Merge remote-tracking branch 'ipmi/for-next'
[deliverable/linux.git] / drivers / usb / storage / transport.c
1 /*
2 * Driver for USB Mass Storage compliant devices
3 *
4 * Current development and maintenance by:
5 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
6 *
7 * Developed with the assistance of:
8 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
9 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
10 * (c) 2002 Alan Stern <stern@rowland.org>
11 *
12 * Initial work by:
13 * (c) 1999 Michael Gee (michael@linuxspecific.com)
14 *
15 * This driver is based on the 'USB Mass Storage Class' document. This
16 * describes in detail the protocol used to communicate with such
17 * devices. Clearly, the designers had SCSI and ATAPI commands in
18 * mind when they created this document. The commands are all very
19 * similar to commands in the SCSI-II and ATAPI specifications.
20 *
21 * It is important to note that in a number of cases this class
22 * exhibits class-specific exemptions from the USB specification.
23 * Notably the usage of NAK, STALL and ACK differs from the norm, in
24 * that they are used to communicate wait, failed and OK on commands.
25 *
26 * Also, for certain devices, the interrupt endpoint is used to convey
27 * status of a command.
28 *
29 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
30 * information about this driver.
31 *
32 * This program is free software; you can redistribute it and/or modify it
33 * under the terms of the GNU General Public License as published by the
34 * Free Software Foundation; either version 2, or (at your option) any
35 * later version.
36 *
37 * This program is distributed in the hope that it will be useful, but
38 * WITHOUT ANY WARRANTY; without even the implied warranty of
39 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
40 * General Public License for more details.
41 *
42 * You should have received a copy of the GNU General Public License along
43 * with this program; if not, write to the Free Software Foundation, Inc.,
44 * 675 Mass Ave, Cambridge, MA 02139, USA.
45 */
46
47 #include <linux/sched.h>
48 #include <linux/gfp.h>
49 #include <linux/errno.h>
50 #include <linux/export.h>
51
52 #include <linux/usb/quirks.h>
53
54 #include <scsi/scsi.h>
55 #include <scsi/scsi_eh.h>
56 #include <scsi/scsi_device.h>
57
58 #include "usb.h"
59 #include "transport.h"
60 #include "protocol.h"
61 #include "scsiglue.h"
62 #include "debug.h"
63
64 #include <linux/blkdev.h>
65 #include "../../scsi/sd.h"
66
67
68 /***********************************************************************
69 * Data transfer routines
70 ***********************************************************************/
71
72 /*
73 * This is subtle, so pay attention:
74 * ---------------------------------
75 * We're very concerned about races with a command abort. Hanging this code
76 * is a sure fire way to hang the kernel. (Note that this discussion applies
77 * only to transactions resulting from a scsi queued-command, since only
78 * these transactions are subject to a scsi abort. Other transactions, such
79 * as those occurring during device-specific initialization, must be handled
80 * by a separate code path.)
81 *
82 * The abort function (usb_storage_command_abort() in scsiglue.c) first
83 * sets the machine state and the ABORTING bit in us->dflags to prevent
84 * new URBs from being submitted. It then calls usb_stor_stop_transport()
85 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
86 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE
87 * bit is tested to see if the current_sg scatter-gather request needs to be
88 * stopped. The timeout callback routine does much the same thing.
89 *
90 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
91 * prevent new URBs from being submitted, and usb_stor_stop_transport() is
92 * called to stop any ongoing requests.
93 *
94 * The submit function first verifies that the submitting is allowed
95 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
96 * completes without errors, and only then sets the URB_ACTIVE bit. This
97 * prevents the stop_transport() function from trying to cancel the URB
98 * while the submit call is underway. Next, the submit function must test
99 * the flags to see if an abort or disconnect occurred during the submission
100 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel
101 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
102 * is still set). Either way, the function must then wait for the URB to
103 * finish. Note that the URB can still be in progress even after a call to
104 * usb_unlink_urb() returns.
105 *
106 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
107 * either the stop_transport() function or the submitting function
108 * is guaranteed to call usb_unlink_urb() for an active URB,
109 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
110 * called more than once or from being called during usb_submit_urb().
111 */
112
113 /*
114 * This is the completion handler which will wake us up when an URB
115 * completes.
116 */
117 static void usb_stor_blocking_completion(struct urb *urb)
118 {
119 struct completion *urb_done_ptr = urb->context;
120
121 complete(urb_done_ptr);
122 }
123
124 /*
125 * This is the common part of the URB message submission code
126 *
127 * All URBs from the usb-storage driver involved in handling a queued scsi
128 * command _must_ pass through this function (or something like it) for the
129 * abort mechanisms to work properly.
130 */
131 static int usb_stor_msg_common(struct us_data *us, int timeout)
132 {
133 struct completion urb_done;
134 long timeleft;
135 int status;
136
137 /* don't submit URBs during abort processing */
138 if (test_bit(US_FLIDX_ABORTING, &us->dflags))
139 return -EIO;
140
141 /* set up data structures for the wakeup system */
142 init_completion(&urb_done);
143
144 /* fill the common fields in the URB */
145 us->current_urb->context = &urb_done;
146 us->current_urb->transfer_flags = 0;
147
148 /*
149 * we assume that if transfer_buffer isn't us->iobuf then it
150 * hasn't been mapped for DMA. Yes, this is clunky, but it's
151 * easier than always having the caller tell us whether the
152 * transfer buffer has already been mapped.
153 */
154 if (us->current_urb->transfer_buffer == us->iobuf)
155 us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
156 us->current_urb->transfer_dma = us->iobuf_dma;
157
158 /* submit the URB */
159 status = usb_submit_urb(us->current_urb, GFP_NOIO);
160 if (status) {
161 /* something went wrong */
162 return status;
163 }
164
165 /*
166 * since the URB has been submitted successfully, it's now okay
167 * to cancel it
168 */
169 set_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
170
171 /* did an abort occur during the submission? */
172 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
173
174 /* cancel the URB, if it hasn't been cancelled already */
175 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
176 usb_stor_dbg(us, "-- cancelling URB\n");
177 usb_unlink_urb(us->current_urb);
178 }
179 }
180
181 /* wait for the completion of the URB */
182 timeleft = wait_for_completion_interruptible_timeout(
183 &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
184
185 clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
186
187 if (timeleft <= 0) {
188 usb_stor_dbg(us, "%s -- cancelling URB\n",
189 timeleft == 0 ? "Timeout" : "Signal");
190 usb_kill_urb(us->current_urb);
191 }
192
193 /* return the URB status */
194 return us->current_urb->status;
195 }
196
197 /*
198 * Transfer one control message, with timeouts, and allowing early
199 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
200 */
201 int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
202 u8 request, u8 requesttype, u16 value, u16 index,
203 void *data, u16 size, int timeout)
204 {
205 int status;
206
207 usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
208 request, requesttype, value, index, size);
209
210 /* fill in the devrequest structure */
211 us->cr->bRequestType = requesttype;
212 us->cr->bRequest = request;
213 us->cr->wValue = cpu_to_le16(value);
214 us->cr->wIndex = cpu_to_le16(index);
215 us->cr->wLength = cpu_to_le16(size);
216
217 /* fill and submit the URB */
218 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
219 (unsigned char*) us->cr, data, size,
220 usb_stor_blocking_completion, NULL);
221 status = usb_stor_msg_common(us, timeout);
222
223 /* return the actual length of the data transferred if no error */
224 if (status == 0)
225 status = us->current_urb->actual_length;
226 return status;
227 }
228 EXPORT_SYMBOL_GPL(usb_stor_control_msg);
229
230 /*
231 * This is a version of usb_clear_halt() that allows early termination and
232 * doesn't read the status from the device -- this is because some devices
233 * crash their internal firmware when the status is requested after a halt.
234 *
235 * A definitive list of these 'bad' devices is too difficult to maintain or
236 * make complete enough to be useful. This problem was first observed on the
237 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither
238 * MacOS nor Windows checks the status after clearing a halt.
239 *
240 * Since many vendors in this space limit their testing to interoperability
241 * with these two OSes, specification violations like this one are common.
242 */
243 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
244 {
245 int result;
246 int endp = usb_pipeendpoint(pipe);
247
248 if (usb_pipein (pipe))
249 endp |= USB_DIR_IN;
250
251 result = usb_stor_control_msg(us, us->send_ctrl_pipe,
252 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
253 USB_ENDPOINT_HALT, endp,
254 NULL, 0, 3*HZ);
255
256 if (result >= 0)
257 usb_reset_endpoint(us->pusb_dev, endp);
258
259 usb_stor_dbg(us, "result = %d\n", result);
260 return result;
261 }
262 EXPORT_SYMBOL_GPL(usb_stor_clear_halt);
263
264
265 /*
266 * Interpret the results of a URB transfer
267 *
268 * This function prints appropriate debugging messages, clears halts on
269 * non-control endpoints, and translates the status to the corresponding
270 * USB_STOR_XFER_xxx return code.
271 */
272 static int interpret_urb_result(struct us_data *us, unsigned int pipe,
273 unsigned int length, int result, unsigned int partial)
274 {
275 usb_stor_dbg(us, "Status code %d; transferred %u/%u\n",
276 result, partial, length);
277 switch (result) {
278
279 /* no error code; did we send all the data? */
280 case 0:
281 if (partial != length) {
282 usb_stor_dbg(us, "-- short transfer\n");
283 return USB_STOR_XFER_SHORT;
284 }
285
286 usb_stor_dbg(us, "-- transfer complete\n");
287 return USB_STOR_XFER_GOOD;
288
289 /* stalled */
290 case -EPIPE:
291 /*
292 * for control endpoints, (used by CB[I]) a stall indicates
293 * a failed command
294 */
295 if (usb_pipecontrol(pipe)) {
296 usb_stor_dbg(us, "-- stall on control pipe\n");
297 return USB_STOR_XFER_STALLED;
298 }
299
300 /* for other sorts of endpoint, clear the stall */
301 usb_stor_dbg(us, "clearing endpoint halt for pipe 0x%x\n",
302 pipe);
303 if (usb_stor_clear_halt(us, pipe) < 0)
304 return USB_STOR_XFER_ERROR;
305 return USB_STOR_XFER_STALLED;
306
307 /* babble - the device tried to send more than we wanted to read */
308 case -EOVERFLOW:
309 usb_stor_dbg(us, "-- babble\n");
310 return USB_STOR_XFER_LONG;
311
312 /* the transfer was cancelled by abort, disconnect, or timeout */
313 case -ECONNRESET:
314 usb_stor_dbg(us, "-- transfer cancelled\n");
315 return USB_STOR_XFER_ERROR;
316
317 /* short scatter-gather read transfer */
318 case -EREMOTEIO:
319 usb_stor_dbg(us, "-- short read transfer\n");
320 return USB_STOR_XFER_SHORT;
321
322 /* abort or disconnect in progress */
323 case -EIO:
324 usb_stor_dbg(us, "-- abort or disconnect in progress\n");
325 return USB_STOR_XFER_ERROR;
326
327 /* the catch-all error case */
328 default:
329 usb_stor_dbg(us, "-- unknown error\n");
330 return USB_STOR_XFER_ERROR;
331 }
332 }
333
334 /*
335 * Transfer one control message, without timeouts, but allowing early
336 * termination. Return codes are USB_STOR_XFER_xxx.
337 */
338 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
339 u8 request, u8 requesttype, u16 value, u16 index,
340 void *data, u16 size)
341 {
342 int result;
343
344 usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
345 request, requesttype, value, index, size);
346
347 /* fill in the devrequest structure */
348 us->cr->bRequestType = requesttype;
349 us->cr->bRequest = request;
350 us->cr->wValue = cpu_to_le16(value);
351 us->cr->wIndex = cpu_to_le16(index);
352 us->cr->wLength = cpu_to_le16(size);
353
354 /* fill and submit the URB */
355 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
356 (unsigned char*) us->cr, data, size,
357 usb_stor_blocking_completion, NULL);
358 result = usb_stor_msg_common(us, 0);
359
360 return interpret_urb_result(us, pipe, size, result,
361 us->current_urb->actual_length);
362 }
363 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer);
364
365 /*
366 * Receive one interrupt buffer, without timeouts, but allowing early
367 * termination. Return codes are USB_STOR_XFER_xxx.
368 *
369 * This routine always uses us->recv_intr_pipe as the pipe and
370 * us->ep_bInterval as the interrupt interval.
371 */
372 static int usb_stor_intr_transfer(struct us_data *us, void *buf,
373 unsigned int length)
374 {
375 int result;
376 unsigned int pipe = us->recv_intr_pipe;
377 unsigned int maxp;
378
379 usb_stor_dbg(us, "xfer %u bytes\n", length);
380
381 /* calculate the max packet size */
382 maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe));
383 if (maxp > length)
384 maxp = length;
385
386 /* fill and submit the URB */
387 usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
388 maxp, usb_stor_blocking_completion, NULL,
389 us->ep_bInterval);
390 result = usb_stor_msg_common(us, 0);
391
392 return interpret_urb_result(us, pipe, length, result,
393 us->current_urb->actual_length);
394 }
395
396 /*
397 * Transfer one buffer via bulk pipe, without timeouts, but allowing early
398 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe
399 * stalls during the transfer, the halt is automatically cleared.
400 */
401 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
402 void *buf, unsigned int length, unsigned int *act_len)
403 {
404 int result;
405
406 usb_stor_dbg(us, "xfer %u bytes\n", length);
407
408 /* fill and submit the URB */
409 usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
410 usb_stor_blocking_completion, NULL);
411 result = usb_stor_msg_common(us, 0);
412
413 /* store the actual length of the data transferred */
414 if (act_len)
415 *act_len = us->current_urb->actual_length;
416 return interpret_urb_result(us, pipe, length, result,
417 us->current_urb->actual_length);
418 }
419 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf);
420
421 /*
422 * Transfer a scatter-gather list via bulk transfer
423 *
424 * This function does basically the same thing as usb_stor_bulk_transfer_buf()
425 * above, but it uses the usbcore scatter-gather library.
426 */
427 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
428 struct scatterlist *sg, int num_sg, unsigned int length,
429 unsigned int *act_len)
430 {
431 int result;
432
433 /* don't submit s-g requests during abort processing */
434 if (test_bit(US_FLIDX_ABORTING, &us->dflags))
435 return USB_STOR_XFER_ERROR;
436
437 /* initialize the scatter-gather request block */
438 usb_stor_dbg(us, "xfer %u bytes, %d entries\n", length, num_sg);
439 result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
440 sg, num_sg, length, GFP_NOIO);
441 if (result) {
442 usb_stor_dbg(us, "usb_sg_init returned %d\n", result);
443 return USB_STOR_XFER_ERROR;
444 }
445
446 /*
447 * since the block has been initialized successfully, it's now
448 * okay to cancel it
449 */
450 set_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
451
452 /* did an abort occur during the submission? */
453 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
454
455 /* cancel the request, if it hasn't been cancelled already */
456 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
457 usb_stor_dbg(us, "-- cancelling sg request\n");
458 usb_sg_cancel(&us->current_sg);
459 }
460 }
461
462 /* wait for the completion of the transfer */
463 usb_sg_wait(&us->current_sg);
464 clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
465
466 result = us->current_sg.status;
467 if (act_len)
468 *act_len = us->current_sg.bytes;
469 return interpret_urb_result(us, pipe, length, result,
470 us->current_sg.bytes);
471 }
472
473 /*
474 * Common used function. Transfer a complete command
475 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
476 */
477 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
478 struct scsi_cmnd* srb)
479 {
480 unsigned int partial;
481 int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
482 scsi_sg_count(srb), scsi_bufflen(srb),
483 &partial);
484
485 scsi_set_resid(srb, scsi_bufflen(srb) - partial);
486 return result;
487 }
488 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb);
489
490 /*
491 * Transfer an entire SCSI command's worth of data payload over the bulk
492 * pipe.
493 *
494 * Note that this uses usb_stor_bulk_transfer_buf() and
495 * usb_stor_bulk_transfer_sglist() to achieve its goals --
496 * this function simply determines whether we're going to use
497 * scatter-gather or not, and acts appropriately.
498 */
499 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
500 void *buf, unsigned int length_left, int use_sg, int *residual)
501 {
502 int result;
503 unsigned int partial;
504
505 /* are we scatter-gathering? */
506 if (use_sg) {
507 /* use the usb core scatter-gather primitives */
508 result = usb_stor_bulk_transfer_sglist(us, pipe,
509 (struct scatterlist *) buf, use_sg,
510 length_left, &partial);
511 length_left -= partial;
512 } else {
513 /* no scatter-gather, just make the request */
514 result = usb_stor_bulk_transfer_buf(us, pipe, buf,
515 length_left, &partial);
516 length_left -= partial;
517 }
518
519 /* store the residual and return the error code */
520 if (residual)
521 *residual = length_left;
522 return result;
523 }
524 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg);
525
526 /***********************************************************************
527 * Transport routines
528 ***********************************************************************/
529
530 /*
531 * There are so many devices that report the capacity incorrectly,
532 * this routine was written to counteract some of the resulting
533 * problems.
534 */
535 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb)
536 {
537 struct gendisk *disk;
538 struct scsi_disk *sdkp;
539 u32 sector;
540
541 /* To Report "Medium Error: Record Not Found */
542 static unsigned char record_not_found[18] = {
543 [0] = 0x70, /* current error */
544 [2] = MEDIUM_ERROR, /* = 0x03 */
545 [7] = 0x0a, /* additional length */
546 [12] = 0x14 /* Record Not Found */
547 };
548
549 /*
550 * If last-sector problems can't occur, whether because the
551 * capacity was already decremented or because the device is
552 * known to report the correct capacity, then we don't need
553 * to do anything.
554 */
555 if (!us->use_last_sector_hacks)
556 return;
557
558 /* Was this command a READ(10) or a WRITE(10)? */
559 if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10)
560 goto done;
561
562 /* Did this command access the last sector? */
563 sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) |
564 (srb->cmnd[4] << 8) | (srb->cmnd[5]);
565 disk = srb->request->rq_disk;
566 if (!disk)
567 goto done;
568 sdkp = scsi_disk(disk);
569 if (!sdkp)
570 goto done;
571 if (sector + 1 != sdkp->capacity)
572 goto done;
573
574 if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) {
575
576 /*
577 * The command succeeded. We know this device doesn't
578 * have the last-sector bug, so stop checking it.
579 */
580 us->use_last_sector_hacks = 0;
581
582 } else {
583 /*
584 * The command failed. Allow up to 3 retries in case this
585 * is some normal sort of failure. After that, assume the
586 * capacity is wrong and we're trying to access the sector
587 * beyond the end. Replace the result code and sense data
588 * with values that will cause the SCSI core to fail the
589 * command immediately, instead of going into an infinite
590 * (or even just a very long) retry loop.
591 */
592 if (++us->last_sector_retries < 3)
593 return;
594 srb->result = SAM_STAT_CHECK_CONDITION;
595 memcpy(srb->sense_buffer, record_not_found,
596 sizeof(record_not_found));
597 }
598
599 done:
600 /*
601 * Don't reset the retry counter for TEST UNIT READY commands,
602 * because they get issued after device resets which might be
603 * caused by a failed last-sector access.
604 */
605 if (srb->cmnd[0] != TEST_UNIT_READY)
606 us->last_sector_retries = 0;
607 }
608
609 /*
610 * Invoke the transport and basic error-handling/recovery methods
611 *
612 * This is used by the protocol layers to actually send the message to
613 * the device and receive the response.
614 */
615 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
616 {
617 int need_auto_sense;
618 int result;
619
620 /* send the command to the transport layer */
621 scsi_set_resid(srb, 0);
622 result = us->transport(srb, us);
623
624 /*
625 * if the command gets aborted by the higher layers, we need to
626 * short-circuit all other processing
627 */
628 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
629 usb_stor_dbg(us, "-- command was aborted\n");
630 srb->result = DID_ABORT << 16;
631 goto Handle_Errors;
632 }
633
634 /* if there is a transport error, reset and don't auto-sense */
635 if (result == USB_STOR_TRANSPORT_ERROR) {
636 usb_stor_dbg(us, "-- transport indicates error, resetting\n");
637 srb->result = DID_ERROR << 16;
638 goto Handle_Errors;
639 }
640
641 /* if the transport provided its own sense data, don't auto-sense */
642 if (result == USB_STOR_TRANSPORT_NO_SENSE) {
643 srb->result = SAM_STAT_CHECK_CONDITION;
644 last_sector_hacks(us, srb);
645 return;
646 }
647
648 srb->result = SAM_STAT_GOOD;
649
650 /*
651 * Determine if we need to auto-sense
652 *
653 * I normally don't use a flag like this, but it's almost impossible
654 * to understand what's going on here if I don't.
655 */
656 need_auto_sense = 0;
657
658 /*
659 * If we're running the CB transport, which is incapable
660 * of determining status on its own, we will auto-sense
661 * unless the operation involved a data-in transfer. Devices
662 * can signal most data-in errors by stalling the bulk-in pipe.
663 */
664 if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) &&
665 srb->sc_data_direction != DMA_FROM_DEVICE) {
666 usb_stor_dbg(us, "-- CB transport device requiring auto-sense\n");
667 need_auto_sense = 1;
668 }
669
670 /*
671 * If we have a failure, we're going to do a REQUEST_SENSE
672 * automatically. Note that we differentiate between a command
673 * "failure" and an "error" in the transport mechanism.
674 */
675 if (result == USB_STOR_TRANSPORT_FAILED) {
676 usb_stor_dbg(us, "-- transport indicates command failure\n");
677 need_auto_sense = 1;
678 }
679
680 /*
681 * Determine if this device is SAT by seeing if the
682 * command executed successfully. Otherwise we'll have
683 * to wait for at least one CHECK_CONDITION to determine
684 * SANE_SENSE support
685 */
686 if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) &&
687 result == USB_STOR_TRANSPORT_GOOD &&
688 !(us->fflags & US_FL_SANE_SENSE) &&
689 !(us->fflags & US_FL_BAD_SENSE) &&
690 !(srb->cmnd[2] & 0x20))) {
691 usb_stor_dbg(us, "-- SAT supported, increasing auto-sense\n");
692 us->fflags |= US_FL_SANE_SENSE;
693 }
694
695 /*
696 * A short transfer on a command where we don't expect it
697 * is unusual, but it doesn't mean we need to auto-sense.
698 */
699 if ((scsi_get_resid(srb) > 0) &&
700 !((srb->cmnd[0] == REQUEST_SENSE) ||
701 (srb->cmnd[0] == INQUIRY) ||
702 (srb->cmnd[0] == MODE_SENSE) ||
703 (srb->cmnd[0] == LOG_SENSE) ||
704 (srb->cmnd[0] == MODE_SENSE_10))) {
705 usb_stor_dbg(us, "-- unexpectedly short transfer\n");
706 }
707
708 /* Now, if we need to do the auto-sense, let's do it */
709 if (need_auto_sense) {
710 int temp_result;
711 struct scsi_eh_save ses;
712 int sense_size = US_SENSE_SIZE;
713 struct scsi_sense_hdr sshdr;
714 const u8 *scdd;
715 u8 fm_ili;
716
717 /* device supports and needs bigger sense buffer */
718 if (us->fflags & US_FL_SANE_SENSE)
719 sense_size = ~0;
720 Retry_Sense:
721 usb_stor_dbg(us, "Issuing auto-REQUEST_SENSE\n");
722
723 scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size);
724
725 /* FIXME: we must do the protocol translation here */
726 if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI ||
727 us->subclass == USB_SC_CYP_ATACB)
728 srb->cmd_len = 6;
729 else
730 srb->cmd_len = 12;
731
732 /* issue the auto-sense command */
733 scsi_set_resid(srb, 0);
734 temp_result = us->transport(us->srb, us);
735
736 /* let's clean up right away */
737 scsi_eh_restore_cmnd(srb, &ses);
738
739 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
740 usb_stor_dbg(us, "-- auto-sense aborted\n");
741 srb->result = DID_ABORT << 16;
742
743 /* If SANE_SENSE caused this problem, disable it */
744 if (sense_size != US_SENSE_SIZE) {
745 us->fflags &= ~US_FL_SANE_SENSE;
746 us->fflags |= US_FL_BAD_SENSE;
747 }
748 goto Handle_Errors;
749 }
750
751 /*
752 * Some devices claim to support larger sense but fail when
753 * trying to request it. When a transport failure happens
754 * using US_FS_SANE_SENSE, we always retry with a standard
755 * (small) sense request. This fixes some USB GSM modems
756 */
757 if (temp_result == USB_STOR_TRANSPORT_FAILED &&
758 sense_size != US_SENSE_SIZE) {
759 usb_stor_dbg(us, "-- auto-sense failure, retry small sense\n");
760 sense_size = US_SENSE_SIZE;
761 us->fflags &= ~US_FL_SANE_SENSE;
762 us->fflags |= US_FL_BAD_SENSE;
763 goto Retry_Sense;
764 }
765
766 /* Other failures */
767 if (temp_result != USB_STOR_TRANSPORT_GOOD) {
768 usb_stor_dbg(us, "-- auto-sense failure\n");
769
770 /*
771 * we skip the reset if this happens to be a
772 * multi-target device, since failure of an
773 * auto-sense is perfectly valid
774 */
775 srb->result = DID_ERROR << 16;
776 if (!(us->fflags & US_FL_SCM_MULT_TARG))
777 goto Handle_Errors;
778 return;
779 }
780
781 /*
782 * If the sense data returned is larger than 18-bytes then we
783 * assume this device supports requesting more in the future.
784 * The response code must be 70h through 73h inclusive.
785 */
786 if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) &&
787 !(us->fflags & US_FL_SANE_SENSE) &&
788 !(us->fflags & US_FL_BAD_SENSE) &&
789 (srb->sense_buffer[0] & 0x7C) == 0x70) {
790 usb_stor_dbg(us, "-- SANE_SENSE support enabled\n");
791 us->fflags |= US_FL_SANE_SENSE;
792
793 /*
794 * Indicate to the user that we truncated their sense
795 * because we didn't know it supported larger sense.
796 */
797 usb_stor_dbg(us, "-- Sense data truncated to %i from %i\n",
798 US_SENSE_SIZE,
799 srb->sense_buffer[7] + 8);
800 srb->sense_buffer[7] = (US_SENSE_SIZE - 8);
801 }
802
803 scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE,
804 &sshdr);
805
806 usb_stor_dbg(us, "-- Result from auto-sense is %d\n",
807 temp_result);
808 usb_stor_dbg(us, "-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
809 sshdr.response_code, sshdr.sense_key,
810 sshdr.asc, sshdr.ascq);
811 #ifdef CONFIG_USB_STORAGE_DEBUG
812 usb_stor_show_sense(us, sshdr.sense_key, sshdr.asc, sshdr.ascq);
813 #endif
814
815 /* set the result so the higher layers expect this data */
816 srb->result = SAM_STAT_CHECK_CONDITION;
817
818 scdd = scsi_sense_desc_find(srb->sense_buffer,
819 SCSI_SENSE_BUFFERSIZE, 4);
820 fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0;
821
822 /*
823 * We often get empty sense data. This could indicate that
824 * everything worked or that there was an unspecified
825 * problem. We have to decide which.
826 */
827 if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 &&
828 fm_ili == 0) {
829 /*
830 * If things are really okay, then let's show that.
831 * Zero out the sense buffer so the higher layers
832 * won't realize we did an unsolicited auto-sense.
833 */
834 if (result == USB_STOR_TRANSPORT_GOOD) {
835 srb->result = SAM_STAT_GOOD;
836 srb->sense_buffer[0] = 0x0;
837
838 /*
839 * If there was a problem, report an unspecified
840 * hardware error to prevent the higher layers from
841 * entering an infinite retry loop.
842 */
843 } else {
844 srb->result = DID_ERROR << 16;
845 if ((sshdr.response_code & 0x72) == 0x72)
846 srb->sense_buffer[1] = HARDWARE_ERROR;
847 else
848 srb->sense_buffer[2] = HARDWARE_ERROR;
849 }
850 }
851 }
852
853 /*
854 * Some devices don't work or return incorrect data the first
855 * time they get a READ(10) command, or for the first READ(10)
856 * after a media change. If the INITIAL_READ10 flag is set,
857 * keep track of whether READ(10) commands succeed. If the
858 * previous one succeeded and this one failed, set the REDO_READ10
859 * flag to force a retry.
860 */
861 if (unlikely((us->fflags & US_FL_INITIAL_READ10) &&
862 srb->cmnd[0] == READ_10)) {
863 if (srb->result == SAM_STAT_GOOD) {
864 set_bit(US_FLIDX_READ10_WORKED, &us->dflags);
865 } else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) {
866 clear_bit(US_FLIDX_READ10_WORKED, &us->dflags);
867 set_bit(US_FLIDX_REDO_READ10, &us->dflags);
868 }
869
870 /*
871 * Next, if the REDO_READ10 flag is set, return a result
872 * code that will cause the SCSI core to retry the READ(10)
873 * command immediately.
874 */
875 if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) {
876 clear_bit(US_FLIDX_REDO_READ10, &us->dflags);
877 srb->result = DID_IMM_RETRY << 16;
878 srb->sense_buffer[0] = 0;
879 }
880 }
881
882 /* Did we transfer less than the minimum amount required? */
883 if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) &&
884 scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
885 srb->result = DID_ERROR << 16;
886
887 last_sector_hacks(us, srb);
888 return;
889
890 /*
891 * Error and abort processing: try to resynchronize with the device
892 * by issuing a port reset. If that fails, try a class-specific
893 * device reset.
894 */
895 Handle_Errors:
896
897 /*
898 * Set the RESETTING bit, and clear the ABORTING bit so that
899 * the reset may proceed.
900 */
901 scsi_lock(us_to_host(us));
902 set_bit(US_FLIDX_RESETTING, &us->dflags);
903 clear_bit(US_FLIDX_ABORTING, &us->dflags);
904 scsi_unlock(us_to_host(us));
905
906 /*
907 * We must release the device lock because the pre_reset routine
908 * will want to acquire it.
909 */
910 mutex_unlock(&us->dev_mutex);
911 result = usb_stor_port_reset(us);
912 mutex_lock(&us->dev_mutex);
913
914 if (result < 0) {
915 scsi_lock(us_to_host(us));
916 usb_stor_report_device_reset(us);
917 scsi_unlock(us_to_host(us));
918 us->transport_reset(us);
919 }
920 clear_bit(US_FLIDX_RESETTING, &us->dflags);
921 last_sector_hacks(us, srb);
922 }
923
924 /* Stop the current URB transfer */
925 void usb_stor_stop_transport(struct us_data *us)
926 {
927 /*
928 * If the state machine is blocked waiting for an URB,
929 * let's wake it up. The test_and_clear_bit() call
930 * guarantees that if a URB has just been submitted,
931 * it won't be cancelled more than once.
932 */
933 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
934 usb_stor_dbg(us, "-- cancelling URB\n");
935 usb_unlink_urb(us->current_urb);
936 }
937
938 /* If we are waiting for a scatter-gather operation, cancel it. */
939 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
940 usb_stor_dbg(us, "-- cancelling sg request\n");
941 usb_sg_cancel(&us->current_sg);
942 }
943 }
944
945 /*
946 * Control/Bulk and Control/Bulk/Interrupt transport
947 */
948
949 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
950 {
951 unsigned int transfer_length = scsi_bufflen(srb);
952 unsigned int pipe = 0;
953 int result;
954
955 /* COMMAND STAGE */
956 /* let's send the command via the control pipe */
957 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
958 US_CBI_ADSC,
959 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
960 us->ifnum, srb->cmnd, srb->cmd_len);
961
962 /* check the return code for the command */
963 usb_stor_dbg(us, "Call to usb_stor_ctrl_transfer() returned %d\n",
964 result);
965
966 /* if we stalled the command, it means command failed */
967 if (result == USB_STOR_XFER_STALLED) {
968 return USB_STOR_TRANSPORT_FAILED;
969 }
970
971 /* Uh oh... serious problem here */
972 if (result != USB_STOR_XFER_GOOD) {
973 return USB_STOR_TRANSPORT_ERROR;
974 }
975
976 /* DATA STAGE */
977 /* transfer the data payload for this command, if one exists*/
978 if (transfer_length) {
979 pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
980 us->recv_bulk_pipe : us->send_bulk_pipe;
981 result = usb_stor_bulk_srb(us, pipe, srb);
982 usb_stor_dbg(us, "CBI data stage result is 0x%x\n", result);
983
984 /* if we stalled the data transfer it means command failed */
985 if (result == USB_STOR_XFER_STALLED)
986 return USB_STOR_TRANSPORT_FAILED;
987 if (result > USB_STOR_XFER_STALLED)
988 return USB_STOR_TRANSPORT_ERROR;
989 }
990
991 /* STATUS STAGE */
992
993 /*
994 * NOTE: CB does not have a status stage. Silly, I know. So
995 * we have to catch this at a higher level.
996 */
997 if (us->protocol != USB_PR_CBI)
998 return USB_STOR_TRANSPORT_GOOD;
999
1000 result = usb_stor_intr_transfer(us, us->iobuf, 2);
1001 usb_stor_dbg(us, "Got interrupt data (0x%x, 0x%x)\n",
1002 us->iobuf[0], us->iobuf[1]);
1003 if (result != USB_STOR_XFER_GOOD)
1004 return USB_STOR_TRANSPORT_ERROR;
1005
1006 /*
1007 * UFI gives us ASC and ASCQ, like a request sense
1008 *
1009 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
1010 * devices, so we ignore the information for those commands. Note
1011 * that this means we could be ignoring a real error on these
1012 * commands, but that can't be helped.
1013 */
1014 if (us->subclass == USB_SC_UFI) {
1015 if (srb->cmnd[0] == REQUEST_SENSE ||
1016 srb->cmnd[0] == INQUIRY)
1017 return USB_STOR_TRANSPORT_GOOD;
1018 if (us->iobuf[0])
1019 goto Failed;
1020 return USB_STOR_TRANSPORT_GOOD;
1021 }
1022
1023 /*
1024 * If not UFI, we interpret the data as a result code
1025 * The first byte should always be a 0x0.
1026 *
1027 * Some bogus devices don't follow that rule. They stuff the ASC
1028 * into the first byte -- so if it's non-zero, call it a failure.
1029 */
1030 if (us->iobuf[0]) {
1031 usb_stor_dbg(us, "CBI IRQ data showed reserved bType 0x%x\n",
1032 us->iobuf[0]);
1033 goto Failed;
1034
1035 }
1036
1037 /* The second byte & 0x0F should be 0x0 for good, otherwise error */
1038 switch (us->iobuf[1] & 0x0F) {
1039 case 0x00:
1040 return USB_STOR_TRANSPORT_GOOD;
1041 case 0x01:
1042 goto Failed;
1043 }
1044 return USB_STOR_TRANSPORT_ERROR;
1045
1046 /*
1047 * the CBI spec requires that the bulk pipe must be cleared
1048 * following any data-in/out command failure (section 2.4.3.1.3)
1049 */
1050 Failed:
1051 if (pipe)
1052 usb_stor_clear_halt(us, pipe);
1053 return USB_STOR_TRANSPORT_FAILED;
1054 }
1055 EXPORT_SYMBOL_GPL(usb_stor_CB_transport);
1056
1057 /*
1058 * Bulk only transport
1059 */
1060
1061 /* Determine what the maximum LUN supported is */
1062 int usb_stor_Bulk_max_lun(struct us_data *us)
1063 {
1064 int result;
1065
1066 /* issue the command */
1067 us->iobuf[0] = 0;
1068 result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
1069 US_BULK_GET_MAX_LUN,
1070 USB_DIR_IN | USB_TYPE_CLASS |
1071 USB_RECIP_INTERFACE,
1072 0, us->ifnum, us->iobuf, 1, 10*HZ);
1073
1074 usb_stor_dbg(us, "GetMaxLUN command result is %d, data is %d\n",
1075 result, us->iobuf[0]);
1076
1077 /*
1078 * If we have a successful request, return the result if valid. The
1079 * CBW LUN field is 4 bits wide, so the value reported by the device
1080 * should fit into that.
1081 */
1082 if (result > 0) {
1083 if (us->iobuf[0] < 16) {
1084 return us->iobuf[0];
1085 } else {
1086 dev_info(&us->pusb_intf->dev,
1087 "Max LUN %d is not valid, using 0 instead",
1088 us->iobuf[0]);
1089 }
1090 }
1091
1092 /*
1093 * Some devices don't like GetMaxLUN. They may STALL the control
1094 * pipe, they may return a zero-length result, they may do nothing at
1095 * all and timeout, or they may fail in even more bizarrely creative
1096 * ways. In these cases the best approach is to use the default
1097 * value: only one LUN.
1098 */
1099 return 0;
1100 }
1101
1102 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
1103 {
1104 struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
1105 struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
1106 unsigned int transfer_length = scsi_bufflen(srb);
1107 unsigned int residue;
1108 int result;
1109 int fake_sense = 0;
1110 unsigned int cswlen;
1111 unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
1112
1113 /* Take care of BULK32 devices; set extra byte to 0 */
1114 if (unlikely(us->fflags & US_FL_BULK32)) {
1115 cbwlen = 32;
1116 us->iobuf[31] = 0;
1117 }
1118
1119 /* set up the command wrapper */
1120 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
1121 bcb->DataTransferLength = cpu_to_le32(transfer_length);
1122 bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ?
1123 US_BULK_FLAG_IN : 0;
1124 bcb->Tag = ++us->tag;
1125 bcb->Lun = srb->device->lun;
1126 if (us->fflags & US_FL_SCM_MULT_TARG)
1127 bcb->Lun |= srb->device->id << 4;
1128 bcb->Length = srb->cmd_len;
1129
1130 /* copy the command payload */
1131 memset(bcb->CDB, 0, sizeof(bcb->CDB));
1132 memcpy(bcb->CDB, srb->cmnd, bcb->Length);
1133
1134 /* send it to out endpoint */
1135 usb_stor_dbg(us, "Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
1136 le32_to_cpu(bcb->Signature), bcb->Tag,
1137 le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
1138 (bcb->Lun >> 4), (bcb->Lun & 0x0F),
1139 bcb->Length);
1140 result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
1141 bcb, cbwlen, NULL);
1142 usb_stor_dbg(us, "Bulk command transfer result=%d\n", result);
1143 if (result != USB_STOR_XFER_GOOD)
1144 return USB_STOR_TRANSPORT_ERROR;
1145
1146 /* DATA STAGE */
1147 /* send/receive data payload, if there is any */
1148
1149 /*
1150 * Some USB-IDE converter chips need a 100us delay between the
1151 * command phase and the data phase. Some devices need a little
1152 * more than that, probably because of clock rate inaccuracies.
1153 */
1154 if (unlikely(us->fflags & US_FL_GO_SLOW))
1155 usleep_range(125, 150);
1156
1157 if (transfer_length) {
1158 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
1159 us->recv_bulk_pipe : us->send_bulk_pipe;
1160 result = usb_stor_bulk_srb(us, pipe, srb);
1161 usb_stor_dbg(us, "Bulk data transfer result 0x%x\n", result);
1162 if (result == USB_STOR_XFER_ERROR)
1163 return USB_STOR_TRANSPORT_ERROR;
1164
1165 /*
1166 * If the device tried to send back more data than the
1167 * amount requested, the spec requires us to transfer
1168 * the CSW anyway. Since there's no point retrying the
1169 * the command, we'll return fake sense data indicating
1170 * Illegal Request, Invalid Field in CDB.
1171 */
1172 if (result == USB_STOR_XFER_LONG)
1173 fake_sense = 1;
1174
1175 /*
1176 * Sometimes a device will mistakenly skip the data phase
1177 * and go directly to the status phase without sending a
1178 * zero-length packet. If we get a 13-byte response here,
1179 * check whether it really is a CSW.
1180 */
1181 if (result == USB_STOR_XFER_SHORT &&
1182 srb->sc_data_direction == DMA_FROM_DEVICE &&
1183 transfer_length - scsi_get_resid(srb) ==
1184 US_BULK_CS_WRAP_LEN) {
1185 struct scatterlist *sg = NULL;
1186 unsigned int offset = 0;
1187
1188 if (usb_stor_access_xfer_buf((unsigned char *) bcs,
1189 US_BULK_CS_WRAP_LEN, srb, &sg,
1190 &offset, FROM_XFER_BUF) ==
1191 US_BULK_CS_WRAP_LEN &&
1192 bcs->Signature ==
1193 cpu_to_le32(US_BULK_CS_SIGN)) {
1194 usb_stor_dbg(us, "Device skipped data phase\n");
1195 scsi_set_resid(srb, transfer_length);
1196 goto skipped_data_phase;
1197 }
1198 }
1199 }
1200
1201 /*
1202 * See flow chart on pg 15 of the Bulk Only Transport spec for
1203 * an explanation of how this code works.
1204 */
1205
1206 /* get CSW for device status */
1207 usb_stor_dbg(us, "Attempting to get CSW...\n");
1208 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1209 bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1210
1211 /*
1212 * Some broken devices add unnecessary zero-length packets to the
1213 * end of their data transfers. Such packets show up as 0-length
1214 * CSWs. If we encounter such a thing, try to read the CSW again.
1215 */
1216 if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
1217 usb_stor_dbg(us, "Received 0-length CSW; retrying...\n");
1218 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1219 bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1220 }
1221
1222 /* did the attempt to read the CSW fail? */
1223 if (result == USB_STOR_XFER_STALLED) {
1224
1225 /* get the status again */
1226 usb_stor_dbg(us, "Attempting to get CSW (2nd try)...\n");
1227 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1228 bcs, US_BULK_CS_WRAP_LEN, NULL);
1229 }
1230
1231 /* if we still have a failure at this point, we're in trouble */
1232 usb_stor_dbg(us, "Bulk status result = %d\n", result);
1233 if (result != USB_STOR_XFER_GOOD)
1234 return USB_STOR_TRANSPORT_ERROR;
1235
1236 skipped_data_phase:
1237 /* check bulk status */
1238 residue = le32_to_cpu(bcs->Residue);
1239 usb_stor_dbg(us, "Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1240 le32_to_cpu(bcs->Signature), bcs->Tag,
1241 residue, bcs->Status);
1242 if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) ||
1243 bcs->Status > US_BULK_STAT_PHASE) {
1244 usb_stor_dbg(us, "Bulk logical error\n");
1245 return USB_STOR_TRANSPORT_ERROR;
1246 }
1247
1248 /*
1249 * Some broken devices report odd signatures, so we do not check them
1250 * for validity against the spec. We store the first one we see,
1251 * and check subsequent transfers for validity against this signature.
1252 */
1253 if (!us->bcs_signature) {
1254 us->bcs_signature = bcs->Signature;
1255 if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
1256 usb_stor_dbg(us, "Learnt BCS signature 0x%08X\n",
1257 le32_to_cpu(us->bcs_signature));
1258 } else if (bcs->Signature != us->bcs_signature) {
1259 usb_stor_dbg(us, "Signature mismatch: got %08X, expecting %08X\n",
1260 le32_to_cpu(bcs->Signature),
1261 le32_to_cpu(us->bcs_signature));
1262 return USB_STOR_TRANSPORT_ERROR;
1263 }
1264
1265 /*
1266 * try to compute the actual residue, based on how much data
1267 * was really transferred and what the device tells us
1268 */
1269 if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) {
1270
1271 /*
1272 * Heuristically detect devices that generate bogus residues
1273 * by seeing what happens with INQUIRY and READ CAPACITY
1274 * commands.
1275 */
1276 if (bcs->Status == US_BULK_STAT_OK &&
1277 scsi_get_resid(srb) == 0 &&
1278 ((srb->cmnd[0] == INQUIRY &&
1279 transfer_length == 36) ||
1280 (srb->cmnd[0] == READ_CAPACITY &&
1281 transfer_length == 8))) {
1282 us->fflags |= US_FL_IGNORE_RESIDUE;
1283
1284 } else {
1285 residue = min(residue, transfer_length);
1286 scsi_set_resid(srb, max(scsi_get_resid(srb),
1287 (int) residue));
1288 }
1289 }
1290
1291 /* based on the status code, we report good or bad */
1292 switch (bcs->Status) {
1293 case US_BULK_STAT_OK:
1294 /* device babbled -- return fake sense data */
1295 if (fake_sense) {
1296 memcpy(srb->sense_buffer,
1297 usb_stor_sense_invalidCDB,
1298 sizeof(usb_stor_sense_invalidCDB));
1299 return USB_STOR_TRANSPORT_NO_SENSE;
1300 }
1301
1302 /* command good -- note that data could be short */
1303 return USB_STOR_TRANSPORT_GOOD;
1304
1305 case US_BULK_STAT_FAIL:
1306 /* command failed */
1307 return USB_STOR_TRANSPORT_FAILED;
1308
1309 case US_BULK_STAT_PHASE:
1310 /*
1311 * phase error -- note that a transport reset will be
1312 * invoked by the invoke_transport() function
1313 */
1314 return USB_STOR_TRANSPORT_ERROR;
1315 }
1316
1317 /* we should never get here, but if we do, we're in trouble */
1318 return USB_STOR_TRANSPORT_ERROR;
1319 }
1320 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport);
1321
1322 /***********************************************************************
1323 * Reset routines
1324 ***********************************************************************/
1325
1326 /*
1327 * This is the common part of the device reset code.
1328 *
1329 * It's handy that every transport mechanism uses the control endpoint for
1330 * resets.
1331 *
1332 * Basically, we send a reset with a 5-second timeout, so we don't get
1333 * jammed attempting to do the reset.
1334 */
1335 static int usb_stor_reset_common(struct us_data *us,
1336 u8 request, u8 requesttype,
1337 u16 value, u16 index, void *data, u16 size)
1338 {
1339 int result;
1340 int result2;
1341
1342 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1343 usb_stor_dbg(us, "No reset during disconnect\n");
1344 return -EIO;
1345 }
1346
1347 result = usb_stor_control_msg(us, us->send_ctrl_pipe,
1348 request, requesttype, value, index, data, size,
1349 5*HZ);
1350 if (result < 0) {
1351 usb_stor_dbg(us, "Soft reset failed: %d\n", result);
1352 return result;
1353 }
1354
1355 /*
1356 * Give the device some time to recover from the reset,
1357 * but don't delay disconnect processing.
1358 */
1359 wait_event_interruptible_timeout(us->delay_wait,
1360 test_bit(US_FLIDX_DISCONNECTING, &us->dflags),
1361 HZ*6);
1362 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1363 usb_stor_dbg(us, "Reset interrupted by disconnect\n");
1364 return -EIO;
1365 }
1366
1367 usb_stor_dbg(us, "Soft reset: clearing bulk-in endpoint halt\n");
1368 result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
1369
1370 usb_stor_dbg(us, "Soft reset: clearing bulk-out endpoint halt\n");
1371 result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
1372
1373 /* return a result code based on the result of the clear-halts */
1374 if (result >= 0)
1375 result = result2;
1376 if (result < 0)
1377 usb_stor_dbg(us, "Soft reset failed\n");
1378 else
1379 usb_stor_dbg(us, "Soft reset done\n");
1380 return result;
1381 }
1382
1383 /* This issues a CB[I] Reset to the device in question */
1384 #define CB_RESET_CMD_SIZE 12
1385
1386 int usb_stor_CB_reset(struct us_data *us)
1387 {
1388 memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
1389 us->iobuf[0] = SEND_DIAGNOSTIC;
1390 us->iobuf[1] = 4;
1391 return usb_stor_reset_common(us, US_CBI_ADSC,
1392 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1393 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
1394 }
1395 EXPORT_SYMBOL_GPL(usb_stor_CB_reset);
1396
1397 /*
1398 * This issues a Bulk-only Reset to the device in question, including
1399 * clearing the subsequent endpoint halts that may occur.
1400 */
1401 int usb_stor_Bulk_reset(struct us_data *us)
1402 {
1403 return usb_stor_reset_common(us, US_BULK_RESET_REQUEST,
1404 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1405 0, us->ifnum, NULL, 0);
1406 }
1407 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset);
1408
1409 /*
1410 * Issue a USB port reset to the device. The caller must not hold
1411 * us->dev_mutex.
1412 */
1413 int usb_stor_port_reset(struct us_data *us)
1414 {
1415 int result;
1416
1417 /*for these devices we must use the class specific method */
1418 if (us->pusb_dev->quirks & USB_QUIRK_RESET)
1419 return -EPERM;
1420
1421 result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
1422 if (result < 0)
1423 usb_stor_dbg(us, "unable to lock device for reset: %d\n",
1424 result);
1425 else {
1426 /* Were we disconnected while waiting for the lock? */
1427 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1428 result = -EIO;
1429 usb_stor_dbg(us, "No reset during disconnect\n");
1430 } else {
1431 result = usb_reset_device(us->pusb_dev);
1432 usb_stor_dbg(us, "usb_reset_device returns %d\n",
1433 result);
1434 }
1435 usb_unlock_device(us->pusb_dev);
1436 }
1437 return result;
1438 }
This page took 0.063245 seconds and 5 git commands to generate.