Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / drivers / xen / swiotlb-xen.c
1 /*
2 * Copyright 2010
3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4 *
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * PV guests under Xen are running in an non-contiguous memory architecture.
17 *
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
21 * operations).
22 *
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
33 *
34 */
35
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48
49 #include <trace/events/swiotlb.h>
50 /*
51 * Used to do a quick range check in swiotlb_tbl_unmap_single and
52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53 * API.
54 */
55
56 #ifndef CONFIG_X86
57 static unsigned long dma_alloc_coherent_mask(struct device *dev,
58 gfp_t gfp)
59 {
60 unsigned long dma_mask = 0;
61
62 dma_mask = dev->coherent_dma_mask;
63 if (!dma_mask)
64 dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
65
66 return dma_mask;
67 }
68 #endif
69
70 static char *xen_io_tlb_start, *xen_io_tlb_end;
71 static unsigned long xen_io_tlb_nslabs;
72 /*
73 * Quick lookup value of the bus address of the IOTLB.
74 */
75
76 static u64 start_dma_addr;
77
78 /*
79 * Both of these functions should avoid PFN_PHYS because phys_addr_t
80 * can be 32bit when dma_addr_t is 64bit leading to a loss in
81 * information if the shift is done before casting to 64bit.
82 */
83 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
84 {
85 unsigned long bfn = pfn_to_bfn(PFN_DOWN(paddr));
86 dma_addr_t dma = (dma_addr_t)bfn << PAGE_SHIFT;
87
88 dma |= paddr & ~PAGE_MASK;
89
90 return dma;
91 }
92
93 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
94 {
95 unsigned long pfn = bfn_to_pfn(PFN_DOWN(baddr));
96 dma_addr_t dma = (dma_addr_t)pfn << PAGE_SHIFT;
97 phys_addr_t paddr = dma;
98
99 paddr |= baddr & ~PAGE_MASK;
100
101 return paddr;
102 }
103
104 static inline dma_addr_t xen_virt_to_bus(void *address)
105 {
106 return xen_phys_to_bus(virt_to_phys(address));
107 }
108
109 static int check_pages_physically_contiguous(unsigned long pfn,
110 unsigned int offset,
111 size_t length)
112 {
113 unsigned long next_bfn;
114 int i;
115 int nr_pages;
116
117 next_bfn = pfn_to_bfn(pfn);
118 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
119
120 for (i = 1; i < nr_pages; i++) {
121 if (pfn_to_bfn(++pfn) != ++next_bfn)
122 return 0;
123 }
124 return 1;
125 }
126
127 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
128 {
129 unsigned long pfn = PFN_DOWN(p);
130 unsigned int offset = p & ~PAGE_MASK;
131
132 if (offset + size <= PAGE_SIZE)
133 return 0;
134 if (check_pages_physically_contiguous(pfn, offset, size))
135 return 0;
136 return 1;
137 }
138
139 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
140 {
141 unsigned long bfn = PFN_DOWN(dma_addr);
142 unsigned long pfn = bfn_to_local_pfn(bfn);
143 phys_addr_t paddr;
144
145 /* If the address is outside our domain, it CAN
146 * have the same virtual address as another address
147 * in our domain. Therefore _only_ check address within our domain.
148 */
149 if (pfn_valid(pfn)) {
150 paddr = PFN_PHYS(pfn);
151 return paddr >= virt_to_phys(xen_io_tlb_start) &&
152 paddr < virt_to_phys(xen_io_tlb_end);
153 }
154 return 0;
155 }
156
157 static int max_dma_bits = 32;
158
159 static int
160 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
161 {
162 int i, rc;
163 int dma_bits;
164 dma_addr_t dma_handle;
165 phys_addr_t p = virt_to_phys(buf);
166
167 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
168
169 i = 0;
170 do {
171 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
172
173 do {
174 rc = xen_create_contiguous_region(
175 p + (i << IO_TLB_SHIFT),
176 get_order(slabs << IO_TLB_SHIFT),
177 dma_bits, &dma_handle);
178 } while (rc && dma_bits++ < max_dma_bits);
179 if (rc)
180 return rc;
181
182 i += slabs;
183 } while (i < nslabs);
184 return 0;
185 }
186 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
187 {
188 if (!nr_tbl) {
189 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
190 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
191 } else
192 xen_io_tlb_nslabs = nr_tbl;
193
194 return xen_io_tlb_nslabs << IO_TLB_SHIFT;
195 }
196
197 enum xen_swiotlb_err {
198 XEN_SWIOTLB_UNKNOWN = 0,
199 XEN_SWIOTLB_ENOMEM,
200 XEN_SWIOTLB_EFIXUP
201 };
202
203 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
204 {
205 switch (err) {
206 case XEN_SWIOTLB_ENOMEM:
207 return "Cannot allocate Xen-SWIOTLB buffer\n";
208 case XEN_SWIOTLB_EFIXUP:
209 return "Failed to get contiguous memory for DMA from Xen!\n"\
210 "You either: don't have the permissions, do not have"\
211 " enough free memory under 4GB, or the hypervisor memory"\
212 " is too fragmented!";
213 default:
214 break;
215 }
216 return "";
217 }
218 int __ref xen_swiotlb_init(int verbose, bool early)
219 {
220 unsigned long bytes, order;
221 int rc = -ENOMEM;
222 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
223 unsigned int repeat = 3;
224
225 xen_io_tlb_nslabs = swiotlb_nr_tbl();
226 retry:
227 bytes = xen_set_nslabs(xen_io_tlb_nslabs);
228 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
229 /*
230 * Get IO TLB memory from any location.
231 */
232 if (early)
233 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
234 else {
235 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
236 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
237 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
238 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
239 if (xen_io_tlb_start)
240 break;
241 order--;
242 }
243 if (order != get_order(bytes)) {
244 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
245 (PAGE_SIZE << order) >> 20);
246 xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
247 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
248 }
249 }
250 if (!xen_io_tlb_start) {
251 m_ret = XEN_SWIOTLB_ENOMEM;
252 goto error;
253 }
254 xen_io_tlb_end = xen_io_tlb_start + bytes;
255 /*
256 * And replace that memory with pages under 4GB.
257 */
258 rc = xen_swiotlb_fixup(xen_io_tlb_start,
259 bytes,
260 xen_io_tlb_nslabs);
261 if (rc) {
262 if (early)
263 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
264 else {
265 free_pages((unsigned long)xen_io_tlb_start, order);
266 xen_io_tlb_start = NULL;
267 }
268 m_ret = XEN_SWIOTLB_EFIXUP;
269 goto error;
270 }
271 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
272 if (early) {
273 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
274 verbose))
275 panic("Cannot allocate SWIOTLB buffer");
276 rc = 0;
277 } else
278 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
279 return rc;
280 error:
281 if (repeat--) {
282 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
283 (xen_io_tlb_nslabs >> 1));
284 pr_info("Lowering to %luMB\n",
285 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
286 goto retry;
287 }
288 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
289 if (early)
290 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
291 else
292 free_pages((unsigned long)xen_io_tlb_start, order);
293 return rc;
294 }
295 void *
296 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
297 dma_addr_t *dma_handle, gfp_t flags,
298 struct dma_attrs *attrs)
299 {
300 void *ret;
301 int order = get_order(size);
302 u64 dma_mask = DMA_BIT_MASK(32);
303 phys_addr_t phys;
304 dma_addr_t dev_addr;
305
306 /*
307 * Ignore region specifiers - the kernel's ideas of
308 * pseudo-phys memory layout has nothing to do with the
309 * machine physical layout. We can't allocate highmem
310 * because we can't return a pointer to it.
311 */
312 flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
313
314 /* On ARM this function returns an ioremap'ped virtual address for
315 * which virt_to_phys doesn't return the corresponding physical
316 * address. In fact on ARM virt_to_phys only works for kernel direct
317 * mapped RAM memory. Also see comment below.
318 */
319 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
320
321 if (!ret)
322 return ret;
323
324 if (hwdev && hwdev->coherent_dma_mask)
325 dma_mask = dma_alloc_coherent_mask(hwdev, flags);
326
327 /* At this point dma_handle is the physical address, next we are
328 * going to set it to the machine address.
329 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
330 * to *dma_handle. */
331 phys = *dma_handle;
332 dev_addr = xen_phys_to_bus(phys);
333 if (((dev_addr + size - 1 <= dma_mask)) &&
334 !range_straddles_page_boundary(phys, size))
335 *dma_handle = dev_addr;
336 else {
337 if (xen_create_contiguous_region(phys, order,
338 fls64(dma_mask), dma_handle) != 0) {
339 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
340 return NULL;
341 }
342 }
343 memset(ret, 0, size);
344 return ret;
345 }
346 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
347
348 void
349 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
350 dma_addr_t dev_addr, struct dma_attrs *attrs)
351 {
352 int order = get_order(size);
353 phys_addr_t phys;
354 u64 dma_mask = DMA_BIT_MASK(32);
355
356 if (hwdev && hwdev->coherent_dma_mask)
357 dma_mask = hwdev->coherent_dma_mask;
358
359 /* do not use virt_to_phys because on ARM it doesn't return you the
360 * physical address */
361 phys = xen_bus_to_phys(dev_addr);
362
363 if (((dev_addr + size - 1 > dma_mask)) ||
364 range_straddles_page_boundary(phys, size))
365 xen_destroy_contiguous_region(phys, order);
366
367 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
368 }
369 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
370
371
372 /*
373 * Map a single buffer of the indicated size for DMA in streaming mode. The
374 * physical address to use is returned.
375 *
376 * Once the device is given the dma address, the device owns this memory until
377 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
378 */
379 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
380 unsigned long offset, size_t size,
381 enum dma_data_direction dir,
382 struct dma_attrs *attrs)
383 {
384 phys_addr_t map, phys = page_to_phys(page) + offset;
385 dma_addr_t dev_addr = xen_phys_to_bus(phys);
386
387 BUG_ON(dir == DMA_NONE);
388 /*
389 * If the address happens to be in the device's DMA window,
390 * we can safely return the device addr and not worry about bounce
391 * buffering it.
392 */
393 if (dma_capable(dev, dev_addr, size) &&
394 !range_straddles_page_boundary(phys, size) &&
395 !xen_arch_need_swiotlb(dev, PFN_DOWN(phys), PFN_DOWN(dev_addr)) &&
396 !swiotlb_force) {
397 /* we are not interested in the dma_addr returned by
398 * xen_dma_map_page, only in the potential cache flushes executed
399 * by the function. */
400 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
401 return dev_addr;
402 }
403
404 /*
405 * Oh well, have to allocate and map a bounce buffer.
406 */
407 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
408
409 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
410 if (map == SWIOTLB_MAP_ERROR)
411 return DMA_ERROR_CODE;
412
413 xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
414 dev_addr, map & ~PAGE_MASK, size, dir, attrs);
415 dev_addr = xen_phys_to_bus(map);
416
417 /*
418 * Ensure that the address returned is DMA'ble
419 */
420 if (!dma_capable(dev, dev_addr, size)) {
421 swiotlb_tbl_unmap_single(dev, map, size, dir);
422 dev_addr = 0;
423 }
424 return dev_addr;
425 }
426 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
427
428 /*
429 * Unmap a single streaming mode DMA translation. The dma_addr and size must
430 * match what was provided for in a previous xen_swiotlb_map_page call. All
431 * other usages are undefined.
432 *
433 * After this call, reads by the cpu to the buffer are guaranteed to see
434 * whatever the device wrote there.
435 */
436 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
437 size_t size, enum dma_data_direction dir,
438 struct dma_attrs *attrs)
439 {
440 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
441
442 BUG_ON(dir == DMA_NONE);
443
444 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
445
446 /* NOTE: We use dev_addr here, not paddr! */
447 if (is_xen_swiotlb_buffer(dev_addr)) {
448 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
449 return;
450 }
451
452 if (dir != DMA_FROM_DEVICE)
453 return;
454
455 /*
456 * phys_to_virt doesn't work with hihgmem page but we could
457 * call dma_mark_clean() with hihgmem page here. However, we
458 * are fine since dma_mark_clean() is null on POWERPC. We can
459 * make dma_mark_clean() take a physical address if necessary.
460 */
461 dma_mark_clean(phys_to_virt(paddr), size);
462 }
463
464 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
465 size_t size, enum dma_data_direction dir,
466 struct dma_attrs *attrs)
467 {
468 xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
469 }
470 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
471
472 /*
473 * Make physical memory consistent for a single streaming mode DMA translation
474 * after a transfer.
475 *
476 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
477 * using the cpu, yet do not wish to teardown the dma mapping, you must
478 * call this function before doing so. At the next point you give the dma
479 * address back to the card, you must first perform a
480 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
481 */
482 static void
483 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
484 size_t size, enum dma_data_direction dir,
485 enum dma_sync_target target)
486 {
487 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
488
489 BUG_ON(dir == DMA_NONE);
490
491 if (target == SYNC_FOR_CPU)
492 xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
493
494 /* NOTE: We use dev_addr here, not paddr! */
495 if (is_xen_swiotlb_buffer(dev_addr))
496 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
497
498 if (target == SYNC_FOR_DEVICE)
499 xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
500
501 if (dir != DMA_FROM_DEVICE)
502 return;
503
504 dma_mark_clean(phys_to_virt(paddr), size);
505 }
506
507 void
508 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
509 size_t size, enum dma_data_direction dir)
510 {
511 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
512 }
513 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
514
515 void
516 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
517 size_t size, enum dma_data_direction dir)
518 {
519 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
520 }
521 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
522
523 /*
524 * Map a set of buffers described by scatterlist in streaming mode for DMA.
525 * This is the scatter-gather version of the above xen_swiotlb_map_page
526 * interface. Here the scatter gather list elements are each tagged with the
527 * appropriate dma address and length. They are obtained via
528 * sg_dma_{address,length}(SG).
529 *
530 * NOTE: An implementation may be able to use a smaller number of
531 * DMA address/length pairs than there are SG table elements.
532 * (for example via virtual mapping capabilities)
533 * The routine returns the number of addr/length pairs actually
534 * used, at most nents.
535 *
536 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
537 * same here.
538 */
539 int
540 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
541 int nelems, enum dma_data_direction dir,
542 struct dma_attrs *attrs)
543 {
544 struct scatterlist *sg;
545 int i;
546
547 BUG_ON(dir == DMA_NONE);
548
549 for_each_sg(sgl, sg, nelems, i) {
550 phys_addr_t paddr = sg_phys(sg);
551 dma_addr_t dev_addr = xen_phys_to_bus(paddr);
552
553 if (swiotlb_force ||
554 xen_arch_need_swiotlb(hwdev, PFN_DOWN(paddr), PFN_DOWN(dev_addr)) ||
555 !dma_capable(hwdev, dev_addr, sg->length) ||
556 range_straddles_page_boundary(paddr, sg->length)) {
557 phys_addr_t map = swiotlb_tbl_map_single(hwdev,
558 start_dma_addr,
559 sg_phys(sg),
560 sg->length,
561 dir);
562 if (map == SWIOTLB_MAP_ERROR) {
563 dev_warn(hwdev, "swiotlb buffer is full\n");
564 /* Don't panic here, we expect map_sg users
565 to do proper error handling. */
566 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
567 attrs);
568 sg_dma_len(sgl) = 0;
569 return 0;
570 }
571 xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
572 dev_addr,
573 map & ~PAGE_MASK,
574 sg->length,
575 dir,
576 attrs);
577 sg->dma_address = xen_phys_to_bus(map);
578 } else {
579 /* we are not interested in the dma_addr returned by
580 * xen_dma_map_page, only in the potential cache flushes executed
581 * by the function. */
582 xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
583 dev_addr,
584 paddr & ~PAGE_MASK,
585 sg->length,
586 dir,
587 attrs);
588 sg->dma_address = dev_addr;
589 }
590 sg_dma_len(sg) = sg->length;
591 }
592 return nelems;
593 }
594 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
595
596 /*
597 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
598 * concerning calls here are the same as for swiotlb_unmap_page() above.
599 */
600 void
601 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
602 int nelems, enum dma_data_direction dir,
603 struct dma_attrs *attrs)
604 {
605 struct scatterlist *sg;
606 int i;
607
608 BUG_ON(dir == DMA_NONE);
609
610 for_each_sg(sgl, sg, nelems, i)
611 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
612
613 }
614 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
615
616 /*
617 * Make physical memory consistent for a set of streaming mode DMA translations
618 * after a transfer.
619 *
620 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
621 * and usage.
622 */
623 static void
624 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
625 int nelems, enum dma_data_direction dir,
626 enum dma_sync_target target)
627 {
628 struct scatterlist *sg;
629 int i;
630
631 for_each_sg(sgl, sg, nelems, i)
632 xen_swiotlb_sync_single(hwdev, sg->dma_address,
633 sg_dma_len(sg), dir, target);
634 }
635
636 void
637 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
638 int nelems, enum dma_data_direction dir)
639 {
640 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
641 }
642 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
643
644 void
645 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
646 int nelems, enum dma_data_direction dir)
647 {
648 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
649 }
650 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
651
652 int
653 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
654 {
655 return !dma_addr;
656 }
657 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
658
659 /*
660 * Return whether the given device DMA address mask can be supported
661 * properly. For example, if your device can only drive the low 24-bits
662 * during bus mastering, then you would pass 0x00ffffff as the mask to
663 * this function.
664 */
665 int
666 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
667 {
668 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
669 }
670 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
671
672 int
673 xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
674 {
675 if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
676 return -EIO;
677
678 *dev->dma_mask = dma_mask;
679
680 return 0;
681 }
682 EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);
This page took 0.066892 seconds and 5 git commands to generate.