Slab API: remove useless ctor parameter and reorder parameters
[deliverable/linux.git] / fs / afs / super.c
1 /* AFS superblock handling
2 *
3 * Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved.
4 *
5 * This software may be freely redistributed under the terms of the
6 * GNU General Public License.
7 *
8 * You should have received a copy of the GNU General Public License
9 * along with this program; if not, write to the Free Software
10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
11 *
12 * Authors: David Howells <dhowells@redhat.com>
13 * David Woodhouse <dwmw2@redhat.com>
14 *
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/pagemap.h>
23 #include <linux/parser.h>
24 #include <linux/statfs.h>
25 #include <linux/sched.h>
26 #include "internal.h"
27
28 #define AFS_FS_MAGIC 0x6B414653 /* 'kAFS' */
29
30 static void afs_i_init_once(struct kmem_cache *cachep, void *foo);
31 static int afs_get_sb(struct file_system_type *fs_type,
32 int flags, const char *dev_name,
33 void *data, struct vfsmount *mnt);
34 static struct inode *afs_alloc_inode(struct super_block *sb);
35 static void afs_put_super(struct super_block *sb);
36 static void afs_destroy_inode(struct inode *inode);
37 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
38
39 struct file_system_type afs_fs_type = {
40 .owner = THIS_MODULE,
41 .name = "afs",
42 .get_sb = afs_get_sb,
43 .kill_sb = kill_anon_super,
44 .fs_flags = 0,
45 };
46
47 static const struct super_operations afs_super_ops = {
48 .statfs = afs_statfs,
49 .alloc_inode = afs_alloc_inode,
50 .write_inode = afs_write_inode,
51 .destroy_inode = afs_destroy_inode,
52 .clear_inode = afs_clear_inode,
53 .umount_begin = afs_umount_begin,
54 .put_super = afs_put_super,
55 };
56
57 static struct kmem_cache *afs_inode_cachep;
58 static atomic_t afs_count_active_inodes;
59
60 enum {
61 afs_no_opt,
62 afs_opt_cell,
63 afs_opt_rwpath,
64 afs_opt_vol,
65 };
66
67 static match_table_t afs_options_list = {
68 { afs_opt_cell, "cell=%s" },
69 { afs_opt_rwpath, "rwpath" },
70 { afs_opt_vol, "vol=%s" },
71 { afs_no_opt, NULL },
72 };
73
74 /*
75 * initialise the filesystem
76 */
77 int __init afs_fs_init(void)
78 {
79 int ret;
80
81 _enter("");
82
83 /* create ourselves an inode cache */
84 atomic_set(&afs_count_active_inodes, 0);
85
86 ret = -ENOMEM;
87 afs_inode_cachep = kmem_cache_create("afs_inode_cache",
88 sizeof(struct afs_vnode),
89 0,
90 SLAB_HWCACHE_ALIGN,
91 afs_i_init_once);
92 if (!afs_inode_cachep) {
93 printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
94 return ret;
95 }
96
97 /* now export our filesystem to lesser mortals */
98 ret = register_filesystem(&afs_fs_type);
99 if (ret < 0) {
100 kmem_cache_destroy(afs_inode_cachep);
101 _leave(" = %d", ret);
102 return ret;
103 }
104
105 _leave(" = 0");
106 return 0;
107 }
108
109 /*
110 * clean up the filesystem
111 */
112 void __exit afs_fs_exit(void)
113 {
114 _enter("");
115
116 afs_mntpt_kill_timer();
117 unregister_filesystem(&afs_fs_type);
118
119 if (atomic_read(&afs_count_active_inodes) != 0) {
120 printk("kAFS: %d active inode objects still present\n",
121 atomic_read(&afs_count_active_inodes));
122 BUG();
123 }
124
125 kmem_cache_destroy(afs_inode_cachep);
126 _leave("");
127 }
128
129 /*
130 * parse the mount options
131 * - this function has been shamelessly adapted from the ext3 fs which
132 * shamelessly adapted it from the msdos fs
133 */
134 static int afs_parse_options(struct afs_mount_params *params,
135 char *options, const char **devname)
136 {
137 struct afs_cell *cell;
138 substring_t args[MAX_OPT_ARGS];
139 char *p;
140 int token;
141
142 _enter("%s", options);
143
144 options[PAGE_SIZE - 1] = 0;
145
146 while ((p = strsep(&options, ","))) {
147 if (!*p)
148 continue;
149
150 token = match_token(p, afs_options_list, args);
151 switch (token) {
152 case afs_opt_cell:
153 cell = afs_cell_lookup(args[0].from,
154 args[0].to - args[0].from);
155 if (IS_ERR(cell))
156 return PTR_ERR(cell);
157 afs_put_cell(params->cell);
158 params->cell = cell;
159 break;
160
161 case afs_opt_rwpath:
162 params->rwpath = 1;
163 break;
164
165 case afs_opt_vol:
166 *devname = args[0].from;
167 break;
168
169 default:
170 printk(KERN_ERR "kAFS:"
171 " Unknown or invalid mount option: '%s'\n", p);
172 return -EINVAL;
173 }
174 }
175
176 _leave(" = 0");
177 return 0;
178 }
179
180 /*
181 * parse a device name to get cell name, volume name, volume type and R/W
182 * selector
183 * - this can be one of the following:
184 * "%[cell:]volume[.]" R/W volume
185 * "#[cell:]volume[.]" R/O or R/W volume (rwpath=0),
186 * or R/W (rwpath=1) volume
187 * "%[cell:]volume.readonly" R/O volume
188 * "#[cell:]volume.readonly" R/O volume
189 * "%[cell:]volume.backup" Backup volume
190 * "#[cell:]volume.backup" Backup volume
191 */
192 static int afs_parse_device_name(struct afs_mount_params *params,
193 const char *name)
194 {
195 struct afs_cell *cell;
196 const char *cellname, *suffix;
197 int cellnamesz;
198
199 _enter(",%s", name);
200
201 if (!name) {
202 printk(KERN_ERR "kAFS: no volume name specified\n");
203 return -EINVAL;
204 }
205
206 if ((name[0] != '%' && name[0] != '#') || !name[1]) {
207 printk(KERN_ERR "kAFS: unparsable volume name\n");
208 return -EINVAL;
209 }
210
211 /* determine the type of volume we're looking for */
212 params->type = AFSVL_ROVOL;
213 params->force = false;
214 if (params->rwpath || name[0] == '%') {
215 params->type = AFSVL_RWVOL;
216 params->force = true;
217 }
218 name++;
219
220 /* split the cell name out if there is one */
221 params->volname = strchr(name, ':');
222 if (params->volname) {
223 cellname = name;
224 cellnamesz = params->volname - name;
225 params->volname++;
226 } else {
227 params->volname = name;
228 cellname = NULL;
229 cellnamesz = 0;
230 }
231
232 /* the volume type is further affected by a possible suffix */
233 suffix = strrchr(params->volname, '.');
234 if (suffix) {
235 if (strcmp(suffix, ".readonly") == 0) {
236 params->type = AFSVL_ROVOL;
237 params->force = true;
238 } else if (strcmp(suffix, ".backup") == 0) {
239 params->type = AFSVL_BACKVOL;
240 params->force = true;
241 } else if (suffix[1] == 0) {
242 } else {
243 suffix = NULL;
244 }
245 }
246
247 params->volnamesz = suffix ?
248 suffix - params->volname : strlen(params->volname);
249
250 _debug("cell %*.*s [%p]",
251 cellnamesz, cellnamesz, cellname ?: "", params->cell);
252
253 /* lookup the cell record */
254 if (cellname || !params->cell) {
255 cell = afs_cell_lookup(cellname, cellnamesz);
256 if (IS_ERR(cell)) {
257 printk(KERN_ERR "kAFS: unable to lookup cell '%s'\n",
258 cellname ?: "");
259 return PTR_ERR(cell);
260 }
261 afs_put_cell(params->cell);
262 params->cell = cell;
263 }
264
265 _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
266 params->cell->name, params->cell,
267 params->volnamesz, params->volnamesz, params->volname,
268 suffix ?: "-", params->type, params->force ? " FORCE" : "");
269
270 return 0;
271 }
272
273 /*
274 * check a superblock to see if it's the one we're looking for
275 */
276 static int afs_test_super(struct super_block *sb, void *data)
277 {
278 struct afs_mount_params *params = data;
279 struct afs_super_info *as = sb->s_fs_info;
280
281 return as->volume == params->volume;
282 }
283
284 /*
285 * fill in the superblock
286 */
287 static int afs_fill_super(struct super_block *sb, void *data)
288 {
289 struct afs_mount_params *params = data;
290 struct afs_super_info *as = NULL;
291 struct afs_fid fid;
292 struct dentry *root = NULL;
293 struct inode *inode = NULL;
294 int ret;
295
296 _enter("");
297
298 /* allocate a superblock info record */
299 as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
300 if (!as) {
301 _leave(" = -ENOMEM");
302 return -ENOMEM;
303 }
304
305 afs_get_volume(params->volume);
306 as->volume = params->volume;
307
308 /* fill in the superblock */
309 sb->s_blocksize = PAGE_CACHE_SIZE;
310 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
311 sb->s_magic = AFS_FS_MAGIC;
312 sb->s_op = &afs_super_ops;
313 sb->s_fs_info = as;
314
315 /* allocate the root inode and dentry */
316 fid.vid = as->volume->vid;
317 fid.vnode = 1;
318 fid.unique = 1;
319 inode = afs_iget(sb, params->key, &fid, NULL, NULL);
320 if (IS_ERR(inode))
321 goto error_inode;
322
323 ret = -ENOMEM;
324 root = d_alloc_root(inode);
325 if (!root)
326 goto error;
327
328 sb->s_root = root;
329
330 _leave(" = 0");
331 return 0;
332
333 error_inode:
334 ret = PTR_ERR(inode);
335 inode = NULL;
336 error:
337 iput(inode);
338 afs_put_volume(as->volume);
339 kfree(as);
340
341 sb->s_fs_info = NULL;
342
343 _leave(" = %d", ret);
344 return ret;
345 }
346
347 /*
348 * get an AFS superblock
349 */
350 static int afs_get_sb(struct file_system_type *fs_type,
351 int flags,
352 const char *dev_name,
353 void *options,
354 struct vfsmount *mnt)
355 {
356 struct afs_mount_params params;
357 struct super_block *sb;
358 struct afs_volume *vol;
359 struct key *key;
360 int ret;
361
362 _enter(",,%s,%p", dev_name, options);
363
364 memset(&params, 0, sizeof(params));
365
366 /* parse the options and device name */
367 if (options) {
368 ret = afs_parse_options(&params, options, &dev_name);
369 if (ret < 0)
370 goto error;
371 }
372
373 ret = afs_parse_device_name(&params, dev_name);
374 if (ret < 0)
375 goto error;
376
377 /* try and do the mount securely */
378 key = afs_request_key(params.cell);
379 if (IS_ERR(key)) {
380 _leave(" = %ld [key]", PTR_ERR(key));
381 ret = PTR_ERR(key);
382 goto error;
383 }
384 params.key = key;
385
386 /* parse the device name */
387 vol = afs_volume_lookup(&params);
388 if (IS_ERR(vol)) {
389 ret = PTR_ERR(vol);
390 goto error;
391 }
392 params.volume = vol;
393
394 /* allocate a deviceless superblock */
395 sb = sget(fs_type, afs_test_super, set_anon_super, &params);
396 if (IS_ERR(sb)) {
397 ret = PTR_ERR(sb);
398 goto error;
399 }
400
401 if (!sb->s_root) {
402 /* initial superblock/root creation */
403 _debug("create");
404 sb->s_flags = flags;
405 ret = afs_fill_super(sb, &params);
406 if (ret < 0) {
407 up_write(&sb->s_umount);
408 deactivate_super(sb);
409 goto error;
410 }
411 sb->s_flags |= MS_ACTIVE;
412 } else {
413 _debug("reuse");
414 ASSERTCMP(sb->s_flags, &, MS_ACTIVE);
415 }
416
417 simple_set_mnt(mnt, sb);
418 afs_put_volume(params.volume);
419 afs_put_cell(params.cell);
420 _leave(" = 0 [%p]", sb);
421 return 0;
422
423 error:
424 afs_put_volume(params.volume);
425 afs_put_cell(params.cell);
426 key_put(params.key);
427 _leave(" = %d", ret);
428 return ret;
429 }
430
431 /*
432 * finish the unmounting process on the superblock
433 */
434 static void afs_put_super(struct super_block *sb)
435 {
436 struct afs_super_info *as = sb->s_fs_info;
437
438 _enter("");
439
440 afs_put_volume(as->volume);
441
442 _leave("");
443 }
444
445 /*
446 * initialise an inode cache slab element prior to any use
447 */
448 static void afs_i_init_once(struct kmem_cache *cachep, void *_vnode)
449 {
450 struct afs_vnode *vnode = _vnode;
451
452 memset(vnode, 0, sizeof(*vnode));
453 inode_init_once(&vnode->vfs_inode);
454 init_waitqueue_head(&vnode->update_waitq);
455 mutex_init(&vnode->permits_lock);
456 mutex_init(&vnode->validate_lock);
457 spin_lock_init(&vnode->writeback_lock);
458 spin_lock_init(&vnode->lock);
459 INIT_LIST_HEAD(&vnode->writebacks);
460 INIT_LIST_HEAD(&vnode->pending_locks);
461 INIT_LIST_HEAD(&vnode->granted_locks);
462 INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
463 INIT_WORK(&vnode->cb_broken_work, afs_broken_callback_work);
464 }
465
466 /*
467 * allocate an AFS inode struct from our slab cache
468 */
469 static struct inode *afs_alloc_inode(struct super_block *sb)
470 {
471 struct afs_vnode *vnode;
472
473 vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
474 if (!vnode)
475 return NULL;
476
477 atomic_inc(&afs_count_active_inodes);
478
479 memset(&vnode->fid, 0, sizeof(vnode->fid));
480 memset(&vnode->status, 0, sizeof(vnode->status));
481
482 vnode->volume = NULL;
483 vnode->update_cnt = 0;
484 vnode->flags = 1 << AFS_VNODE_UNSET;
485 vnode->cb_promised = false;
486
487 _leave(" = %p", &vnode->vfs_inode);
488 return &vnode->vfs_inode;
489 }
490
491 /*
492 * destroy an AFS inode struct
493 */
494 static void afs_destroy_inode(struct inode *inode)
495 {
496 struct afs_vnode *vnode = AFS_FS_I(inode);
497
498 _enter("%p{%x:%u}", inode, vnode->fid.vid, vnode->fid.vnode);
499
500 _debug("DESTROY INODE %p", inode);
501
502 ASSERTCMP(vnode->server, ==, NULL);
503
504 kmem_cache_free(afs_inode_cachep, vnode);
505 atomic_dec(&afs_count_active_inodes);
506 }
507
508 /*
509 * return information about an AFS volume
510 */
511 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
512 {
513 struct afs_volume_status vs;
514 struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
515 struct key *key;
516 int ret;
517
518 key = afs_request_key(vnode->volume->cell);
519 if (IS_ERR(key))
520 return PTR_ERR(key);
521
522 ret = afs_vnode_get_volume_status(vnode, key, &vs);
523 key_put(key);
524 if (ret < 0) {
525 _leave(" = %d", ret);
526 return ret;
527 }
528
529 buf->f_type = dentry->d_sb->s_magic;
530 buf->f_bsize = AFS_BLOCK_SIZE;
531 buf->f_namelen = AFSNAMEMAX - 1;
532
533 if (vs.max_quota == 0)
534 buf->f_blocks = vs.part_max_blocks;
535 else
536 buf->f_blocks = vs.max_quota;
537 buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
538 return 0;
539 }
This page took 0.074637 seconds and 5 git commands to generate.