
997 temp = xhci_readl(xhci, &xhci->op_regs->status);
998 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
999 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1000 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1001 &xhci->ir_set->irq_pending);
1002 xhci_print_ir_set(xhci, 0);
1003
1004 xhci_dbg(xhci, "cleaning up memory\n");
1005 xhci_mem_cleanup(xhci);
1006 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1007 xhci_readl(xhci, &xhci->op_regs->status));
1008
1009 /* USB core calls the PCI reinit and start functions twice:
1010 * first with the primary HCD, and then with the secondary HCD.
1011 * If we don't do the same, the host will never be started.
1012 */
1013 if (!usb_hcd_is_primary_hcd(hcd))
1014 secondary_hcd = hcd;
1015 else
1016 secondary_hcd = xhci->shared_hcd;
1017
1018 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1019 retval = xhci_init(hcd->primary_hcd);
1020 if (retval)
1021 return retval;
1022 xhci_dbg(xhci, "Start the primary HCD\n");
1023 retval = xhci_run(hcd->primary_hcd);
1024 if (!retval) {
1025 xhci_dbg(xhci, "Start the secondary HCD\n");
1026 retval = xhci_run(secondary_hcd);
1027 }
1028 hcd->state = HC_STATE_SUSPENDED;
1029 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1030 goto done;
1031 }
1032
1033 /* step 4: set Run/Stop bit */
1034 command = xhci_readl(xhci, &xhci->op_regs->command);
1035 command |= CMD_RUN;
1036 xhci_writel(xhci, command, &xhci->op_regs->command);
1037 handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038 0, 250 * 1000);
1039
1040 /* step 5: walk topology and initialize portsc,
1041 * portpmsc and portli
1042 */
1043 /* this is done in bus_resume */
1044
1045 /* step 6: restart each of the previously
1046 * Running endpoints by ringing their doorbells
1047 */
1048
1049 spin_unlock_irq(&xhci->lock);
1050
1051 done:
1052 if (retval == 0) {
1053 usb_hcd_resume_root_hub(hcd);
1054 usb_hcd_resume_root_hub(xhci->shared_hcd);
1055 }
1056
1057 /*
1058 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059 * be re-initialized Always after a system resume. Ports are subject
1060 * to suffer the Compliance Mode issue again. It doesn't matter if
1061 * ports have entered previously to U0 before system's suspension.
1062 */
1063 if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1064 compliance_mode_recovery_timer_init(xhci);
1065
1066 return retval;
1067 }
1068 #endif /* CONFIG_PM */
1069
1070 /*-------------------------------------------------------------------------*/
1071
1072 /**
1073 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1074 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1075 * value to right shift 1 for the bitmask.
1076 *
1077 * Index = (epnum * 2) + direction - 1,
1078 * where direction = 0 for OUT, 1 for IN.
1079 * For control endpoints, the IN index is used (OUT index is unused), so
1080 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1081 */
1082 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1083 {
1084 unsigned int index;
1085 if (usb_endpoint_xfer_control(desc))
1086 index = (unsigned int) (usb_endpoint_num(desc)*2);
1087 else
1088 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1089 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1090 return index;
1091 }
1092
1093 /* Find the flag for this endpoint (for use in the control context). Use the
1094 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1095 * bit 1, etc.
1096 */
1097 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1098 {
1099 return 1 << (xhci_get_endpoint_index(desc) + 1);
1100 }
1101
1102 /* Find the flag for this endpoint (for use in the control context). Use the
1103 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1104 * bit 1, etc.
1105 */
1106 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1107 {
1108 return 1 << (ep_index + 1);
1109 }
1110
1111 /* Compute the last valid endpoint context index. Basically, this is the
1112 * endpoint index plus one. For slot contexts with more than valid endpoint,
1113 * we find the most significant bit set in the added contexts flags.
1114 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1115 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1116 */
1117 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1118 {
1119 return fls(added_ctxs) - 1;
1120 }
1121
1122 /* Returns 1 if the arguments are OK;
1123 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1124 */
1125 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1126 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1127 const char *func) {
1128 struct xhci_hcd *xhci;
1129 struct xhci_virt_device *virt_dev;
1130
1131 if (!hcd || (check_ep && !ep) || !udev) {
1132 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1133 func);
1134 return -EINVAL;
1135 }
1136 if (!udev->parent) {
1137 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1138 func);
1139 return 0;
1140 }
1141
1142 xhci = hcd_to_xhci(hcd);
1143 if (xhci->xhc_state & XHCI_STATE_HALTED)
1144 return -ENODEV;
1145
1146 if (check_virt_dev) {
1147 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1148 printk(KERN_DEBUG "xHCI %s called with unaddressed "
1149 "device\n", func);
1150 return -EINVAL;
1151 }
1152
1153 virt_dev = xhci->devs[udev->slot_id];
1154 if (virt_dev->udev != udev) {
1155 printk(KERN_DEBUG "xHCI %s called with udev and "
1156 "virt_dev does not match\n", func);
1157 return -EINVAL;
1158 }
1159 }
1160
1161 return 1;
1162 }
1163
1164 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1165 struct usb_device *udev, struct xhci_command *command,
1166 bool ctx_change, bool must_succeed);
1167
1168 /*
1169 * Full speed devices may have a max packet size greater than 8 bytes, but the
1170 * USB core doesn't know that until it reads the first 8 bytes of the
1171 * descriptor. If the usb_device's max packet size changes after that point,
1172 * we need to issue an evaluate context command and wait on it.
1173 */
1174 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1175 unsigned int ep_index, struct urb *urb)
1176 {
1177 struct xhci_container_ctx *in_ctx;
1178 struct xhci_container_ctx *out_ctx;
1179 struct xhci_input_control_ctx *ctrl_ctx;
1180 struct xhci_ep_ctx *ep_ctx;
1181 int max_packet_size;
1182 int hw_max_packet_size;
1183 int ret = 0;
1184
1185 out_ctx = xhci->devs[slot_id]->out_ctx;
1186 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1187 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1188 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1189 if (hw_max_packet_size != max_packet_size) {
1190 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1191 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1192 max_packet_size);
1193 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1194 hw_max_packet_size);
1195 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1196
1197 /* Set up the modified control endpoint 0 */
1198 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1199 xhci->devs[slot_id]->out_ctx, ep_index);
1200 in_ctx = xhci->devs[slot_id]->in_ctx;
1201 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1202 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1203 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1204
1205 /* Set up the input context flags for the command */
1206 /* FIXME: This won't work if a non-default control endpoint
1207 * changes max packet sizes.
1208 */
1209 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1210 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1211 ctrl_ctx->drop_flags = 0;
1212
1213 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1214 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1215 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1216 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1217
1218 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1219 true, false);
1220
1221 /* Clean up the input context for later use by bandwidth
1222 * functions.
1223 */
1224 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1225 }
1226 return ret;
1227 }
1228
1229 /*
1230 * non-error returns are a promise to giveback() the urb later
1231 * we drop ownership so next owner (or urb unlink) can get it
1232 */
1233 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1234 {
1235 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1236 struct xhci_td *buffer;
1237 unsigned long flags;
1238 int ret = 0;
1239 unsigned int slot_id, ep_index;
1240 struct urb_priv *urb_priv;
1241 int size, i;
1242
1243 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1244 true, true, __func__) <= 0)
1245 return -EINVAL;
1246
1247 slot_id = urb->dev->slot_id;
1248 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1249
1250 if (!HCD_HW_ACCESSIBLE(hcd)) {
1251 if (!in_interrupt())
1252 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1253 ret = -ESHUTDOWN;
1254 goto exit;
1255 }
1256
1257 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1258 size = urb->number_of_packets;
1259 else
1260 size = 1;
1261
1262 urb_priv = kzalloc(sizeof(struct urb_priv) +
1263 size * sizeof(struct xhci_td *), mem_flags);
1264 if (!urb_priv)
1265 return -ENOMEM;
1266
1267 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1268 if (!buffer) {
1269 kfree(urb_priv);
1270 return -ENOMEM;
1271 }
1272
1273 for (i = 0; i < size; i++) {
1274 urb_priv->td[i] = buffer;
1275 buffer++;
1276 }
1277
1278 urb_priv->length = size;
1279 urb_priv->td_cnt = 0;
1280 urb->hcpriv = urb_priv;
1281
1282 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1283 /* Check to see if the max packet size for the default control
1284 * endpoint changed during FS device enumeration
1285 */
1286 if (urb->dev->speed == USB_SPEED_FULL) {
1287 ret = xhci_check_maxpacket(xhci, slot_id,
1288 ep_index, urb);
1289 if (ret < 0) {
1290 xhci_urb_free_priv(xhci, urb_priv);
1291 urb->hcpriv = NULL;
1292 return ret;
1293 }
1294 }
1295
1296 /* We have a spinlock and interrupts disabled, so we must pass
1297 * atomic context to this function, which may allocate memory.
1298 */
1299 spin_lock_irqsave(&xhci->lock, flags);
1300 if (xhci->xhc_state & XHCI_STATE_DYING)
1301 goto dying;
1302 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1303 slot_id, ep_index);
1304 if (ret)
1305 goto free_priv;
1306 spin_unlock_irqrestore(&xhci->lock, flags);
1307 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1308 spin_lock_irqsave(&xhci->lock, flags);
1309 if (xhci->xhc_state & XHCI_STATE_DYING)
1310 goto dying;
1311 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1312 EP_GETTING_STREAMS) {
1313 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1314 "is transitioning to using streams.\n");
1315 ret = -EINVAL;
1316 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1317 EP_GETTING_NO_STREAMS) {
1318 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1319 "is transitioning to "
1320 "not having streams.\n");
1321 ret = -EINVAL;
1322 } else {
1323 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1324 slot_id, ep_index);
1325 }
1326 if (ret)
1327 goto free_priv;
1328 spin_unlock_irqrestore(&xhci->lock, flags);
1329 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1330 spin_lock_irqsave(&xhci->lock, flags);
1331 if (xhci->xhc_state & XHCI_STATE_DYING)
1332 goto dying;
1333 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1334 slot_id, ep_index);
1335 if (ret)
1336 goto free_priv;
1337 spin_unlock_irqrestore(&xhci->lock, flags);
1338 } else {
1339 spin_lock_irqsave(&xhci->lock, flags);
1340 if (xhci->xhc_state & XHCI_STATE_DYING)
1341 goto dying;
1342 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1343 slot_id, ep_index);
1344 if (ret)
1345 goto free_priv;
1346 spin_unlock_irqrestore(&xhci->lock, flags);
1347 }
1348 exit:
1349 return ret;
1350 dying:
1351 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1352 "non-responsive xHCI host.\n",
1353 urb->ep->desc.bEndpointAddress, urb);
1354 ret = -ESHUTDOWN;
1355 free_priv:
1356 xhci_urb_free_priv(xhci, urb_priv);
1357 urb->hcpriv = NULL;
1358 spin_unlock_irqrestore(&xhci->lock, flags);
1359 return ret;
1360 }
1361
1362 /* Get the right ring for the given URB.
1363 * If the endpoint supports streams, boundary check the URB's stream ID.
1364 * If the endpoint doesn't support streams, return the singular endpoint ring.
1365 */
1366 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1367 struct urb *urb)
1368 {
1369 unsigned int slot_id;
1370 unsigned int ep_index;
1371 unsigned int stream_id;
1372 struct xhci_virt_ep *ep;
1373
1374 slot_id = urb->dev->slot_id;
1375 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1376 stream_id = urb->stream_id;
1377 ep = &xhci->devs[slot_id]->eps[ep_index];
1378 /* Common case: no streams */
1379 if (!(ep->ep_state & EP_HAS_STREAMS))
1380 return ep->ring;
1381
1382 if (stream_id == 0) {
1383 xhci_warn(xhci,
1384 "WARN: Slot ID %u, ep index %u has streams, "
1385 "but URB has no stream ID.\n",
1386 slot_id, ep_index);
1387 return NULL;
1388 }
1389
1390 if (stream_id < ep->stream_info->num_streams)
1391 return ep->stream_info->stream_rings[stream_id];
1392
1393 xhci_warn(xhci,
1394 "WARN: Slot ID %u, ep index %u has "
1395 "stream IDs 1 to %u allocated, "
1396 "but stream ID %u is requested.\n",
1397 slot_id, ep_index,
1398 ep->stream_info->num_streams - 1,
1399 stream_id);
1400 return NULL;
1401 }
1402
1403 /*
1404 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1405 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1406 * should pick up where it left off in the TD, unless a Set Transfer Ring
1407 * Dequeue Pointer is issued.
1408 *
1409 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1410 * the ring. Since the ring is a contiguous structure, they can't be physically
1411 * removed. Instead, there are two options:
1412 *
1413 * 1) If the HC is in the middle of processing the URB to be canceled, we
1414 * simply move the ring's dequeue pointer past those TRBs using the Set
1415 * Transfer Ring Dequeue Pointer command. This will be the common case,
1416 * when drivers timeout on the last submitted URB and attempt to cancel.
1417 *
1418 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1419 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1420 * HC will need to invalidate the any TRBs it has cached after the stop
1421 * endpoint command, as noted in the xHCI 0.95 errata.
1422 *
1423 * 3) The TD may have completed by the time the Stop Endpoint Command
1424 * completes, so software needs to handle that case too.
1425 *
1426 * This function should protect against the TD enqueueing code ringing the
1427 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1428 * It also needs to account for multiple cancellations on happening at the same
1429 * time for the same endpoint.
1430 *
1431 * Note that this function can be called in any context, or so says
1432 * usb_hcd_unlink_urb()
1433 */
1434 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1435 {
1436 unsigned long flags;
1437 int ret, i;
1438 u32 temp;
1439 struct xhci_hcd *xhci;
1440 struct urb_priv *urb_priv;
1441 struct xhci_td *td;
1442 unsigned int ep_index;
1443 struct xhci_ring *ep_ring;
1444 struct xhci_virt_ep *ep;
1445
1446 xhci = hcd_to_xhci(hcd);
1447 spin_lock_irqsave(&xhci->lock, flags);
1448 /* Make sure the URB hasn't completed or been unlinked already */
1449 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1450 if (ret || !urb->hcpriv)
1451 goto done;
1452 temp = xhci_readl(xhci, &xhci->op_regs->status);
1453 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1454 xhci_dbg(xhci, "HW died, freeing TD.\n");
1455 urb_priv = urb->hcpriv;
1456 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1457 td = urb_priv->td[i];
1458 if (!list_empty(&td->td_list))
1459 list_del_init(&td->td_list);
1460 if (!list_empty(&td->cancelled_td_list))
1461 list_del_init(&td->cancelled_td_list);
1462 }
1463
1464 usb_hcd_unlink_urb_from_ep(hcd, urb);
1465 spin_unlock_irqrestore(&xhci->lock, flags);
1466 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1467 xhci_urb_free_priv(xhci, urb_priv);
1468 return ret;
1469 }
1470 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1471 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1472 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1473 "non-responsive xHCI host.\n",
1474 urb->ep->desc.bEndpointAddress, urb);
1475 /* Let the stop endpoint command watchdog timer (which set this
1476 * state) finish cleaning up the endpoint TD lists. We must
1477 * have caught it in the middle of dropping a lock and giving
1478 * back an URB.
1479 */
1480 goto done;
1481 }
1482
1483 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1484 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1485 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1486 if (!ep_ring) {
1487 ret = -EINVAL;
1488 goto done;
1489 }
1490
1491 urb_priv = urb->hcpriv;
1492 i = urb_priv->td_cnt;
1493 if (i < urb_priv->length)
1494 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1495 "starting at offset 0x%llx\n",
1496 urb, urb->dev->devpath,
1497 urb->ep->desc.bEndpointAddress,
1498 (unsigned long long) xhci_trb_virt_to_dma(
1499 urb_priv->td[i]->start_seg,
1500 urb_priv->td[i]->first_trb));
1501
1502 for (; i < urb_priv->length; i++) {
1503 td = urb_priv->td[i];
1504 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1505 }
1506
1507 /* Queue a stop endpoint command, but only if this is
1508 * the first cancellation to be handled.
1509 */
1510 if (!(ep->ep_state & EP_HALT_PENDING)) {
1511 ep->ep_state |= EP_HALT_PENDING;
1512 ep->stop_cmds_pending++;
1513 ep->stop_cmd_timer.expires = jiffies +
1514 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515 add_timer(&ep->stop_cmd_timer);
1516 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1517 xhci_ring_cmd_db(xhci);
1518 }
1519 done:
1520 spin_unlock_irqrestore(&xhci->lock, flags);
1521 return ret;
1522 }
1523
1524 /* Drop an endpoint from a new bandwidth configuration for this device.
1525 * Only one call to this function is allowed per endpoint before
1526 * check_bandwidth() or reset_bandwidth() must be called.
1527 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1528 * add the endpoint to the schedule with possibly new parameters denoted by a
1529 * different endpoint descriptor in usb_host_endpoint.
1530 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1531 * not allowed.
1532 *
1533 * The USB core will not allow URBs to be queued to an endpoint that is being
1534 * disabled, so there's no need for mutual exclusion to protect
1535 * the xhci->devs[slot_id] structure.
1536 */
1537 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1538 struct usb_host_endpoint *ep)
1539 {
1540 struct xhci_hcd *xhci;
1541 struct xhci_container_ctx *in_ctx, *out_ctx;
1542 struct xhci_input_control_ctx *ctrl_ctx;
1543 struct xhci_slot_ctx *slot_ctx;
1544 unsigned int last_ctx;
1545 unsigned int ep_index;
1546 struct xhci_ep_ctx *ep_ctx;
1547 u32 drop_flag;
1548 u32 new_add_flags, new_drop_flags, new_slot_info;
1549 int ret;
1550
1551 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1552 if (ret <= 0)
1553 return ret;
1554 xhci = hcd_to_xhci(hcd);
1555 if (xhci->xhc_state & XHCI_STATE_DYING)
1556 return -ENODEV;
1557
1558 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1559 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1560 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1561 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1562 __func__, drop_flag);
1563 return 0;
1564 }
1565
1566 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1567 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1568 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1569 ep_index = xhci_get_endpoint_index(&ep->desc);
1570 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1571 /* If the HC already knows the endpoint is disabled,
1572 * or the HCD has noted it is disabled, ignore this request
1573 */
1574 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1575 cpu_to_le32(EP_STATE_DISABLED)) ||
1576 le32_to_cpu(ctrl_ctx->drop_flags) &
1577 xhci_get_endpoint_flag(&ep->desc)) {
1578 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1579 __func__, ep);
1580 return 0;
1581 }
1582
1583 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1584 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1585
1586 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1587 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1588
1589 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1590 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1591 /* Update the last valid endpoint context, if we deleted the last one */
1592 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1593 LAST_CTX(last_ctx)) {
1594 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1595 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1596 }
1597 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1598
1599 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1600
1601 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1602 (unsigned int) ep->desc.bEndpointAddress,
1603 udev->slot_id,
1604 (unsigned int) new_drop_flags,
1605 (unsigned int) new_add_flags,
1606 (unsigned int) new_slot_info);
1607 return 0;
1608 }
1609
1610 /* Add an endpoint to a new possible bandwidth configuration for this device.
1611 * Only one call to this function is allowed per endpoint before
1612 * check_bandwidth() or reset_bandwidth() must be called.
1613 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1614 * add the endpoint to the schedule with possibly new parameters denoted by a
1615 * different endpoint descriptor in usb_host_endpoint.
1616 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1617 * not allowed.
1618 *
1619 * The USB core will not allow URBs to be queued to an endpoint until the
1620 * configuration or alt setting is installed in the device, so there's no need
1621 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1622 */
1623 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1624 struct usb_host_endpoint *ep)
1625 {
1626 struct xhci_hcd *xhci;
1627 struct xhci_container_ctx *in_ctx, *out_ctx;
1628 unsigned int ep_index;
1629 struct xhci_ep_ctx *ep_ctx;
1630 struct xhci_slot_ctx *slot_ctx;
1631 struct xhci_input_control_ctx *ctrl_ctx;
1632 u32 added_ctxs;
1633 unsigned int last_ctx;
1634 u32 new_add_flags, new_drop_flags, new_slot_info;
1635 struct xhci_virt_device *virt_dev;
1636 int ret = 0;
1637
1638 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1639 if (ret <= 0) {
1640 /* So we won't queue a reset ep command for a root hub */
1641 ep->hcpriv = NULL;
1642 return ret;
1643 }
1644 xhci = hcd_to_xhci(hcd);
1645 if (xhci->xhc_state & XHCI_STATE_DYING)
1646 return -ENODEV;
1647
1648 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1649 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1650 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1651 /* FIXME when we have to issue an evaluate endpoint command to
1652 * deal with ep0 max packet size changing once we get the
1653 * descriptors
1654 */
1655 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1656 __func__, added_ctxs);
1657 return 0;
1658 }
1659
1660 virt_dev = xhci->devs[udev->slot_id];
1661 in_ctx = virt_dev->in_ctx;
1662 out_ctx = virt_dev->out_ctx;
1663 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1664 ep_index = xhci_get_endpoint_index(&ep->desc);
1665 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1666
1667 /* If this endpoint is already in use, and the upper layers are trying
1668 * to add it again without dropping it, reject the addition.
1669 */
1670 if (virt_dev->eps[ep_index].ring &&
1671 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1672 xhci_get_endpoint_flag(&ep->desc))) {
1673 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1674 "without dropping it.\n",
1675 (unsigned int) ep->desc.bEndpointAddress);
1676 return -EINVAL;
1677 }
1678
1679 /* If the HCD has already noted the endpoint is enabled,
1680 * ignore this request.
1681 */
1682 if (le32_to_cpu(ctrl_ctx->add_flags) &
1683 xhci_get_endpoint_flag(&ep->desc)) {
1684 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1685 __func__, ep);
1686 return 0;
1687 }
1688
1689 /*
1690 * Configuration and alternate setting changes must be done in
1691 * process context, not interrupt context (or so documenation
1692 * for usb_set_interface() and usb_set_configuration() claim).
1693 */
1694 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1695 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1696 __func__, ep->desc.bEndpointAddress);
1697 return -ENOMEM;
1698 }
1699
1700 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1701 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1702
1703 /* If xhci_endpoint_disable() was called for this endpoint, but the
1704 * xHC hasn't been notified yet through the check_bandwidth() call,
1705 * this re-adds a new state for the endpoint from the new endpoint
1706 * descriptors. We must drop and re-add this endpoint, so we leave the
1707 * drop flags alone.
1708 */
1709 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1710
1711 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1712 /* Update the last valid endpoint context, if we just added one past */
1713 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1714 LAST_CTX(last_ctx)) {
1715 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1716 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1717 }
1718 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1719
1720 /* Store the usb_device pointer for later use */
1721 ep->hcpriv = udev;
1722
1723 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1724 (unsigned int) ep->desc.bEndpointAddress,
1725 udev->slot_id,
1726 (unsigned int) new_drop_flags,
1727 (unsigned int) new_add_flags,
1728 (unsigned int) new_slot_info);
1729 return 0;
1730 }
1731
1732 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1733 {
1734 struct xhci_input_control_ctx *ctrl_ctx;
1735 struct xhci_ep_ctx *ep_ctx;
1736 struct xhci_slot_ctx *slot_ctx;
1737 int i;
1738
1739 /* When a device's add flag and drop flag are zero, any subsequent
1740 * configure endpoint command will leave that endpoint's state
1741 * untouched. Make sure we don't leave any old state in the input
1742 * endpoint contexts.
1743 */
1744 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1745 ctrl_ctx->drop_flags = 0;
1746 ctrl_ctx->add_flags = 0;
1747 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1748 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1749 /* Endpoint 0 is always valid */
1750 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1751 for (i = 1; i < 31; ++i) {
1752 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1753 ep_ctx->ep_info = 0;
1754 ep_ctx->ep_info2 = 0;
1755 ep_ctx->deq = 0;
1756 ep_ctx->tx_info = 0;
1757 }
1758 }
1759
1760 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1761 struct usb_device *udev, u32 *cmd_status)
1762 {
1763 int ret;
1764
1765 switch (*cmd_status) {
1766 case COMP_ENOMEM:
1767 dev_warn(&udev->dev, "Not enough host controller resources "
1768 "for new device state.\n");
1769 ret = -ENOMEM;
1770 /* FIXME: can we allocate more resources for the HC? */
1771 break;
1772 case COMP_BW_ERR:
1773 case COMP_2ND_BW_ERR:
1774 dev_warn(&udev->dev, "Not enough bandwidth "
1775 "for new device state.\n");
1776 ret = -ENOSPC;
1777 /* FIXME: can we go back to the old state? */
1778 break;
1779 case COMP_TRB_ERR:
1780 /* the HCD set up something wrong */
1781 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1782 "add flag = 1, "
1783 "and endpoint is not disabled.\n");
1784 ret = -EINVAL;
1785 break;
1786 case COMP_DEV_ERR:
1787 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1788 "configure command.\n");
1789 ret = -ENODEV;
1790 break;
1791 case COMP_SUCCESS:
1792 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1793 ret = 0;
1794 break;
1795 default:
1796 xhci_err(xhci, "ERROR: unexpected command completion "
1797 "code 0x%x.\n", *cmd_status);
1798 ret = -EINVAL;
1799 break;
1800 }
1801 return ret;
1802 }
1803
1804 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1805 struct usb_device *udev, u32 *cmd_status)
1806 {
1807 int ret;
1808 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1809
1810 switch (*cmd_status) {
1811 case COMP_EINVAL:
1812 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1813 "context command.\n");
1814 ret = -EINVAL;
1815 break;
1816 case COMP_EBADSLT:
1817 dev_warn(&udev->dev, "WARN: slot not enabled for"
1818 "evaluate context command.\n");
1819 case COMP_CTX_STATE:
1820 dev_warn(&udev->dev, "WARN: invalid context state for "
1821 "evaluate context command.\n");
1822 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1823 ret = -EINVAL;
1824 break;
1825 case COMP_DEV_ERR:
1826 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1827 "context command.\n");
1828 ret = -ENODEV;
1829 break;
1830 case COMP_MEL_ERR:
1831 /* Max Exit Latency too large error */
1832 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1833 ret = -EINVAL;
1834 break;
1835 case COMP_SUCCESS:
1836 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1837 ret = 0;
1838 break;
1839 default:
1840 xhci_err(xhci, "ERROR: unexpected command completion "
1841 "code 0x%x.\n", *cmd_status);
1842 ret = -EINVAL;
1843 break;
1844 }
1845 return ret;
1846 }
1847
1848 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1849 struct xhci_container_ctx *in_ctx)
1850 {
1851 struct xhci_input_control_ctx *ctrl_ctx;
1852 u32 valid_add_flags;
1853 u32 valid_drop_flags;
1854
1855 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1856 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1857 * (bit 1). The default control endpoint is added during the Address
1858 * Device command and is never removed until the slot is disabled.
1859 */
1860 valid_add_flags = ctrl_ctx->add_flags >> 2;
1861 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1862
1863 /* Use hweight32 to count the number of ones in the add flags, or
1864 * number of endpoints added. Don't count endpoints that are changed
1865 * (both added and dropped).
1866 */
1867 return hweight32(valid_add_flags) -
1868 hweight32(valid_add_flags & valid_drop_flags);
1869 }
1870
1871 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1872 struct xhci_container_ctx *in_ctx)
1873 {
1874 struct xhci_input_control_ctx *ctrl_ctx;
1875 u32 valid_add_flags;
1876 u32 valid_drop_flags;
1877
1878 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1879 valid_add_flags = ctrl_ctx->add_flags >> 2;
1880 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1881
1882 return hweight32(valid_drop_flags) -
1883 hweight32(valid_add_flags & valid_drop_flags);
1884 }
1885
1886 /*
1887 * We need to reserve the new number of endpoints before the configure endpoint
1888 * command completes. We can't subtract the dropped endpoints from the number
1889 * of active endpoints until the command completes because we can oversubscribe
1890 * the host in this case:
1891 *
1892 * - the first configure endpoint command drops more endpoints than it adds
1893 * - a second configure endpoint command that adds more endpoints is queued
1894 * - the first configure endpoint command fails, so the config is unchanged
1895 * - the second command may succeed, even though there isn't enough resources
1896 *
1897 * Must be called with xhci->lock held.
1898 */
1899 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1900 struct xhci_container_ctx *in_ctx)
1901 {
1902 u32 added_eps;
1903
1904 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1905 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1906 xhci_dbg(xhci, "Not enough ep ctxs: "
1907 "%u active, need to add %u, limit is %u.\n",
1908 xhci->num_active_eps, added_eps,
1909 xhci->limit_active_eps);
1910 return -ENOMEM;
1911 }
1912 xhci->num_active_eps += added_eps;
1913 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1914 xhci->num_active_eps);
1915 return 0;
1916 }
1917
1918 /*
1919 * The configure endpoint was failed by the xHC for some other reason, so we
1920 * need to revert the resources that failed configuration would have used.
1921 *
1922 * Must be called with xhci->lock held.
1923 */
1924 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1925 struct xhci_container_ctx *in_ctx)
1926 {
1927 u32 num_failed_eps;
1928
1929 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1930 xhci->num_active_eps -= num_failed_eps;
1931 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1932 num_failed_eps,
1933 xhci->num_active_eps);
1934 }
1935
1936 /*
1937 * Now that the command has completed, clean up the active endpoint count by
1938 * subtracting out the endpoints that were dropped (but not changed).
1939 *
1940 * Must be called with xhci->lock held.
1941 */
1942 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1943 struct xhci_container_ctx *in_ctx)
1944 {
1945 u32 num_dropped_eps;
1946
1947 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1948 xhci->num_active_eps -= num_dropped_eps;
1949 if (num_dropped_eps)
1950 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1951 num_dropped_eps,
1952 xhci->num_active_eps);
1953 }
1954
1955 static unsigned int xhci_get_block_size(struct usb_device *udev)
1956 {
1957 switch (udev->speed) {
1958 case USB_SPEED_LOW:
1959 case USB_SPEED_FULL:
1960 return FS_BLOCK;
1961 case USB_SPEED_HIGH:
1962 return HS_BLOCK;
1963 case USB_SPEED_SUPER:
1964 return SS_BLOCK;
1965 case USB_SPEED_UNKNOWN:
1966 case USB_SPEED_WIRELESS:
1967 default:
1968 /* Should never happen */
1969 return 1;
1970 }
1971 }
1972
1973 static unsigned int
1974 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1975 {
1976 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1977 return LS_OVERHEAD;
1978 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1979 return FS_OVERHEAD;
1980 return HS_OVERHEAD;
1981 }
1982
1983 /* If we are changing a LS/FS device under a HS hub,
1984 * make sure (if we are activating a new TT) that the HS bus has enough
1985 * bandwidth for this new TT.
1986 */
1987 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1988 struct xhci_virt_device *virt_dev,
1989 int old_active_eps)
1990 {
1991 struct xhci_interval_bw_table *bw_table;
1992 struct xhci_tt_bw_info *tt_info;
1993
1994 /* Find the bandwidth table for the root port this TT is attached to. */
1995 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1996 tt_info = virt_dev->tt_info;
1997 /* If this TT already had active endpoints, the bandwidth for this TT
1998 * has already been added. Removing all periodic endpoints (and thus
1999 * making the TT enactive) will only decrease the bandwidth used.
2000 */
2001 if (old_active_eps)
2002 return 0;
2003 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2004 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2005 return -ENOMEM;
2006 return 0;
2007 }
2008 /* Not sure why we would have no new active endpoints...
2009 *
2010 * Maybe because of an Evaluate Context change for a hub update or a
2011 * control endpoint 0 max packet size change?
2012 * FIXME: skip the bandwidth calculation in that case.
2013 */
2014 return 0;
2015 }
2016
2017 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2018 struct xhci_virt_device *virt_dev)
2019 {
2020 unsigned int bw_reserved;
2021
2022 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2023 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2024 return -ENOMEM;
2025
2026 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2027 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2028 return -ENOMEM;
2029
2030 return 0;
2031 }
2032
2033 /*
2034 * This algorithm is a very conservative estimate of the worst-case scheduling
2035 * scenario for any one interval. The hardware dynamically schedules the
2036 * packets, so we can't tell which microframe could be the limiting factor in
2037 * the bandwidth scheduling. This only takes into account periodic endpoints.
2038 *
2039 * Obviously, we can't solve an NP complete problem to find the minimum worst
2040 * case scenario. Instead, we come up with an estimate that is no less than
2041 * the worst case bandwidth used for any one microframe, but may be an
2042 * over-estimate.
2043 *
2044 * We walk the requirements for each endpoint by interval, starting with the
2045 * smallest interval, and place packets in the schedule where there is only one
2046 * possible way to schedule packets for that interval. In order to simplify
2047 * this algorithm, we record the largest max packet size for each interval, and
2048 * assume all packets will be that size.
2049 *
2050 * For interval 0, we obviously must schedule all packets for each interval.
2051 * The bandwidth for interval 0 is just the amount of data to be transmitted
2052 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2053 * the number of packets).
2054 *
2055 * For interval 1, we have two possible microframes to schedule those packets
2056 * in. For this algorithm, if we can schedule the same number of packets for
2057 * each possible scheduling opportunity (each microframe), we will do so. The
2058 * remaining number of packets will be saved to be transmitted in the gaps in
2059 * the next interval's scheduling sequence.
2060 *
2061 * As we move those remaining packets to be scheduled with interval 2 packets,
2062 * we have to double the number of remaining packets to transmit. This is
2063 * because the intervals are actually powers of 2, and we would be transmitting
2064 * the previous interval's packets twice in this interval. We also have to be
2065 * sure that when we look at the largest max packet size for this interval, we
2066 * also look at the largest max packet size for the remaining packets and take
2067 * the greater of the two.
2068 *
2069 * The algorithm continues to evenly distribute packets in each scheduling
2070 * opportunity, and push the remaining packets out, until we get to the last
2071 * interval. Then those packets and their associated overhead are just added
2072 * to the bandwidth used.
2073 */
2074 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2075 struct xhci_virt_device *virt_dev,
2076 int old_active_eps)
2077 {
2078 unsigned int bw_reserved;
2079 unsigned int max_bandwidth;
2080 unsigned int bw_used;
2081 unsigned int block_size;
2082 struct xhci_interval_bw_table *bw_table;
2083 unsigned int packet_size = 0;
2084 unsigned int overhead = 0;
2085 unsigned int packets_transmitted = 0;
2086 unsigned int packets_remaining = 0;
2087 unsigned int i;
2088
2089 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2090 return xhci_check_ss_bw(xhci, virt_dev);
2091
2092 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2093 max_bandwidth = HS_BW_LIMIT;
2094 /* Convert percent of bus BW reserved to blocks reserved */
2095 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2096 } else {
2097 max_bandwidth = FS_BW_LIMIT;
2098 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2099 }
2100
2101 bw_table = virt_dev->bw_table;
2102 /* We need to translate the max packet size and max ESIT payloads into
2103 * the units the hardware uses.
2104 */
2105 block_size = xhci_get_block_size(virt_dev->udev);
2106
2107 /* If we are manipulating a LS/FS device under a HS hub, double check
2108 * that the HS bus has enough bandwidth if we are activing a new TT.
2109 */
2110 if (virt_dev->tt_info) {
2111 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2112 virt_dev->real_port);
2113 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2114 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2115 "newly activated TT.\n");
2116 return -ENOMEM;
2117 }
2118 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2119 virt_dev->tt_info->slot_id,
2120 virt_dev->tt_info->ttport);
2121 } else {
2122 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2123 virt_dev->real_port);
2124 }
2125
2126 /* Add in how much bandwidth will be used for interval zero, or the
2127 * rounded max ESIT payload + number of packets * largest overhead.
2128 */
2129 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2130 bw_table->interval_bw[0].num_packets *
2131 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2132
2133 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2134 unsigned int bw_added;
2135 unsigned int largest_mps;
2136 unsigned int interval_overhead;
2137
2138 /*
2139 * How many packets could we transmit in this interval?
2140 * If packets didn't fit in the previous interval, we will need
2141 * to transmit that many packets twice within this interval.
2142 */
2143 packets_remaining = 2 * packets_remaining +
2144 bw_table->interval_bw[i].num_packets;
2145
2146 /* Find the largest max packet size of this or the previous
2147 * interval.
2148 */
2149 if (list_empty(&bw_table->interval_bw[i].endpoints))
2150 largest_mps = 0;
2151 else {
2152 struct xhci_virt_ep *virt_ep;
2153 struct list_head *ep_entry;
2154
2155 ep_entry = bw_table->interval_bw[i].endpoints.next;
2156 virt_ep = list_entry(ep_entry,
2157 struct xhci_virt_ep, bw_endpoint_list);
2158 /* Convert to blocks, rounding up */
2159 largest_mps = DIV_ROUND_UP(
2160 virt_ep->bw_info.max_packet_size,
2161 block_size);
2162 }
2163 if (largest_mps > packet_size)
2164 packet_size = largest_mps;
2165
2166 /* Use the larger overhead of this or the previous interval. */
2167 interval_overhead = xhci_get_largest_overhead(
2168 &bw_table->interval_bw[i]);
2169 if (interval_overhead > overhead)
2170 overhead = interval_overhead;
2171
2172 /* How many packets can we evenly distribute across
2173 * (1 << (i + 1)) possible scheduling opportunities?
2174 */
2175 packets_transmitted = packets_remaining >> (i + 1);
2176
2177 /* Add in the bandwidth used for those scheduled packets */
2178 bw_added = packets_transmitted * (overhead + packet_size);
2179
2180 /* How many packets do we have remaining to transmit? */
2181 packets_remaining = packets_remaining % (1 << (i + 1));
2182
2183 /* What largest max packet size should those packets have? */
2184 /* If we've transmitted all packets, don't carry over the
2185 * largest packet size.
2186 */
2187 if (packets_remaining == 0) {
2188 packet_size = 0;
2189 overhead = 0;
2190 } else if (packets_transmitted > 0) {
2191 /* Otherwise if we do have remaining packets, and we've
2192 * scheduled some packets in this interval, take the
2193 * largest max packet size from endpoints with this
2194 * interval.
2195 */
2196 packet_size = largest_mps;
2197 overhead = interval_overhead;
2198 }
2199 /* Otherwise carry over packet_size and overhead from the last
2200 * time we had a remainder.
2201 */
2202 bw_used += bw_added;
2203 if (bw_used > max_bandwidth) {
2204 xhci_warn(xhci, "Not enough bandwidth. "
2205 "Proposed: %u, Max: %u\n",
2206 bw_used, max_bandwidth);
2207 return -ENOMEM;
2208 }
2209 }
2210 /*
2211 * Ok, we know we have some packets left over after even-handedly
2212 * scheduling interval 15. We don't know which microframes they will
2213 * fit into, so we over-schedule and say they will be scheduled every
2214 * microframe.
2215 */
2216 if (packets_remaining > 0)
2217 bw_used += overhead + packet_size;
2218
2219 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2220 unsigned int port_index = virt_dev->real_port - 1;
2221
2222 /* OK, we're manipulating a HS device attached to a
2223 * root port bandwidth domain. Include the number of active TTs
2224 * in the bandwidth used.
2225 */
2226 bw_used += TT_HS_OVERHEAD *
2227 xhci->rh_bw[port_index].num_active_tts;
2228 }
2229
2230 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2231 "Available: %u " "percent\n",
2232 bw_used, max_bandwidth, bw_reserved,
2233 (max_bandwidth - bw_used - bw_reserved) * 100 /
2234 max_bandwidth);
2235
2236 bw_used += bw_reserved;
2237 if (bw_used > max_bandwidth) {
2238 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2239 bw_used, max_bandwidth);
2240 return -ENOMEM;
2241 }
2242
2243 bw_table->bw_used = bw_used;
2244 return 0;
2245 }
2246
2247 static bool xhci_is_async_ep(unsigned int ep_type)
2248 {
2249 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2250 ep_type != ISOC_IN_EP &&
2251 ep_type != INT_IN_EP);
2252 }
2253
2254 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2255 {
2256 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2257 }
2258
2259 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2260 {
2261 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2262
2263 if (ep_bw->ep_interval == 0)
2264 return SS_OVERHEAD_BURST +
2265 (ep_bw->mult * ep_bw->num_packets *
2266 (SS_OVERHEAD + mps));
2267 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2268 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2269 1 << ep_bw->ep_interval);
2270
2271 }
2272
2273 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2274 struct xhci_bw_info *ep_bw,
2275 struct xhci_interval_bw_table *bw_table,
2276 struct usb_device *udev,
2277 struct xhci_virt_ep *virt_ep,
2278 struct xhci_tt_bw_info *tt_info)
2279 {
2280 struct xhci_interval_bw *interval_bw;
2281 int normalized_interval;
2282
2283 if (xhci_is_async_ep(ep_bw->type))
2284 return;
2285
2286 if (udev->speed == USB_SPEED_SUPER) {
2287 if (xhci_is_sync_in_ep(ep_bw->type))
2288 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2289 xhci_get_ss_bw_consumed(ep_bw);
2290 else
2291 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2292 xhci_get_ss_bw_consumed(ep_bw);
2293 return;
2294 }
2295
2296 /* SuperSpeed endpoints never get added to intervals in the table, so
2297 * this check is only valid for HS/FS/LS devices.
2298 */
2299 if (list_empty(&virt_ep->bw_endpoint_list))
2300 return;
2301 /* For LS/FS devices, we need to translate the interval expressed in
2302 * microframes to frames.
2303 */
2304 if (udev->speed == USB_SPEED_HIGH)
2305 normalized_interval = ep_bw->ep_interval;
2306 else
2307 normalized_interval = ep_bw->ep_interval - 3;
2308
2309 if (normalized_interval == 0)
2310 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2311 interval_bw = &bw_table->interval_bw[normalized_interval];
2312 interval_bw->num_packets -= ep_bw->num_packets;
2313 switch (udev->speed) {
2314 case USB_SPEED_LOW:
2315 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2316 break;
2317 case USB_SPEED_FULL:
2318 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2319 break;
2320 case USB_SPEED_HIGH:
2321 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2322 break;
2323 case USB_SPEED_SUPER:
2324 case USB_SPEED_UNKNOWN:
2325 case USB_SPEED_WIRELESS:
2326 /* Should never happen because only LS/FS/HS endpoints will get
2327 * added to the endpoint list.
2328 */
2329 return;
2330 }
2331 if (tt_info)
2332 tt_info->active_eps -= 1;
2333 list_del_init(&virt_ep->bw_endpoint_list);
2334 }
2335
2336 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2337 struct xhci_bw_info *ep_bw,
2338 struct xhci_interval_bw_table *bw_table,
2339 struct usb_device *udev,
2340 struct xhci_virt_ep *virt_ep,
2341 struct xhci_tt_bw_info *tt_info)
2342 {
2343 struct xhci_interval_bw *interval_bw;
2344 struct xhci_virt_ep *smaller_ep;
2345 int normalized_interval;
2346
2347 if (xhci_is_async_ep(ep_bw->type))
2348 return;
2349
2350 if (udev->speed == USB_SPEED_SUPER) {
2351 if (xhci_is_sync_in_ep(ep_bw->type))
2352 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2353 xhci_get_ss_bw_consumed(ep_bw);
2354 else
2355 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2356 xhci_get_ss_bw_consumed(ep_bw);
2357 return;
2358 }
2359
2360 /* For LS/FS devices, we need to translate the interval expressed in
2361 * microframes to frames.
2362 */
2363 if (udev->speed == USB_SPEED_HIGH)
2364 normalized_interval = ep_bw->ep_interval;
2365 else
2366 normalized_interval = ep_bw->ep_interval - 3;
2367
2368 if (normalized_interval == 0)
2369 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2370 interval_bw = &bw_table->interval_bw[normalized_interval];
2371 interval_bw->num_packets += ep_bw->num_packets;
2372 switch (udev->speed) {
2373 case USB_SPEED_LOW:
2374 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2375 break;
2376 case USB_SPEED_FULL:
2377 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2378 break;
2379 case USB_SPEED_HIGH:
2380 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2381 break;
2382 case USB_SPEED_SUPER:
2383 case USB_SPEED_UNKNOWN:
2384 case USB_SPEED_WIRELESS:
2385 /* Should never happen because only LS/FS/HS endpoints will get
2386 * added to the endpoint list.
2387 */
2388 return;
2389 }
2390
2391 if (tt_info)
2392 tt_info->active_eps += 1;
2393 /* Insert the endpoint into the list, largest max packet size first. */
2394 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2395 bw_endpoint_list) {
2396 if (ep_bw->max_packet_size >=
2397 smaller_ep->bw_info.max_packet_size) {
2398 /* Add the new ep before the smaller endpoint */
2399 list_add_tail(&virt_ep->bw_endpoint_list,
2400 &smaller_ep->bw_endpoint_list);
2401 return;
2402 }
2403 }
2404 /* Add the new endpoint at the end of the list. */
2405 list_add_tail(&virt_ep->bw_endpoint_list,
2406 &interval_bw->endpoints);
2407 }
2408
2409 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2410 struct xhci_virt_device *virt_dev,
2411 int old_active_eps)
2412 {
2413 struct xhci_root_port_bw_info *rh_bw_info;
2414 if (!virt_dev->tt_info)
2415 return;
2416
2417 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2418 if (old_active_eps == 0 &&
2419 virt_dev->tt_info->active_eps != 0) {
2420 rh_bw_info->num_active_tts += 1;
2421 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2422 } else if (old_active_eps != 0 &&
2423 virt_dev->tt_info->active_eps == 0) {
2424 rh_bw_info->num_active_tts -= 1;
2425 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2426 }
2427 }
2428
2429 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2430 struct xhci_virt_device *virt_dev,
2431 struct xhci_container_ctx *in_ctx)
2432 {
2433 struct xhci_bw_info ep_bw_info[31];
2434 int i;
2435 struct xhci_input_control_ctx *ctrl_ctx;
2436 int old_active_eps = 0;
2437
2438 if (virt_dev->tt_info)
2439 old_active_eps = virt_dev->tt_info->active_eps;
2440
2441 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2442
2443 for (i = 0; i < 31; i++) {
2444 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2445 continue;
2446
2447 /* Make a copy of the BW info in case we need to revert this */
2448 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2449 sizeof(ep_bw_info[i]));
2450 /* Drop the endpoint from the interval table if the endpoint is
2451 * being dropped or changed.
2452 */
2453 if (EP_IS_DROPPED(ctrl_ctx, i))
2454 xhci_drop_ep_from_interval_table(xhci,
2455 &virt_dev->eps[i].bw_info,
2456 virt_dev->bw_table,
2457 virt_dev->udev,
2458 &virt_dev->eps[i],
2459 virt_dev->tt_info);
2460 }
2461 /* Overwrite the information stored in the endpoints' bw_info */
2462 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2463 for (i = 0; i < 31; i++) {
2464 /* Add any changed or added endpoints to the interval table */
2465 if (EP_IS_ADDED(ctrl_ctx, i))
2466 xhci_add_ep_to_interval_table(xhci,
2467 &virt_dev->eps[i].bw_info,
2468 virt_dev->bw_table,
2469 virt_dev->udev,
2470 &virt_dev->eps[i],
2471 virt_dev->tt_info);
2472 }
2473
2474 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2475 /* Ok, this fits in the bandwidth we have.
2476 * Update the number of active TTs.
2477 */
2478 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2479 return 0;
2480 }
2481
2482 /* We don't have enough bandwidth for this, revert the stored info. */
2483 for (i = 0; i < 31; i++) {
2484 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2485 continue;
2486
2487 /* Drop the new copies of any added or changed endpoints from
2488 * the interval table.
2489 */
2490 if (EP_IS_ADDED(ctrl_ctx, i)) {
2491 xhci_drop_ep_from_interval_table(xhci,
2492 &virt_dev->eps[i].bw_info,
2493 virt_dev->bw_table,
2494 virt_dev->udev,
2495 &virt_dev->eps[i],
2496 virt_dev->tt_info);
2497 }
2498 /* Revert the endpoint back to its old information */
2499 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2500 sizeof(ep_bw_info[i]));
2501 /* Add any changed or dropped endpoints back into the table */
2502 if (EP_IS_DROPPED(ctrl_ctx, i))
2503 xhci_add_ep_to_interval_table(xhci,
2504 &virt_dev->eps[i].bw_info,
2505 virt_dev->bw_table,
2506 virt_dev->udev,
2507 &virt_dev->eps[i],
2508 virt_dev->tt_info);
2509 }
2510 return -ENOMEM;
2511 }
2512
2513
2514 /* Issue a configure endpoint command or evaluate context command
2515 * and wait for it to finish.
2516 */
2517 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2518 struct usb_device *udev,
2519 struct xhci_command *command,
2520 bool ctx_change, bool must_succeed)
2521 {
2522 int ret;
2523 int timeleft;
2524 unsigned long flags;
2525 struct xhci_container_ctx *in_ctx;
2526 struct completion *cmd_completion;
2527 u32 *cmd_status;
2528 struct xhci_virt_device *virt_dev;
2529 union xhci_trb *cmd_trb;
2530
2531 spin_lock_irqsave(&xhci->lock, flags);
2532 virt_dev = xhci->devs[udev->slot_id];
2533
2534 if (command)
2535 in_ctx = command->in_ctx;
2536 else
2537 in_ctx = virt_dev->in_ctx;
2538
2539 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2540 xhci_reserve_host_resources(xhci, in_ctx)) {
2541 spin_unlock_irqrestore(&xhci->lock, flags);
2542 xhci_warn(xhci, "Not enough host resources, "
2543 "active endpoint contexts = %u\n",
2544 xhci->num_active_eps);
2545 return -ENOMEM;
2546 }
2547 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2548 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2549 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2550 xhci_free_host_resources(xhci, in_ctx);
2551 spin_unlock_irqrestore(&xhci->lock, flags);
2552 xhci_warn(xhci, "Not enough bandwidth\n");
2553 return -ENOMEM;
2554 }
2555
2556 if (command) {
2557 cmd_completion = command->completion;
2558 cmd_status = &command->status;
2559 command->command_trb = xhci->cmd_ring->enqueue;
2560
2561 /* Enqueue pointer can be left pointing to the link TRB,
2562 * we must handle that
2563 */
2564 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2565 command->command_trb =
2566 xhci->cmd_ring->enq_seg->next->trbs;
2567
2568 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2569 } else {
2570 cmd_completion = &virt_dev->cmd_completion;
2571 cmd_status = &virt_dev->cmd_status;
2572 }
2573 init_completion(cmd_completion);
2574
2575 cmd_trb = xhci->cmd_ring->dequeue;
2576 if (!ctx_change)
2577 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2578 udev->slot_id, must_succeed);
2579 else
2580 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2581 udev->slot_id, must_succeed);
2582 if (ret < 0) {
2583 if (command)
2584 list_del(&command->cmd_list);
2585 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2586 xhci_free_host_resources(xhci, in_ctx);
2587 spin_unlock_irqrestore(&xhci->lock, flags);
2588 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2589 return -ENOMEM;
2590 }
2591 xhci_ring_cmd_db(xhci);
2592 spin_unlock_irqrestore(&xhci->lock, flags);
2593
2594 /* Wait for the configure endpoint command to complete */
2595 timeleft = wait_for_completion_interruptible_timeout(
2596 cmd_completion,
2597 XHCI_CMD_DEFAULT_TIMEOUT);
2598 if (timeleft <= 0) {
2599 xhci_warn(xhci, "%s while waiting for %s command\n",
2600 timeleft == 0 ? "Timeout" : "Signal",
2601 ctx_change == 0 ?
2602 "configure endpoint" :
2603 "evaluate context");
2604 /* cancel the configure endpoint command */
2605 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2606 if (ret < 0)
2607 return ret;
2608 return -ETIME;
2609 }
2610
2611 if (!ctx_change)
2612 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2613 else
2614 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2615
2616 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2617 spin_lock_irqsave(&xhci->lock, flags);
2618 /* If the command failed, remove the reserved resources.
2619 * Otherwise, clean up the estimate to include dropped eps.
2620 */
2621 if (ret)
2622 xhci_free_host_resources(xhci, in_ctx);
2623 else
2624 xhci_finish_resource_reservation(xhci, in_ctx);
2625 spin_unlock_irqrestore(&xhci->lock, flags);
2626 }
2627 return ret;
2628 }
2629
2630 /* Called after one or more calls to xhci_add_endpoint() or
2631 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2632 * to call xhci_reset_bandwidth().
2633 *
2634 * Since we are in the middle of changing either configuration or
2635 * installing a new alt setting, the USB core won't allow URBs to be
2636 * enqueued for any endpoint on the old config or interface. Nothing
2637 * else should be touching the xhci->devs[slot_id] structure, so we
2638 * don't need to take the xhci->lock for manipulating that.
2639 */
2640 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2641 {
2642 int i;
2643 int ret = 0;
2644 struct xhci_hcd *xhci;
2645 struct xhci_virt_device *virt_dev;
2646 struct xhci_input_control_ctx *ctrl_ctx;
2647 struct xhci_slot_ctx *slot_ctx;
2648
2649 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2650 if (ret <= 0)
2651 return ret;
2652 xhci = hcd_to_xhci(hcd);
2653 if (xhci->xhc_state & XHCI_STATE_DYING)
2654 return -ENODEV;
2655
2656 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2657 virt_dev = xhci->devs[udev->slot_id];
2658
2659 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2660 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2661 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2662 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2663 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2664
2665 /* Don't issue the command if there's no endpoints to update. */
2666 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2667 ctrl_ctx->drop_flags == 0)
2668 return 0;
2669
2670 xhci_dbg(xhci, "New Input Control Context:\n");
2671 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2672 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2673 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2674
2675 ret = xhci_configure_endpoint(xhci, udev, NULL,
2676 false, false);
2677 if (ret) {
2678 /* Callee should call reset_bandwidth() */
2679 return ret;
2680 }
2681
2682 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2683 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2684 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2685
2686 /* Free any rings that were dropped, but not changed. */
2687 for (i = 1; i < 31; ++i) {
2688 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2689 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2690 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2691 }
2692 xhci_zero_in_ctx(xhci, virt_dev);
2693 /*
2694 * Install any rings for completely new endpoints or changed endpoints,
2695 * and free or cache any old rings from changed endpoints.
2696 */
2697 for (i = 1; i < 31; ++i) {
2698 if (!virt_dev->eps[i].new_ring)
2699 continue;
2700 /* Only cache or free the old ring if it exists.
2701 * It may not if this is the first add of an endpoint.
2702 */
2703 if (virt_dev->eps[i].ring) {
2704 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2705 }
2706 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2707 virt_dev->eps[i].new_ring = NULL;
2708 }
2709
2710 return ret;
2711 }
2712
2713 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2714 {
2715 struct xhci_hcd *xhci;
2716 struct xhci_virt_device *virt_dev;
2717 int i, ret;
2718
2719 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2720 if (ret <= 0)
2721 return;
2722 xhci = hcd_to_xhci(hcd);
2723
2724 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2725 virt_dev = xhci->devs[udev->slot_id];
2726 /* Free any rings allocated for added endpoints */
2727 for (i = 0; i < 31; ++i) {
2728 if (virt_dev->eps[i].new_ring) {
2729 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2730 virt_dev->eps[i].new_ring = NULL;
2731 }
2732 }
2733 xhci_zero_in_ctx(xhci, virt_dev);
2734 }
2735
2736 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2737 struct xhci_container_ctx *in_ctx,
2738 struct xhci_container_ctx *out_ctx,
2739 u32 add_flags, u32 drop_flags)
2740 {
2741 struct xhci_input_control_ctx *ctrl_ctx;
2742 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2743 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2744 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2745 xhci_slot_copy(xhci, in_ctx, out_ctx);
2746 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2747
2748 xhci_dbg(xhci, "Input Context:\n");
2749 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2750 }
2751
2752 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2753 unsigned int slot_id, unsigned int ep_index,
2754 struct xhci_dequeue_state *deq_state)
2755 {
2756 struct xhci_container_ctx *in_ctx;
2757 struct xhci_ep_ctx *ep_ctx;
2758 u32 added_ctxs;
2759 dma_addr_t addr;
2760
2761 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2762 xhci->devs[slot_id]->out_ctx, ep_index);
2763 in_ctx = xhci->devs[slot_id]->in_ctx;
2764 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2765 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2766 deq_state->new_deq_ptr);
2767 if (addr == 0) {
2768 xhci_warn(xhci, "WARN Cannot submit config ep after "
2769 "reset ep command\n");
2770 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2771 deq_state->new_deq_seg,
2772 deq_state->new_deq_ptr);
2773 return;
2774 }
2775 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2776
2777 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2778 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2779 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2780 }
2781
2782 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2783 struct usb_device *udev, unsigned int ep_index)
2784 {
2785 struct xhci_dequeue_state deq_state;
2786 struct xhci_virt_ep *ep;
2787
2788 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2789 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2790 /* We need to move the HW's dequeue pointer past this TD,
2791 * or it will attempt to resend it on the next doorbell ring.
2792 */
2793 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2794 ep_index, ep->stopped_stream, ep->stopped_td,
2795 &deq_state);
2796
2797 /* HW with the reset endpoint quirk will use the saved dequeue state to
2798 * issue a configure endpoint command later.
2799 */
2800 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2801 xhci_dbg(xhci, "Queueing new dequeue state\n");
2802 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2803 ep_index, ep->stopped_stream, &deq_state);
2804 } else {
2805 /* Better hope no one uses the input context between now and the
2806 * reset endpoint completion!
2807 * XXX: No idea how this hardware will react when stream rings
2808 * are enabled.
2809 */
2810 xhci_dbg(xhci, "Setting up input context for "
2811 "configure endpoint command\n");
2812 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2813 ep_index, &deq_state);
2814 }
2815 }
2816
2817 /* Deal with stalled endpoints. The core should have sent the control message
2818 * to clear the halt condition. However, we need to make the xHCI hardware
2819 * reset its sequence number, since a device will expect a sequence number of
2820 * zero after the halt condition is cleared.
2821 * Context: in_interrupt
2822 */
2823 void xhci_endpoint_reset(struct usb_hcd *hcd,
2824 struct usb_host_endpoint *ep)
2825 {
2826 struct xhci_hcd *xhci;
2827 struct usb_device *udev;
2828 unsigned int ep_index;
2829 unsigned long flags;
2830 int ret;
2831 struct xhci_virt_ep *virt_ep;
2832
2833 xhci = hcd_to_xhci(hcd);
2834 udev = (struct usb_device *) ep->hcpriv;
2835 /* Called with a root hub endpoint (or an endpoint that wasn't added
2836 * with xhci_add_endpoint()
2837 */
2838 if (!ep->hcpriv)
2839 return;
2840 ep_index = xhci_get_endpoint_index(&ep->desc);
2841 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2842 if (!virt_ep->stopped_td) {
2843 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2844 ep->desc.bEndpointAddress);
2845 return;
2846 }
2847 if (usb_endpoint_xfer_control(&ep->desc)) {
2848 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2849 return;
2850 }
2851
2852 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2853 spin_lock_irqsave(&xhci->lock, flags);
2854 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2855 /*
2856 * Can't change the ring dequeue pointer until it's transitioned to the
2857 * stopped state, which is only upon a successful reset endpoint
2858 * command. Better hope that last command worked!
2859 */
2860 if (!ret) {
2861 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2862 kfree(virt_ep->stopped_td);
2863 xhci_ring_cmd_db(xhci);
2864 }
2865 virt_ep->stopped_td = NULL;
2866 virt_ep->stopped_trb = NULL;
2867 virt_ep->stopped_stream = 0;
2868 spin_unlock_irqrestore(&xhci->lock, flags);
2869
2870 if (ret)
2871 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2872 }
2873
2874 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2875 struct usb_device *udev, struct usb_host_endpoint *ep,
2876 unsigned int slot_id)
2877 {
2878 int ret;
2879 unsigned int ep_index;
2880 unsigned int ep_state;
2881
2882 if (!ep)
2883 return -EINVAL;
2884 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2885 if (ret <= 0)
2886 return -EINVAL;
2887 if (ep->ss_ep_comp.bmAttributes == 0) {
2888 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2889 " descriptor for ep 0x%x does not support streams\n",
2890 ep->desc.bEndpointAddress);
2891 return -EINVAL;
2892 }
2893
2894 ep_index = xhci_get_endpoint_index(&ep->desc);
2895 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2896 if (ep_state & EP_HAS_STREAMS ||
2897 ep_state & EP_GETTING_STREAMS) {
2898 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2899 "already has streams set up.\n",
2900 ep->desc.bEndpointAddress);
2901 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2902 "dynamic stream context array reallocation.\n");
2903 return -EINVAL;
2904 }
2905 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2906 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2907 "endpoint 0x%x; URBs are pending.\n",
2908 ep->desc.bEndpointAddress);
2909 return -EINVAL;
2910 }
2911 return 0;
2912 }
2913
2914 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2915 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2916 {
2917 unsigned int max_streams;
2918
2919 /* The stream context array size must be a power of two */
2920 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2921 /*
2922 * Find out how many primary stream array entries the host controller
2923 * supports. Later we may use secondary stream arrays (similar to 2nd
2924 * level page entries), but that's an optional feature for xHCI host
2925 * controllers. xHCs must support at least 4 stream IDs.
2926 */
2927 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2928 if (*num_stream_ctxs > max_streams) {
2929 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2930 max_streams);
2931 *num_stream_ctxs = max_streams;
2932 *num_streams = max_streams;
2933 }
2934 }
2935
2936 /* Returns an error code if one of the endpoint already has streams.
2937 * This does not change any data structures, it only checks and gathers
2938 * information.
2939 */
2940 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2941 struct usb_device *udev,
2942 struct usb_host_endpoint **eps, unsigned int num_eps,
2943 unsigned int *num_streams, u32 *changed_ep_bitmask)
2944 {
2945 unsigned int max_streams;
2946 unsigned int endpoint_flag;
2947 int i;
2948 int ret;
2949
2950 for (i = 0; i < num_eps; i++) {
2951 ret = xhci_check_streams_endpoint(xhci, udev,
2952 eps[i], udev->slot_id);
2953 if (ret < 0)
2954 return ret;
2955
2956 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2957 if (max_streams < (*num_streams - 1)) {
2958 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2959 eps[i]->desc.bEndpointAddress,
2960 max_streams);
2961 *num_streams = max_streams+1;
2962 }
2963
2964 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2965 if (*changed_ep_bitmask & endpoint_flag)
2966 return -EINVAL;
2967 *changed_ep_bitmask |= endpoint_flag;
2968 }
2969 return 0;
2970 }
2971
2972 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2973 struct usb_device *udev,
2974 struct usb_host_endpoint **eps, unsigned int num_eps)
2975 {
2976 u32 changed_ep_bitmask = 0;
2977 unsigned int slot_id;
2978 unsigned int ep_index;
2979 unsigned int ep_state;
2980 int i;
2981
2982 slot_id = udev->slot_id;
2983 if (!xhci->devs[slot_id])
2984 return 0;
2985
2986 for (i = 0; i < num_eps; i++) {
2987 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2988 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2989 /* Are streams already being freed for the endpoint? */
2990 if (ep_state & EP_GETTING_NO_STREAMS) {
2991 xhci_warn(xhci, "WARN Can't disable streams for "
2992 "endpoint 0x%x\n, "
2993 "streams are being disabled already.",
2994 eps[i]->desc.bEndpointAddress);
2995 return 0;
2996 }
2997 /* Are there actually any streams to free? */
2998 if (!(ep_state & EP_HAS_STREAMS) &&
2999 !(ep_state & EP_GETTING_STREAMS)) {
3000 xhci_warn(xhci, "WARN Can't disable streams for "
3001 "endpoint 0x%x\n, "
3002 "streams are already disabled!",
3003 eps[i]->desc.bEndpointAddress);
3004 xhci_warn(xhci, "WARN xhci_free_streams() called "
3005 "with non-streams endpoint\n");
3006 return 0;
3007 }
3008 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3009 }
3010 return changed_ep_bitmask;
3011 }
3012
3013 /*
3014 * The USB device drivers use this function (though the HCD interface in USB
3015 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3016 * coordinate mass storage command queueing across multiple endpoints (basically
3017 * a stream ID == a task ID).
3018 *
3019 * Setting up streams involves allocating the same size stream context array
3020 * for each endpoint and issuing a configure endpoint command for all endpoints.
3021 *
3022 * Don't allow the call to succeed if one endpoint only supports one stream
3023 * (which means it doesn't support streams at all).
3024 *
3025 * Drivers may get less stream IDs than they asked for, if the host controller
3026 * hardware or endpoints claim they can't support the number of requested
3027 * stream IDs.
3028 */
3029 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3030 struct usb_host_endpoint **eps, unsigned int num_eps,
3031 unsigned int num_streams, gfp_t mem_flags)
3032 {
3033 int i, ret;
3034 struct xhci_hcd *xhci;
3035 struct xhci_virt_device *vdev;
3036 struct xhci_command *config_cmd;
3037 unsigned int ep_index;
3038 unsigned int num_stream_ctxs;
3039 unsigned long flags;
3040 u32 changed_ep_bitmask = 0;
3041
3042 if (!eps)
3043 return -EINVAL;
3044
3045 /* Add one to the number of streams requested to account for
3046 * stream 0 that is reserved for xHCI usage.
3047 */
3048 num_streams += 1;
3049 xhci = hcd_to_xhci(hcd);
3050 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3051 num_streams);
3052
3053 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3054 if (!config_cmd) {
3055 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3056 return -ENOMEM;
3057 }
3058
3059 /* Check to make sure all endpoints are not already configured for
3060 * streams. While we're at it, find the maximum number of streams that
3061 * all the endpoints will support and check for duplicate endpoints.
3062 */
3063 spin_lock_irqsave(&xhci->lock, flags);
3064 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3065 num_eps, &num_streams, &changed_ep_bitmask);
3066 if (ret < 0) {
3067 xhci_free_command(xhci, config_cmd);
3068 spin_unlock_irqrestore(&xhci->lock, flags);
3069 return ret;
3070 }
3071 if (num_streams <= 1) {
3072 xhci_warn(xhci, "WARN: endpoints can't handle "
3073 "more than one stream.\n");
3074 xhci_free_command(xhci, config_cmd);
3075 spin_unlock_irqrestore(&xhci->lock, flags);
3076 return -EINVAL;
3077 }
3078 vdev = xhci->devs[udev->slot_id];
3079 /* Mark each endpoint as being in transition, so
3080 * xhci_urb_enqueue() will reject all URBs.
3081 */
3082 for (i = 0; i < num_eps; i++) {
3083 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3084 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3085 }
3086 spin_unlock_irqrestore(&xhci->lock, flags);
3087
3088 /* Setup internal data structures and allocate HW data structures for
3089 * streams (but don't install the HW structures in the input context
3090 * until we're sure all memory allocation succeeded).
3091 */
3092 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3093 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3094 num_stream_ctxs, num_streams);
3095
3096 for (i = 0; i < num_eps; i++) {
3097 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3098 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3099 num_stream_ctxs,
3100 num_streams, mem_flags);
3101 if (!vdev->eps[ep_index].stream_info)
3102 goto cleanup;
3103 /* Set maxPstreams in endpoint context and update deq ptr to
3104 * point to stream context array. FIXME
3105 */
3106 }
3107
3108 /* Set up the input context for a configure endpoint command. */
3109 for (i = 0; i < num_eps; i++) {
3110 struct xhci_ep_ctx *ep_ctx;
3111
3112 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3113 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3114
3115 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3116 vdev->out_ctx, ep_index);
3117 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3118 vdev->eps[ep_index].stream_info);
3119 }
3120 /* Tell the HW to drop its old copy of the endpoint context info
3121 * and add the updated copy from the input context.
3122 */
3123 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3124 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3125
3126 /* Issue and wait for the configure endpoint command */
3127 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3128 false, false);
3129
3130 /* xHC rejected the configure endpoint command for some reason, so we
3131 * leave the old ring intact and free our internal streams data
3132 * structure.
3133 */
3134 if (ret < 0)
3135 goto cleanup;
3136
3137 spin_lock_irqsave(&xhci->lock, flags);
3138 for (i = 0; i < num_eps; i++) {
3139 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3140 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3141 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3142 udev->slot_id, ep_index);
3143 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3144 }
3145 xhci_free_command(xhci, config_cmd);
3146 spin_unlock_irqrestore(&xhci->lock, flags);
3147
3148 /* Subtract 1 for stream 0, which drivers can't use */
3149 return num_streams - 1;
3150
3151 cleanup:
3152 /* If it didn't work, free the streams! */
3153 for (i = 0; i < num_eps; i++) {
3154 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3155 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3156 vdev->eps[ep_index].stream_info = NULL;
3157 /* FIXME Unset maxPstreams in endpoint context and
3158 * update deq ptr to point to normal string ring.
3159 */
3160 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3161 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3162 xhci_endpoint_zero(xhci, vdev, eps[i]);
3163 }
3164 xhci_free_command(xhci, config_cmd);
3165 return -ENOMEM;
3166 }
3167
3168 /* Transition the endpoint from using streams to being a "normal" endpoint
3169 * without streams.
3170 *
3171 * Modify the endpoint context state, submit a configure endpoint command,
3172 * and free all endpoint rings for streams if that completes successfully.
3173 */
3174 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3175 struct usb_host_endpoint **eps, unsigned int num_eps,
3176 gfp_t mem_flags)
3177 {
3178 int i, ret;
3179 struct xhci_hcd *xhci;
3180 struct xhci_virt_device *vdev;
3181 struct xhci_command *command;
3182 unsigned int ep_index;
3183 unsigned long flags;
3184 u32 changed_ep_bitmask;
3185
3186 xhci = hcd_to_xhci(hcd);
3187 vdev = xhci->devs[udev->slot_id];
3188
3189 /* Set up a configure endpoint command to remove the streams rings */
3190 spin_lock_irqsave(&xhci->lock, flags);
3191 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3192 udev, eps, num_eps);
3193 if (changed_ep_bitmask == 0) {
3194 spin_unlock_irqrestore(&xhci->lock, flags);
3195 return -EINVAL;
3196 }
3197
3198 /* Use the xhci_command structure from the first endpoint. We may have
3199 * allocated too many, but the driver may call xhci_free_streams() for
3200 * each endpoint it grouped into one call to xhci_alloc_streams().
3201 */
3202 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3203 command = vdev->eps[ep_index].stream_info->free_streams_command;
3204 for (i = 0; i < num_eps; i++) {
3205 struct xhci_ep_ctx *ep_ctx;
3206
3207 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3208 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3209 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3210 EP_GETTING_NO_STREAMS;
3211
3212 xhci_endpoint_copy(xhci, command->in_ctx,
3213 vdev->out_ctx, ep_index);
3214 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3215 &vdev->eps[ep_index]);
3216 }
3217 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3218 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3219 spin_unlock_irqrestore(&xhci->lock, flags);
3220
3221 /* Issue and wait for the configure endpoint command,
3222 * which must succeed.
3223 */
3224 ret = xhci_configure_endpoint(xhci, udev, command,
3225 false, true);
3226
3227 /* xHC rejected the configure endpoint command for some reason, so we
3228 * leave the streams rings intact.
3229 */
3230 if (ret < 0)
3231 return ret;
3232
3233 spin_lock_irqsave(&xhci->lock, flags);
3234 for (i = 0; i < num_eps; i++) {
3235 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3236 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3237 vdev->eps[ep_index].stream_info = NULL;
3238 /* FIXME Unset maxPstreams in endpoint context and
3239 * update deq ptr to point to normal string ring.
3240 */
3241 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3242 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3243 }
3244 spin_unlock_irqrestore(&xhci->lock, flags);
3245
3246 return 0;
3247 }
3248
3249 /*
3250 * Deletes endpoint resources for endpoints that were active before a Reset
3251 * Device command, or a Disable Slot command. The Reset Device command leaves
3252 * the control endpoint intact, whereas the Disable Slot command deletes it.
3253 *
3254 * Must be called with xhci->lock held.
3255 */
3256 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3257 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3258 {
3259 int i;
3260 unsigned int num_dropped_eps = 0;
3261 unsigned int drop_flags = 0;
3262
3263 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3264 if (virt_dev->eps[i].ring) {
3265 drop_flags |= 1 << i;
3266 num_dropped_eps++;
3267 }
3268 }
3269 xhci->num_active_eps -= num_dropped_eps;
3270 if (num_dropped_eps)
3271 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3272 "%u now active.\n",
3273 num_dropped_eps, drop_flags,
3274 xhci->num_active_eps);
3275 }
3276
3277 /*
3278 * This submits a Reset Device Command, which will set the device state to 0,
3279 * set the device address to 0, and disable all the endpoints except the default
3280 * control endpoint. The USB core should come back and call
3281 * xhci_address_device(), and then re-set up the configuration. If this is
3282 * called because of a usb_reset_and_verify_device(), then the old alternate
3283 * settings will be re-installed through the normal bandwidth allocation
3284 * functions.
3285 *
3286 * Wait for the Reset Device command to finish. Remove all structures
3287 * associated with the endpoints that were disabled. Clear the input device
3288 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3289 *
3290 * If the virt_dev to be reset does not exist or does not match the udev,
3291 * it means the device is lost, possibly due to the xHC restore error and
3292 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3293 * re-allocate the device.
3294 */
3295 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3296 {
3297 int ret, i;
3298 unsigned long flags;
3299 struct xhci_hcd *xhci;
3300 unsigned int slot_id;
3301 struct xhci_virt_device *virt_dev;
3302 struct xhci_command *reset_device_cmd;
3303 int timeleft;
3304 int last_freed_endpoint;
3305 struct xhci_slot_ctx *slot_ctx;
3306 int old_active_eps = 0;
3307
3308 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3309 if (ret <= 0)
3310 return ret;
3311 xhci = hcd_to_xhci(hcd);
3312 slot_id = udev->slot_id;
3313 virt_dev = xhci->devs[slot_id];
3314 if (!virt_dev) {
3315 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3316 "not exist. Re-allocate the device\n", slot_id);
3317 ret = xhci_alloc_dev(hcd, udev);
3318 if (ret == 1)
3319 return 0;
3320 else
3321 return -EINVAL;
3322 }
3323
3324 if (virt_dev->udev != udev) {
3325 /* If the virt_dev and the udev does not match, this virt_dev
3326 * may belong to another udev.
3327 * Re-allocate the device.
3328 */
3329 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3330 "not match the udev. Re-allocate the device\n",
3331 slot_id);
3332 ret = xhci_alloc_dev(hcd, udev);
3333 if (ret == 1)
3334 return 0;
3335 else
3336 return -EINVAL;
3337 }
3338
3339 /* If device is not setup, there is no point in resetting it */
3340 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3341 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3342 SLOT_STATE_DISABLED)
3343 return 0;
3344
3345 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3346 /* Allocate the command structure that holds the struct completion.
3347 * Assume we're in process context, since the normal device reset
3348 * process has to wait for the device anyway. Storage devices are
3349 * reset as part of error handling, so use GFP_NOIO instead of
3350 * GFP_KERNEL.
3351 */
3352 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3353 if (!reset_device_cmd) {
3354 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3355 return -ENOMEM;
3356 }
3357
3358 /* Attempt to submit the Reset Device command to the command ring */
3359 spin_lock_irqsave(&xhci->lock, flags);
3360 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3361
3362 /* Enqueue pointer can be left pointing to the link TRB,
3363 * we must handle that
3364 */
3365 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3366 reset_device_cmd->command_trb =
3367 xhci->cmd_ring->enq_seg->next->trbs;
3368
3369 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3370 ret = xhci_queue_reset_device(xhci, slot_id);
3371 if (ret) {
3372 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3373 list_del(&reset_device_cmd->cmd_list);
3374 spin_unlock_irqrestore(&xhci->lock, flags);
3375 goto command_cleanup;
3376 }
3377 xhci_ring_cmd_db(xhci);
3378 spin_unlock_irqrestore(&xhci->lock, flags);
3379
3380 /* Wait for the Reset Device command to finish */
3381 timeleft = wait_for_completion_interruptible_timeout(
3382 reset_device_cmd->completion,
3383 USB_CTRL_SET_TIMEOUT);
3384 if (timeleft <= 0) {
3385 xhci_warn(xhci, "%s while waiting for reset device command\n",
3386 timeleft == 0 ? "Timeout" : "Signal");
3387 spin_lock_irqsave(&xhci->lock, flags);
3388 /* The timeout might have raced with the event ring handler, so
3389 * only delete from the list if the item isn't poisoned.
3390 */
3391 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3392 list_del(&reset_device_cmd->cmd_list);
3393 spin_unlock_irqrestore(&xhci->lock, flags);
3394 ret = -ETIME;
3395 goto command_cleanup;
3396 }
3397
3398 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3399 * unless we tried to reset a slot ID that wasn't enabled,
3400 * or the device wasn't in the addressed or configured state.
3401 */
3402 ret = reset_device_cmd->status;
3403 switch (ret) {
3404 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3405 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3406 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3407 slot_id,
3408 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3409 xhci_info(xhci, "Not freeing device rings.\n");
3410 /* Don't treat this as an error. May change my mind later. */
3411 ret = 0;
3412 goto command_cleanup;
3413 case COMP_SUCCESS:
3414 xhci_dbg(xhci, "Successful reset device command.\n");
3415 break;
3416 default:
3417 if (xhci_is_vendor_info_code(xhci, ret))
3418 break;
3419 xhci_warn(xhci, "Unknown completion code %u for "
3420 "reset device command.\n", ret);
3421 ret = -EINVAL;
3422 goto command_cleanup;
3423 }
3424
3425 /* Free up host controller endpoint resources */
3426 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3427 spin_lock_irqsave(&xhci->lock, flags);
3428 /* Don't delete the default control endpoint resources */
3429 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3430 spin_unlock_irqrestore(&xhci->lock, flags);
3431 }
3432
3433 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3434 last_freed_endpoint = 1;
3435 for (i = 1; i < 31; ++i) {
3436 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3437
3438 if (ep->ep_state & EP_HAS_STREAMS) {
3439 xhci_free_stream_info(xhci, ep->stream_info);
3440 ep->stream_info = NULL;
3441 ep->ep_state &= ~EP_HAS_STREAMS;
3442 }
3443
3444 if (ep->ring) {
3445 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3446 last_freed_endpoint = i;
3447 }
3448 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3449 xhci_drop_ep_from_interval_table(xhci,
3450 &virt_dev->eps[i].bw_info,
3451 virt_dev->bw_table,
3452 udev,
3453 &virt_dev->eps[i],
3454 virt_dev->tt_info);
3455 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3456 }
3457 /* If necessary, update the number of active TTs on this root port */
3458 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3459
3460 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3461 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3462 ret = 0;
3463
3464 command_cleanup:
3465 xhci_free_command(xhci, reset_device_cmd);
3466 return ret;
3467 }
3468
3469 /*
3470 * At this point, the struct usb_device is about to go away, the device has
3471 * disconnected, and all traffic has been stopped and the endpoints have been
3472 * disabled. Free any HC data structures associated with that device.
3473 */
3474 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3475 {
3476 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3477 struct xhci_virt_device *virt_dev;
3478 unsigned long flags;
3479 u32 state;
3480 int i, ret;
3481
3482 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3483 /* If the host is halted due to driver unload, we still need to free the
3484 * device.
3485 */
3486 if (ret <= 0 && ret != -ENODEV)
3487 return;
3488
3489 virt_dev = xhci->devs[udev->slot_id];
3490
3491 /* Stop any wayward timer functions (which may grab the lock) */
3492 for (i = 0; i < 31; ++i) {
3493 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3494 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3495 }
3496
3497 if (udev->usb2_hw_lpm_enabled) {
3498 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3499 udev->usb2_hw_lpm_enabled = 0;
3500 }
3501
3502 spin_lock_irqsave(&xhci->lock, flags);
3503 /* Don't disable the slot if the host controller is dead. */
3504 state = xhci_readl(xhci, &xhci->op_regs->status);
3505 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3506 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3507 xhci_free_virt_device(xhci, udev->slot_id);
3508 spin_unlock_irqrestore(&xhci->lock, flags);
3509 return;
3510 }
3511
3512 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3513 spin_unlock_irqrestore(&xhci->lock, flags);
3514 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3515 return;
3516 }
3517 xhci_ring_cmd_db(xhci);
3518 spin_unlock_irqrestore(&xhci->lock, flags);
3519 /*
3520 * Event command completion handler will free any data structures
3521 * associated with the slot. XXX Can free sleep?
3522 */
3523 }
3524
3525 /*
3526 * Checks if we have enough host controller resources for the default control
3527 * endpoint.
3528 *
3529 * Must be called with xhci->lock held.
3530 */
3531 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3532 {
3533 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3534 xhci_dbg(xhci, "Not enough ep ctxs: "
3535 "%u active, need to add 1, limit is %u.\n",
3536 xhci->num_active_eps, xhci->limit_active_eps);
3537 return -ENOMEM;
3538 }
3539 xhci->num_active_eps += 1;
3540 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3541 xhci->num_active_eps);
3542 return 0;
3543 }
3544
3545
3546 /*
3547 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3548 * timed out, or allocating memory failed. Returns 1 on success.
3549 */
3550 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3551 {
3552 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3553 unsigned long flags;
3554 int timeleft;
3555 int ret;
3556 union xhci_trb *cmd_trb;
3557
3558 spin_lock_irqsave(&xhci->lock, flags);
3559 cmd_trb = xhci->cmd_ring->dequeue;
3560 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3561 if (ret) {
3562 spin_unlock_irqrestore(&xhci->lock, flags);
3563 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3564 return 0;
3565 }
3566 xhci_ring_cmd_db(xhci);
3567 spin_unlock_irqrestore(&xhci->lock, flags);
3568
3569 /* XXX: how much time for xHC slot assignment? */
3570 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3571 XHCI_CMD_DEFAULT_TIMEOUT);
3572 if (timeleft <= 0) {
3573 xhci_warn(xhci, "%s while waiting for a slot\n",
3574 timeleft == 0 ? "Timeout" : "Signal");
3575 /* cancel the enable slot request */
3576 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3577 }
3578
3579 if (!xhci->slot_id) {
3580 xhci_err(xhci, "Error while assigning device slot ID\n");
3581 return 0;
3582 }
3583
3584 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3585 spin_lock_irqsave(&xhci->lock, flags);
3586 ret = xhci_reserve_host_control_ep_resources(xhci);
3587 if (ret) {
3588 spin_unlock_irqrestore(&xhci->lock, flags);
3589 xhci_warn(xhci, "Not enough host resources, "
3590 "active endpoint contexts = %u\n",
3591 xhci->num_active_eps);
3592 goto disable_slot;
3593 }
3594 spin_unlock_irqrestore(&xhci->lock, flags);
3595 }
3596 /* Use GFP_NOIO, since this function can be called from
3597 * xhci_discover_or_reset_device(), which may be called as part of
3598 * mass storage driver error handling.
3599 */
3600 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3601 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3602 goto disable_slot;
3603 }
3604 udev->slot_id = xhci->slot_id;
3605 /* Is this a LS or FS device under a HS hub? */
3606 /* Hub or peripherial? */
3607 return 1;
3608
3609 disable_slot:
3610 /* Disable slot, if we can do it without mem alloc */
3611 spin_lock_irqsave(&xhci->lock, flags);
3612 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3613 xhci_ring_cmd_db(xhci);
3614 spin_unlock_irqrestore(&xhci->lock, flags);
3615 return 0;
3616 }
3617
3618 /*
3619 * Issue an Address Device command (which will issue a SetAddress request to
3620 * the device).
3621 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3622 * we should only issue and wait on one address command at the same time.
3623 *
3624 * We add one to the device address issued by the hardware because the USB core
3625 * uses address 1 for the root hubs (even though they're not really devices).
3626 */
3627 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3628 {
3629 unsigned long flags;
3630 int timeleft;
3631 struct xhci_virt_device *virt_dev;
3632 int ret = 0;
3633 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3634 struct xhci_slot_ctx *slot_ctx;
3635 struct xhci_input_control_ctx *ctrl_ctx;
3636 u64 temp_64;
3637 union xhci_trb *cmd_trb;
3638
3639 if (!udev->slot_id) {
3640 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3641 return -EINVAL;
3642 }
3643
3644 virt_dev = xhci->devs[udev->slot_id];
3645
3646 if (WARN_ON(!virt_dev)) {
3647 /*
3648 * In plug/unplug torture test with an NEC controller,
3649 * a zero-dereference was observed once due to virt_dev = 0.
3650 * Print useful debug rather than crash if it is observed again!
3651 */
3652 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3653 udev->slot_id);
3654 return -EINVAL;
3655 }
3656
3657 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3658 /*
3659 * If this is the first Set Address since device plug-in or
3660 * virt_device realloaction after a resume with an xHCI power loss,
3661 * then set up the slot context.
3662 */
3663 if (!slot_ctx->dev_info)
3664 xhci_setup_addressable_virt_dev(xhci, udev);
3665 /* Otherwise, update the control endpoint ring enqueue pointer. */
3666 else
3667 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3668 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3669 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3670 ctrl_ctx->drop_flags = 0;
3671
3672 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3673 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3674
3675 spin_lock_irqsave(&xhci->lock, flags);
3676 cmd_trb = xhci->cmd_ring->dequeue;
3677 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3678 udev->slot_id);
3679 if (ret) {
3680 spin_unlock_irqrestore(&xhci->lock, flags);
3681 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3682 return ret;
3683 }
3684 xhci_ring_cmd_db(xhci);
3685 spin_unlock_irqrestore(&xhci->lock, flags);
3686
3687 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3688 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3689 XHCI_CMD_DEFAULT_TIMEOUT);
3690 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3691 * the SetAddress() "recovery interval" required by USB and aborting the
3692 * command on a timeout.
3693 */
3694 if (timeleft <= 0) {
3695 xhci_warn(xhci, "%s while waiting for address device command\n",
3696 timeleft == 0 ? "Timeout" : "Signal");
3697 /* cancel the address device command */
3698 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3699 if (ret < 0)
3700 return ret;
3701 return -ETIME;
3702 }
3703
3704 switch (virt_dev->cmd_status) {
3705 case COMP_CTX_STATE:
3706 case COMP_EBADSLT:
3707 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3708 udev->slot_id);
3709 ret = -EINVAL;
3710 break;
3711 case COMP_TX_ERR:
3712 dev_warn(&udev->dev, "Device not responding to set address.\n");
3713 ret = -EPROTO;
3714 break;
3715 case COMP_DEV_ERR:
3716 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3717 "device command.\n");
3718 ret = -ENODEV;
3719 break;
3720 case COMP_SUCCESS:
3721 xhci_dbg(xhci, "Successful Address Device command\n");
3722 break;
3723 default:
3724 xhci_err(xhci, "ERROR: unexpected command completion "
3725 "code 0x%x.\n", virt_dev->cmd_status);
3726 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3727 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3728 ret = -EINVAL;
3729 break;
3730 }
3731 if (ret) {
3732 return ret;
3733 }
3734 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3735 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3736 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3737 udev->slot_id,
3738 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3739 (unsigned long long)
3740 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3741 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3742 (unsigned long long)virt_dev->out_ctx->dma);
3743 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3744 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3745 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3746 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3747 /*
3748 * USB core uses address 1 for the roothubs, so we add one to the
3749 * address given back to us by the HC.
3750 */
3751 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3752 /* Use kernel assigned address for devices; store xHC assigned
3753 * address locally. */
3754 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3755 + 1;
3756 /* Zero the input context control for later use */
3757 ctrl_ctx->add_flags = 0;
3758 ctrl_ctx->drop_flags = 0;
3759
3760 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3761
3762 return 0;
3763 }
3764
3765 #ifdef CONFIG_USB_SUSPEND
3766
3767 /* BESL to HIRD Encoding array for USB2 LPM */
3768 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3769 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3770
3771 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3772 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3773 struct usb_device *udev)
3774 {
3775 int u2del, besl, besl_host;
3776 int besl_device = 0;
3777 u32 field;
3778
3779 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3780 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3781
3782 if (field & USB_BESL_SUPPORT) {
3783 for (besl_host = 0; besl_host < 16; besl_host++) {
3784 if (xhci_besl_encoding[besl_host] >= u2del)
3785 break;
3786 }
3787 /* Use baseline BESL value as default */
3788 if (field & USB_BESL_BASELINE_VALID)
3789 besl_device = USB_GET_BESL_BASELINE(field);
3790 else if (field & USB_BESL_DEEP_VALID)
3791 besl_device = USB_GET_BESL_DEEP(field);
3792 } else {
3793 if (u2del <= 50)
3794 besl_host = 0;
3795 else
3796 besl_host = (u2del - 51) / 75 + 1;
3797 }
3798
3799 besl = besl_host + besl_device;
3800 if (besl > 15)
3801 besl = 15;
3802
3803 return besl;
3804 }
3805
3806 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3807 struct usb_device *udev)
3808 {
3809 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3810 struct dev_info *dev_info;
3811 __le32 __iomem **port_array;
3812 __le32 __iomem *addr, *pm_addr;
3813 u32 temp, dev_id;
3814 unsigned int port_num;
3815 unsigned long flags;
3816 int hird;
3817 int ret;
3818
3819 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3820 !udev->lpm_capable)
3821 return -EINVAL;
3822
3823 /* we only support lpm for non-hub device connected to root hub yet */
3824 if (!udev->parent || udev->parent->parent ||
3825 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3826 return -EINVAL;
3827
3828 spin_lock_irqsave(&xhci->lock, flags);
3829
3830 /* Look for devices in lpm_failed_devs list */
3831 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3832 le16_to_cpu(udev->descriptor.idProduct);
3833 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3834 if (dev_info->dev_id == dev_id) {
3835 ret = -EINVAL;
3836 goto finish;
3837 }
3838 }
3839
3840 port_array = xhci->usb2_ports;
3841 port_num = udev->portnum - 1;
3842
3843 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3844 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3845 ret = -EINVAL;
3846 goto finish;
3847 }
3848
3849 /*
3850 * Test USB 2.0 software LPM.
3851 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3852 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3853 * in the June 2011 errata release.
3854 */
3855 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3856 /*
3857 * Set L1 Device Slot and HIRD/BESL.
3858 * Check device's USB 2.0 extension descriptor to determine whether
3859 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3860 */
3861 pm_addr = port_array[port_num] + 1;
3862 hird = xhci_calculate_hird_besl(xhci, udev);
3863 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3864 xhci_writel(xhci, temp, pm_addr);
3865
3866 /* Set port link state to U2(L1) */
3867 addr = port_array[port_num];
3868 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3869
3870 /* wait for ACK */
3871 spin_unlock_irqrestore(&xhci->lock, flags);
3872 msleep(10);
3873 spin_lock_irqsave(&xhci->lock, flags);
3874
3875 /* Check L1 Status */
3876 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3877 if (ret != -ETIMEDOUT) {
3878 /* enter L1 successfully */
3879 temp = xhci_readl(xhci, addr);
3880 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3881 port_num, temp);
3882 ret = 0;
3883 } else {
3884 temp = xhci_readl(xhci, pm_addr);
3885 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3886 port_num, temp & PORT_L1S_MASK);
3887 ret = -EINVAL;
3888 }
3889
3890 /* Resume the port */
3891 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3892
3893 spin_unlock_irqrestore(&xhci->lock, flags);
3894 msleep(10);
3895 spin_lock_irqsave(&xhci->lock, flags);
3896
3897 /* Clear PLC */
3898 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3899
3900 /* Check PORTSC to make sure the device is in the right state */
3901 if (!ret) {
3902 temp = xhci_readl(xhci, addr);
3903 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3904 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3905 (temp & PORT_PLS_MASK) != XDEV_U0) {
3906 xhci_dbg(xhci, "port L1 resume fail\n");
3907 ret = -EINVAL;
3908 }
3909 }
3910
3911 if (ret) {
3912 /* Insert dev to lpm_failed_devs list */
3913 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3914 "re-enumerate\n");
3915 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3916 if (!dev_info) {
3917 ret = -ENOMEM;
3918 goto finish;
3919 }
3920 dev_info->dev_id = dev_id;
3921 INIT_LIST_HEAD(&dev_info->list);
3922 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3923 } else {
3924 xhci_ring_device(xhci, udev->slot_id);
3925 }
3926
3927 finish:
3928 spin_unlock_irqrestore(&xhci->lock, flags);
3929 return ret;
3930 }
3931
3932 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3933 struct usb_device *udev, int enable)
3934 {
3935 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3936 __le32 __iomem **port_array;
3937 __le32 __iomem *pm_addr;
3938 u32 temp;
3939 unsigned int port_num;
3940 unsigned long flags;
3941 int hird;
3942
3943 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3944 !udev->lpm_capable)
3945 return -EPERM;
3946
3947 if (!udev->parent || udev->parent->parent ||
3948 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3949 return -EPERM;
3950
3951 if (udev->usb2_hw_lpm_capable != 1)
3952 return -EPERM;
3953
3954 spin_lock_irqsave(&xhci->lock, flags);
3955
3956 port_array = xhci->usb2_ports;
3957 port_num = udev->portnum - 1;
3958 pm_addr = port_array[port_num] + 1;
3959 temp = xhci_readl(xhci, pm_addr);
3960
3961 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3962 enable ? "enable" : "disable", port_num);
3963
3964 hird = xhci_calculate_hird_besl(xhci, udev);
3965
3966 if (enable) {
3967 temp &= ~PORT_HIRD_MASK;
3968 temp |= PORT_HIRD(hird) | PORT_RWE;
3969 xhci_writel(xhci, temp, pm_addr);
3970 temp = xhci_readl(xhci, pm_addr);
3971 temp |= PORT_HLE;
3972 xhci_writel(xhci, temp, pm_addr);
3973 } else {
3974 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3975 xhci_writel(xhci, temp, pm_addr);
3976 }
3977
3978 spin_unlock_irqrestore(&xhci->lock, flags);
3979 return 0;
3980 }
3981
3982 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3983 {
3984 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3985 int ret;
3986
3987 ret = xhci_usb2_software_lpm_test(hcd, udev);
3988 if (!ret) {
3989 xhci_dbg(xhci, "software LPM test succeed\n");
3990 if (xhci->hw_lpm_support == 1) {
3991 udev->usb2_hw_lpm_capable = 1;
3992 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3993 if (!ret)
3994 udev->usb2_hw_lpm_enabled = 1;
3995 }
3996 }
3997
3998 return 0;
3999 }
4000
4001 #else
4002
4003 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4004 struct usb_device *udev, int enable)
4005 {
4006 return 0;
4007 }
4008
4009 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4010 {
4011 return 0;
4012 }
4013
4014 #endif /* CONFIG_USB_SUSPEND */
4015
4016 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4017
4018 #ifdef CONFIG_PM
4019 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4020 static unsigned long long xhci_service_interval_to_ns(
4021 struct usb_endpoint_descriptor *desc)
4022 {
4023 return (1 << (desc->bInterval - 1)) * 125 * 1000;
4024 }
4025
4026 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4027 enum usb3_link_state state)
4028 {
4029 unsigned long long sel;
4030 unsigned long long pel;
4031 unsigned int max_sel_pel;
4032 char *state_name;
4033
4034 switch (state) {
4035 case USB3_LPM_U1:
4036 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4037 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4038 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4039 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4040 state_name = "U1";
4041 break;
4042 case USB3_LPM_U2:
4043 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4044 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4045 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4046 state_name = "U2";
4047 break;
4048 default:
4049 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4050 __func__);
4051 return USB3_LPM_DISABLED;
4052 }
4053
4054 if (sel <= max_sel_pel && pel <= max_sel_pel)
4055 return USB3_LPM_DEVICE_INITIATED;
4056
4057 if (sel > max_sel_pel)
4058 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4059 "due to long SEL %llu ms\n",
4060 state_name, sel);
4061 else
4062 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4063 "due to long PEL %llu\n ms",
4064 state_name, pel);
4065 return USB3_LPM_DISABLED;
4066 }
4067
4068 /* Returns the hub-encoded U1 timeout value.
4069 * The U1 timeout should be the maximum of the following values:
4070 * - For control endpoints, U1 system exit latency (SEL) * 3
4071 * - For bulk endpoints, U1 SEL * 5
4072 * - For interrupt endpoints:
4073 * - Notification EPs, U1 SEL * 3
4074 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4075 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4076 */
4077 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4078 struct usb_endpoint_descriptor *desc)
4079 {
4080 unsigned long long timeout_ns;
4081 int ep_type;
4082 int intr_type;
4083
4084 ep_type = usb_endpoint_type(desc);
4085 switch (ep_type) {
4086 case USB_ENDPOINT_XFER_CONTROL:
4087 timeout_ns = udev->u1_params.sel * 3;
4088 break;
4089 case USB_ENDPOINT_XFER_BULK:
4090 timeout_ns = udev->u1_params.sel * 5;
4091 break;
4092 case USB_ENDPOINT_XFER_INT:
4093 intr_type = usb_endpoint_interrupt_type(desc);
4094 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4095 timeout_ns = udev->u1_params.sel * 3;
4096 break;
4097 }
4098 /* Otherwise the calculation is the same as isoc eps */
4099 case USB_ENDPOINT_XFER_ISOC:
4100 timeout_ns = xhci_service_interval_to_ns(desc);
4101 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4102 if (timeout_ns < udev->u1_params.sel * 2)
4103 timeout_ns = udev->u1_params.sel * 2;
4104 break;
4105 default:
4106 return 0;
4107 }
4108
4109 /* The U1 timeout is encoded in 1us intervals. */
4110 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4111 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4112 if (timeout_ns == USB3_LPM_DISABLED)
4113 timeout_ns++;
4114
4115 /* If the necessary timeout value is bigger than what we can set in the
4116 * USB 3.0 hub, we have to disable hub-initiated U1.
4117 */
4118 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4119 return timeout_ns;
4120 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4121 "due to long timeout %llu ms\n", timeout_ns);
4122 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4123 }
4124
4125 /* Returns the hub-encoded U2 timeout value.
4126 * The U2 timeout should be the maximum of:
4127 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4128 * - largest bInterval of any active periodic endpoint (to avoid going
4129 * into lower power link states between intervals).
4130 * - the U2 Exit Latency of the device
4131 */
4132 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4133 struct usb_endpoint_descriptor *desc)
4134 {
4135 unsigned long long timeout_ns;
4136 unsigned long long u2_del_ns;
4137
4138 timeout_ns = 10 * 1000 * 1000;
4139
4140 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4141 (xhci_service_interval_to_ns(desc) > timeout_ns))
4142 timeout_ns = xhci_service_interval_to_ns(desc);
4143
4144 u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4145 if (u2_del_ns > timeout_ns)
4146 timeout_ns = u2_del_ns;
4147
4148 /* The U2 timeout is encoded in 256us intervals */
4149 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4150 /* If the necessary timeout value is bigger than what we can set in the
4151 * USB 3.0 hub, we have to disable hub-initiated U2.
4152 */
4153 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4154 return timeout_ns;
4155 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4156 "due to long timeout %llu ms\n", timeout_ns);
4157 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4158 }
4159
4160 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4161 struct usb_device *udev,
4162 struct usb_endpoint_descriptor *desc,
4163 enum usb3_link_state state,
4164 u16 *timeout)
4165 {
4166 if (state == USB3_LPM_U1) {
4167 if (xhci->quirks & XHCI_INTEL_HOST)
4168 return xhci_calculate_intel_u1_timeout(udev, desc);
4169 } else {
4170 if (xhci->quirks & XHCI_INTEL_HOST)
4171 return xhci_calculate_intel_u2_timeout(udev, desc);
4172 }
4173
4174 return USB3_LPM_DISABLED;
4175 }
4176
4177 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4178 struct usb_device *udev,
4179 struct usb_endpoint_descriptor *desc,
4180 enum usb3_link_state state,
4181 u16 *timeout)
4182 {
4183 u16 alt_timeout;
4184
4185 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4186 desc, state, timeout);
4187
4188 /* If we found we can't enable hub-initiated LPM, or
4189 * the U1 or U2 exit latency was too high to allow
4190 * device-initiated LPM as well, just stop searching.
4191 */
4192 if (alt_timeout == USB3_LPM_DISABLED ||
4193 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4194 *timeout = alt_timeout;
4195 return -E2BIG;
4196 }
4197 if (alt_timeout > *timeout)
4198 *timeout = alt_timeout;
4199 return 0;
4200 }
4201
4202 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4203 struct usb_device *udev,
4204 struct usb_host_interface *alt,
4205 enum usb3_link_state state,
4206 u16 *timeout)
4207 {
4208 int j;
4209
4210 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4211 if (xhci_update_timeout_for_endpoint(xhci, udev,
4212 &alt->endpoint[j].desc, state, timeout))
4213 return -E2BIG;
4214 continue;
4215 }
4216 return 0;
4217 }
4218
4219 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4220 enum usb3_link_state state)
4221 {
4222 struct usb_device *parent;
4223 unsigned int num_hubs;
4224
4225 if (state == USB3_LPM_U2)
4226 return 0;
4227
4228 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4229 for (parent = udev->parent, num_hubs = 0; parent->parent;
4230 parent = parent->parent)
4231 num_hubs++;
4232
4233 if (num_hubs < 2)
4234 return 0;
4235
4236 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4237 " below second-tier hub.\n");
4238 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4239 "to decrease power consumption.\n");
4240 return -E2BIG;
4241 }
4242
4243 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4244 struct usb_device *udev,
4245 enum usb3_link_state state)
4246 {
4247 if (xhci->quirks & XHCI_INTEL_HOST)
4248 return xhci_check_intel_tier_policy(udev, state);
4249 return -EINVAL;
4250 }
4251
4252 /* Returns the U1 or U2 timeout that should be enabled.
4253 * If the tier check or timeout setting functions return with a non-zero exit
4254 * code, that means the timeout value has been finalized and we shouldn't look
4255 * at any more endpoints.
4256 */
4257 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4258 struct usb_device *udev, enum usb3_link_state state)
4259 {
4260 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4261 struct usb_host_config *config;
4262 char *state_name;
4263 int i;
4264 u16 timeout = USB3_LPM_DISABLED;
4265
4266 if (state == USB3_LPM_U1)
4267 state_name = "U1";
4268 else if (state == USB3_LPM_U2)
4269 state_name = "U2";
4270 else {
4271 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4272 state);
4273 return timeout;
4274 }
4275
4276 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4277 return timeout;
4278
4279 /* Gather some information about the currently installed configuration
4280 * and alternate interface settings.
4281 */
4282 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4283 state, &timeout))
4284 return timeout;
4285
4286 config = udev->actconfig;
4287 if (!config)
4288 return timeout;
4289
4290 for (i = 0; i < USB_MAXINTERFACES; i++) {
4291 struct usb_driver *driver;
4292 struct usb_interface *intf = config->interface[i];
4293
4294 if (!intf)
4295 continue;
4296
4297 /* Check if any currently bound drivers want hub-initiated LPM
4298 * disabled.
4299 */
4300 if (intf->dev.driver) {
4301 driver = to_usb_driver(intf->dev.driver);
4302 if (driver && driver->disable_hub_initiated_lpm) {
4303 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4304 "at request of driver %s\n",
4305 state_name, driver->name);
4306 return xhci_get_timeout_no_hub_lpm(udev, state);
4307 }
4308 }
4309
4310 /* Not sure how this could happen... */
4311 if (!intf->cur_altsetting)
4312 continue;
4313
4314 if (xhci_update_timeout_for_interface(xhci, udev,
4315 intf->cur_altsetting,
4316 state, &timeout))
4317 return timeout;
4318 }
4319 return timeout;
4320 }
4321
4322 /*
4323 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4324 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4325 */
4326 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4327 struct usb_device *udev, u16 max_exit_latency)
4328 {
4329 struct xhci_virt_device *virt_dev;
4330 struct xhci_command *command;
4331 struct xhci_input_control_ctx *ctrl_ctx;
4332 struct xhci_slot_ctx *slot_ctx;
4333 unsigned long flags;
4334 int ret;
4335
4336 spin_lock_irqsave(&xhci->lock, flags);
4337 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4338 spin_unlock_irqrestore(&xhci->lock, flags);
4339 return 0;
4340 }
4341
4342 /* Attempt to issue an Evaluate Context command to change the MEL. */
4343 virt_dev = xhci->devs[udev->slot_id];
4344 command = xhci->lpm_command;
4345 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4346 spin_unlock_irqrestore(&xhci->lock, flags);
4347
4348 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4349 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4350 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4351 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4352 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4353
4354 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4355 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4356 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4357
4358 /* Issue and wait for the evaluate context command. */
4359 ret = xhci_configure_endpoint(xhci, udev, command,
4360 true, true);
4361 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4362 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4363
4364 if (!ret) {
4365 spin_lock_irqsave(&xhci->lock, flags);
4366 virt_dev->current_mel = max_exit_latency;
4367 spin_unlock_irqrestore(&xhci->lock, flags);
4368 }
4369 return ret;
4370 }
4371
4372 static int calculate_max_exit_latency(struct usb_device *udev,
4373 enum usb3_link_state state_changed,
4374 u16 hub_encoded_timeout)
4375 {
4376 unsigned long long u1_mel_us = 0;
4377 unsigned long long u2_mel_us = 0;
4378 unsigned long long mel_us = 0;
4379 bool disabling_u1;
4380 bool disabling_u2;
4381 bool enabling_u1;
4382 bool enabling_u2;
4383
4384 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4385 hub_encoded_timeout == USB3_LPM_DISABLED);
4386 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4387 hub_encoded_timeout == USB3_LPM_DISABLED);
4388
4389 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4390 hub_encoded_timeout != USB3_LPM_DISABLED);
4391 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4392 hub_encoded_timeout != USB3_LPM_DISABLED);
4393
4394 /* If U1 was already enabled and we're not disabling it,
4395 * or we're going to enable U1, account for the U1 max exit latency.
4396 */
4397 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4398 enabling_u1)
4399 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4400 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4401 enabling_u2)
4402 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4403
4404 if (u1_mel_us > u2_mel_us)
4405 mel_us = u1_mel_us;
4406 else
4407 mel_us = u2_mel_us;
4408 /* xHCI host controller max exit latency field is only 16 bits wide. */
4409 if (mel_us > MAX_EXIT) {
4410 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4411 "is too big.\n", mel_us);
4412 return -E2BIG;
4413 }
4414 return mel_us;
4415 }
4416
4417 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4418 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4419 struct usb_device *udev, enum usb3_link_state state)
4420 {
4421 struct xhci_hcd *xhci;
4422 u16 hub_encoded_timeout;
4423 int mel;
4424 int ret;
4425
4426 xhci = hcd_to_xhci(hcd);
4427 /* The LPM timeout values are pretty host-controller specific, so don't
4428 * enable hub-initiated timeouts unless the vendor has provided
4429 * information about their timeout algorithm.
4430 */
4431 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4432 !xhci->devs[udev->slot_id])
4433 return USB3_LPM_DISABLED;
4434
4435 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4436 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4437 if (mel < 0) {
4438 /* Max Exit Latency is too big, disable LPM. */
4439 hub_encoded_timeout = USB3_LPM_DISABLED;
4440 mel = 0;
4441 }
4442
4443 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4444 if (ret)
4445 return ret;
4446 return hub_encoded_timeout;
4447 }
4448
4449 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4450 struct usb_device *udev, enum usb3_link_state state)
4451 {
4452 struct xhci_hcd *xhci;
4453 u16 mel;
4454 int ret;
4455
4456 xhci = hcd_to_xhci(hcd);
4457 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4458 !xhci->devs[udev->slot_id])
4459 return 0;
4460
4461 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4462 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4463 if (ret)
4464 return ret;
4465 return 0;
4466 }
4467 #else /* CONFIG_PM */
4468
4469 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4470 struct usb_device *udev, enum usb3_link_state state)
4471 {
4472 return USB3_LPM_DISABLED;
4473 }
4474
4475 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4476 struct usb_device *udev, enum usb3_link_state state)
4477 {
4478 return 0;
4479 }
4480 #endif /* CONFIG_PM */
4481
4482 /*-------------------------------------------------------------------------*/
4483
4484 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4485 * internal data structures for the device.
4486 */
4487 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4488 struct usb_tt *tt, gfp_t mem_flags)
4489 {
4490 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4491 struct xhci_virt_device *vdev;
4492 struct xhci_command *config_cmd;
4493 struct xhci_input_control_ctx *ctrl_ctx;
4494 struct xhci_slot_ctx *slot_ctx;
4495 unsigned long flags;
4496 unsigned think_time;
4497 int ret;
4498
4499 /* Ignore root hubs */
4500 if (!hdev->parent)
4501 return 0;
4502
4503 vdev = xhci->devs[hdev->slot_id];
4504 if (!vdev) {
4505 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4506 return -EINVAL;
4507 }
4508 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4509 if (!config_cmd) {
4510 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4511 return -ENOMEM;
4512 }
4513
4514 spin_lock_irqsave(&xhci->lock, flags);
4515 if (hdev->speed == USB_SPEED_HIGH &&
4516 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4517 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4518 xhci_free_command(xhci, config_cmd);
4519 spin_unlock_irqrestore(&xhci->lock, flags);
4520 return -ENOMEM;
4521 }
4522
4523 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4524 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4525 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4526 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4527 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4528 if (tt->multi)
4529 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4530 if (xhci->hci_version > 0x95) {
4531 xhci_dbg(xhci, "xHCI version %x needs hub "
4532 "TT think time and number of ports\n",
4533 (unsigned int) xhci->hci_version);
4534 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4535 /* Set TT think time - convert from ns to FS bit times.
4536 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4537 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4538 *
4539 * xHCI 1.0: this field shall be 0 if the device is not a
4540 * High-spped hub.
4541 */
4542 think_time = tt->think_time;
4543 if (think_time != 0)
4544 think_time = (think_time / 666) - 1;
4545 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4546 slot_ctx->tt_info |=
4547 cpu_to_le32(TT_THINK_TIME(think_time));
4548 } else {
4549 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4550 "TT think time or number of ports\n",
4551 (unsigned int) xhci->hci_version);
4552 }
4553 slot_ctx->dev_state = 0;
4554 spin_unlock_irqrestore(&xhci->lock, flags);
4555
4556 xhci_dbg(xhci, "Set up %s for hub device.\n",
4557 (xhci->hci_version > 0x95) ?
4558 "configure endpoint" : "evaluate context");
4559 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4560 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4561
4562 /* Issue and wait for the configure endpoint or
4563 * evaluate context command.
4564 */
4565 if (xhci->hci_version > 0x95)
4566 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4567 false, false);
4568 else
4569 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4570 true, false);
4571
4572 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4573 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4574
4575 xhci_free_command(xhci, config_cmd);
4576 return ret;
4577 }
4578
4579 int xhci_get_frame(struct usb_hcd *hcd)
4580 {
4581 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4582 /* EHCI mods by the periodic size. Why? */
4583 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4584 }
4585
4586 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4587 {
4588 struct xhci_hcd *xhci;
4589 struct device *dev = hcd->self.controller;
4590 int retval;
4591 u32 temp;
4592
4593 /* Accept arbitrarily long scatter-gather lists */
4594 hcd->self.sg_tablesize = ~0;
4595 /* XHCI controllers don't stop the ep queue on short packets :| */
4596 hcd->self.no_stop_on_short = 1;
4597
4598 if (usb_hcd_is_primary_hcd(hcd)) {
4599 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4600 if (!xhci)
4601 return -ENOMEM;
4602 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4603 xhci->main_hcd = hcd;
4604 /* Mark the first roothub as being USB 2.0.
4605 * The xHCI driver will register the USB 3.0 roothub.
4606 */
4607 hcd->speed = HCD_USB2;
4608 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4609 /*
4610 * USB 2.0 roothub under xHCI has an integrated TT,
4611 * (rate matching hub) as opposed to having an OHCI/UHCI
4612 * companion controller.
4613 */
4614 hcd->has_tt = 1;
4615 } else {
4616 /* xHCI private pointer was set in xhci_pci_probe for the second
4617 * registered roothub.
4618 */
4619 xhci = hcd_to_xhci(hcd);
4620 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4621 if (HCC_64BIT_ADDR(temp)) {
4622 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4623 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4624 } else {
4625 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4626 }
4627 return 0;
4628 }
4629
4630 xhci->cap_regs = hcd->regs;
4631 xhci->op_regs = hcd->regs +
4632 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4633 xhci->run_regs = hcd->regs +
4634 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4635 /* Cache read-only capability registers */
4636 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4637 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4638 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4639 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4640 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4641 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4642 xhci_print_registers(xhci);
4643
4644 get_quirks(dev, xhci);
4645
4646 /* Make sure the HC is halted. */
4647 retval = xhci_halt(xhci);
4648 if (retval)
4649 goto error;
4650
4651 xhci_dbg(xhci, "Resetting HCD\n");
4652 /* Reset the internal HC memory state and registers. */
4653 retval = xhci_reset(xhci);
4654 if (retval)
4655 goto error;
4656 xhci_dbg(xhci, "Reset complete\n");
4657
4658 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4659 if (HCC_64BIT_ADDR(temp)) {
4660 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4661 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4662 } else {
4663 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4664 }
4665
4666 xhci_dbg(xhci, "Calling HCD init\n");
4667 /* Initialize HCD and host controller data structures. */
4668 retval = xhci_init(hcd);
4669 if (retval)
4670 goto error;
4671 xhci_dbg(xhci, "Called HCD init\n");
4672 return 0;
4673 error:
4674 kfree(xhci);
4675 return retval;
4676 }
4677
4678 MODULE_DESCRIPTION(DRIVER_DESC);
4679 MODULE_AUTHOR(DRIVER_AUTHOR);
4680 MODULE_LICENSE("GPL");
4681
4682 static int __init xhci_hcd_init(void)
4683 {
4684 int retval;
4685
4686 retval = xhci_register_pci();
4687 if (retval < 0) {
4688 printk(KERN_DEBUG "Problem registering PCI driver.");
4689 return retval;
4690 }
4691 retval = xhci_register_plat();
4692 if (retval < 0) {
4693 printk(KERN_DEBUG "Problem registering platform driver.");
4694 goto unreg_pci;
4695 }
4696 /*
4697 * Check the compiler generated sizes of structures that must be laid
4698 * out in specific ways for hardware access.
4699 */
4700 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4701 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4702 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4703 /* xhci_device_control has eight fields, and also
4704 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4705 */
4706 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4707 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4708 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4709 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4710 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4711 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4712 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4713 return 0;
4714 unreg_pci:
4715 xhci_unregister_pci();
4716 return retval;
4717 }
4718 module_init(xhci_hcd_init);
4719
4720 static void __exit xhci_hcd_cleanup(void)
4721 {
4722 xhci_unregister_pci();
4723 xhci_unregister_plat();
4724 }
4725 module_exit(xhci_hcd_cleanup);
This page took 0.1256 seconds and 6 git commands to generate.