[PATCH] drivers/video/: possible cleanups
[deliverable/linux.git] / drivers / video / kyro / STG4000InitDevice.c
1 /*
2 * linux/drivers/video/kyro/STG4000InitDevice.c
3 *
4 * Copyright (C) 2000 Imagination Technologies Ltd
5 * Copyright (C) 2002 STMicroelectronics
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive
9 * for more details.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/types.h>
15 #include <linux/pci.h>
16
17 #include "STG4000Reg.h"
18 #include "STG4000Interface.h"
19
20 /* SDRAM fixed settings */
21 #define SDRAM_CFG_0 0x49A1
22 #define SDRAM_CFG_1 0xA732
23 #define SDRAM_CFG_2 0x31
24 #define SDRAM_ARB_CFG 0xA0
25 #define SDRAM_REFRESH 0x20
26
27 /* Reset values */
28 #define PMX2_SOFTRESET_DAC_RST 0x0001
29 #define PMX2_SOFTRESET_C1_RST 0x0004
30 #define PMX2_SOFTRESET_C2_RST 0x0008
31 #define PMX2_SOFTRESET_3D_RST 0x0010
32 #define PMX2_SOFTRESET_VIDIN_RST 0x0020
33 #define PMX2_SOFTRESET_TLB_RST 0x0040
34 #define PMX2_SOFTRESET_SD_RST 0x0080
35 #define PMX2_SOFTRESET_VGA_RST 0x0100
36 #define PMX2_SOFTRESET_ROM_RST 0x0200 /* reserved bit, do not reset */
37 #define PMX2_SOFTRESET_TA_RST 0x0400
38 #define PMX2_SOFTRESET_REG_RST 0x4000
39 #define PMX2_SOFTRESET_ALL 0x7fff
40
41 /* Core clock freq */
42 #define CORE_PLL_FREQ 1000000
43
44 /* Reference Clock freq */
45 #define REF_FREQ 14318
46
47 /* PCI Registers */
48 static u16 CorePllControl = 0x70;
49
50 #define PCI_CONFIG_SUBSYS_ID 0x2e
51
52 /* Misc */
53 #define CORE_PLL_MODE_REG_0_7 3
54 #define CORE_PLL_MODE_REG_8_15 2
55 #define CORE_PLL_MODE_CONFIG_REG 1
56 #define DAC_PLL_CONFIG_REG 0
57
58 #define STG_MAX_VCO 500000
59 #define STG_MIN_VCO 100000
60
61 /* PLL Clock */
62 #define STG4K3_PLL_SCALER 8 /* scale numbers by 2^8 for fixed point calc */
63 #define STG4K3_PLL_MIN_R 2 /* Minimum multiplier */
64 #define STG4K3_PLL_MAX_R 33 /* Max */
65 #define STG4K3_PLL_MIN_F 2 /* Minimum divisor */
66 #define STG4K3_PLL_MAX_F 513 /* Max */
67 #define STG4K3_PLL_MIN_OD 0 /* Min output divider (shift) */
68 #define STG4K3_PLL_MAX_OD 2 /* Max */
69 #define STG4K3_PLL_MIN_VCO_SC (100000000 >> STG4K3_PLL_SCALER) /* Min VCO rate */
70 #define STG4K3_PLL_MAX_VCO_SC (500000000 >> STG4K3_PLL_SCALER) /* Max VCO rate */
71 #define STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER) /* Min VCO rate (restricted) */
72 #define STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER) /* Max VCO rate (restricted) */
73 #define STG4K3_PLL_MINR_VCO 100000000 /* Min VCO rate (restricted) */
74 #define STG4K3_PLL_MAX_VCO 500000000 /* Max VCO rate */
75 #define STG4K3_PLL_MAXR_VCO 500000000 /* Max VCO rate (restricted) */
76
77 #define OS_DELAY(X) \
78 { \
79 volatile u32 i,count=0; \
80 for(i=0;i<X;i++) count++; \
81 }
82
83 static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg,
84 u32 dwSubSysID, u32 dwRevID)
85 {
86 u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 };
87 u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 };
88 u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 };
89 u32 adwSDRAMRsh[] = { 36, 39, 40 };
90 u32 adwChipSpeed[] = { 110, 120, 125 };
91 u32 dwMemTypeIdx;
92 u32 dwChipSpeedIdx;
93
94 /* Get memory tpye and chip speed indexs from the SubSysDevID */
95 dwMemTypeIdx = (dwSubSysID & 0x70) >> 4;
96 dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7;
97
98 if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2)
99 return 0;
100
101 /* Program SD-RAM interface */
102 STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]);
103 if (dwRevID < 5) {
104 STG_WRITE_REG(SDRAMConf0, 0x49A1);
105 STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]);
106 } else {
107 STG_WRITE_REG(SDRAMConf0, 0x4DF1);
108 STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]);
109 }
110
111 STG_WRITE_REG(SDRAMConf2, 0x31);
112 STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]);
113
114 return adwChipSpeed[dwChipSpeedIdx] * 10000;
115 }
116
117 u32 ProgramClock(u32 refClock,
118 u32 coreClock,
119 u32 * FOut, u32 * ROut, u32 * POut)
120 {
121 u32 R = 0, F = 0, OD = 0, ODIndex = 0;
122 u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0;
123 u32 ulBestVCO = 0, ulBestClk = 0, ulBestScore = 0;
124 u32 ulScore, ulPhaseScore, ulVcoScore;
125 u32 ulTmp = 0, ulVCO;
126 u32 ulScaleClockReq, ulMinClock, ulMaxClock;
127 u32 ODValues[] = { 1, 2, 0 };
128
129 /* Translate clock in Hz */
130 coreClock *= 100; /* in Hz */
131 refClock *= 1000; /* in Hz */
132
133 /* Work out acceptable clock
134 * The method calculates ~ +- 0.4% (1/256)
135 */
136 ulMinClock = coreClock - (coreClock >> 8);
137 ulMaxClock = coreClock + (coreClock >> 8);
138
139 /* Scale clock required for use in calculations */
140 ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER;
141
142 /* Iterate through post divider values */
143 for (ODIndex = 0; ODIndex < 3; ODIndex++) {
144 OD = ODValues[ODIndex];
145 R = STG4K3_PLL_MIN_R;
146
147 /* loop for pre-divider from min to max */
148 while (R <= STG4K3_PLL_MAX_R) {
149 /* estimate required feedback multiplier */
150 ulTmp = R * (ulScaleClockReq << OD);
151
152 /* F = ClkRequired * R * (2^OD) / Fref */
153 F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER));
154
155 /* compensate for accuracy */
156 if (F > STG4K3_PLL_MIN_F)
157 F--;
158
159
160 /*
161 * We should be close to our target frequency (if it's
162 * achievable with current OD & R) let's iterate
163 * through F for best fit
164 */
165 while ((F >= STG4K3_PLL_MIN_F) &&
166 (F <= STG4K3_PLL_MAX_F)) {
167 /* Calc VCO at full accuracy */
168 ulVCO = refClock / R;
169 ulVCO = F * ulVCO;
170
171 /*
172 * Check it's within restricted VCO range
173 * unless of course the desired frequency is
174 * above the restricted range, then test
175 * against VCO limit
176 */
177 if ((ulVCO >= STG4K3_PLL_MINR_VCO) &&
178 ((ulVCO <= STG4K3_PLL_MAXR_VCO) ||
179 ((coreClock > STG4K3_PLL_MAXR_VCO)
180 && (ulVCO <= STG4K3_PLL_MAX_VCO)))) {
181 ulTmp = (ulVCO >> OD); /* Clock = VCO / (2^OD) */
182
183 /* Is this clock good enough? */
184 if ((ulTmp >= ulMinClock)
185 && (ulTmp <= ulMaxClock)) {
186 ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10);
187
188 ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10);
189 ulScore = ulPhaseScore + ulVcoScore;
190
191 if (!ulBestScore) {
192 ulBestVCO = ulVCO;
193 ulBestOD = OD;
194 ulBestF = F;
195 ulBestR = R;
196 ulBestClk = ulTmp;
197 ulBestScore =
198 ulScore;
199 }
200 /* is this better, ( aim for highest Score) */
201 /*--------------------------------------------------------------------------
202 Here we want to use a scoring system which will take account of both the
203 value at the phase comparater and the VCO output
204 to do this we will use a cumulative score between the two
205 The way this ends up is that we choose the first value in the loop anyway
206 but we shall keep this code in case new restrictions come into play
207 --------------------------------------------------------------------------*/
208 if ((ulScore >= ulBestScore) && (OD > 0)) {
209 ulBestVCO = ulVCO;
210 ulBestOD = OD;
211 ulBestF = F;
212 ulBestR = R;
213 ulBestClk = ulTmp;
214 ulBestScore =
215 ulScore;
216 }
217 }
218 }
219 F++;
220 }
221 R++;
222 }
223 }
224
225 /*
226 did we find anything?
227 Then return RFOD
228 */
229 if (ulBestScore) {
230 *ROut = ulBestR;
231 *FOut = ulBestF;
232
233 if ((ulBestOD == 2) || (ulBestOD == 3)) {
234 *POut = 3;
235 } else
236 *POut = ulBestOD;
237
238 }
239
240 return (ulBestClk);
241 }
242
243 int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev)
244 {
245 u32 F, R, P;
246 u16 core_pll = 0, sub;
247 u32 ulCoreClock;
248 u32 tmp;
249 u32 ulChipSpeed;
250 u8 rev;
251
252 STG_WRITE_REG(IntMask, 0xFFFF);
253
254 /* Disable Primary Core Thread0 */
255 tmp = STG_READ_REG(Thread0Enable);
256 CLEAR_BIT(0);
257 STG_WRITE_REG(Thread0Enable, tmp);
258
259 /* Disable Primary Core Thread1 */
260 tmp = STG_READ_REG(Thread1Enable);
261 CLEAR_BIT(0);
262 STG_WRITE_REG(Thread1Enable, tmp);
263
264 STG_WRITE_REG(SoftwareReset,
265 PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
266 STG_WRITE_REG(SoftwareReset,
267 PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
268 PMX2_SOFTRESET_ROM_RST);
269
270 /* Need to play around to reset TA */
271 STG_WRITE_REG(TAConfiguration, 0);
272 STG_WRITE_REG(SoftwareReset,
273 PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
274 STG_WRITE_REG(SoftwareReset,
275 PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
276 PMX2_SOFTRESET_ROM_RST);
277
278 pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub);
279 pci_read_config_byte(pDev, PCI_REVISION_ID, &rev);
280
281 ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub, (u32)rev);
282
283 if (ulChipSpeed == 0)
284 return -EINVAL;
285
286 ulCoreClock = ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P);
287
288 core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11));
289
290 /* Set Core PLL Control to Core PLL Mode */
291
292 /* Send bits 0:7 of the Core PLL Mode register */
293 tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF));
294 pci_write_config_word(pDev, CorePllControl, tmp);
295 /* Without some delay between the PCI config writes the clock does
296 not reliably set when the code is compiled -O3
297 */
298 OS_DELAY(1000000);
299
300 tmp |= SET_BIT(14);
301 pci_write_config_word(pDev, CorePllControl, tmp);
302 OS_DELAY(1000000);
303
304 /* Send bits 8:15 of the Core PLL Mode register */
305 tmp =
306 ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8));
307 pci_write_config_word(pDev, CorePllControl, tmp);
308 OS_DELAY(1000000);
309
310 tmp |= SET_BIT(14);
311 pci_write_config_word(pDev, CorePllControl, tmp);
312 OS_DELAY(1000000);
313
314 STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL);
315
316 #if 0
317 /* Enable Primary Core Thread0 */
318 tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0));
319 STG_WRITE_REG(Thread0Enable, tmp);
320
321 /* Enable Primary Core Thread1 */
322 tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0));
323 STG_WRITE_REG(Thread1Enable, tmp);
324 #endif
325
326 return 0;
327 }
This page took 0.037904 seconds and 5 git commands to generate.