device create: usb: convert device_create_drvdata to device_create
[deliverable/linux.git] / drivers / usb / mon / mon_bin.c
1 /*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
3 *
4 * This is a binary format reader.
5 *
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/smp_lock.h>
19
20 #include <asm/uaccess.h>
21
22 #include "usb_mon.h"
23
24 /*
25 * Defined by USB 2.0 clause 9.3, table 9.2.
26 */
27 #define SETUP_LEN 8
28
29 /* ioctl macros */
30 #define MON_IOC_MAGIC 0x92
31
32 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
33 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
34 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
35 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
36 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
37 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
38 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
39 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
40 #ifdef CONFIG_COMPAT
41 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
42 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
43 #endif
44
45 /*
46 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
47 * But it's all right. Just use a simple way to make sure the chunk is never
48 * smaller than a page.
49 *
50 * N.B. An application does not know our chunk size.
51 *
52 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
53 * page-sized chunks for the time being.
54 */
55 #define CHUNK_SIZE PAGE_SIZE
56 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
57
58 /*
59 * The magic limit was calculated so that it allows the monitoring
60 * application to pick data once in two ticks. This way, another application,
61 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
62 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
63 * enormous overhead built into the bus protocol, so we need about 1000 KB.
64 *
65 * This is still too much for most cases, where we just snoop a few
66 * descriptor fetches for enumeration. So, the default is a "reasonable"
67 * amount for systems with HZ=250 and incomplete bus saturation.
68 *
69 * XXX What about multi-megabyte URBs which take minutes to transfer?
70 */
71 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
72 #define BUFF_DFL CHUNK_ALIGN(300*1024)
73 #define BUFF_MIN CHUNK_ALIGN(8*1024)
74
75 /*
76 * The per-event API header (2 per URB).
77 *
78 * This structure is seen in userland as defined by the documentation.
79 */
80 struct mon_bin_hdr {
81 u64 id; /* URB ID - from submission to callback */
82 unsigned char type; /* Same as in text API; extensible. */
83 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
84 unsigned char epnum; /* Endpoint number and transfer direction */
85 unsigned char devnum; /* Device address */
86 unsigned short busnum; /* Bus number */
87 char flag_setup;
88 char flag_data;
89 s64 ts_sec; /* gettimeofday */
90 s32 ts_usec; /* gettimeofday */
91 int status;
92 unsigned int len_urb; /* Length of data (submitted or actual) */
93 unsigned int len_cap; /* Delivered length */
94 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
95 };
96
97 /* per file statistic */
98 struct mon_bin_stats {
99 u32 queued;
100 u32 dropped;
101 };
102
103 struct mon_bin_get {
104 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */
105 void __user *data;
106 size_t alloc; /* Length of data (can be zero) */
107 };
108
109 struct mon_bin_mfetch {
110 u32 __user *offvec; /* Vector of events fetched */
111 u32 nfetch; /* Number of events to fetch (out: fetched) */
112 u32 nflush; /* Number of events to flush */
113 };
114
115 #ifdef CONFIG_COMPAT
116 struct mon_bin_get32 {
117 u32 hdr32;
118 u32 data32;
119 u32 alloc32;
120 };
121
122 struct mon_bin_mfetch32 {
123 u32 offvec32;
124 u32 nfetch32;
125 u32 nflush32;
126 };
127 #endif
128
129 /* Having these two values same prevents wrapping of the mon_bin_hdr */
130 #define PKT_ALIGN 64
131 #define PKT_SIZE 64
132
133 /* max number of USB bus supported */
134 #define MON_BIN_MAX_MINOR 128
135
136 /*
137 * The buffer: map of used pages.
138 */
139 struct mon_pgmap {
140 struct page *pg;
141 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
142 };
143
144 /*
145 * This gets associated with an open file struct.
146 */
147 struct mon_reader_bin {
148 /* The buffer: one per open. */
149 spinlock_t b_lock; /* Protect b_cnt, b_in */
150 unsigned int b_size; /* Current size of the buffer - bytes */
151 unsigned int b_cnt; /* Bytes used */
152 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
153 unsigned int b_read; /* Amount of read data in curr. pkt. */
154 struct mon_pgmap *b_vec; /* The map array */
155 wait_queue_head_t b_wait; /* Wait for data here */
156
157 struct mutex fetch_lock; /* Protect b_read, b_out */
158 int mmap_active;
159
160 /* A list of these is needed for "bus 0". Some time later. */
161 struct mon_reader r;
162
163 /* Stats */
164 unsigned int cnt_lost;
165 };
166
167 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
168 unsigned int offset)
169 {
170 return (struct mon_bin_hdr *)
171 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
172 }
173
174 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
175
176 static unsigned char xfer_to_pipe[4] = {
177 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
178 };
179
180 static struct class *mon_bin_class;
181 static dev_t mon_bin_dev0;
182 static struct cdev mon_bin_cdev;
183
184 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
185 unsigned int offset, unsigned int size);
186 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
187 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
188 static void mon_free_buff(struct mon_pgmap *map, int npages);
189
190 /*
191 * This is a "chunked memcpy". It does not manipulate any counters.
192 * But it returns the new offset for repeated application.
193 */
194 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
195 unsigned int off, const unsigned char *from, unsigned int length)
196 {
197 unsigned int step_len;
198 unsigned char *buf;
199 unsigned int in_page;
200
201 while (length) {
202 /*
203 * Determine step_len.
204 */
205 step_len = length;
206 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
207 if (in_page < step_len)
208 step_len = in_page;
209
210 /*
211 * Copy data and advance pointers.
212 */
213 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
214 memcpy(buf, from, step_len);
215 if ((off += step_len) >= this->b_size) off = 0;
216 from += step_len;
217 length -= step_len;
218 }
219 return off;
220 }
221
222 /*
223 * This is a little worse than the above because it's "chunked copy_to_user".
224 * The return value is an error code, not an offset.
225 */
226 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
227 char __user *to, int length)
228 {
229 unsigned int step_len;
230 unsigned char *buf;
231 unsigned int in_page;
232
233 while (length) {
234 /*
235 * Determine step_len.
236 */
237 step_len = length;
238 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
239 if (in_page < step_len)
240 step_len = in_page;
241
242 /*
243 * Copy data and advance pointers.
244 */
245 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
246 if (copy_to_user(to, buf, step_len))
247 return -EINVAL;
248 if ((off += step_len) >= this->b_size) off = 0;
249 to += step_len;
250 length -= step_len;
251 }
252 return 0;
253 }
254
255 /*
256 * Allocate an (aligned) area in the buffer.
257 * This is called under b_lock.
258 * Returns ~0 on failure.
259 */
260 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
261 unsigned int size)
262 {
263 unsigned int offset;
264
265 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
266 if (rp->b_cnt + size > rp->b_size)
267 return ~0;
268 offset = rp->b_in;
269 rp->b_cnt += size;
270 if ((rp->b_in += size) >= rp->b_size)
271 rp->b_in -= rp->b_size;
272 return offset;
273 }
274
275 /*
276 * This is the same thing as mon_buff_area_alloc, only it does not allow
277 * buffers to wrap. This is needed by applications which pass references
278 * into mmap-ed buffers up their stacks (libpcap can do that).
279 *
280 * Currently, we always have the header stuck with the data, although
281 * it is not strictly speaking necessary.
282 *
283 * When a buffer would wrap, we place a filler packet to mark the space.
284 */
285 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
286 unsigned int size)
287 {
288 unsigned int offset;
289 unsigned int fill_size;
290
291 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
292 if (rp->b_cnt + size > rp->b_size)
293 return ~0;
294 if (rp->b_in + size > rp->b_size) {
295 /*
296 * This would wrap. Find if we still have space after
297 * skipping to the end of the buffer. If we do, place
298 * a filler packet and allocate a new packet.
299 */
300 fill_size = rp->b_size - rp->b_in;
301 if (rp->b_cnt + size + fill_size > rp->b_size)
302 return ~0;
303 mon_buff_area_fill(rp, rp->b_in, fill_size);
304
305 offset = 0;
306 rp->b_in = size;
307 rp->b_cnt += size + fill_size;
308 } else if (rp->b_in + size == rp->b_size) {
309 offset = rp->b_in;
310 rp->b_in = 0;
311 rp->b_cnt += size;
312 } else {
313 offset = rp->b_in;
314 rp->b_in += size;
315 rp->b_cnt += size;
316 }
317 return offset;
318 }
319
320 /*
321 * Return a few (kilo-)bytes to the head of the buffer.
322 * This is used if a DMA fetch fails.
323 */
324 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
325 {
326
327 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
328 rp->b_cnt -= size;
329 if (rp->b_in < size)
330 rp->b_in += rp->b_size;
331 rp->b_in -= size;
332 }
333
334 /*
335 * This has to be called under both b_lock and fetch_lock, because
336 * it accesses both b_cnt and b_out.
337 */
338 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
339 {
340
341 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
342 rp->b_cnt -= size;
343 if ((rp->b_out += size) >= rp->b_size)
344 rp->b_out -= rp->b_size;
345 }
346
347 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
348 unsigned int offset, unsigned int size)
349 {
350 struct mon_bin_hdr *ep;
351
352 ep = MON_OFF2HDR(rp, offset);
353 memset(ep, 0, PKT_SIZE);
354 ep->type = '@';
355 ep->len_cap = size - PKT_SIZE;
356 }
357
358 static inline char mon_bin_get_setup(unsigned char *setupb,
359 const struct urb *urb, char ev_type)
360 {
361
362 if (!usb_endpoint_xfer_control(&urb->ep->desc) || ev_type != 'S')
363 return '-';
364
365 if (urb->setup_packet == NULL)
366 return 'Z';
367
368 memcpy(setupb, urb->setup_packet, SETUP_LEN);
369 return 0;
370 }
371
372 static char mon_bin_get_data(const struct mon_reader_bin *rp,
373 unsigned int offset, struct urb *urb, unsigned int length)
374 {
375
376 if (urb->dev->bus->uses_dma &&
377 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
378 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length);
379 return 0;
380 }
381
382 if (urb->transfer_buffer == NULL)
383 return 'Z';
384
385 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
386 return 0;
387 }
388
389 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
390 char ev_type, int status)
391 {
392 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
393 unsigned long flags;
394 struct timeval ts;
395 unsigned int urb_length;
396 unsigned int offset;
397 unsigned int length;
398 unsigned char dir;
399 struct mon_bin_hdr *ep;
400 char data_tag = 0;
401
402 do_gettimeofday(&ts);
403
404 spin_lock_irqsave(&rp->b_lock, flags);
405
406 /*
407 * Find the maximum allowable length, then allocate space.
408 */
409 urb_length = (ev_type == 'S') ?
410 urb->transfer_buffer_length : urb->actual_length;
411 length = urb_length;
412
413 if (length >= rp->b_size/5)
414 length = rp->b_size/5;
415
416 if (usb_urb_dir_in(urb)) {
417 if (ev_type == 'S') {
418 length = 0;
419 data_tag = '<';
420 }
421 /* Cannot rely on endpoint number in case of control ep.0 */
422 dir = USB_DIR_IN;
423 } else {
424 if (ev_type == 'C') {
425 length = 0;
426 data_tag = '>';
427 }
428 dir = 0;
429 }
430
431 if (rp->mmap_active)
432 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE);
433 else
434 offset = mon_buff_area_alloc(rp, length + PKT_SIZE);
435 if (offset == ~0) {
436 rp->cnt_lost++;
437 spin_unlock_irqrestore(&rp->b_lock, flags);
438 return;
439 }
440
441 ep = MON_OFF2HDR(rp, offset);
442 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
443
444 /*
445 * Fill the allocated area.
446 */
447 memset(ep, 0, PKT_SIZE);
448 ep->type = ev_type;
449 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
450 ep->epnum = dir | usb_endpoint_num(epd);
451 ep->devnum = urb->dev->devnum;
452 ep->busnum = urb->dev->bus->busnum;
453 ep->id = (unsigned long) urb;
454 ep->ts_sec = ts.tv_sec;
455 ep->ts_usec = ts.tv_usec;
456 ep->status = status;
457 ep->len_urb = urb_length;
458 ep->len_cap = length;
459
460 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type);
461 if (length != 0) {
462 ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
463 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */
464 ep->len_cap = 0;
465 mon_buff_area_shrink(rp, length);
466 }
467 } else {
468 ep->flag_data = data_tag;
469 }
470
471 spin_unlock_irqrestore(&rp->b_lock, flags);
472
473 wake_up(&rp->b_wait);
474 }
475
476 static void mon_bin_submit(void *data, struct urb *urb)
477 {
478 struct mon_reader_bin *rp = data;
479 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
480 }
481
482 static void mon_bin_complete(void *data, struct urb *urb, int status)
483 {
484 struct mon_reader_bin *rp = data;
485 mon_bin_event(rp, urb, 'C', status);
486 }
487
488 static void mon_bin_error(void *data, struct urb *urb, int error)
489 {
490 struct mon_reader_bin *rp = data;
491 unsigned long flags;
492 unsigned int offset;
493 struct mon_bin_hdr *ep;
494
495 spin_lock_irqsave(&rp->b_lock, flags);
496
497 offset = mon_buff_area_alloc(rp, PKT_SIZE);
498 if (offset == ~0) {
499 /* Not incrementing cnt_lost. Just because. */
500 spin_unlock_irqrestore(&rp->b_lock, flags);
501 return;
502 }
503
504 ep = MON_OFF2HDR(rp, offset);
505
506 memset(ep, 0, PKT_SIZE);
507 ep->type = 'E';
508 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
509 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
510 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
511 ep->devnum = urb->dev->devnum;
512 ep->busnum = urb->dev->bus->busnum;
513 ep->id = (unsigned long) urb;
514 ep->status = error;
515
516 ep->flag_setup = '-';
517 ep->flag_data = 'E';
518
519 spin_unlock_irqrestore(&rp->b_lock, flags);
520
521 wake_up(&rp->b_wait);
522 }
523
524 static int mon_bin_open(struct inode *inode, struct file *file)
525 {
526 struct mon_bus *mbus;
527 struct mon_reader_bin *rp;
528 size_t size;
529 int rc;
530
531 lock_kernel();
532 mutex_lock(&mon_lock);
533 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
534 mutex_unlock(&mon_lock);
535 unlock_kernel();
536 return -ENODEV;
537 }
538 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
539 printk(KERN_ERR TAG ": consistency error on open\n");
540 mutex_unlock(&mon_lock);
541 unlock_kernel();
542 return -ENODEV;
543 }
544
545 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
546 if (rp == NULL) {
547 rc = -ENOMEM;
548 goto err_alloc;
549 }
550 spin_lock_init(&rp->b_lock);
551 init_waitqueue_head(&rp->b_wait);
552 mutex_init(&rp->fetch_lock);
553
554 rp->b_size = BUFF_DFL;
555
556 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
557 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
558 rc = -ENOMEM;
559 goto err_allocvec;
560 }
561
562 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
563 goto err_allocbuff;
564
565 rp->r.m_bus = mbus;
566 rp->r.r_data = rp;
567 rp->r.rnf_submit = mon_bin_submit;
568 rp->r.rnf_error = mon_bin_error;
569 rp->r.rnf_complete = mon_bin_complete;
570
571 mon_reader_add(mbus, &rp->r);
572
573 file->private_data = rp;
574 mutex_unlock(&mon_lock);
575 unlock_kernel();
576 return 0;
577
578 err_allocbuff:
579 kfree(rp->b_vec);
580 err_allocvec:
581 kfree(rp);
582 err_alloc:
583 mutex_unlock(&mon_lock);
584 unlock_kernel();
585 return rc;
586 }
587
588 /*
589 * Extract an event from buffer and copy it to user space.
590 * Wait if there is no event ready.
591 * Returns zero or error.
592 */
593 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
594 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes)
595 {
596 unsigned long flags;
597 struct mon_bin_hdr *ep;
598 size_t step_len;
599 unsigned int offset;
600 int rc;
601
602 mutex_lock(&rp->fetch_lock);
603
604 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
605 mutex_unlock(&rp->fetch_lock);
606 return rc;
607 }
608
609 ep = MON_OFF2HDR(rp, rp->b_out);
610
611 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) {
612 mutex_unlock(&rp->fetch_lock);
613 return -EFAULT;
614 }
615
616 step_len = min(ep->len_cap, nbytes);
617 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
618
619 if (copy_from_buf(rp, offset, data, step_len)) {
620 mutex_unlock(&rp->fetch_lock);
621 return -EFAULT;
622 }
623
624 spin_lock_irqsave(&rp->b_lock, flags);
625 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
626 spin_unlock_irqrestore(&rp->b_lock, flags);
627 rp->b_read = 0;
628
629 mutex_unlock(&rp->fetch_lock);
630 return 0;
631 }
632
633 static int mon_bin_release(struct inode *inode, struct file *file)
634 {
635 struct mon_reader_bin *rp = file->private_data;
636 struct mon_bus* mbus = rp->r.m_bus;
637
638 mutex_lock(&mon_lock);
639
640 if (mbus->nreaders <= 0) {
641 printk(KERN_ERR TAG ": consistency error on close\n");
642 mutex_unlock(&mon_lock);
643 return 0;
644 }
645 mon_reader_del(mbus, &rp->r);
646
647 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
648 kfree(rp->b_vec);
649 kfree(rp);
650
651 mutex_unlock(&mon_lock);
652 return 0;
653 }
654
655 static ssize_t mon_bin_read(struct file *file, char __user *buf,
656 size_t nbytes, loff_t *ppos)
657 {
658 struct mon_reader_bin *rp = file->private_data;
659 unsigned long flags;
660 struct mon_bin_hdr *ep;
661 unsigned int offset;
662 size_t step_len;
663 char *ptr;
664 ssize_t done = 0;
665 int rc;
666
667 mutex_lock(&rp->fetch_lock);
668
669 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
670 mutex_unlock(&rp->fetch_lock);
671 return rc;
672 }
673
674 ep = MON_OFF2HDR(rp, rp->b_out);
675
676 if (rp->b_read < sizeof(struct mon_bin_hdr)) {
677 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read);
678 ptr = ((char *)ep) + rp->b_read;
679 if (step_len && copy_to_user(buf, ptr, step_len)) {
680 mutex_unlock(&rp->fetch_lock);
681 return -EFAULT;
682 }
683 nbytes -= step_len;
684 buf += step_len;
685 rp->b_read += step_len;
686 done += step_len;
687 }
688
689 if (rp->b_read >= sizeof(struct mon_bin_hdr)) {
690 step_len = min(nbytes, (size_t)ep->len_cap);
691 offset = rp->b_out + PKT_SIZE;
692 offset += rp->b_read - sizeof(struct mon_bin_hdr);
693 if (offset >= rp->b_size)
694 offset -= rp->b_size;
695 if (copy_from_buf(rp, offset, buf, step_len)) {
696 mutex_unlock(&rp->fetch_lock);
697 return -EFAULT;
698 }
699 nbytes -= step_len;
700 buf += step_len;
701 rp->b_read += step_len;
702 done += step_len;
703 }
704
705 /*
706 * Check if whole packet was read, and if so, jump to the next one.
707 */
708 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) {
709 spin_lock_irqsave(&rp->b_lock, flags);
710 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
711 spin_unlock_irqrestore(&rp->b_lock, flags);
712 rp->b_read = 0;
713 }
714
715 mutex_unlock(&rp->fetch_lock);
716 return done;
717 }
718
719 /*
720 * Remove at most nevents from chunked buffer.
721 * Returns the number of removed events.
722 */
723 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
724 {
725 unsigned long flags;
726 struct mon_bin_hdr *ep;
727 int i;
728
729 mutex_lock(&rp->fetch_lock);
730 spin_lock_irqsave(&rp->b_lock, flags);
731 for (i = 0; i < nevents; ++i) {
732 if (MON_RING_EMPTY(rp))
733 break;
734
735 ep = MON_OFF2HDR(rp, rp->b_out);
736 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
737 }
738 spin_unlock_irqrestore(&rp->b_lock, flags);
739 rp->b_read = 0;
740 mutex_unlock(&rp->fetch_lock);
741 return i;
742 }
743
744 /*
745 * Fetch at most max event offsets into the buffer and put them into vec.
746 * The events are usually freed later with mon_bin_flush.
747 * Return the effective number of events fetched.
748 */
749 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
750 u32 __user *vec, unsigned int max)
751 {
752 unsigned int cur_out;
753 unsigned int bytes, avail;
754 unsigned int size;
755 unsigned int nevents;
756 struct mon_bin_hdr *ep;
757 unsigned long flags;
758 int rc;
759
760 mutex_lock(&rp->fetch_lock);
761
762 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
763 mutex_unlock(&rp->fetch_lock);
764 return rc;
765 }
766
767 spin_lock_irqsave(&rp->b_lock, flags);
768 avail = rp->b_cnt;
769 spin_unlock_irqrestore(&rp->b_lock, flags);
770
771 cur_out = rp->b_out;
772 nevents = 0;
773 bytes = 0;
774 while (bytes < avail) {
775 if (nevents >= max)
776 break;
777
778 ep = MON_OFF2HDR(rp, cur_out);
779 if (put_user(cur_out, &vec[nevents])) {
780 mutex_unlock(&rp->fetch_lock);
781 return -EFAULT;
782 }
783
784 nevents++;
785 size = ep->len_cap + PKT_SIZE;
786 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
787 if ((cur_out += size) >= rp->b_size)
788 cur_out -= rp->b_size;
789 bytes += size;
790 }
791
792 mutex_unlock(&rp->fetch_lock);
793 return nevents;
794 }
795
796 /*
797 * Count events. This is almost the same as the above mon_bin_fetch,
798 * only we do not store offsets into user vector, and we have no limit.
799 */
800 static int mon_bin_queued(struct mon_reader_bin *rp)
801 {
802 unsigned int cur_out;
803 unsigned int bytes, avail;
804 unsigned int size;
805 unsigned int nevents;
806 struct mon_bin_hdr *ep;
807 unsigned long flags;
808
809 mutex_lock(&rp->fetch_lock);
810
811 spin_lock_irqsave(&rp->b_lock, flags);
812 avail = rp->b_cnt;
813 spin_unlock_irqrestore(&rp->b_lock, flags);
814
815 cur_out = rp->b_out;
816 nevents = 0;
817 bytes = 0;
818 while (bytes < avail) {
819 ep = MON_OFF2HDR(rp, cur_out);
820
821 nevents++;
822 size = ep->len_cap + PKT_SIZE;
823 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
824 if ((cur_out += size) >= rp->b_size)
825 cur_out -= rp->b_size;
826 bytes += size;
827 }
828
829 mutex_unlock(&rp->fetch_lock);
830 return nevents;
831 }
832
833 /*
834 */
835 static int mon_bin_ioctl(struct inode *inode, struct file *file,
836 unsigned int cmd, unsigned long arg)
837 {
838 struct mon_reader_bin *rp = file->private_data;
839 // struct mon_bus* mbus = rp->r.m_bus;
840 int ret = 0;
841 struct mon_bin_hdr *ep;
842 unsigned long flags;
843
844 switch (cmd) {
845
846 case MON_IOCQ_URB_LEN:
847 /*
848 * N.B. This only returns the size of data, without the header.
849 */
850 spin_lock_irqsave(&rp->b_lock, flags);
851 if (!MON_RING_EMPTY(rp)) {
852 ep = MON_OFF2HDR(rp, rp->b_out);
853 ret = ep->len_cap;
854 }
855 spin_unlock_irqrestore(&rp->b_lock, flags);
856 break;
857
858 case MON_IOCQ_RING_SIZE:
859 ret = rp->b_size;
860 break;
861
862 case MON_IOCT_RING_SIZE:
863 /*
864 * Changing the buffer size will flush it's contents; the new
865 * buffer is allocated before releasing the old one to be sure
866 * the device will stay functional also in case of memory
867 * pressure.
868 */
869 {
870 int size;
871 struct mon_pgmap *vec;
872
873 if (arg < BUFF_MIN || arg > BUFF_MAX)
874 return -EINVAL;
875
876 size = CHUNK_ALIGN(arg);
877 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
878 GFP_KERNEL)) == NULL) {
879 ret = -ENOMEM;
880 break;
881 }
882
883 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
884 if (ret < 0) {
885 kfree(vec);
886 break;
887 }
888
889 mutex_lock(&rp->fetch_lock);
890 spin_lock_irqsave(&rp->b_lock, flags);
891 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
892 kfree(rp->b_vec);
893 rp->b_vec = vec;
894 rp->b_size = size;
895 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
896 rp->cnt_lost = 0;
897 spin_unlock_irqrestore(&rp->b_lock, flags);
898 mutex_unlock(&rp->fetch_lock);
899 }
900 break;
901
902 case MON_IOCH_MFLUSH:
903 ret = mon_bin_flush(rp, arg);
904 break;
905
906 case MON_IOCX_GET:
907 {
908 struct mon_bin_get getb;
909
910 if (copy_from_user(&getb, (void __user *)arg,
911 sizeof(struct mon_bin_get)))
912 return -EFAULT;
913
914 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
915 return -EINVAL;
916 ret = mon_bin_get_event(file, rp,
917 getb.hdr, getb.data, (unsigned int)getb.alloc);
918 }
919 break;
920
921 #ifdef CONFIG_COMPAT
922 case MON_IOCX_GET32: {
923 struct mon_bin_get32 getb;
924
925 if (copy_from_user(&getb, (void __user *)arg,
926 sizeof(struct mon_bin_get32)))
927 return -EFAULT;
928
929 ret = mon_bin_get_event(file, rp,
930 compat_ptr(getb.hdr32), compat_ptr(getb.data32),
931 getb.alloc32);
932 }
933 break;
934 #endif
935
936 case MON_IOCX_MFETCH:
937 {
938 struct mon_bin_mfetch mfetch;
939 struct mon_bin_mfetch __user *uptr;
940
941 uptr = (struct mon_bin_mfetch __user *)arg;
942
943 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
944 return -EFAULT;
945
946 if (mfetch.nflush) {
947 ret = mon_bin_flush(rp, mfetch.nflush);
948 if (ret < 0)
949 return ret;
950 if (put_user(ret, &uptr->nflush))
951 return -EFAULT;
952 }
953 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
954 if (ret < 0)
955 return ret;
956 if (put_user(ret, &uptr->nfetch))
957 return -EFAULT;
958 ret = 0;
959 }
960 break;
961
962 #ifdef CONFIG_COMPAT
963 case MON_IOCX_MFETCH32:
964 {
965 struct mon_bin_mfetch32 mfetch;
966 struct mon_bin_mfetch32 __user *uptr;
967
968 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
969
970 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
971 return -EFAULT;
972
973 if (mfetch.nflush32) {
974 ret = mon_bin_flush(rp, mfetch.nflush32);
975 if (ret < 0)
976 return ret;
977 if (put_user(ret, &uptr->nflush32))
978 return -EFAULT;
979 }
980 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
981 mfetch.nfetch32);
982 if (ret < 0)
983 return ret;
984 if (put_user(ret, &uptr->nfetch32))
985 return -EFAULT;
986 ret = 0;
987 }
988 break;
989 #endif
990
991 case MON_IOCG_STATS: {
992 struct mon_bin_stats __user *sp;
993 unsigned int nevents;
994 unsigned int ndropped;
995
996 spin_lock_irqsave(&rp->b_lock, flags);
997 ndropped = rp->cnt_lost;
998 rp->cnt_lost = 0;
999 spin_unlock_irqrestore(&rp->b_lock, flags);
1000 nevents = mon_bin_queued(rp);
1001
1002 sp = (struct mon_bin_stats __user *)arg;
1003 if (put_user(rp->cnt_lost, &sp->dropped))
1004 return -EFAULT;
1005 if (put_user(nevents, &sp->queued))
1006 return -EFAULT;
1007
1008 }
1009 break;
1010
1011 default:
1012 return -ENOTTY;
1013 }
1014
1015 return ret;
1016 }
1017
1018 static unsigned int
1019 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1020 {
1021 struct mon_reader_bin *rp = file->private_data;
1022 unsigned int mask = 0;
1023 unsigned long flags;
1024
1025 if (file->f_mode & FMODE_READ)
1026 poll_wait(file, &rp->b_wait, wait);
1027
1028 spin_lock_irqsave(&rp->b_lock, flags);
1029 if (!MON_RING_EMPTY(rp))
1030 mask |= POLLIN | POLLRDNORM; /* readable */
1031 spin_unlock_irqrestore(&rp->b_lock, flags);
1032 return mask;
1033 }
1034
1035 /*
1036 * open and close: just keep track of how many times the device is
1037 * mapped, to use the proper memory allocation function.
1038 */
1039 static void mon_bin_vma_open(struct vm_area_struct *vma)
1040 {
1041 struct mon_reader_bin *rp = vma->vm_private_data;
1042 rp->mmap_active++;
1043 }
1044
1045 static void mon_bin_vma_close(struct vm_area_struct *vma)
1046 {
1047 struct mon_reader_bin *rp = vma->vm_private_data;
1048 rp->mmap_active--;
1049 }
1050
1051 /*
1052 * Map ring pages to user space.
1053 */
1054 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1055 {
1056 struct mon_reader_bin *rp = vma->vm_private_data;
1057 unsigned long offset, chunk_idx;
1058 struct page *pageptr;
1059
1060 offset = vmf->pgoff << PAGE_SHIFT;
1061 if (offset >= rp->b_size)
1062 return VM_FAULT_SIGBUS;
1063 chunk_idx = offset / CHUNK_SIZE;
1064 pageptr = rp->b_vec[chunk_idx].pg;
1065 get_page(pageptr);
1066 vmf->page = pageptr;
1067 return 0;
1068 }
1069
1070 static struct vm_operations_struct mon_bin_vm_ops = {
1071 .open = mon_bin_vma_open,
1072 .close = mon_bin_vma_close,
1073 .fault = mon_bin_vma_fault,
1074 };
1075
1076 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1077 {
1078 /* don't do anything here: "fault" will set up page table entries */
1079 vma->vm_ops = &mon_bin_vm_ops;
1080 vma->vm_flags |= VM_RESERVED;
1081 vma->vm_private_data = filp->private_data;
1082 mon_bin_vma_open(vma);
1083 return 0;
1084 }
1085
1086 static const struct file_operations mon_fops_binary = {
1087 .owner = THIS_MODULE,
1088 .open = mon_bin_open,
1089 .llseek = no_llseek,
1090 .read = mon_bin_read,
1091 /* .write = mon_text_write, */
1092 .poll = mon_bin_poll,
1093 .ioctl = mon_bin_ioctl,
1094 .release = mon_bin_release,
1095 .mmap = mon_bin_mmap,
1096 };
1097
1098 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1099 {
1100 DECLARE_WAITQUEUE(waita, current);
1101 unsigned long flags;
1102
1103 add_wait_queue(&rp->b_wait, &waita);
1104 set_current_state(TASK_INTERRUPTIBLE);
1105
1106 spin_lock_irqsave(&rp->b_lock, flags);
1107 while (MON_RING_EMPTY(rp)) {
1108 spin_unlock_irqrestore(&rp->b_lock, flags);
1109
1110 if (file->f_flags & O_NONBLOCK) {
1111 set_current_state(TASK_RUNNING);
1112 remove_wait_queue(&rp->b_wait, &waita);
1113 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1114 }
1115 schedule();
1116 if (signal_pending(current)) {
1117 remove_wait_queue(&rp->b_wait, &waita);
1118 return -EINTR;
1119 }
1120 set_current_state(TASK_INTERRUPTIBLE);
1121
1122 spin_lock_irqsave(&rp->b_lock, flags);
1123 }
1124 spin_unlock_irqrestore(&rp->b_lock, flags);
1125
1126 set_current_state(TASK_RUNNING);
1127 remove_wait_queue(&rp->b_wait, &waita);
1128 return 0;
1129 }
1130
1131 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1132 {
1133 int n;
1134 unsigned long vaddr;
1135
1136 for (n = 0; n < npages; n++) {
1137 vaddr = get_zeroed_page(GFP_KERNEL);
1138 if (vaddr == 0) {
1139 while (n-- != 0)
1140 free_page((unsigned long) map[n].ptr);
1141 return -ENOMEM;
1142 }
1143 map[n].ptr = (unsigned char *) vaddr;
1144 map[n].pg = virt_to_page(vaddr);
1145 }
1146 return 0;
1147 }
1148
1149 static void mon_free_buff(struct mon_pgmap *map, int npages)
1150 {
1151 int n;
1152
1153 for (n = 0; n < npages; n++)
1154 free_page((unsigned long) map[n].ptr);
1155 }
1156
1157 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1158 {
1159 struct device *dev;
1160 unsigned minor = ubus? ubus->busnum: 0;
1161
1162 if (minor >= MON_BIN_MAX_MINOR)
1163 return 0;
1164
1165 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1166 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1167 "usbmon%d", minor);
1168 if (IS_ERR(dev))
1169 return 0;
1170
1171 mbus->classdev = dev;
1172 return 1;
1173 }
1174
1175 void mon_bin_del(struct mon_bus *mbus)
1176 {
1177 device_destroy(mon_bin_class, mbus->classdev->devt);
1178 }
1179
1180 int __init mon_bin_init(void)
1181 {
1182 int rc;
1183
1184 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1185 if (IS_ERR(mon_bin_class)) {
1186 rc = PTR_ERR(mon_bin_class);
1187 goto err_class;
1188 }
1189
1190 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1191 if (rc < 0)
1192 goto err_dev;
1193
1194 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1195 mon_bin_cdev.owner = THIS_MODULE;
1196
1197 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1198 if (rc < 0)
1199 goto err_add;
1200
1201 return 0;
1202
1203 err_add:
1204 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1205 err_dev:
1206 class_destroy(mon_bin_class);
1207 err_class:
1208 return rc;
1209 }
1210
1211 void mon_bin_exit(void)
1212 {
1213 cdev_del(&mon_bin_cdev);
1214 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1215 class_destroy(mon_bin_class);
1216 }
This page took 0.055462 seconds and 5 git commands to generate.