vfio: Provide module option to disable vfio_iommu_type1 hugepage support
[deliverable/linux.git] / drivers / vfio / vfio_iommu_type1.c
1 /*
2 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
3 *
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
14 *
15 * We arbitrarily define a Type1 IOMMU as one matching the below code.
16 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
17 * VT-d, but that makes it harder to re-use as theoretically anyone
18 * implementing a similar IOMMU could make use of this. We expect the
19 * IOMMU to support the IOMMU API and have few to no restrictions around
20 * the IOVA range that can be mapped. The Type1 IOMMU is currently
21 * optimized for relatively static mappings of a userspace process with
22 * userpsace pages pinned into memory. We also assume devices and IOMMU
23 * domains are PCI based as the IOMMU API is still centered around a
24 * device/bus interface rather than a group interface.
25 */
26
27 #include <linux/compat.h>
28 #include <linux/device.h>
29 #include <linux/fs.h>
30 #include <linux/iommu.h>
31 #include <linux/module.h>
32 #include <linux/mm.h>
33 #include <linux/pci.h> /* pci_bus_type */
34 #include <linux/rbtree.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38 #include <linux/vfio.h>
39 #include <linux/workqueue.h>
40
41 #define DRIVER_VERSION "0.2"
42 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
43 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
44
45 static bool allow_unsafe_interrupts;
46 module_param_named(allow_unsafe_interrupts,
47 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
48 MODULE_PARM_DESC(allow_unsafe_interrupts,
49 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
50
51 static bool disable_hugepages;
52 module_param_named(disable_hugepages,
53 disable_hugepages, bool, S_IRUGO | S_IWUSR);
54 MODULE_PARM_DESC(disable_hugepages,
55 "Disable VFIO IOMMU support for IOMMU hugepages.");
56
57 struct vfio_iommu {
58 struct iommu_domain *domain;
59 struct mutex lock;
60 struct rb_root dma_list;
61 struct list_head group_list;
62 bool cache;
63 };
64
65 struct vfio_dma {
66 struct rb_node node;
67 dma_addr_t iova; /* Device address */
68 unsigned long vaddr; /* Process virtual addr */
69 size_t size; /* Map size (bytes) */
70 int prot; /* IOMMU_READ/WRITE */
71 };
72
73 struct vfio_group {
74 struct iommu_group *iommu_group;
75 struct list_head next;
76 };
77
78 /*
79 * This code handles mapping and unmapping of user data buffers
80 * into DMA'ble space using the IOMMU
81 */
82
83 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
84 dma_addr_t start, size_t size)
85 {
86 struct rb_node *node = iommu->dma_list.rb_node;
87
88 while (node) {
89 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
90
91 if (start + size <= dma->iova)
92 node = node->rb_left;
93 else if (start >= dma->iova + dma->size)
94 node = node->rb_right;
95 else
96 return dma;
97 }
98
99 return NULL;
100 }
101
102 static void vfio_insert_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
103 {
104 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
105 struct vfio_dma *dma;
106
107 while (*link) {
108 parent = *link;
109 dma = rb_entry(parent, struct vfio_dma, node);
110
111 if (new->iova + new->size <= dma->iova)
112 link = &(*link)->rb_left;
113 else
114 link = &(*link)->rb_right;
115 }
116
117 rb_link_node(&new->node, parent, link);
118 rb_insert_color(&new->node, &iommu->dma_list);
119 }
120
121 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
122 {
123 rb_erase(&old->node, &iommu->dma_list);
124 }
125
126 struct vwork {
127 struct mm_struct *mm;
128 long npage;
129 struct work_struct work;
130 };
131
132 /* delayed decrement/increment for locked_vm */
133 static void vfio_lock_acct_bg(struct work_struct *work)
134 {
135 struct vwork *vwork = container_of(work, struct vwork, work);
136 struct mm_struct *mm;
137
138 mm = vwork->mm;
139 down_write(&mm->mmap_sem);
140 mm->locked_vm += vwork->npage;
141 up_write(&mm->mmap_sem);
142 mmput(mm);
143 kfree(vwork);
144 }
145
146 static void vfio_lock_acct(long npage)
147 {
148 struct vwork *vwork;
149 struct mm_struct *mm;
150
151 if (!current->mm || !npage)
152 return; /* process exited or nothing to do */
153
154 if (down_write_trylock(&current->mm->mmap_sem)) {
155 current->mm->locked_vm += npage;
156 up_write(&current->mm->mmap_sem);
157 return;
158 }
159
160 /*
161 * Couldn't get mmap_sem lock, so must setup to update
162 * mm->locked_vm later. If locked_vm were atomic, we
163 * wouldn't need this silliness
164 */
165 vwork = kmalloc(sizeof(struct vwork), GFP_KERNEL);
166 if (!vwork)
167 return;
168 mm = get_task_mm(current);
169 if (!mm) {
170 kfree(vwork);
171 return;
172 }
173 INIT_WORK(&vwork->work, vfio_lock_acct_bg);
174 vwork->mm = mm;
175 vwork->npage = npage;
176 schedule_work(&vwork->work);
177 }
178
179 /*
180 * Some mappings aren't backed by a struct page, for example an mmap'd
181 * MMIO range for our own or another device. These use a different
182 * pfn conversion and shouldn't be tracked as locked pages.
183 */
184 static bool is_invalid_reserved_pfn(unsigned long pfn)
185 {
186 if (pfn_valid(pfn)) {
187 bool reserved;
188 struct page *tail = pfn_to_page(pfn);
189 struct page *head = compound_trans_head(tail);
190 reserved = !!(PageReserved(head));
191 if (head != tail) {
192 /*
193 * "head" is not a dangling pointer
194 * (compound_trans_head takes care of that)
195 * but the hugepage may have been split
196 * from under us (and we may not hold a
197 * reference count on the head page so it can
198 * be reused before we run PageReferenced), so
199 * we've to check PageTail before returning
200 * what we just read.
201 */
202 smp_rmb();
203 if (PageTail(tail))
204 return reserved;
205 }
206 return PageReserved(tail);
207 }
208
209 return true;
210 }
211
212 static int put_pfn(unsigned long pfn, int prot)
213 {
214 if (!is_invalid_reserved_pfn(pfn)) {
215 struct page *page = pfn_to_page(pfn);
216 if (prot & IOMMU_WRITE)
217 SetPageDirty(page);
218 put_page(page);
219 return 1;
220 }
221 return 0;
222 }
223
224 static int vaddr_get_pfn(unsigned long vaddr, int prot, unsigned long *pfn)
225 {
226 struct page *page[1];
227 struct vm_area_struct *vma;
228 int ret = -EFAULT;
229
230 if (get_user_pages_fast(vaddr, 1, !!(prot & IOMMU_WRITE), page) == 1) {
231 *pfn = page_to_pfn(page[0]);
232 return 0;
233 }
234
235 down_read(&current->mm->mmap_sem);
236
237 vma = find_vma_intersection(current->mm, vaddr, vaddr + 1);
238
239 if (vma && vma->vm_flags & VM_PFNMAP) {
240 *pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
241 if (is_invalid_reserved_pfn(*pfn))
242 ret = 0;
243 }
244
245 up_read(&current->mm->mmap_sem);
246
247 return ret;
248 }
249
250 /*
251 * Attempt to pin pages. We really don't want to track all the pfns and
252 * the iommu can only map chunks of consecutive pfns anyway, so get the
253 * first page and all consecutive pages with the same locking.
254 */
255 static long vfio_pin_pages(unsigned long vaddr, long npage,
256 int prot, unsigned long *pfn_base)
257 {
258 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
259 bool lock_cap = capable(CAP_IPC_LOCK);
260 long ret, i;
261
262 if (!current->mm)
263 return -ENODEV;
264
265 ret = vaddr_get_pfn(vaddr, prot, pfn_base);
266 if (ret)
267 return ret;
268
269 if (is_invalid_reserved_pfn(*pfn_base))
270 return 1;
271
272 if (!lock_cap && current->mm->locked_vm + 1 > limit) {
273 put_pfn(*pfn_base, prot);
274 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
275 limit << PAGE_SHIFT);
276 return -ENOMEM;
277 }
278
279 if (unlikely(disable_hugepages)) {
280 vfio_lock_acct(1);
281 return 1;
282 }
283
284 /* Lock all the consecutive pages from pfn_base */
285 for (i = 1, vaddr += PAGE_SIZE; i < npage; i++, vaddr += PAGE_SIZE) {
286 unsigned long pfn = 0;
287
288 ret = vaddr_get_pfn(vaddr, prot, &pfn);
289 if (ret)
290 break;
291
292 if (pfn != *pfn_base + i || is_invalid_reserved_pfn(pfn)) {
293 put_pfn(pfn, prot);
294 break;
295 }
296
297 if (!lock_cap && current->mm->locked_vm + i + 1 > limit) {
298 put_pfn(pfn, prot);
299 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
300 __func__, limit << PAGE_SHIFT);
301 break;
302 }
303 }
304
305 vfio_lock_acct(i);
306
307 return i;
308 }
309
310 static long vfio_unpin_pages(unsigned long pfn, long npage,
311 int prot, bool do_accounting)
312 {
313 unsigned long unlocked = 0;
314 long i;
315
316 for (i = 0; i < npage; i++)
317 unlocked += put_pfn(pfn++, prot);
318
319 if (do_accounting)
320 vfio_lock_acct(-unlocked);
321
322 return unlocked;
323 }
324
325 static int vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
326 dma_addr_t iova, size_t *size)
327 {
328 dma_addr_t start = iova, end = iova + *size;
329 long unlocked = 0;
330
331 while (iova < end) {
332 size_t unmapped;
333 phys_addr_t phys;
334
335 /*
336 * We use the IOMMU to track the physical address. This
337 * saves us from having a lot more entries in our mapping
338 * tree. The downside is that we don't track the size
339 * used to do the mapping. We request unmap of a single
340 * page, but expect IOMMUs that support large pages to
341 * unmap a larger chunk.
342 */
343 phys = iommu_iova_to_phys(iommu->domain, iova);
344 if (WARN_ON(!phys)) {
345 iova += PAGE_SIZE;
346 continue;
347 }
348
349 unmapped = iommu_unmap(iommu->domain, iova, PAGE_SIZE);
350 if (!unmapped)
351 break;
352
353 unlocked += vfio_unpin_pages(phys >> PAGE_SHIFT,
354 unmapped >> PAGE_SHIFT,
355 dma->prot, false);
356 iova += unmapped;
357 }
358
359 vfio_lock_acct(-unlocked);
360
361 *size = iova - start;
362
363 return 0;
364 }
365
366 static int vfio_remove_dma_overlap(struct vfio_iommu *iommu, dma_addr_t start,
367 size_t *size, struct vfio_dma *dma)
368 {
369 size_t offset, overlap, tmp;
370 struct vfio_dma *split;
371 int ret;
372
373 /*
374 * Existing dma region is completely covered, unmap all. This is
375 * the likely case since userspace tends to map and unmap buffers
376 * in one shot rather than multiple mappings within a buffer.
377 */
378 if (likely(start <= dma->iova &&
379 start + *size >= dma->iova + dma->size)) {
380 *size = dma->size;
381 ret = vfio_unmap_unpin(iommu, dma, dma->iova, size);
382 if (ret)
383 return ret;
384
385 /*
386 * Did we remove more than we have? Should never happen
387 * since a vfio_dma is contiguous in iova and vaddr.
388 */
389 WARN_ON(*size != dma->size);
390
391 vfio_remove_dma(iommu, dma);
392 kfree(dma);
393 return 0;
394 }
395
396 /* Overlap low address of existing range */
397 if (start <= dma->iova) {
398 overlap = start + *size - dma->iova;
399 ret = vfio_unmap_unpin(iommu, dma, dma->iova, &overlap);
400 if (ret)
401 return ret;
402
403 vfio_remove_dma(iommu, dma);
404
405 /*
406 * Check, we may have removed to whole vfio_dma. If not
407 * fixup and re-insert.
408 */
409 if (overlap < dma->size) {
410 dma->iova += overlap;
411 dma->vaddr += overlap;
412 dma->size -= overlap;
413 vfio_insert_dma(iommu, dma);
414 }
415 *size = overlap;
416 return 0;
417 }
418
419 /* Overlap high address of existing range */
420 if (start + *size >= dma->iova + dma->size) {
421 offset = start - dma->iova;
422 overlap = dma->size - offset;
423
424 ret = vfio_unmap_unpin(iommu, dma, start, &overlap);
425 if (ret)
426 return ret;
427
428 /*
429 * We may have unmapped the entire vfio_dma if the user is
430 * trying to unmap a sub-region of what was originally
431 * mapped. If anything left, we can resize in place since
432 * iova is unchanged.
433 */
434 if (overlap < dma->size)
435 dma->size -= overlap;
436 else
437 vfio_remove_dma(iommu, dma);
438
439 *size = overlap;
440 return 0;
441 }
442
443 /* Split existing */
444 offset = start - dma->iova;
445
446 ret = vfio_unmap_unpin(iommu, dma, start, size);
447 if (ret)
448 return ret;
449
450 WARN_ON(!*size);
451 tmp = dma->size;
452
453 /*
454 * Resize the lower vfio_dma in place, insert new for remaining
455 * upper segment.
456 */
457 dma->size = offset;
458
459 if (offset + *size < tmp) {
460 split = kzalloc(sizeof(*split), GFP_KERNEL);
461 if (!split)
462 return -ENOMEM;
463
464 split->size = tmp - offset - *size;
465 split->iova = dma->iova + offset + *size;
466 split->vaddr = dma->vaddr + offset + *size;
467 split->prot = dma->prot;
468 vfio_insert_dma(iommu, split);
469 }
470
471 return 0;
472 }
473
474 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
475 struct vfio_iommu_type1_dma_unmap *unmap)
476 {
477 uint64_t mask;
478 struct vfio_dma *dma;
479 size_t unmapped = 0, size;
480 int ret = 0;
481
482 mask = ((uint64_t)1 << __ffs(iommu->domain->ops->pgsize_bitmap)) - 1;
483
484 if (unmap->iova & mask)
485 return -EINVAL;
486 if (unmap->size & mask)
487 return -EINVAL;
488
489 WARN_ON(mask & PAGE_MASK);
490
491 mutex_lock(&iommu->lock);
492
493 while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
494 size = unmap->size;
495 ret = vfio_remove_dma_overlap(iommu, unmap->iova, &size, dma);
496 if (ret)
497 break;
498 unmapped += size;
499 }
500
501 mutex_unlock(&iommu->lock);
502
503 /*
504 * We may unmap more than requested, update the unmap struct so
505 * userspace can know.
506 */
507 unmap->size = unmapped;
508
509 return ret;
510 }
511
512 /*
513 * Turns out AMD IOMMU has a page table bug where it won't map large pages
514 * to a region that previously mapped smaller pages. This should be fixed
515 * soon, so this is just a temporary workaround to break mappings down into
516 * PAGE_SIZE. Better to map smaller pages than nothing.
517 */
518 static int map_try_harder(struct vfio_iommu *iommu, dma_addr_t iova,
519 unsigned long pfn, long npage, int prot)
520 {
521 long i;
522 int ret;
523
524 for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) {
525 ret = iommu_map(iommu->domain, iova,
526 (phys_addr_t)pfn << PAGE_SHIFT,
527 PAGE_SIZE, prot);
528 if (ret)
529 break;
530 }
531
532 for (; i < npage && i > 0; i--, iova -= PAGE_SIZE)
533 iommu_unmap(iommu->domain, iova, PAGE_SIZE);
534
535 return ret;
536 }
537
538 static int vfio_dma_do_map(struct vfio_iommu *iommu,
539 struct vfio_iommu_type1_dma_map *map)
540 {
541 dma_addr_t end, iova;
542 unsigned long vaddr = map->vaddr;
543 size_t size = map->size;
544 long npage;
545 int ret = 0, prot = 0;
546 uint64_t mask;
547
548 end = map->iova + map->size;
549
550 mask = ((uint64_t)1 << __ffs(iommu->domain->ops->pgsize_bitmap)) - 1;
551
552 /* READ/WRITE from device perspective */
553 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
554 prot |= IOMMU_WRITE;
555 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
556 prot |= IOMMU_READ;
557
558 if (!prot)
559 return -EINVAL; /* No READ/WRITE? */
560
561 if (iommu->cache)
562 prot |= IOMMU_CACHE;
563
564 if (vaddr & mask)
565 return -EINVAL;
566 if (map->iova & mask)
567 return -EINVAL;
568 if (!map->size || map->size & mask)
569 return -EINVAL;
570
571 WARN_ON(mask & PAGE_MASK);
572
573 /* Don't allow IOVA wrap */
574 if (end && end < map->iova)
575 return -EINVAL;
576
577 /* Don't allow virtual address wrap */
578 if (vaddr + map->size && vaddr + map->size < vaddr)
579 return -EINVAL;
580
581 mutex_lock(&iommu->lock);
582
583 if (vfio_find_dma(iommu, map->iova, map->size)) {
584 mutex_unlock(&iommu->lock);
585 return -EEXIST;
586 }
587
588 for (iova = map->iova; iova < end; iova += size, vaddr += size) {
589 struct vfio_dma *dma = NULL;
590 unsigned long pfn;
591 long i;
592
593 /* Pin a contiguous chunk of memory */
594 npage = vfio_pin_pages(vaddr, (end - iova) >> PAGE_SHIFT,
595 prot, &pfn);
596 if (npage <= 0) {
597 WARN_ON(!npage);
598 ret = (int)npage;
599 break;
600 }
601
602 /* Verify pages are not already mapped */
603 for (i = 0; i < npage; i++) {
604 if (iommu_iova_to_phys(iommu->domain,
605 iova + (i << PAGE_SHIFT))) {
606 vfio_unpin_pages(pfn, npage, prot, true);
607 ret = -EBUSY;
608 break;
609 }
610 }
611
612 ret = iommu_map(iommu->domain, iova,
613 (phys_addr_t)pfn << PAGE_SHIFT,
614 npage << PAGE_SHIFT, prot);
615 if (ret) {
616 if (ret != -EBUSY ||
617 map_try_harder(iommu, iova, pfn, npage, prot)) {
618 vfio_unpin_pages(pfn, npage, prot, true);
619 break;
620 }
621 }
622
623 size = npage << PAGE_SHIFT;
624
625 /*
626 * Check if we abut a region below - nothing below 0.
627 * This is the most likely case when mapping chunks of
628 * physically contiguous regions within a virtual address
629 * range. Update the abutting entry in place since iova
630 * doesn't change.
631 */
632 if (likely(iova)) {
633 struct vfio_dma *tmp;
634 tmp = vfio_find_dma(iommu, iova - 1, 1);
635 if (tmp && tmp->prot == prot &&
636 tmp->vaddr + tmp->size == vaddr) {
637 tmp->size += size;
638
639 iova = tmp->iova;
640 size = tmp->size;
641 vaddr = tmp->vaddr;
642 dma = tmp;
643 }
644 }
645
646 /* Check if we abut a region above - nothing above ~0 + 1 */
647 if (likely(iova + size)) {
648 struct vfio_dma *tmp;
649
650 tmp = vfio_find_dma(iommu, iova + size, 1);
651 if (tmp && tmp->prot == prot &&
652 tmp->vaddr == vaddr + size) {
653 vfio_remove_dma(iommu, tmp);
654 if (dma)
655 dma->size += tmp->size;
656 else
657 size += tmp->size;
658 kfree(tmp);
659 }
660 }
661
662 if (!dma) {
663 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
664 if (!dma) {
665 iommu_unmap(iommu->domain, iova, size);
666 vfio_unpin_pages(pfn, npage, prot, true);
667 ret = -ENOMEM;
668 break;
669 }
670
671 dma->size = size;
672 dma->iova = iova;
673 dma->vaddr = vaddr;
674 dma->prot = prot;
675 vfio_insert_dma(iommu, dma);
676 }
677 }
678
679 if (ret) {
680 struct vfio_dma *tmp;
681 iova = map->iova;
682 size = map->size;
683 while ((tmp = vfio_find_dma(iommu, iova, size))) {
684 if (vfio_remove_dma_overlap(iommu, iova, &size, tmp)) {
685 pr_warn("%s: Error rolling back failed map\n",
686 __func__);
687 break;
688 }
689 }
690 }
691
692 mutex_unlock(&iommu->lock);
693 return ret;
694 }
695
696 static int vfio_iommu_type1_attach_group(void *iommu_data,
697 struct iommu_group *iommu_group)
698 {
699 struct vfio_iommu *iommu = iommu_data;
700 struct vfio_group *group, *tmp;
701 int ret;
702
703 group = kzalloc(sizeof(*group), GFP_KERNEL);
704 if (!group)
705 return -ENOMEM;
706
707 mutex_lock(&iommu->lock);
708
709 list_for_each_entry(tmp, &iommu->group_list, next) {
710 if (tmp->iommu_group == iommu_group) {
711 mutex_unlock(&iommu->lock);
712 kfree(group);
713 return -EINVAL;
714 }
715 }
716
717 /*
718 * TODO: Domain have capabilities that might change as we add
719 * groups (see iommu->cache, currently never set). Check for
720 * them and potentially disallow groups to be attached when it
721 * would change capabilities (ugh).
722 */
723 ret = iommu_attach_group(iommu->domain, iommu_group);
724 if (ret) {
725 mutex_unlock(&iommu->lock);
726 kfree(group);
727 return ret;
728 }
729
730 group->iommu_group = iommu_group;
731 list_add(&group->next, &iommu->group_list);
732
733 mutex_unlock(&iommu->lock);
734
735 return 0;
736 }
737
738 static void vfio_iommu_type1_detach_group(void *iommu_data,
739 struct iommu_group *iommu_group)
740 {
741 struct vfio_iommu *iommu = iommu_data;
742 struct vfio_group *group;
743
744 mutex_lock(&iommu->lock);
745
746 list_for_each_entry(group, &iommu->group_list, next) {
747 if (group->iommu_group == iommu_group) {
748 iommu_detach_group(iommu->domain, iommu_group);
749 list_del(&group->next);
750 kfree(group);
751 break;
752 }
753 }
754
755 mutex_unlock(&iommu->lock);
756 }
757
758 static void *vfio_iommu_type1_open(unsigned long arg)
759 {
760 struct vfio_iommu *iommu;
761
762 if (arg != VFIO_TYPE1_IOMMU)
763 return ERR_PTR(-EINVAL);
764
765 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
766 if (!iommu)
767 return ERR_PTR(-ENOMEM);
768
769 INIT_LIST_HEAD(&iommu->group_list);
770 iommu->dma_list = RB_ROOT;
771 mutex_init(&iommu->lock);
772
773 /*
774 * Wish we didn't have to know about bus_type here.
775 */
776 iommu->domain = iommu_domain_alloc(&pci_bus_type);
777 if (!iommu->domain) {
778 kfree(iommu);
779 return ERR_PTR(-EIO);
780 }
781
782 /*
783 * Wish we could specify required capabilities rather than create
784 * a domain, see what comes out and hope it doesn't change along
785 * the way. Fortunately we know interrupt remapping is global for
786 * our iommus.
787 */
788 if (!allow_unsafe_interrupts &&
789 !iommu_domain_has_cap(iommu->domain, IOMMU_CAP_INTR_REMAP)) {
790 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
791 __func__);
792 iommu_domain_free(iommu->domain);
793 kfree(iommu);
794 return ERR_PTR(-EPERM);
795 }
796
797 return iommu;
798 }
799
800 static void vfio_iommu_type1_release(void *iommu_data)
801 {
802 struct vfio_iommu *iommu = iommu_data;
803 struct vfio_group *group, *group_tmp;
804 struct rb_node *node;
805
806 list_for_each_entry_safe(group, group_tmp, &iommu->group_list, next) {
807 iommu_detach_group(iommu->domain, group->iommu_group);
808 list_del(&group->next);
809 kfree(group);
810 }
811
812 while ((node = rb_first(&iommu->dma_list))) {
813 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
814 size_t size = dma->size;
815 vfio_remove_dma_overlap(iommu, dma->iova, &size, dma);
816 }
817
818 iommu_domain_free(iommu->domain);
819 iommu->domain = NULL;
820 kfree(iommu);
821 }
822
823 static long vfio_iommu_type1_ioctl(void *iommu_data,
824 unsigned int cmd, unsigned long arg)
825 {
826 struct vfio_iommu *iommu = iommu_data;
827 unsigned long minsz;
828
829 if (cmd == VFIO_CHECK_EXTENSION) {
830 switch (arg) {
831 case VFIO_TYPE1_IOMMU:
832 return 1;
833 default:
834 return 0;
835 }
836 } else if (cmd == VFIO_IOMMU_GET_INFO) {
837 struct vfio_iommu_type1_info info;
838
839 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
840
841 if (copy_from_user(&info, (void __user *)arg, minsz))
842 return -EFAULT;
843
844 if (info.argsz < minsz)
845 return -EINVAL;
846
847 info.flags = 0;
848
849 info.iova_pgsizes = iommu->domain->ops->pgsize_bitmap;
850
851 return copy_to_user((void __user *)arg, &info, minsz);
852
853 } else if (cmd == VFIO_IOMMU_MAP_DMA) {
854 struct vfio_iommu_type1_dma_map map;
855 uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
856 VFIO_DMA_MAP_FLAG_WRITE;
857
858 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
859
860 if (copy_from_user(&map, (void __user *)arg, minsz))
861 return -EFAULT;
862
863 if (map.argsz < minsz || map.flags & ~mask)
864 return -EINVAL;
865
866 return vfio_dma_do_map(iommu, &map);
867
868 } else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
869 struct vfio_iommu_type1_dma_unmap unmap;
870 long ret;
871
872 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
873
874 if (copy_from_user(&unmap, (void __user *)arg, minsz))
875 return -EFAULT;
876
877 if (unmap.argsz < minsz || unmap.flags)
878 return -EINVAL;
879
880 ret = vfio_dma_do_unmap(iommu, &unmap);
881 if (ret)
882 return ret;
883
884 return copy_to_user((void __user *)arg, &unmap, minsz);
885 }
886
887 return -ENOTTY;
888 }
889
890 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
891 .name = "vfio-iommu-type1",
892 .owner = THIS_MODULE,
893 .open = vfio_iommu_type1_open,
894 .release = vfio_iommu_type1_release,
895 .ioctl = vfio_iommu_type1_ioctl,
896 .attach_group = vfio_iommu_type1_attach_group,
897 .detach_group = vfio_iommu_type1_detach_group,
898 };
899
900 static int __init vfio_iommu_type1_init(void)
901 {
902 if (!iommu_present(&pci_bus_type))
903 return -ENODEV;
904
905 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
906 }
907
908 static void __exit vfio_iommu_type1_cleanup(void)
909 {
910 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
911 }
912
913 module_init(vfio_iommu_type1_init);
914 module_exit(vfio_iommu_type1_cleanup);
915
916 MODULE_VERSION(DRIVER_VERSION);
917 MODULE_LICENSE("GPL v2");
918 MODULE_AUTHOR(DRIVER_AUTHOR);
919 MODULE_DESCRIPTION(DRIVER_DESC);
This page took 0.06248 seconds and 5 git commands to generate.