Linux-2.6.12-rc2
[deliverable/linux.git] / drivers / video / kyro / STG4000InitDevice.c
1 /*
2 * linux/drivers/video/kyro/STG4000InitDevice.c
3 *
4 * Copyright (C) 2000 Imagination Technologies Ltd
5 * Copyright (C) 2002 STMicroelectronics
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive
9 * for more details.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/types.h>
15 #include <linux/pci.h>
16
17 #include "STG4000Reg.h"
18
19 /* SDRAM fixed settings */
20 #define SDRAM_CFG_0 0x49A1
21 #define SDRAM_CFG_1 0xA732
22 #define SDRAM_CFG_2 0x31
23 #define SDRAM_ARB_CFG 0xA0
24 #define SDRAM_REFRESH 0x20
25
26 /* Reset values */
27 #define PMX2_SOFTRESET_DAC_RST 0x0001
28 #define PMX2_SOFTRESET_C1_RST 0x0004
29 #define PMX2_SOFTRESET_C2_RST 0x0008
30 #define PMX2_SOFTRESET_3D_RST 0x0010
31 #define PMX2_SOFTRESET_VIDIN_RST 0x0020
32 #define PMX2_SOFTRESET_TLB_RST 0x0040
33 #define PMX2_SOFTRESET_SD_RST 0x0080
34 #define PMX2_SOFTRESET_VGA_RST 0x0100
35 #define PMX2_SOFTRESET_ROM_RST 0x0200 /* reserved bit, do not reset */
36 #define PMX2_SOFTRESET_TA_RST 0x0400
37 #define PMX2_SOFTRESET_REG_RST 0x4000
38 #define PMX2_SOFTRESET_ALL 0x7fff
39
40 /* Core clock freq */
41 #define CORE_PLL_FREQ 1000000
42
43 /* Reference Clock freq */
44 #define REF_FREQ 14318
45
46 /* PCI Registers */
47 static u16 CorePllControl = 0x70;
48
49 #define PCI_CONFIG_SUBSYS_ID 0x2e
50
51 /* Misc */
52 #define CORE_PLL_MODE_REG_0_7 3
53 #define CORE_PLL_MODE_REG_8_15 2
54 #define CORE_PLL_MODE_CONFIG_REG 1
55 #define DAC_PLL_CONFIG_REG 0
56
57 #define STG_MAX_VCO 500000
58 #define STG_MIN_VCO 100000
59
60 /* PLL Clock */
61 #define STG4K3_PLL_SCALER 8 /* scale numbers by 2^8 for fixed point calc */
62 #define STG4K3_PLL_MIN_R 2 /* Minimum multiplier */
63 #define STG4K3_PLL_MAX_R 33 /* Max */
64 #define STG4K3_PLL_MIN_F 2 /* Minimum divisor */
65 #define STG4K3_PLL_MAX_F 513 /* Max */
66 #define STG4K3_PLL_MIN_OD 0 /* Min output divider (shift) */
67 #define STG4K3_PLL_MAX_OD 2 /* Max */
68 #define STG4K3_PLL_MIN_VCO_SC (100000000 >> STG4K3_PLL_SCALER) /* Min VCO rate */
69 #define STG4K3_PLL_MAX_VCO_SC (500000000 >> STG4K3_PLL_SCALER) /* Max VCO rate */
70 #define STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER) /* Min VCO rate (restricted) */
71 #define STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER) /* Max VCO rate (restricted) */
72 #define STG4K3_PLL_MINR_VCO 100000000 /* Min VCO rate (restricted) */
73 #define STG4K3_PLL_MAX_VCO 500000000 /* Max VCO rate */
74 #define STG4K3_PLL_MAXR_VCO 500000000 /* Max VCO rate (restricted) */
75
76 #define OS_DELAY(X) \
77 { \
78 volatile u32 i,count=0; \
79 for(i=0;i<X;i++) count++; \
80 }
81
82 static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg,
83 u32 dwSubSysID, u32 dwRevID)
84 {
85 u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 };
86 u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 };
87 u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 };
88 u32 adwSDRAMRsh[] = { 36, 39, 40 };
89 u32 adwChipSpeed[] = { 110, 120, 125 };
90 u32 dwMemTypeIdx;
91 u32 dwChipSpeedIdx;
92
93 /* Get memory tpye and chip speed indexs from the SubSysDevID */
94 dwMemTypeIdx = (dwSubSysID & 0x70) >> 4;
95 dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7;
96
97 if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2)
98 return 0;
99
100 /* Program SD-RAM interface */
101 STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]);
102 if (dwRevID < 5) {
103 STG_WRITE_REG(SDRAMConf0, 0x49A1);
104 STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]);
105 } else {
106 STG_WRITE_REG(SDRAMConf0, 0x4DF1);
107 STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]);
108 }
109
110 STG_WRITE_REG(SDRAMConf2, 0x31);
111 STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]);
112
113 return adwChipSpeed[dwChipSpeedIdx] * 10000;
114 }
115
116 u32 ProgramClock(u32 refClock,
117 u32 coreClock,
118 u32 * FOut, u32 * ROut, u32 * POut)
119 {
120 u32 R = 0, F = 0, OD = 0, ODIndex = 0;
121 u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0;
122 u32 ulBestVCO = 0, ulBestClk = 0, ulBestScore = 0;
123 u32 ulScore, ulPhaseScore, ulVcoScore;
124 u32 ulTmp = 0, ulVCO;
125 u32 ulScaleClockReq, ulMinClock, ulMaxClock;
126 u32 ODValues[] = { 1, 2, 0 };
127
128 /* Translate clock in Hz */
129 coreClock *= 100; /* in Hz */
130 refClock *= 1000; /* in Hz */
131
132 /* Work out acceptable clock
133 * The method calculates ~ +- 0.4% (1/256)
134 */
135 ulMinClock = coreClock - (coreClock >> 8);
136 ulMaxClock = coreClock + (coreClock >> 8);
137
138 /* Scale clock required for use in calculations */
139 ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER;
140
141 /* Iterate through post divider values */
142 for (ODIndex = 0; ODIndex < 3; ODIndex++) {
143 OD = ODValues[ODIndex];
144 R = STG4K3_PLL_MIN_R;
145
146 /* loop for pre-divider from min to max */
147 while (R <= STG4K3_PLL_MAX_R) {
148 /* estimate required feedback multiplier */
149 ulTmp = R * (ulScaleClockReq << OD);
150
151 /* F = ClkRequired * R * (2^OD) / Fref */
152 F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER));
153
154 /* compensate for accuracy */
155 if (F > STG4K3_PLL_MIN_F)
156 F--;
157
158
159 /*
160 * We should be close to our target frequency (if it's
161 * achievable with current OD & R) let's iterate
162 * through F for best fit
163 */
164 while ((F >= STG4K3_PLL_MIN_F) &&
165 (F <= STG4K3_PLL_MAX_F)) {
166 /* Calc VCO at full accuracy */
167 ulVCO = refClock / R;
168 ulVCO = F * ulVCO;
169
170 /*
171 * Check it's within restricted VCO range
172 * unless of course the desired frequency is
173 * above the restricted range, then test
174 * against VCO limit
175 */
176 if ((ulVCO >= STG4K3_PLL_MINR_VCO) &&
177 ((ulVCO <= STG4K3_PLL_MAXR_VCO) ||
178 ((coreClock > STG4K3_PLL_MAXR_VCO)
179 && (ulVCO <= STG4K3_PLL_MAX_VCO)))) {
180 ulTmp = (ulVCO >> OD); /* Clock = VCO / (2^OD) */
181
182 /* Is this clock good enough? */
183 if ((ulTmp >= ulMinClock)
184 && (ulTmp <= ulMaxClock)) {
185 ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10);
186
187 ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10);
188 ulScore = ulPhaseScore + ulVcoScore;
189
190 if (!ulBestScore) {
191 ulBestVCO = ulVCO;
192 ulBestOD = OD;
193 ulBestF = F;
194 ulBestR = R;
195 ulBestClk = ulTmp;
196 ulBestScore =
197 ulScore;
198 }
199 /* is this better, ( aim for highest Score) */
200 /*--------------------------------------------------------------------------
201 Here we want to use a scoring system which will take account of both the
202 value at the phase comparater and the VCO output
203 to do this we will use a cumulative score between the two
204 The way this ends up is that we choose the first value in the loop anyway
205 but we shall keep this code in case new restrictions come into play
206 --------------------------------------------------------------------------*/
207 if ((ulScore >= ulBestScore) && (OD > 0)) {
208 ulBestVCO = ulVCO;
209 ulBestOD = OD;
210 ulBestF = F;
211 ulBestR = R;
212 ulBestClk = ulTmp;
213 ulBestScore =
214 ulScore;
215 }
216 }
217 }
218 F++;
219 }
220 R++;
221 }
222 }
223
224 /*
225 did we find anything?
226 Then return RFOD
227 */
228 if (ulBestScore) {
229 *ROut = ulBestR;
230 *FOut = ulBestF;
231
232 if ((ulBestOD == 2) || (ulBestOD == 3)) {
233 *POut = 3;
234 } else
235 *POut = ulBestOD;
236
237 }
238
239 return (ulBestClk);
240 }
241
242 int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev)
243 {
244 u32 F, R, P;
245 u16 core_pll = 0, sub;
246 u32 ulCoreClock;
247 u32 tmp;
248 u32 ulChipSpeed;
249 u8 rev;
250
251 STG_WRITE_REG(IntMask, 0xFFFF);
252
253 /* Disable Primary Core Thread0 */
254 tmp = STG_READ_REG(Thread0Enable);
255 CLEAR_BIT(0);
256 STG_WRITE_REG(Thread0Enable, tmp);
257
258 /* Disable Primary Core Thread1 */
259 tmp = STG_READ_REG(Thread1Enable);
260 CLEAR_BIT(0);
261 STG_WRITE_REG(Thread1Enable, tmp);
262
263 STG_WRITE_REG(SoftwareReset,
264 PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
265 STG_WRITE_REG(SoftwareReset,
266 PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
267 PMX2_SOFTRESET_ROM_RST);
268
269 /* Need to play around to reset TA */
270 STG_WRITE_REG(TAConfiguration, 0);
271 STG_WRITE_REG(SoftwareReset,
272 PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
273 STG_WRITE_REG(SoftwareReset,
274 PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
275 PMX2_SOFTRESET_ROM_RST);
276
277 pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub);
278 pci_read_config_byte(pDev, PCI_REVISION_ID, &rev);
279
280 ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub, (u32)rev);
281
282 if (ulChipSpeed == 0)
283 return -EINVAL;
284
285 ulCoreClock = ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P);
286
287 core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11));
288
289 /* Set Core PLL Control to Core PLL Mode */
290
291 /* Send bits 0:7 of the Core PLL Mode register */
292 tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF));
293 pci_write_config_word(pDev, CorePllControl, tmp);
294 /* Without some delay between the PCI config writes the clock does
295 not reliably set when the code is compiled -O3
296 */
297 OS_DELAY(1000000);
298
299 tmp |= SET_BIT(14);
300 pci_write_config_word(pDev, CorePllControl, tmp);
301 OS_DELAY(1000000);
302
303 /* Send bits 8:15 of the Core PLL Mode register */
304 tmp =
305 ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8));
306 pci_write_config_word(pDev, CorePllControl, tmp);
307 OS_DELAY(1000000);
308
309 tmp |= SET_BIT(14);
310 pci_write_config_word(pDev, CorePllControl, tmp);
311 OS_DELAY(1000000);
312
313 STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL);
314
315 #if 0
316 /* Enable Primary Core Thread0 */
317 tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0));
318 STG_WRITE_REG(Thread0Enable, tmp);
319
320 /* Enable Primary Core Thread1 */
321 tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0));
322 STG_WRITE_REG(Thread1Enable, tmp);
323 #endif
324
325 return 0;
326 }
This page took 0.044391 seconds and 5 git commands to generate.