Merge branch 'stable-4.8' of git://git.infradead.org/users/pcmoore/audit
[deliverable/linux.git] / drivers / video / fbdev / omap2 / omapfb / dss / dsi.c
1 /*
2 * linux/drivers/video/omap2/dss/dsi.c
3 *
4 * Copyright (C) 2009 Nokia Corporation
5 * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #define DSS_SUBSYS_NAME "DSI"
21
22 #include <linux/kernel.h>
23 #include <linux/io.h>
24 #include <linux/clk.h>
25 #include <linux/device.h>
26 #include <linux/err.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/mutex.h>
30 #include <linux/module.h>
31 #include <linux/semaphore.h>
32 #include <linux/seq_file.h>
33 #include <linux/platform_device.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/wait.h>
36 #include <linux/workqueue.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/debugfs.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/of.h>
42 #include <linux/of_platform.h>
43 #include <linux/component.h>
44
45 #include <video/omapfb_dss.h>
46 #include <video/mipi_display.h>
47
48 #include "dss.h"
49 #include "dss_features.h"
50
51 #define DSI_CATCH_MISSING_TE
52
53 struct dsi_reg { u16 module; u16 idx; };
54
55 #define DSI_REG(mod, idx) ((const struct dsi_reg) { mod, idx })
56
57 /* DSI Protocol Engine */
58
59 #define DSI_PROTO 0
60 #define DSI_PROTO_SZ 0x200
61
62 #define DSI_REVISION DSI_REG(DSI_PROTO, 0x0000)
63 #define DSI_SYSCONFIG DSI_REG(DSI_PROTO, 0x0010)
64 #define DSI_SYSSTATUS DSI_REG(DSI_PROTO, 0x0014)
65 #define DSI_IRQSTATUS DSI_REG(DSI_PROTO, 0x0018)
66 #define DSI_IRQENABLE DSI_REG(DSI_PROTO, 0x001C)
67 #define DSI_CTRL DSI_REG(DSI_PROTO, 0x0040)
68 #define DSI_GNQ DSI_REG(DSI_PROTO, 0x0044)
69 #define DSI_COMPLEXIO_CFG1 DSI_REG(DSI_PROTO, 0x0048)
70 #define DSI_COMPLEXIO_IRQ_STATUS DSI_REG(DSI_PROTO, 0x004C)
71 #define DSI_COMPLEXIO_IRQ_ENABLE DSI_REG(DSI_PROTO, 0x0050)
72 #define DSI_CLK_CTRL DSI_REG(DSI_PROTO, 0x0054)
73 #define DSI_TIMING1 DSI_REG(DSI_PROTO, 0x0058)
74 #define DSI_TIMING2 DSI_REG(DSI_PROTO, 0x005C)
75 #define DSI_VM_TIMING1 DSI_REG(DSI_PROTO, 0x0060)
76 #define DSI_VM_TIMING2 DSI_REG(DSI_PROTO, 0x0064)
77 #define DSI_VM_TIMING3 DSI_REG(DSI_PROTO, 0x0068)
78 #define DSI_CLK_TIMING DSI_REG(DSI_PROTO, 0x006C)
79 #define DSI_TX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0070)
80 #define DSI_RX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0074)
81 #define DSI_COMPLEXIO_CFG2 DSI_REG(DSI_PROTO, 0x0078)
82 #define DSI_RX_FIFO_VC_FULLNESS DSI_REG(DSI_PROTO, 0x007C)
83 #define DSI_VM_TIMING4 DSI_REG(DSI_PROTO, 0x0080)
84 #define DSI_TX_FIFO_VC_EMPTINESS DSI_REG(DSI_PROTO, 0x0084)
85 #define DSI_VM_TIMING5 DSI_REG(DSI_PROTO, 0x0088)
86 #define DSI_VM_TIMING6 DSI_REG(DSI_PROTO, 0x008C)
87 #define DSI_VM_TIMING7 DSI_REG(DSI_PROTO, 0x0090)
88 #define DSI_STOPCLK_TIMING DSI_REG(DSI_PROTO, 0x0094)
89 #define DSI_VC_CTRL(n) DSI_REG(DSI_PROTO, 0x0100 + (n * 0x20))
90 #define DSI_VC_TE(n) DSI_REG(DSI_PROTO, 0x0104 + (n * 0x20))
91 #define DSI_VC_LONG_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0108 + (n * 0x20))
92 #define DSI_VC_LONG_PACKET_PAYLOAD(n) DSI_REG(DSI_PROTO, 0x010C + (n * 0x20))
93 #define DSI_VC_SHORT_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0110 + (n * 0x20))
94 #define DSI_VC_IRQSTATUS(n) DSI_REG(DSI_PROTO, 0x0118 + (n * 0x20))
95 #define DSI_VC_IRQENABLE(n) DSI_REG(DSI_PROTO, 0x011C + (n * 0x20))
96
97 /* DSIPHY_SCP */
98
99 #define DSI_PHY 1
100 #define DSI_PHY_OFFSET 0x200
101 #define DSI_PHY_SZ 0x40
102
103 #define DSI_DSIPHY_CFG0 DSI_REG(DSI_PHY, 0x0000)
104 #define DSI_DSIPHY_CFG1 DSI_REG(DSI_PHY, 0x0004)
105 #define DSI_DSIPHY_CFG2 DSI_REG(DSI_PHY, 0x0008)
106 #define DSI_DSIPHY_CFG5 DSI_REG(DSI_PHY, 0x0014)
107 #define DSI_DSIPHY_CFG10 DSI_REG(DSI_PHY, 0x0028)
108
109 /* DSI_PLL_CTRL_SCP */
110
111 #define DSI_PLL 2
112 #define DSI_PLL_OFFSET 0x300
113 #define DSI_PLL_SZ 0x20
114
115 #define DSI_PLL_CONTROL DSI_REG(DSI_PLL, 0x0000)
116 #define DSI_PLL_STATUS DSI_REG(DSI_PLL, 0x0004)
117 #define DSI_PLL_GO DSI_REG(DSI_PLL, 0x0008)
118 #define DSI_PLL_CONFIGURATION1 DSI_REG(DSI_PLL, 0x000C)
119 #define DSI_PLL_CONFIGURATION2 DSI_REG(DSI_PLL, 0x0010)
120
121 #define REG_GET(dsidev, idx, start, end) \
122 FLD_GET(dsi_read_reg(dsidev, idx), start, end)
123
124 #define REG_FLD_MOD(dsidev, idx, val, start, end) \
125 dsi_write_reg(dsidev, idx, FLD_MOD(dsi_read_reg(dsidev, idx), val, start, end))
126
127 /* Global interrupts */
128 #define DSI_IRQ_VC0 (1 << 0)
129 #define DSI_IRQ_VC1 (1 << 1)
130 #define DSI_IRQ_VC2 (1 << 2)
131 #define DSI_IRQ_VC3 (1 << 3)
132 #define DSI_IRQ_WAKEUP (1 << 4)
133 #define DSI_IRQ_RESYNC (1 << 5)
134 #define DSI_IRQ_PLL_LOCK (1 << 7)
135 #define DSI_IRQ_PLL_UNLOCK (1 << 8)
136 #define DSI_IRQ_PLL_RECALL (1 << 9)
137 #define DSI_IRQ_COMPLEXIO_ERR (1 << 10)
138 #define DSI_IRQ_HS_TX_TIMEOUT (1 << 14)
139 #define DSI_IRQ_LP_RX_TIMEOUT (1 << 15)
140 #define DSI_IRQ_TE_TRIGGER (1 << 16)
141 #define DSI_IRQ_ACK_TRIGGER (1 << 17)
142 #define DSI_IRQ_SYNC_LOST (1 << 18)
143 #define DSI_IRQ_LDO_POWER_GOOD (1 << 19)
144 #define DSI_IRQ_TA_TIMEOUT (1 << 20)
145 #define DSI_IRQ_ERROR_MASK \
146 (DSI_IRQ_HS_TX_TIMEOUT | DSI_IRQ_LP_RX_TIMEOUT | DSI_IRQ_SYNC_LOST | \
147 DSI_IRQ_TA_TIMEOUT)
148 #define DSI_IRQ_CHANNEL_MASK 0xf
149
150 /* Virtual channel interrupts */
151 #define DSI_VC_IRQ_CS (1 << 0)
152 #define DSI_VC_IRQ_ECC_CORR (1 << 1)
153 #define DSI_VC_IRQ_PACKET_SENT (1 << 2)
154 #define DSI_VC_IRQ_FIFO_TX_OVF (1 << 3)
155 #define DSI_VC_IRQ_FIFO_RX_OVF (1 << 4)
156 #define DSI_VC_IRQ_BTA (1 << 5)
157 #define DSI_VC_IRQ_ECC_NO_CORR (1 << 6)
158 #define DSI_VC_IRQ_FIFO_TX_UDF (1 << 7)
159 #define DSI_VC_IRQ_PP_BUSY_CHANGE (1 << 8)
160 #define DSI_VC_IRQ_ERROR_MASK \
161 (DSI_VC_IRQ_CS | DSI_VC_IRQ_ECC_CORR | DSI_VC_IRQ_FIFO_TX_OVF | \
162 DSI_VC_IRQ_FIFO_RX_OVF | DSI_VC_IRQ_ECC_NO_CORR | \
163 DSI_VC_IRQ_FIFO_TX_UDF)
164
165 /* ComplexIO interrupts */
166 #define DSI_CIO_IRQ_ERRSYNCESC1 (1 << 0)
167 #define DSI_CIO_IRQ_ERRSYNCESC2 (1 << 1)
168 #define DSI_CIO_IRQ_ERRSYNCESC3 (1 << 2)
169 #define DSI_CIO_IRQ_ERRSYNCESC4 (1 << 3)
170 #define DSI_CIO_IRQ_ERRSYNCESC5 (1 << 4)
171 #define DSI_CIO_IRQ_ERRESC1 (1 << 5)
172 #define DSI_CIO_IRQ_ERRESC2 (1 << 6)
173 #define DSI_CIO_IRQ_ERRESC3 (1 << 7)
174 #define DSI_CIO_IRQ_ERRESC4 (1 << 8)
175 #define DSI_CIO_IRQ_ERRESC5 (1 << 9)
176 #define DSI_CIO_IRQ_ERRCONTROL1 (1 << 10)
177 #define DSI_CIO_IRQ_ERRCONTROL2 (1 << 11)
178 #define DSI_CIO_IRQ_ERRCONTROL3 (1 << 12)
179 #define DSI_CIO_IRQ_ERRCONTROL4 (1 << 13)
180 #define DSI_CIO_IRQ_ERRCONTROL5 (1 << 14)
181 #define DSI_CIO_IRQ_STATEULPS1 (1 << 15)
182 #define DSI_CIO_IRQ_STATEULPS2 (1 << 16)
183 #define DSI_CIO_IRQ_STATEULPS3 (1 << 17)
184 #define DSI_CIO_IRQ_STATEULPS4 (1 << 18)
185 #define DSI_CIO_IRQ_STATEULPS5 (1 << 19)
186 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_1 (1 << 20)
187 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_1 (1 << 21)
188 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_2 (1 << 22)
189 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_2 (1 << 23)
190 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_3 (1 << 24)
191 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_3 (1 << 25)
192 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_4 (1 << 26)
193 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_4 (1 << 27)
194 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_5 (1 << 28)
195 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_5 (1 << 29)
196 #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL0 (1 << 30)
197 #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL1 (1 << 31)
198 #define DSI_CIO_IRQ_ERROR_MASK \
199 (DSI_CIO_IRQ_ERRSYNCESC1 | DSI_CIO_IRQ_ERRSYNCESC2 | \
200 DSI_CIO_IRQ_ERRSYNCESC3 | DSI_CIO_IRQ_ERRSYNCESC4 | \
201 DSI_CIO_IRQ_ERRSYNCESC5 | \
202 DSI_CIO_IRQ_ERRESC1 | DSI_CIO_IRQ_ERRESC2 | \
203 DSI_CIO_IRQ_ERRESC3 | DSI_CIO_IRQ_ERRESC4 | \
204 DSI_CIO_IRQ_ERRESC5 | \
205 DSI_CIO_IRQ_ERRCONTROL1 | DSI_CIO_IRQ_ERRCONTROL2 | \
206 DSI_CIO_IRQ_ERRCONTROL3 | DSI_CIO_IRQ_ERRCONTROL4 | \
207 DSI_CIO_IRQ_ERRCONTROL5 | \
208 DSI_CIO_IRQ_ERRCONTENTIONLP0_1 | DSI_CIO_IRQ_ERRCONTENTIONLP1_1 | \
209 DSI_CIO_IRQ_ERRCONTENTIONLP0_2 | DSI_CIO_IRQ_ERRCONTENTIONLP1_2 | \
210 DSI_CIO_IRQ_ERRCONTENTIONLP0_3 | DSI_CIO_IRQ_ERRCONTENTIONLP1_3 | \
211 DSI_CIO_IRQ_ERRCONTENTIONLP0_4 | DSI_CIO_IRQ_ERRCONTENTIONLP1_4 | \
212 DSI_CIO_IRQ_ERRCONTENTIONLP0_5 | DSI_CIO_IRQ_ERRCONTENTIONLP1_5)
213
214 typedef void (*omap_dsi_isr_t) (void *arg, u32 mask);
215
216 static int dsi_display_init_dispc(struct platform_device *dsidev,
217 struct omap_overlay_manager *mgr);
218 static void dsi_display_uninit_dispc(struct platform_device *dsidev,
219 struct omap_overlay_manager *mgr);
220
221 static int dsi_vc_send_null(struct omap_dss_device *dssdev, int channel);
222
223 /* DSI PLL HSDIV indices */
224 #define HSDIV_DISPC 0
225 #define HSDIV_DSI 1
226
227 #define DSI_MAX_NR_ISRS 2
228 #define DSI_MAX_NR_LANES 5
229
230 enum dsi_lane_function {
231 DSI_LANE_UNUSED = 0,
232 DSI_LANE_CLK,
233 DSI_LANE_DATA1,
234 DSI_LANE_DATA2,
235 DSI_LANE_DATA3,
236 DSI_LANE_DATA4,
237 };
238
239 struct dsi_lane_config {
240 enum dsi_lane_function function;
241 u8 polarity;
242 };
243
244 struct dsi_isr_data {
245 omap_dsi_isr_t isr;
246 void *arg;
247 u32 mask;
248 };
249
250 enum fifo_size {
251 DSI_FIFO_SIZE_0 = 0,
252 DSI_FIFO_SIZE_32 = 1,
253 DSI_FIFO_SIZE_64 = 2,
254 DSI_FIFO_SIZE_96 = 3,
255 DSI_FIFO_SIZE_128 = 4,
256 };
257
258 enum dsi_vc_source {
259 DSI_VC_SOURCE_L4 = 0,
260 DSI_VC_SOURCE_VP,
261 };
262
263 struct dsi_irq_stats {
264 unsigned long last_reset;
265 unsigned irq_count;
266 unsigned dsi_irqs[32];
267 unsigned vc_irqs[4][32];
268 unsigned cio_irqs[32];
269 };
270
271 struct dsi_isr_tables {
272 struct dsi_isr_data isr_table[DSI_MAX_NR_ISRS];
273 struct dsi_isr_data isr_table_vc[4][DSI_MAX_NR_ISRS];
274 struct dsi_isr_data isr_table_cio[DSI_MAX_NR_ISRS];
275 };
276
277 struct dsi_clk_calc_ctx {
278 struct platform_device *dsidev;
279 struct dss_pll *pll;
280
281 /* inputs */
282
283 const struct omap_dss_dsi_config *config;
284
285 unsigned long req_pck_min, req_pck_nom, req_pck_max;
286
287 /* outputs */
288
289 struct dss_pll_clock_info dsi_cinfo;
290 struct dispc_clock_info dispc_cinfo;
291
292 struct omap_video_timings dispc_vm;
293 struct omap_dss_dsi_videomode_timings dsi_vm;
294 };
295
296 struct dsi_lp_clock_info {
297 unsigned long lp_clk;
298 u16 lp_clk_div;
299 };
300
301 struct dsi_data {
302 struct platform_device *pdev;
303 void __iomem *proto_base;
304 void __iomem *phy_base;
305 void __iomem *pll_base;
306
307 int module_id;
308
309 int irq;
310
311 bool is_enabled;
312
313 struct clk *dss_clk;
314
315 struct dispc_clock_info user_dispc_cinfo;
316 struct dss_pll_clock_info user_dsi_cinfo;
317
318 struct dsi_lp_clock_info user_lp_cinfo;
319 struct dsi_lp_clock_info current_lp_cinfo;
320
321 struct dss_pll pll;
322
323 bool vdds_dsi_enabled;
324 struct regulator *vdds_dsi_reg;
325
326 struct {
327 enum dsi_vc_source source;
328 struct omap_dss_device *dssdev;
329 enum fifo_size tx_fifo_size;
330 enum fifo_size rx_fifo_size;
331 int vc_id;
332 } vc[4];
333
334 struct mutex lock;
335 struct semaphore bus_lock;
336
337 spinlock_t irq_lock;
338 struct dsi_isr_tables isr_tables;
339 /* space for a copy used by the interrupt handler */
340 struct dsi_isr_tables isr_tables_copy;
341
342 int update_channel;
343 #ifdef DSI_PERF_MEASURE
344 unsigned update_bytes;
345 #endif
346
347 bool te_enabled;
348 bool ulps_enabled;
349
350 void (*framedone_callback)(int, void *);
351 void *framedone_data;
352
353 struct delayed_work framedone_timeout_work;
354
355 #ifdef DSI_CATCH_MISSING_TE
356 struct timer_list te_timer;
357 #endif
358
359 unsigned long cache_req_pck;
360 unsigned long cache_clk_freq;
361 struct dss_pll_clock_info cache_cinfo;
362
363 u32 errors;
364 spinlock_t errors_lock;
365 #ifdef DSI_PERF_MEASURE
366 ktime_t perf_setup_time;
367 ktime_t perf_start_time;
368 #endif
369 int debug_read;
370 int debug_write;
371
372 #ifdef CONFIG_FB_OMAP2_DSS_COLLECT_IRQ_STATS
373 spinlock_t irq_stats_lock;
374 struct dsi_irq_stats irq_stats;
375 #endif
376
377 unsigned num_lanes_supported;
378 unsigned line_buffer_size;
379
380 struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
381 unsigned num_lanes_used;
382
383 unsigned scp_clk_refcount;
384
385 struct dss_lcd_mgr_config mgr_config;
386 struct omap_video_timings timings;
387 enum omap_dss_dsi_pixel_format pix_fmt;
388 enum omap_dss_dsi_mode mode;
389 struct omap_dss_dsi_videomode_timings vm_timings;
390
391 struct omap_dss_device output;
392 };
393
394 struct dsi_packet_sent_handler_data {
395 struct platform_device *dsidev;
396 struct completion *completion;
397 };
398
399 struct dsi_module_id_data {
400 u32 address;
401 int id;
402 };
403
404 static const struct of_device_id dsi_of_match[];
405
406 #ifdef DSI_PERF_MEASURE
407 static bool dsi_perf;
408 module_param(dsi_perf, bool, 0644);
409 #endif
410
411 static inline struct dsi_data *dsi_get_dsidrv_data(struct platform_device *dsidev)
412 {
413 return dev_get_drvdata(&dsidev->dev);
414 }
415
416 static inline struct platform_device *dsi_get_dsidev_from_dssdev(struct omap_dss_device *dssdev)
417 {
418 return to_platform_device(dssdev->dev);
419 }
420
421 static struct platform_device *dsi_get_dsidev_from_id(int module)
422 {
423 struct omap_dss_device *out;
424 enum omap_dss_output_id id;
425
426 switch (module) {
427 case 0:
428 id = OMAP_DSS_OUTPUT_DSI1;
429 break;
430 case 1:
431 id = OMAP_DSS_OUTPUT_DSI2;
432 break;
433 default:
434 return NULL;
435 }
436
437 out = omap_dss_get_output(id);
438
439 return out ? to_platform_device(out->dev) : NULL;
440 }
441
442 static inline void dsi_write_reg(struct platform_device *dsidev,
443 const struct dsi_reg idx, u32 val)
444 {
445 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
446 void __iomem *base;
447
448 switch(idx.module) {
449 case DSI_PROTO: base = dsi->proto_base; break;
450 case DSI_PHY: base = dsi->phy_base; break;
451 case DSI_PLL: base = dsi->pll_base; break;
452 default: return;
453 }
454
455 __raw_writel(val, base + idx.idx);
456 }
457
458 static inline u32 dsi_read_reg(struct platform_device *dsidev,
459 const struct dsi_reg idx)
460 {
461 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
462 void __iomem *base;
463
464 switch(idx.module) {
465 case DSI_PROTO: base = dsi->proto_base; break;
466 case DSI_PHY: base = dsi->phy_base; break;
467 case DSI_PLL: base = dsi->pll_base; break;
468 default: return 0;
469 }
470
471 return __raw_readl(base + idx.idx);
472 }
473
474 static void dsi_bus_lock(struct omap_dss_device *dssdev)
475 {
476 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
477 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
478
479 down(&dsi->bus_lock);
480 }
481
482 static void dsi_bus_unlock(struct omap_dss_device *dssdev)
483 {
484 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
485 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
486
487 up(&dsi->bus_lock);
488 }
489
490 static bool dsi_bus_is_locked(struct platform_device *dsidev)
491 {
492 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
493
494 return dsi->bus_lock.count == 0;
495 }
496
497 static void dsi_completion_handler(void *data, u32 mask)
498 {
499 complete((struct completion *)data);
500 }
501
502 static inline int wait_for_bit_change(struct platform_device *dsidev,
503 const struct dsi_reg idx, int bitnum, int value)
504 {
505 unsigned long timeout;
506 ktime_t wait;
507 int t;
508
509 /* first busyloop to see if the bit changes right away */
510 t = 100;
511 while (t-- > 0) {
512 if (REG_GET(dsidev, idx, bitnum, bitnum) == value)
513 return value;
514 }
515
516 /* then loop for 500ms, sleeping for 1ms in between */
517 timeout = jiffies + msecs_to_jiffies(500);
518 while (time_before(jiffies, timeout)) {
519 if (REG_GET(dsidev, idx, bitnum, bitnum) == value)
520 return value;
521
522 wait = ns_to_ktime(1000 * 1000);
523 set_current_state(TASK_UNINTERRUPTIBLE);
524 schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
525 }
526
527 return !value;
528 }
529
530 u8 dsi_get_pixel_size(enum omap_dss_dsi_pixel_format fmt)
531 {
532 switch (fmt) {
533 case OMAP_DSS_DSI_FMT_RGB888:
534 case OMAP_DSS_DSI_FMT_RGB666:
535 return 24;
536 case OMAP_DSS_DSI_FMT_RGB666_PACKED:
537 return 18;
538 case OMAP_DSS_DSI_FMT_RGB565:
539 return 16;
540 default:
541 BUG();
542 return 0;
543 }
544 }
545
546 #ifdef DSI_PERF_MEASURE
547 static void dsi_perf_mark_setup(struct platform_device *dsidev)
548 {
549 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
550 dsi->perf_setup_time = ktime_get();
551 }
552
553 static void dsi_perf_mark_start(struct platform_device *dsidev)
554 {
555 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
556 dsi->perf_start_time = ktime_get();
557 }
558
559 static void dsi_perf_show(struct platform_device *dsidev, const char *name)
560 {
561 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
562 ktime_t t, setup_time, trans_time;
563 u32 total_bytes;
564 u32 setup_us, trans_us, total_us;
565
566 if (!dsi_perf)
567 return;
568
569 t = ktime_get();
570
571 setup_time = ktime_sub(dsi->perf_start_time, dsi->perf_setup_time);
572 setup_us = (u32)ktime_to_us(setup_time);
573 if (setup_us == 0)
574 setup_us = 1;
575
576 trans_time = ktime_sub(t, dsi->perf_start_time);
577 trans_us = (u32)ktime_to_us(trans_time);
578 if (trans_us == 0)
579 trans_us = 1;
580
581 total_us = setup_us + trans_us;
582
583 total_bytes = dsi->update_bytes;
584
585 printk(KERN_INFO "DSI(%s): %u us + %u us = %u us (%uHz), "
586 "%u bytes, %u kbytes/sec\n",
587 name,
588 setup_us,
589 trans_us,
590 total_us,
591 1000*1000 / total_us,
592 total_bytes,
593 total_bytes * 1000 / total_us);
594 }
595 #else
596 static inline void dsi_perf_mark_setup(struct platform_device *dsidev)
597 {
598 }
599
600 static inline void dsi_perf_mark_start(struct platform_device *dsidev)
601 {
602 }
603
604 static inline void dsi_perf_show(struct platform_device *dsidev,
605 const char *name)
606 {
607 }
608 #endif
609
610 static int verbose_irq;
611
612 static void print_irq_status(u32 status)
613 {
614 if (status == 0)
615 return;
616
617 if (!verbose_irq && (status & ~DSI_IRQ_CHANNEL_MASK) == 0)
618 return;
619
620 #define PIS(x) (status & DSI_IRQ_##x) ? (#x " ") : ""
621
622 pr_debug("DSI IRQ: 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
623 status,
624 verbose_irq ? PIS(VC0) : "",
625 verbose_irq ? PIS(VC1) : "",
626 verbose_irq ? PIS(VC2) : "",
627 verbose_irq ? PIS(VC3) : "",
628 PIS(WAKEUP),
629 PIS(RESYNC),
630 PIS(PLL_LOCK),
631 PIS(PLL_UNLOCK),
632 PIS(PLL_RECALL),
633 PIS(COMPLEXIO_ERR),
634 PIS(HS_TX_TIMEOUT),
635 PIS(LP_RX_TIMEOUT),
636 PIS(TE_TRIGGER),
637 PIS(ACK_TRIGGER),
638 PIS(SYNC_LOST),
639 PIS(LDO_POWER_GOOD),
640 PIS(TA_TIMEOUT));
641 #undef PIS
642 }
643
644 static void print_irq_status_vc(int channel, u32 status)
645 {
646 if (status == 0)
647 return;
648
649 if (!verbose_irq && (status & ~DSI_VC_IRQ_PACKET_SENT) == 0)
650 return;
651
652 #define PIS(x) (status & DSI_VC_IRQ_##x) ? (#x " ") : ""
653
654 pr_debug("DSI VC(%d) IRQ 0x%x: %s%s%s%s%s%s%s%s%s\n",
655 channel,
656 status,
657 PIS(CS),
658 PIS(ECC_CORR),
659 PIS(ECC_NO_CORR),
660 verbose_irq ? PIS(PACKET_SENT) : "",
661 PIS(BTA),
662 PIS(FIFO_TX_OVF),
663 PIS(FIFO_RX_OVF),
664 PIS(FIFO_TX_UDF),
665 PIS(PP_BUSY_CHANGE));
666 #undef PIS
667 }
668
669 static void print_irq_status_cio(u32 status)
670 {
671 if (status == 0)
672 return;
673
674 #define PIS(x) (status & DSI_CIO_IRQ_##x) ? (#x " ") : ""
675
676 pr_debug("DSI CIO IRQ 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
677 status,
678 PIS(ERRSYNCESC1),
679 PIS(ERRSYNCESC2),
680 PIS(ERRSYNCESC3),
681 PIS(ERRESC1),
682 PIS(ERRESC2),
683 PIS(ERRESC3),
684 PIS(ERRCONTROL1),
685 PIS(ERRCONTROL2),
686 PIS(ERRCONTROL3),
687 PIS(STATEULPS1),
688 PIS(STATEULPS2),
689 PIS(STATEULPS3),
690 PIS(ERRCONTENTIONLP0_1),
691 PIS(ERRCONTENTIONLP1_1),
692 PIS(ERRCONTENTIONLP0_2),
693 PIS(ERRCONTENTIONLP1_2),
694 PIS(ERRCONTENTIONLP0_3),
695 PIS(ERRCONTENTIONLP1_3),
696 PIS(ULPSACTIVENOT_ALL0),
697 PIS(ULPSACTIVENOT_ALL1));
698 #undef PIS
699 }
700
701 #ifdef CONFIG_FB_OMAP2_DSS_COLLECT_IRQ_STATS
702 static void dsi_collect_irq_stats(struct platform_device *dsidev, u32 irqstatus,
703 u32 *vcstatus, u32 ciostatus)
704 {
705 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
706 int i;
707
708 spin_lock(&dsi->irq_stats_lock);
709
710 dsi->irq_stats.irq_count++;
711 dss_collect_irq_stats(irqstatus, dsi->irq_stats.dsi_irqs);
712
713 for (i = 0; i < 4; ++i)
714 dss_collect_irq_stats(vcstatus[i], dsi->irq_stats.vc_irqs[i]);
715
716 dss_collect_irq_stats(ciostatus, dsi->irq_stats.cio_irqs);
717
718 spin_unlock(&dsi->irq_stats_lock);
719 }
720 #else
721 #define dsi_collect_irq_stats(dsidev, irqstatus, vcstatus, ciostatus)
722 #endif
723
724 static int debug_irq;
725
726 static void dsi_handle_irq_errors(struct platform_device *dsidev, u32 irqstatus,
727 u32 *vcstatus, u32 ciostatus)
728 {
729 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
730 int i;
731
732 if (irqstatus & DSI_IRQ_ERROR_MASK) {
733 DSSERR("DSI error, irqstatus %x\n", irqstatus);
734 print_irq_status(irqstatus);
735 spin_lock(&dsi->errors_lock);
736 dsi->errors |= irqstatus & DSI_IRQ_ERROR_MASK;
737 spin_unlock(&dsi->errors_lock);
738 } else if (debug_irq) {
739 print_irq_status(irqstatus);
740 }
741
742 for (i = 0; i < 4; ++i) {
743 if (vcstatus[i] & DSI_VC_IRQ_ERROR_MASK) {
744 DSSERR("DSI VC(%d) error, vc irqstatus %x\n",
745 i, vcstatus[i]);
746 print_irq_status_vc(i, vcstatus[i]);
747 } else if (debug_irq) {
748 print_irq_status_vc(i, vcstatus[i]);
749 }
750 }
751
752 if (ciostatus & DSI_CIO_IRQ_ERROR_MASK) {
753 DSSERR("DSI CIO error, cio irqstatus %x\n", ciostatus);
754 print_irq_status_cio(ciostatus);
755 } else if (debug_irq) {
756 print_irq_status_cio(ciostatus);
757 }
758 }
759
760 static void dsi_call_isrs(struct dsi_isr_data *isr_array,
761 unsigned isr_array_size, u32 irqstatus)
762 {
763 struct dsi_isr_data *isr_data;
764 int i;
765
766 for (i = 0; i < isr_array_size; i++) {
767 isr_data = &isr_array[i];
768 if (isr_data->isr && isr_data->mask & irqstatus)
769 isr_data->isr(isr_data->arg, irqstatus);
770 }
771 }
772
773 static void dsi_handle_isrs(struct dsi_isr_tables *isr_tables,
774 u32 irqstatus, u32 *vcstatus, u32 ciostatus)
775 {
776 int i;
777
778 dsi_call_isrs(isr_tables->isr_table,
779 ARRAY_SIZE(isr_tables->isr_table),
780 irqstatus);
781
782 for (i = 0; i < 4; ++i) {
783 if (vcstatus[i] == 0)
784 continue;
785 dsi_call_isrs(isr_tables->isr_table_vc[i],
786 ARRAY_SIZE(isr_tables->isr_table_vc[i]),
787 vcstatus[i]);
788 }
789
790 if (ciostatus != 0)
791 dsi_call_isrs(isr_tables->isr_table_cio,
792 ARRAY_SIZE(isr_tables->isr_table_cio),
793 ciostatus);
794 }
795
796 static irqreturn_t omap_dsi_irq_handler(int irq, void *arg)
797 {
798 struct platform_device *dsidev;
799 struct dsi_data *dsi;
800 u32 irqstatus, vcstatus[4], ciostatus;
801 int i;
802
803 dsidev = (struct platform_device *) arg;
804 dsi = dsi_get_dsidrv_data(dsidev);
805
806 if (!dsi->is_enabled)
807 return IRQ_NONE;
808
809 spin_lock(&dsi->irq_lock);
810
811 irqstatus = dsi_read_reg(dsidev, DSI_IRQSTATUS);
812
813 /* IRQ is not for us */
814 if (!irqstatus) {
815 spin_unlock(&dsi->irq_lock);
816 return IRQ_NONE;
817 }
818
819 dsi_write_reg(dsidev, DSI_IRQSTATUS, irqstatus & ~DSI_IRQ_CHANNEL_MASK);
820 /* flush posted write */
821 dsi_read_reg(dsidev, DSI_IRQSTATUS);
822
823 for (i = 0; i < 4; ++i) {
824 if ((irqstatus & (1 << i)) == 0) {
825 vcstatus[i] = 0;
826 continue;
827 }
828
829 vcstatus[i] = dsi_read_reg(dsidev, DSI_VC_IRQSTATUS(i));
830
831 dsi_write_reg(dsidev, DSI_VC_IRQSTATUS(i), vcstatus[i]);
832 /* flush posted write */
833 dsi_read_reg(dsidev, DSI_VC_IRQSTATUS(i));
834 }
835
836 if (irqstatus & DSI_IRQ_COMPLEXIO_ERR) {
837 ciostatus = dsi_read_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS);
838
839 dsi_write_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS, ciostatus);
840 /* flush posted write */
841 dsi_read_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS);
842 } else {
843 ciostatus = 0;
844 }
845
846 #ifdef DSI_CATCH_MISSING_TE
847 if (irqstatus & DSI_IRQ_TE_TRIGGER)
848 del_timer(&dsi->te_timer);
849 #endif
850
851 /* make a copy and unlock, so that isrs can unregister
852 * themselves */
853 memcpy(&dsi->isr_tables_copy, &dsi->isr_tables,
854 sizeof(dsi->isr_tables));
855
856 spin_unlock(&dsi->irq_lock);
857
858 dsi_handle_isrs(&dsi->isr_tables_copy, irqstatus, vcstatus, ciostatus);
859
860 dsi_handle_irq_errors(dsidev, irqstatus, vcstatus, ciostatus);
861
862 dsi_collect_irq_stats(dsidev, irqstatus, vcstatus, ciostatus);
863
864 return IRQ_HANDLED;
865 }
866
867 /* dsi->irq_lock has to be locked by the caller */
868 static void _omap_dsi_configure_irqs(struct platform_device *dsidev,
869 struct dsi_isr_data *isr_array,
870 unsigned isr_array_size, u32 default_mask,
871 const struct dsi_reg enable_reg,
872 const struct dsi_reg status_reg)
873 {
874 struct dsi_isr_data *isr_data;
875 u32 mask;
876 u32 old_mask;
877 int i;
878
879 mask = default_mask;
880
881 for (i = 0; i < isr_array_size; i++) {
882 isr_data = &isr_array[i];
883
884 if (isr_data->isr == NULL)
885 continue;
886
887 mask |= isr_data->mask;
888 }
889
890 old_mask = dsi_read_reg(dsidev, enable_reg);
891 /* clear the irqstatus for newly enabled irqs */
892 dsi_write_reg(dsidev, status_reg, (mask ^ old_mask) & mask);
893 dsi_write_reg(dsidev, enable_reg, mask);
894
895 /* flush posted writes */
896 dsi_read_reg(dsidev, enable_reg);
897 dsi_read_reg(dsidev, status_reg);
898 }
899
900 /* dsi->irq_lock has to be locked by the caller */
901 static void _omap_dsi_set_irqs(struct platform_device *dsidev)
902 {
903 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
904 u32 mask = DSI_IRQ_ERROR_MASK;
905 #ifdef DSI_CATCH_MISSING_TE
906 mask |= DSI_IRQ_TE_TRIGGER;
907 #endif
908 _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table,
909 ARRAY_SIZE(dsi->isr_tables.isr_table), mask,
910 DSI_IRQENABLE, DSI_IRQSTATUS);
911 }
912
913 /* dsi->irq_lock has to be locked by the caller */
914 static void _omap_dsi_set_irqs_vc(struct platform_device *dsidev, int vc)
915 {
916 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
917
918 _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table_vc[vc],
919 ARRAY_SIZE(dsi->isr_tables.isr_table_vc[vc]),
920 DSI_VC_IRQ_ERROR_MASK,
921 DSI_VC_IRQENABLE(vc), DSI_VC_IRQSTATUS(vc));
922 }
923
924 /* dsi->irq_lock has to be locked by the caller */
925 static void _omap_dsi_set_irqs_cio(struct platform_device *dsidev)
926 {
927 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
928
929 _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table_cio,
930 ARRAY_SIZE(dsi->isr_tables.isr_table_cio),
931 DSI_CIO_IRQ_ERROR_MASK,
932 DSI_COMPLEXIO_IRQ_ENABLE, DSI_COMPLEXIO_IRQ_STATUS);
933 }
934
935 static void _dsi_initialize_irq(struct platform_device *dsidev)
936 {
937 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
938 unsigned long flags;
939 int vc;
940
941 spin_lock_irqsave(&dsi->irq_lock, flags);
942
943 memset(&dsi->isr_tables, 0, sizeof(dsi->isr_tables));
944
945 _omap_dsi_set_irqs(dsidev);
946 for (vc = 0; vc < 4; ++vc)
947 _omap_dsi_set_irqs_vc(dsidev, vc);
948 _omap_dsi_set_irqs_cio(dsidev);
949
950 spin_unlock_irqrestore(&dsi->irq_lock, flags);
951 }
952
953 static int _dsi_register_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
954 struct dsi_isr_data *isr_array, unsigned isr_array_size)
955 {
956 struct dsi_isr_data *isr_data;
957 int free_idx;
958 int i;
959
960 BUG_ON(isr == NULL);
961
962 /* check for duplicate entry and find a free slot */
963 free_idx = -1;
964 for (i = 0; i < isr_array_size; i++) {
965 isr_data = &isr_array[i];
966
967 if (isr_data->isr == isr && isr_data->arg == arg &&
968 isr_data->mask == mask) {
969 return -EINVAL;
970 }
971
972 if (isr_data->isr == NULL && free_idx == -1)
973 free_idx = i;
974 }
975
976 if (free_idx == -1)
977 return -EBUSY;
978
979 isr_data = &isr_array[free_idx];
980 isr_data->isr = isr;
981 isr_data->arg = arg;
982 isr_data->mask = mask;
983
984 return 0;
985 }
986
987 static int _dsi_unregister_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
988 struct dsi_isr_data *isr_array, unsigned isr_array_size)
989 {
990 struct dsi_isr_data *isr_data;
991 int i;
992
993 for (i = 0; i < isr_array_size; i++) {
994 isr_data = &isr_array[i];
995 if (isr_data->isr != isr || isr_data->arg != arg ||
996 isr_data->mask != mask)
997 continue;
998
999 isr_data->isr = NULL;
1000 isr_data->arg = NULL;
1001 isr_data->mask = 0;
1002
1003 return 0;
1004 }
1005
1006 return -EINVAL;
1007 }
1008
1009 static int dsi_register_isr(struct platform_device *dsidev, omap_dsi_isr_t isr,
1010 void *arg, u32 mask)
1011 {
1012 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1013 unsigned long flags;
1014 int r;
1015
1016 spin_lock_irqsave(&dsi->irq_lock, flags);
1017
1018 r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table,
1019 ARRAY_SIZE(dsi->isr_tables.isr_table));
1020
1021 if (r == 0)
1022 _omap_dsi_set_irqs(dsidev);
1023
1024 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1025
1026 return r;
1027 }
1028
1029 static int dsi_unregister_isr(struct platform_device *dsidev,
1030 omap_dsi_isr_t isr, void *arg, u32 mask)
1031 {
1032 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1033 unsigned long flags;
1034 int r;
1035
1036 spin_lock_irqsave(&dsi->irq_lock, flags);
1037
1038 r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table,
1039 ARRAY_SIZE(dsi->isr_tables.isr_table));
1040
1041 if (r == 0)
1042 _omap_dsi_set_irqs(dsidev);
1043
1044 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1045
1046 return r;
1047 }
1048
1049 static int dsi_register_isr_vc(struct platform_device *dsidev, int channel,
1050 omap_dsi_isr_t isr, void *arg, u32 mask)
1051 {
1052 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1053 unsigned long flags;
1054 int r;
1055
1056 spin_lock_irqsave(&dsi->irq_lock, flags);
1057
1058 r = _dsi_register_isr(isr, arg, mask,
1059 dsi->isr_tables.isr_table_vc[channel],
1060 ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
1061
1062 if (r == 0)
1063 _omap_dsi_set_irqs_vc(dsidev, channel);
1064
1065 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1066
1067 return r;
1068 }
1069
1070 static int dsi_unregister_isr_vc(struct platform_device *dsidev, int channel,
1071 omap_dsi_isr_t isr, void *arg, u32 mask)
1072 {
1073 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1074 unsigned long flags;
1075 int r;
1076
1077 spin_lock_irqsave(&dsi->irq_lock, flags);
1078
1079 r = _dsi_unregister_isr(isr, arg, mask,
1080 dsi->isr_tables.isr_table_vc[channel],
1081 ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
1082
1083 if (r == 0)
1084 _omap_dsi_set_irqs_vc(dsidev, channel);
1085
1086 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1087
1088 return r;
1089 }
1090
1091 static int dsi_register_isr_cio(struct platform_device *dsidev,
1092 omap_dsi_isr_t isr, void *arg, u32 mask)
1093 {
1094 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1095 unsigned long flags;
1096 int r;
1097
1098 spin_lock_irqsave(&dsi->irq_lock, flags);
1099
1100 r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
1101 ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
1102
1103 if (r == 0)
1104 _omap_dsi_set_irqs_cio(dsidev);
1105
1106 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1107
1108 return r;
1109 }
1110
1111 static int dsi_unregister_isr_cio(struct platform_device *dsidev,
1112 omap_dsi_isr_t isr, void *arg, u32 mask)
1113 {
1114 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1115 unsigned long flags;
1116 int r;
1117
1118 spin_lock_irqsave(&dsi->irq_lock, flags);
1119
1120 r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
1121 ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
1122
1123 if (r == 0)
1124 _omap_dsi_set_irqs_cio(dsidev);
1125
1126 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1127
1128 return r;
1129 }
1130
1131 static u32 dsi_get_errors(struct platform_device *dsidev)
1132 {
1133 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1134 unsigned long flags;
1135 u32 e;
1136 spin_lock_irqsave(&dsi->errors_lock, flags);
1137 e = dsi->errors;
1138 dsi->errors = 0;
1139 spin_unlock_irqrestore(&dsi->errors_lock, flags);
1140 return e;
1141 }
1142
1143 static int dsi_runtime_get(struct platform_device *dsidev)
1144 {
1145 int r;
1146 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1147
1148 DSSDBG("dsi_runtime_get\n");
1149
1150 r = pm_runtime_get_sync(&dsi->pdev->dev);
1151 WARN_ON(r < 0);
1152 return r < 0 ? r : 0;
1153 }
1154
1155 static void dsi_runtime_put(struct platform_device *dsidev)
1156 {
1157 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1158 int r;
1159
1160 DSSDBG("dsi_runtime_put\n");
1161
1162 r = pm_runtime_put_sync(&dsi->pdev->dev);
1163 WARN_ON(r < 0 && r != -ENOSYS);
1164 }
1165
1166 static int dsi_regulator_init(struct platform_device *dsidev)
1167 {
1168 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1169 struct regulator *vdds_dsi;
1170 int r;
1171
1172 if (dsi->vdds_dsi_reg != NULL)
1173 return 0;
1174
1175 vdds_dsi = devm_regulator_get(&dsi->pdev->dev, "vdd");
1176
1177 if (IS_ERR(vdds_dsi)) {
1178 if (PTR_ERR(vdds_dsi) != -EPROBE_DEFER)
1179 DSSERR("can't get DSI VDD regulator\n");
1180 return PTR_ERR(vdds_dsi);
1181 }
1182
1183 r = regulator_set_voltage(vdds_dsi, 1800000, 1800000);
1184 if (r) {
1185 devm_regulator_put(vdds_dsi);
1186 DSSERR("can't set the DSI regulator voltage\n");
1187 return r;
1188 }
1189
1190 dsi->vdds_dsi_reg = vdds_dsi;
1191
1192 return 0;
1193 }
1194
1195 static void _dsi_print_reset_status(struct platform_device *dsidev)
1196 {
1197 u32 l;
1198 int b0, b1, b2;
1199
1200 /* A dummy read using the SCP interface to any DSIPHY register is
1201 * required after DSIPHY reset to complete the reset of the DSI complex
1202 * I/O. */
1203 l = dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
1204
1205 if (dss_has_feature(FEAT_DSI_REVERSE_TXCLKESC)) {
1206 b0 = 28;
1207 b1 = 27;
1208 b2 = 26;
1209 } else {
1210 b0 = 24;
1211 b1 = 25;
1212 b2 = 26;
1213 }
1214
1215 #define DSI_FLD_GET(fld, start, end)\
1216 FLD_GET(dsi_read_reg(dsidev, DSI_##fld), start, end)
1217
1218 pr_debug("DSI resets: PLL (%d) CIO (%d) PHY (%x%x%x, %d, %d, %d)\n",
1219 DSI_FLD_GET(PLL_STATUS, 0, 0),
1220 DSI_FLD_GET(COMPLEXIO_CFG1, 29, 29),
1221 DSI_FLD_GET(DSIPHY_CFG5, b0, b0),
1222 DSI_FLD_GET(DSIPHY_CFG5, b1, b1),
1223 DSI_FLD_GET(DSIPHY_CFG5, b2, b2),
1224 DSI_FLD_GET(DSIPHY_CFG5, 29, 29),
1225 DSI_FLD_GET(DSIPHY_CFG5, 30, 30),
1226 DSI_FLD_GET(DSIPHY_CFG5, 31, 31));
1227
1228 #undef DSI_FLD_GET
1229 }
1230
1231 static inline int dsi_if_enable(struct platform_device *dsidev, bool enable)
1232 {
1233 DSSDBG("dsi_if_enable(%d)\n", enable);
1234
1235 enable = enable ? 1 : 0;
1236 REG_FLD_MOD(dsidev, DSI_CTRL, enable, 0, 0); /* IF_EN */
1237
1238 if (wait_for_bit_change(dsidev, DSI_CTRL, 0, enable) != enable) {
1239 DSSERR("Failed to set dsi_if_enable to %d\n", enable);
1240 return -EIO;
1241 }
1242
1243 return 0;
1244 }
1245
1246 static unsigned long dsi_get_pll_hsdiv_dispc_rate(struct platform_device *dsidev)
1247 {
1248 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1249
1250 return dsi->pll.cinfo.clkout[HSDIV_DISPC];
1251 }
1252
1253 static unsigned long dsi_get_pll_hsdiv_dsi_rate(struct platform_device *dsidev)
1254 {
1255 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1256
1257 return dsi->pll.cinfo.clkout[HSDIV_DSI];
1258 }
1259
1260 static unsigned long dsi_get_txbyteclkhs(struct platform_device *dsidev)
1261 {
1262 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1263
1264 return dsi->pll.cinfo.clkdco / 16;
1265 }
1266
1267 static unsigned long dsi_fclk_rate(struct platform_device *dsidev)
1268 {
1269 unsigned long r;
1270 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1271
1272 if (dss_get_dsi_clk_source(dsi->module_id) == OMAP_DSS_CLK_SRC_FCK) {
1273 /* DSI FCLK source is DSS_CLK_FCK */
1274 r = clk_get_rate(dsi->dss_clk);
1275 } else {
1276 /* DSI FCLK source is dsi_pll_hsdiv_dsi_clk */
1277 r = dsi_get_pll_hsdiv_dsi_rate(dsidev);
1278 }
1279
1280 return r;
1281 }
1282
1283 static int dsi_lp_clock_calc(unsigned long dsi_fclk,
1284 unsigned long lp_clk_min, unsigned long lp_clk_max,
1285 struct dsi_lp_clock_info *lp_cinfo)
1286 {
1287 unsigned lp_clk_div;
1288 unsigned long lp_clk;
1289
1290 lp_clk_div = DIV_ROUND_UP(dsi_fclk, lp_clk_max * 2);
1291 lp_clk = dsi_fclk / 2 / lp_clk_div;
1292
1293 if (lp_clk < lp_clk_min || lp_clk > lp_clk_max)
1294 return -EINVAL;
1295
1296 lp_cinfo->lp_clk_div = lp_clk_div;
1297 lp_cinfo->lp_clk = lp_clk;
1298
1299 return 0;
1300 }
1301
1302 static int dsi_set_lp_clk_divisor(struct platform_device *dsidev)
1303 {
1304 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1305 unsigned long dsi_fclk;
1306 unsigned lp_clk_div;
1307 unsigned long lp_clk;
1308 unsigned lpdiv_max = dss_feat_get_param_max(FEAT_PARAM_DSIPLL_LPDIV);
1309
1310
1311 lp_clk_div = dsi->user_lp_cinfo.lp_clk_div;
1312
1313 if (lp_clk_div == 0 || lp_clk_div > lpdiv_max)
1314 return -EINVAL;
1315
1316 dsi_fclk = dsi_fclk_rate(dsidev);
1317
1318 lp_clk = dsi_fclk / 2 / lp_clk_div;
1319
1320 DSSDBG("LP_CLK_DIV %u, LP_CLK %lu\n", lp_clk_div, lp_clk);
1321 dsi->current_lp_cinfo.lp_clk = lp_clk;
1322 dsi->current_lp_cinfo.lp_clk_div = lp_clk_div;
1323
1324 /* LP_CLK_DIVISOR */
1325 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, lp_clk_div, 12, 0);
1326
1327 /* LP_RX_SYNCHRO_ENABLE */
1328 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, dsi_fclk > 30000000 ? 1 : 0, 21, 21);
1329
1330 return 0;
1331 }
1332
1333 static void dsi_enable_scp_clk(struct platform_device *dsidev)
1334 {
1335 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1336
1337 if (dsi->scp_clk_refcount++ == 0)
1338 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 1, 14, 14); /* CIO_CLK_ICG */
1339 }
1340
1341 static void dsi_disable_scp_clk(struct platform_device *dsidev)
1342 {
1343 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1344
1345 WARN_ON(dsi->scp_clk_refcount == 0);
1346 if (--dsi->scp_clk_refcount == 0)
1347 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 14, 14); /* CIO_CLK_ICG */
1348 }
1349
1350 enum dsi_pll_power_state {
1351 DSI_PLL_POWER_OFF = 0x0,
1352 DSI_PLL_POWER_ON_HSCLK = 0x1,
1353 DSI_PLL_POWER_ON_ALL = 0x2,
1354 DSI_PLL_POWER_ON_DIV = 0x3,
1355 };
1356
1357 static int dsi_pll_power(struct platform_device *dsidev,
1358 enum dsi_pll_power_state state)
1359 {
1360 int t = 0;
1361
1362 /* DSI-PLL power command 0x3 is not working */
1363 if (dss_has_feature(FEAT_DSI_PLL_PWR_BUG) &&
1364 state == DSI_PLL_POWER_ON_DIV)
1365 state = DSI_PLL_POWER_ON_ALL;
1366
1367 /* PLL_PWR_CMD */
1368 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, state, 31, 30);
1369
1370 /* PLL_PWR_STATUS */
1371 while (FLD_GET(dsi_read_reg(dsidev, DSI_CLK_CTRL), 29, 28) != state) {
1372 if (++t > 1000) {
1373 DSSERR("Failed to set DSI PLL power mode to %d\n",
1374 state);
1375 return -ENODEV;
1376 }
1377 udelay(1);
1378 }
1379
1380 return 0;
1381 }
1382
1383
1384 static void dsi_pll_calc_dsi_fck(struct dss_pll_clock_info *cinfo)
1385 {
1386 unsigned long max_dsi_fck;
1387
1388 max_dsi_fck = dss_feat_get_param_max(FEAT_PARAM_DSI_FCK);
1389
1390 cinfo->mX[HSDIV_DSI] = DIV_ROUND_UP(cinfo->clkdco, max_dsi_fck);
1391 cinfo->clkout[HSDIV_DSI] = cinfo->clkdco / cinfo->mX[HSDIV_DSI];
1392 }
1393
1394 static int dsi_pll_enable(struct dss_pll *pll)
1395 {
1396 struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
1397 struct platform_device *dsidev = dsi->pdev;
1398 int r = 0;
1399
1400 DSSDBG("PLL init\n");
1401
1402 r = dsi_regulator_init(dsidev);
1403 if (r)
1404 return r;
1405
1406 r = dsi_runtime_get(dsidev);
1407 if (r)
1408 return r;
1409
1410 /*
1411 * Note: SCP CLK is not required on OMAP3, but it is required on OMAP4.
1412 */
1413 dsi_enable_scp_clk(dsidev);
1414
1415 if (!dsi->vdds_dsi_enabled) {
1416 r = regulator_enable(dsi->vdds_dsi_reg);
1417 if (r)
1418 goto err0;
1419 dsi->vdds_dsi_enabled = true;
1420 }
1421
1422 /* XXX PLL does not come out of reset without this... */
1423 dispc_pck_free_enable(1);
1424
1425 if (wait_for_bit_change(dsidev, DSI_PLL_STATUS, 0, 1) != 1) {
1426 DSSERR("PLL not coming out of reset.\n");
1427 r = -ENODEV;
1428 dispc_pck_free_enable(0);
1429 goto err1;
1430 }
1431
1432 /* XXX ... but if left on, we get problems when planes do not
1433 * fill the whole display. No idea about this */
1434 dispc_pck_free_enable(0);
1435
1436 r = dsi_pll_power(dsidev, DSI_PLL_POWER_ON_ALL);
1437
1438 if (r)
1439 goto err1;
1440
1441 DSSDBG("PLL init done\n");
1442
1443 return 0;
1444 err1:
1445 if (dsi->vdds_dsi_enabled) {
1446 regulator_disable(dsi->vdds_dsi_reg);
1447 dsi->vdds_dsi_enabled = false;
1448 }
1449 err0:
1450 dsi_disable_scp_clk(dsidev);
1451 dsi_runtime_put(dsidev);
1452 return r;
1453 }
1454
1455 static void dsi_pll_uninit(struct platform_device *dsidev, bool disconnect_lanes)
1456 {
1457 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1458
1459 dsi_pll_power(dsidev, DSI_PLL_POWER_OFF);
1460 if (disconnect_lanes) {
1461 WARN_ON(!dsi->vdds_dsi_enabled);
1462 regulator_disable(dsi->vdds_dsi_reg);
1463 dsi->vdds_dsi_enabled = false;
1464 }
1465
1466 dsi_disable_scp_clk(dsidev);
1467 dsi_runtime_put(dsidev);
1468
1469 DSSDBG("PLL uninit done\n");
1470 }
1471
1472 static void dsi_pll_disable(struct dss_pll *pll)
1473 {
1474 struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
1475 struct platform_device *dsidev = dsi->pdev;
1476
1477 dsi_pll_uninit(dsidev, true);
1478 }
1479
1480 static void dsi_dump_dsidev_clocks(struct platform_device *dsidev,
1481 struct seq_file *s)
1482 {
1483 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1484 struct dss_pll_clock_info *cinfo = &dsi->pll.cinfo;
1485 enum omap_dss_clk_source dispc_clk_src, dsi_clk_src;
1486 int dsi_module = dsi->module_id;
1487 struct dss_pll *pll = &dsi->pll;
1488
1489 dispc_clk_src = dss_get_dispc_clk_source();
1490 dsi_clk_src = dss_get_dsi_clk_source(dsi_module);
1491
1492 if (dsi_runtime_get(dsidev))
1493 return;
1494
1495 seq_printf(s, "- DSI%d PLL -\n", dsi_module + 1);
1496
1497 seq_printf(s, "dsi pll clkin\t%lu\n", clk_get_rate(pll->clkin));
1498
1499 seq_printf(s, "Fint\t\t%-16lun %u\n", cinfo->fint, cinfo->n);
1500
1501 seq_printf(s, "CLKIN4DDR\t%-16lum %u\n",
1502 cinfo->clkdco, cinfo->m);
1503
1504 seq_printf(s, "DSI_PLL_HSDIV_DISPC (%s)\t%-16lum_dispc %u\t(%s)\n",
1505 dss_feat_get_clk_source_name(dsi_module == 0 ?
1506 OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC :
1507 OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC),
1508 cinfo->clkout[HSDIV_DISPC],
1509 cinfo->mX[HSDIV_DISPC],
1510 dispc_clk_src == OMAP_DSS_CLK_SRC_FCK ?
1511 "off" : "on");
1512
1513 seq_printf(s, "DSI_PLL_HSDIV_DSI (%s)\t%-16lum_dsi %u\t(%s)\n",
1514 dss_feat_get_clk_source_name(dsi_module == 0 ?
1515 OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DSI :
1516 OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DSI),
1517 cinfo->clkout[HSDIV_DSI],
1518 cinfo->mX[HSDIV_DSI],
1519 dsi_clk_src == OMAP_DSS_CLK_SRC_FCK ?
1520 "off" : "on");
1521
1522 seq_printf(s, "- DSI%d -\n", dsi_module + 1);
1523
1524 seq_printf(s, "dsi fclk source = %s (%s)\n",
1525 dss_get_generic_clk_source_name(dsi_clk_src),
1526 dss_feat_get_clk_source_name(dsi_clk_src));
1527
1528 seq_printf(s, "DSI_FCLK\t%lu\n", dsi_fclk_rate(dsidev));
1529
1530 seq_printf(s, "DDR_CLK\t\t%lu\n",
1531 cinfo->clkdco / 4);
1532
1533 seq_printf(s, "TxByteClkHS\t%lu\n", dsi_get_txbyteclkhs(dsidev));
1534
1535 seq_printf(s, "LP_CLK\t\t%lu\n", dsi->current_lp_cinfo.lp_clk);
1536
1537 dsi_runtime_put(dsidev);
1538 }
1539
1540 void dsi_dump_clocks(struct seq_file *s)
1541 {
1542 struct platform_device *dsidev;
1543 int i;
1544
1545 for (i = 0; i < MAX_NUM_DSI; i++) {
1546 dsidev = dsi_get_dsidev_from_id(i);
1547 if (dsidev)
1548 dsi_dump_dsidev_clocks(dsidev, s);
1549 }
1550 }
1551
1552 #ifdef CONFIG_FB_OMAP2_DSS_COLLECT_IRQ_STATS
1553 static void dsi_dump_dsidev_irqs(struct platform_device *dsidev,
1554 struct seq_file *s)
1555 {
1556 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1557 unsigned long flags;
1558 struct dsi_irq_stats stats;
1559
1560 spin_lock_irqsave(&dsi->irq_stats_lock, flags);
1561
1562 stats = dsi->irq_stats;
1563 memset(&dsi->irq_stats, 0, sizeof(dsi->irq_stats));
1564 dsi->irq_stats.last_reset = jiffies;
1565
1566 spin_unlock_irqrestore(&dsi->irq_stats_lock, flags);
1567
1568 seq_printf(s, "period %u ms\n",
1569 jiffies_to_msecs(jiffies - stats.last_reset));
1570
1571 seq_printf(s, "irqs %d\n", stats.irq_count);
1572 #define PIS(x) \
1573 seq_printf(s, "%-20s %10d\n", #x, stats.dsi_irqs[ffs(DSI_IRQ_##x)-1]);
1574
1575 seq_printf(s, "-- DSI%d interrupts --\n", dsi->module_id + 1);
1576 PIS(VC0);
1577 PIS(VC1);
1578 PIS(VC2);
1579 PIS(VC3);
1580 PIS(WAKEUP);
1581 PIS(RESYNC);
1582 PIS(PLL_LOCK);
1583 PIS(PLL_UNLOCK);
1584 PIS(PLL_RECALL);
1585 PIS(COMPLEXIO_ERR);
1586 PIS(HS_TX_TIMEOUT);
1587 PIS(LP_RX_TIMEOUT);
1588 PIS(TE_TRIGGER);
1589 PIS(ACK_TRIGGER);
1590 PIS(SYNC_LOST);
1591 PIS(LDO_POWER_GOOD);
1592 PIS(TA_TIMEOUT);
1593 #undef PIS
1594
1595 #define PIS(x) \
1596 seq_printf(s, "%-20s %10d %10d %10d %10d\n", #x, \
1597 stats.vc_irqs[0][ffs(DSI_VC_IRQ_##x)-1], \
1598 stats.vc_irqs[1][ffs(DSI_VC_IRQ_##x)-1], \
1599 stats.vc_irqs[2][ffs(DSI_VC_IRQ_##x)-1], \
1600 stats.vc_irqs[3][ffs(DSI_VC_IRQ_##x)-1]);
1601
1602 seq_printf(s, "-- VC interrupts --\n");
1603 PIS(CS);
1604 PIS(ECC_CORR);
1605 PIS(PACKET_SENT);
1606 PIS(FIFO_TX_OVF);
1607 PIS(FIFO_RX_OVF);
1608 PIS(BTA);
1609 PIS(ECC_NO_CORR);
1610 PIS(FIFO_TX_UDF);
1611 PIS(PP_BUSY_CHANGE);
1612 #undef PIS
1613
1614 #define PIS(x) \
1615 seq_printf(s, "%-20s %10d\n", #x, \
1616 stats.cio_irqs[ffs(DSI_CIO_IRQ_##x)-1]);
1617
1618 seq_printf(s, "-- CIO interrupts --\n");
1619 PIS(ERRSYNCESC1);
1620 PIS(ERRSYNCESC2);
1621 PIS(ERRSYNCESC3);
1622 PIS(ERRESC1);
1623 PIS(ERRESC2);
1624 PIS(ERRESC3);
1625 PIS(ERRCONTROL1);
1626 PIS(ERRCONTROL2);
1627 PIS(ERRCONTROL3);
1628 PIS(STATEULPS1);
1629 PIS(STATEULPS2);
1630 PIS(STATEULPS3);
1631 PIS(ERRCONTENTIONLP0_1);
1632 PIS(ERRCONTENTIONLP1_1);
1633 PIS(ERRCONTENTIONLP0_2);
1634 PIS(ERRCONTENTIONLP1_2);
1635 PIS(ERRCONTENTIONLP0_3);
1636 PIS(ERRCONTENTIONLP1_3);
1637 PIS(ULPSACTIVENOT_ALL0);
1638 PIS(ULPSACTIVENOT_ALL1);
1639 #undef PIS
1640 }
1641
1642 static void dsi1_dump_irqs(struct seq_file *s)
1643 {
1644 struct platform_device *dsidev = dsi_get_dsidev_from_id(0);
1645
1646 dsi_dump_dsidev_irqs(dsidev, s);
1647 }
1648
1649 static void dsi2_dump_irqs(struct seq_file *s)
1650 {
1651 struct platform_device *dsidev = dsi_get_dsidev_from_id(1);
1652
1653 dsi_dump_dsidev_irqs(dsidev, s);
1654 }
1655 #endif
1656
1657 static void dsi_dump_dsidev_regs(struct platform_device *dsidev,
1658 struct seq_file *s)
1659 {
1660 #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dsi_read_reg(dsidev, r))
1661
1662 if (dsi_runtime_get(dsidev))
1663 return;
1664 dsi_enable_scp_clk(dsidev);
1665
1666 DUMPREG(DSI_REVISION);
1667 DUMPREG(DSI_SYSCONFIG);
1668 DUMPREG(DSI_SYSSTATUS);
1669 DUMPREG(DSI_IRQSTATUS);
1670 DUMPREG(DSI_IRQENABLE);
1671 DUMPREG(DSI_CTRL);
1672 DUMPREG(DSI_COMPLEXIO_CFG1);
1673 DUMPREG(DSI_COMPLEXIO_IRQ_STATUS);
1674 DUMPREG(DSI_COMPLEXIO_IRQ_ENABLE);
1675 DUMPREG(DSI_CLK_CTRL);
1676 DUMPREG(DSI_TIMING1);
1677 DUMPREG(DSI_TIMING2);
1678 DUMPREG(DSI_VM_TIMING1);
1679 DUMPREG(DSI_VM_TIMING2);
1680 DUMPREG(DSI_VM_TIMING3);
1681 DUMPREG(DSI_CLK_TIMING);
1682 DUMPREG(DSI_TX_FIFO_VC_SIZE);
1683 DUMPREG(DSI_RX_FIFO_VC_SIZE);
1684 DUMPREG(DSI_COMPLEXIO_CFG2);
1685 DUMPREG(DSI_RX_FIFO_VC_FULLNESS);
1686 DUMPREG(DSI_VM_TIMING4);
1687 DUMPREG(DSI_TX_FIFO_VC_EMPTINESS);
1688 DUMPREG(DSI_VM_TIMING5);
1689 DUMPREG(DSI_VM_TIMING6);
1690 DUMPREG(DSI_VM_TIMING7);
1691 DUMPREG(DSI_STOPCLK_TIMING);
1692
1693 DUMPREG(DSI_VC_CTRL(0));
1694 DUMPREG(DSI_VC_TE(0));
1695 DUMPREG(DSI_VC_LONG_PACKET_HEADER(0));
1696 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(0));
1697 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(0));
1698 DUMPREG(DSI_VC_IRQSTATUS(0));
1699 DUMPREG(DSI_VC_IRQENABLE(0));
1700
1701 DUMPREG(DSI_VC_CTRL(1));
1702 DUMPREG(DSI_VC_TE(1));
1703 DUMPREG(DSI_VC_LONG_PACKET_HEADER(1));
1704 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(1));
1705 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(1));
1706 DUMPREG(DSI_VC_IRQSTATUS(1));
1707 DUMPREG(DSI_VC_IRQENABLE(1));
1708
1709 DUMPREG(DSI_VC_CTRL(2));
1710 DUMPREG(DSI_VC_TE(2));
1711 DUMPREG(DSI_VC_LONG_PACKET_HEADER(2));
1712 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(2));
1713 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(2));
1714 DUMPREG(DSI_VC_IRQSTATUS(2));
1715 DUMPREG(DSI_VC_IRQENABLE(2));
1716
1717 DUMPREG(DSI_VC_CTRL(3));
1718 DUMPREG(DSI_VC_TE(3));
1719 DUMPREG(DSI_VC_LONG_PACKET_HEADER(3));
1720 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(3));
1721 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(3));
1722 DUMPREG(DSI_VC_IRQSTATUS(3));
1723 DUMPREG(DSI_VC_IRQENABLE(3));
1724
1725 DUMPREG(DSI_DSIPHY_CFG0);
1726 DUMPREG(DSI_DSIPHY_CFG1);
1727 DUMPREG(DSI_DSIPHY_CFG2);
1728 DUMPREG(DSI_DSIPHY_CFG5);
1729
1730 DUMPREG(DSI_PLL_CONTROL);
1731 DUMPREG(DSI_PLL_STATUS);
1732 DUMPREG(DSI_PLL_GO);
1733 DUMPREG(DSI_PLL_CONFIGURATION1);
1734 DUMPREG(DSI_PLL_CONFIGURATION2);
1735
1736 dsi_disable_scp_clk(dsidev);
1737 dsi_runtime_put(dsidev);
1738 #undef DUMPREG
1739 }
1740
1741 static void dsi1_dump_regs(struct seq_file *s)
1742 {
1743 struct platform_device *dsidev = dsi_get_dsidev_from_id(0);
1744
1745 dsi_dump_dsidev_regs(dsidev, s);
1746 }
1747
1748 static void dsi2_dump_regs(struct seq_file *s)
1749 {
1750 struct platform_device *dsidev = dsi_get_dsidev_from_id(1);
1751
1752 dsi_dump_dsidev_regs(dsidev, s);
1753 }
1754
1755 enum dsi_cio_power_state {
1756 DSI_COMPLEXIO_POWER_OFF = 0x0,
1757 DSI_COMPLEXIO_POWER_ON = 0x1,
1758 DSI_COMPLEXIO_POWER_ULPS = 0x2,
1759 };
1760
1761 static int dsi_cio_power(struct platform_device *dsidev,
1762 enum dsi_cio_power_state state)
1763 {
1764 int t = 0;
1765
1766 /* PWR_CMD */
1767 REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG1, state, 28, 27);
1768
1769 /* PWR_STATUS */
1770 while (FLD_GET(dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG1),
1771 26, 25) != state) {
1772 if (++t > 1000) {
1773 DSSERR("failed to set complexio power state to "
1774 "%d\n", state);
1775 return -ENODEV;
1776 }
1777 udelay(1);
1778 }
1779
1780 return 0;
1781 }
1782
1783 static unsigned dsi_get_line_buf_size(struct platform_device *dsidev)
1784 {
1785 int val;
1786
1787 /* line buffer on OMAP3 is 1024 x 24bits */
1788 /* XXX: for some reason using full buffer size causes
1789 * considerable TX slowdown with update sizes that fill the
1790 * whole buffer */
1791 if (!dss_has_feature(FEAT_DSI_GNQ))
1792 return 1023 * 3;
1793
1794 val = REG_GET(dsidev, DSI_GNQ, 14, 12); /* VP1_LINE_BUFFER_SIZE */
1795
1796 switch (val) {
1797 case 1:
1798 return 512 * 3; /* 512x24 bits */
1799 case 2:
1800 return 682 * 3; /* 682x24 bits */
1801 case 3:
1802 return 853 * 3; /* 853x24 bits */
1803 case 4:
1804 return 1024 * 3; /* 1024x24 bits */
1805 case 5:
1806 return 1194 * 3; /* 1194x24 bits */
1807 case 6:
1808 return 1365 * 3; /* 1365x24 bits */
1809 case 7:
1810 return 1920 * 3; /* 1920x24 bits */
1811 default:
1812 BUG();
1813 return 0;
1814 }
1815 }
1816
1817 static int dsi_set_lane_config(struct platform_device *dsidev)
1818 {
1819 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1820 static const u8 offsets[] = { 0, 4, 8, 12, 16 };
1821 static const enum dsi_lane_function functions[] = {
1822 DSI_LANE_CLK,
1823 DSI_LANE_DATA1,
1824 DSI_LANE_DATA2,
1825 DSI_LANE_DATA3,
1826 DSI_LANE_DATA4,
1827 };
1828 u32 r;
1829 int i;
1830
1831 r = dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG1);
1832
1833 for (i = 0; i < dsi->num_lanes_used; ++i) {
1834 unsigned offset = offsets[i];
1835 unsigned polarity, lane_number;
1836 unsigned t;
1837
1838 for (t = 0; t < dsi->num_lanes_supported; ++t)
1839 if (dsi->lanes[t].function == functions[i])
1840 break;
1841
1842 if (t == dsi->num_lanes_supported)
1843 return -EINVAL;
1844
1845 lane_number = t;
1846 polarity = dsi->lanes[t].polarity;
1847
1848 r = FLD_MOD(r, lane_number + 1, offset + 2, offset);
1849 r = FLD_MOD(r, polarity, offset + 3, offset + 3);
1850 }
1851
1852 /* clear the unused lanes */
1853 for (; i < dsi->num_lanes_supported; ++i) {
1854 unsigned offset = offsets[i];
1855
1856 r = FLD_MOD(r, 0, offset + 2, offset);
1857 r = FLD_MOD(r, 0, offset + 3, offset + 3);
1858 }
1859
1860 dsi_write_reg(dsidev, DSI_COMPLEXIO_CFG1, r);
1861
1862 return 0;
1863 }
1864
1865 static inline unsigned ns2ddr(struct platform_device *dsidev, unsigned ns)
1866 {
1867 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1868
1869 /* convert time in ns to ddr ticks, rounding up */
1870 unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
1871 return (ns * (ddr_clk / 1000 / 1000) + 999) / 1000;
1872 }
1873
1874 static inline unsigned ddr2ns(struct platform_device *dsidev, unsigned ddr)
1875 {
1876 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1877
1878 unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
1879 return ddr * 1000 * 1000 / (ddr_clk / 1000);
1880 }
1881
1882 static void dsi_cio_timings(struct platform_device *dsidev)
1883 {
1884 u32 r;
1885 u32 ths_prepare, ths_prepare_ths_zero, ths_trail, ths_exit;
1886 u32 tlpx_half, tclk_trail, tclk_zero;
1887 u32 tclk_prepare;
1888
1889 /* calculate timings */
1890
1891 /* 1 * DDR_CLK = 2 * UI */
1892
1893 /* min 40ns + 4*UI max 85ns + 6*UI */
1894 ths_prepare = ns2ddr(dsidev, 70) + 2;
1895
1896 /* min 145ns + 10*UI */
1897 ths_prepare_ths_zero = ns2ddr(dsidev, 175) + 2;
1898
1899 /* min max(8*UI, 60ns+4*UI) */
1900 ths_trail = ns2ddr(dsidev, 60) + 5;
1901
1902 /* min 100ns */
1903 ths_exit = ns2ddr(dsidev, 145);
1904
1905 /* tlpx min 50n */
1906 tlpx_half = ns2ddr(dsidev, 25);
1907
1908 /* min 60ns */
1909 tclk_trail = ns2ddr(dsidev, 60) + 2;
1910
1911 /* min 38ns, max 95ns */
1912 tclk_prepare = ns2ddr(dsidev, 65);
1913
1914 /* min tclk-prepare + tclk-zero = 300ns */
1915 tclk_zero = ns2ddr(dsidev, 260);
1916
1917 DSSDBG("ths_prepare %u (%uns), ths_prepare_ths_zero %u (%uns)\n",
1918 ths_prepare, ddr2ns(dsidev, ths_prepare),
1919 ths_prepare_ths_zero, ddr2ns(dsidev, ths_prepare_ths_zero));
1920 DSSDBG("ths_trail %u (%uns), ths_exit %u (%uns)\n",
1921 ths_trail, ddr2ns(dsidev, ths_trail),
1922 ths_exit, ddr2ns(dsidev, ths_exit));
1923
1924 DSSDBG("tlpx_half %u (%uns), tclk_trail %u (%uns), "
1925 "tclk_zero %u (%uns)\n",
1926 tlpx_half, ddr2ns(dsidev, tlpx_half),
1927 tclk_trail, ddr2ns(dsidev, tclk_trail),
1928 tclk_zero, ddr2ns(dsidev, tclk_zero));
1929 DSSDBG("tclk_prepare %u (%uns)\n",
1930 tclk_prepare, ddr2ns(dsidev, tclk_prepare));
1931
1932 /* program timings */
1933
1934 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
1935 r = FLD_MOD(r, ths_prepare, 31, 24);
1936 r = FLD_MOD(r, ths_prepare_ths_zero, 23, 16);
1937 r = FLD_MOD(r, ths_trail, 15, 8);
1938 r = FLD_MOD(r, ths_exit, 7, 0);
1939 dsi_write_reg(dsidev, DSI_DSIPHY_CFG0, r);
1940
1941 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
1942 r = FLD_MOD(r, tlpx_half, 20, 16);
1943 r = FLD_MOD(r, tclk_trail, 15, 8);
1944 r = FLD_MOD(r, tclk_zero, 7, 0);
1945
1946 if (dss_has_feature(FEAT_DSI_PHY_DCC)) {
1947 r = FLD_MOD(r, 0, 21, 21); /* DCCEN = disable */
1948 r = FLD_MOD(r, 1, 22, 22); /* CLKINP_DIVBY2EN = enable */
1949 r = FLD_MOD(r, 1, 23, 23); /* CLKINP_SEL = enable */
1950 }
1951
1952 dsi_write_reg(dsidev, DSI_DSIPHY_CFG1, r);
1953
1954 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG2);
1955 r = FLD_MOD(r, tclk_prepare, 7, 0);
1956 dsi_write_reg(dsidev, DSI_DSIPHY_CFG2, r);
1957 }
1958
1959 /* lane masks have lane 0 at lsb. mask_p for positive lines, n for negative */
1960 static void dsi_cio_enable_lane_override(struct platform_device *dsidev,
1961 unsigned mask_p, unsigned mask_n)
1962 {
1963 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1964 int i;
1965 u32 l;
1966 u8 lptxscp_start = dsi->num_lanes_supported == 3 ? 22 : 26;
1967
1968 l = 0;
1969
1970 for (i = 0; i < dsi->num_lanes_supported; ++i) {
1971 unsigned p = dsi->lanes[i].polarity;
1972
1973 if (mask_p & (1 << i))
1974 l |= 1 << (i * 2 + (p ? 0 : 1));
1975
1976 if (mask_n & (1 << i))
1977 l |= 1 << (i * 2 + (p ? 1 : 0));
1978 }
1979
1980 /*
1981 * Bits in REGLPTXSCPDAT4TO0DXDY:
1982 * 17: DY0 18: DX0
1983 * 19: DY1 20: DX1
1984 * 21: DY2 22: DX2
1985 * 23: DY3 24: DX3
1986 * 25: DY4 26: DX4
1987 */
1988
1989 /* Set the lane override configuration */
1990
1991 /* REGLPTXSCPDAT4TO0DXDY */
1992 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, l, lptxscp_start, 17);
1993
1994 /* Enable lane override */
1995
1996 /* ENLPTXSCPDAT */
1997 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 1, 27, 27);
1998 }
1999
2000 static void dsi_cio_disable_lane_override(struct platform_device *dsidev)
2001 {
2002 /* Disable lane override */
2003 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 0, 27, 27); /* ENLPTXSCPDAT */
2004 /* Reset the lane override configuration */
2005 /* REGLPTXSCPDAT4TO0DXDY */
2006 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 0, 22, 17);
2007 }
2008
2009 static int dsi_cio_wait_tx_clk_esc_reset(struct platform_device *dsidev)
2010 {
2011 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2012 int t, i;
2013 bool in_use[DSI_MAX_NR_LANES];
2014 static const u8 offsets_old[] = { 28, 27, 26 };
2015 static const u8 offsets_new[] = { 24, 25, 26, 27, 28 };
2016 const u8 *offsets;
2017
2018 if (dss_has_feature(FEAT_DSI_REVERSE_TXCLKESC))
2019 offsets = offsets_old;
2020 else
2021 offsets = offsets_new;
2022
2023 for (i = 0; i < dsi->num_lanes_supported; ++i)
2024 in_use[i] = dsi->lanes[i].function != DSI_LANE_UNUSED;
2025
2026 t = 100000;
2027 while (true) {
2028 u32 l;
2029 int ok;
2030
2031 l = dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
2032
2033 ok = 0;
2034 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2035 if (!in_use[i] || (l & (1 << offsets[i])))
2036 ok++;
2037 }
2038
2039 if (ok == dsi->num_lanes_supported)
2040 break;
2041
2042 if (--t == 0) {
2043 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2044 if (!in_use[i] || (l & (1 << offsets[i])))
2045 continue;
2046
2047 DSSERR("CIO TXCLKESC%d domain not coming " \
2048 "out of reset\n", i);
2049 }
2050 return -EIO;
2051 }
2052 }
2053
2054 return 0;
2055 }
2056
2057 /* return bitmask of enabled lanes, lane0 being the lsb */
2058 static unsigned dsi_get_lane_mask(struct platform_device *dsidev)
2059 {
2060 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2061 unsigned mask = 0;
2062 int i;
2063
2064 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2065 if (dsi->lanes[i].function != DSI_LANE_UNUSED)
2066 mask |= 1 << i;
2067 }
2068
2069 return mask;
2070 }
2071
2072 static int dsi_cio_init(struct platform_device *dsidev)
2073 {
2074 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2075 int r;
2076 u32 l;
2077
2078 DSSDBG("DSI CIO init starts");
2079
2080 r = dss_dsi_enable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2081 if (r)
2082 return r;
2083
2084 dsi_enable_scp_clk(dsidev);
2085
2086 /* A dummy read using the SCP interface to any DSIPHY register is
2087 * required after DSIPHY reset to complete the reset of the DSI complex
2088 * I/O. */
2089 dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
2090
2091 if (wait_for_bit_change(dsidev, DSI_DSIPHY_CFG5, 30, 1) != 1) {
2092 DSSERR("CIO SCP Clock domain not coming out of reset.\n");
2093 r = -EIO;
2094 goto err_scp_clk_dom;
2095 }
2096
2097 r = dsi_set_lane_config(dsidev);
2098 if (r)
2099 goto err_scp_clk_dom;
2100
2101 /* set TX STOP MODE timer to maximum for this operation */
2102 l = dsi_read_reg(dsidev, DSI_TIMING1);
2103 l = FLD_MOD(l, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
2104 l = FLD_MOD(l, 1, 14, 14); /* STOP_STATE_X16_IO */
2105 l = FLD_MOD(l, 1, 13, 13); /* STOP_STATE_X4_IO */
2106 l = FLD_MOD(l, 0x1fff, 12, 0); /* STOP_STATE_COUNTER_IO */
2107 dsi_write_reg(dsidev, DSI_TIMING1, l);
2108
2109 if (dsi->ulps_enabled) {
2110 unsigned mask_p;
2111 int i;
2112
2113 DSSDBG("manual ulps exit\n");
2114
2115 /* ULPS is exited by Mark-1 state for 1ms, followed by
2116 * stop state. DSS HW cannot do this via the normal
2117 * ULPS exit sequence, as after reset the DSS HW thinks
2118 * that we are not in ULPS mode, and refuses to send the
2119 * sequence. So we need to send the ULPS exit sequence
2120 * manually by setting positive lines high and negative lines
2121 * low for 1ms.
2122 */
2123
2124 mask_p = 0;
2125
2126 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2127 if (dsi->lanes[i].function == DSI_LANE_UNUSED)
2128 continue;
2129 mask_p |= 1 << i;
2130 }
2131
2132 dsi_cio_enable_lane_override(dsidev, mask_p, 0);
2133 }
2134
2135 r = dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_ON);
2136 if (r)
2137 goto err_cio_pwr;
2138
2139 if (wait_for_bit_change(dsidev, DSI_COMPLEXIO_CFG1, 29, 1) != 1) {
2140 DSSERR("CIO PWR clock domain not coming out of reset.\n");
2141 r = -ENODEV;
2142 goto err_cio_pwr_dom;
2143 }
2144
2145 dsi_if_enable(dsidev, true);
2146 dsi_if_enable(dsidev, false);
2147 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 1, 20, 20); /* LP_CLK_ENABLE */
2148
2149 r = dsi_cio_wait_tx_clk_esc_reset(dsidev);
2150 if (r)
2151 goto err_tx_clk_esc_rst;
2152
2153 if (dsi->ulps_enabled) {
2154 /* Keep Mark-1 state for 1ms (as per DSI spec) */
2155 ktime_t wait = ns_to_ktime(1000 * 1000);
2156 set_current_state(TASK_UNINTERRUPTIBLE);
2157 schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
2158
2159 /* Disable the override. The lanes should be set to Mark-11
2160 * state by the HW */
2161 dsi_cio_disable_lane_override(dsidev);
2162 }
2163
2164 /* FORCE_TX_STOP_MODE_IO */
2165 REG_FLD_MOD(dsidev, DSI_TIMING1, 0, 15, 15);
2166
2167 dsi_cio_timings(dsidev);
2168
2169 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
2170 /* DDR_CLK_ALWAYS_ON */
2171 REG_FLD_MOD(dsidev, DSI_CLK_CTRL,
2172 dsi->vm_timings.ddr_clk_always_on, 13, 13);
2173 }
2174
2175 dsi->ulps_enabled = false;
2176
2177 DSSDBG("CIO init done\n");
2178
2179 return 0;
2180
2181 err_tx_clk_esc_rst:
2182 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 20, 20); /* LP_CLK_ENABLE */
2183 err_cio_pwr_dom:
2184 dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_OFF);
2185 err_cio_pwr:
2186 if (dsi->ulps_enabled)
2187 dsi_cio_disable_lane_override(dsidev);
2188 err_scp_clk_dom:
2189 dsi_disable_scp_clk(dsidev);
2190 dss_dsi_disable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2191 return r;
2192 }
2193
2194 static void dsi_cio_uninit(struct platform_device *dsidev)
2195 {
2196 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2197
2198 /* DDR_CLK_ALWAYS_ON */
2199 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 13, 13);
2200
2201 dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_OFF);
2202 dsi_disable_scp_clk(dsidev);
2203 dss_dsi_disable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2204 }
2205
2206 static void dsi_config_tx_fifo(struct platform_device *dsidev,
2207 enum fifo_size size1, enum fifo_size size2,
2208 enum fifo_size size3, enum fifo_size size4)
2209 {
2210 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2211 u32 r = 0;
2212 int add = 0;
2213 int i;
2214
2215 dsi->vc[0].tx_fifo_size = size1;
2216 dsi->vc[1].tx_fifo_size = size2;
2217 dsi->vc[2].tx_fifo_size = size3;
2218 dsi->vc[3].tx_fifo_size = size4;
2219
2220 for (i = 0; i < 4; i++) {
2221 u8 v;
2222 int size = dsi->vc[i].tx_fifo_size;
2223
2224 if (add + size > 4) {
2225 DSSERR("Illegal FIFO configuration\n");
2226 BUG();
2227 return;
2228 }
2229
2230 v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
2231 r |= v << (8 * i);
2232 /*DSSDBG("TX FIFO vc %d: size %d, add %d\n", i, size, add); */
2233 add += size;
2234 }
2235
2236 dsi_write_reg(dsidev, DSI_TX_FIFO_VC_SIZE, r);
2237 }
2238
2239 static void dsi_config_rx_fifo(struct platform_device *dsidev,
2240 enum fifo_size size1, enum fifo_size size2,
2241 enum fifo_size size3, enum fifo_size size4)
2242 {
2243 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2244 u32 r = 0;
2245 int add = 0;
2246 int i;
2247
2248 dsi->vc[0].rx_fifo_size = size1;
2249 dsi->vc[1].rx_fifo_size = size2;
2250 dsi->vc[2].rx_fifo_size = size3;
2251 dsi->vc[3].rx_fifo_size = size4;
2252
2253 for (i = 0; i < 4; i++) {
2254 u8 v;
2255 int size = dsi->vc[i].rx_fifo_size;
2256
2257 if (add + size > 4) {
2258 DSSERR("Illegal FIFO configuration\n");
2259 BUG();
2260 return;
2261 }
2262
2263 v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
2264 r |= v << (8 * i);
2265 /*DSSDBG("RX FIFO vc %d: size %d, add %d\n", i, size, add); */
2266 add += size;
2267 }
2268
2269 dsi_write_reg(dsidev, DSI_RX_FIFO_VC_SIZE, r);
2270 }
2271
2272 static int dsi_force_tx_stop_mode_io(struct platform_device *dsidev)
2273 {
2274 u32 r;
2275
2276 r = dsi_read_reg(dsidev, DSI_TIMING1);
2277 r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
2278 dsi_write_reg(dsidev, DSI_TIMING1, r);
2279
2280 if (wait_for_bit_change(dsidev, DSI_TIMING1, 15, 0) != 0) {
2281 DSSERR("TX_STOP bit not going down\n");
2282 return -EIO;
2283 }
2284
2285 return 0;
2286 }
2287
2288 static bool dsi_vc_is_enabled(struct platform_device *dsidev, int channel)
2289 {
2290 return REG_GET(dsidev, DSI_VC_CTRL(channel), 0, 0);
2291 }
2292
2293 static void dsi_packet_sent_handler_vp(void *data, u32 mask)
2294 {
2295 struct dsi_packet_sent_handler_data *vp_data =
2296 (struct dsi_packet_sent_handler_data *) data;
2297 struct dsi_data *dsi = dsi_get_dsidrv_data(vp_data->dsidev);
2298 const int channel = dsi->update_channel;
2299 u8 bit = dsi->te_enabled ? 30 : 31;
2300
2301 if (REG_GET(vp_data->dsidev, DSI_VC_TE(channel), bit, bit) == 0)
2302 complete(vp_data->completion);
2303 }
2304
2305 static int dsi_sync_vc_vp(struct platform_device *dsidev, int channel)
2306 {
2307 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2308 DECLARE_COMPLETION_ONSTACK(completion);
2309 struct dsi_packet_sent_handler_data vp_data = {
2310 .dsidev = dsidev,
2311 .completion = &completion
2312 };
2313 int r = 0;
2314 u8 bit;
2315
2316 bit = dsi->te_enabled ? 30 : 31;
2317
2318 r = dsi_register_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2319 &vp_data, DSI_VC_IRQ_PACKET_SENT);
2320 if (r)
2321 goto err0;
2322
2323 /* Wait for completion only if TE_EN/TE_START is still set */
2324 if (REG_GET(dsidev, DSI_VC_TE(channel), bit, bit)) {
2325 if (wait_for_completion_timeout(&completion,
2326 msecs_to_jiffies(10)) == 0) {
2327 DSSERR("Failed to complete previous frame transfer\n");
2328 r = -EIO;
2329 goto err1;
2330 }
2331 }
2332
2333 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2334 &vp_data, DSI_VC_IRQ_PACKET_SENT);
2335
2336 return 0;
2337 err1:
2338 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2339 &vp_data, DSI_VC_IRQ_PACKET_SENT);
2340 err0:
2341 return r;
2342 }
2343
2344 static void dsi_packet_sent_handler_l4(void *data, u32 mask)
2345 {
2346 struct dsi_packet_sent_handler_data *l4_data =
2347 (struct dsi_packet_sent_handler_data *) data;
2348 struct dsi_data *dsi = dsi_get_dsidrv_data(l4_data->dsidev);
2349 const int channel = dsi->update_channel;
2350
2351 if (REG_GET(l4_data->dsidev, DSI_VC_CTRL(channel), 5, 5) == 0)
2352 complete(l4_data->completion);
2353 }
2354
2355 static int dsi_sync_vc_l4(struct platform_device *dsidev, int channel)
2356 {
2357 DECLARE_COMPLETION_ONSTACK(completion);
2358 struct dsi_packet_sent_handler_data l4_data = {
2359 .dsidev = dsidev,
2360 .completion = &completion
2361 };
2362 int r = 0;
2363
2364 r = dsi_register_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2365 &l4_data, DSI_VC_IRQ_PACKET_SENT);
2366 if (r)
2367 goto err0;
2368
2369 /* Wait for completion only if TX_FIFO_NOT_EMPTY is still set */
2370 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 5, 5)) {
2371 if (wait_for_completion_timeout(&completion,
2372 msecs_to_jiffies(10)) == 0) {
2373 DSSERR("Failed to complete previous l4 transfer\n");
2374 r = -EIO;
2375 goto err1;
2376 }
2377 }
2378
2379 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2380 &l4_data, DSI_VC_IRQ_PACKET_SENT);
2381
2382 return 0;
2383 err1:
2384 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2385 &l4_data, DSI_VC_IRQ_PACKET_SENT);
2386 err0:
2387 return r;
2388 }
2389
2390 static int dsi_sync_vc(struct platform_device *dsidev, int channel)
2391 {
2392 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2393
2394 WARN_ON(!dsi_bus_is_locked(dsidev));
2395
2396 WARN_ON(in_interrupt());
2397
2398 if (!dsi_vc_is_enabled(dsidev, channel))
2399 return 0;
2400
2401 switch (dsi->vc[channel].source) {
2402 case DSI_VC_SOURCE_VP:
2403 return dsi_sync_vc_vp(dsidev, channel);
2404 case DSI_VC_SOURCE_L4:
2405 return dsi_sync_vc_l4(dsidev, channel);
2406 default:
2407 BUG();
2408 return -EINVAL;
2409 }
2410 }
2411
2412 static int dsi_vc_enable(struct platform_device *dsidev, int channel,
2413 bool enable)
2414 {
2415 DSSDBG("dsi_vc_enable channel %d, enable %d\n",
2416 channel, enable);
2417
2418 enable = enable ? 1 : 0;
2419
2420 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 0, 0);
2421
2422 if (wait_for_bit_change(dsidev, DSI_VC_CTRL(channel),
2423 0, enable) != enable) {
2424 DSSERR("Failed to set dsi_vc_enable to %d\n", enable);
2425 return -EIO;
2426 }
2427
2428 return 0;
2429 }
2430
2431 static void dsi_vc_initial_config(struct platform_device *dsidev, int channel)
2432 {
2433 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2434 u32 r;
2435
2436 DSSDBG("Initial config of virtual channel %d", channel);
2437
2438 r = dsi_read_reg(dsidev, DSI_VC_CTRL(channel));
2439
2440 if (FLD_GET(r, 15, 15)) /* VC_BUSY */
2441 DSSERR("VC(%d) busy when trying to configure it!\n",
2442 channel);
2443
2444 r = FLD_MOD(r, 0, 1, 1); /* SOURCE, 0 = L4 */
2445 r = FLD_MOD(r, 0, 2, 2); /* BTA_SHORT_EN */
2446 r = FLD_MOD(r, 0, 3, 3); /* BTA_LONG_EN */
2447 r = FLD_MOD(r, 0, 4, 4); /* MODE, 0 = command */
2448 r = FLD_MOD(r, 1, 7, 7); /* CS_TX_EN */
2449 r = FLD_MOD(r, 1, 8, 8); /* ECC_TX_EN */
2450 r = FLD_MOD(r, 0, 9, 9); /* MODE_SPEED, high speed on/off */
2451 if (dss_has_feature(FEAT_DSI_VC_OCP_WIDTH))
2452 r = FLD_MOD(r, 3, 11, 10); /* OCP_WIDTH = 32 bit */
2453
2454 r = FLD_MOD(r, 4, 29, 27); /* DMA_RX_REQ_NB = no dma */
2455 r = FLD_MOD(r, 4, 23, 21); /* DMA_TX_REQ_NB = no dma */
2456
2457 dsi_write_reg(dsidev, DSI_VC_CTRL(channel), r);
2458
2459 dsi->vc[channel].source = DSI_VC_SOURCE_L4;
2460 }
2461
2462 static int dsi_vc_config_source(struct platform_device *dsidev, int channel,
2463 enum dsi_vc_source source)
2464 {
2465 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2466
2467 if (dsi->vc[channel].source == source)
2468 return 0;
2469
2470 DSSDBG("Source config of virtual channel %d", channel);
2471
2472 dsi_sync_vc(dsidev, channel);
2473
2474 dsi_vc_enable(dsidev, channel, 0);
2475
2476 /* VC_BUSY */
2477 if (wait_for_bit_change(dsidev, DSI_VC_CTRL(channel), 15, 0) != 0) {
2478 DSSERR("vc(%d) busy when trying to config for VP\n", channel);
2479 return -EIO;
2480 }
2481
2482 /* SOURCE, 0 = L4, 1 = video port */
2483 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), source, 1, 1);
2484
2485 /* DCS_CMD_ENABLE */
2486 if (dss_has_feature(FEAT_DSI_DCS_CMD_CONFIG_VC)) {
2487 bool enable = source == DSI_VC_SOURCE_VP;
2488 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 30, 30);
2489 }
2490
2491 dsi_vc_enable(dsidev, channel, 1);
2492
2493 dsi->vc[channel].source = source;
2494
2495 return 0;
2496 }
2497
2498 static void dsi_vc_enable_hs(struct omap_dss_device *dssdev, int channel,
2499 bool enable)
2500 {
2501 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2502 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2503
2504 DSSDBG("dsi_vc_enable_hs(%d, %d)\n", channel, enable);
2505
2506 WARN_ON(!dsi_bus_is_locked(dsidev));
2507
2508 dsi_vc_enable(dsidev, channel, 0);
2509 dsi_if_enable(dsidev, 0);
2510
2511 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 9, 9);
2512
2513 dsi_vc_enable(dsidev, channel, 1);
2514 dsi_if_enable(dsidev, 1);
2515
2516 dsi_force_tx_stop_mode_io(dsidev);
2517
2518 /* start the DDR clock by sending a NULL packet */
2519 if (dsi->vm_timings.ddr_clk_always_on && enable)
2520 dsi_vc_send_null(dssdev, channel);
2521 }
2522
2523 static void dsi_vc_flush_long_data(struct platform_device *dsidev, int channel)
2524 {
2525 while (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2526 u32 val;
2527 val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2528 DSSDBG("\t\tb1 %#02x b2 %#02x b3 %#02x b4 %#02x\n",
2529 (val >> 0) & 0xff,
2530 (val >> 8) & 0xff,
2531 (val >> 16) & 0xff,
2532 (val >> 24) & 0xff);
2533 }
2534 }
2535
2536 static void dsi_show_rx_ack_with_err(u16 err)
2537 {
2538 DSSERR("\tACK with ERROR (%#x):\n", err);
2539 if (err & (1 << 0))
2540 DSSERR("\t\tSoT Error\n");
2541 if (err & (1 << 1))
2542 DSSERR("\t\tSoT Sync Error\n");
2543 if (err & (1 << 2))
2544 DSSERR("\t\tEoT Sync Error\n");
2545 if (err & (1 << 3))
2546 DSSERR("\t\tEscape Mode Entry Command Error\n");
2547 if (err & (1 << 4))
2548 DSSERR("\t\tLP Transmit Sync Error\n");
2549 if (err & (1 << 5))
2550 DSSERR("\t\tHS Receive Timeout Error\n");
2551 if (err & (1 << 6))
2552 DSSERR("\t\tFalse Control Error\n");
2553 if (err & (1 << 7))
2554 DSSERR("\t\t(reserved7)\n");
2555 if (err & (1 << 8))
2556 DSSERR("\t\tECC Error, single-bit (corrected)\n");
2557 if (err & (1 << 9))
2558 DSSERR("\t\tECC Error, multi-bit (not corrected)\n");
2559 if (err & (1 << 10))
2560 DSSERR("\t\tChecksum Error\n");
2561 if (err & (1 << 11))
2562 DSSERR("\t\tData type not recognized\n");
2563 if (err & (1 << 12))
2564 DSSERR("\t\tInvalid VC ID\n");
2565 if (err & (1 << 13))
2566 DSSERR("\t\tInvalid Transmission Length\n");
2567 if (err & (1 << 14))
2568 DSSERR("\t\t(reserved14)\n");
2569 if (err & (1 << 15))
2570 DSSERR("\t\tDSI Protocol Violation\n");
2571 }
2572
2573 static u16 dsi_vc_flush_receive_data(struct platform_device *dsidev,
2574 int channel)
2575 {
2576 /* RX_FIFO_NOT_EMPTY */
2577 while (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2578 u32 val;
2579 u8 dt;
2580 val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2581 DSSERR("\trawval %#08x\n", val);
2582 dt = FLD_GET(val, 5, 0);
2583 if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
2584 u16 err = FLD_GET(val, 23, 8);
2585 dsi_show_rx_ack_with_err(err);
2586 } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE) {
2587 DSSERR("\tDCS short response, 1 byte: %#x\n",
2588 FLD_GET(val, 23, 8));
2589 } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE) {
2590 DSSERR("\tDCS short response, 2 byte: %#x\n",
2591 FLD_GET(val, 23, 8));
2592 } else if (dt == MIPI_DSI_RX_DCS_LONG_READ_RESPONSE) {
2593 DSSERR("\tDCS long response, len %d\n",
2594 FLD_GET(val, 23, 8));
2595 dsi_vc_flush_long_data(dsidev, channel);
2596 } else {
2597 DSSERR("\tunknown datatype 0x%02x\n", dt);
2598 }
2599 }
2600 return 0;
2601 }
2602
2603 static int dsi_vc_send_bta(struct platform_device *dsidev, int channel)
2604 {
2605 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2606
2607 if (dsi->debug_write || dsi->debug_read)
2608 DSSDBG("dsi_vc_send_bta %d\n", channel);
2609
2610 WARN_ON(!dsi_bus_is_locked(dsidev));
2611
2612 /* RX_FIFO_NOT_EMPTY */
2613 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2614 DSSERR("rx fifo not empty when sending BTA, dumping data:\n");
2615 dsi_vc_flush_receive_data(dsidev, channel);
2616 }
2617
2618 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 1, 6, 6); /* BTA_EN */
2619
2620 /* flush posted write */
2621 dsi_read_reg(dsidev, DSI_VC_CTRL(channel));
2622
2623 return 0;
2624 }
2625
2626 static int dsi_vc_send_bta_sync(struct omap_dss_device *dssdev, int channel)
2627 {
2628 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2629 DECLARE_COMPLETION_ONSTACK(completion);
2630 int r = 0;
2631 u32 err;
2632
2633 r = dsi_register_isr_vc(dsidev, channel, dsi_completion_handler,
2634 &completion, DSI_VC_IRQ_BTA);
2635 if (r)
2636 goto err0;
2637
2638 r = dsi_register_isr(dsidev, dsi_completion_handler, &completion,
2639 DSI_IRQ_ERROR_MASK);
2640 if (r)
2641 goto err1;
2642
2643 r = dsi_vc_send_bta(dsidev, channel);
2644 if (r)
2645 goto err2;
2646
2647 if (wait_for_completion_timeout(&completion,
2648 msecs_to_jiffies(500)) == 0) {
2649 DSSERR("Failed to receive BTA\n");
2650 r = -EIO;
2651 goto err2;
2652 }
2653
2654 err = dsi_get_errors(dsidev);
2655 if (err) {
2656 DSSERR("Error while sending BTA: %x\n", err);
2657 r = -EIO;
2658 goto err2;
2659 }
2660 err2:
2661 dsi_unregister_isr(dsidev, dsi_completion_handler, &completion,
2662 DSI_IRQ_ERROR_MASK);
2663 err1:
2664 dsi_unregister_isr_vc(dsidev, channel, dsi_completion_handler,
2665 &completion, DSI_VC_IRQ_BTA);
2666 err0:
2667 return r;
2668 }
2669
2670 static inline void dsi_vc_write_long_header(struct platform_device *dsidev,
2671 int channel, u8 data_type, u16 len, u8 ecc)
2672 {
2673 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2674 u32 val;
2675 u8 data_id;
2676
2677 WARN_ON(!dsi_bus_is_locked(dsidev));
2678
2679 data_id = data_type | dsi->vc[channel].vc_id << 6;
2680
2681 val = FLD_VAL(data_id, 7, 0) | FLD_VAL(len, 23, 8) |
2682 FLD_VAL(ecc, 31, 24);
2683
2684 dsi_write_reg(dsidev, DSI_VC_LONG_PACKET_HEADER(channel), val);
2685 }
2686
2687 static inline void dsi_vc_write_long_payload(struct platform_device *dsidev,
2688 int channel, u8 b1, u8 b2, u8 b3, u8 b4)
2689 {
2690 u32 val;
2691
2692 val = b4 << 24 | b3 << 16 | b2 << 8 | b1 << 0;
2693
2694 /* DSSDBG("\twriting %02x, %02x, %02x, %02x (%#010x)\n",
2695 b1, b2, b3, b4, val); */
2696
2697 dsi_write_reg(dsidev, DSI_VC_LONG_PACKET_PAYLOAD(channel), val);
2698 }
2699
2700 static int dsi_vc_send_long(struct platform_device *dsidev, int channel,
2701 u8 data_type, u8 *data, u16 len, u8 ecc)
2702 {
2703 /*u32 val; */
2704 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2705 int i;
2706 u8 *p;
2707 int r = 0;
2708 u8 b1, b2, b3, b4;
2709
2710 if (dsi->debug_write)
2711 DSSDBG("dsi_vc_send_long, %d bytes\n", len);
2712
2713 /* len + header */
2714 if (dsi->vc[channel].tx_fifo_size * 32 * 4 < len + 4) {
2715 DSSERR("unable to send long packet: packet too long.\n");
2716 return -EINVAL;
2717 }
2718
2719 dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_L4);
2720
2721 dsi_vc_write_long_header(dsidev, channel, data_type, len, ecc);
2722
2723 p = data;
2724 for (i = 0; i < len >> 2; i++) {
2725 if (dsi->debug_write)
2726 DSSDBG("\tsending full packet %d\n", i);
2727
2728 b1 = *p++;
2729 b2 = *p++;
2730 b3 = *p++;
2731 b4 = *p++;
2732
2733 dsi_vc_write_long_payload(dsidev, channel, b1, b2, b3, b4);
2734 }
2735
2736 i = len % 4;
2737 if (i) {
2738 b1 = 0; b2 = 0; b3 = 0;
2739
2740 if (dsi->debug_write)
2741 DSSDBG("\tsending remainder bytes %d\n", i);
2742
2743 switch (i) {
2744 case 3:
2745 b1 = *p++;
2746 b2 = *p++;
2747 b3 = *p++;
2748 break;
2749 case 2:
2750 b1 = *p++;
2751 b2 = *p++;
2752 break;
2753 case 1:
2754 b1 = *p++;
2755 break;
2756 }
2757
2758 dsi_vc_write_long_payload(dsidev, channel, b1, b2, b3, 0);
2759 }
2760
2761 return r;
2762 }
2763
2764 static int dsi_vc_send_short(struct platform_device *dsidev, int channel,
2765 u8 data_type, u16 data, u8 ecc)
2766 {
2767 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2768 u32 r;
2769 u8 data_id;
2770
2771 WARN_ON(!dsi_bus_is_locked(dsidev));
2772
2773 if (dsi->debug_write)
2774 DSSDBG("dsi_vc_send_short(ch%d, dt %#x, b1 %#x, b2 %#x)\n",
2775 channel,
2776 data_type, data & 0xff, (data >> 8) & 0xff);
2777
2778 dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_L4);
2779
2780 if (FLD_GET(dsi_read_reg(dsidev, DSI_VC_CTRL(channel)), 16, 16)) {
2781 DSSERR("ERROR FIFO FULL, aborting transfer\n");
2782 return -EINVAL;
2783 }
2784
2785 data_id = data_type | dsi->vc[channel].vc_id << 6;
2786
2787 r = (data_id << 0) | (data << 8) | (ecc << 24);
2788
2789 dsi_write_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel), r);
2790
2791 return 0;
2792 }
2793
2794 static int dsi_vc_send_null(struct omap_dss_device *dssdev, int channel)
2795 {
2796 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2797
2798 return dsi_vc_send_long(dsidev, channel, MIPI_DSI_NULL_PACKET, NULL,
2799 0, 0);
2800 }
2801
2802 static int dsi_vc_write_nosync_common(struct platform_device *dsidev,
2803 int channel, u8 *data, int len, enum dss_dsi_content_type type)
2804 {
2805 int r;
2806
2807 if (len == 0) {
2808 BUG_ON(type == DSS_DSI_CONTENT_DCS);
2809 r = dsi_vc_send_short(dsidev, channel,
2810 MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM, 0, 0);
2811 } else if (len == 1) {
2812 r = dsi_vc_send_short(dsidev, channel,
2813 type == DSS_DSI_CONTENT_GENERIC ?
2814 MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM :
2815 MIPI_DSI_DCS_SHORT_WRITE, data[0], 0);
2816 } else if (len == 2) {
2817 r = dsi_vc_send_short(dsidev, channel,
2818 type == DSS_DSI_CONTENT_GENERIC ?
2819 MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM :
2820 MIPI_DSI_DCS_SHORT_WRITE_PARAM,
2821 data[0] | (data[1] << 8), 0);
2822 } else {
2823 r = dsi_vc_send_long(dsidev, channel,
2824 type == DSS_DSI_CONTENT_GENERIC ?
2825 MIPI_DSI_GENERIC_LONG_WRITE :
2826 MIPI_DSI_DCS_LONG_WRITE, data, len, 0);
2827 }
2828
2829 return r;
2830 }
2831
2832 static int dsi_vc_dcs_write_nosync(struct omap_dss_device *dssdev, int channel,
2833 u8 *data, int len)
2834 {
2835 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2836
2837 return dsi_vc_write_nosync_common(dsidev, channel, data, len,
2838 DSS_DSI_CONTENT_DCS);
2839 }
2840
2841 static int dsi_vc_generic_write_nosync(struct omap_dss_device *dssdev, int channel,
2842 u8 *data, int len)
2843 {
2844 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2845
2846 return dsi_vc_write_nosync_common(dsidev, channel, data, len,
2847 DSS_DSI_CONTENT_GENERIC);
2848 }
2849
2850 static int dsi_vc_write_common(struct omap_dss_device *dssdev, int channel,
2851 u8 *data, int len, enum dss_dsi_content_type type)
2852 {
2853 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2854 int r;
2855
2856 r = dsi_vc_write_nosync_common(dsidev, channel, data, len, type);
2857 if (r)
2858 goto err;
2859
2860 r = dsi_vc_send_bta_sync(dssdev, channel);
2861 if (r)
2862 goto err;
2863
2864 /* RX_FIFO_NOT_EMPTY */
2865 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2866 DSSERR("rx fifo not empty after write, dumping data:\n");
2867 dsi_vc_flush_receive_data(dsidev, channel);
2868 r = -EIO;
2869 goto err;
2870 }
2871
2872 return 0;
2873 err:
2874 DSSERR("dsi_vc_write_common(ch %d, cmd 0x%02x, len %d) failed\n",
2875 channel, data[0], len);
2876 return r;
2877 }
2878
2879 static int dsi_vc_dcs_write(struct omap_dss_device *dssdev, int channel, u8 *data,
2880 int len)
2881 {
2882 return dsi_vc_write_common(dssdev, channel, data, len,
2883 DSS_DSI_CONTENT_DCS);
2884 }
2885
2886 static int dsi_vc_generic_write(struct omap_dss_device *dssdev, int channel, u8 *data,
2887 int len)
2888 {
2889 return dsi_vc_write_common(dssdev, channel, data, len,
2890 DSS_DSI_CONTENT_GENERIC);
2891 }
2892
2893 static int dsi_vc_dcs_send_read_request(struct platform_device *dsidev,
2894 int channel, u8 dcs_cmd)
2895 {
2896 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2897 int r;
2898
2899 if (dsi->debug_read)
2900 DSSDBG("dsi_vc_dcs_send_read_request(ch%d, dcs_cmd %x)\n",
2901 channel, dcs_cmd);
2902
2903 r = dsi_vc_send_short(dsidev, channel, MIPI_DSI_DCS_READ, dcs_cmd, 0);
2904 if (r) {
2905 DSSERR("dsi_vc_dcs_send_read_request(ch %d, cmd 0x%02x)"
2906 " failed\n", channel, dcs_cmd);
2907 return r;
2908 }
2909
2910 return 0;
2911 }
2912
2913 static int dsi_vc_generic_send_read_request(struct platform_device *dsidev,
2914 int channel, u8 *reqdata, int reqlen)
2915 {
2916 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2917 u16 data;
2918 u8 data_type;
2919 int r;
2920
2921 if (dsi->debug_read)
2922 DSSDBG("dsi_vc_generic_send_read_request(ch %d, reqlen %d)\n",
2923 channel, reqlen);
2924
2925 if (reqlen == 0) {
2926 data_type = MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM;
2927 data = 0;
2928 } else if (reqlen == 1) {
2929 data_type = MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM;
2930 data = reqdata[0];
2931 } else if (reqlen == 2) {
2932 data_type = MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM;
2933 data = reqdata[0] | (reqdata[1] << 8);
2934 } else {
2935 BUG();
2936 return -EINVAL;
2937 }
2938
2939 r = dsi_vc_send_short(dsidev, channel, data_type, data, 0);
2940 if (r) {
2941 DSSERR("dsi_vc_generic_send_read_request(ch %d, reqlen %d)"
2942 " failed\n", channel, reqlen);
2943 return r;
2944 }
2945
2946 return 0;
2947 }
2948
2949 static int dsi_vc_read_rx_fifo(struct platform_device *dsidev, int channel,
2950 u8 *buf, int buflen, enum dss_dsi_content_type type)
2951 {
2952 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2953 u32 val;
2954 u8 dt;
2955 int r;
2956
2957 /* RX_FIFO_NOT_EMPTY */
2958 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20) == 0) {
2959 DSSERR("RX fifo empty when trying to read.\n");
2960 r = -EIO;
2961 goto err;
2962 }
2963
2964 val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2965 if (dsi->debug_read)
2966 DSSDBG("\theader: %08x\n", val);
2967 dt = FLD_GET(val, 5, 0);
2968 if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
2969 u16 err = FLD_GET(val, 23, 8);
2970 dsi_show_rx_ack_with_err(err);
2971 r = -EIO;
2972 goto err;
2973
2974 } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
2975 MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE :
2976 MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE)) {
2977 u8 data = FLD_GET(val, 15, 8);
2978 if (dsi->debug_read)
2979 DSSDBG("\t%s short response, 1 byte: %02x\n",
2980 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
2981 "DCS", data);
2982
2983 if (buflen < 1) {
2984 r = -EIO;
2985 goto err;
2986 }
2987
2988 buf[0] = data;
2989
2990 return 1;
2991 } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
2992 MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE :
2993 MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE)) {
2994 u16 data = FLD_GET(val, 23, 8);
2995 if (dsi->debug_read)
2996 DSSDBG("\t%s short response, 2 byte: %04x\n",
2997 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
2998 "DCS", data);
2999
3000 if (buflen < 2) {
3001 r = -EIO;
3002 goto err;
3003 }
3004
3005 buf[0] = data & 0xff;
3006 buf[1] = (data >> 8) & 0xff;
3007
3008 return 2;
3009 } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
3010 MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE :
3011 MIPI_DSI_RX_DCS_LONG_READ_RESPONSE)) {
3012 int w;
3013 int len = FLD_GET(val, 23, 8);
3014 if (dsi->debug_read)
3015 DSSDBG("\t%s long response, len %d\n",
3016 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
3017 "DCS", len);
3018
3019 if (len > buflen) {
3020 r = -EIO;
3021 goto err;
3022 }
3023
3024 /* two byte checksum ends the packet, not included in len */
3025 for (w = 0; w < len + 2;) {
3026 int b;
3027 val = dsi_read_reg(dsidev,
3028 DSI_VC_SHORT_PACKET_HEADER(channel));
3029 if (dsi->debug_read)
3030 DSSDBG("\t\t%02x %02x %02x %02x\n",
3031 (val >> 0) & 0xff,
3032 (val >> 8) & 0xff,
3033 (val >> 16) & 0xff,
3034 (val >> 24) & 0xff);
3035
3036 for (b = 0; b < 4; ++b) {
3037 if (w < len)
3038 buf[w] = (val >> (b * 8)) & 0xff;
3039 /* we discard the 2 byte checksum */
3040 ++w;
3041 }
3042 }
3043
3044 return len;
3045 } else {
3046 DSSERR("\tunknown datatype 0x%02x\n", dt);
3047 r = -EIO;
3048 goto err;
3049 }
3050
3051 err:
3052 DSSERR("dsi_vc_read_rx_fifo(ch %d type %s) failed\n", channel,
3053 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" : "DCS");
3054
3055 return r;
3056 }
3057
3058 static int dsi_vc_dcs_read(struct omap_dss_device *dssdev, int channel, u8 dcs_cmd,
3059 u8 *buf, int buflen)
3060 {
3061 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3062 int r;
3063
3064 r = dsi_vc_dcs_send_read_request(dsidev, channel, dcs_cmd);
3065 if (r)
3066 goto err;
3067
3068 r = dsi_vc_send_bta_sync(dssdev, channel);
3069 if (r)
3070 goto err;
3071
3072 r = dsi_vc_read_rx_fifo(dsidev, channel, buf, buflen,
3073 DSS_DSI_CONTENT_DCS);
3074 if (r < 0)
3075 goto err;
3076
3077 if (r != buflen) {
3078 r = -EIO;
3079 goto err;
3080 }
3081
3082 return 0;
3083 err:
3084 DSSERR("dsi_vc_dcs_read(ch %d, cmd 0x%02x) failed\n", channel, dcs_cmd);
3085 return r;
3086 }
3087
3088 static int dsi_vc_generic_read(struct omap_dss_device *dssdev, int channel,
3089 u8 *reqdata, int reqlen, u8 *buf, int buflen)
3090 {
3091 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3092 int r;
3093
3094 r = dsi_vc_generic_send_read_request(dsidev, channel, reqdata, reqlen);
3095 if (r)
3096 return r;
3097
3098 r = dsi_vc_send_bta_sync(dssdev, channel);
3099 if (r)
3100 return r;
3101
3102 r = dsi_vc_read_rx_fifo(dsidev, channel, buf, buflen,
3103 DSS_DSI_CONTENT_GENERIC);
3104 if (r < 0)
3105 return r;
3106
3107 if (r != buflen) {
3108 r = -EIO;
3109 return r;
3110 }
3111
3112 return 0;
3113 }
3114
3115 static int dsi_vc_set_max_rx_packet_size(struct omap_dss_device *dssdev, int channel,
3116 u16 len)
3117 {
3118 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3119
3120 return dsi_vc_send_short(dsidev, channel,
3121 MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0);
3122 }
3123
3124 static int dsi_enter_ulps(struct platform_device *dsidev)
3125 {
3126 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3127 DECLARE_COMPLETION_ONSTACK(completion);
3128 int r, i;
3129 unsigned mask;
3130
3131 DSSDBG("Entering ULPS");
3132
3133 WARN_ON(!dsi_bus_is_locked(dsidev));
3134
3135 WARN_ON(dsi->ulps_enabled);
3136
3137 if (dsi->ulps_enabled)
3138 return 0;
3139
3140 /* DDR_CLK_ALWAYS_ON */
3141 if (REG_GET(dsidev, DSI_CLK_CTRL, 13, 13)) {
3142 dsi_if_enable(dsidev, 0);
3143 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 13, 13);
3144 dsi_if_enable(dsidev, 1);
3145 }
3146
3147 dsi_sync_vc(dsidev, 0);
3148 dsi_sync_vc(dsidev, 1);
3149 dsi_sync_vc(dsidev, 2);
3150 dsi_sync_vc(dsidev, 3);
3151
3152 dsi_force_tx_stop_mode_io(dsidev);
3153
3154 dsi_vc_enable(dsidev, 0, false);
3155 dsi_vc_enable(dsidev, 1, false);
3156 dsi_vc_enable(dsidev, 2, false);
3157 dsi_vc_enable(dsidev, 3, false);
3158
3159 if (REG_GET(dsidev, DSI_COMPLEXIO_CFG2, 16, 16)) { /* HS_BUSY */
3160 DSSERR("HS busy when enabling ULPS\n");
3161 return -EIO;
3162 }
3163
3164 if (REG_GET(dsidev, DSI_COMPLEXIO_CFG2, 17, 17)) { /* LP_BUSY */
3165 DSSERR("LP busy when enabling ULPS\n");
3166 return -EIO;
3167 }
3168
3169 r = dsi_register_isr_cio(dsidev, dsi_completion_handler, &completion,
3170 DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3171 if (r)
3172 return r;
3173
3174 mask = 0;
3175
3176 for (i = 0; i < dsi->num_lanes_supported; ++i) {
3177 if (dsi->lanes[i].function == DSI_LANE_UNUSED)
3178 continue;
3179 mask |= 1 << i;
3180 }
3181 /* Assert TxRequestEsc for data lanes and TxUlpsClk for clk lane */
3182 /* LANEx_ULPS_SIG2 */
3183 REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG2, mask, 9, 5);
3184
3185 /* flush posted write and wait for SCP interface to finish the write */
3186 dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG2);
3187
3188 if (wait_for_completion_timeout(&completion,
3189 msecs_to_jiffies(1000)) == 0) {
3190 DSSERR("ULPS enable timeout\n");
3191 r = -EIO;
3192 goto err;
3193 }
3194
3195 dsi_unregister_isr_cio(dsidev, dsi_completion_handler, &completion,
3196 DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3197
3198 /* Reset LANEx_ULPS_SIG2 */
3199 REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG2, 0, 9, 5);
3200
3201 /* flush posted write and wait for SCP interface to finish the write */
3202 dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG2);
3203
3204 dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_ULPS);
3205
3206 dsi_if_enable(dsidev, false);
3207
3208 dsi->ulps_enabled = true;
3209
3210 return 0;
3211
3212 err:
3213 dsi_unregister_isr_cio(dsidev, dsi_completion_handler, &completion,
3214 DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3215 return r;
3216 }
3217
3218 static void dsi_set_lp_rx_timeout(struct platform_device *dsidev,
3219 unsigned ticks, bool x4, bool x16)
3220 {
3221 unsigned long fck;
3222 unsigned long total_ticks;
3223 u32 r;
3224
3225 BUG_ON(ticks > 0x1fff);
3226
3227 /* ticks in DSI_FCK */
3228 fck = dsi_fclk_rate(dsidev);
3229
3230 r = dsi_read_reg(dsidev, DSI_TIMING2);
3231 r = FLD_MOD(r, 1, 15, 15); /* LP_RX_TO */
3232 r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* LP_RX_TO_X16 */
3233 r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* LP_RX_TO_X4 */
3234 r = FLD_MOD(r, ticks, 12, 0); /* LP_RX_COUNTER */
3235 dsi_write_reg(dsidev, DSI_TIMING2, r);
3236
3237 total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3238
3239 DSSDBG("LP_RX_TO %lu ticks (%#x%s%s) = %lu ns\n",
3240 total_ticks,
3241 ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3242 (total_ticks * 1000) / (fck / 1000 / 1000));
3243 }
3244
3245 static void dsi_set_ta_timeout(struct platform_device *dsidev, unsigned ticks,
3246 bool x8, bool x16)
3247 {
3248 unsigned long fck;
3249 unsigned long total_ticks;
3250 u32 r;
3251
3252 BUG_ON(ticks > 0x1fff);
3253
3254 /* ticks in DSI_FCK */
3255 fck = dsi_fclk_rate(dsidev);
3256
3257 r = dsi_read_reg(dsidev, DSI_TIMING1);
3258 r = FLD_MOD(r, 1, 31, 31); /* TA_TO */
3259 r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* TA_TO_X16 */
3260 r = FLD_MOD(r, x8 ? 1 : 0, 29, 29); /* TA_TO_X8 */
3261 r = FLD_MOD(r, ticks, 28, 16); /* TA_TO_COUNTER */
3262 dsi_write_reg(dsidev, DSI_TIMING1, r);
3263
3264 total_ticks = ticks * (x16 ? 16 : 1) * (x8 ? 8 : 1);
3265
3266 DSSDBG("TA_TO %lu ticks (%#x%s%s) = %lu ns\n",
3267 total_ticks,
3268 ticks, x8 ? " x8" : "", x16 ? " x16" : "",
3269 (total_ticks * 1000) / (fck / 1000 / 1000));
3270 }
3271
3272 static void dsi_set_stop_state_counter(struct platform_device *dsidev,
3273 unsigned ticks, bool x4, bool x16)
3274 {
3275 unsigned long fck;
3276 unsigned long total_ticks;
3277 u32 r;
3278
3279 BUG_ON(ticks > 0x1fff);
3280
3281 /* ticks in DSI_FCK */
3282 fck = dsi_fclk_rate(dsidev);
3283
3284 r = dsi_read_reg(dsidev, DSI_TIMING1);
3285 r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
3286 r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* STOP_STATE_X16_IO */
3287 r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* STOP_STATE_X4_IO */
3288 r = FLD_MOD(r, ticks, 12, 0); /* STOP_STATE_COUNTER_IO */
3289 dsi_write_reg(dsidev, DSI_TIMING1, r);
3290
3291 total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3292
3293 DSSDBG("STOP_STATE_COUNTER %lu ticks (%#x%s%s) = %lu ns\n",
3294 total_ticks,
3295 ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3296 (total_ticks * 1000) / (fck / 1000 / 1000));
3297 }
3298
3299 static void dsi_set_hs_tx_timeout(struct platform_device *dsidev,
3300 unsigned ticks, bool x4, bool x16)
3301 {
3302 unsigned long fck;
3303 unsigned long total_ticks;
3304 u32 r;
3305
3306 BUG_ON(ticks > 0x1fff);
3307
3308 /* ticks in TxByteClkHS */
3309 fck = dsi_get_txbyteclkhs(dsidev);
3310
3311 r = dsi_read_reg(dsidev, DSI_TIMING2);
3312 r = FLD_MOD(r, 1, 31, 31); /* HS_TX_TO */
3313 r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* HS_TX_TO_X16 */
3314 r = FLD_MOD(r, x4 ? 1 : 0, 29, 29); /* HS_TX_TO_X8 (4 really) */
3315 r = FLD_MOD(r, ticks, 28, 16); /* HS_TX_TO_COUNTER */
3316 dsi_write_reg(dsidev, DSI_TIMING2, r);
3317
3318 total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3319
3320 DSSDBG("HS_TX_TO %lu ticks (%#x%s%s) = %lu ns\n",
3321 total_ticks,
3322 ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3323 (total_ticks * 1000) / (fck / 1000 / 1000));
3324 }
3325
3326 static void dsi_config_vp_num_line_buffers(struct platform_device *dsidev)
3327 {
3328 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3329 int num_line_buffers;
3330
3331 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3332 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3333 struct omap_video_timings *timings = &dsi->timings;
3334 /*
3335 * Don't use line buffers if width is greater than the video
3336 * port's line buffer size
3337 */
3338 if (dsi->line_buffer_size <= timings->x_res * bpp / 8)
3339 num_line_buffers = 0;
3340 else
3341 num_line_buffers = 2;
3342 } else {
3343 /* Use maximum number of line buffers in command mode */
3344 num_line_buffers = 2;
3345 }
3346
3347 /* LINE_BUFFER */
3348 REG_FLD_MOD(dsidev, DSI_CTRL, num_line_buffers, 13, 12);
3349 }
3350
3351 static void dsi_config_vp_sync_events(struct platform_device *dsidev)
3352 {
3353 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3354 bool sync_end;
3355 u32 r;
3356
3357 if (dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE)
3358 sync_end = true;
3359 else
3360 sync_end = false;
3361
3362 r = dsi_read_reg(dsidev, DSI_CTRL);
3363 r = FLD_MOD(r, 1, 9, 9); /* VP_DE_POL */
3364 r = FLD_MOD(r, 1, 10, 10); /* VP_HSYNC_POL */
3365 r = FLD_MOD(r, 1, 11, 11); /* VP_VSYNC_POL */
3366 r = FLD_MOD(r, 1, 15, 15); /* VP_VSYNC_START */
3367 r = FLD_MOD(r, sync_end, 16, 16); /* VP_VSYNC_END */
3368 r = FLD_MOD(r, 1, 17, 17); /* VP_HSYNC_START */
3369 r = FLD_MOD(r, sync_end, 18, 18); /* VP_HSYNC_END */
3370 dsi_write_reg(dsidev, DSI_CTRL, r);
3371 }
3372
3373 static void dsi_config_blanking_modes(struct platform_device *dsidev)
3374 {
3375 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3376 int blanking_mode = dsi->vm_timings.blanking_mode;
3377 int hfp_blanking_mode = dsi->vm_timings.hfp_blanking_mode;
3378 int hbp_blanking_mode = dsi->vm_timings.hbp_blanking_mode;
3379 int hsa_blanking_mode = dsi->vm_timings.hsa_blanking_mode;
3380 u32 r;
3381
3382 /*
3383 * 0 = TX FIFO packets sent or LPS in corresponding blanking periods
3384 * 1 = Long blanking packets are sent in corresponding blanking periods
3385 */
3386 r = dsi_read_reg(dsidev, DSI_CTRL);
3387 r = FLD_MOD(r, blanking_mode, 20, 20); /* BLANKING_MODE */
3388 r = FLD_MOD(r, hfp_blanking_mode, 21, 21); /* HFP_BLANKING */
3389 r = FLD_MOD(r, hbp_blanking_mode, 22, 22); /* HBP_BLANKING */
3390 r = FLD_MOD(r, hsa_blanking_mode, 23, 23); /* HSA_BLANKING */
3391 dsi_write_reg(dsidev, DSI_CTRL, r);
3392 }
3393
3394 /*
3395 * According to section 'HS Command Mode Interleaving' in OMAP TRM, Scenario 3
3396 * results in maximum transition time for data and clock lanes to enter and
3397 * exit HS mode. Hence, this is the scenario where the least amount of command
3398 * mode data can be interleaved. We program the minimum amount of TXBYTECLKHS
3399 * clock cycles that can be used to interleave command mode data in HS so that
3400 * all scenarios are satisfied.
3401 */
3402 static int dsi_compute_interleave_hs(int blank, bool ddr_alwon, int enter_hs,
3403 int exit_hs, int exiths_clk, int ddr_pre, int ddr_post)
3404 {
3405 int transition;
3406
3407 /*
3408 * If DDR_CLK_ALWAYS_ON is set, we need to consider HS mode transition
3409 * time of data lanes only, if it isn't set, we need to consider HS
3410 * transition time of both data and clock lanes. HS transition time
3411 * of Scenario 3 is considered.
3412 */
3413 if (ddr_alwon) {
3414 transition = enter_hs + exit_hs + max(enter_hs, 2) + 1;
3415 } else {
3416 int trans1, trans2;
3417 trans1 = ddr_pre + enter_hs + exit_hs + max(enter_hs, 2) + 1;
3418 trans2 = ddr_pre + enter_hs + exiths_clk + ddr_post + ddr_pre +
3419 enter_hs + 1;
3420 transition = max(trans1, trans2);
3421 }
3422
3423 return blank > transition ? blank - transition : 0;
3424 }
3425
3426 /*
3427 * According to section 'LP Command Mode Interleaving' in OMAP TRM, Scenario 1
3428 * results in maximum transition time for data lanes to enter and exit LP mode.
3429 * Hence, this is the scenario where the least amount of command mode data can
3430 * be interleaved. We program the minimum amount of bytes that can be
3431 * interleaved in LP so that all scenarios are satisfied.
3432 */
3433 static int dsi_compute_interleave_lp(int blank, int enter_hs, int exit_hs,
3434 int lp_clk_div, int tdsi_fclk)
3435 {
3436 int trans_lp; /* time required for a LP transition, in TXBYTECLKHS */
3437 int tlp_avail; /* time left for interleaving commands, in CLKIN4DDR */
3438 int ttxclkesc; /* period of LP transmit escape clock, in CLKIN4DDR */
3439 int thsbyte_clk = 16; /* Period of TXBYTECLKHS clock, in CLKIN4DDR */
3440 int lp_inter; /* cmd mode data that can be interleaved, in bytes */
3441
3442 /* maximum LP transition time according to Scenario 1 */
3443 trans_lp = exit_hs + max(enter_hs, 2) + 1;
3444
3445 /* CLKIN4DDR = 16 * TXBYTECLKHS */
3446 tlp_avail = thsbyte_clk * (blank - trans_lp);
3447
3448 ttxclkesc = tdsi_fclk * lp_clk_div;
3449
3450 lp_inter = ((tlp_avail - 8 * thsbyte_clk - 5 * tdsi_fclk) / ttxclkesc -
3451 26) / 16;
3452
3453 return max(lp_inter, 0);
3454 }
3455
3456 static void dsi_config_cmd_mode_interleaving(struct platform_device *dsidev)
3457 {
3458 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3459 int blanking_mode;
3460 int hfp_blanking_mode, hbp_blanking_mode, hsa_blanking_mode;
3461 int hsa, hfp, hbp, width_bytes, bllp, lp_clk_div;
3462 int ddr_clk_pre, ddr_clk_post, enter_hs_mode_lat, exit_hs_mode_lat;
3463 int tclk_trail, ths_exit, exiths_clk;
3464 bool ddr_alwon;
3465 struct omap_video_timings *timings = &dsi->timings;
3466 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3467 int ndl = dsi->num_lanes_used - 1;
3468 int dsi_fclk_hsdiv = dsi->user_dsi_cinfo.mX[HSDIV_DSI] + 1;
3469 int hsa_interleave_hs = 0, hsa_interleave_lp = 0;
3470 int hfp_interleave_hs = 0, hfp_interleave_lp = 0;
3471 int hbp_interleave_hs = 0, hbp_interleave_lp = 0;
3472 int bl_interleave_hs = 0, bl_interleave_lp = 0;
3473 u32 r;
3474
3475 r = dsi_read_reg(dsidev, DSI_CTRL);
3476 blanking_mode = FLD_GET(r, 20, 20);
3477 hfp_blanking_mode = FLD_GET(r, 21, 21);
3478 hbp_blanking_mode = FLD_GET(r, 22, 22);
3479 hsa_blanking_mode = FLD_GET(r, 23, 23);
3480
3481 r = dsi_read_reg(dsidev, DSI_VM_TIMING1);
3482 hbp = FLD_GET(r, 11, 0);
3483 hfp = FLD_GET(r, 23, 12);
3484 hsa = FLD_GET(r, 31, 24);
3485
3486 r = dsi_read_reg(dsidev, DSI_CLK_TIMING);
3487 ddr_clk_post = FLD_GET(r, 7, 0);
3488 ddr_clk_pre = FLD_GET(r, 15, 8);
3489
3490 r = dsi_read_reg(dsidev, DSI_VM_TIMING7);
3491 exit_hs_mode_lat = FLD_GET(r, 15, 0);
3492 enter_hs_mode_lat = FLD_GET(r, 31, 16);
3493
3494 r = dsi_read_reg(dsidev, DSI_CLK_CTRL);
3495 lp_clk_div = FLD_GET(r, 12, 0);
3496 ddr_alwon = FLD_GET(r, 13, 13);
3497
3498 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
3499 ths_exit = FLD_GET(r, 7, 0);
3500
3501 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
3502 tclk_trail = FLD_GET(r, 15, 8);
3503
3504 exiths_clk = ths_exit + tclk_trail;
3505
3506 width_bytes = DIV_ROUND_UP(timings->x_res * bpp, 8);
3507 bllp = hbp + hfp + hsa + DIV_ROUND_UP(width_bytes + 6, ndl);
3508
3509 if (!hsa_blanking_mode) {
3510 hsa_interleave_hs = dsi_compute_interleave_hs(hsa, ddr_alwon,
3511 enter_hs_mode_lat, exit_hs_mode_lat,
3512 exiths_clk, ddr_clk_pre, ddr_clk_post);
3513 hsa_interleave_lp = dsi_compute_interleave_lp(hsa,
3514 enter_hs_mode_lat, exit_hs_mode_lat,
3515 lp_clk_div, dsi_fclk_hsdiv);
3516 }
3517
3518 if (!hfp_blanking_mode) {
3519 hfp_interleave_hs = dsi_compute_interleave_hs(hfp, ddr_alwon,
3520 enter_hs_mode_lat, exit_hs_mode_lat,
3521 exiths_clk, ddr_clk_pre, ddr_clk_post);
3522 hfp_interleave_lp = dsi_compute_interleave_lp(hfp,
3523 enter_hs_mode_lat, exit_hs_mode_lat,
3524 lp_clk_div, dsi_fclk_hsdiv);
3525 }
3526
3527 if (!hbp_blanking_mode) {
3528 hbp_interleave_hs = dsi_compute_interleave_hs(hbp, ddr_alwon,
3529 enter_hs_mode_lat, exit_hs_mode_lat,
3530 exiths_clk, ddr_clk_pre, ddr_clk_post);
3531
3532 hbp_interleave_lp = dsi_compute_interleave_lp(hbp,
3533 enter_hs_mode_lat, exit_hs_mode_lat,
3534 lp_clk_div, dsi_fclk_hsdiv);
3535 }
3536
3537 if (!blanking_mode) {
3538 bl_interleave_hs = dsi_compute_interleave_hs(bllp, ddr_alwon,
3539 enter_hs_mode_lat, exit_hs_mode_lat,
3540 exiths_clk, ddr_clk_pre, ddr_clk_post);
3541
3542 bl_interleave_lp = dsi_compute_interleave_lp(bllp,
3543 enter_hs_mode_lat, exit_hs_mode_lat,
3544 lp_clk_div, dsi_fclk_hsdiv);
3545 }
3546
3547 DSSDBG("DSI HS interleaving(TXBYTECLKHS) HSA %d, HFP %d, HBP %d, BLLP %d\n",
3548 hsa_interleave_hs, hfp_interleave_hs, hbp_interleave_hs,
3549 bl_interleave_hs);
3550
3551 DSSDBG("DSI LP interleaving(bytes) HSA %d, HFP %d, HBP %d, BLLP %d\n",
3552 hsa_interleave_lp, hfp_interleave_lp, hbp_interleave_lp,
3553 bl_interleave_lp);
3554
3555 r = dsi_read_reg(dsidev, DSI_VM_TIMING4);
3556 r = FLD_MOD(r, hsa_interleave_hs, 23, 16);
3557 r = FLD_MOD(r, hfp_interleave_hs, 15, 8);
3558 r = FLD_MOD(r, hbp_interleave_hs, 7, 0);
3559 dsi_write_reg(dsidev, DSI_VM_TIMING4, r);
3560
3561 r = dsi_read_reg(dsidev, DSI_VM_TIMING5);
3562 r = FLD_MOD(r, hsa_interleave_lp, 23, 16);
3563 r = FLD_MOD(r, hfp_interleave_lp, 15, 8);
3564 r = FLD_MOD(r, hbp_interleave_lp, 7, 0);
3565 dsi_write_reg(dsidev, DSI_VM_TIMING5, r);
3566
3567 r = dsi_read_reg(dsidev, DSI_VM_TIMING6);
3568 r = FLD_MOD(r, bl_interleave_hs, 31, 15);
3569 r = FLD_MOD(r, bl_interleave_lp, 16, 0);
3570 dsi_write_reg(dsidev, DSI_VM_TIMING6, r);
3571 }
3572
3573 static int dsi_proto_config(struct platform_device *dsidev)
3574 {
3575 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3576 u32 r;
3577 int buswidth = 0;
3578
3579 dsi_config_tx_fifo(dsidev, DSI_FIFO_SIZE_32,
3580 DSI_FIFO_SIZE_32,
3581 DSI_FIFO_SIZE_32,
3582 DSI_FIFO_SIZE_32);
3583
3584 dsi_config_rx_fifo(dsidev, DSI_FIFO_SIZE_32,
3585 DSI_FIFO_SIZE_32,
3586 DSI_FIFO_SIZE_32,
3587 DSI_FIFO_SIZE_32);
3588
3589 /* XXX what values for the timeouts? */
3590 dsi_set_stop_state_counter(dsidev, 0x1000, false, false);
3591 dsi_set_ta_timeout(dsidev, 0x1fff, true, true);
3592 dsi_set_lp_rx_timeout(dsidev, 0x1fff, true, true);
3593 dsi_set_hs_tx_timeout(dsidev, 0x1fff, true, true);
3594
3595 switch (dsi_get_pixel_size(dsi->pix_fmt)) {
3596 case 16:
3597 buswidth = 0;
3598 break;
3599 case 18:
3600 buswidth = 1;
3601 break;
3602 case 24:
3603 buswidth = 2;
3604 break;
3605 default:
3606 BUG();
3607 return -EINVAL;
3608 }
3609
3610 r = dsi_read_reg(dsidev, DSI_CTRL);
3611 r = FLD_MOD(r, 1, 1, 1); /* CS_RX_EN */
3612 r = FLD_MOD(r, 1, 2, 2); /* ECC_RX_EN */
3613 r = FLD_MOD(r, 1, 3, 3); /* TX_FIFO_ARBITRATION */
3614 r = FLD_MOD(r, 1, 4, 4); /* VP_CLK_RATIO, always 1, see errata*/
3615 r = FLD_MOD(r, buswidth, 7, 6); /* VP_DATA_BUS_WIDTH */
3616 r = FLD_MOD(r, 0, 8, 8); /* VP_CLK_POL */
3617 r = FLD_MOD(r, 1, 14, 14); /* TRIGGER_RESET_MODE */
3618 r = FLD_MOD(r, 1, 19, 19); /* EOT_ENABLE */
3619 if (!dss_has_feature(FEAT_DSI_DCS_CMD_CONFIG_VC)) {
3620 r = FLD_MOD(r, 1, 24, 24); /* DCS_CMD_ENABLE */
3621 /* DCS_CMD_CODE, 1=start, 0=continue */
3622 r = FLD_MOD(r, 0, 25, 25);
3623 }
3624
3625 dsi_write_reg(dsidev, DSI_CTRL, r);
3626
3627 dsi_config_vp_num_line_buffers(dsidev);
3628
3629 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3630 dsi_config_vp_sync_events(dsidev);
3631 dsi_config_blanking_modes(dsidev);
3632 dsi_config_cmd_mode_interleaving(dsidev);
3633 }
3634
3635 dsi_vc_initial_config(dsidev, 0);
3636 dsi_vc_initial_config(dsidev, 1);
3637 dsi_vc_initial_config(dsidev, 2);
3638 dsi_vc_initial_config(dsidev, 3);
3639
3640 return 0;
3641 }
3642
3643 static void dsi_proto_timings(struct platform_device *dsidev)
3644 {
3645 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3646 unsigned tlpx, tclk_zero, tclk_prepare, tclk_trail;
3647 unsigned tclk_pre, tclk_post;
3648 unsigned ths_prepare, ths_prepare_ths_zero, ths_zero;
3649 unsigned ths_trail, ths_exit;
3650 unsigned ddr_clk_pre, ddr_clk_post;
3651 unsigned enter_hs_mode_lat, exit_hs_mode_lat;
3652 unsigned ths_eot;
3653 int ndl = dsi->num_lanes_used - 1;
3654 u32 r;
3655
3656 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
3657 ths_prepare = FLD_GET(r, 31, 24);
3658 ths_prepare_ths_zero = FLD_GET(r, 23, 16);
3659 ths_zero = ths_prepare_ths_zero - ths_prepare;
3660 ths_trail = FLD_GET(r, 15, 8);
3661 ths_exit = FLD_GET(r, 7, 0);
3662
3663 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
3664 tlpx = FLD_GET(r, 20, 16) * 2;
3665 tclk_trail = FLD_GET(r, 15, 8);
3666 tclk_zero = FLD_GET(r, 7, 0);
3667
3668 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG2);
3669 tclk_prepare = FLD_GET(r, 7, 0);
3670
3671 /* min 8*UI */
3672 tclk_pre = 20;
3673 /* min 60ns + 52*UI */
3674 tclk_post = ns2ddr(dsidev, 60) + 26;
3675
3676 ths_eot = DIV_ROUND_UP(4, ndl);
3677
3678 ddr_clk_pre = DIV_ROUND_UP(tclk_pre + tlpx + tclk_zero + tclk_prepare,
3679 4);
3680 ddr_clk_post = DIV_ROUND_UP(tclk_post + ths_trail, 4) + ths_eot;
3681
3682 BUG_ON(ddr_clk_pre == 0 || ddr_clk_pre > 255);
3683 BUG_ON(ddr_clk_post == 0 || ddr_clk_post > 255);
3684
3685 r = dsi_read_reg(dsidev, DSI_CLK_TIMING);
3686 r = FLD_MOD(r, ddr_clk_pre, 15, 8);
3687 r = FLD_MOD(r, ddr_clk_post, 7, 0);
3688 dsi_write_reg(dsidev, DSI_CLK_TIMING, r);
3689
3690 DSSDBG("ddr_clk_pre %u, ddr_clk_post %u\n",
3691 ddr_clk_pre,
3692 ddr_clk_post);
3693
3694 enter_hs_mode_lat = 1 + DIV_ROUND_UP(tlpx, 4) +
3695 DIV_ROUND_UP(ths_prepare, 4) +
3696 DIV_ROUND_UP(ths_zero + 3, 4);
3697
3698 exit_hs_mode_lat = DIV_ROUND_UP(ths_trail + ths_exit, 4) + 1 + ths_eot;
3699
3700 r = FLD_VAL(enter_hs_mode_lat, 31, 16) |
3701 FLD_VAL(exit_hs_mode_lat, 15, 0);
3702 dsi_write_reg(dsidev, DSI_VM_TIMING7, r);
3703
3704 DSSDBG("enter_hs_mode_lat %u, exit_hs_mode_lat %u\n",
3705 enter_hs_mode_lat, exit_hs_mode_lat);
3706
3707 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3708 /* TODO: Implement a video mode check_timings function */
3709 int hsa = dsi->vm_timings.hsa;
3710 int hfp = dsi->vm_timings.hfp;
3711 int hbp = dsi->vm_timings.hbp;
3712 int vsa = dsi->vm_timings.vsa;
3713 int vfp = dsi->vm_timings.vfp;
3714 int vbp = dsi->vm_timings.vbp;
3715 int window_sync = dsi->vm_timings.window_sync;
3716 bool hsync_end;
3717 struct omap_video_timings *timings = &dsi->timings;
3718 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3719 int tl, t_he, width_bytes;
3720
3721 hsync_end = dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE;
3722 t_he = hsync_end ?
3723 ((hsa == 0 && ndl == 3) ? 1 : DIV_ROUND_UP(4, ndl)) : 0;
3724
3725 width_bytes = DIV_ROUND_UP(timings->x_res * bpp, 8);
3726
3727 /* TL = t_HS + HSA + t_HE + HFP + ceil((WC + 6) / NDL) + HBP */
3728 tl = DIV_ROUND_UP(4, ndl) + (hsync_end ? hsa : 0) + t_he + hfp +
3729 DIV_ROUND_UP(width_bytes + 6, ndl) + hbp;
3730
3731 DSSDBG("HBP: %d, HFP: %d, HSA: %d, TL: %d TXBYTECLKHS\n", hbp,
3732 hfp, hsync_end ? hsa : 0, tl);
3733 DSSDBG("VBP: %d, VFP: %d, VSA: %d, VACT: %d lines\n", vbp, vfp,
3734 vsa, timings->y_res);
3735
3736 r = dsi_read_reg(dsidev, DSI_VM_TIMING1);
3737 r = FLD_MOD(r, hbp, 11, 0); /* HBP */
3738 r = FLD_MOD(r, hfp, 23, 12); /* HFP */
3739 r = FLD_MOD(r, hsync_end ? hsa : 0, 31, 24); /* HSA */
3740 dsi_write_reg(dsidev, DSI_VM_TIMING1, r);
3741
3742 r = dsi_read_reg(dsidev, DSI_VM_TIMING2);
3743 r = FLD_MOD(r, vbp, 7, 0); /* VBP */
3744 r = FLD_MOD(r, vfp, 15, 8); /* VFP */
3745 r = FLD_MOD(r, vsa, 23, 16); /* VSA */
3746 r = FLD_MOD(r, window_sync, 27, 24); /* WINDOW_SYNC */
3747 dsi_write_reg(dsidev, DSI_VM_TIMING2, r);
3748
3749 r = dsi_read_reg(dsidev, DSI_VM_TIMING3);
3750 r = FLD_MOD(r, timings->y_res, 14, 0); /* VACT */
3751 r = FLD_MOD(r, tl, 31, 16); /* TL */
3752 dsi_write_reg(dsidev, DSI_VM_TIMING3, r);
3753 }
3754 }
3755
3756 static int dsi_configure_pins(struct omap_dss_device *dssdev,
3757 const struct omap_dsi_pin_config *pin_cfg)
3758 {
3759 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3760 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3761 int num_pins;
3762 const int *pins;
3763 struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
3764 int num_lanes;
3765 int i;
3766
3767 static const enum dsi_lane_function functions[] = {
3768 DSI_LANE_CLK,
3769 DSI_LANE_DATA1,
3770 DSI_LANE_DATA2,
3771 DSI_LANE_DATA3,
3772 DSI_LANE_DATA4,
3773 };
3774
3775 num_pins = pin_cfg->num_pins;
3776 pins = pin_cfg->pins;
3777
3778 if (num_pins < 4 || num_pins > dsi->num_lanes_supported * 2
3779 || num_pins % 2 != 0)
3780 return -EINVAL;
3781
3782 for (i = 0; i < DSI_MAX_NR_LANES; ++i)
3783 lanes[i].function = DSI_LANE_UNUSED;
3784
3785 num_lanes = 0;
3786
3787 for (i = 0; i < num_pins; i += 2) {
3788 u8 lane, pol;
3789 int dx, dy;
3790
3791 dx = pins[i];
3792 dy = pins[i + 1];
3793
3794 if (dx < 0 || dx >= dsi->num_lanes_supported * 2)
3795 return -EINVAL;
3796
3797 if (dy < 0 || dy >= dsi->num_lanes_supported * 2)
3798 return -EINVAL;
3799
3800 if (dx & 1) {
3801 if (dy != dx - 1)
3802 return -EINVAL;
3803 pol = 1;
3804 } else {
3805 if (dy != dx + 1)
3806 return -EINVAL;
3807 pol = 0;
3808 }
3809
3810 lane = dx / 2;
3811
3812 lanes[lane].function = functions[i / 2];
3813 lanes[lane].polarity = pol;
3814 num_lanes++;
3815 }
3816
3817 memcpy(dsi->lanes, lanes, sizeof(dsi->lanes));
3818 dsi->num_lanes_used = num_lanes;
3819
3820 return 0;
3821 }
3822
3823 static int dsi_enable_video_output(struct omap_dss_device *dssdev, int channel)
3824 {
3825 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3826 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3827 struct omap_overlay_manager *mgr = dsi->output.manager;
3828 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3829 struct omap_dss_device *out = &dsi->output;
3830 u8 data_type;
3831 u16 word_count;
3832 int r;
3833
3834 if (out->manager == NULL) {
3835 DSSERR("failed to enable display: no output/manager\n");
3836 return -ENODEV;
3837 }
3838
3839 r = dsi_display_init_dispc(dsidev, mgr);
3840 if (r)
3841 goto err_init_dispc;
3842
3843 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3844 switch (dsi->pix_fmt) {
3845 case OMAP_DSS_DSI_FMT_RGB888:
3846 data_type = MIPI_DSI_PACKED_PIXEL_STREAM_24;
3847 break;
3848 case OMAP_DSS_DSI_FMT_RGB666:
3849 data_type = MIPI_DSI_PIXEL_STREAM_3BYTE_18;
3850 break;
3851 case OMAP_DSS_DSI_FMT_RGB666_PACKED:
3852 data_type = MIPI_DSI_PACKED_PIXEL_STREAM_18;
3853 break;
3854 case OMAP_DSS_DSI_FMT_RGB565:
3855 data_type = MIPI_DSI_PACKED_PIXEL_STREAM_16;
3856 break;
3857 default:
3858 r = -EINVAL;
3859 goto err_pix_fmt;
3860 }
3861
3862 dsi_if_enable(dsidev, false);
3863 dsi_vc_enable(dsidev, channel, false);
3864
3865 /* MODE, 1 = video mode */
3866 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 1, 4, 4);
3867
3868 word_count = DIV_ROUND_UP(dsi->timings.x_res * bpp, 8);
3869
3870 dsi_vc_write_long_header(dsidev, channel, data_type,
3871 word_count, 0);
3872
3873 dsi_vc_enable(dsidev, channel, true);
3874 dsi_if_enable(dsidev, true);
3875 }
3876
3877 r = dss_mgr_enable(mgr);
3878 if (r)
3879 goto err_mgr_enable;
3880
3881 return 0;
3882
3883 err_mgr_enable:
3884 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3885 dsi_if_enable(dsidev, false);
3886 dsi_vc_enable(dsidev, channel, false);
3887 }
3888 err_pix_fmt:
3889 dsi_display_uninit_dispc(dsidev, mgr);
3890 err_init_dispc:
3891 return r;
3892 }
3893
3894 static void dsi_disable_video_output(struct omap_dss_device *dssdev, int channel)
3895 {
3896 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3897 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3898 struct omap_overlay_manager *mgr = dsi->output.manager;
3899
3900 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3901 dsi_if_enable(dsidev, false);
3902 dsi_vc_enable(dsidev, channel, false);
3903
3904 /* MODE, 0 = command mode */
3905 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 0, 4, 4);
3906
3907 dsi_vc_enable(dsidev, channel, true);
3908 dsi_if_enable(dsidev, true);
3909 }
3910
3911 dss_mgr_disable(mgr);
3912
3913 dsi_display_uninit_dispc(dsidev, mgr);
3914 }
3915
3916 static void dsi_update_screen_dispc(struct platform_device *dsidev)
3917 {
3918 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3919 struct omap_overlay_manager *mgr = dsi->output.manager;
3920 unsigned bytespp;
3921 unsigned bytespl;
3922 unsigned bytespf;
3923 unsigned total_len;
3924 unsigned packet_payload;
3925 unsigned packet_len;
3926 u32 l;
3927 int r;
3928 const unsigned channel = dsi->update_channel;
3929 const unsigned line_buf_size = dsi->line_buffer_size;
3930 u16 w = dsi->timings.x_res;
3931 u16 h = dsi->timings.y_res;
3932
3933 DSSDBG("dsi_update_screen_dispc(%dx%d)\n", w, h);
3934
3935 dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_VP);
3936
3937 bytespp = dsi_get_pixel_size(dsi->pix_fmt) / 8;
3938 bytespl = w * bytespp;
3939 bytespf = bytespl * h;
3940
3941 /* NOTE: packet_payload has to be equal to N * bytespl, where N is
3942 * number of lines in a packet. See errata about VP_CLK_RATIO */
3943
3944 if (bytespf < line_buf_size)
3945 packet_payload = bytespf;
3946 else
3947 packet_payload = (line_buf_size) / bytespl * bytespl;
3948
3949 packet_len = packet_payload + 1; /* 1 byte for DCS cmd */
3950 total_len = (bytespf / packet_payload) * packet_len;
3951
3952 if (bytespf % packet_payload)
3953 total_len += (bytespf % packet_payload) + 1;
3954
3955 l = FLD_VAL(total_len, 23, 0); /* TE_SIZE */
3956 dsi_write_reg(dsidev, DSI_VC_TE(channel), l);
3957
3958 dsi_vc_write_long_header(dsidev, channel, MIPI_DSI_DCS_LONG_WRITE,
3959 packet_len, 0);
3960
3961 if (dsi->te_enabled)
3962 l = FLD_MOD(l, 1, 30, 30); /* TE_EN */
3963 else
3964 l = FLD_MOD(l, 1, 31, 31); /* TE_START */
3965 dsi_write_reg(dsidev, DSI_VC_TE(channel), l);
3966
3967 /* We put SIDLEMODE to no-idle for the duration of the transfer,
3968 * because DSS interrupts are not capable of waking up the CPU and the
3969 * framedone interrupt could be delayed for quite a long time. I think
3970 * the same goes for any DSS interrupts, but for some reason I have not
3971 * seen the problem anywhere else than here.
3972 */
3973 dispc_disable_sidle();
3974
3975 dsi_perf_mark_start(dsidev);
3976
3977 r = schedule_delayed_work(&dsi->framedone_timeout_work,
3978 msecs_to_jiffies(250));
3979 BUG_ON(r == 0);
3980
3981 dss_mgr_set_timings(mgr, &dsi->timings);
3982
3983 dss_mgr_start_update(mgr);
3984
3985 if (dsi->te_enabled) {
3986 /* disable LP_RX_TO, so that we can receive TE. Time to wait
3987 * for TE is longer than the timer allows */
3988 REG_FLD_MOD(dsidev, DSI_TIMING2, 0, 15, 15); /* LP_RX_TO */
3989
3990 dsi_vc_send_bta(dsidev, channel);
3991
3992 #ifdef DSI_CATCH_MISSING_TE
3993 mod_timer(&dsi->te_timer, jiffies + msecs_to_jiffies(250));
3994 #endif
3995 }
3996 }
3997
3998 #ifdef DSI_CATCH_MISSING_TE
3999 static void dsi_te_timeout(unsigned long arg)
4000 {
4001 DSSERR("TE not received for 250ms!\n");
4002 }
4003 #endif
4004
4005 static void dsi_handle_framedone(struct platform_device *dsidev, int error)
4006 {
4007 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4008
4009 /* SIDLEMODE back to smart-idle */
4010 dispc_enable_sidle();
4011
4012 if (dsi->te_enabled) {
4013 /* enable LP_RX_TO again after the TE */
4014 REG_FLD_MOD(dsidev, DSI_TIMING2, 1, 15, 15); /* LP_RX_TO */
4015 }
4016
4017 dsi->framedone_callback(error, dsi->framedone_data);
4018
4019 if (!error)
4020 dsi_perf_show(dsidev, "DISPC");
4021 }
4022
4023 static void dsi_framedone_timeout_work_callback(struct work_struct *work)
4024 {
4025 struct dsi_data *dsi = container_of(work, struct dsi_data,
4026 framedone_timeout_work.work);
4027 /* XXX While extremely unlikely, we could get FRAMEDONE interrupt after
4028 * 250ms which would conflict with this timeout work. What should be
4029 * done is first cancel the transfer on the HW, and then cancel the
4030 * possibly scheduled framedone work. However, cancelling the transfer
4031 * on the HW is buggy, and would probably require resetting the whole
4032 * DSI */
4033
4034 DSSERR("Framedone not received for 250ms!\n");
4035
4036 dsi_handle_framedone(dsi->pdev, -ETIMEDOUT);
4037 }
4038
4039 static void dsi_framedone_irq_callback(void *data)
4040 {
4041 struct platform_device *dsidev = (struct platform_device *) data;
4042 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4043
4044 /* Note: We get FRAMEDONE when DISPC has finished sending pixels and
4045 * turns itself off. However, DSI still has the pixels in its buffers,
4046 * and is sending the data.
4047 */
4048
4049 cancel_delayed_work(&dsi->framedone_timeout_work);
4050
4051 dsi_handle_framedone(dsidev, 0);
4052 }
4053
4054 static int dsi_update(struct omap_dss_device *dssdev, int channel,
4055 void (*callback)(int, void *), void *data)
4056 {
4057 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4058 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4059 u16 dw, dh;
4060
4061 dsi_perf_mark_setup(dsidev);
4062
4063 dsi->update_channel = channel;
4064
4065 dsi->framedone_callback = callback;
4066 dsi->framedone_data = data;
4067
4068 dw = dsi->timings.x_res;
4069 dh = dsi->timings.y_res;
4070
4071 #ifdef DSI_PERF_MEASURE
4072 dsi->update_bytes = dw * dh *
4073 dsi_get_pixel_size(dsi->pix_fmt) / 8;
4074 #endif
4075 dsi_update_screen_dispc(dsidev);
4076
4077 return 0;
4078 }
4079
4080 /* Display funcs */
4081
4082 static int dsi_configure_dispc_clocks(struct platform_device *dsidev)
4083 {
4084 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4085 struct dispc_clock_info dispc_cinfo;
4086 int r;
4087 unsigned long fck;
4088
4089 fck = dsi_get_pll_hsdiv_dispc_rate(dsidev);
4090
4091 dispc_cinfo.lck_div = dsi->user_dispc_cinfo.lck_div;
4092 dispc_cinfo.pck_div = dsi->user_dispc_cinfo.pck_div;
4093
4094 r = dispc_calc_clock_rates(fck, &dispc_cinfo);
4095 if (r) {
4096 DSSERR("Failed to calc dispc clocks\n");
4097 return r;
4098 }
4099
4100 dsi->mgr_config.clock_info = dispc_cinfo;
4101
4102 return 0;
4103 }
4104
4105 static int dsi_display_init_dispc(struct platform_device *dsidev,
4106 struct omap_overlay_manager *mgr)
4107 {
4108 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4109 int r;
4110
4111 dss_select_lcd_clk_source(mgr->id, dsi->module_id == 0 ?
4112 OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC :
4113 OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC);
4114
4115 if (dsi->mode == OMAP_DSS_DSI_CMD_MODE) {
4116 r = dss_mgr_register_framedone_handler(mgr,
4117 dsi_framedone_irq_callback, dsidev);
4118 if (r) {
4119 DSSERR("can't register FRAMEDONE handler\n");
4120 goto err;
4121 }
4122
4123 dsi->mgr_config.stallmode = true;
4124 dsi->mgr_config.fifohandcheck = true;
4125 } else {
4126 dsi->mgr_config.stallmode = false;
4127 dsi->mgr_config.fifohandcheck = false;
4128 }
4129
4130 /*
4131 * override interlace, logic level and edge related parameters in
4132 * omap_video_timings with default values
4133 */
4134 dsi->timings.interlace = false;
4135 dsi->timings.hsync_level = OMAPDSS_SIG_ACTIVE_HIGH;
4136 dsi->timings.vsync_level = OMAPDSS_SIG_ACTIVE_HIGH;
4137 dsi->timings.data_pclk_edge = OMAPDSS_DRIVE_SIG_RISING_EDGE;
4138 dsi->timings.de_level = OMAPDSS_SIG_ACTIVE_HIGH;
4139 dsi->timings.sync_pclk_edge = OMAPDSS_DRIVE_SIG_FALLING_EDGE;
4140
4141 dss_mgr_set_timings(mgr, &dsi->timings);
4142
4143 r = dsi_configure_dispc_clocks(dsidev);
4144 if (r)
4145 goto err1;
4146
4147 dsi->mgr_config.io_pad_mode = DSS_IO_PAD_MODE_BYPASS;
4148 dsi->mgr_config.video_port_width =
4149 dsi_get_pixel_size(dsi->pix_fmt);
4150 dsi->mgr_config.lcden_sig_polarity = 0;
4151
4152 dss_mgr_set_lcd_config(mgr, &dsi->mgr_config);
4153
4154 return 0;
4155 err1:
4156 if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
4157 dss_mgr_unregister_framedone_handler(mgr,
4158 dsi_framedone_irq_callback, dsidev);
4159 err:
4160 dss_select_lcd_clk_source(mgr->id, OMAP_DSS_CLK_SRC_FCK);
4161 return r;
4162 }
4163
4164 static void dsi_display_uninit_dispc(struct platform_device *dsidev,
4165 struct omap_overlay_manager *mgr)
4166 {
4167 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4168
4169 if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
4170 dss_mgr_unregister_framedone_handler(mgr,
4171 dsi_framedone_irq_callback, dsidev);
4172
4173 dss_select_lcd_clk_source(mgr->id, OMAP_DSS_CLK_SRC_FCK);
4174 }
4175
4176 static int dsi_configure_dsi_clocks(struct platform_device *dsidev)
4177 {
4178 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4179 struct dss_pll_clock_info cinfo;
4180 int r;
4181
4182 cinfo = dsi->user_dsi_cinfo;
4183
4184 r = dss_pll_set_config(&dsi->pll, &cinfo);
4185 if (r) {
4186 DSSERR("Failed to set dsi clocks\n");
4187 return r;
4188 }
4189
4190 return 0;
4191 }
4192
4193 static int dsi_display_init_dsi(struct platform_device *dsidev)
4194 {
4195 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4196 int r;
4197
4198 r = dss_pll_enable(&dsi->pll);
4199 if (r)
4200 goto err0;
4201
4202 r = dsi_configure_dsi_clocks(dsidev);
4203 if (r)
4204 goto err1;
4205
4206 dss_select_dsi_clk_source(dsi->module_id, dsi->module_id == 0 ?
4207 OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DSI :
4208 OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DSI);
4209
4210 DSSDBG("PLL OK\n");
4211
4212 r = dsi_cio_init(dsidev);
4213 if (r)
4214 goto err2;
4215
4216 _dsi_print_reset_status(dsidev);
4217
4218 dsi_proto_timings(dsidev);
4219 dsi_set_lp_clk_divisor(dsidev);
4220
4221 if (1)
4222 _dsi_print_reset_status(dsidev);
4223
4224 r = dsi_proto_config(dsidev);
4225 if (r)
4226 goto err3;
4227
4228 /* enable interface */
4229 dsi_vc_enable(dsidev, 0, 1);
4230 dsi_vc_enable(dsidev, 1, 1);
4231 dsi_vc_enable(dsidev, 2, 1);
4232 dsi_vc_enable(dsidev, 3, 1);
4233 dsi_if_enable(dsidev, 1);
4234 dsi_force_tx_stop_mode_io(dsidev);
4235
4236 return 0;
4237 err3:
4238 dsi_cio_uninit(dsidev);
4239 err2:
4240 dss_select_dsi_clk_source(dsi->module_id, OMAP_DSS_CLK_SRC_FCK);
4241 err1:
4242 dss_pll_disable(&dsi->pll);
4243 err0:
4244 return r;
4245 }
4246
4247 static void dsi_display_uninit_dsi(struct platform_device *dsidev,
4248 bool disconnect_lanes, bool enter_ulps)
4249 {
4250 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4251
4252 if (enter_ulps && !dsi->ulps_enabled)
4253 dsi_enter_ulps(dsidev);
4254
4255 /* disable interface */
4256 dsi_if_enable(dsidev, 0);
4257 dsi_vc_enable(dsidev, 0, 0);
4258 dsi_vc_enable(dsidev, 1, 0);
4259 dsi_vc_enable(dsidev, 2, 0);
4260 dsi_vc_enable(dsidev, 3, 0);
4261
4262 dss_select_dsi_clk_source(dsi->module_id, OMAP_DSS_CLK_SRC_FCK);
4263 dsi_cio_uninit(dsidev);
4264 dsi_pll_uninit(dsidev, disconnect_lanes);
4265 }
4266
4267 static int dsi_display_enable(struct omap_dss_device *dssdev)
4268 {
4269 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4270 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4271 int r = 0;
4272
4273 DSSDBG("dsi_display_enable\n");
4274
4275 WARN_ON(!dsi_bus_is_locked(dsidev));
4276
4277 mutex_lock(&dsi->lock);
4278
4279 r = dsi_runtime_get(dsidev);
4280 if (r)
4281 goto err_get_dsi;
4282
4283 _dsi_initialize_irq(dsidev);
4284
4285 r = dsi_display_init_dsi(dsidev);
4286 if (r)
4287 goto err_init_dsi;
4288
4289 mutex_unlock(&dsi->lock);
4290
4291 return 0;
4292
4293 err_init_dsi:
4294 dsi_runtime_put(dsidev);
4295 err_get_dsi:
4296 mutex_unlock(&dsi->lock);
4297 DSSDBG("dsi_display_enable FAILED\n");
4298 return r;
4299 }
4300
4301 static void dsi_display_disable(struct omap_dss_device *dssdev,
4302 bool disconnect_lanes, bool enter_ulps)
4303 {
4304 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4305 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4306
4307 DSSDBG("dsi_display_disable\n");
4308
4309 WARN_ON(!dsi_bus_is_locked(dsidev));
4310
4311 mutex_lock(&dsi->lock);
4312
4313 dsi_sync_vc(dsidev, 0);
4314 dsi_sync_vc(dsidev, 1);
4315 dsi_sync_vc(dsidev, 2);
4316 dsi_sync_vc(dsidev, 3);
4317
4318 dsi_display_uninit_dsi(dsidev, disconnect_lanes, enter_ulps);
4319
4320 dsi_runtime_put(dsidev);
4321
4322 mutex_unlock(&dsi->lock);
4323 }
4324
4325 static int dsi_enable_te(struct omap_dss_device *dssdev, bool enable)
4326 {
4327 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4328 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4329
4330 dsi->te_enabled = enable;
4331 return 0;
4332 }
4333
4334 #ifdef PRINT_VERBOSE_VM_TIMINGS
4335 static void print_dsi_vm(const char *str,
4336 const struct omap_dss_dsi_videomode_timings *t)
4337 {
4338 unsigned long byteclk = t->hsclk / 4;
4339 int bl, wc, pps, tot;
4340
4341 wc = DIV_ROUND_UP(t->hact * t->bitspp, 8);
4342 pps = DIV_ROUND_UP(wc + 6, t->ndl); /* pixel packet size */
4343 bl = t->hss + t->hsa + t->hse + t->hbp + t->hfp;
4344 tot = bl + pps;
4345
4346 #define TO_DSI_T(x) ((u32)div64_u64((u64)x * 1000000000llu, byteclk))
4347
4348 pr_debug("%s bck %lu, %u/%u/%u/%u/%u/%u = %u+%u = %u, "
4349 "%u/%u/%u/%u/%u/%u = %u + %u = %u\n",
4350 str,
4351 byteclk,
4352 t->hss, t->hsa, t->hse, t->hbp, pps, t->hfp,
4353 bl, pps, tot,
4354 TO_DSI_T(t->hss),
4355 TO_DSI_T(t->hsa),
4356 TO_DSI_T(t->hse),
4357 TO_DSI_T(t->hbp),
4358 TO_DSI_T(pps),
4359 TO_DSI_T(t->hfp),
4360
4361 TO_DSI_T(bl),
4362 TO_DSI_T(pps),
4363
4364 TO_DSI_T(tot));
4365 #undef TO_DSI_T
4366 }
4367
4368 static void print_dispc_vm(const char *str, const struct omap_video_timings *t)
4369 {
4370 unsigned long pck = t->pixelclock;
4371 int hact, bl, tot;
4372
4373 hact = t->x_res;
4374 bl = t->hsw + t->hbp + t->hfp;
4375 tot = hact + bl;
4376
4377 #define TO_DISPC_T(x) ((u32)div64_u64((u64)x * 1000000000llu, pck))
4378
4379 pr_debug("%s pck %lu, %u/%u/%u/%u = %u+%u = %u, "
4380 "%u/%u/%u/%u = %u + %u = %u\n",
4381 str,
4382 pck,
4383 t->hsw, t->hbp, hact, t->hfp,
4384 bl, hact, tot,
4385 TO_DISPC_T(t->hsw),
4386 TO_DISPC_T(t->hbp),
4387 TO_DISPC_T(hact),
4388 TO_DISPC_T(t->hfp),
4389 TO_DISPC_T(bl),
4390 TO_DISPC_T(hact),
4391 TO_DISPC_T(tot));
4392 #undef TO_DISPC_T
4393 }
4394
4395 /* note: this is not quite accurate */
4396 static void print_dsi_dispc_vm(const char *str,
4397 const struct omap_dss_dsi_videomode_timings *t)
4398 {
4399 struct omap_video_timings vm = { 0 };
4400 unsigned long byteclk = t->hsclk / 4;
4401 unsigned long pck;
4402 u64 dsi_tput;
4403 int dsi_hact, dsi_htot;
4404
4405 dsi_tput = (u64)byteclk * t->ndl * 8;
4406 pck = (u32)div64_u64(dsi_tput, t->bitspp);
4407 dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(t->hact * t->bitspp, 8) + 6, t->ndl);
4408 dsi_htot = t->hss + t->hsa + t->hse + t->hbp + dsi_hact + t->hfp;
4409
4410 vm.pixelclock = pck;
4411 vm.hsw = div64_u64((u64)(t->hsa + t->hse) * pck, byteclk);
4412 vm.hbp = div64_u64((u64)t->hbp * pck, byteclk);
4413 vm.hfp = div64_u64((u64)t->hfp * pck, byteclk);
4414 vm.x_res = t->hact;
4415
4416 print_dispc_vm(str, &vm);
4417 }
4418 #endif /* PRINT_VERBOSE_VM_TIMINGS */
4419
4420 static bool dsi_cm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
4421 unsigned long pck, void *data)
4422 {
4423 struct dsi_clk_calc_ctx *ctx = data;
4424 struct omap_video_timings *t = &ctx->dispc_vm;
4425
4426 ctx->dispc_cinfo.lck_div = lckd;
4427 ctx->dispc_cinfo.pck_div = pckd;
4428 ctx->dispc_cinfo.lck = lck;
4429 ctx->dispc_cinfo.pck = pck;
4430
4431 *t = *ctx->config->timings;
4432 t->pixelclock = pck;
4433 t->x_res = ctx->config->timings->x_res;
4434 t->y_res = ctx->config->timings->y_res;
4435 t->hsw = t->hfp = t->hbp = t->vsw = 1;
4436 t->vfp = t->vbp = 0;
4437
4438 return true;
4439 }
4440
4441 static bool dsi_cm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
4442 void *data)
4443 {
4444 struct dsi_clk_calc_ctx *ctx = data;
4445
4446 ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
4447 ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
4448
4449 return dispc_div_calc(dispc, ctx->req_pck_min, ctx->req_pck_max,
4450 dsi_cm_calc_dispc_cb, ctx);
4451 }
4452
4453 static bool dsi_cm_calc_pll_cb(int n, int m, unsigned long fint,
4454 unsigned long clkdco, void *data)
4455 {
4456 struct dsi_clk_calc_ctx *ctx = data;
4457
4458 ctx->dsi_cinfo.n = n;
4459 ctx->dsi_cinfo.m = m;
4460 ctx->dsi_cinfo.fint = fint;
4461 ctx->dsi_cinfo.clkdco = clkdco;
4462
4463 return dss_pll_hsdiv_calc(ctx->pll, clkdco, ctx->req_pck_min,
4464 dss_feat_get_param_max(FEAT_PARAM_DSS_FCK),
4465 dsi_cm_calc_hsdiv_cb, ctx);
4466 }
4467
4468 static bool dsi_cm_calc(struct dsi_data *dsi,
4469 const struct omap_dss_dsi_config *cfg,
4470 struct dsi_clk_calc_ctx *ctx)
4471 {
4472 unsigned long clkin;
4473 int bitspp, ndl;
4474 unsigned long pll_min, pll_max;
4475 unsigned long pck, txbyteclk;
4476
4477 clkin = clk_get_rate(dsi->pll.clkin);
4478 bitspp = dsi_get_pixel_size(cfg->pixel_format);
4479 ndl = dsi->num_lanes_used - 1;
4480
4481 /*
4482 * Here we should calculate minimum txbyteclk to be able to send the
4483 * frame in time, and also to handle TE. That's not very simple, though,
4484 * especially as we go to LP between each pixel packet due to HW
4485 * "feature". So let's just estimate very roughly and multiply by 1.5.
4486 */
4487 pck = cfg->timings->pixelclock;
4488 pck = pck * 3 / 2;
4489 txbyteclk = pck * bitspp / 8 / ndl;
4490
4491 memset(ctx, 0, sizeof(*ctx));
4492 ctx->dsidev = dsi->pdev;
4493 ctx->pll = &dsi->pll;
4494 ctx->config = cfg;
4495 ctx->req_pck_min = pck;
4496 ctx->req_pck_nom = pck;
4497 ctx->req_pck_max = pck * 3 / 2;
4498
4499 pll_min = max(cfg->hs_clk_min * 4, txbyteclk * 4 * 4);
4500 pll_max = cfg->hs_clk_max * 4;
4501
4502 return dss_pll_calc(ctx->pll, clkin,
4503 pll_min, pll_max,
4504 dsi_cm_calc_pll_cb, ctx);
4505 }
4506
4507 static bool dsi_vm_calc_blanking(struct dsi_clk_calc_ctx *ctx)
4508 {
4509 struct dsi_data *dsi = dsi_get_dsidrv_data(ctx->dsidev);
4510 const struct omap_dss_dsi_config *cfg = ctx->config;
4511 int bitspp = dsi_get_pixel_size(cfg->pixel_format);
4512 int ndl = dsi->num_lanes_used - 1;
4513 unsigned long hsclk = ctx->dsi_cinfo.clkdco / 4;
4514 unsigned long byteclk = hsclk / 4;
4515
4516 unsigned long dispc_pck, req_pck_min, req_pck_nom, req_pck_max;
4517 int xres;
4518 int panel_htot, panel_hbl; /* pixels */
4519 int dispc_htot, dispc_hbl; /* pixels */
4520 int dsi_htot, dsi_hact, dsi_hbl, hss, hse; /* byteclks */
4521 int hfp, hsa, hbp;
4522 const struct omap_video_timings *req_vm;
4523 struct omap_video_timings *dispc_vm;
4524 struct omap_dss_dsi_videomode_timings *dsi_vm;
4525 u64 dsi_tput, dispc_tput;
4526
4527 dsi_tput = (u64)byteclk * ndl * 8;
4528
4529 req_vm = cfg->timings;
4530 req_pck_min = ctx->req_pck_min;
4531 req_pck_max = ctx->req_pck_max;
4532 req_pck_nom = ctx->req_pck_nom;
4533
4534 dispc_pck = ctx->dispc_cinfo.pck;
4535 dispc_tput = (u64)dispc_pck * bitspp;
4536
4537 xres = req_vm->x_res;
4538
4539 panel_hbl = req_vm->hfp + req_vm->hbp + req_vm->hsw;
4540 panel_htot = xres + panel_hbl;
4541
4542 dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(xres * bitspp, 8) + 6, ndl);
4543
4544 /*
4545 * When there are no line buffers, DISPC and DSI must have the
4546 * same tput. Otherwise DISPC tput needs to be higher than DSI's.
4547 */
4548 if (dsi->line_buffer_size < xres * bitspp / 8) {
4549 if (dispc_tput != dsi_tput)
4550 return false;
4551 } else {
4552 if (dispc_tput < dsi_tput)
4553 return false;
4554 }
4555
4556 /* DSI tput must be over the min requirement */
4557 if (dsi_tput < (u64)bitspp * req_pck_min)
4558 return false;
4559
4560 /* When non-burst mode, DSI tput must be below max requirement. */
4561 if (cfg->trans_mode != OMAP_DSS_DSI_BURST_MODE) {
4562 if (dsi_tput > (u64)bitspp * req_pck_max)
4563 return false;
4564 }
4565
4566 hss = DIV_ROUND_UP(4, ndl);
4567
4568 if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
4569 if (ndl == 3 && req_vm->hsw == 0)
4570 hse = 1;
4571 else
4572 hse = DIV_ROUND_UP(4, ndl);
4573 } else {
4574 hse = 0;
4575 }
4576
4577 /* DSI htot to match the panel's nominal pck */
4578 dsi_htot = div64_u64((u64)panel_htot * byteclk, req_pck_nom);
4579
4580 /* fail if there would be no time for blanking */
4581 if (dsi_htot < hss + hse + dsi_hact)
4582 return false;
4583
4584 /* total DSI blanking needed to achieve panel's TL */
4585 dsi_hbl = dsi_htot - dsi_hact;
4586
4587 /* DISPC htot to match the DSI TL */
4588 dispc_htot = div64_u64((u64)dsi_htot * dispc_pck, byteclk);
4589
4590 /* verify that the DSI and DISPC TLs are the same */
4591 if ((u64)dsi_htot * dispc_pck != (u64)dispc_htot * byteclk)
4592 return false;
4593
4594 dispc_hbl = dispc_htot - xres;
4595
4596 /* setup DSI videomode */
4597
4598 dsi_vm = &ctx->dsi_vm;
4599 memset(dsi_vm, 0, sizeof(*dsi_vm));
4600
4601 dsi_vm->hsclk = hsclk;
4602
4603 dsi_vm->ndl = ndl;
4604 dsi_vm->bitspp = bitspp;
4605
4606 if (cfg->trans_mode != OMAP_DSS_DSI_PULSE_MODE) {
4607 hsa = 0;
4608 } else if (ndl == 3 && req_vm->hsw == 0) {
4609 hsa = 0;
4610 } else {
4611 hsa = div64_u64((u64)req_vm->hsw * byteclk, req_pck_nom);
4612 hsa = max(hsa - hse, 1);
4613 }
4614
4615 hbp = div64_u64((u64)req_vm->hbp * byteclk, req_pck_nom);
4616 hbp = max(hbp, 1);
4617
4618 hfp = dsi_hbl - (hss + hsa + hse + hbp);
4619 if (hfp < 1) {
4620 int t;
4621 /* we need to take cycles from hbp */
4622
4623 t = 1 - hfp;
4624 hbp = max(hbp - t, 1);
4625 hfp = dsi_hbl - (hss + hsa + hse + hbp);
4626
4627 if (hfp < 1 && hsa > 0) {
4628 /* we need to take cycles from hsa */
4629 t = 1 - hfp;
4630 hsa = max(hsa - t, 1);
4631 hfp = dsi_hbl - (hss + hsa + hse + hbp);
4632 }
4633 }
4634
4635 if (hfp < 1)
4636 return false;
4637
4638 dsi_vm->hss = hss;
4639 dsi_vm->hsa = hsa;
4640 dsi_vm->hse = hse;
4641 dsi_vm->hbp = hbp;
4642 dsi_vm->hact = xres;
4643 dsi_vm->hfp = hfp;
4644
4645 dsi_vm->vsa = req_vm->vsw;
4646 dsi_vm->vbp = req_vm->vbp;
4647 dsi_vm->vact = req_vm->y_res;
4648 dsi_vm->vfp = req_vm->vfp;
4649
4650 dsi_vm->trans_mode = cfg->trans_mode;
4651
4652 dsi_vm->blanking_mode = 0;
4653 dsi_vm->hsa_blanking_mode = 1;
4654 dsi_vm->hfp_blanking_mode = 1;
4655 dsi_vm->hbp_blanking_mode = 1;
4656
4657 dsi_vm->ddr_clk_always_on = cfg->ddr_clk_always_on;
4658 dsi_vm->window_sync = 4;
4659
4660 /* setup DISPC videomode */
4661
4662 dispc_vm = &ctx->dispc_vm;
4663 *dispc_vm = *req_vm;
4664 dispc_vm->pixelclock = dispc_pck;
4665
4666 if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
4667 hsa = div64_u64((u64)req_vm->hsw * dispc_pck,
4668 req_pck_nom);
4669 hsa = max(hsa, 1);
4670 } else {
4671 hsa = 1;
4672 }
4673
4674 hbp = div64_u64((u64)req_vm->hbp * dispc_pck, req_pck_nom);
4675 hbp = max(hbp, 1);
4676
4677 hfp = dispc_hbl - hsa - hbp;
4678 if (hfp < 1) {
4679 int t;
4680 /* we need to take cycles from hbp */
4681
4682 t = 1 - hfp;
4683 hbp = max(hbp - t, 1);
4684 hfp = dispc_hbl - hsa - hbp;
4685
4686 if (hfp < 1) {
4687 /* we need to take cycles from hsa */
4688 t = 1 - hfp;
4689 hsa = max(hsa - t, 1);
4690 hfp = dispc_hbl - hsa - hbp;
4691 }
4692 }
4693
4694 if (hfp < 1)
4695 return false;
4696
4697 dispc_vm->hfp = hfp;
4698 dispc_vm->hsw = hsa;
4699 dispc_vm->hbp = hbp;
4700
4701 return true;
4702 }
4703
4704
4705 static bool dsi_vm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
4706 unsigned long pck, void *data)
4707 {
4708 struct dsi_clk_calc_ctx *ctx = data;
4709
4710 ctx->dispc_cinfo.lck_div = lckd;
4711 ctx->dispc_cinfo.pck_div = pckd;
4712 ctx->dispc_cinfo.lck = lck;
4713 ctx->dispc_cinfo.pck = pck;
4714
4715 if (dsi_vm_calc_blanking(ctx) == false)
4716 return false;
4717
4718 #ifdef PRINT_VERBOSE_VM_TIMINGS
4719 print_dispc_vm("dispc", &ctx->dispc_vm);
4720 print_dsi_vm("dsi ", &ctx->dsi_vm);
4721 print_dispc_vm("req ", ctx->config->timings);
4722 print_dsi_dispc_vm("act ", &ctx->dsi_vm);
4723 #endif
4724
4725 return true;
4726 }
4727
4728 static bool dsi_vm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
4729 void *data)
4730 {
4731 struct dsi_clk_calc_ctx *ctx = data;
4732 unsigned long pck_max;
4733
4734 ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
4735 ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
4736
4737 /*
4738 * In burst mode we can let the dispc pck be arbitrarily high, but it
4739 * limits our scaling abilities. So for now, don't aim too high.
4740 */
4741
4742 if (ctx->config->trans_mode == OMAP_DSS_DSI_BURST_MODE)
4743 pck_max = ctx->req_pck_max + 10000000;
4744 else
4745 pck_max = ctx->req_pck_max;
4746
4747 return dispc_div_calc(dispc, ctx->req_pck_min, pck_max,
4748 dsi_vm_calc_dispc_cb, ctx);
4749 }
4750
4751 static bool dsi_vm_calc_pll_cb(int n, int m, unsigned long fint,
4752 unsigned long clkdco, void *data)
4753 {
4754 struct dsi_clk_calc_ctx *ctx = data;
4755
4756 ctx->dsi_cinfo.n = n;
4757 ctx->dsi_cinfo.m = m;
4758 ctx->dsi_cinfo.fint = fint;
4759 ctx->dsi_cinfo.clkdco = clkdco;
4760
4761 return dss_pll_hsdiv_calc(ctx->pll, clkdco, ctx->req_pck_min,
4762 dss_feat_get_param_max(FEAT_PARAM_DSS_FCK),
4763 dsi_vm_calc_hsdiv_cb, ctx);
4764 }
4765
4766 static bool dsi_vm_calc(struct dsi_data *dsi,
4767 const struct omap_dss_dsi_config *cfg,
4768 struct dsi_clk_calc_ctx *ctx)
4769 {
4770 const struct omap_video_timings *t = cfg->timings;
4771 unsigned long clkin;
4772 unsigned long pll_min;
4773 unsigned long pll_max;
4774 int ndl = dsi->num_lanes_used - 1;
4775 int bitspp = dsi_get_pixel_size(cfg->pixel_format);
4776 unsigned long byteclk_min;
4777
4778 clkin = clk_get_rate(dsi->pll.clkin);
4779
4780 memset(ctx, 0, sizeof(*ctx));
4781 ctx->dsidev = dsi->pdev;
4782 ctx->pll = &dsi->pll;
4783 ctx->config = cfg;
4784
4785 /* these limits should come from the panel driver */
4786 ctx->req_pck_min = t->pixelclock - 1000;
4787 ctx->req_pck_nom = t->pixelclock;
4788 ctx->req_pck_max = t->pixelclock + 1000;
4789
4790 byteclk_min = div64_u64((u64)ctx->req_pck_min * bitspp, ndl * 8);
4791 pll_min = max(cfg->hs_clk_min * 4, byteclk_min * 4 * 4);
4792
4793 if (cfg->trans_mode == OMAP_DSS_DSI_BURST_MODE) {
4794 pll_max = cfg->hs_clk_max * 4;
4795 } else {
4796 unsigned long byteclk_max;
4797 byteclk_max = div64_u64((u64)ctx->req_pck_max * bitspp,
4798 ndl * 8);
4799
4800 pll_max = byteclk_max * 4 * 4;
4801 }
4802
4803 return dss_pll_calc(ctx->pll, clkin,
4804 pll_min, pll_max,
4805 dsi_vm_calc_pll_cb, ctx);
4806 }
4807
4808 static int dsi_set_config(struct omap_dss_device *dssdev,
4809 const struct omap_dss_dsi_config *config)
4810 {
4811 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4812 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4813 struct dsi_clk_calc_ctx ctx;
4814 bool ok;
4815 int r;
4816
4817 mutex_lock(&dsi->lock);
4818
4819 dsi->pix_fmt = config->pixel_format;
4820 dsi->mode = config->mode;
4821
4822 if (config->mode == OMAP_DSS_DSI_VIDEO_MODE)
4823 ok = dsi_vm_calc(dsi, config, &ctx);
4824 else
4825 ok = dsi_cm_calc(dsi, config, &ctx);
4826
4827 if (!ok) {
4828 DSSERR("failed to find suitable DSI clock settings\n");
4829 r = -EINVAL;
4830 goto err;
4831 }
4832
4833 dsi_pll_calc_dsi_fck(&ctx.dsi_cinfo);
4834
4835 r = dsi_lp_clock_calc(ctx.dsi_cinfo.clkout[HSDIV_DSI],
4836 config->lp_clk_min, config->lp_clk_max, &dsi->user_lp_cinfo);
4837 if (r) {
4838 DSSERR("failed to find suitable DSI LP clock settings\n");
4839 goto err;
4840 }
4841
4842 dsi->user_dsi_cinfo = ctx.dsi_cinfo;
4843 dsi->user_dispc_cinfo = ctx.dispc_cinfo;
4844
4845 dsi->timings = ctx.dispc_vm;
4846 dsi->vm_timings = ctx.dsi_vm;
4847
4848 mutex_unlock(&dsi->lock);
4849
4850 return 0;
4851 err:
4852 mutex_unlock(&dsi->lock);
4853
4854 return r;
4855 }
4856
4857 /*
4858 * Return a hardcoded channel for the DSI output. This should work for
4859 * current use cases, but this can be later expanded to either resolve
4860 * the channel in some more dynamic manner, or get the channel as a user
4861 * parameter.
4862 */
4863 static enum omap_channel dsi_get_channel(int module_id)
4864 {
4865 switch (omapdss_get_version()) {
4866 case OMAPDSS_VER_OMAP24xx:
4867 case OMAPDSS_VER_AM43xx:
4868 DSSWARN("DSI not supported\n");
4869 return OMAP_DSS_CHANNEL_LCD;
4870
4871 case OMAPDSS_VER_OMAP34xx_ES1:
4872 case OMAPDSS_VER_OMAP34xx_ES3:
4873 case OMAPDSS_VER_OMAP3630:
4874 case OMAPDSS_VER_AM35xx:
4875 return OMAP_DSS_CHANNEL_LCD;
4876
4877 case OMAPDSS_VER_OMAP4430_ES1:
4878 case OMAPDSS_VER_OMAP4430_ES2:
4879 case OMAPDSS_VER_OMAP4:
4880 switch (module_id) {
4881 case 0:
4882 return OMAP_DSS_CHANNEL_LCD;
4883 case 1:
4884 return OMAP_DSS_CHANNEL_LCD2;
4885 default:
4886 DSSWARN("unsupported module id\n");
4887 return OMAP_DSS_CHANNEL_LCD;
4888 }
4889
4890 case OMAPDSS_VER_OMAP5:
4891 switch (module_id) {
4892 case 0:
4893 return OMAP_DSS_CHANNEL_LCD;
4894 case 1:
4895 return OMAP_DSS_CHANNEL_LCD3;
4896 default:
4897 DSSWARN("unsupported module id\n");
4898 return OMAP_DSS_CHANNEL_LCD;
4899 }
4900
4901 default:
4902 DSSWARN("unsupported DSS version\n");
4903 return OMAP_DSS_CHANNEL_LCD;
4904 }
4905 }
4906
4907 static int dsi_request_vc(struct omap_dss_device *dssdev, int *channel)
4908 {
4909 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4910 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4911 int i;
4912
4913 for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
4914 if (!dsi->vc[i].dssdev) {
4915 dsi->vc[i].dssdev = dssdev;
4916 *channel = i;
4917 return 0;
4918 }
4919 }
4920
4921 DSSERR("cannot get VC for display %s", dssdev->name);
4922 return -ENOSPC;
4923 }
4924
4925 static int dsi_set_vc_id(struct omap_dss_device *dssdev, int channel, int vc_id)
4926 {
4927 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4928 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4929
4930 if (vc_id < 0 || vc_id > 3) {
4931 DSSERR("VC ID out of range\n");
4932 return -EINVAL;
4933 }
4934
4935 if (channel < 0 || channel > 3) {
4936 DSSERR("Virtual Channel out of range\n");
4937 return -EINVAL;
4938 }
4939
4940 if (dsi->vc[channel].dssdev != dssdev) {
4941 DSSERR("Virtual Channel not allocated to display %s\n",
4942 dssdev->name);
4943 return -EINVAL;
4944 }
4945
4946 dsi->vc[channel].vc_id = vc_id;
4947
4948 return 0;
4949 }
4950
4951 static void dsi_release_vc(struct omap_dss_device *dssdev, int channel)
4952 {
4953 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4954 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4955
4956 if ((channel >= 0 && channel <= 3) &&
4957 dsi->vc[channel].dssdev == dssdev) {
4958 dsi->vc[channel].dssdev = NULL;
4959 dsi->vc[channel].vc_id = 0;
4960 }
4961 }
4962
4963
4964 static int dsi_get_clocks(struct platform_device *dsidev)
4965 {
4966 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4967 struct clk *clk;
4968
4969 clk = devm_clk_get(&dsidev->dev, "fck");
4970 if (IS_ERR(clk)) {
4971 DSSERR("can't get fck\n");
4972 return PTR_ERR(clk);
4973 }
4974
4975 dsi->dss_clk = clk;
4976
4977 return 0;
4978 }
4979
4980 static int dsi_connect(struct omap_dss_device *dssdev,
4981 struct omap_dss_device *dst)
4982 {
4983 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4984 struct omap_overlay_manager *mgr;
4985 int r;
4986
4987 r = dsi_regulator_init(dsidev);
4988 if (r)
4989 return r;
4990
4991 mgr = omap_dss_get_overlay_manager(dssdev->dispc_channel);
4992 if (!mgr)
4993 return -ENODEV;
4994
4995 r = dss_mgr_connect(mgr, dssdev);
4996 if (r)
4997 return r;
4998
4999 r = omapdss_output_set_device(dssdev, dst);
5000 if (r) {
5001 DSSERR("failed to connect output to new device: %s\n",
5002 dssdev->name);
5003 dss_mgr_disconnect(mgr, dssdev);
5004 return r;
5005 }
5006
5007 return 0;
5008 }
5009
5010 static void dsi_disconnect(struct omap_dss_device *dssdev,
5011 struct omap_dss_device *dst)
5012 {
5013 WARN_ON(dst != dssdev->dst);
5014
5015 if (dst != dssdev->dst)
5016 return;
5017
5018 omapdss_output_unset_device(dssdev);
5019
5020 if (dssdev->manager)
5021 dss_mgr_disconnect(dssdev->manager, dssdev);
5022 }
5023
5024 static const struct omapdss_dsi_ops dsi_ops = {
5025 .connect = dsi_connect,
5026 .disconnect = dsi_disconnect,
5027
5028 .bus_lock = dsi_bus_lock,
5029 .bus_unlock = dsi_bus_unlock,
5030
5031 .enable = dsi_display_enable,
5032 .disable = dsi_display_disable,
5033
5034 .enable_hs = dsi_vc_enable_hs,
5035
5036 .configure_pins = dsi_configure_pins,
5037 .set_config = dsi_set_config,
5038
5039 .enable_video_output = dsi_enable_video_output,
5040 .disable_video_output = dsi_disable_video_output,
5041
5042 .update = dsi_update,
5043
5044 .enable_te = dsi_enable_te,
5045
5046 .request_vc = dsi_request_vc,
5047 .set_vc_id = dsi_set_vc_id,
5048 .release_vc = dsi_release_vc,
5049
5050 .dcs_write = dsi_vc_dcs_write,
5051 .dcs_write_nosync = dsi_vc_dcs_write_nosync,
5052 .dcs_read = dsi_vc_dcs_read,
5053
5054 .gen_write = dsi_vc_generic_write,
5055 .gen_write_nosync = dsi_vc_generic_write_nosync,
5056 .gen_read = dsi_vc_generic_read,
5057
5058 .bta_sync = dsi_vc_send_bta_sync,
5059
5060 .set_max_rx_packet_size = dsi_vc_set_max_rx_packet_size,
5061 };
5062
5063 static void dsi_init_output(struct platform_device *dsidev)
5064 {
5065 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5066 struct omap_dss_device *out = &dsi->output;
5067
5068 out->dev = &dsidev->dev;
5069 out->id = dsi->module_id == 0 ?
5070 OMAP_DSS_OUTPUT_DSI1 : OMAP_DSS_OUTPUT_DSI2;
5071
5072 out->output_type = OMAP_DISPLAY_TYPE_DSI;
5073 out->name = dsi->module_id == 0 ? "dsi.0" : "dsi.1";
5074 out->dispc_channel = dsi_get_channel(dsi->module_id);
5075 out->ops.dsi = &dsi_ops;
5076 out->owner = THIS_MODULE;
5077
5078 omapdss_register_output(out);
5079 }
5080
5081 static void dsi_uninit_output(struct platform_device *dsidev)
5082 {
5083 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5084 struct omap_dss_device *out = &dsi->output;
5085
5086 omapdss_unregister_output(out);
5087 }
5088
5089 static int dsi_probe_of(struct platform_device *pdev)
5090 {
5091 struct device_node *node = pdev->dev.of_node;
5092 struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5093 struct property *prop;
5094 u32 lane_arr[10];
5095 int len, num_pins;
5096 int r, i;
5097 struct device_node *ep;
5098 struct omap_dsi_pin_config pin_cfg;
5099
5100 ep = omapdss_of_get_first_endpoint(node);
5101 if (!ep)
5102 return 0;
5103
5104 prop = of_find_property(ep, "lanes", &len);
5105 if (prop == NULL) {
5106 dev_err(&pdev->dev, "failed to find lane data\n");
5107 r = -EINVAL;
5108 goto err;
5109 }
5110
5111 num_pins = len / sizeof(u32);
5112
5113 if (num_pins < 4 || num_pins % 2 != 0 ||
5114 num_pins > dsi->num_lanes_supported * 2) {
5115 dev_err(&pdev->dev, "bad number of lanes\n");
5116 r = -EINVAL;
5117 goto err;
5118 }
5119
5120 r = of_property_read_u32_array(ep, "lanes", lane_arr, num_pins);
5121 if (r) {
5122 dev_err(&pdev->dev, "failed to read lane data\n");
5123 goto err;
5124 }
5125
5126 pin_cfg.num_pins = num_pins;
5127 for (i = 0; i < num_pins; ++i)
5128 pin_cfg.pins[i] = (int)lane_arr[i];
5129
5130 r = dsi_configure_pins(&dsi->output, &pin_cfg);
5131 if (r) {
5132 dev_err(&pdev->dev, "failed to configure pins");
5133 goto err;
5134 }
5135
5136 of_node_put(ep);
5137
5138 return 0;
5139
5140 err:
5141 of_node_put(ep);
5142 return r;
5143 }
5144
5145 static const struct dss_pll_ops dsi_pll_ops = {
5146 .enable = dsi_pll_enable,
5147 .disable = dsi_pll_disable,
5148 .set_config = dss_pll_write_config_type_a,
5149 };
5150
5151 static const struct dss_pll_hw dss_omap3_dsi_pll_hw = {
5152 .n_max = (1 << 7) - 1,
5153 .m_max = (1 << 11) - 1,
5154 .mX_max = (1 << 4) - 1,
5155 .fint_min = 750000,
5156 .fint_max = 2100000,
5157 .clkdco_low = 1000000000,
5158 .clkdco_max = 1800000000,
5159
5160 .n_msb = 7,
5161 .n_lsb = 1,
5162 .m_msb = 18,
5163 .m_lsb = 8,
5164
5165 .mX_msb[0] = 22,
5166 .mX_lsb[0] = 19,
5167 .mX_msb[1] = 26,
5168 .mX_lsb[1] = 23,
5169
5170 .has_stopmode = true,
5171 .has_freqsel = true,
5172 .has_selfreqdco = false,
5173 .has_refsel = false,
5174 };
5175
5176 static const struct dss_pll_hw dss_omap4_dsi_pll_hw = {
5177 .n_max = (1 << 8) - 1,
5178 .m_max = (1 << 12) - 1,
5179 .mX_max = (1 << 5) - 1,
5180 .fint_min = 500000,
5181 .fint_max = 2500000,
5182 .clkdco_low = 1000000000,
5183 .clkdco_max = 1800000000,
5184
5185 .n_msb = 8,
5186 .n_lsb = 1,
5187 .m_msb = 20,
5188 .m_lsb = 9,
5189
5190 .mX_msb[0] = 25,
5191 .mX_lsb[0] = 21,
5192 .mX_msb[1] = 30,
5193 .mX_lsb[1] = 26,
5194
5195 .has_stopmode = true,
5196 .has_freqsel = false,
5197 .has_selfreqdco = false,
5198 .has_refsel = false,
5199 };
5200
5201 static const struct dss_pll_hw dss_omap5_dsi_pll_hw = {
5202 .n_max = (1 << 8) - 1,
5203 .m_max = (1 << 12) - 1,
5204 .mX_max = (1 << 5) - 1,
5205 .fint_min = 150000,
5206 .fint_max = 52000000,
5207 .clkdco_low = 1000000000,
5208 .clkdco_max = 1800000000,
5209
5210 .n_msb = 8,
5211 .n_lsb = 1,
5212 .m_msb = 20,
5213 .m_lsb = 9,
5214
5215 .mX_msb[0] = 25,
5216 .mX_lsb[0] = 21,
5217 .mX_msb[1] = 30,
5218 .mX_lsb[1] = 26,
5219
5220 .has_stopmode = true,
5221 .has_freqsel = false,
5222 .has_selfreqdco = true,
5223 .has_refsel = true,
5224 };
5225
5226 static int dsi_init_pll_data(struct platform_device *dsidev)
5227 {
5228 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5229 struct dss_pll *pll = &dsi->pll;
5230 struct clk *clk;
5231 int r;
5232
5233 clk = devm_clk_get(&dsidev->dev, "sys_clk");
5234 if (IS_ERR(clk)) {
5235 DSSERR("can't get sys_clk\n");
5236 return PTR_ERR(clk);
5237 }
5238
5239 pll->name = dsi->module_id == 0 ? "dsi0" : "dsi1";
5240 pll->id = dsi->module_id == 0 ? DSS_PLL_DSI1 : DSS_PLL_DSI2;
5241 pll->clkin = clk;
5242 pll->base = dsi->pll_base;
5243
5244 switch (omapdss_get_version()) {
5245 case OMAPDSS_VER_OMAP34xx_ES1:
5246 case OMAPDSS_VER_OMAP34xx_ES3:
5247 case OMAPDSS_VER_OMAP3630:
5248 case OMAPDSS_VER_AM35xx:
5249 pll->hw = &dss_omap3_dsi_pll_hw;
5250 break;
5251
5252 case OMAPDSS_VER_OMAP4430_ES1:
5253 case OMAPDSS_VER_OMAP4430_ES2:
5254 case OMAPDSS_VER_OMAP4:
5255 pll->hw = &dss_omap4_dsi_pll_hw;
5256 break;
5257
5258 case OMAPDSS_VER_OMAP5:
5259 pll->hw = &dss_omap5_dsi_pll_hw;
5260 break;
5261
5262 default:
5263 return -ENODEV;
5264 }
5265
5266 pll->ops = &dsi_pll_ops;
5267
5268 r = dss_pll_register(pll);
5269 if (r)
5270 return r;
5271
5272 return 0;
5273 }
5274
5275 /* DSI1 HW IP initialisation */
5276 static int dsi_bind(struct device *dev, struct device *master, void *data)
5277 {
5278 struct platform_device *dsidev = to_platform_device(dev);
5279 u32 rev;
5280 int r, i;
5281 struct dsi_data *dsi;
5282 struct resource *dsi_mem;
5283 struct resource *res;
5284 struct resource temp_res;
5285
5286 dsi = devm_kzalloc(&dsidev->dev, sizeof(*dsi), GFP_KERNEL);
5287 if (!dsi)
5288 return -ENOMEM;
5289
5290 dsi->pdev = dsidev;
5291 dev_set_drvdata(&dsidev->dev, dsi);
5292
5293 spin_lock_init(&dsi->irq_lock);
5294 spin_lock_init(&dsi->errors_lock);
5295 dsi->errors = 0;
5296
5297 #ifdef CONFIG_FB_OMAP2_DSS_COLLECT_IRQ_STATS
5298 spin_lock_init(&dsi->irq_stats_lock);
5299 dsi->irq_stats.last_reset = jiffies;
5300 #endif
5301
5302 mutex_init(&dsi->lock);
5303 sema_init(&dsi->bus_lock, 1);
5304
5305 INIT_DEFERRABLE_WORK(&dsi->framedone_timeout_work,
5306 dsi_framedone_timeout_work_callback);
5307
5308 #ifdef DSI_CATCH_MISSING_TE
5309 init_timer(&dsi->te_timer);
5310 dsi->te_timer.function = dsi_te_timeout;
5311 dsi->te_timer.data = 0;
5312 #endif
5313
5314 res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "proto");
5315 if (!res) {
5316 res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5317 if (!res) {
5318 DSSERR("can't get IORESOURCE_MEM DSI\n");
5319 return -EINVAL;
5320 }
5321
5322 temp_res.start = res->start;
5323 temp_res.end = temp_res.start + DSI_PROTO_SZ - 1;
5324 res = &temp_res;
5325 }
5326
5327 dsi_mem = res;
5328
5329 dsi->proto_base = devm_ioremap(&dsidev->dev, res->start,
5330 resource_size(res));
5331 if (!dsi->proto_base) {
5332 DSSERR("can't ioremap DSI protocol engine\n");
5333 return -ENOMEM;
5334 }
5335
5336 res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "phy");
5337 if (!res) {
5338 res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5339 if (!res) {
5340 DSSERR("can't get IORESOURCE_MEM DSI\n");
5341 return -EINVAL;
5342 }
5343
5344 temp_res.start = res->start + DSI_PHY_OFFSET;
5345 temp_res.end = temp_res.start + DSI_PHY_SZ - 1;
5346 res = &temp_res;
5347 }
5348
5349 dsi->phy_base = devm_ioremap(&dsidev->dev, res->start,
5350 resource_size(res));
5351 if (!dsi->proto_base) {
5352 DSSERR("can't ioremap DSI PHY\n");
5353 return -ENOMEM;
5354 }
5355
5356 res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "pll");
5357 if (!res) {
5358 res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5359 if (!res) {
5360 DSSERR("can't get IORESOURCE_MEM DSI\n");
5361 return -EINVAL;
5362 }
5363
5364 temp_res.start = res->start + DSI_PLL_OFFSET;
5365 temp_res.end = temp_res.start + DSI_PLL_SZ - 1;
5366 res = &temp_res;
5367 }
5368
5369 dsi->pll_base = devm_ioremap(&dsidev->dev, res->start,
5370 resource_size(res));
5371 if (!dsi->proto_base) {
5372 DSSERR("can't ioremap DSI PLL\n");
5373 return -ENOMEM;
5374 }
5375
5376 dsi->irq = platform_get_irq(dsi->pdev, 0);
5377 if (dsi->irq < 0) {
5378 DSSERR("platform_get_irq failed\n");
5379 return -ENODEV;
5380 }
5381
5382 r = devm_request_irq(&dsidev->dev, dsi->irq, omap_dsi_irq_handler,
5383 IRQF_SHARED, dev_name(&dsidev->dev), dsi->pdev);
5384 if (r < 0) {
5385 DSSERR("request_irq failed\n");
5386 return r;
5387 }
5388
5389 if (dsidev->dev.of_node) {
5390 const struct of_device_id *match;
5391 const struct dsi_module_id_data *d;
5392
5393 match = of_match_node(dsi_of_match, dsidev->dev.of_node);
5394 if (!match) {
5395 DSSERR("unsupported DSI module\n");
5396 return -ENODEV;
5397 }
5398
5399 d = match->data;
5400
5401 while (d->address != 0 && d->address != dsi_mem->start)
5402 d++;
5403
5404 if (d->address == 0) {
5405 DSSERR("unsupported DSI module\n");
5406 return -ENODEV;
5407 }
5408
5409 dsi->module_id = d->id;
5410 } else {
5411 dsi->module_id = dsidev->id;
5412 }
5413
5414 /* DSI VCs initialization */
5415 for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
5416 dsi->vc[i].source = DSI_VC_SOURCE_L4;
5417 dsi->vc[i].dssdev = NULL;
5418 dsi->vc[i].vc_id = 0;
5419 }
5420
5421 r = dsi_get_clocks(dsidev);
5422 if (r)
5423 return r;
5424
5425 dsi_init_pll_data(dsidev);
5426
5427 pm_runtime_enable(&dsidev->dev);
5428
5429 r = dsi_runtime_get(dsidev);
5430 if (r)
5431 goto err_runtime_get;
5432
5433 rev = dsi_read_reg(dsidev, DSI_REVISION);
5434 dev_dbg(&dsidev->dev, "OMAP DSI rev %d.%d\n",
5435 FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
5436
5437 /* DSI on OMAP3 doesn't have register DSI_GNQ, set number
5438 * of data to 3 by default */
5439 if (dss_has_feature(FEAT_DSI_GNQ))
5440 /* NB_DATA_LANES */
5441 dsi->num_lanes_supported = 1 + REG_GET(dsidev, DSI_GNQ, 11, 9);
5442 else
5443 dsi->num_lanes_supported = 3;
5444
5445 dsi->line_buffer_size = dsi_get_line_buf_size(dsidev);
5446
5447 dsi_init_output(dsidev);
5448
5449 if (dsidev->dev.of_node) {
5450 r = dsi_probe_of(dsidev);
5451 if (r) {
5452 DSSERR("Invalid DSI DT data\n");
5453 goto err_probe_of;
5454 }
5455
5456 r = of_platform_populate(dsidev->dev.of_node, NULL, NULL,
5457 &dsidev->dev);
5458 if (r)
5459 DSSERR("Failed to populate DSI child devices: %d\n", r);
5460 }
5461
5462 dsi_runtime_put(dsidev);
5463
5464 if (dsi->module_id == 0)
5465 dss_debugfs_create_file("dsi1_regs", dsi1_dump_regs);
5466 else if (dsi->module_id == 1)
5467 dss_debugfs_create_file("dsi2_regs", dsi2_dump_regs);
5468
5469 #ifdef CONFIG_FB_OMAP2_DSS_COLLECT_IRQ_STATS
5470 if (dsi->module_id == 0)
5471 dss_debugfs_create_file("dsi1_irqs", dsi1_dump_irqs);
5472 else if (dsi->module_id == 1)
5473 dss_debugfs_create_file("dsi2_irqs", dsi2_dump_irqs);
5474 #endif
5475
5476 return 0;
5477
5478 err_probe_of:
5479 dsi_uninit_output(dsidev);
5480 dsi_runtime_put(dsidev);
5481
5482 err_runtime_get:
5483 pm_runtime_disable(&dsidev->dev);
5484 return r;
5485 }
5486
5487 static void dsi_unbind(struct device *dev, struct device *master, void *data)
5488 {
5489 struct platform_device *dsidev = to_platform_device(dev);
5490 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5491
5492 of_platform_depopulate(&dsidev->dev);
5493
5494 WARN_ON(dsi->scp_clk_refcount > 0);
5495
5496 dss_pll_unregister(&dsi->pll);
5497
5498 dsi_uninit_output(dsidev);
5499
5500 pm_runtime_disable(&dsidev->dev);
5501
5502 if (dsi->vdds_dsi_reg != NULL && dsi->vdds_dsi_enabled) {
5503 regulator_disable(dsi->vdds_dsi_reg);
5504 dsi->vdds_dsi_enabled = false;
5505 }
5506 }
5507
5508 static const struct component_ops dsi_component_ops = {
5509 .bind = dsi_bind,
5510 .unbind = dsi_unbind,
5511 };
5512
5513 static int dsi_probe(struct platform_device *pdev)
5514 {
5515 return component_add(&pdev->dev, &dsi_component_ops);
5516 }
5517
5518 static int dsi_remove(struct platform_device *pdev)
5519 {
5520 component_del(&pdev->dev, &dsi_component_ops);
5521 return 0;
5522 }
5523
5524 static int dsi_runtime_suspend(struct device *dev)
5525 {
5526 struct platform_device *pdev = to_platform_device(dev);
5527 struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5528
5529 dsi->is_enabled = false;
5530 /* ensure the irq handler sees the is_enabled value */
5531 smp_wmb();
5532 /* wait for current handler to finish before turning the DSI off */
5533 synchronize_irq(dsi->irq);
5534
5535 dispc_runtime_put();
5536
5537 return 0;
5538 }
5539
5540 static int dsi_runtime_resume(struct device *dev)
5541 {
5542 struct platform_device *pdev = to_platform_device(dev);
5543 struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5544 int r;
5545
5546 r = dispc_runtime_get();
5547 if (r)
5548 return r;
5549
5550 dsi->is_enabled = true;
5551 /* ensure the irq handler sees the is_enabled value */
5552 smp_wmb();
5553
5554 return 0;
5555 }
5556
5557 static const struct dev_pm_ops dsi_pm_ops = {
5558 .runtime_suspend = dsi_runtime_suspend,
5559 .runtime_resume = dsi_runtime_resume,
5560 };
5561
5562 static const struct dsi_module_id_data dsi_of_data_omap3[] = {
5563 { .address = 0x4804fc00, .id = 0, },
5564 { },
5565 };
5566
5567 static const struct dsi_module_id_data dsi_of_data_omap4[] = {
5568 { .address = 0x58004000, .id = 0, },
5569 { .address = 0x58005000, .id = 1, },
5570 { },
5571 };
5572
5573 static const struct dsi_module_id_data dsi_of_data_omap5[] = {
5574 { .address = 0x58004000, .id = 0, },
5575 { .address = 0x58009000, .id = 1, },
5576 { },
5577 };
5578
5579 static const struct of_device_id dsi_of_match[] = {
5580 { .compatible = "ti,omap3-dsi", .data = dsi_of_data_omap3, },
5581 { .compatible = "ti,omap4-dsi", .data = dsi_of_data_omap4, },
5582 { .compatible = "ti,omap5-dsi", .data = dsi_of_data_omap5, },
5583 {},
5584 };
5585
5586 static struct platform_driver omap_dsihw_driver = {
5587 .probe = dsi_probe,
5588 .remove = dsi_remove,
5589 .driver = {
5590 .name = "omapdss_dsi",
5591 .pm = &dsi_pm_ops,
5592 .of_match_table = dsi_of_match,
5593 .suppress_bind_attrs = true,
5594 },
5595 };
5596
5597 int __init dsi_init_platform_driver(void)
5598 {
5599 return platform_driver_register(&omap_dsihw_driver);
5600 }
5601
5602 void dsi_uninit_platform_driver(void)
5603 {
5604 platform_driver_unregister(&omap_dsihw_driver);
5605 }
This page took 0.152959 seconds and 6 git commands to generate.