MPILIB: add mpi_read_buf() and mpi_get_size() helpers
[deliverable/linux.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46
47 #include "internal.h"
48
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
67
68 #define AIO_RING_PAGES 8
69
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
74 };
75
76 struct kioctx_cpu {
77 unsigned reqs_available;
78 };
79
80 struct kioctx {
81 struct percpu_ref users;
82 atomic_t dead;
83
84 struct percpu_ref reqs;
85
86 unsigned long user_id;
87
88 struct __percpu kioctx_cpu *cpu;
89
90 /*
91 * For percpu reqs_available, number of slots we move to/from global
92 * counter at a time:
93 */
94 unsigned req_batch;
95 /*
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
98 *
99 * The real limit is nr_events - 1, which will be larger (see
100 * aio_setup_ring())
101 */
102 unsigned max_reqs;
103
104 /* Size of ringbuffer, in units of struct io_event */
105 unsigned nr_events;
106
107 unsigned long mmap_base;
108 unsigned long mmap_size;
109
110 struct page **ring_pages;
111 long nr_pages;
112
113 struct work_struct free_work;
114
115 /*
116 * signals when all in-flight requests are done
117 */
118 struct completion *requests_done;
119
120 struct {
121 /*
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
126 *
127 * We batch accesses to it with a percpu version.
128 */
129 atomic_t reqs_available;
130 } ____cacheline_aligned_in_smp;
131
132 struct {
133 spinlock_t ctx_lock;
134 struct list_head active_reqs; /* used for cancellation */
135 } ____cacheline_aligned_in_smp;
136
137 struct {
138 struct mutex ring_lock;
139 wait_queue_head_t wait;
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 unsigned tail;
144 unsigned completed_events;
145 spinlock_t completion_lock;
146 } ____cacheline_aligned_in_smp;
147
148 struct page *internal_pages[AIO_RING_PAGES];
149 struct file *aio_ring_file;
150
151 unsigned id;
152 };
153
154 /*
155 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
156 * cancelled or completed (this makes a certain amount of sense because
157 * successful cancellation - io_cancel() - does deliver the completion to
158 * userspace).
159 *
160 * And since most things don't implement kiocb cancellation and we'd really like
161 * kiocb completion to be lockless when possible, we use ki_cancel to
162 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
163 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
164 */
165 #define KIOCB_CANCELLED ((void *) (~0ULL))
166
167 struct aio_kiocb {
168 struct kiocb common;
169
170 struct kioctx *ki_ctx;
171 kiocb_cancel_fn *ki_cancel;
172
173 struct iocb __user *ki_user_iocb; /* user's aiocb */
174 __u64 ki_user_data; /* user's data for completion */
175
176 struct list_head ki_list; /* the aio core uses this
177 * for cancellation */
178
179 /*
180 * If the aio_resfd field of the userspace iocb is not zero,
181 * this is the underlying eventfd context to deliver events to.
182 */
183 struct eventfd_ctx *ki_eventfd;
184 };
185
186 /*------ sysctl variables----*/
187 static DEFINE_SPINLOCK(aio_nr_lock);
188 unsigned long aio_nr; /* current system wide number of aio requests */
189 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
190 /*----end sysctl variables---*/
191
192 static struct kmem_cache *kiocb_cachep;
193 static struct kmem_cache *kioctx_cachep;
194
195 static struct vfsmount *aio_mnt;
196
197 static const struct file_operations aio_ring_fops;
198 static const struct address_space_operations aio_ctx_aops;
199
200 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
201 {
202 struct qstr this = QSTR_INIT("[aio]", 5);
203 struct file *file;
204 struct path path;
205 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
206 if (IS_ERR(inode))
207 return ERR_CAST(inode);
208
209 inode->i_mapping->a_ops = &aio_ctx_aops;
210 inode->i_mapping->private_data = ctx;
211 inode->i_size = PAGE_SIZE * nr_pages;
212
213 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
214 if (!path.dentry) {
215 iput(inode);
216 return ERR_PTR(-ENOMEM);
217 }
218 path.mnt = mntget(aio_mnt);
219
220 d_instantiate(path.dentry, inode);
221 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
222 if (IS_ERR(file)) {
223 path_put(&path);
224 return file;
225 }
226
227 file->f_flags = O_RDWR;
228 return file;
229 }
230
231 static struct dentry *aio_mount(struct file_system_type *fs_type,
232 int flags, const char *dev_name, void *data)
233 {
234 static const struct dentry_operations ops = {
235 .d_dname = simple_dname,
236 };
237 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
238 }
239
240 /* aio_setup
241 * Creates the slab caches used by the aio routines, panic on
242 * failure as this is done early during the boot sequence.
243 */
244 static int __init aio_setup(void)
245 {
246 static struct file_system_type aio_fs = {
247 .name = "aio",
248 .mount = aio_mount,
249 .kill_sb = kill_anon_super,
250 };
251 aio_mnt = kern_mount(&aio_fs);
252 if (IS_ERR(aio_mnt))
253 panic("Failed to create aio fs mount.");
254
255 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
256 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
257
258 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
259
260 return 0;
261 }
262 __initcall(aio_setup);
263
264 static void put_aio_ring_file(struct kioctx *ctx)
265 {
266 struct file *aio_ring_file = ctx->aio_ring_file;
267 if (aio_ring_file) {
268 truncate_setsize(aio_ring_file->f_inode, 0);
269
270 /* Prevent further access to the kioctx from migratepages */
271 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
272 aio_ring_file->f_inode->i_mapping->private_data = NULL;
273 ctx->aio_ring_file = NULL;
274 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
275
276 fput(aio_ring_file);
277 }
278 }
279
280 static void aio_free_ring(struct kioctx *ctx)
281 {
282 int i;
283
284 /* Disconnect the kiotx from the ring file. This prevents future
285 * accesses to the kioctx from page migration.
286 */
287 put_aio_ring_file(ctx);
288
289 for (i = 0; i < ctx->nr_pages; i++) {
290 struct page *page;
291 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
292 page_count(ctx->ring_pages[i]));
293 page = ctx->ring_pages[i];
294 if (!page)
295 continue;
296 ctx->ring_pages[i] = NULL;
297 put_page(page);
298 }
299
300 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
301 kfree(ctx->ring_pages);
302 ctx->ring_pages = NULL;
303 }
304 }
305
306 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
307 {
308 vma->vm_flags |= VM_DONTEXPAND;
309 vma->vm_ops = &generic_file_vm_ops;
310 return 0;
311 }
312
313 static int aio_ring_remap(struct file *file, struct vm_area_struct *vma)
314 {
315 struct mm_struct *mm = vma->vm_mm;
316 struct kioctx_table *table;
317 int i, res = -EINVAL;
318
319 spin_lock(&mm->ioctx_lock);
320 rcu_read_lock();
321 table = rcu_dereference(mm->ioctx_table);
322 for (i = 0; i < table->nr; i++) {
323 struct kioctx *ctx;
324
325 ctx = table->table[i];
326 if (ctx && ctx->aio_ring_file == file) {
327 if (!atomic_read(&ctx->dead)) {
328 ctx->user_id = ctx->mmap_base = vma->vm_start;
329 res = 0;
330 }
331 break;
332 }
333 }
334
335 rcu_read_unlock();
336 spin_unlock(&mm->ioctx_lock);
337 return res;
338 }
339
340 static const struct file_operations aio_ring_fops = {
341 .mmap = aio_ring_mmap,
342 .mremap = aio_ring_remap,
343 };
344
345 #if IS_ENABLED(CONFIG_MIGRATION)
346 static int aio_migratepage(struct address_space *mapping, struct page *new,
347 struct page *old, enum migrate_mode mode)
348 {
349 struct kioctx *ctx;
350 unsigned long flags;
351 pgoff_t idx;
352 int rc;
353
354 rc = 0;
355
356 /* mapping->private_lock here protects against the kioctx teardown. */
357 spin_lock(&mapping->private_lock);
358 ctx = mapping->private_data;
359 if (!ctx) {
360 rc = -EINVAL;
361 goto out;
362 }
363
364 /* The ring_lock mutex. The prevents aio_read_events() from writing
365 * to the ring's head, and prevents page migration from mucking in
366 * a partially initialized kiotx.
367 */
368 if (!mutex_trylock(&ctx->ring_lock)) {
369 rc = -EAGAIN;
370 goto out;
371 }
372
373 idx = old->index;
374 if (idx < (pgoff_t)ctx->nr_pages) {
375 /* Make sure the old page hasn't already been changed */
376 if (ctx->ring_pages[idx] != old)
377 rc = -EAGAIN;
378 } else
379 rc = -EINVAL;
380
381 if (rc != 0)
382 goto out_unlock;
383
384 /* Writeback must be complete */
385 BUG_ON(PageWriteback(old));
386 get_page(new);
387
388 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
389 if (rc != MIGRATEPAGE_SUCCESS) {
390 put_page(new);
391 goto out_unlock;
392 }
393
394 /* Take completion_lock to prevent other writes to the ring buffer
395 * while the old page is copied to the new. This prevents new
396 * events from being lost.
397 */
398 spin_lock_irqsave(&ctx->completion_lock, flags);
399 migrate_page_copy(new, old);
400 BUG_ON(ctx->ring_pages[idx] != old);
401 ctx->ring_pages[idx] = new;
402 spin_unlock_irqrestore(&ctx->completion_lock, flags);
403
404 /* The old page is no longer accessible. */
405 put_page(old);
406
407 out_unlock:
408 mutex_unlock(&ctx->ring_lock);
409 out:
410 spin_unlock(&mapping->private_lock);
411 return rc;
412 }
413 #endif
414
415 static const struct address_space_operations aio_ctx_aops = {
416 .set_page_dirty = __set_page_dirty_no_writeback,
417 #if IS_ENABLED(CONFIG_MIGRATION)
418 .migratepage = aio_migratepage,
419 #endif
420 };
421
422 static int aio_setup_ring(struct kioctx *ctx)
423 {
424 struct aio_ring *ring;
425 unsigned nr_events = ctx->max_reqs;
426 struct mm_struct *mm = current->mm;
427 unsigned long size, unused;
428 int nr_pages;
429 int i;
430 struct file *file;
431
432 /* Compensate for the ring buffer's head/tail overlap entry */
433 nr_events += 2; /* 1 is required, 2 for good luck */
434
435 size = sizeof(struct aio_ring);
436 size += sizeof(struct io_event) * nr_events;
437
438 nr_pages = PFN_UP(size);
439 if (nr_pages < 0)
440 return -EINVAL;
441
442 file = aio_private_file(ctx, nr_pages);
443 if (IS_ERR(file)) {
444 ctx->aio_ring_file = NULL;
445 return -ENOMEM;
446 }
447
448 ctx->aio_ring_file = file;
449 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
450 / sizeof(struct io_event);
451
452 ctx->ring_pages = ctx->internal_pages;
453 if (nr_pages > AIO_RING_PAGES) {
454 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
455 GFP_KERNEL);
456 if (!ctx->ring_pages) {
457 put_aio_ring_file(ctx);
458 return -ENOMEM;
459 }
460 }
461
462 for (i = 0; i < nr_pages; i++) {
463 struct page *page;
464 page = find_or_create_page(file->f_inode->i_mapping,
465 i, GFP_HIGHUSER | __GFP_ZERO);
466 if (!page)
467 break;
468 pr_debug("pid(%d) page[%d]->count=%d\n",
469 current->pid, i, page_count(page));
470 SetPageUptodate(page);
471 unlock_page(page);
472
473 ctx->ring_pages[i] = page;
474 }
475 ctx->nr_pages = i;
476
477 if (unlikely(i != nr_pages)) {
478 aio_free_ring(ctx);
479 return -ENOMEM;
480 }
481
482 ctx->mmap_size = nr_pages * PAGE_SIZE;
483 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
484
485 down_write(&mm->mmap_sem);
486 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
487 PROT_READ | PROT_WRITE,
488 MAP_SHARED, 0, &unused);
489 up_write(&mm->mmap_sem);
490 if (IS_ERR((void *)ctx->mmap_base)) {
491 ctx->mmap_size = 0;
492 aio_free_ring(ctx);
493 return -ENOMEM;
494 }
495
496 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
497
498 ctx->user_id = ctx->mmap_base;
499 ctx->nr_events = nr_events; /* trusted copy */
500
501 ring = kmap_atomic(ctx->ring_pages[0]);
502 ring->nr = nr_events; /* user copy */
503 ring->id = ~0U;
504 ring->head = ring->tail = 0;
505 ring->magic = AIO_RING_MAGIC;
506 ring->compat_features = AIO_RING_COMPAT_FEATURES;
507 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
508 ring->header_length = sizeof(struct aio_ring);
509 kunmap_atomic(ring);
510 flush_dcache_page(ctx->ring_pages[0]);
511
512 return 0;
513 }
514
515 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
516 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
517 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
518
519 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
520 {
521 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
522 struct kioctx *ctx = req->ki_ctx;
523 unsigned long flags;
524
525 spin_lock_irqsave(&ctx->ctx_lock, flags);
526
527 if (!req->ki_list.next)
528 list_add(&req->ki_list, &ctx->active_reqs);
529
530 req->ki_cancel = cancel;
531
532 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
533 }
534 EXPORT_SYMBOL(kiocb_set_cancel_fn);
535
536 static int kiocb_cancel(struct aio_kiocb *kiocb)
537 {
538 kiocb_cancel_fn *old, *cancel;
539
540 /*
541 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
542 * actually has a cancel function, hence the cmpxchg()
543 */
544
545 cancel = ACCESS_ONCE(kiocb->ki_cancel);
546 do {
547 if (!cancel || cancel == KIOCB_CANCELLED)
548 return -EINVAL;
549
550 old = cancel;
551 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
552 } while (cancel != old);
553
554 return cancel(&kiocb->common);
555 }
556
557 static void free_ioctx(struct work_struct *work)
558 {
559 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
560
561 pr_debug("freeing %p\n", ctx);
562
563 aio_free_ring(ctx);
564 free_percpu(ctx->cpu);
565 percpu_ref_exit(&ctx->reqs);
566 percpu_ref_exit(&ctx->users);
567 kmem_cache_free(kioctx_cachep, ctx);
568 }
569
570 static void free_ioctx_reqs(struct percpu_ref *ref)
571 {
572 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
573
574 /* At this point we know that there are no any in-flight requests */
575 if (ctx->requests_done)
576 complete(ctx->requests_done);
577
578 INIT_WORK(&ctx->free_work, free_ioctx);
579 schedule_work(&ctx->free_work);
580 }
581
582 /*
583 * When this function runs, the kioctx has been removed from the "hash table"
584 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
585 * now it's safe to cancel any that need to be.
586 */
587 static void free_ioctx_users(struct percpu_ref *ref)
588 {
589 struct kioctx *ctx = container_of(ref, struct kioctx, users);
590 struct aio_kiocb *req;
591
592 spin_lock_irq(&ctx->ctx_lock);
593
594 while (!list_empty(&ctx->active_reqs)) {
595 req = list_first_entry(&ctx->active_reqs,
596 struct aio_kiocb, ki_list);
597
598 list_del_init(&req->ki_list);
599 kiocb_cancel(req);
600 }
601
602 spin_unlock_irq(&ctx->ctx_lock);
603
604 percpu_ref_kill(&ctx->reqs);
605 percpu_ref_put(&ctx->reqs);
606 }
607
608 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
609 {
610 unsigned i, new_nr;
611 struct kioctx_table *table, *old;
612 struct aio_ring *ring;
613
614 spin_lock(&mm->ioctx_lock);
615 table = rcu_dereference_raw(mm->ioctx_table);
616
617 while (1) {
618 if (table)
619 for (i = 0; i < table->nr; i++)
620 if (!table->table[i]) {
621 ctx->id = i;
622 table->table[i] = ctx;
623 spin_unlock(&mm->ioctx_lock);
624
625 /* While kioctx setup is in progress,
626 * we are protected from page migration
627 * changes ring_pages by ->ring_lock.
628 */
629 ring = kmap_atomic(ctx->ring_pages[0]);
630 ring->id = ctx->id;
631 kunmap_atomic(ring);
632 return 0;
633 }
634
635 new_nr = (table ? table->nr : 1) * 4;
636 spin_unlock(&mm->ioctx_lock);
637
638 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
639 new_nr, GFP_KERNEL);
640 if (!table)
641 return -ENOMEM;
642
643 table->nr = new_nr;
644
645 spin_lock(&mm->ioctx_lock);
646 old = rcu_dereference_raw(mm->ioctx_table);
647
648 if (!old) {
649 rcu_assign_pointer(mm->ioctx_table, table);
650 } else if (table->nr > old->nr) {
651 memcpy(table->table, old->table,
652 old->nr * sizeof(struct kioctx *));
653
654 rcu_assign_pointer(mm->ioctx_table, table);
655 kfree_rcu(old, rcu);
656 } else {
657 kfree(table);
658 table = old;
659 }
660 }
661 }
662
663 static void aio_nr_sub(unsigned nr)
664 {
665 spin_lock(&aio_nr_lock);
666 if (WARN_ON(aio_nr - nr > aio_nr))
667 aio_nr = 0;
668 else
669 aio_nr -= nr;
670 spin_unlock(&aio_nr_lock);
671 }
672
673 /* ioctx_alloc
674 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
675 */
676 static struct kioctx *ioctx_alloc(unsigned nr_events)
677 {
678 struct mm_struct *mm = current->mm;
679 struct kioctx *ctx;
680 int err = -ENOMEM;
681
682 /*
683 * We keep track of the number of available ringbuffer slots, to prevent
684 * overflow (reqs_available), and we also use percpu counters for this.
685 *
686 * So since up to half the slots might be on other cpu's percpu counters
687 * and unavailable, double nr_events so userspace sees what they
688 * expected: additionally, we move req_batch slots to/from percpu
689 * counters at a time, so make sure that isn't 0:
690 */
691 nr_events = max(nr_events, num_possible_cpus() * 4);
692 nr_events *= 2;
693
694 /* Prevent overflows */
695 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
696 pr_debug("ENOMEM: nr_events too high\n");
697 return ERR_PTR(-EINVAL);
698 }
699
700 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
701 return ERR_PTR(-EAGAIN);
702
703 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
704 if (!ctx)
705 return ERR_PTR(-ENOMEM);
706
707 ctx->max_reqs = nr_events;
708
709 spin_lock_init(&ctx->ctx_lock);
710 spin_lock_init(&ctx->completion_lock);
711 mutex_init(&ctx->ring_lock);
712 /* Protect against page migration throughout kiotx setup by keeping
713 * the ring_lock mutex held until setup is complete. */
714 mutex_lock(&ctx->ring_lock);
715 init_waitqueue_head(&ctx->wait);
716
717 INIT_LIST_HEAD(&ctx->active_reqs);
718
719 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
720 goto err;
721
722 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
723 goto err;
724
725 ctx->cpu = alloc_percpu(struct kioctx_cpu);
726 if (!ctx->cpu)
727 goto err;
728
729 err = aio_setup_ring(ctx);
730 if (err < 0)
731 goto err;
732
733 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
734 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
735 if (ctx->req_batch < 1)
736 ctx->req_batch = 1;
737
738 /* limit the number of system wide aios */
739 spin_lock(&aio_nr_lock);
740 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
741 aio_nr + nr_events < aio_nr) {
742 spin_unlock(&aio_nr_lock);
743 err = -EAGAIN;
744 goto err_ctx;
745 }
746 aio_nr += ctx->max_reqs;
747 spin_unlock(&aio_nr_lock);
748
749 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
750 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
751
752 err = ioctx_add_table(ctx, mm);
753 if (err)
754 goto err_cleanup;
755
756 /* Release the ring_lock mutex now that all setup is complete. */
757 mutex_unlock(&ctx->ring_lock);
758
759 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
760 ctx, ctx->user_id, mm, ctx->nr_events);
761 return ctx;
762
763 err_cleanup:
764 aio_nr_sub(ctx->max_reqs);
765 err_ctx:
766 atomic_set(&ctx->dead, 1);
767 if (ctx->mmap_size)
768 vm_munmap(ctx->mmap_base, ctx->mmap_size);
769 aio_free_ring(ctx);
770 err:
771 mutex_unlock(&ctx->ring_lock);
772 free_percpu(ctx->cpu);
773 percpu_ref_exit(&ctx->reqs);
774 percpu_ref_exit(&ctx->users);
775 kmem_cache_free(kioctx_cachep, ctx);
776 pr_debug("error allocating ioctx %d\n", err);
777 return ERR_PTR(err);
778 }
779
780 /* kill_ioctx
781 * Cancels all outstanding aio requests on an aio context. Used
782 * when the processes owning a context have all exited to encourage
783 * the rapid destruction of the kioctx.
784 */
785 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
786 struct completion *requests_done)
787 {
788 struct kioctx_table *table;
789
790 spin_lock(&mm->ioctx_lock);
791 if (atomic_xchg(&ctx->dead, 1)) {
792 spin_unlock(&mm->ioctx_lock);
793 return -EINVAL;
794 }
795
796 table = rcu_dereference_raw(mm->ioctx_table);
797 WARN_ON(ctx != table->table[ctx->id]);
798 table->table[ctx->id] = NULL;
799 spin_unlock(&mm->ioctx_lock);
800
801 /* percpu_ref_kill() will do the necessary call_rcu() */
802 wake_up_all(&ctx->wait);
803
804 /*
805 * It'd be more correct to do this in free_ioctx(), after all
806 * the outstanding kiocbs have finished - but by then io_destroy
807 * has already returned, so io_setup() could potentially return
808 * -EAGAIN with no ioctxs actually in use (as far as userspace
809 * could tell).
810 */
811 aio_nr_sub(ctx->max_reqs);
812
813 if (ctx->mmap_size)
814 vm_munmap(ctx->mmap_base, ctx->mmap_size);
815
816 ctx->requests_done = requests_done;
817 percpu_ref_kill(&ctx->users);
818 return 0;
819 }
820
821 /*
822 * exit_aio: called when the last user of mm goes away. At this point, there is
823 * no way for any new requests to be submited or any of the io_* syscalls to be
824 * called on the context.
825 *
826 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
827 * them.
828 */
829 void exit_aio(struct mm_struct *mm)
830 {
831 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
832 int i;
833
834 if (!table)
835 return;
836
837 for (i = 0; i < table->nr; ++i) {
838 struct kioctx *ctx = table->table[i];
839 struct completion requests_done =
840 COMPLETION_INITIALIZER_ONSTACK(requests_done);
841
842 if (!ctx)
843 continue;
844 /*
845 * We don't need to bother with munmap() here - exit_mmap(mm)
846 * is coming and it'll unmap everything. And we simply can't,
847 * this is not necessarily our ->mm.
848 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
849 * that it needs to unmap the area, just set it to 0.
850 */
851 ctx->mmap_size = 0;
852 kill_ioctx(mm, ctx, &requests_done);
853
854 /* Wait until all IO for the context are done. */
855 wait_for_completion(&requests_done);
856 }
857
858 RCU_INIT_POINTER(mm->ioctx_table, NULL);
859 kfree(table);
860 }
861
862 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
863 {
864 struct kioctx_cpu *kcpu;
865 unsigned long flags;
866
867 local_irq_save(flags);
868 kcpu = this_cpu_ptr(ctx->cpu);
869 kcpu->reqs_available += nr;
870
871 while (kcpu->reqs_available >= ctx->req_batch * 2) {
872 kcpu->reqs_available -= ctx->req_batch;
873 atomic_add(ctx->req_batch, &ctx->reqs_available);
874 }
875
876 local_irq_restore(flags);
877 }
878
879 static bool get_reqs_available(struct kioctx *ctx)
880 {
881 struct kioctx_cpu *kcpu;
882 bool ret = false;
883 unsigned long flags;
884
885 local_irq_save(flags);
886 kcpu = this_cpu_ptr(ctx->cpu);
887 if (!kcpu->reqs_available) {
888 int old, avail = atomic_read(&ctx->reqs_available);
889
890 do {
891 if (avail < ctx->req_batch)
892 goto out;
893
894 old = avail;
895 avail = atomic_cmpxchg(&ctx->reqs_available,
896 avail, avail - ctx->req_batch);
897 } while (avail != old);
898
899 kcpu->reqs_available += ctx->req_batch;
900 }
901
902 ret = true;
903 kcpu->reqs_available--;
904 out:
905 local_irq_restore(flags);
906 return ret;
907 }
908
909 /* refill_reqs_available
910 * Updates the reqs_available reference counts used for tracking the
911 * number of free slots in the completion ring. This can be called
912 * from aio_complete() (to optimistically update reqs_available) or
913 * from aio_get_req() (the we're out of events case). It must be
914 * called holding ctx->completion_lock.
915 */
916 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
917 unsigned tail)
918 {
919 unsigned events_in_ring, completed;
920
921 /* Clamp head since userland can write to it. */
922 head %= ctx->nr_events;
923 if (head <= tail)
924 events_in_ring = tail - head;
925 else
926 events_in_ring = ctx->nr_events - (head - tail);
927
928 completed = ctx->completed_events;
929 if (events_in_ring < completed)
930 completed -= events_in_ring;
931 else
932 completed = 0;
933
934 if (!completed)
935 return;
936
937 ctx->completed_events -= completed;
938 put_reqs_available(ctx, completed);
939 }
940
941 /* user_refill_reqs_available
942 * Called to refill reqs_available when aio_get_req() encounters an
943 * out of space in the completion ring.
944 */
945 static void user_refill_reqs_available(struct kioctx *ctx)
946 {
947 spin_lock_irq(&ctx->completion_lock);
948 if (ctx->completed_events) {
949 struct aio_ring *ring;
950 unsigned head;
951
952 /* Access of ring->head may race with aio_read_events_ring()
953 * here, but that's okay since whether we read the old version
954 * or the new version, and either will be valid. The important
955 * part is that head cannot pass tail since we prevent
956 * aio_complete() from updating tail by holding
957 * ctx->completion_lock. Even if head is invalid, the check
958 * against ctx->completed_events below will make sure we do the
959 * safe/right thing.
960 */
961 ring = kmap_atomic(ctx->ring_pages[0]);
962 head = ring->head;
963 kunmap_atomic(ring);
964
965 refill_reqs_available(ctx, head, ctx->tail);
966 }
967
968 spin_unlock_irq(&ctx->completion_lock);
969 }
970
971 /* aio_get_req
972 * Allocate a slot for an aio request.
973 * Returns NULL if no requests are free.
974 */
975 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
976 {
977 struct aio_kiocb *req;
978
979 if (!get_reqs_available(ctx)) {
980 user_refill_reqs_available(ctx);
981 if (!get_reqs_available(ctx))
982 return NULL;
983 }
984
985 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
986 if (unlikely(!req))
987 goto out_put;
988
989 percpu_ref_get(&ctx->reqs);
990
991 req->ki_ctx = ctx;
992 return req;
993 out_put:
994 put_reqs_available(ctx, 1);
995 return NULL;
996 }
997
998 static void kiocb_free(struct aio_kiocb *req)
999 {
1000 if (req->common.ki_filp)
1001 fput(req->common.ki_filp);
1002 if (req->ki_eventfd != NULL)
1003 eventfd_ctx_put(req->ki_eventfd);
1004 kmem_cache_free(kiocb_cachep, req);
1005 }
1006
1007 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1008 {
1009 struct aio_ring __user *ring = (void __user *)ctx_id;
1010 struct mm_struct *mm = current->mm;
1011 struct kioctx *ctx, *ret = NULL;
1012 struct kioctx_table *table;
1013 unsigned id;
1014
1015 if (get_user(id, &ring->id))
1016 return NULL;
1017
1018 rcu_read_lock();
1019 table = rcu_dereference(mm->ioctx_table);
1020
1021 if (!table || id >= table->nr)
1022 goto out;
1023
1024 ctx = table->table[id];
1025 if (ctx && ctx->user_id == ctx_id) {
1026 percpu_ref_get(&ctx->users);
1027 ret = ctx;
1028 }
1029 out:
1030 rcu_read_unlock();
1031 return ret;
1032 }
1033
1034 /* aio_complete
1035 * Called when the io request on the given iocb is complete.
1036 */
1037 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1038 {
1039 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1040 struct kioctx *ctx = iocb->ki_ctx;
1041 struct aio_ring *ring;
1042 struct io_event *ev_page, *event;
1043 unsigned tail, pos, head;
1044 unsigned long flags;
1045
1046 /*
1047 * Special case handling for sync iocbs:
1048 * - events go directly into the iocb for fast handling
1049 * - the sync task with the iocb in its stack holds the single iocb
1050 * ref, no other paths have a way to get another ref
1051 * - the sync task helpfully left a reference to itself in the iocb
1052 */
1053 BUG_ON(is_sync_kiocb(kiocb));
1054
1055 if (iocb->ki_list.next) {
1056 unsigned long flags;
1057
1058 spin_lock_irqsave(&ctx->ctx_lock, flags);
1059 list_del(&iocb->ki_list);
1060 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1061 }
1062
1063 /*
1064 * Add a completion event to the ring buffer. Must be done holding
1065 * ctx->completion_lock to prevent other code from messing with the tail
1066 * pointer since we might be called from irq context.
1067 */
1068 spin_lock_irqsave(&ctx->completion_lock, flags);
1069
1070 tail = ctx->tail;
1071 pos = tail + AIO_EVENTS_OFFSET;
1072
1073 if (++tail >= ctx->nr_events)
1074 tail = 0;
1075
1076 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1077 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1078
1079 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1080 event->data = iocb->ki_user_data;
1081 event->res = res;
1082 event->res2 = res2;
1083
1084 kunmap_atomic(ev_page);
1085 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1086
1087 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1088 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1089 res, res2);
1090
1091 /* after flagging the request as done, we
1092 * must never even look at it again
1093 */
1094 smp_wmb(); /* make event visible before updating tail */
1095
1096 ctx->tail = tail;
1097
1098 ring = kmap_atomic(ctx->ring_pages[0]);
1099 head = ring->head;
1100 ring->tail = tail;
1101 kunmap_atomic(ring);
1102 flush_dcache_page(ctx->ring_pages[0]);
1103
1104 ctx->completed_events++;
1105 if (ctx->completed_events > 1)
1106 refill_reqs_available(ctx, head, tail);
1107 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1108
1109 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1110
1111 /*
1112 * Check if the user asked us to deliver the result through an
1113 * eventfd. The eventfd_signal() function is safe to be called
1114 * from IRQ context.
1115 */
1116 if (iocb->ki_eventfd != NULL)
1117 eventfd_signal(iocb->ki_eventfd, 1);
1118
1119 /* everything turned out well, dispose of the aiocb. */
1120 kiocb_free(iocb);
1121
1122 /*
1123 * We have to order our ring_info tail store above and test
1124 * of the wait list below outside the wait lock. This is
1125 * like in wake_up_bit() where clearing a bit has to be
1126 * ordered with the unlocked test.
1127 */
1128 smp_mb();
1129
1130 if (waitqueue_active(&ctx->wait))
1131 wake_up(&ctx->wait);
1132
1133 percpu_ref_put(&ctx->reqs);
1134 }
1135
1136 /* aio_read_events_ring
1137 * Pull an event off of the ioctx's event ring. Returns the number of
1138 * events fetched
1139 */
1140 static long aio_read_events_ring(struct kioctx *ctx,
1141 struct io_event __user *event, long nr)
1142 {
1143 struct aio_ring *ring;
1144 unsigned head, tail, pos;
1145 long ret = 0;
1146 int copy_ret;
1147
1148 /*
1149 * The mutex can block and wake us up and that will cause
1150 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1151 * and repeat. This should be rare enough that it doesn't cause
1152 * peformance issues. See the comment in read_events() for more detail.
1153 */
1154 sched_annotate_sleep();
1155 mutex_lock(&ctx->ring_lock);
1156
1157 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1158 ring = kmap_atomic(ctx->ring_pages[0]);
1159 head = ring->head;
1160 tail = ring->tail;
1161 kunmap_atomic(ring);
1162
1163 /*
1164 * Ensure that once we've read the current tail pointer, that
1165 * we also see the events that were stored up to the tail.
1166 */
1167 smp_rmb();
1168
1169 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1170
1171 if (head == tail)
1172 goto out;
1173
1174 head %= ctx->nr_events;
1175 tail %= ctx->nr_events;
1176
1177 while (ret < nr) {
1178 long avail;
1179 struct io_event *ev;
1180 struct page *page;
1181
1182 avail = (head <= tail ? tail : ctx->nr_events) - head;
1183 if (head == tail)
1184 break;
1185
1186 avail = min(avail, nr - ret);
1187 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1188 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1189
1190 pos = head + AIO_EVENTS_OFFSET;
1191 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1192 pos %= AIO_EVENTS_PER_PAGE;
1193
1194 ev = kmap(page);
1195 copy_ret = copy_to_user(event + ret, ev + pos,
1196 sizeof(*ev) * avail);
1197 kunmap(page);
1198
1199 if (unlikely(copy_ret)) {
1200 ret = -EFAULT;
1201 goto out;
1202 }
1203
1204 ret += avail;
1205 head += avail;
1206 head %= ctx->nr_events;
1207 }
1208
1209 ring = kmap_atomic(ctx->ring_pages[0]);
1210 ring->head = head;
1211 kunmap_atomic(ring);
1212 flush_dcache_page(ctx->ring_pages[0]);
1213
1214 pr_debug("%li h%u t%u\n", ret, head, tail);
1215 out:
1216 mutex_unlock(&ctx->ring_lock);
1217
1218 return ret;
1219 }
1220
1221 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1222 struct io_event __user *event, long *i)
1223 {
1224 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1225
1226 if (ret > 0)
1227 *i += ret;
1228
1229 if (unlikely(atomic_read(&ctx->dead)))
1230 ret = -EINVAL;
1231
1232 if (!*i)
1233 *i = ret;
1234
1235 return ret < 0 || *i >= min_nr;
1236 }
1237
1238 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1239 struct io_event __user *event,
1240 struct timespec __user *timeout)
1241 {
1242 ktime_t until = { .tv64 = KTIME_MAX };
1243 long ret = 0;
1244
1245 if (timeout) {
1246 struct timespec ts;
1247
1248 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1249 return -EFAULT;
1250
1251 until = timespec_to_ktime(ts);
1252 }
1253
1254 /*
1255 * Note that aio_read_events() is being called as the conditional - i.e.
1256 * we're calling it after prepare_to_wait() has set task state to
1257 * TASK_INTERRUPTIBLE.
1258 *
1259 * But aio_read_events() can block, and if it blocks it's going to flip
1260 * the task state back to TASK_RUNNING.
1261 *
1262 * This should be ok, provided it doesn't flip the state back to
1263 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1264 * will only happen if the mutex_lock() call blocks, and we then find
1265 * the ringbuffer empty. So in practice we should be ok, but it's
1266 * something to be aware of when touching this code.
1267 */
1268 if (until.tv64 == 0)
1269 aio_read_events(ctx, min_nr, nr, event, &ret);
1270 else
1271 wait_event_interruptible_hrtimeout(ctx->wait,
1272 aio_read_events(ctx, min_nr, nr, event, &ret),
1273 until);
1274
1275 if (!ret && signal_pending(current))
1276 ret = -EINTR;
1277
1278 return ret;
1279 }
1280
1281 /* sys_io_setup:
1282 * Create an aio_context capable of receiving at least nr_events.
1283 * ctxp must not point to an aio_context that already exists, and
1284 * must be initialized to 0 prior to the call. On successful
1285 * creation of the aio_context, *ctxp is filled in with the resulting
1286 * handle. May fail with -EINVAL if *ctxp is not initialized,
1287 * if the specified nr_events exceeds internal limits. May fail
1288 * with -EAGAIN if the specified nr_events exceeds the user's limit
1289 * of available events. May fail with -ENOMEM if insufficient kernel
1290 * resources are available. May fail with -EFAULT if an invalid
1291 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1292 * implemented.
1293 */
1294 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1295 {
1296 struct kioctx *ioctx = NULL;
1297 unsigned long ctx;
1298 long ret;
1299
1300 ret = get_user(ctx, ctxp);
1301 if (unlikely(ret))
1302 goto out;
1303
1304 ret = -EINVAL;
1305 if (unlikely(ctx || nr_events == 0)) {
1306 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1307 ctx, nr_events);
1308 goto out;
1309 }
1310
1311 ioctx = ioctx_alloc(nr_events);
1312 ret = PTR_ERR(ioctx);
1313 if (!IS_ERR(ioctx)) {
1314 ret = put_user(ioctx->user_id, ctxp);
1315 if (ret)
1316 kill_ioctx(current->mm, ioctx, NULL);
1317 percpu_ref_put(&ioctx->users);
1318 }
1319
1320 out:
1321 return ret;
1322 }
1323
1324 /* sys_io_destroy:
1325 * Destroy the aio_context specified. May cancel any outstanding
1326 * AIOs and block on completion. Will fail with -ENOSYS if not
1327 * implemented. May fail with -EINVAL if the context pointed to
1328 * is invalid.
1329 */
1330 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1331 {
1332 struct kioctx *ioctx = lookup_ioctx(ctx);
1333 if (likely(NULL != ioctx)) {
1334 struct completion requests_done =
1335 COMPLETION_INITIALIZER_ONSTACK(requests_done);
1336 int ret;
1337
1338 /* Pass requests_done to kill_ioctx() where it can be set
1339 * in a thread-safe way. If we try to set it here then we have
1340 * a race condition if two io_destroy() called simultaneously.
1341 */
1342 ret = kill_ioctx(current->mm, ioctx, &requests_done);
1343 percpu_ref_put(&ioctx->users);
1344
1345 /* Wait until all IO for the context are done. Otherwise kernel
1346 * keep using user-space buffers even if user thinks the context
1347 * is destroyed.
1348 */
1349 if (!ret)
1350 wait_for_completion(&requests_done);
1351
1352 return ret;
1353 }
1354 pr_debug("EINVAL: invalid context id\n");
1355 return -EINVAL;
1356 }
1357
1358 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1359
1360 static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
1361 struct iovec **iovec,
1362 bool compat,
1363 struct iov_iter *iter)
1364 {
1365 #ifdef CONFIG_COMPAT
1366 if (compat)
1367 return compat_import_iovec(rw,
1368 (struct compat_iovec __user *)buf,
1369 len, UIO_FASTIOV, iovec, iter);
1370 #endif
1371 return import_iovec(rw, (struct iovec __user *)buf,
1372 len, UIO_FASTIOV, iovec, iter);
1373 }
1374
1375 /*
1376 * aio_run_iocb:
1377 * Performs the initial checks and io submission.
1378 */
1379 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1380 char __user *buf, size_t len, bool compat)
1381 {
1382 struct file *file = req->ki_filp;
1383 ssize_t ret;
1384 int rw;
1385 fmode_t mode;
1386 rw_iter_op *iter_op;
1387 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1388 struct iov_iter iter;
1389
1390 switch (opcode) {
1391 case IOCB_CMD_PREAD:
1392 case IOCB_CMD_PREADV:
1393 mode = FMODE_READ;
1394 rw = READ;
1395 iter_op = file->f_op->read_iter;
1396 goto rw_common;
1397
1398 case IOCB_CMD_PWRITE:
1399 case IOCB_CMD_PWRITEV:
1400 mode = FMODE_WRITE;
1401 rw = WRITE;
1402 iter_op = file->f_op->write_iter;
1403 goto rw_common;
1404 rw_common:
1405 if (unlikely(!(file->f_mode & mode)))
1406 return -EBADF;
1407
1408 if (!iter_op)
1409 return -EINVAL;
1410
1411 if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
1412 ret = aio_setup_vectored_rw(rw, buf, len,
1413 &iovec, compat, &iter);
1414 else {
1415 ret = import_single_range(rw, buf, len, iovec, &iter);
1416 iovec = NULL;
1417 }
1418 if (!ret)
1419 ret = rw_verify_area(rw, file, &req->ki_pos,
1420 iov_iter_count(&iter));
1421 if (ret < 0) {
1422 kfree(iovec);
1423 return ret;
1424 }
1425
1426 len = ret;
1427
1428 if (rw == WRITE)
1429 file_start_write(file);
1430
1431 ret = iter_op(req, &iter);
1432
1433 if (rw == WRITE)
1434 file_end_write(file);
1435 kfree(iovec);
1436 break;
1437
1438 case IOCB_CMD_FDSYNC:
1439 if (!file->f_op->aio_fsync)
1440 return -EINVAL;
1441
1442 ret = file->f_op->aio_fsync(req, 1);
1443 break;
1444
1445 case IOCB_CMD_FSYNC:
1446 if (!file->f_op->aio_fsync)
1447 return -EINVAL;
1448
1449 ret = file->f_op->aio_fsync(req, 0);
1450 break;
1451
1452 default:
1453 pr_debug("EINVAL: no operation provided\n");
1454 return -EINVAL;
1455 }
1456
1457 if (ret != -EIOCBQUEUED) {
1458 /*
1459 * There's no easy way to restart the syscall since other AIO's
1460 * may be already running. Just fail this IO with EINTR.
1461 */
1462 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1463 ret == -ERESTARTNOHAND ||
1464 ret == -ERESTART_RESTARTBLOCK))
1465 ret = -EINTR;
1466 aio_complete(req, ret, 0);
1467 }
1468
1469 return 0;
1470 }
1471
1472 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1473 struct iocb *iocb, bool compat)
1474 {
1475 struct aio_kiocb *req;
1476 ssize_t ret;
1477
1478 /* enforce forwards compatibility on users */
1479 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1480 pr_debug("EINVAL: reserve field set\n");
1481 return -EINVAL;
1482 }
1483
1484 /* prevent overflows */
1485 if (unlikely(
1486 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1487 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1488 ((ssize_t)iocb->aio_nbytes < 0)
1489 )) {
1490 pr_debug("EINVAL: overflow check\n");
1491 return -EINVAL;
1492 }
1493
1494 req = aio_get_req(ctx);
1495 if (unlikely(!req))
1496 return -EAGAIN;
1497
1498 req->common.ki_filp = fget(iocb->aio_fildes);
1499 if (unlikely(!req->common.ki_filp)) {
1500 ret = -EBADF;
1501 goto out_put_req;
1502 }
1503 req->common.ki_pos = iocb->aio_offset;
1504 req->common.ki_complete = aio_complete;
1505 req->common.ki_flags = 0;
1506
1507 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1508 /*
1509 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1510 * instance of the file* now. The file descriptor must be
1511 * an eventfd() fd, and will be signaled for each completed
1512 * event using the eventfd_signal() function.
1513 */
1514 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1515 if (IS_ERR(req->ki_eventfd)) {
1516 ret = PTR_ERR(req->ki_eventfd);
1517 req->ki_eventfd = NULL;
1518 goto out_put_req;
1519 }
1520
1521 req->common.ki_flags |= IOCB_EVENTFD;
1522 }
1523
1524 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1525 if (unlikely(ret)) {
1526 pr_debug("EFAULT: aio_key\n");
1527 goto out_put_req;
1528 }
1529
1530 req->ki_user_iocb = user_iocb;
1531 req->ki_user_data = iocb->aio_data;
1532
1533 ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
1534 (char __user *)(unsigned long)iocb->aio_buf,
1535 iocb->aio_nbytes,
1536 compat);
1537 if (ret)
1538 goto out_put_req;
1539
1540 return 0;
1541 out_put_req:
1542 put_reqs_available(ctx, 1);
1543 percpu_ref_put(&ctx->reqs);
1544 kiocb_free(req);
1545 return ret;
1546 }
1547
1548 long do_io_submit(aio_context_t ctx_id, long nr,
1549 struct iocb __user *__user *iocbpp, bool compat)
1550 {
1551 struct kioctx *ctx;
1552 long ret = 0;
1553 int i = 0;
1554 struct blk_plug plug;
1555
1556 if (unlikely(nr < 0))
1557 return -EINVAL;
1558
1559 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1560 nr = LONG_MAX/sizeof(*iocbpp);
1561
1562 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1563 return -EFAULT;
1564
1565 ctx = lookup_ioctx(ctx_id);
1566 if (unlikely(!ctx)) {
1567 pr_debug("EINVAL: invalid context id\n");
1568 return -EINVAL;
1569 }
1570
1571 blk_start_plug(&plug);
1572
1573 /*
1574 * AKPM: should this return a partial result if some of the IOs were
1575 * successfully submitted?
1576 */
1577 for (i=0; i<nr; i++) {
1578 struct iocb __user *user_iocb;
1579 struct iocb tmp;
1580
1581 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1582 ret = -EFAULT;
1583 break;
1584 }
1585
1586 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1587 ret = -EFAULT;
1588 break;
1589 }
1590
1591 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1592 if (ret)
1593 break;
1594 }
1595 blk_finish_plug(&plug);
1596
1597 percpu_ref_put(&ctx->users);
1598 return i ? i : ret;
1599 }
1600
1601 /* sys_io_submit:
1602 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1603 * the number of iocbs queued. May return -EINVAL if the aio_context
1604 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1605 * *iocbpp[0] is not properly initialized, if the operation specified
1606 * is invalid for the file descriptor in the iocb. May fail with
1607 * -EFAULT if any of the data structures point to invalid data. May
1608 * fail with -EBADF if the file descriptor specified in the first
1609 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1610 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1611 * fail with -ENOSYS if not implemented.
1612 */
1613 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1614 struct iocb __user * __user *, iocbpp)
1615 {
1616 return do_io_submit(ctx_id, nr, iocbpp, 0);
1617 }
1618
1619 /* lookup_kiocb
1620 * Finds a given iocb for cancellation.
1621 */
1622 static struct aio_kiocb *
1623 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1624 {
1625 struct aio_kiocb *kiocb;
1626
1627 assert_spin_locked(&ctx->ctx_lock);
1628
1629 if (key != KIOCB_KEY)
1630 return NULL;
1631
1632 /* TODO: use a hash or array, this sucks. */
1633 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1634 if (kiocb->ki_user_iocb == iocb)
1635 return kiocb;
1636 }
1637 return NULL;
1638 }
1639
1640 /* sys_io_cancel:
1641 * Attempts to cancel an iocb previously passed to io_submit. If
1642 * the operation is successfully cancelled, the resulting event is
1643 * copied into the memory pointed to by result without being placed
1644 * into the completion queue and 0 is returned. May fail with
1645 * -EFAULT if any of the data structures pointed to are invalid.
1646 * May fail with -EINVAL if aio_context specified by ctx_id is
1647 * invalid. May fail with -EAGAIN if the iocb specified was not
1648 * cancelled. Will fail with -ENOSYS if not implemented.
1649 */
1650 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1651 struct io_event __user *, result)
1652 {
1653 struct kioctx *ctx;
1654 struct aio_kiocb *kiocb;
1655 u32 key;
1656 int ret;
1657
1658 ret = get_user(key, &iocb->aio_key);
1659 if (unlikely(ret))
1660 return -EFAULT;
1661
1662 ctx = lookup_ioctx(ctx_id);
1663 if (unlikely(!ctx))
1664 return -EINVAL;
1665
1666 spin_lock_irq(&ctx->ctx_lock);
1667
1668 kiocb = lookup_kiocb(ctx, iocb, key);
1669 if (kiocb)
1670 ret = kiocb_cancel(kiocb);
1671 else
1672 ret = -EINVAL;
1673
1674 spin_unlock_irq(&ctx->ctx_lock);
1675
1676 if (!ret) {
1677 /*
1678 * The result argument is no longer used - the io_event is
1679 * always delivered via the ring buffer. -EINPROGRESS indicates
1680 * cancellation is progress:
1681 */
1682 ret = -EINPROGRESS;
1683 }
1684
1685 percpu_ref_put(&ctx->users);
1686
1687 return ret;
1688 }
1689
1690 /* io_getevents:
1691 * Attempts to read at least min_nr events and up to nr events from
1692 * the completion queue for the aio_context specified by ctx_id. If
1693 * it succeeds, the number of read events is returned. May fail with
1694 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1695 * out of range, if timeout is out of range. May fail with -EFAULT
1696 * if any of the memory specified is invalid. May return 0 or
1697 * < min_nr if the timeout specified by timeout has elapsed
1698 * before sufficient events are available, where timeout == NULL
1699 * specifies an infinite timeout. Note that the timeout pointed to by
1700 * timeout is relative. Will fail with -ENOSYS if not implemented.
1701 */
1702 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1703 long, min_nr,
1704 long, nr,
1705 struct io_event __user *, events,
1706 struct timespec __user *, timeout)
1707 {
1708 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1709 long ret = -EINVAL;
1710
1711 if (likely(ioctx)) {
1712 if (likely(min_nr <= nr && min_nr >= 0))
1713 ret = read_events(ioctx, min_nr, nr, events, timeout);
1714 percpu_ref_put(&ioctx->users);
1715 }
1716 return ret;
1717 }
This page took 0.070027 seconds and 5 git commands to generate.