Merge remote-tracking branch 'spi/topic/build' into spi-next
[deliverable/linux.git] / drivers / usb / wusbcore / wa-xfer.c
1 /*
2 * WUSB Wire Adapter
3 * Data transfer and URB enqueing
4 *
5 * Copyright (C) 2005-2006 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
21 *
22 *
23 * How transfers work: get a buffer, break it up in segments (segment
24 * size is a multiple of the maxpacket size). For each segment issue a
25 * segment request (struct wa_xfer_*), then send the data buffer if
26 * out or nothing if in (all over the DTO endpoint).
27 *
28 * For each submitted segment request, a notification will come over
29 * the NEP endpoint and a transfer result (struct xfer_result) will
30 * arrive in the DTI URB. Read it, get the xfer ID, see if there is
31 * data coming (inbound transfer), schedule a read and handle it.
32 *
33 * Sounds simple, it is a pain to implement.
34 *
35 *
36 * ENTRY POINTS
37 *
38 * FIXME
39 *
40 * LIFE CYCLE / STATE DIAGRAM
41 *
42 * FIXME
43 *
44 * THIS CODE IS DISGUSTING
45 *
46 * Warned you are; it's my second try and still not happy with it.
47 *
48 * NOTES:
49 *
50 * - No iso
51 *
52 * - Supports DMA xfers, control, bulk and maybe interrupt
53 *
54 * - Does not recycle unused rpipes
55 *
56 * An rpipe is assigned to an endpoint the first time it is used,
57 * and then it's there, assigned, until the endpoint is disabled
58 * (destroyed [{h,d}wahc_op_ep_disable()]. The assignment of the
59 * rpipe to the endpoint is done under the wa->rpipe_sem semaphore
60 * (should be a mutex).
61 *
62 * Two methods it could be done:
63 *
64 * (a) set up a timer every time an rpipe's use count drops to 1
65 * (which means unused) or when a transfer ends. Reset the
66 * timer when a xfer is queued. If the timer expires, release
67 * the rpipe [see rpipe_ep_disable()].
68 *
69 * (b) when looking for free rpipes to attach [rpipe_get_by_ep()],
70 * when none are found go over the list, check their endpoint
71 * and their activity record (if no last-xfer-done-ts in the
72 * last x seconds) take it
73 *
74 * However, due to the fact that we have a set of limited
75 * resources (max-segments-at-the-same-time per xfer,
76 * xfers-per-ripe, blocks-per-rpipe, rpipes-per-host), at the end
77 * we are going to have to rebuild all this based on an scheduler,
78 * to where we have a list of transactions to do and based on the
79 * availability of the different required components (blocks,
80 * rpipes, segment slots, etc), we go scheduling them. Painful.
81 */
82 #include <linux/init.h>
83 #include <linux/spinlock.h>
84 #include <linux/slab.h>
85 #include <linux/hash.h>
86 #include <linux/ratelimit.h>
87 #include <linux/export.h>
88 #include <linux/scatterlist.h>
89
90 #include "wa-hc.h"
91 #include "wusbhc.h"
92
93 enum {
94 WA_SEGS_MAX = 255,
95 };
96
97 enum wa_seg_status {
98 WA_SEG_NOTREADY,
99 WA_SEG_READY,
100 WA_SEG_DELAYED,
101 WA_SEG_SUBMITTED,
102 WA_SEG_PENDING,
103 WA_SEG_DTI_PENDING,
104 WA_SEG_DONE,
105 WA_SEG_ERROR,
106 WA_SEG_ABORTED,
107 };
108
109 static void wa_xfer_delayed_run(struct wa_rpipe *);
110
111 /*
112 * Life cycle governed by 'struct urb' (the refcount of the struct is
113 * that of the 'struct urb' and usb_free_urb() would free the whole
114 * struct).
115 */
116 struct wa_seg {
117 struct urb urb;
118 struct urb *dto_urb; /* for data output? */
119 struct list_head list_node; /* for rpipe->req_list */
120 struct wa_xfer *xfer; /* out xfer */
121 u8 index; /* which segment we are */
122 enum wa_seg_status status;
123 ssize_t result; /* bytes xfered or error */
124 struct wa_xfer_hdr xfer_hdr;
125 u8 xfer_extra[]; /* xtra space for xfer_hdr_ctl */
126 };
127
128 static void wa_seg_init(struct wa_seg *seg)
129 {
130 /* usb_init_urb() repeats a lot of work, so we do it here */
131 kref_init(&seg->urb.kref);
132 }
133
134 /*
135 * Protected by xfer->lock
136 *
137 */
138 struct wa_xfer {
139 struct kref refcnt;
140 struct list_head list_node;
141 spinlock_t lock;
142 u32 id;
143
144 struct wahc *wa; /* Wire adapter we are plugged to */
145 struct usb_host_endpoint *ep;
146 struct urb *urb; /* URB we are transferring for */
147 struct wa_seg **seg; /* transfer segments */
148 u8 segs, segs_submitted, segs_done;
149 unsigned is_inbound:1;
150 unsigned is_dma:1;
151 size_t seg_size;
152 int result;
153
154 gfp_t gfp; /* allocation mask */
155
156 struct wusb_dev *wusb_dev; /* for activity timestamps */
157 };
158
159 static inline void wa_xfer_init(struct wa_xfer *xfer)
160 {
161 kref_init(&xfer->refcnt);
162 INIT_LIST_HEAD(&xfer->list_node);
163 spin_lock_init(&xfer->lock);
164 }
165
166 /*
167 * Destroy a transfer structure
168 *
169 * Note that the xfer->seg[index] thingies follow the URB life cycle,
170 * so we need to put them, not free them.
171 */
172 static void wa_xfer_destroy(struct kref *_xfer)
173 {
174 struct wa_xfer *xfer = container_of(_xfer, struct wa_xfer, refcnt);
175 if (xfer->seg) {
176 unsigned cnt;
177 for (cnt = 0; cnt < xfer->segs; cnt++) {
178 if (xfer->is_inbound)
179 usb_put_urb(xfer->seg[cnt]->dto_urb);
180 usb_put_urb(&xfer->seg[cnt]->urb);
181 }
182 }
183 kfree(xfer);
184 }
185
186 static void wa_xfer_get(struct wa_xfer *xfer)
187 {
188 kref_get(&xfer->refcnt);
189 }
190
191 static void wa_xfer_put(struct wa_xfer *xfer)
192 {
193 kref_put(&xfer->refcnt, wa_xfer_destroy);
194 }
195
196 /*
197 * xfer is referenced
198 *
199 * xfer->lock has to be unlocked
200 *
201 * We take xfer->lock for setting the result; this is a barrier
202 * against drivers/usb/core/hcd.c:unlink1() being called after we call
203 * usb_hcd_giveback_urb() and wa_urb_dequeue() trying to get a
204 * reference to the transfer.
205 */
206 static void wa_xfer_giveback(struct wa_xfer *xfer)
207 {
208 unsigned long flags;
209
210 spin_lock_irqsave(&xfer->wa->xfer_list_lock, flags);
211 list_del_init(&xfer->list_node);
212 spin_unlock_irqrestore(&xfer->wa->xfer_list_lock, flags);
213 /* FIXME: segmentation broken -- kills DWA */
214 wusbhc_giveback_urb(xfer->wa->wusb, xfer->urb, xfer->result);
215 wa_put(xfer->wa);
216 wa_xfer_put(xfer);
217 }
218
219 /*
220 * xfer is referenced
221 *
222 * xfer->lock has to be unlocked
223 */
224 static void wa_xfer_completion(struct wa_xfer *xfer)
225 {
226 if (xfer->wusb_dev)
227 wusb_dev_put(xfer->wusb_dev);
228 rpipe_put(xfer->ep->hcpriv);
229 wa_xfer_giveback(xfer);
230 }
231
232 /*
233 * If transfer is done, wrap it up and return true
234 *
235 * xfer->lock has to be locked
236 */
237 static unsigned __wa_xfer_is_done(struct wa_xfer *xfer)
238 {
239 struct device *dev = &xfer->wa->usb_iface->dev;
240 unsigned result, cnt;
241 struct wa_seg *seg;
242 struct urb *urb = xfer->urb;
243 unsigned found_short = 0;
244
245 result = xfer->segs_done == xfer->segs_submitted;
246 if (result == 0)
247 goto out;
248 urb->actual_length = 0;
249 for (cnt = 0; cnt < xfer->segs; cnt++) {
250 seg = xfer->seg[cnt];
251 switch (seg->status) {
252 case WA_SEG_DONE:
253 if (found_short && seg->result > 0) {
254 dev_dbg(dev, "xfer %p#%u: bad short segments (%zu)\n",
255 xfer, cnt, seg->result);
256 urb->status = -EINVAL;
257 goto out;
258 }
259 urb->actual_length += seg->result;
260 if (seg->result < xfer->seg_size
261 && cnt != xfer->segs-1)
262 found_short = 1;
263 dev_dbg(dev, "xfer %p#%u: DONE short %d "
264 "result %zu urb->actual_length %d\n",
265 xfer, seg->index, found_short, seg->result,
266 urb->actual_length);
267 break;
268 case WA_SEG_ERROR:
269 xfer->result = seg->result;
270 dev_dbg(dev, "xfer %p#%u: ERROR result %zu\n",
271 xfer, seg->index, seg->result);
272 goto out;
273 case WA_SEG_ABORTED:
274 dev_dbg(dev, "xfer %p#%u ABORTED: result %d\n",
275 xfer, seg->index, urb->status);
276 xfer->result = urb->status;
277 goto out;
278 default:
279 dev_warn(dev, "xfer %p#%u: is_done bad state %d\n",
280 xfer, cnt, seg->status);
281 xfer->result = -EINVAL;
282 goto out;
283 }
284 }
285 xfer->result = 0;
286 out:
287 return result;
288 }
289
290 /*
291 * Initialize a transfer's ID
292 *
293 * We need to use a sequential number; if we use the pointer or the
294 * hash of the pointer, it can repeat over sequential transfers and
295 * then it will confuse the HWA....wonder why in hell they put a 32
296 * bit handle in there then.
297 */
298 static void wa_xfer_id_init(struct wa_xfer *xfer)
299 {
300 xfer->id = atomic_add_return(1, &xfer->wa->xfer_id_count);
301 }
302
303 /*
304 * Return the xfer's ID associated with xfer
305 *
306 * Need to generate a
307 */
308 static u32 wa_xfer_id(struct wa_xfer *xfer)
309 {
310 return xfer->id;
311 }
312
313 /*
314 * Search for a transfer list ID on the HCD's URB list
315 *
316 * For 32 bit architectures, we use the pointer itself; for 64 bits, a
317 * 32-bit hash of the pointer.
318 *
319 * @returns NULL if not found.
320 */
321 static struct wa_xfer *wa_xfer_get_by_id(struct wahc *wa, u32 id)
322 {
323 unsigned long flags;
324 struct wa_xfer *xfer_itr;
325 spin_lock_irqsave(&wa->xfer_list_lock, flags);
326 list_for_each_entry(xfer_itr, &wa->xfer_list, list_node) {
327 if (id == xfer_itr->id) {
328 wa_xfer_get(xfer_itr);
329 goto out;
330 }
331 }
332 xfer_itr = NULL;
333 out:
334 spin_unlock_irqrestore(&wa->xfer_list_lock, flags);
335 return xfer_itr;
336 }
337
338 struct wa_xfer_abort_buffer {
339 struct urb urb;
340 struct wa_xfer_abort cmd;
341 };
342
343 static void __wa_xfer_abort_cb(struct urb *urb)
344 {
345 struct wa_xfer_abort_buffer *b = urb->context;
346 usb_put_urb(&b->urb);
347 }
348
349 /*
350 * Aborts an ongoing transaction
351 *
352 * Assumes the transfer is referenced and locked and in a submitted
353 * state (mainly that there is an endpoint/rpipe assigned).
354 *
355 * The callback (see above) does nothing but freeing up the data by
356 * putting the URB. Because the URB is allocated at the head of the
357 * struct, the whole space we allocated is kfreed.
358 *
359 * We'll get an 'aborted transaction' xfer result on DTI, that'll
360 * politely ignore because at this point the transaction has been
361 * marked as aborted already.
362 */
363 static void __wa_xfer_abort(struct wa_xfer *xfer)
364 {
365 int result;
366 struct device *dev = &xfer->wa->usb_iface->dev;
367 struct wa_xfer_abort_buffer *b;
368 struct wa_rpipe *rpipe = xfer->ep->hcpriv;
369
370 b = kmalloc(sizeof(*b), GFP_ATOMIC);
371 if (b == NULL)
372 goto error_kmalloc;
373 b->cmd.bLength = sizeof(b->cmd);
374 b->cmd.bRequestType = WA_XFER_ABORT;
375 b->cmd.wRPipe = rpipe->descr.wRPipeIndex;
376 b->cmd.dwTransferID = wa_xfer_id(xfer);
377
378 usb_init_urb(&b->urb);
379 usb_fill_bulk_urb(&b->urb, xfer->wa->usb_dev,
380 usb_sndbulkpipe(xfer->wa->usb_dev,
381 xfer->wa->dto_epd->bEndpointAddress),
382 &b->cmd, sizeof(b->cmd), __wa_xfer_abort_cb, b);
383 result = usb_submit_urb(&b->urb, GFP_ATOMIC);
384 if (result < 0)
385 goto error_submit;
386 return; /* callback frees! */
387
388
389 error_submit:
390 if (printk_ratelimit())
391 dev_err(dev, "xfer %p: Can't submit abort request: %d\n",
392 xfer, result);
393 kfree(b);
394 error_kmalloc:
395 return;
396
397 }
398
399 /*
400 *
401 * @returns < 0 on error, transfer segment request size if ok
402 */
403 static ssize_t __wa_xfer_setup_sizes(struct wa_xfer *xfer,
404 enum wa_xfer_type *pxfer_type)
405 {
406 ssize_t result;
407 struct device *dev = &xfer->wa->usb_iface->dev;
408 size_t maxpktsize;
409 struct urb *urb = xfer->urb;
410 struct wa_rpipe *rpipe = xfer->ep->hcpriv;
411
412 switch (rpipe->descr.bmAttribute & 0x3) {
413 case USB_ENDPOINT_XFER_CONTROL:
414 *pxfer_type = WA_XFER_TYPE_CTL;
415 result = sizeof(struct wa_xfer_ctl);
416 break;
417 case USB_ENDPOINT_XFER_INT:
418 case USB_ENDPOINT_XFER_BULK:
419 *pxfer_type = WA_XFER_TYPE_BI;
420 result = sizeof(struct wa_xfer_bi);
421 break;
422 case USB_ENDPOINT_XFER_ISOC:
423 dev_err(dev, "FIXME: ISOC not implemented\n");
424 result = -ENOSYS;
425 goto error;
426 default:
427 /* never happens */
428 BUG();
429 result = -EINVAL; /* shut gcc up */
430 };
431 xfer->is_inbound = urb->pipe & USB_DIR_IN ? 1 : 0;
432 xfer->is_dma = urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? 1 : 0;
433 xfer->seg_size = le16_to_cpu(rpipe->descr.wBlocks)
434 * 1 << (xfer->wa->wa_descr->bRPipeBlockSize - 1);
435 /* Compute the segment size and make sure it is a multiple of
436 * the maxpktsize (WUSB1.0[8.3.3.1])...not really too much of
437 * a check (FIXME) */
438 maxpktsize = le16_to_cpu(rpipe->descr.wMaxPacketSize);
439 if (xfer->seg_size < maxpktsize) {
440 dev_err(dev, "HW BUG? seg_size %zu smaller than maxpktsize "
441 "%zu\n", xfer->seg_size, maxpktsize);
442 result = -EINVAL;
443 goto error;
444 }
445 xfer->seg_size = (xfer->seg_size / maxpktsize) * maxpktsize;
446 xfer->segs = DIV_ROUND_UP(urb->transfer_buffer_length, xfer->seg_size);
447 if (xfer->segs >= WA_SEGS_MAX) {
448 dev_err(dev, "BUG? ops, number of segments %d bigger than %d\n",
449 (int)(urb->transfer_buffer_length / xfer->seg_size),
450 WA_SEGS_MAX);
451 result = -EINVAL;
452 goto error;
453 }
454 if (xfer->segs == 0 && *pxfer_type == WA_XFER_TYPE_CTL)
455 xfer->segs = 1;
456 error:
457 return result;
458 }
459
460 /* Fill in the common request header and xfer-type specific data. */
461 static void __wa_xfer_setup_hdr0(struct wa_xfer *xfer,
462 struct wa_xfer_hdr *xfer_hdr0,
463 enum wa_xfer_type xfer_type,
464 size_t xfer_hdr_size)
465 {
466 struct wa_rpipe *rpipe = xfer->ep->hcpriv;
467
468 xfer_hdr0 = &xfer->seg[0]->xfer_hdr;
469 xfer_hdr0->bLength = xfer_hdr_size;
470 xfer_hdr0->bRequestType = xfer_type;
471 xfer_hdr0->wRPipe = rpipe->descr.wRPipeIndex;
472 xfer_hdr0->dwTransferID = wa_xfer_id(xfer);
473 xfer_hdr0->bTransferSegment = 0;
474 switch (xfer_type) {
475 case WA_XFER_TYPE_CTL: {
476 struct wa_xfer_ctl *xfer_ctl =
477 container_of(xfer_hdr0, struct wa_xfer_ctl, hdr);
478 xfer_ctl->bmAttribute = xfer->is_inbound ? 1 : 0;
479 memcpy(&xfer_ctl->baSetupData, xfer->urb->setup_packet,
480 sizeof(xfer_ctl->baSetupData));
481 break;
482 }
483 case WA_XFER_TYPE_BI:
484 break;
485 case WA_XFER_TYPE_ISO:
486 printk(KERN_ERR "FIXME: ISOC not implemented\n");
487 default:
488 BUG();
489 };
490 }
491
492 /*
493 * Callback for the OUT data phase of the segment request
494 *
495 * Check wa_seg_cb(); most comments also apply here because this
496 * function does almost the same thing and they work closely
497 * together.
498 *
499 * If the seg request has failed but this DTO phase has succeeded,
500 * wa_seg_cb() has already failed the segment and moved the
501 * status to WA_SEG_ERROR, so this will go through 'case 0' and
502 * effectively do nothing.
503 */
504 static void wa_seg_dto_cb(struct urb *urb)
505 {
506 struct wa_seg *seg = urb->context;
507 struct wa_xfer *xfer = seg->xfer;
508 struct wahc *wa;
509 struct device *dev;
510 struct wa_rpipe *rpipe;
511 unsigned long flags;
512 unsigned rpipe_ready = 0;
513 u8 done = 0;
514
515 switch (urb->status) {
516 case 0:
517 spin_lock_irqsave(&xfer->lock, flags);
518 wa = xfer->wa;
519 dev = &wa->usb_iface->dev;
520 dev_dbg(dev, "xfer %p#%u: data out done (%d bytes)\n",
521 xfer, seg->index, urb->actual_length);
522 if (seg->status < WA_SEG_PENDING)
523 seg->status = WA_SEG_PENDING;
524 seg->result = urb->actual_length;
525 spin_unlock_irqrestore(&xfer->lock, flags);
526 break;
527 case -ECONNRESET: /* URB unlinked; no need to do anything */
528 case -ENOENT: /* as it was done by the who unlinked us */
529 break;
530 default: /* Other errors ... */
531 spin_lock_irqsave(&xfer->lock, flags);
532 wa = xfer->wa;
533 dev = &wa->usb_iface->dev;
534 rpipe = xfer->ep->hcpriv;
535 dev_dbg(dev, "xfer %p#%u: data out error %d\n",
536 xfer, seg->index, urb->status);
537 if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
538 EDC_ERROR_TIMEFRAME)){
539 dev_err(dev, "DTO: URB max acceptable errors "
540 "exceeded, resetting device\n");
541 wa_reset_all(wa);
542 }
543 if (seg->status != WA_SEG_ERROR) {
544 seg->status = WA_SEG_ERROR;
545 seg->result = urb->status;
546 xfer->segs_done++;
547 __wa_xfer_abort(xfer);
548 rpipe_ready = rpipe_avail_inc(rpipe);
549 done = __wa_xfer_is_done(xfer);
550 }
551 spin_unlock_irqrestore(&xfer->lock, flags);
552 if (done)
553 wa_xfer_completion(xfer);
554 if (rpipe_ready)
555 wa_xfer_delayed_run(rpipe);
556 }
557 }
558
559 /*
560 * Callback for the segment request
561 *
562 * If successful transition state (unless already transitioned or
563 * outbound transfer); otherwise, take a note of the error, mark this
564 * segment done and try completion.
565 *
566 * Note we don't access until we are sure that the transfer hasn't
567 * been cancelled (ECONNRESET, ENOENT), which could mean that
568 * seg->xfer could be already gone.
569 *
570 * We have to check before setting the status to WA_SEG_PENDING
571 * because sometimes the xfer result callback arrives before this
572 * callback (geeeeeeze), so it might happen that we are already in
573 * another state. As well, we don't set it if the transfer is inbound,
574 * as in that case, wa_seg_dto_cb will do it when the OUT data phase
575 * finishes.
576 */
577 static void wa_seg_cb(struct urb *urb)
578 {
579 struct wa_seg *seg = urb->context;
580 struct wa_xfer *xfer = seg->xfer;
581 struct wahc *wa;
582 struct device *dev;
583 struct wa_rpipe *rpipe;
584 unsigned long flags;
585 unsigned rpipe_ready;
586 u8 done = 0;
587
588 switch (urb->status) {
589 case 0:
590 spin_lock_irqsave(&xfer->lock, flags);
591 wa = xfer->wa;
592 dev = &wa->usb_iface->dev;
593 dev_dbg(dev, "xfer %p#%u: request done\n", xfer, seg->index);
594 if (xfer->is_inbound && seg->status < WA_SEG_PENDING)
595 seg->status = WA_SEG_PENDING;
596 spin_unlock_irqrestore(&xfer->lock, flags);
597 break;
598 case -ECONNRESET: /* URB unlinked; no need to do anything */
599 case -ENOENT: /* as it was done by the who unlinked us */
600 break;
601 default: /* Other errors ... */
602 spin_lock_irqsave(&xfer->lock, flags);
603 wa = xfer->wa;
604 dev = &wa->usb_iface->dev;
605 rpipe = xfer->ep->hcpriv;
606 if (printk_ratelimit())
607 dev_err(dev, "xfer %p#%u: request error %d\n",
608 xfer, seg->index, urb->status);
609 if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
610 EDC_ERROR_TIMEFRAME)){
611 dev_err(dev, "DTO: URB max acceptable errors "
612 "exceeded, resetting device\n");
613 wa_reset_all(wa);
614 }
615 usb_unlink_urb(seg->dto_urb);
616 seg->status = WA_SEG_ERROR;
617 seg->result = urb->status;
618 xfer->segs_done++;
619 __wa_xfer_abort(xfer);
620 rpipe_ready = rpipe_avail_inc(rpipe);
621 done = __wa_xfer_is_done(xfer);
622 spin_unlock_irqrestore(&xfer->lock, flags);
623 if (done)
624 wa_xfer_completion(xfer);
625 if (rpipe_ready)
626 wa_xfer_delayed_run(rpipe);
627 }
628 }
629
630 /* allocate an SG list to store bytes_to_transfer bytes and copy the
631 * subset of the in_sg that matches the buffer subset
632 * we are about to transfer. */
633 static struct scatterlist *wa_xfer_create_subset_sg(struct scatterlist *in_sg,
634 const unsigned int bytes_transferred,
635 const unsigned int bytes_to_transfer, unsigned int *out_num_sgs)
636 {
637 struct scatterlist *out_sg;
638 unsigned int bytes_processed = 0, offset_into_current_page_data = 0,
639 nents;
640 struct scatterlist *current_xfer_sg = in_sg;
641 struct scatterlist *current_seg_sg, *last_seg_sg;
642
643 /* skip previously transferred pages. */
644 while ((current_xfer_sg) &&
645 (bytes_processed < bytes_transferred)) {
646 bytes_processed += current_xfer_sg->length;
647
648 /* advance the sg if current segment starts on or past the
649 next page. */
650 if (bytes_processed <= bytes_transferred)
651 current_xfer_sg = sg_next(current_xfer_sg);
652 }
653
654 /* the data for the current segment starts in current_xfer_sg.
655 calculate the offset. */
656 if (bytes_processed > bytes_transferred) {
657 offset_into_current_page_data = current_xfer_sg->length -
658 (bytes_processed - bytes_transferred);
659 }
660
661 /* calculate the number of pages needed by this segment. */
662 nents = DIV_ROUND_UP((bytes_to_transfer +
663 offset_into_current_page_data +
664 current_xfer_sg->offset),
665 PAGE_SIZE);
666
667 out_sg = kmalloc((sizeof(struct scatterlist) * nents), GFP_ATOMIC);
668 if (out_sg) {
669 sg_init_table(out_sg, nents);
670
671 /* copy the portion of the incoming SG that correlates to the
672 * data to be transferred by this segment to the segment SG. */
673 last_seg_sg = current_seg_sg = out_sg;
674 bytes_processed = 0;
675
676 /* reset nents and calculate the actual number of sg entries
677 needed. */
678 nents = 0;
679 while ((bytes_processed < bytes_to_transfer) &&
680 current_seg_sg && current_xfer_sg) {
681 unsigned int page_len = min((current_xfer_sg->length -
682 offset_into_current_page_data),
683 (bytes_to_transfer - bytes_processed));
684
685 sg_set_page(current_seg_sg, sg_page(current_xfer_sg),
686 page_len,
687 current_xfer_sg->offset +
688 offset_into_current_page_data);
689
690 bytes_processed += page_len;
691
692 last_seg_sg = current_seg_sg;
693 current_seg_sg = sg_next(current_seg_sg);
694 current_xfer_sg = sg_next(current_xfer_sg);
695
696 /* only the first page may require additional offset. */
697 offset_into_current_page_data = 0;
698 nents++;
699 }
700
701 /* update num_sgs and terminate the list since we may have
702 * concatenated pages. */
703 sg_mark_end(last_seg_sg);
704 *out_num_sgs = nents;
705 }
706
707 return out_sg;
708 }
709
710 /*
711 * Allocate the segs array and initialize each of them
712 *
713 * The segments are freed by wa_xfer_destroy() when the xfer use count
714 * drops to zero; however, because each segment is given the same life
715 * cycle as the USB URB it contains, it is actually freed by
716 * usb_put_urb() on the contained USB URB (twisted, eh?).
717 */
718 static int __wa_xfer_setup_segs(struct wa_xfer *xfer, size_t xfer_hdr_size)
719 {
720 int result, cnt;
721 size_t alloc_size = sizeof(*xfer->seg[0])
722 - sizeof(xfer->seg[0]->xfer_hdr) + xfer_hdr_size;
723 struct usb_device *usb_dev = xfer->wa->usb_dev;
724 const struct usb_endpoint_descriptor *dto_epd = xfer->wa->dto_epd;
725 struct wa_seg *seg;
726 size_t buf_itr, buf_size, buf_itr_size;
727
728 result = -ENOMEM;
729 xfer->seg = kcalloc(xfer->segs, sizeof(xfer->seg[0]), GFP_ATOMIC);
730 if (xfer->seg == NULL)
731 goto error_segs_kzalloc;
732 buf_itr = 0;
733 buf_size = xfer->urb->transfer_buffer_length;
734 for (cnt = 0; cnt < xfer->segs; cnt++) {
735 seg = xfer->seg[cnt] = kzalloc(alloc_size, GFP_ATOMIC);
736 if (seg == NULL)
737 goto error_seg_kzalloc;
738 wa_seg_init(seg);
739 seg->xfer = xfer;
740 seg->index = cnt;
741 usb_fill_bulk_urb(&seg->urb, usb_dev,
742 usb_sndbulkpipe(usb_dev,
743 dto_epd->bEndpointAddress),
744 &seg->xfer_hdr, xfer_hdr_size,
745 wa_seg_cb, seg);
746 buf_itr_size = min(buf_size, xfer->seg_size);
747 if (xfer->is_inbound == 0 && buf_size > 0) {
748 /* outbound data. */
749 seg->dto_urb = usb_alloc_urb(0, GFP_ATOMIC);
750 if (seg->dto_urb == NULL)
751 goto error_dto_alloc;
752 usb_fill_bulk_urb(
753 seg->dto_urb, usb_dev,
754 usb_sndbulkpipe(usb_dev,
755 dto_epd->bEndpointAddress),
756 NULL, 0, wa_seg_dto_cb, seg);
757 if (xfer->is_dma) {
758 seg->dto_urb->transfer_dma =
759 xfer->urb->transfer_dma + buf_itr;
760 seg->dto_urb->transfer_flags |=
761 URB_NO_TRANSFER_DMA_MAP;
762 seg->dto_urb->transfer_buffer = NULL;
763 seg->dto_urb->sg = NULL;
764 seg->dto_urb->num_sgs = 0;
765 } else {
766 /* do buffer or SG processing. */
767 seg->dto_urb->transfer_flags &=
768 ~URB_NO_TRANSFER_DMA_MAP;
769 /* this should always be 0 before a resubmit. */
770 seg->dto_urb->num_mapped_sgs = 0;
771
772 if (xfer->urb->transfer_buffer) {
773 seg->dto_urb->transfer_buffer =
774 xfer->urb->transfer_buffer +
775 buf_itr;
776 seg->dto_urb->sg = NULL;
777 seg->dto_urb->num_sgs = 0;
778 } else {
779 /* allocate an SG list to store seg_size
780 bytes and copy the subset of the
781 xfer->urb->sg that matches the
782 buffer subset we are about to read.
783 */
784 seg->dto_urb->sg =
785 wa_xfer_create_subset_sg(
786 xfer->urb->sg,
787 buf_itr, buf_itr_size,
788 &(seg->dto_urb->num_sgs));
789
790 if (!(seg->dto_urb->sg)) {
791 seg->dto_urb->num_sgs = 0;
792 goto error_sg_alloc;
793 }
794
795 seg->dto_urb->transfer_buffer = NULL;
796 }
797 }
798 seg->dto_urb->transfer_buffer_length = buf_itr_size;
799 }
800 seg->status = WA_SEG_READY;
801 buf_itr += buf_itr_size;
802 buf_size -= buf_itr_size;
803 }
804 return 0;
805
806 error_sg_alloc:
807 kfree(seg->dto_urb);
808 error_dto_alloc:
809 kfree(xfer->seg[cnt]);
810 cnt--;
811 error_seg_kzalloc:
812 /* use the fact that cnt is left at were it failed */
813 for (; cnt >= 0; cnt--) {
814 if (xfer->seg[cnt] && xfer->is_inbound == 0)
815 usb_free_urb(xfer->seg[cnt]->dto_urb);
816 kfree(xfer->seg[cnt]);
817 }
818 error_segs_kzalloc:
819 return result;
820 }
821
822 /*
823 * Allocates all the stuff needed to submit a transfer
824 *
825 * Breaks the whole data buffer in a list of segments, each one has a
826 * structure allocated to it and linked in xfer->seg[index]
827 *
828 * FIXME: merge setup_segs() and the last part of this function, no
829 * need to do two for loops when we could run everything in a
830 * single one
831 */
832 static int __wa_xfer_setup(struct wa_xfer *xfer, struct urb *urb)
833 {
834 int result;
835 struct device *dev = &xfer->wa->usb_iface->dev;
836 enum wa_xfer_type xfer_type = 0; /* shut up GCC */
837 size_t xfer_hdr_size, cnt, transfer_size;
838 struct wa_xfer_hdr *xfer_hdr0, *xfer_hdr;
839
840 result = __wa_xfer_setup_sizes(xfer, &xfer_type);
841 if (result < 0)
842 goto error_setup_sizes;
843 xfer_hdr_size = result;
844 result = __wa_xfer_setup_segs(xfer, xfer_hdr_size);
845 if (result < 0) {
846 dev_err(dev, "xfer %p: Failed to allocate %d segments: %d\n",
847 xfer, xfer->segs, result);
848 goto error_setup_segs;
849 }
850 /* Fill the first header */
851 xfer_hdr0 = &xfer->seg[0]->xfer_hdr;
852 wa_xfer_id_init(xfer);
853 __wa_xfer_setup_hdr0(xfer, xfer_hdr0, xfer_type, xfer_hdr_size);
854
855 /* Fill remainig headers */
856 xfer_hdr = xfer_hdr0;
857 transfer_size = urb->transfer_buffer_length;
858 xfer_hdr0->dwTransferLength = transfer_size > xfer->seg_size ?
859 xfer->seg_size : transfer_size;
860 transfer_size -= xfer->seg_size;
861 for (cnt = 1; cnt < xfer->segs; cnt++) {
862 xfer_hdr = &xfer->seg[cnt]->xfer_hdr;
863 memcpy(xfer_hdr, xfer_hdr0, xfer_hdr_size);
864 xfer_hdr->bTransferSegment = cnt;
865 xfer_hdr->dwTransferLength = transfer_size > xfer->seg_size ?
866 cpu_to_le32(xfer->seg_size)
867 : cpu_to_le32(transfer_size);
868 xfer->seg[cnt]->status = WA_SEG_READY;
869 transfer_size -= xfer->seg_size;
870 }
871 xfer_hdr->bTransferSegment |= 0x80; /* this is the last segment */
872 result = 0;
873 error_setup_segs:
874 error_setup_sizes:
875 return result;
876 }
877
878 /*
879 *
880 *
881 * rpipe->seg_lock is held!
882 */
883 static int __wa_seg_submit(struct wa_rpipe *rpipe, struct wa_xfer *xfer,
884 struct wa_seg *seg)
885 {
886 int result;
887 result = usb_submit_urb(&seg->urb, GFP_ATOMIC);
888 if (result < 0) {
889 printk(KERN_ERR "xfer %p#%u: REQ submit failed: %d\n",
890 xfer, seg->index, result);
891 goto error_seg_submit;
892 }
893 if (seg->dto_urb) {
894 result = usb_submit_urb(seg->dto_urb, GFP_ATOMIC);
895 if (result < 0) {
896 printk(KERN_ERR "xfer %p#%u: DTO submit failed: %d\n",
897 xfer, seg->index, result);
898 goto error_dto_submit;
899 }
900 }
901 seg->status = WA_SEG_SUBMITTED;
902 rpipe_avail_dec(rpipe);
903 return 0;
904
905 error_dto_submit:
906 usb_unlink_urb(&seg->urb);
907 error_seg_submit:
908 seg->status = WA_SEG_ERROR;
909 seg->result = result;
910 return result;
911 }
912
913 /*
914 * Execute more queued request segments until the maximum concurrent allowed
915 *
916 * The ugly unlock/lock sequence on the error path is needed as the
917 * xfer->lock normally nests the seg_lock and not viceversa.
918 *
919 */
920 static void wa_xfer_delayed_run(struct wa_rpipe *rpipe)
921 {
922 int result;
923 struct device *dev = &rpipe->wa->usb_iface->dev;
924 struct wa_seg *seg;
925 struct wa_xfer *xfer;
926 unsigned long flags;
927
928 spin_lock_irqsave(&rpipe->seg_lock, flags);
929 while (atomic_read(&rpipe->segs_available) > 0
930 && !list_empty(&rpipe->seg_list)) {
931 seg = list_entry(rpipe->seg_list.next, struct wa_seg,
932 list_node);
933 list_del(&seg->list_node);
934 xfer = seg->xfer;
935 result = __wa_seg_submit(rpipe, xfer, seg);
936 dev_dbg(dev, "xfer %p#%u submitted from delayed [%d segments available] %d\n",
937 xfer, seg->index, atomic_read(&rpipe->segs_available), result);
938 if (unlikely(result < 0)) {
939 spin_unlock_irqrestore(&rpipe->seg_lock, flags);
940 spin_lock_irqsave(&xfer->lock, flags);
941 __wa_xfer_abort(xfer);
942 xfer->segs_done++;
943 spin_unlock_irqrestore(&xfer->lock, flags);
944 spin_lock_irqsave(&rpipe->seg_lock, flags);
945 }
946 }
947 spin_unlock_irqrestore(&rpipe->seg_lock, flags);
948 }
949
950 /*
951 *
952 * xfer->lock is taken
953 *
954 * On failure submitting we just stop submitting and return error;
955 * wa_urb_enqueue_b() will execute the completion path
956 */
957 static int __wa_xfer_submit(struct wa_xfer *xfer)
958 {
959 int result;
960 struct wahc *wa = xfer->wa;
961 struct device *dev = &wa->usb_iface->dev;
962 unsigned cnt;
963 struct wa_seg *seg;
964 unsigned long flags;
965 struct wa_rpipe *rpipe = xfer->ep->hcpriv;
966 size_t maxrequests = le16_to_cpu(rpipe->descr.wRequests);
967 u8 available;
968 u8 empty;
969
970 spin_lock_irqsave(&wa->xfer_list_lock, flags);
971 list_add_tail(&xfer->list_node, &wa->xfer_list);
972 spin_unlock_irqrestore(&wa->xfer_list_lock, flags);
973
974 BUG_ON(atomic_read(&rpipe->segs_available) > maxrequests);
975 result = 0;
976 spin_lock_irqsave(&rpipe->seg_lock, flags);
977 for (cnt = 0; cnt < xfer->segs; cnt++) {
978 available = atomic_read(&rpipe->segs_available);
979 empty = list_empty(&rpipe->seg_list);
980 seg = xfer->seg[cnt];
981 dev_dbg(dev, "xfer %p#%u: available %u empty %u (%s)\n",
982 xfer, cnt, available, empty,
983 available == 0 || !empty ? "delayed" : "submitted");
984 if (available == 0 || !empty) {
985 dev_dbg(dev, "xfer %p#%u: delayed\n", xfer, cnt);
986 seg->status = WA_SEG_DELAYED;
987 list_add_tail(&seg->list_node, &rpipe->seg_list);
988 } else {
989 result = __wa_seg_submit(rpipe, xfer, seg);
990 if (result < 0) {
991 __wa_xfer_abort(xfer);
992 goto error_seg_submit;
993 }
994 }
995 xfer->segs_submitted++;
996 }
997 error_seg_submit:
998 spin_unlock_irqrestore(&rpipe->seg_lock, flags);
999 return result;
1000 }
1001
1002 /*
1003 * Second part of a URB/transfer enqueuement
1004 *
1005 * Assumes this comes from wa_urb_enqueue() [maybe through
1006 * wa_urb_enqueue_run()]. At this point:
1007 *
1008 * xfer->wa filled and refcounted
1009 * xfer->ep filled with rpipe refcounted if
1010 * delayed == 0
1011 * xfer->urb filled and refcounted (this is the case when called
1012 * from wa_urb_enqueue() as we come from usb_submit_urb()
1013 * and when called by wa_urb_enqueue_run(), as we took an
1014 * extra ref dropped by _run() after we return).
1015 * xfer->gfp filled
1016 *
1017 * If we fail at __wa_xfer_submit(), then we just check if we are done
1018 * and if so, we run the completion procedure. However, if we are not
1019 * yet done, we do nothing and wait for the completion handlers from
1020 * the submitted URBs or from the xfer-result path to kick in. If xfer
1021 * result never kicks in, the xfer will timeout from the USB code and
1022 * dequeue() will be called.
1023 */
1024 static void wa_urb_enqueue_b(struct wa_xfer *xfer)
1025 {
1026 int result;
1027 unsigned long flags;
1028 struct urb *urb = xfer->urb;
1029 struct wahc *wa = xfer->wa;
1030 struct wusbhc *wusbhc = wa->wusb;
1031 struct wusb_dev *wusb_dev;
1032 unsigned done;
1033
1034 result = rpipe_get_by_ep(wa, xfer->ep, urb, xfer->gfp);
1035 if (result < 0)
1036 goto error_rpipe_get;
1037 result = -ENODEV;
1038 /* FIXME: segmentation broken -- kills DWA */
1039 mutex_lock(&wusbhc->mutex); /* get a WUSB dev */
1040 if (urb->dev == NULL) {
1041 mutex_unlock(&wusbhc->mutex);
1042 goto error_dev_gone;
1043 }
1044 wusb_dev = __wusb_dev_get_by_usb_dev(wusbhc, urb->dev);
1045 if (wusb_dev == NULL) {
1046 mutex_unlock(&wusbhc->mutex);
1047 goto error_dev_gone;
1048 }
1049 mutex_unlock(&wusbhc->mutex);
1050
1051 spin_lock_irqsave(&xfer->lock, flags);
1052 xfer->wusb_dev = wusb_dev;
1053 result = urb->status;
1054 if (urb->status != -EINPROGRESS)
1055 goto error_dequeued;
1056
1057 result = __wa_xfer_setup(xfer, urb);
1058 if (result < 0)
1059 goto error_xfer_setup;
1060 result = __wa_xfer_submit(xfer);
1061 if (result < 0)
1062 goto error_xfer_submit;
1063 spin_unlock_irqrestore(&xfer->lock, flags);
1064 return;
1065
1066 /* this is basically wa_xfer_completion() broken up wa_xfer_giveback()
1067 * does a wa_xfer_put() that will call wa_xfer_destroy() and clean
1068 * upundo setup().
1069 */
1070 error_xfer_setup:
1071 error_dequeued:
1072 spin_unlock_irqrestore(&xfer->lock, flags);
1073 /* FIXME: segmentation broken, kills DWA */
1074 if (wusb_dev)
1075 wusb_dev_put(wusb_dev);
1076 error_dev_gone:
1077 rpipe_put(xfer->ep->hcpriv);
1078 error_rpipe_get:
1079 xfer->result = result;
1080 wa_xfer_giveback(xfer);
1081 return;
1082
1083 error_xfer_submit:
1084 done = __wa_xfer_is_done(xfer);
1085 xfer->result = result;
1086 spin_unlock_irqrestore(&xfer->lock, flags);
1087 if (done)
1088 wa_xfer_completion(xfer);
1089 }
1090
1091 /*
1092 * Execute the delayed transfers in the Wire Adapter @wa
1093 *
1094 * We need to be careful here, as dequeue() could be called in the
1095 * middle. That's why we do the whole thing under the
1096 * wa->xfer_list_lock. If dequeue() jumps in, it first locks urb->lock
1097 * and then checks the list -- so as we would be acquiring in inverse
1098 * order, we just drop the lock once we have the xfer and reacquire it
1099 * later.
1100 */
1101 void wa_urb_enqueue_run(struct work_struct *ws)
1102 {
1103 struct wahc *wa = container_of(ws, struct wahc, xfer_work);
1104 struct wa_xfer *xfer, *next;
1105 struct urb *urb;
1106
1107 spin_lock_irq(&wa->xfer_list_lock);
1108 list_for_each_entry_safe(xfer, next, &wa->xfer_delayed_list,
1109 list_node) {
1110 list_del_init(&xfer->list_node);
1111 spin_unlock_irq(&wa->xfer_list_lock);
1112
1113 urb = xfer->urb;
1114 wa_urb_enqueue_b(xfer);
1115 usb_put_urb(urb); /* taken when queuing */
1116
1117 spin_lock_irq(&wa->xfer_list_lock);
1118 }
1119 spin_unlock_irq(&wa->xfer_list_lock);
1120 }
1121 EXPORT_SYMBOL_GPL(wa_urb_enqueue_run);
1122
1123 /*
1124 * Submit a transfer to the Wire Adapter in a delayed way
1125 *
1126 * The process of enqueuing involves possible sleeps() [see
1127 * enqueue_b(), for the rpipe_get() and the mutex_lock()]. If we are
1128 * in an atomic section, we defer the enqueue_b() call--else we call direct.
1129 *
1130 * @urb: We own a reference to it done by the HCI Linux USB stack that
1131 * will be given up by calling usb_hcd_giveback_urb() or by
1132 * returning error from this function -> ergo we don't have to
1133 * refcount it.
1134 */
1135 int wa_urb_enqueue(struct wahc *wa, struct usb_host_endpoint *ep,
1136 struct urb *urb, gfp_t gfp)
1137 {
1138 int result;
1139 struct device *dev = &wa->usb_iface->dev;
1140 struct wa_xfer *xfer;
1141 unsigned long my_flags;
1142 unsigned cant_sleep = irqs_disabled() | in_atomic();
1143
1144 if ((urb->transfer_buffer == NULL)
1145 && (urb->sg == NULL)
1146 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1147 && urb->transfer_buffer_length != 0) {
1148 dev_err(dev, "BUG? urb %p: NULL xfer buffer & NODMA\n", urb);
1149 dump_stack();
1150 }
1151
1152 result = -ENOMEM;
1153 xfer = kzalloc(sizeof(*xfer), gfp);
1154 if (xfer == NULL)
1155 goto error_kmalloc;
1156
1157 result = -ENOENT;
1158 if (urb->status != -EINPROGRESS) /* cancelled */
1159 goto error_dequeued; /* before starting? */
1160 wa_xfer_init(xfer);
1161 xfer->wa = wa_get(wa);
1162 xfer->urb = urb;
1163 xfer->gfp = gfp;
1164 xfer->ep = ep;
1165 urb->hcpriv = xfer;
1166
1167 dev_dbg(dev, "xfer %p urb %p pipe 0x%02x [%d bytes] %s %s %s\n",
1168 xfer, urb, urb->pipe, urb->transfer_buffer_length,
1169 urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? "dma" : "nodma",
1170 urb->pipe & USB_DIR_IN ? "inbound" : "outbound",
1171 cant_sleep ? "deferred" : "inline");
1172
1173 if (cant_sleep) {
1174 usb_get_urb(urb);
1175 spin_lock_irqsave(&wa->xfer_list_lock, my_flags);
1176 list_add_tail(&xfer->list_node, &wa->xfer_delayed_list);
1177 spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags);
1178 queue_work(wusbd, &wa->xfer_work);
1179 } else {
1180 wa_urb_enqueue_b(xfer);
1181 }
1182 return 0;
1183
1184 error_dequeued:
1185 kfree(xfer);
1186 error_kmalloc:
1187 return result;
1188 }
1189 EXPORT_SYMBOL_GPL(wa_urb_enqueue);
1190
1191 /*
1192 * Dequeue a URB and make sure uwb_hcd_giveback_urb() [completion
1193 * handler] is called.
1194 *
1195 * Until a transfer goes successfully through wa_urb_enqueue() it
1196 * needs to be dequeued with completion calling; when stuck in delayed
1197 * or before wa_xfer_setup() is called, we need to do completion.
1198 *
1199 * not setup If there is no hcpriv yet, that means that that enqueue
1200 * still had no time to set the xfer up. Because
1201 * urb->status should be other than -EINPROGRESS,
1202 * enqueue() will catch that and bail out.
1203 *
1204 * If the transfer has gone through setup, we just need to clean it
1205 * up. If it has gone through submit(), we have to abort it [with an
1206 * asynch request] and then make sure we cancel each segment.
1207 *
1208 */
1209 int wa_urb_dequeue(struct wahc *wa, struct urb *urb)
1210 {
1211 unsigned long flags, flags2;
1212 struct wa_xfer *xfer;
1213 struct wa_seg *seg;
1214 struct wa_rpipe *rpipe;
1215 unsigned cnt;
1216 unsigned rpipe_ready = 0;
1217
1218 xfer = urb->hcpriv;
1219 if (xfer == NULL) {
1220 /* NOthing setup yet enqueue will see urb->status !=
1221 * -EINPROGRESS (by hcd layer) and bail out with
1222 * error, no need to do completion
1223 */
1224 BUG_ON(urb->status == -EINPROGRESS);
1225 goto out;
1226 }
1227 spin_lock_irqsave(&xfer->lock, flags);
1228 rpipe = xfer->ep->hcpriv;
1229 if (rpipe == NULL) {
1230 pr_debug("%s: xfer id 0x%08X has no RPIPE. %s",
1231 __func__, wa_xfer_id(xfer),
1232 "Probably already aborted.\n" );
1233 goto out_unlock;
1234 }
1235 /* Check the delayed list -> if there, release and complete */
1236 spin_lock_irqsave(&wa->xfer_list_lock, flags2);
1237 if (!list_empty(&xfer->list_node) && xfer->seg == NULL)
1238 goto dequeue_delayed;
1239 spin_unlock_irqrestore(&wa->xfer_list_lock, flags2);
1240 if (xfer->seg == NULL) /* still hasn't reached */
1241 goto out_unlock; /* setup(), enqueue_b() completes */
1242 /* Ok, the xfer is in flight already, it's been setup and submitted.*/
1243 __wa_xfer_abort(xfer);
1244 for (cnt = 0; cnt < xfer->segs; cnt++) {
1245 seg = xfer->seg[cnt];
1246 switch (seg->status) {
1247 case WA_SEG_NOTREADY:
1248 case WA_SEG_READY:
1249 printk(KERN_ERR "xfer %p#%u: dequeue bad state %u\n",
1250 xfer, cnt, seg->status);
1251 WARN_ON(1);
1252 break;
1253 case WA_SEG_DELAYED:
1254 seg->status = WA_SEG_ABORTED;
1255 spin_lock_irqsave(&rpipe->seg_lock, flags2);
1256 list_del(&seg->list_node);
1257 xfer->segs_done++;
1258 rpipe_ready = rpipe_avail_inc(rpipe);
1259 spin_unlock_irqrestore(&rpipe->seg_lock, flags2);
1260 break;
1261 case WA_SEG_SUBMITTED:
1262 seg->status = WA_SEG_ABORTED;
1263 usb_unlink_urb(&seg->urb);
1264 if (xfer->is_inbound == 0)
1265 usb_unlink_urb(seg->dto_urb);
1266 xfer->segs_done++;
1267 rpipe_ready = rpipe_avail_inc(rpipe);
1268 break;
1269 case WA_SEG_PENDING:
1270 seg->status = WA_SEG_ABORTED;
1271 xfer->segs_done++;
1272 rpipe_ready = rpipe_avail_inc(rpipe);
1273 break;
1274 case WA_SEG_DTI_PENDING:
1275 usb_unlink_urb(wa->dti_urb);
1276 seg->status = WA_SEG_ABORTED;
1277 xfer->segs_done++;
1278 rpipe_ready = rpipe_avail_inc(rpipe);
1279 break;
1280 case WA_SEG_DONE:
1281 case WA_SEG_ERROR:
1282 case WA_SEG_ABORTED:
1283 break;
1284 }
1285 }
1286 xfer->result = urb->status; /* -ENOENT or -ECONNRESET */
1287 __wa_xfer_is_done(xfer);
1288 spin_unlock_irqrestore(&xfer->lock, flags);
1289 wa_xfer_completion(xfer);
1290 if (rpipe_ready)
1291 wa_xfer_delayed_run(rpipe);
1292 return 0;
1293
1294 out_unlock:
1295 spin_unlock_irqrestore(&xfer->lock, flags);
1296 out:
1297 return 0;
1298
1299 dequeue_delayed:
1300 list_del_init(&xfer->list_node);
1301 spin_unlock_irqrestore(&wa->xfer_list_lock, flags2);
1302 xfer->result = urb->status;
1303 spin_unlock_irqrestore(&xfer->lock, flags);
1304 wa_xfer_giveback(xfer);
1305 usb_put_urb(urb); /* we got a ref in enqueue() */
1306 return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(wa_urb_dequeue);
1309
1310 /*
1311 * Translation from WA status codes (WUSB1.0 Table 8.15) to errno
1312 * codes
1313 *
1314 * Positive errno values are internal inconsistencies and should be
1315 * flagged louder. Negative are to be passed up to the user in the
1316 * normal way.
1317 *
1318 * @status: USB WA status code -- high two bits are stripped.
1319 */
1320 static int wa_xfer_status_to_errno(u8 status)
1321 {
1322 int errno;
1323 u8 real_status = status;
1324 static int xlat[] = {
1325 [WA_XFER_STATUS_SUCCESS] = 0,
1326 [WA_XFER_STATUS_HALTED] = -EPIPE,
1327 [WA_XFER_STATUS_DATA_BUFFER_ERROR] = -ENOBUFS,
1328 [WA_XFER_STATUS_BABBLE] = -EOVERFLOW,
1329 [WA_XFER_RESERVED] = EINVAL,
1330 [WA_XFER_STATUS_NOT_FOUND] = 0,
1331 [WA_XFER_STATUS_INSUFFICIENT_RESOURCE] = -ENOMEM,
1332 [WA_XFER_STATUS_TRANSACTION_ERROR] = -EILSEQ,
1333 [WA_XFER_STATUS_ABORTED] = -EINTR,
1334 [WA_XFER_STATUS_RPIPE_NOT_READY] = EINVAL,
1335 [WA_XFER_INVALID_FORMAT] = EINVAL,
1336 [WA_XFER_UNEXPECTED_SEGMENT_NUMBER] = EINVAL,
1337 [WA_XFER_STATUS_RPIPE_TYPE_MISMATCH] = EINVAL,
1338 };
1339 status &= 0x3f;
1340
1341 if (status == 0)
1342 return 0;
1343 if (status >= ARRAY_SIZE(xlat)) {
1344 printk_ratelimited(KERN_ERR "%s(): BUG? "
1345 "Unknown WA transfer status 0x%02x\n",
1346 __func__, real_status);
1347 return -EINVAL;
1348 }
1349 errno = xlat[status];
1350 if (unlikely(errno > 0)) {
1351 printk_ratelimited(KERN_ERR "%s(): BUG? "
1352 "Inconsistent WA status: 0x%02x\n",
1353 __func__, real_status);
1354 errno = -errno;
1355 }
1356 return errno;
1357 }
1358
1359 /*
1360 * Process a xfer result completion message
1361 *
1362 * inbound transfers: need to schedule a DTI read
1363 *
1364 * FIXME: this functio needs to be broken up in parts
1365 */
1366 static void wa_xfer_result_chew(struct wahc *wa, struct wa_xfer *xfer)
1367 {
1368 int result;
1369 struct device *dev = &wa->usb_iface->dev;
1370 unsigned long flags;
1371 u8 seg_idx;
1372 struct wa_seg *seg;
1373 struct wa_rpipe *rpipe;
1374 struct wa_xfer_result *xfer_result = wa->xfer_result;
1375 u8 done = 0;
1376 u8 usb_status;
1377 unsigned rpipe_ready = 0;
1378
1379 spin_lock_irqsave(&xfer->lock, flags);
1380 seg_idx = xfer_result->bTransferSegment & 0x7f;
1381 if (unlikely(seg_idx >= xfer->segs))
1382 goto error_bad_seg;
1383 seg = xfer->seg[seg_idx];
1384 rpipe = xfer->ep->hcpriv;
1385 usb_status = xfer_result->bTransferStatus;
1386 dev_dbg(dev, "xfer %p#%u: bTransferStatus 0x%02x (seg status %u)\n",
1387 xfer, seg_idx, usb_status, seg->status);
1388 if (seg->status == WA_SEG_ABORTED
1389 || seg->status == WA_SEG_ERROR) /* already handled */
1390 goto segment_aborted;
1391 if (seg->status == WA_SEG_SUBMITTED) /* ops, got here */
1392 seg->status = WA_SEG_PENDING; /* before wa_seg{_dto}_cb() */
1393 if (seg->status != WA_SEG_PENDING) {
1394 if (printk_ratelimit())
1395 dev_err(dev, "xfer %p#%u: Bad segment state %u\n",
1396 xfer, seg_idx, seg->status);
1397 seg->status = WA_SEG_PENDING; /* workaround/"fix" it */
1398 }
1399 if (usb_status & 0x80) {
1400 seg->result = wa_xfer_status_to_errno(usb_status);
1401 dev_err(dev, "DTI: xfer %p#:%08X:%u failed (0x%02x)\n",
1402 xfer, xfer->id, seg->index, usb_status);
1403 goto error_complete;
1404 }
1405 /* FIXME: we ignore warnings, tally them for stats */
1406 if (usb_status & 0x40) /* Warning?... */
1407 usb_status = 0; /* ... pass */
1408 if (xfer->is_inbound) { /* IN data phase: read to buffer */
1409 seg->status = WA_SEG_DTI_PENDING;
1410 BUG_ON(wa->buf_in_urb->status == -EINPROGRESS);
1411 /* this should always be 0 before a resubmit. */
1412 wa->buf_in_urb->num_mapped_sgs = 0;
1413
1414 if (xfer->is_dma) {
1415 wa->buf_in_urb->transfer_dma =
1416 xfer->urb->transfer_dma
1417 + (seg_idx * xfer->seg_size);
1418 wa->buf_in_urb->transfer_flags
1419 |= URB_NO_TRANSFER_DMA_MAP;
1420 wa->buf_in_urb->transfer_buffer = NULL;
1421 wa->buf_in_urb->sg = NULL;
1422 wa->buf_in_urb->num_sgs = 0;
1423 } else {
1424 /* do buffer or SG processing. */
1425 wa->buf_in_urb->transfer_flags
1426 &= ~URB_NO_TRANSFER_DMA_MAP;
1427
1428 if (xfer->urb->transfer_buffer) {
1429 wa->buf_in_urb->transfer_buffer =
1430 xfer->urb->transfer_buffer
1431 + (seg_idx * xfer->seg_size);
1432 wa->buf_in_urb->sg = NULL;
1433 wa->buf_in_urb->num_sgs = 0;
1434 } else {
1435 /* allocate an SG list to store seg_size bytes
1436 and copy the subset of the xfer->urb->sg
1437 that matches the buffer subset we are
1438 about to read. */
1439 wa->buf_in_urb->sg = wa_xfer_create_subset_sg(
1440 xfer->urb->sg,
1441 seg_idx * xfer->seg_size,
1442 le32_to_cpu(
1443 xfer_result->dwTransferLength),
1444 &(wa->buf_in_urb->num_sgs));
1445
1446 if (!(wa->buf_in_urb->sg)) {
1447 wa->buf_in_urb->num_sgs = 0;
1448 goto error_sg_alloc;
1449 }
1450 wa->buf_in_urb->transfer_buffer = NULL;
1451 }
1452 }
1453 wa->buf_in_urb->transfer_buffer_length =
1454 le32_to_cpu(xfer_result->dwTransferLength);
1455 wa->buf_in_urb->context = seg;
1456 result = usb_submit_urb(wa->buf_in_urb, GFP_ATOMIC);
1457 if (result < 0)
1458 goto error_submit_buf_in;
1459 } else {
1460 /* OUT data phase, complete it -- */
1461 seg->status = WA_SEG_DONE;
1462 seg->result = le32_to_cpu(xfer_result->dwTransferLength);
1463 xfer->segs_done++;
1464 rpipe_ready = rpipe_avail_inc(rpipe);
1465 done = __wa_xfer_is_done(xfer);
1466 }
1467 spin_unlock_irqrestore(&xfer->lock, flags);
1468 if (done)
1469 wa_xfer_completion(xfer);
1470 if (rpipe_ready)
1471 wa_xfer_delayed_run(rpipe);
1472 return;
1473
1474 error_submit_buf_in:
1475 if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
1476 dev_err(dev, "DTI: URB max acceptable errors "
1477 "exceeded, resetting device\n");
1478 wa_reset_all(wa);
1479 }
1480 if (printk_ratelimit())
1481 dev_err(dev, "xfer %p#%u: can't submit DTI data phase: %d\n",
1482 xfer, seg_idx, result);
1483 seg->result = result;
1484 kfree(wa->buf_in_urb->sg);
1485 error_sg_alloc:
1486 error_complete:
1487 seg->status = WA_SEG_ERROR;
1488 xfer->segs_done++;
1489 rpipe_ready = rpipe_avail_inc(rpipe);
1490 __wa_xfer_abort(xfer);
1491 done = __wa_xfer_is_done(xfer);
1492 spin_unlock_irqrestore(&xfer->lock, flags);
1493 if (done)
1494 wa_xfer_completion(xfer);
1495 if (rpipe_ready)
1496 wa_xfer_delayed_run(rpipe);
1497 return;
1498
1499 error_bad_seg:
1500 spin_unlock_irqrestore(&xfer->lock, flags);
1501 wa_urb_dequeue(wa, xfer->urb);
1502 if (printk_ratelimit())
1503 dev_err(dev, "xfer %p#%u: bad segment\n", xfer, seg_idx);
1504 if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
1505 dev_err(dev, "DTI: URB max acceptable errors "
1506 "exceeded, resetting device\n");
1507 wa_reset_all(wa);
1508 }
1509 return;
1510
1511 segment_aborted:
1512 /* nothing to do, as the aborter did the completion */
1513 spin_unlock_irqrestore(&xfer->lock, flags);
1514 }
1515
1516 /*
1517 * Callback for the IN data phase
1518 *
1519 * If successful transition state; otherwise, take a note of the
1520 * error, mark this segment done and try completion.
1521 *
1522 * Note we don't access until we are sure that the transfer hasn't
1523 * been cancelled (ECONNRESET, ENOENT), which could mean that
1524 * seg->xfer could be already gone.
1525 */
1526 static void wa_buf_in_cb(struct urb *urb)
1527 {
1528 struct wa_seg *seg = urb->context;
1529 struct wa_xfer *xfer = seg->xfer;
1530 struct wahc *wa;
1531 struct device *dev;
1532 struct wa_rpipe *rpipe;
1533 unsigned rpipe_ready;
1534 unsigned long flags;
1535 u8 done = 0;
1536
1537 /* free the sg if it was used. */
1538 kfree(urb->sg);
1539 urb->sg = NULL;
1540
1541 switch (urb->status) {
1542 case 0:
1543 spin_lock_irqsave(&xfer->lock, flags);
1544 wa = xfer->wa;
1545 dev = &wa->usb_iface->dev;
1546 rpipe = xfer->ep->hcpriv;
1547 dev_dbg(dev, "xfer %p#%u: data in done (%zu bytes)\n",
1548 xfer, seg->index, (size_t)urb->actual_length);
1549 seg->status = WA_SEG_DONE;
1550 seg->result = urb->actual_length;
1551 xfer->segs_done++;
1552 rpipe_ready = rpipe_avail_inc(rpipe);
1553 done = __wa_xfer_is_done(xfer);
1554 spin_unlock_irqrestore(&xfer->lock, flags);
1555 if (done)
1556 wa_xfer_completion(xfer);
1557 if (rpipe_ready)
1558 wa_xfer_delayed_run(rpipe);
1559 break;
1560 case -ECONNRESET: /* URB unlinked; no need to do anything */
1561 case -ENOENT: /* as it was done by the who unlinked us */
1562 break;
1563 default: /* Other errors ... */
1564 spin_lock_irqsave(&xfer->lock, flags);
1565 wa = xfer->wa;
1566 dev = &wa->usb_iface->dev;
1567 rpipe = xfer->ep->hcpriv;
1568 if (printk_ratelimit())
1569 dev_err(dev, "xfer %p#%u: data in error %d\n",
1570 xfer, seg->index, urb->status);
1571 if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
1572 EDC_ERROR_TIMEFRAME)){
1573 dev_err(dev, "DTO: URB max acceptable errors "
1574 "exceeded, resetting device\n");
1575 wa_reset_all(wa);
1576 }
1577 seg->status = WA_SEG_ERROR;
1578 seg->result = urb->status;
1579 xfer->segs_done++;
1580 rpipe_ready = rpipe_avail_inc(rpipe);
1581 __wa_xfer_abort(xfer);
1582 done = __wa_xfer_is_done(xfer);
1583 spin_unlock_irqrestore(&xfer->lock, flags);
1584 if (done)
1585 wa_xfer_completion(xfer);
1586 if (rpipe_ready)
1587 wa_xfer_delayed_run(rpipe);
1588 }
1589 }
1590
1591 /*
1592 * Handle an incoming transfer result buffer
1593 *
1594 * Given a transfer result buffer, it completes the transfer (possibly
1595 * scheduling and buffer in read) and then resubmits the DTI URB for a
1596 * new transfer result read.
1597 *
1598 *
1599 * The xfer_result DTI URB state machine
1600 *
1601 * States: OFF | RXR (Read-Xfer-Result) | RBI (Read-Buffer-In)
1602 *
1603 * We start in OFF mode, the first xfer_result notification [through
1604 * wa_handle_notif_xfer()] moves us to RXR by posting the DTI-URB to
1605 * read.
1606 *
1607 * We receive a buffer -- if it is not a xfer_result, we complain and
1608 * repost the DTI-URB. If it is a xfer_result then do the xfer seg
1609 * request accounting. If it is an IN segment, we move to RBI and post
1610 * a BUF-IN-URB to the right buffer. The BUF-IN-URB callback will
1611 * repost the DTI-URB and move to RXR state. if there was no IN
1612 * segment, it will repost the DTI-URB.
1613 *
1614 * We go back to OFF when we detect a ENOENT or ESHUTDOWN (or too many
1615 * errors) in the URBs.
1616 */
1617 static void wa_xfer_result_cb(struct urb *urb)
1618 {
1619 int result;
1620 struct wahc *wa = urb->context;
1621 struct device *dev = &wa->usb_iface->dev;
1622 struct wa_xfer_result *xfer_result;
1623 u32 xfer_id;
1624 struct wa_xfer *xfer;
1625 u8 usb_status;
1626
1627 BUG_ON(wa->dti_urb != urb);
1628 switch (wa->dti_urb->status) {
1629 case 0:
1630 /* We have a xfer result buffer; check it */
1631 dev_dbg(dev, "DTI: xfer result %d bytes at %p\n",
1632 urb->actual_length, urb->transfer_buffer);
1633 if (wa->dti_urb->actual_length != sizeof(*xfer_result)) {
1634 dev_err(dev, "DTI Error: xfer result--bad size "
1635 "xfer result (%d bytes vs %zu needed)\n",
1636 urb->actual_length, sizeof(*xfer_result));
1637 break;
1638 }
1639 xfer_result = wa->xfer_result;
1640 if (xfer_result->hdr.bLength != sizeof(*xfer_result)) {
1641 dev_err(dev, "DTI Error: xfer result--"
1642 "bad header length %u\n",
1643 xfer_result->hdr.bLength);
1644 break;
1645 }
1646 if (xfer_result->hdr.bNotifyType != WA_XFER_RESULT) {
1647 dev_err(dev, "DTI Error: xfer result--"
1648 "bad header type 0x%02x\n",
1649 xfer_result->hdr.bNotifyType);
1650 break;
1651 }
1652 usb_status = xfer_result->bTransferStatus & 0x3f;
1653 if (usb_status == WA_XFER_STATUS_NOT_FOUND)
1654 /* taken care of already */
1655 break;
1656 xfer_id = xfer_result->dwTransferID;
1657 xfer = wa_xfer_get_by_id(wa, xfer_id);
1658 if (xfer == NULL) {
1659 /* FIXME: transaction might have been cancelled */
1660 dev_err(dev, "DTI Error: xfer result--"
1661 "unknown xfer 0x%08x (status 0x%02x)\n",
1662 xfer_id, usb_status);
1663 break;
1664 }
1665 wa_xfer_result_chew(wa, xfer);
1666 wa_xfer_put(xfer);
1667 break;
1668 case -ENOENT: /* (we killed the URB)...so, no broadcast */
1669 case -ESHUTDOWN: /* going away! */
1670 dev_dbg(dev, "DTI: going down! %d\n", urb->status);
1671 goto out;
1672 default:
1673 /* Unknown error */
1674 if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS,
1675 EDC_ERROR_TIMEFRAME)) {
1676 dev_err(dev, "DTI: URB max acceptable errors "
1677 "exceeded, resetting device\n");
1678 wa_reset_all(wa);
1679 goto out;
1680 }
1681 if (printk_ratelimit())
1682 dev_err(dev, "DTI: URB error %d\n", urb->status);
1683 break;
1684 }
1685 /* Resubmit the DTI URB */
1686 result = usb_submit_urb(wa->dti_urb, GFP_ATOMIC);
1687 if (result < 0) {
1688 dev_err(dev, "DTI Error: Could not submit DTI URB (%d), "
1689 "resetting\n", result);
1690 wa_reset_all(wa);
1691 }
1692 out:
1693 return;
1694 }
1695
1696 /*
1697 * Transfer complete notification
1698 *
1699 * Called from the notif.c code. We get a notification on EP2 saying
1700 * that some endpoint has some transfer result data available. We are
1701 * about to read it.
1702 *
1703 * To speed up things, we always have a URB reading the DTI URB; we
1704 * don't really set it up and start it until the first xfer complete
1705 * notification arrives, which is what we do here.
1706 *
1707 * Follow up in wa_xfer_result_cb(), as that's where the whole state
1708 * machine starts.
1709 *
1710 * So here we just initialize the DTI URB for reading transfer result
1711 * notifications and also the buffer-in URB, for reading buffers. Then
1712 * we just submit the DTI URB.
1713 *
1714 * @wa shall be referenced
1715 */
1716 void wa_handle_notif_xfer(struct wahc *wa, struct wa_notif_hdr *notif_hdr)
1717 {
1718 int result;
1719 struct device *dev = &wa->usb_iface->dev;
1720 struct wa_notif_xfer *notif_xfer;
1721 const struct usb_endpoint_descriptor *dti_epd = wa->dti_epd;
1722
1723 notif_xfer = container_of(notif_hdr, struct wa_notif_xfer, hdr);
1724 BUG_ON(notif_hdr->bNotifyType != WA_NOTIF_TRANSFER);
1725
1726 if ((0x80 | notif_xfer->bEndpoint) != dti_epd->bEndpointAddress) {
1727 /* FIXME: hardcoded limitation, adapt */
1728 dev_err(dev, "BUG: DTI ep is %u, not %u (hack me)\n",
1729 notif_xfer->bEndpoint, dti_epd->bEndpointAddress);
1730 goto error;
1731 }
1732 if (wa->dti_urb != NULL) /* DTI URB already started */
1733 goto out;
1734
1735 wa->dti_urb = usb_alloc_urb(0, GFP_KERNEL);
1736 if (wa->dti_urb == NULL) {
1737 dev_err(dev, "Can't allocate DTI URB\n");
1738 goto error_dti_urb_alloc;
1739 }
1740 usb_fill_bulk_urb(
1741 wa->dti_urb, wa->usb_dev,
1742 usb_rcvbulkpipe(wa->usb_dev, 0x80 | notif_xfer->bEndpoint),
1743 wa->xfer_result, wa->xfer_result_size,
1744 wa_xfer_result_cb, wa);
1745
1746 wa->buf_in_urb = usb_alloc_urb(0, GFP_KERNEL);
1747 if (wa->buf_in_urb == NULL) {
1748 dev_err(dev, "Can't allocate BUF-IN URB\n");
1749 goto error_buf_in_urb_alloc;
1750 }
1751 usb_fill_bulk_urb(
1752 wa->buf_in_urb, wa->usb_dev,
1753 usb_rcvbulkpipe(wa->usb_dev, 0x80 | notif_xfer->bEndpoint),
1754 NULL, 0, wa_buf_in_cb, wa);
1755 result = usb_submit_urb(wa->dti_urb, GFP_KERNEL);
1756 if (result < 0) {
1757 dev_err(dev, "DTI Error: Could not submit DTI URB (%d), "
1758 "resetting\n", result);
1759 goto error_dti_urb_submit;
1760 }
1761 out:
1762 return;
1763
1764 error_dti_urb_submit:
1765 usb_put_urb(wa->buf_in_urb);
1766 error_buf_in_urb_alloc:
1767 usb_put_urb(wa->dti_urb);
1768 wa->dti_urb = NULL;
1769 error_dti_urb_alloc:
1770 error:
1771 wa_reset_all(wa);
1772 }
This page took 0.11241 seconds and 5 git commands to generate.