net/mlx5e: Replace async events spinlock with synchronize_irq()
[deliverable/linux.git] / drivers / vme / vme.c
1 /*
2 * VME Bridge Framework
3 *
4 * Author: Martyn Welch <martyn.welch@ge.com>
5 * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6 *
7 * Based on work by Tom Armistead and Ajit Prem
8 * Copyright 2004 Motorola Inc.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/mm.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/pci.h>
23 #include <linux/poll.h>
24 #include <linux/highmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/pagemap.h>
27 #include <linux/device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/syscalls.h>
30 #include <linux/mutex.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/vme.h>
34
35 #include "vme_bridge.h"
36
37 /* Bitmask and list of registered buses both protected by common mutex */
38 static unsigned int vme_bus_numbers;
39 static LIST_HEAD(vme_bus_list);
40 static DEFINE_MUTEX(vme_buses_lock);
41
42 static void __exit vme_exit(void);
43 static int __init vme_init(void);
44
45 static struct vme_dev *dev_to_vme_dev(struct device *dev)
46 {
47 return container_of(dev, struct vme_dev, dev);
48 }
49
50 /*
51 * Find the bridge that the resource is associated with.
52 */
53 static struct vme_bridge *find_bridge(struct vme_resource *resource)
54 {
55 /* Get list to search */
56 switch (resource->type) {
57 case VME_MASTER:
58 return list_entry(resource->entry, struct vme_master_resource,
59 list)->parent;
60 break;
61 case VME_SLAVE:
62 return list_entry(resource->entry, struct vme_slave_resource,
63 list)->parent;
64 break;
65 case VME_DMA:
66 return list_entry(resource->entry, struct vme_dma_resource,
67 list)->parent;
68 break;
69 case VME_LM:
70 return list_entry(resource->entry, struct vme_lm_resource,
71 list)->parent;
72 break;
73 default:
74 printk(KERN_ERR "Unknown resource type\n");
75 return NULL;
76 break;
77 }
78 }
79
80 /*
81 * Allocate a contiguous block of memory for use by the driver. This is used to
82 * create the buffers for the slave windows.
83 */
84 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
85 dma_addr_t *dma)
86 {
87 struct vme_bridge *bridge;
88
89 if (resource == NULL) {
90 printk(KERN_ERR "No resource\n");
91 return NULL;
92 }
93
94 bridge = find_bridge(resource);
95 if (bridge == NULL) {
96 printk(KERN_ERR "Can't find bridge\n");
97 return NULL;
98 }
99
100 if (bridge->parent == NULL) {
101 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
102 return NULL;
103 }
104
105 if (bridge->alloc_consistent == NULL) {
106 printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
107 bridge->name);
108 return NULL;
109 }
110
111 return bridge->alloc_consistent(bridge->parent, size, dma);
112 }
113 EXPORT_SYMBOL(vme_alloc_consistent);
114
115 /*
116 * Free previously allocated contiguous block of memory.
117 */
118 void vme_free_consistent(struct vme_resource *resource, size_t size,
119 void *vaddr, dma_addr_t dma)
120 {
121 struct vme_bridge *bridge;
122
123 if (resource == NULL) {
124 printk(KERN_ERR "No resource\n");
125 return;
126 }
127
128 bridge = find_bridge(resource);
129 if (bridge == NULL) {
130 printk(KERN_ERR "Can't find bridge\n");
131 return;
132 }
133
134 if (bridge->parent == NULL) {
135 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
136 return;
137 }
138
139 if (bridge->free_consistent == NULL) {
140 printk(KERN_ERR "free_consistent not supported by bridge %s\n",
141 bridge->name);
142 return;
143 }
144
145 bridge->free_consistent(bridge->parent, size, vaddr, dma);
146 }
147 EXPORT_SYMBOL(vme_free_consistent);
148
149 size_t vme_get_size(struct vme_resource *resource)
150 {
151 int enabled, retval;
152 unsigned long long base, size;
153 dma_addr_t buf_base;
154 u32 aspace, cycle, dwidth;
155
156 switch (resource->type) {
157 case VME_MASTER:
158 retval = vme_master_get(resource, &enabled, &base, &size,
159 &aspace, &cycle, &dwidth);
160
161 return size;
162 break;
163 case VME_SLAVE:
164 retval = vme_slave_get(resource, &enabled, &base, &size,
165 &buf_base, &aspace, &cycle);
166
167 return size;
168 break;
169 case VME_DMA:
170 return 0;
171 break;
172 default:
173 printk(KERN_ERR "Unknown resource type\n");
174 return 0;
175 break;
176 }
177 }
178 EXPORT_SYMBOL(vme_get_size);
179
180 int vme_check_window(u32 aspace, unsigned long long vme_base,
181 unsigned long long size)
182 {
183 int retval = 0;
184
185 switch (aspace) {
186 case VME_A16:
187 if (((vme_base + size) > VME_A16_MAX) ||
188 (vme_base > VME_A16_MAX))
189 retval = -EFAULT;
190 break;
191 case VME_A24:
192 if (((vme_base + size) > VME_A24_MAX) ||
193 (vme_base > VME_A24_MAX))
194 retval = -EFAULT;
195 break;
196 case VME_A32:
197 if (((vme_base + size) > VME_A32_MAX) ||
198 (vme_base > VME_A32_MAX))
199 retval = -EFAULT;
200 break;
201 case VME_A64:
202 if ((size != 0) && (vme_base > U64_MAX + 1 - size))
203 retval = -EFAULT;
204 break;
205 case VME_CRCSR:
206 if (((vme_base + size) > VME_CRCSR_MAX) ||
207 (vme_base > VME_CRCSR_MAX))
208 retval = -EFAULT;
209 break;
210 case VME_USER1:
211 case VME_USER2:
212 case VME_USER3:
213 case VME_USER4:
214 /* User Defined */
215 break;
216 default:
217 printk(KERN_ERR "Invalid address space\n");
218 retval = -EINVAL;
219 break;
220 }
221
222 return retval;
223 }
224 EXPORT_SYMBOL(vme_check_window);
225
226 static u32 vme_get_aspace(int am)
227 {
228 switch (am) {
229 case 0x29:
230 case 0x2D:
231 return VME_A16;
232 case 0x38:
233 case 0x39:
234 case 0x3A:
235 case 0x3B:
236 case 0x3C:
237 case 0x3D:
238 case 0x3E:
239 case 0x3F:
240 return VME_A24;
241 case 0x8:
242 case 0x9:
243 case 0xA:
244 case 0xB:
245 case 0xC:
246 case 0xD:
247 case 0xE:
248 case 0xF:
249 return VME_A32;
250 case 0x0:
251 case 0x1:
252 case 0x3:
253 return VME_A64;
254 }
255
256 return 0;
257 }
258
259 /*
260 * Request a slave image with specific attributes, return some unique
261 * identifier.
262 */
263 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
264 u32 cycle)
265 {
266 struct vme_bridge *bridge;
267 struct list_head *slave_pos = NULL;
268 struct vme_slave_resource *allocated_image = NULL;
269 struct vme_slave_resource *slave_image = NULL;
270 struct vme_resource *resource = NULL;
271
272 bridge = vdev->bridge;
273 if (bridge == NULL) {
274 printk(KERN_ERR "Can't find VME bus\n");
275 goto err_bus;
276 }
277
278 /* Loop through slave resources */
279 list_for_each(slave_pos, &bridge->slave_resources) {
280 slave_image = list_entry(slave_pos,
281 struct vme_slave_resource, list);
282
283 if (slave_image == NULL) {
284 printk(KERN_ERR "Registered NULL Slave resource\n");
285 continue;
286 }
287
288 /* Find an unlocked and compatible image */
289 mutex_lock(&slave_image->mtx);
290 if (((slave_image->address_attr & address) == address) &&
291 ((slave_image->cycle_attr & cycle) == cycle) &&
292 (slave_image->locked == 0)) {
293
294 slave_image->locked = 1;
295 mutex_unlock(&slave_image->mtx);
296 allocated_image = slave_image;
297 break;
298 }
299 mutex_unlock(&slave_image->mtx);
300 }
301
302 /* No free image */
303 if (allocated_image == NULL)
304 goto err_image;
305
306 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
307 if (resource == NULL) {
308 printk(KERN_WARNING "Unable to allocate resource structure\n");
309 goto err_alloc;
310 }
311 resource->type = VME_SLAVE;
312 resource->entry = &allocated_image->list;
313
314 return resource;
315
316 err_alloc:
317 /* Unlock image */
318 mutex_lock(&slave_image->mtx);
319 slave_image->locked = 0;
320 mutex_unlock(&slave_image->mtx);
321 err_image:
322 err_bus:
323 return NULL;
324 }
325 EXPORT_SYMBOL(vme_slave_request);
326
327 int vme_slave_set(struct vme_resource *resource, int enabled,
328 unsigned long long vme_base, unsigned long long size,
329 dma_addr_t buf_base, u32 aspace, u32 cycle)
330 {
331 struct vme_bridge *bridge = find_bridge(resource);
332 struct vme_slave_resource *image;
333 int retval;
334
335 if (resource->type != VME_SLAVE) {
336 printk(KERN_ERR "Not a slave resource\n");
337 return -EINVAL;
338 }
339
340 image = list_entry(resource->entry, struct vme_slave_resource, list);
341
342 if (bridge->slave_set == NULL) {
343 printk(KERN_ERR "Function not supported\n");
344 return -ENOSYS;
345 }
346
347 if (!(((image->address_attr & aspace) == aspace) &&
348 ((image->cycle_attr & cycle) == cycle))) {
349 printk(KERN_ERR "Invalid attributes\n");
350 return -EINVAL;
351 }
352
353 retval = vme_check_window(aspace, vme_base, size);
354 if (retval)
355 return retval;
356
357 return bridge->slave_set(image, enabled, vme_base, size, buf_base,
358 aspace, cycle);
359 }
360 EXPORT_SYMBOL(vme_slave_set);
361
362 int vme_slave_get(struct vme_resource *resource, int *enabled,
363 unsigned long long *vme_base, unsigned long long *size,
364 dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
365 {
366 struct vme_bridge *bridge = find_bridge(resource);
367 struct vme_slave_resource *image;
368
369 if (resource->type != VME_SLAVE) {
370 printk(KERN_ERR "Not a slave resource\n");
371 return -EINVAL;
372 }
373
374 image = list_entry(resource->entry, struct vme_slave_resource, list);
375
376 if (bridge->slave_get == NULL) {
377 printk(KERN_ERR "vme_slave_get not supported\n");
378 return -EINVAL;
379 }
380
381 return bridge->slave_get(image, enabled, vme_base, size, buf_base,
382 aspace, cycle);
383 }
384 EXPORT_SYMBOL(vme_slave_get);
385
386 void vme_slave_free(struct vme_resource *resource)
387 {
388 struct vme_slave_resource *slave_image;
389
390 if (resource->type != VME_SLAVE) {
391 printk(KERN_ERR "Not a slave resource\n");
392 return;
393 }
394
395 slave_image = list_entry(resource->entry, struct vme_slave_resource,
396 list);
397 if (slave_image == NULL) {
398 printk(KERN_ERR "Can't find slave resource\n");
399 return;
400 }
401
402 /* Unlock image */
403 mutex_lock(&slave_image->mtx);
404 if (slave_image->locked == 0)
405 printk(KERN_ERR "Image is already free\n");
406
407 slave_image->locked = 0;
408 mutex_unlock(&slave_image->mtx);
409
410 /* Free up resource memory */
411 kfree(resource);
412 }
413 EXPORT_SYMBOL(vme_slave_free);
414
415 /*
416 * Request a master image with specific attributes, return some unique
417 * identifier.
418 */
419 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
420 u32 cycle, u32 dwidth)
421 {
422 struct vme_bridge *bridge;
423 struct list_head *master_pos = NULL;
424 struct vme_master_resource *allocated_image = NULL;
425 struct vme_master_resource *master_image = NULL;
426 struct vme_resource *resource = NULL;
427
428 bridge = vdev->bridge;
429 if (bridge == NULL) {
430 printk(KERN_ERR "Can't find VME bus\n");
431 goto err_bus;
432 }
433
434 /* Loop through master resources */
435 list_for_each(master_pos, &bridge->master_resources) {
436 master_image = list_entry(master_pos,
437 struct vme_master_resource, list);
438
439 if (master_image == NULL) {
440 printk(KERN_WARNING "Registered NULL master resource\n");
441 continue;
442 }
443
444 /* Find an unlocked and compatible image */
445 spin_lock(&master_image->lock);
446 if (((master_image->address_attr & address) == address) &&
447 ((master_image->cycle_attr & cycle) == cycle) &&
448 ((master_image->width_attr & dwidth) == dwidth) &&
449 (master_image->locked == 0)) {
450
451 master_image->locked = 1;
452 spin_unlock(&master_image->lock);
453 allocated_image = master_image;
454 break;
455 }
456 spin_unlock(&master_image->lock);
457 }
458
459 /* Check to see if we found a resource */
460 if (allocated_image == NULL) {
461 printk(KERN_ERR "Can't find a suitable resource\n");
462 goto err_image;
463 }
464
465 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
466 if (resource == NULL) {
467 printk(KERN_ERR "Unable to allocate resource structure\n");
468 goto err_alloc;
469 }
470 resource->type = VME_MASTER;
471 resource->entry = &allocated_image->list;
472
473 return resource;
474
475 err_alloc:
476 /* Unlock image */
477 spin_lock(&master_image->lock);
478 master_image->locked = 0;
479 spin_unlock(&master_image->lock);
480 err_image:
481 err_bus:
482 return NULL;
483 }
484 EXPORT_SYMBOL(vme_master_request);
485
486 int vme_master_set(struct vme_resource *resource, int enabled,
487 unsigned long long vme_base, unsigned long long size, u32 aspace,
488 u32 cycle, u32 dwidth)
489 {
490 struct vme_bridge *bridge = find_bridge(resource);
491 struct vme_master_resource *image;
492 int retval;
493
494 if (resource->type != VME_MASTER) {
495 printk(KERN_ERR "Not a master resource\n");
496 return -EINVAL;
497 }
498
499 image = list_entry(resource->entry, struct vme_master_resource, list);
500
501 if (bridge->master_set == NULL) {
502 printk(KERN_WARNING "vme_master_set not supported\n");
503 return -EINVAL;
504 }
505
506 if (!(((image->address_attr & aspace) == aspace) &&
507 ((image->cycle_attr & cycle) == cycle) &&
508 ((image->width_attr & dwidth) == dwidth))) {
509 printk(KERN_WARNING "Invalid attributes\n");
510 return -EINVAL;
511 }
512
513 retval = vme_check_window(aspace, vme_base, size);
514 if (retval)
515 return retval;
516
517 return bridge->master_set(image, enabled, vme_base, size, aspace,
518 cycle, dwidth);
519 }
520 EXPORT_SYMBOL(vme_master_set);
521
522 int vme_master_get(struct vme_resource *resource, int *enabled,
523 unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
524 u32 *cycle, u32 *dwidth)
525 {
526 struct vme_bridge *bridge = find_bridge(resource);
527 struct vme_master_resource *image;
528
529 if (resource->type != VME_MASTER) {
530 printk(KERN_ERR "Not a master resource\n");
531 return -EINVAL;
532 }
533
534 image = list_entry(resource->entry, struct vme_master_resource, list);
535
536 if (bridge->master_get == NULL) {
537 printk(KERN_WARNING "%s not supported\n", __func__);
538 return -EINVAL;
539 }
540
541 return bridge->master_get(image, enabled, vme_base, size, aspace,
542 cycle, dwidth);
543 }
544 EXPORT_SYMBOL(vme_master_get);
545
546 /*
547 * Read data out of VME space into a buffer.
548 */
549 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
550 loff_t offset)
551 {
552 struct vme_bridge *bridge = find_bridge(resource);
553 struct vme_master_resource *image;
554 size_t length;
555
556 if (bridge->master_read == NULL) {
557 printk(KERN_WARNING "Reading from resource not supported\n");
558 return -EINVAL;
559 }
560
561 if (resource->type != VME_MASTER) {
562 printk(KERN_ERR "Not a master resource\n");
563 return -EINVAL;
564 }
565
566 image = list_entry(resource->entry, struct vme_master_resource, list);
567
568 length = vme_get_size(resource);
569
570 if (offset > length) {
571 printk(KERN_WARNING "Invalid Offset\n");
572 return -EFAULT;
573 }
574
575 if ((offset + count) > length)
576 count = length - offset;
577
578 return bridge->master_read(image, buf, count, offset);
579
580 }
581 EXPORT_SYMBOL(vme_master_read);
582
583 /*
584 * Write data out to VME space from a buffer.
585 */
586 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
587 size_t count, loff_t offset)
588 {
589 struct vme_bridge *bridge = find_bridge(resource);
590 struct vme_master_resource *image;
591 size_t length;
592
593 if (bridge->master_write == NULL) {
594 printk(KERN_WARNING "Writing to resource not supported\n");
595 return -EINVAL;
596 }
597
598 if (resource->type != VME_MASTER) {
599 printk(KERN_ERR "Not a master resource\n");
600 return -EINVAL;
601 }
602
603 image = list_entry(resource->entry, struct vme_master_resource, list);
604
605 length = vme_get_size(resource);
606
607 if (offset > length) {
608 printk(KERN_WARNING "Invalid Offset\n");
609 return -EFAULT;
610 }
611
612 if ((offset + count) > length)
613 count = length - offset;
614
615 return bridge->master_write(image, buf, count, offset);
616 }
617 EXPORT_SYMBOL(vme_master_write);
618
619 /*
620 * Perform RMW cycle to provided location.
621 */
622 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
623 unsigned int compare, unsigned int swap, loff_t offset)
624 {
625 struct vme_bridge *bridge = find_bridge(resource);
626 struct vme_master_resource *image;
627
628 if (bridge->master_rmw == NULL) {
629 printk(KERN_WARNING "Writing to resource not supported\n");
630 return -EINVAL;
631 }
632
633 if (resource->type != VME_MASTER) {
634 printk(KERN_ERR "Not a master resource\n");
635 return -EINVAL;
636 }
637
638 image = list_entry(resource->entry, struct vme_master_resource, list);
639
640 return bridge->master_rmw(image, mask, compare, swap, offset);
641 }
642 EXPORT_SYMBOL(vme_master_rmw);
643
644 int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
645 {
646 struct vme_master_resource *image;
647 phys_addr_t phys_addr;
648 unsigned long vma_size;
649
650 if (resource->type != VME_MASTER) {
651 pr_err("Not a master resource\n");
652 return -EINVAL;
653 }
654
655 image = list_entry(resource->entry, struct vme_master_resource, list);
656 phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
657 vma_size = vma->vm_end - vma->vm_start;
658
659 if (phys_addr + vma_size > image->bus_resource.end + 1) {
660 pr_err("Map size cannot exceed the window size\n");
661 return -EFAULT;
662 }
663
664 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
665
666 return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
667 }
668 EXPORT_SYMBOL(vme_master_mmap);
669
670 void vme_master_free(struct vme_resource *resource)
671 {
672 struct vme_master_resource *master_image;
673
674 if (resource->type != VME_MASTER) {
675 printk(KERN_ERR "Not a master resource\n");
676 return;
677 }
678
679 master_image = list_entry(resource->entry, struct vme_master_resource,
680 list);
681 if (master_image == NULL) {
682 printk(KERN_ERR "Can't find master resource\n");
683 return;
684 }
685
686 /* Unlock image */
687 spin_lock(&master_image->lock);
688 if (master_image->locked == 0)
689 printk(KERN_ERR "Image is already free\n");
690
691 master_image->locked = 0;
692 spin_unlock(&master_image->lock);
693
694 /* Free up resource memory */
695 kfree(resource);
696 }
697 EXPORT_SYMBOL(vme_master_free);
698
699 /*
700 * Request a DMA controller with specific attributes, return some unique
701 * identifier.
702 */
703 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
704 {
705 struct vme_bridge *bridge;
706 struct list_head *dma_pos = NULL;
707 struct vme_dma_resource *allocated_ctrlr = NULL;
708 struct vme_dma_resource *dma_ctrlr = NULL;
709 struct vme_resource *resource = NULL;
710
711 /* XXX Not checking resource attributes */
712 printk(KERN_ERR "No VME resource Attribute tests done\n");
713
714 bridge = vdev->bridge;
715 if (bridge == NULL) {
716 printk(KERN_ERR "Can't find VME bus\n");
717 goto err_bus;
718 }
719
720 /* Loop through DMA resources */
721 list_for_each(dma_pos, &bridge->dma_resources) {
722 dma_ctrlr = list_entry(dma_pos,
723 struct vme_dma_resource, list);
724
725 if (dma_ctrlr == NULL) {
726 printk(KERN_ERR "Registered NULL DMA resource\n");
727 continue;
728 }
729
730 /* Find an unlocked and compatible controller */
731 mutex_lock(&dma_ctrlr->mtx);
732 if (((dma_ctrlr->route_attr & route) == route) &&
733 (dma_ctrlr->locked == 0)) {
734
735 dma_ctrlr->locked = 1;
736 mutex_unlock(&dma_ctrlr->mtx);
737 allocated_ctrlr = dma_ctrlr;
738 break;
739 }
740 mutex_unlock(&dma_ctrlr->mtx);
741 }
742
743 /* Check to see if we found a resource */
744 if (allocated_ctrlr == NULL)
745 goto err_ctrlr;
746
747 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
748 if (resource == NULL) {
749 printk(KERN_WARNING "Unable to allocate resource structure\n");
750 goto err_alloc;
751 }
752 resource->type = VME_DMA;
753 resource->entry = &allocated_ctrlr->list;
754
755 return resource;
756
757 err_alloc:
758 /* Unlock image */
759 mutex_lock(&dma_ctrlr->mtx);
760 dma_ctrlr->locked = 0;
761 mutex_unlock(&dma_ctrlr->mtx);
762 err_ctrlr:
763 err_bus:
764 return NULL;
765 }
766 EXPORT_SYMBOL(vme_dma_request);
767
768 /*
769 * Start new list
770 */
771 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
772 {
773 struct vme_dma_resource *ctrlr;
774 struct vme_dma_list *dma_list;
775
776 if (resource->type != VME_DMA) {
777 printk(KERN_ERR "Not a DMA resource\n");
778 return NULL;
779 }
780
781 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
782
783 dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL);
784 if (dma_list == NULL) {
785 printk(KERN_ERR "Unable to allocate memory for new dma list\n");
786 return NULL;
787 }
788 INIT_LIST_HEAD(&dma_list->entries);
789 dma_list->parent = ctrlr;
790 mutex_init(&dma_list->mtx);
791
792 return dma_list;
793 }
794 EXPORT_SYMBOL(vme_new_dma_list);
795
796 /*
797 * Create "Pattern" type attributes
798 */
799 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
800 {
801 struct vme_dma_attr *attributes;
802 struct vme_dma_pattern *pattern_attr;
803
804 attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
805 if (attributes == NULL) {
806 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
807 goto err_attr;
808 }
809
810 pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL);
811 if (pattern_attr == NULL) {
812 printk(KERN_ERR "Unable to allocate memory for pattern attributes\n");
813 goto err_pat;
814 }
815
816 attributes->type = VME_DMA_PATTERN;
817 attributes->private = (void *)pattern_attr;
818
819 pattern_attr->pattern = pattern;
820 pattern_attr->type = type;
821
822 return attributes;
823
824 err_pat:
825 kfree(attributes);
826 err_attr:
827 return NULL;
828 }
829 EXPORT_SYMBOL(vme_dma_pattern_attribute);
830
831 /*
832 * Create "PCI" type attributes
833 */
834 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
835 {
836 struct vme_dma_attr *attributes;
837 struct vme_dma_pci *pci_attr;
838
839 /* XXX Run some sanity checks here */
840
841 attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
842 if (attributes == NULL) {
843 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
844 goto err_attr;
845 }
846
847 pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL);
848 if (pci_attr == NULL) {
849 printk(KERN_ERR "Unable to allocate memory for pci attributes\n");
850 goto err_pci;
851 }
852
853
854
855 attributes->type = VME_DMA_PCI;
856 attributes->private = (void *)pci_attr;
857
858 pci_attr->address = address;
859
860 return attributes;
861
862 err_pci:
863 kfree(attributes);
864 err_attr:
865 return NULL;
866 }
867 EXPORT_SYMBOL(vme_dma_pci_attribute);
868
869 /*
870 * Create "VME" type attributes
871 */
872 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
873 u32 aspace, u32 cycle, u32 dwidth)
874 {
875 struct vme_dma_attr *attributes;
876 struct vme_dma_vme *vme_attr;
877
878 attributes = kmalloc(
879 sizeof(struct vme_dma_attr), GFP_KERNEL);
880 if (attributes == NULL) {
881 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
882 goto err_attr;
883 }
884
885 vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL);
886 if (vme_attr == NULL) {
887 printk(KERN_ERR "Unable to allocate memory for vme attributes\n");
888 goto err_vme;
889 }
890
891 attributes->type = VME_DMA_VME;
892 attributes->private = (void *)vme_attr;
893
894 vme_attr->address = address;
895 vme_attr->aspace = aspace;
896 vme_attr->cycle = cycle;
897 vme_attr->dwidth = dwidth;
898
899 return attributes;
900
901 err_vme:
902 kfree(attributes);
903 err_attr:
904 return NULL;
905 }
906 EXPORT_SYMBOL(vme_dma_vme_attribute);
907
908 /*
909 * Free attribute
910 */
911 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
912 {
913 kfree(attributes->private);
914 kfree(attributes);
915 }
916 EXPORT_SYMBOL(vme_dma_free_attribute);
917
918 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
919 struct vme_dma_attr *dest, size_t count)
920 {
921 struct vme_bridge *bridge = list->parent->parent;
922 int retval;
923
924 if (bridge->dma_list_add == NULL) {
925 printk(KERN_WARNING "Link List DMA generation not supported\n");
926 return -EINVAL;
927 }
928
929 if (!mutex_trylock(&list->mtx)) {
930 printk(KERN_ERR "Link List already submitted\n");
931 return -EINVAL;
932 }
933
934 retval = bridge->dma_list_add(list, src, dest, count);
935
936 mutex_unlock(&list->mtx);
937
938 return retval;
939 }
940 EXPORT_SYMBOL(vme_dma_list_add);
941
942 int vme_dma_list_exec(struct vme_dma_list *list)
943 {
944 struct vme_bridge *bridge = list->parent->parent;
945 int retval;
946
947 if (bridge->dma_list_exec == NULL) {
948 printk(KERN_ERR "Link List DMA execution not supported\n");
949 return -EINVAL;
950 }
951
952 mutex_lock(&list->mtx);
953
954 retval = bridge->dma_list_exec(list);
955
956 mutex_unlock(&list->mtx);
957
958 return retval;
959 }
960 EXPORT_SYMBOL(vme_dma_list_exec);
961
962 int vme_dma_list_free(struct vme_dma_list *list)
963 {
964 struct vme_bridge *bridge = list->parent->parent;
965 int retval;
966
967 if (bridge->dma_list_empty == NULL) {
968 printk(KERN_WARNING "Emptying of Link Lists not supported\n");
969 return -EINVAL;
970 }
971
972 if (!mutex_trylock(&list->mtx)) {
973 printk(KERN_ERR "Link List in use\n");
974 return -EINVAL;
975 }
976
977 /*
978 * Empty out all of the entries from the dma list. We need to go to the
979 * low level driver as dma entries are driver specific.
980 */
981 retval = bridge->dma_list_empty(list);
982 if (retval) {
983 printk(KERN_ERR "Unable to empty link-list entries\n");
984 mutex_unlock(&list->mtx);
985 return retval;
986 }
987 mutex_unlock(&list->mtx);
988 kfree(list);
989
990 return retval;
991 }
992 EXPORT_SYMBOL(vme_dma_list_free);
993
994 int vme_dma_free(struct vme_resource *resource)
995 {
996 struct vme_dma_resource *ctrlr;
997
998 if (resource->type != VME_DMA) {
999 printk(KERN_ERR "Not a DMA resource\n");
1000 return -EINVAL;
1001 }
1002
1003 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
1004
1005 if (!mutex_trylock(&ctrlr->mtx)) {
1006 printk(KERN_ERR "Resource busy, can't free\n");
1007 return -EBUSY;
1008 }
1009
1010 if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
1011 printk(KERN_WARNING "Resource still processing transfers\n");
1012 mutex_unlock(&ctrlr->mtx);
1013 return -EBUSY;
1014 }
1015
1016 ctrlr->locked = 0;
1017
1018 mutex_unlock(&ctrlr->mtx);
1019
1020 kfree(resource);
1021
1022 return 0;
1023 }
1024 EXPORT_SYMBOL(vme_dma_free);
1025
1026 void vme_bus_error_handler(struct vme_bridge *bridge,
1027 unsigned long long address, int am)
1028 {
1029 struct list_head *handler_pos = NULL;
1030 struct vme_error_handler *handler;
1031 int handler_triggered = 0;
1032 u32 aspace = vme_get_aspace(am);
1033
1034 list_for_each(handler_pos, &bridge->vme_error_handlers) {
1035 handler = list_entry(handler_pos, struct vme_error_handler,
1036 list);
1037 if ((aspace == handler->aspace) &&
1038 (address >= handler->start) &&
1039 (address < handler->end)) {
1040 if (!handler->num_errors)
1041 handler->first_error = address;
1042 if (handler->num_errors != UINT_MAX)
1043 handler->num_errors++;
1044 handler_triggered = 1;
1045 }
1046 }
1047
1048 if (!handler_triggered)
1049 dev_err(bridge->parent,
1050 "Unhandled VME access error at address 0x%llx\n",
1051 address);
1052 }
1053 EXPORT_SYMBOL(vme_bus_error_handler);
1054
1055 struct vme_error_handler *vme_register_error_handler(
1056 struct vme_bridge *bridge, u32 aspace,
1057 unsigned long long address, size_t len)
1058 {
1059 struct vme_error_handler *handler;
1060
1061 handler = kmalloc(sizeof(*handler), GFP_KERNEL);
1062 if (!handler)
1063 return NULL;
1064
1065 handler->aspace = aspace;
1066 handler->start = address;
1067 handler->end = address + len;
1068 handler->num_errors = 0;
1069 handler->first_error = 0;
1070 list_add_tail(&handler->list, &bridge->vme_error_handlers);
1071
1072 return handler;
1073 }
1074 EXPORT_SYMBOL(vme_register_error_handler);
1075
1076 void vme_unregister_error_handler(struct vme_error_handler *handler)
1077 {
1078 list_del(&handler->list);
1079 kfree(handler);
1080 }
1081 EXPORT_SYMBOL(vme_unregister_error_handler);
1082
1083 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
1084 {
1085 void (*call)(int, int, void *);
1086 void *priv_data;
1087
1088 call = bridge->irq[level - 1].callback[statid].func;
1089 priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1090
1091 if (call != NULL)
1092 call(level, statid, priv_data);
1093 else
1094 printk(KERN_WARNING "Spurilous VME interrupt, level:%x, vector:%x\n",
1095 level, statid);
1096 }
1097 EXPORT_SYMBOL(vme_irq_handler);
1098
1099 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1100 void (*callback)(int, int, void *),
1101 void *priv_data)
1102 {
1103 struct vme_bridge *bridge;
1104
1105 bridge = vdev->bridge;
1106 if (bridge == NULL) {
1107 printk(KERN_ERR "Can't find VME bus\n");
1108 return -EINVAL;
1109 }
1110
1111 if ((level < 1) || (level > 7)) {
1112 printk(KERN_ERR "Invalid interrupt level\n");
1113 return -EINVAL;
1114 }
1115
1116 if (bridge->irq_set == NULL) {
1117 printk(KERN_ERR "Configuring interrupts not supported\n");
1118 return -EINVAL;
1119 }
1120
1121 mutex_lock(&bridge->irq_mtx);
1122
1123 if (bridge->irq[level - 1].callback[statid].func) {
1124 mutex_unlock(&bridge->irq_mtx);
1125 printk(KERN_WARNING "VME Interrupt already taken\n");
1126 return -EBUSY;
1127 }
1128
1129 bridge->irq[level - 1].count++;
1130 bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1131 bridge->irq[level - 1].callback[statid].func = callback;
1132
1133 /* Enable IRQ level */
1134 bridge->irq_set(bridge, level, 1, 1);
1135
1136 mutex_unlock(&bridge->irq_mtx);
1137
1138 return 0;
1139 }
1140 EXPORT_SYMBOL(vme_irq_request);
1141
1142 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1143 {
1144 struct vme_bridge *bridge;
1145
1146 bridge = vdev->bridge;
1147 if (bridge == NULL) {
1148 printk(KERN_ERR "Can't find VME bus\n");
1149 return;
1150 }
1151
1152 if ((level < 1) || (level > 7)) {
1153 printk(KERN_ERR "Invalid interrupt level\n");
1154 return;
1155 }
1156
1157 if (bridge->irq_set == NULL) {
1158 printk(KERN_ERR "Configuring interrupts not supported\n");
1159 return;
1160 }
1161
1162 mutex_lock(&bridge->irq_mtx);
1163
1164 bridge->irq[level - 1].count--;
1165
1166 /* Disable IRQ level if no more interrupts attached at this level*/
1167 if (bridge->irq[level - 1].count == 0)
1168 bridge->irq_set(bridge, level, 0, 1);
1169
1170 bridge->irq[level - 1].callback[statid].func = NULL;
1171 bridge->irq[level - 1].callback[statid].priv_data = NULL;
1172
1173 mutex_unlock(&bridge->irq_mtx);
1174 }
1175 EXPORT_SYMBOL(vme_irq_free);
1176
1177 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1178 {
1179 struct vme_bridge *bridge;
1180
1181 bridge = vdev->bridge;
1182 if (bridge == NULL) {
1183 printk(KERN_ERR "Can't find VME bus\n");
1184 return -EINVAL;
1185 }
1186
1187 if ((level < 1) || (level > 7)) {
1188 printk(KERN_WARNING "Invalid interrupt level\n");
1189 return -EINVAL;
1190 }
1191
1192 if (bridge->irq_generate == NULL) {
1193 printk(KERN_WARNING "Interrupt generation not supported\n");
1194 return -EINVAL;
1195 }
1196
1197 return bridge->irq_generate(bridge, level, statid);
1198 }
1199 EXPORT_SYMBOL(vme_irq_generate);
1200
1201 /*
1202 * Request the location monitor, return resource or NULL
1203 */
1204 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1205 {
1206 struct vme_bridge *bridge;
1207 struct list_head *lm_pos = NULL;
1208 struct vme_lm_resource *allocated_lm = NULL;
1209 struct vme_lm_resource *lm = NULL;
1210 struct vme_resource *resource = NULL;
1211
1212 bridge = vdev->bridge;
1213 if (bridge == NULL) {
1214 printk(KERN_ERR "Can't find VME bus\n");
1215 goto err_bus;
1216 }
1217
1218 /* Loop through DMA resources */
1219 list_for_each(lm_pos, &bridge->lm_resources) {
1220 lm = list_entry(lm_pos,
1221 struct vme_lm_resource, list);
1222
1223 if (lm == NULL) {
1224 printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1225 continue;
1226 }
1227
1228 /* Find an unlocked controller */
1229 mutex_lock(&lm->mtx);
1230 if (lm->locked == 0) {
1231 lm->locked = 1;
1232 mutex_unlock(&lm->mtx);
1233 allocated_lm = lm;
1234 break;
1235 }
1236 mutex_unlock(&lm->mtx);
1237 }
1238
1239 /* Check to see if we found a resource */
1240 if (allocated_lm == NULL)
1241 goto err_lm;
1242
1243 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
1244 if (resource == NULL) {
1245 printk(KERN_ERR "Unable to allocate resource structure\n");
1246 goto err_alloc;
1247 }
1248 resource->type = VME_LM;
1249 resource->entry = &allocated_lm->list;
1250
1251 return resource;
1252
1253 err_alloc:
1254 /* Unlock image */
1255 mutex_lock(&lm->mtx);
1256 lm->locked = 0;
1257 mutex_unlock(&lm->mtx);
1258 err_lm:
1259 err_bus:
1260 return NULL;
1261 }
1262 EXPORT_SYMBOL(vme_lm_request);
1263
1264 int vme_lm_count(struct vme_resource *resource)
1265 {
1266 struct vme_lm_resource *lm;
1267
1268 if (resource->type != VME_LM) {
1269 printk(KERN_ERR "Not a Location Monitor resource\n");
1270 return -EINVAL;
1271 }
1272
1273 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1274
1275 return lm->monitors;
1276 }
1277 EXPORT_SYMBOL(vme_lm_count);
1278
1279 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1280 u32 aspace, u32 cycle)
1281 {
1282 struct vme_bridge *bridge = find_bridge(resource);
1283 struct vme_lm_resource *lm;
1284
1285 if (resource->type != VME_LM) {
1286 printk(KERN_ERR "Not a Location Monitor resource\n");
1287 return -EINVAL;
1288 }
1289
1290 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1291
1292 if (bridge->lm_set == NULL) {
1293 printk(KERN_ERR "vme_lm_set not supported\n");
1294 return -EINVAL;
1295 }
1296
1297 return bridge->lm_set(lm, lm_base, aspace, cycle);
1298 }
1299 EXPORT_SYMBOL(vme_lm_set);
1300
1301 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1302 u32 *aspace, u32 *cycle)
1303 {
1304 struct vme_bridge *bridge = find_bridge(resource);
1305 struct vme_lm_resource *lm;
1306
1307 if (resource->type != VME_LM) {
1308 printk(KERN_ERR "Not a Location Monitor resource\n");
1309 return -EINVAL;
1310 }
1311
1312 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1313
1314 if (bridge->lm_get == NULL) {
1315 printk(KERN_ERR "vme_lm_get not supported\n");
1316 return -EINVAL;
1317 }
1318
1319 return bridge->lm_get(lm, lm_base, aspace, cycle);
1320 }
1321 EXPORT_SYMBOL(vme_lm_get);
1322
1323 int vme_lm_attach(struct vme_resource *resource, int monitor,
1324 void (*callback)(int))
1325 {
1326 struct vme_bridge *bridge = find_bridge(resource);
1327 struct vme_lm_resource *lm;
1328
1329 if (resource->type != VME_LM) {
1330 printk(KERN_ERR "Not a Location Monitor resource\n");
1331 return -EINVAL;
1332 }
1333
1334 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1335
1336 if (bridge->lm_attach == NULL) {
1337 printk(KERN_ERR "vme_lm_attach not supported\n");
1338 return -EINVAL;
1339 }
1340
1341 return bridge->lm_attach(lm, monitor, callback);
1342 }
1343 EXPORT_SYMBOL(vme_lm_attach);
1344
1345 int vme_lm_detach(struct vme_resource *resource, int monitor)
1346 {
1347 struct vme_bridge *bridge = find_bridge(resource);
1348 struct vme_lm_resource *lm;
1349
1350 if (resource->type != VME_LM) {
1351 printk(KERN_ERR "Not a Location Monitor resource\n");
1352 return -EINVAL;
1353 }
1354
1355 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1356
1357 if (bridge->lm_detach == NULL) {
1358 printk(KERN_ERR "vme_lm_detach not supported\n");
1359 return -EINVAL;
1360 }
1361
1362 return bridge->lm_detach(lm, monitor);
1363 }
1364 EXPORT_SYMBOL(vme_lm_detach);
1365
1366 void vme_lm_free(struct vme_resource *resource)
1367 {
1368 struct vme_lm_resource *lm;
1369
1370 if (resource->type != VME_LM) {
1371 printk(KERN_ERR "Not a Location Monitor resource\n");
1372 return;
1373 }
1374
1375 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1376
1377 mutex_lock(&lm->mtx);
1378
1379 /* XXX
1380 * Check to see that there aren't any callbacks still attached, if
1381 * there are we should probably be detaching them!
1382 */
1383
1384 lm->locked = 0;
1385
1386 mutex_unlock(&lm->mtx);
1387
1388 kfree(resource);
1389 }
1390 EXPORT_SYMBOL(vme_lm_free);
1391
1392 int vme_slot_num(struct vme_dev *vdev)
1393 {
1394 struct vme_bridge *bridge;
1395
1396 bridge = vdev->bridge;
1397 if (bridge == NULL) {
1398 printk(KERN_ERR "Can't find VME bus\n");
1399 return -EINVAL;
1400 }
1401
1402 if (bridge->slot_get == NULL) {
1403 printk(KERN_WARNING "vme_slot_num not supported\n");
1404 return -EINVAL;
1405 }
1406
1407 return bridge->slot_get(bridge);
1408 }
1409 EXPORT_SYMBOL(vme_slot_num);
1410
1411 int vme_bus_num(struct vme_dev *vdev)
1412 {
1413 struct vme_bridge *bridge;
1414
1415 bridge = vdev->bridge;
1416 if (bridge == NULL) {
1417 pr_err("Can't find VME bus\n");
1418 return -EINVAL;
1419 }
1420
1421 return bridge->num;
1422 }
1423 EXPORT_SYMBOL(vme_bus_num);
1424
1425 /* - Bridge Registration --------------------------------------------------- */
1426
1427 static void vme_dev_release(struct device *dev)
1428 {
1429 kfree(dev_to_vme_dev(dev));
1430 }
1431
1432 int vme_register_bridge(struct vme_bridge *bridge)
1433 {
1434 int i;
1435 int ret = -1;
1436
1437 mutex_lock(&vme_buses_lock);
1438 for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1439 if ((vme_bus_numbers & (1 << i)) == 0) {
1440 vme_bus_numbers |= (1 << i);
1441 bridge->num = i;
1442 INIT_LIST_HEAD(&bridge->devices);
1443 list_add_tail(&bridge->bus_list, &vme_bus_list);
1444 ret = 0;
1445 break;
1446 }
1447 }
1448 mutex_unlock(&vme_buses_lock);
1449
1450 return ret;
1451 }
1452 EXPORT_SYMBOL(vme_register_bridge);
1453
1454 void vme_unregister_bridge(struct vme_bridge *bridge)
1455 {
1456 struct vme_dev *vdev;
1457 struct vme_dev *tmp;
1458
1459 mutex_lock(&vme_buses_lock);
1460 vme_bus_numbers &= ~(1 << bridge->num);
1461 list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1462 list_del(&vdev->drv_list);
1463 list_del(&vdev->bridge_list);
1464 device_unregister(&vdev->dev);
1465 }
1466 list_del(&bridge->bus_list);
1467 mutex_unlock(&vme_buses_lock);
1468 }
1469 EXPORT_SYMBOL(vme_unregister_bridge);
1470
1471 /* - Driver Registration --------------------------------------------------- */
1472
1473 static int __vme_register_driver_bus(struct vme_driver *drv,
1474 struct vme_bridge *bridge, unsigned int ndevs)
1475 {
1476 int err;
1477 unsigned int i;
1478 struct vme_dev *vdev;
1479 struct vme_dev *tmp;
1480
1481 for (i = 0; i < ndevs; i++) {
1482 vdev = kzalloc(sizeof(struct vme_dev), GFP_KERNEL);
1483 if (!vdev) {
1484 err = -ENOMEM;
1485 goto err_devalloc;
1486 }
1487 vdev->num = i;
1488 vdev->bridge = bridge;
1489 vdev->dev.platform_data = drv;
1490 vdev->dev.release = vme_dev_release;
1491 vdev->dev.parent = bridge->parent;
1492 vdev->dev.bus = &vme_bus_type;
1493 dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1494 vdev->num);
1495
1496 err = device_register(&vdev->dev);
1497 if (err)
1498 goto err_reg;
1499
1500 if (vdev->dev.platform_data) {
1501 list_add_tail(&vdev->drv_list, &drv->devices);
1502 list_add_tail(&vdev->bridge_list, &bridge->devices);
1503 } else
1504 device_unregister(&vdev->dev);
1505 }
1506 return 0;
1507
1508 err_reg:
1509 put_device(&vdev->dev);
1510 kfree(vdev);
1511 err_devalloc:
1512 list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1513 list_del(&vdev->drv_list);
1514 list_del(&vdev->bridge_list);
1515 device_unregister(&vdev->dev);
1516 }
1517 return err;
1518 }
1519
1520 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1521 {
1522 struct vme_bridge *bridge;
1523 int err = 0;
1524
1525 mutex_lock(&vme_buses_lock);
1526 list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1527 /*
1528 * This cannot cause trouble as we already have vme_buses_lock
1529 * and if the bridge is removed, it will have to go through
1530 * vme_unregister_bridge() to do it (which calls remove() on
1531 * the bridge which in turn tries to acquire vme_buses_lock and
1532 * will have to wait).
1533 */
1534 err = __vme_register_driver_bus(drv, bridge, ndevs);
1535 if (err)
1536 break;
1537 }
1538 mutex_unlock(&vme_buses_lock);
1539 return err;
1540 }
1541
1542 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1543 {
1544 int err;
1545
1546 drv->driver.name = drv->name;
1547 drv->driver.bus = &vme_bus_type;
1548 INIT_LIST_HEAD(&drv->devices);
1549
1550 err = driver_register(&drv->driver);
1551 if (err)
1552 return err;
1553
1554 err = __vme_register_driver(drv, ndevs);
1555 if (err)
1556 driver_unregister(&drv->driver);
1557
1558 return err;
1559 }
1560 EXPORT_SYMBOL(vme_register_driver);
1561
1562 void vme_unregister_driver(struct vme_driver *drv)
1563 {
1564 struct vme_dev *dev, *dev_tmp;
1565
1566 mutex_lock(&vme_buses_lock);
1567 list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1568 list_del(&dev->drv_list);
1569 list_del(&dev->bridge_list);
1570 device_unregister(&dev->dev);
1571 }
1572 mutex_unlock(&vme_buses_lock);
1573
1574 driver_unregister(&drv->driver);
1575 }
1576 EXPORT_SYMBOL(vme_unregister_driver);
1577
1578 /* - Bus Registration ------------------------------------------------------ */
1579
1580 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1581 {
1582 struct vme_driver *vme_drv;
1583
1584 vme_drv = container_of(drv, struct vme_driver, driver);
1585
1586 if (dev->platform_data == vme_drv) {
1587 struct vme_dev *vdev = dev_to_vme_dev(dev);
1588
1589 if (vme_drv->match && vme_drv->match(vdev))
1590 return 1;
1591
1592 dev->platform_data = NULL;
1593 }
1594 return 0;
1595 }
1596
1597 static int vme_bus_probe(struct device *dev)
1598 {
1599 int retval = -ENODEV;
1600 struct vme_driver *driver;
1601 struct vme_dev *vdev = dev_to_vme_dev(dev);
1602
1603 driver = dev->platform_data;
1604
1605 if (driver->probe != NULL)
1606 retval = driver->probe(vdev);
1607
1608 return retval;
1609 }
1610
1611 static int vme_bus_remove(struct device *dev)
1612 {
1613 int retval = -ENODEV;
1614 struct vme_driver *driver;
1615 struct vme_dev *vdev = dev_to_vme_dev(dev);
1616
1617 driver = dev->platform_data;
1618
1619 if (driver->remove != NULL)
1620 retval = driver->remove(vdev);
1621
1622 return retval;
1623 }
1624
1625 struct bus_type vme_bus_type = {
1626 .name = "vme",
1627 .match = vme_bus_match,
1628 .probe = vme_bus_probe,
1629 .remove = vme_bus_remove,
1630 };
1631 EXPORT_SYMBOL(vme_bus_type);
1632
1633 static int __init vme_init(void)
1634 {
1635 return bus_register(&vme_bus_type);
1636 }
1637
1638 static void __exit vme_exit(void)
1639 {
1640 bus_unregister(&vme_bus_type);
1641 }
1642
1643 subsys_initcall(vme_init);
1644 module_exit(vme_exit);
This page took 0.065134 seconds and 5 git commands to generate.