aio: lift iov_iter_init() into aio_setup_..._rw()
[deliverable/linux.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46
47 #include "internal.h"
48
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
67
68 #define AIO_RING_PAGES 8
69
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
74 };
75
76 struct kioctx_cpu {
77 unsigned reqs_available;
78 };
79
80 struct kioctx {
81 struct percpu_ref users;
82 atomic_t dead;
83
84 struct percpu_ref reqs;
85
86 unsigned long user_id;
87
88 struct __percpu kioctx_cpu *cpu;
89
90 /*
91 * For percpu reqs_available, number of slots we move to/from global
92 * counter at a time:
93 */
94 unsigned req_batch;
95 /*
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
98 *
99 * The real limit is nr_events - 1, which will be larger (see
100 * aio_setup_ring())
101 */
102 unsigned max_reqs;
103
104 /* Size of ringbuffer, in units of struct io_event */
105 unsigned nr_events;
106
107 unsigned long mmap_base;
108 unsigned long mmap_size;
109
110 struct page **ring_pages;
111 long nr_pages;
112
113 struct work_struct free_work;
114
115 /*
116 * signals when all in-flight requests are done
117 */
118 struct completion *requests_done;
119
120 struct {
121 /*
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
126 *
127 * We batch accesses to it with a percpu version.
128 */
129 atomic_t reqs_available;
130 } ____cacheline_aligned_in_smp;
131
132 struct {
133 spinlock_t ctx_lock;
134 struct list_head active_reqs; /* used for cancellation */
135 } ____cacheline_aligned_in_smp;
136
137 struct {
138 struct mutex ring_lock;
139 wait_queue_head_t wait;
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 unsigned tail;
144 unsigned completed_events;
145 spinlock_t completion_lock;
146 } ____cacheline_aligned_in_smp;
147
148 struct page *internal_pages[AIO_RING_PAGES];
149 struct file *aio_ring_file;
150
151 unsigned id;
152 };
153
154 /*
155 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
156 * cancelled or completed (this makes a certain amount of sense because
157 * successful cancellation - io_cancel() - does deliver the completion to
158 * userspace).
159 *
160 * And since most things don't implement kiocb cancellation and we'd really like
161 * kiocb completion to be lockless when possible, we use ki_cancel to
162 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
163 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
164 */
165 #define KIOCB_CANCELLED ((void *) (~0ULL))
166
167 struct aio_kiocb {
168 struct kiocb common;
169
170 struct kioctx *ki_ctx;
171 kiocb_cancel_fn *ki_cancel;
172
173 struct iocb __user *ki_user_iocb; /* user's aiocb */
174 __u64 ki_user_data; /* user's data for completion */
175
176 struct list_head ki_list; /* the aio core uses this
177 * for cancellation */
178
179 /*
180 * If the aio_resfd field of the userspace iocb is not zero,
181 * this is the underlying eventfd context to deliver events to.
182 */
183 struct eventfd_ctx *ki_eventfd;
184 };
185
186 /*------ sysctl variables----*/
187 static DEFINE_SPINLOCK(aio_nr_lock);
188 unsigned long aio_nr; /* current system wide number of aio requests */
189 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
190 /*----end sysctl variables---*/
191
192 static struct kmem_cache *kiocb_cachep;
193 static struct kmem_cache *kioctx_cachep;
194
195 static struct vfsmount *aio_mnt;
196
197 static const struct file_operations aio_ring_fops;
198 static const struct address_space_operations aio_ctx_aops;
199
200 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
201 {
202 struct qstr this = QSTR_INIT("[aio]", 5);
203 struct file *file;
204 struct path path;
205 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
206 if (IS_ERR(inode))
207 return ERR_CAST(inode);
208
209 inode->i_mapping->a_ops = &aio_ctx_aops;
210 inode->i_mapping->private_data = ctx;
211 inode->i_size = PAGE_SIZE * nr_pages;
212
213 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
214 if (!path.dentry) {
215 iput(inode);
216 return ERR_PTR(-ENOMEM);
217 }
218 path.mnt = mntget(aio_mnt);
219
220 d_instantiate(path.dentry, inode);
221 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
222 if (IS_ERR(file)) {
223 path_put(&path);
224 return file;
225 }
226
227 file->f_flags = O_RDWR;
228 return file;
229 }
230
231 static struct dentry *aio_mount(struct file_system_type *fs_type,
232 int flags, const char *dev_name, void *data)
233 {
234 static const struct dentry_operations ops = {
235 .d_dname = simple_dname,
236 };
237 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
238 }
239
240 /* aio_setup
241 * Creates the slab caches used by the aio routines, panic on
242 * failure as this is done early during the boot sequence.
243 */
244 static int __init aio_setup(void)
245 {
246 static struct file_system_type aio_fs = {
247 .name = "aio",
248 .mount = aio_mount,
249 .kill_sb = kill_anon_super,
250 };
251 aio_mnt = kern_mount(&aio_fs);
252 if (IS_ERR(aio_mnt))
253 panic("Failed to create aio fs mount.");
254
255 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
256 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
257
258 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
259
260 return 0;
261 }
262 __initcall(aio_setup);
263
264 static void put_aio_ring_file(struct kioctx *ctx)
265 {
266 struct file *aio_ring_file = ctx->aio_ring_file;
267 if (aio_ring_file) {
268 truncate_setsize(aio_ring_file->f_inode, 0);
269
270 /* Prevent further access to the kioctx from migratepages */
271 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
272 aio_ring_file->f_inode->i_mapping->private_data = NULL;
273 ctx->aio_ring_file = NULL;
274 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
275
276 fput(aio_ring_file);
277 }
278 }
279
280 static void aio_free_ring(struct kioctx *ctx)
281 {
282 int i;
283
284 /* Disconnect the kiotx from the ring file. This prevents future
285 * accesses to the kioctx from page migration.
286 */
287 put_aio_ring_file(ctx);
288
289 for (i = 0; i < ctx->nr_pages; i++) {
290 struct page *page;
291 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
292 page_count(ctx->ring_pages[i]));
293 page = ctx->ring_pages[i];
294 if (!page)
295 continue;
296 ctx->ring_pages[i] = NULL;
297 put_page(page);
298 }
299
300 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
301 kfree(ctx->ring_pages);
302 ctx->ring_pages = NULL;
303 }
304 }
305
306 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
307 {
308 vma->vm_flags |= VM_DONTEXPAND;
309 vma->vm_ops = &generic_file_vm_ops;
310 return 0;
311 }
312
313 static void aio_ring_remap(struct file *file, struct vm_area_struct *vma)
314 {
315 struct mm_struct *mm = vma->vm_mm;
316 struct kioctx_table *table;
317 int i;
318
319 spin_lock(&mm->ioctx_lock);
320 rcu_read_lock();
321 table = rcu_dereference(mm->ioctx_table);
322 for (i = 0; i < table->nr; i++) {
323 struct kioctx *ctx;
324
325 ctx = table->table[i];
326 if (ctx && ctx->aio_ring_file == file) {
327 ctx->user_id = ctx->mmap_base = vma->vm_start;
328 break;
329 }
330 }
331
332 rcu_read_unlock();
333 spin_unlock(&mm->ioctx_lock);
334 }
335
336 static const struct file_operations aio_ring_fops = {
337 .mmap = aio_ring_mmap,
338 .mremap = aio_ring_remap,
339 };
340
341 #if IS_ENABLED(CONFIG_MIGRATION)
342 static int aio_migratepage(struct address_space *mapping, struct page *new,
343 struct page *old, enum migrate_mode mode)
344 {
345 struct kioctx *ctx;
346 unsigned long flags;
347 pgoff_t idx;
348 int rc;
349
350 rc = 0;
351
352 /* mapping->private_lock here protects against the kioctx teardown. */
353 spin_lock(&mapping->private_lock);
354 ctx = mapping->private_data;
355 if (!ctx) {
356 rc = -EINVAL;
357 goto out;
358 }
359
360 /* The ring_lock mutex. The prevents aio_read_events() from writing
361 * to the ring's head, and prevents page migration from mucking in
362 * a partially initialized kiotx.
363 */
364 if (!mutex_trylock(&ctx->ring_lock)) {
365 rc = -EAGAIN;
366 goto out;
367 }
368
369 idx = old->index;
370 if (idx < (pgoff_t)ctx->nr_pages) {
371 /* Make sure the old page hasn't already been changed */
372 if (ctx->ring_pages[idx] != old)
373 rc = -EAGAIN;
374 } else
375 rc = -EINVAL;
376
377 if (rc != 0)
378 goto out_unlock;
379
380 /* Writeback must be complete */
381 BUG_ON(PageWriteback(old));
382 get_page(new);
383
384 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
385 if (rc != MIGRATEPAGE_SUCCESS) {
386 put_page(new);
387 goto out_unlock;
388 }
389
390 /* Take completion_lock to prevent other writes to the ring buffer
391 * while the old page is copied to the new. This prevents new
392 * events from being lost.
393 */
394 spin_lock_irqsave(&ctx->completion_lock, flags);
395 migrate_page_copy(new, old);
396 BUG_ON(ctx->ring_pages[idx] != old);
397 ctx->ring_pages[idx] = new;
398 spin_unlock_irqrestore(&ctx->completion_lock, flags);
399
400 /* The old page is no longer accessible. */
401 put_page(old);
402
403 out_unlock:
404 mutex_unlock(&ctx->ring_lock);
405 out:
406 spin_unlock(&mapping->private_lock);
407 return rc;
408 }
409 #endif
410
411 static const struct address_space_operations aio_ctx_aops = {
412 .set_page_dirty = __set_page_dirty_no_writeback,
413 #if IS_ENABLED(CONFIG_MIGRATION)
414 .migratepage = aio_migratepage,
415 #endif
416 };
417
418 static int aio_setup_ring(struct kioctx *ctx)
419 {
420 struct aio_ring *ring;
421 unsigned nr_events = ctx->max_reqs;
422 struct mm_struct *mm = current->mm;
423 unsigned long size, unused;
424 int nr_pages;
425 int i;
426 struct file *file;
427
428 /* Compensate for the ring buffer's head/tail overlap entry */
429 nr_events += 2; /* 1 is required, 2 for good luck */
430
431 size = sizeof(struct aio_ring);
432 size += sizeof(struct io_event) * nr_events;
433
434 nr_pages = PFN_UP(size);
435 if (nr_pages < 0)
436 return -EINVAL;
437
438 file = aio_private_file(ctx, nr_pages);
439 if (IS_ERR(file)) {
440 ctx->aio_ring_file = NULL;
441 return -ENOMEM;
442 }
443
444 ctx->aio_ring_file = file;
445 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
446 / sizeof(struct io_event);
447
448 ctx->ring_pages = ctx->internal_pages;
449 if (nr_pages > AIO_RING_PAGES) {
450 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
451 GFP_KERNEL);
452 if (!ctx->ring_pages) {
453 put_aio_ring_file(ctx);
454 return -ENOMEM;
455 }
456 }
457
458 for (i = 0; i < nr_pages; i++) {
459 struct page *page;
460 page = find_or_create_page(file->f_inode->i_mapping,
461 i, GFP_HIGHUSER | __GFP_ZERO);
462 if (!page)
463 break;
464 pr_debug("pid(%d) page[%d]->count=%d\n",
465 current->pid, i, page_count(page));
466 SetPageUptodate(page);
467 unlock_page(page);
468
469 ctx->ring_pages[i] = page;
470 }
471 ctx->nr_pages = i;
472
473 if (unlikely(i != nr_pages)) {
474 aio_free_ring(ctx);
475 return -ENOMEM;
476 }
477
478 ctx->mmap_size = nr_pages * PAGE_SIZE;
479 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
480
481 down_write(&mm->mmap_sem);
482 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
483 PROT_READ | PROT_WRITE,
484 MAP_SHARED, 0, &unused);
485 up_write(&mm->mmap_sem);
486 if (IS_ERR((void *)ctx->mmap_base)) {
487 ctx->mmap_size = 0;
488 aio_free_ring(ctx);
489 return -ENOMEM;
490 }
491
492 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
493
494 ctx->user_id = ctx->mmap_base;
495 ctx->nr_events = nr_events; /* trusted copy */
496
497 ring = kmap_atomic(ctx->ring_pages[0]);
498 ring->nr = nr_events; /* user copy */
499 ring->id = ~0U;
500 ring->head = ring->tail = 0;
501 ring->magic = AIO_RING_MAGIC;
502 ring->compat_features = AIO_RING_COMPAT_FEATURES;
503 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
504 ring->header_length = sizeof(struct aio_ring);
505 kunmap_atomic(ring);
506 flush_dcache_page(ctx->ring_pages[0]);
507
508 return 0;
509 }
510
511 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
512 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
513 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
514
515 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
516 {
517 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
518 struct kioctx *ctx = req->ki_ctx;
519 unsigned long flags;
520
521 spin_lock_irqsave(&ctx->ctx_lock, flags);
522
523 if (!req->ki_list.next)
524 list_add(&req->ki_list, &ctx->active_reqs);
525
526 req->ki_cancel = cancel;
527
528 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
529 }
530 EXPORT_SYMBOL(kiocb_set_cancel_fn);
531
532 static int kiocb_cancel(struct aio_kiocb *kiocb)
533 {
534 kiocb_cancel_fn *old, *cancel;
535
536 /*
537 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
538 * actually has a cancel function, hence the cmpxchg()
539 */
540
541 cancel = ACCESS_ONCE(kiocb->ki_cancel);
542 do {
543 if (!cancel || cancel == KIOCB_CANCELLED)
544 return -EINVAL;
545
546 old = cancel;
547 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
548 } while (cancel != old);
549
550 return cancel(&kiocb->common);
551 }
552
553 static void free_ioctx(struct work_struct *work)
554 {
555 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
556
557 pr_debug("freeing %p\n", ctx);
558
559 aio_free_ring(ctx);
560 free_percpu(ctx->cpu);
561 percpu_ref_exit(&ctx->reqs);
562 percpu_ref_exit(&ctx->users);
563 kmem_cache_free(kioctx_cachep, ctx);
564 }
565
566 static void free_ioctx_reqs(struct percpu_ref *ref)
567 {
568 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
569
570 /* At this point we know that there are no any in-flight requests */
571 if (ctx->requests_done)
572 complete(ctx->requests_done);
573
574 INIT_WORK(&ctx->free_work, free_ioctx);
575 schedule_work(&ctx->free_work);
576 }
577
578 /*
579 * When this function runs, the kioctx has been removed from the "hash table"
580 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
581 * now it's safe to cancel any that need to be.
582 */
583 static void free_ioctx_users(struct percpu_ref *ref)
584 {
585 struct kioctx *ctx = container_of(ref, struct kioctx, users);
586 struct aio_kiocb *req;
587
588 spin_lock_irq(&ctx->ctx_lock);
589
590 while (!list_empty(&ctx->active_reqs)) {
591 req = list_first_entry(&ctx->active_reqs,
592 struct aio_kiocb, ki_list);
593
594 list_del_init(&req->ki_list);
595 kiocb_cancel(req);
596 }
597
598 spin_unlock_irq(&ctx->ctx_lock);
599
600 percpu_ref_kill(&ctx->reqs);
601 percpu_ref_put(&ctx->reqs);
602 }
603
604 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
605 {
606 unsigned i, new_nr;
607 struct kioctx_table *table, *old;
608 struct aio_ring *ring;
609
610 spin_lock(&mm->ioctx_lock);
611 table = rcu_dereference_raw(mm->ioctx_table);
612
613 while (1) {
614 if (table)
615 for (i = 0; i < table->nr; i++)
616 if (!table->table[i]) {
617 ctx->id = i;
618 table->table[i] = ctx;
619 spin_unlock(&mm->ioctx_lock);
620
621 /* While kioctx setup is in progress,
622 * we are protected from page migration
623 * changes ring_pages by ->ring_lock.
624 */
625 ring = kmap_atomic(ctx->ring_pages[0]);
626 ring->id = ctx->id;
627 kunmap_atomic(ring);
628 return 0;
629 }
630
631 new_nr = (table ? table->nr : 1) * 4;
632 spin_unlock(&mm->ioctx_lock);
633
634 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
635 new_nr, GFP_KERNEL);
636 if (!table)
637 return -ENOMEM;
638
639 table->nr = new_nr;
640
641 spin_lock(&mm->ioctx_lock);
642 old = rcu_dereference_raw(mm->ioctx_table);
643
644 if (!old) {
645 rcu_assign_pointer(mm->ioctx_table, table);
646 } else if (table->nr > old->nr) {
647 memcpy(table->table, old->table,
648 old->nr * sizeof(struct kioctx *));
649
650 rcu_assign_pointer(mm->ioctx_table, table);
651 kfree_rcu(old, rcu);
652 } else {
653 kfree(table);
654 table = old;
655 }
656 }
657 }
658
659 static void aio_nr_sub(unsigned nr)
660 {
661 spin_lock(&aio_nr_lock);
662 if (WARN_ON(aio_nr - nr > aio_nr))
663 aio_nr = 0;
664 else
665 aio_nr -= nr;
666 spin_unlock(&aio_nr_lock);
667 }
668
669 /* ioctx_alloc
670 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
671 */
672 static struct kioctx *ioctx_alloc(unsigned nr_events)
673 {
674 struct mm_struct *mm = current->mm;
675 struct kioctx *ctx;
676 int err = -ENOMEM;
677
678 /*
679 * We keep track of the number of available ringbuffer slots, to prevent
680 * overflow (reqs_available), and we also use percpu counters for this.
681 *
682 * So since up to half the slots might be on other cpu's percpu counters
683 * and unavailable, double nr_events so userspace sees what they
684 * expected: additionally, we move req_batch slots to/from percpu
685 * counters at a time, so make sure that isn't 0:
686 */
687 nr_events = max(nr_events, num_possible_cpus() * 4);
688 nr_events *= 2;
689
690 /* Prevent overflows */
691 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
692 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
693 pr_debug("ENOMEM: nr_events too high\n");
694 return ERR_PTR(-EINVAL);
695 }
696
697 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
698 return ERR_PTR(-EAGAIN);
699
700 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
701 if (!ctx)
702 return ERR_PTR(-ENOMEM);
703
704 ctx->max_reqs = nr_events;
705
706 spin_lock_init(&ctx->ctx_lock);
707 spin_lock_init(&ctx->completion_lock);
708 mutex_init(&ctx->ring_lock);
709 /* Protect against page migration throughout kiotx setup by keeping
710 * the ring_lock mutex held until setup is complete. */
711 mutex_lock(&ctx->ring_lock);
712 init_waitqueue_head(&ctx->wait);
713
714 INIT_LIST_HEAD(&ctx->active_reqs);
715
716 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
717 goto err;
718
719 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
720 goto err;
721
722 ctx->cpu = alloc_percpu(struct kioctx_cpu);
723 if (!ctx->cpu)
724 goto err;
725
726 err = aio_setup_ring(ctx);
727 if (err < 0)
728 goto err;
729
730 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
731 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
732 if (ctx->req_batch < 1)
733 ctx->req_batch = 1;
734
735 /* limit the number of system wide aios */
736 spin_lock(&aio_nr_lock);
737 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
738 aio_nr + nr_events < aio_nr) {
739 spin_unlock(&aio_nr_lock);
740 err = -EAGAIN;
741 goto err_ctx;
742 }
743 aio_nr += ctx->max_reqs;
744 spin_unlock(&aio_nr_lock);
745
746 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
747 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
748
749 err = ioctx_add_table(ctx, mm);
750 if (err)
751 goto err_cleanup;
752
753 /* Release the ring_lock mutex now that all setup is complete. */
754 mutex_unlock(&ctx->ring_lock);
755
756 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
757 ctx, ctx->user_id, mm, ctx->nr_events);
758 return ctx;
759
760 err_cleanup:
761 aio_nr_sub(ctx->max_reqs);
762 err_ctx:
763 aio_free_ring(ctx);
764 err:
765 mutex_unlock(&ctx->ring_lock);
766 free_percpu(ctx->cpu);
767 percpu_ref_exit(&ctx->reqs);
768 percpu_ref_exit(&ctx->users);
769 kmem_cache_free(kioctx_cachep, ctx);
770 pr_debug("error allocating ioctx %d\n", err);
771 return ERR_PTR(err);
772 }
773
774 /* kill_ioctx
775 * Cancels all outstanding aio requests on an aio context. Used
776 * when the processes owning a context have all exited to encourage
777 * the rapid destruction of the kioctx.
778 */
779 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
780 struct completion *requests_done)
781 {
782 struct kioctx_table *table;
783
784 if (atomic_xchg(&ctx->dead, 1))
785 return -EINVAL;
786
787
788 spin_lock(&mm->ioctx_lock);
789 table = rcu_dereference_raw(mm->ioctx_table);
790 WARN_ON(ctx != table->table[ctx->id]);
791 table->table[ctx->id] = NULL;
792 spin_unlock(&mm->ioctx_lock);
793
794 /* percpu_ref_kill() will do the necessary call_rcu() */
795 wake_up_all(&ctx->wait);
796
797 /*
798 * It'd be more correct to do this in free_ioctx(), after all
799 * the outstanding kiocbs have finished - but by then io_destroy
800 * has already returned, so io_setup() could potentially return
801 * -EAGAIN with no ioctxs actually in use (as far as userspace
802 * could tell).
803 */
804 aio_nr_sub(ctx->max_reqs);
805
806 if (ctx->mmap_size)
807 vm_munmap(ctx->mmap_base, ctx->mmap_size);
808
809 ctx->requests_done = requests_done;
810 percpu_ref_kill(&ctx->users);
811 return 0;
812 }
813
814 /*
815 * exit_aio: called when the last user of mm goes away. At this point, there is
816 * no way for any new requests to be submited or any of the io_* syscalls to be
817 * called on the context.
818 *
819 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
820 * them.
821 */
822 void exit_aio(struct mm_struct *mm)
823 {
824 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
825 int i;
826
827 if (!table)
828 return;
829
830 for (i = 0; i < table->nr; ++i) {
831 struct kioctx *ctx = table->table[i];
832 struct completion requests_done =
833 COMPLETION_INITIALIZER_ONSTACK(requests_done);
834
835 if (!ctx)
836 continue;
837 /*
838 * We don't need to bother with munmap() here - exit_mmap(mm)
839 * is coming and it'll unmap everything. And we simply can't,
840 * this is not necessarily our ->mm.
841 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
842 * that it needs to unmap the area, just set it to 0.
843 */
844 ctx->mmap_size = 0;
845 kill_ioctx(mm, ctx, &requests_done);
846
847 /* Wait until all IO for the context are done. */
848 wait_for_completion(&requests_done);
849 }
850
851 RCU_INIT_POINTER(mm->ioctx_table, NULL);
852 kfree(table);
853 }
854
855 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
856 {
857 struct kioctx_cpu *kcpu;
858 unsigned long flags;
859
860 local_irq_save(flags);
861 kcpu = this_cpu_ptr(ctx->cpu);
862 kcpu->reqs_available += nr;
863
864 while (kcpu->reqs_available >= ctx->req_batch * 2) {
865 kcpu->reqs_available -= ctx->req_batch;
866 atomic_add(ctx->req_batch, &ctx->reqs_available);
867 }
868
869 local_irq_restore(flags);
870 }
871
872 static bool get_reqs_available(struct kioctx *ctx)
873 {
874 struct kioctx_cpu *kcpu;
875 bool ret = false;
876 unsigned long flags;
877
878 local_irq_save(flags);
879 kcpu = this_cpu_ptr(ctx->cpu);
880 if (!kcpu->reqs_available) {
881 int old, avail = atomic_read(&ctx->reqs_available);
882
883 do {
884 if (avail < ctx->req_batch)
885 goto out;
886
887 old = avail;
888 avail = atomic_cmpxchg(&ctx->reqs_available,
889 avail, avail - ctx->req_batch);
890 } while (avail != old);
891
892 kcpu->reqs_available += ctx->req_batch;
893 }
894
895 ret = true;
896 kcpu->reqs_available--;
897 out:
898 local_irq_restore(flags);
899 return ret;
900 }
901
902 /* refill_reqs_available
903 * Updates the reqs_available reference counts used for tracking the
904 * number of free slots in the completion ring. This can be called
905 * from aio_complete() (to optimistically update reqs_available) or
906 * from aio_get_req() (the we're out of events case). It must be
907 * called holding ctx->completion_lock.
908 */
909 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
910 unsigned tail)
911 {
912 unsigned events_in_ring, completed;
913
914 /* Clamp head since userland can write to it. */
915 head %= ctx->nr_events;
916 if (head <= tail)
917 events_in_ring = tail - head;
918 else
919 events_in_ring = ctx->nr_events - (head - tail);
920
921 completed = ctx->completed_events;
922 if (events_in_ring < completed)
923 completed -= events_in_ring;
924 else
925 completed = 0;
926
927 if (!completed)
928 return;
929
930 ctx->completed_events -= completed;
931 put_reqs_available(ctx, completed);
932 }
933
934 /* user_refill_reqs_available
935 * Called to refill reqs_available when aio_get_req() encounters an
936 * out of space in the completion ring.
937 */
938 static void user_refill_reqs_available(struct kioctx *ctx)
939 {
940 spin_lock_irq(&ctx->completion_lock);
941 if (ctx->completed_events) {
942 struct aio_ring *ring;
943 unsigned head;
944
945 /* Access of ring->head may race with aio_read_events_ring()
946 * here, but that's okay since whether we read the old version
947 * or the new version, and either will be valid. The important
948 * part is that head cannot pass tail since we prevent
949 * aio_complete() from updating tail by holding
950 * ctx->completion_lock. Even if head is invalid, the check
951 * against ctx->completed_events below will make sure we do the
952 * safe/right thing.
953 */
954 ring = kmap_atomic(ctx->ring_pages[0]);
955 head = ring->head;
956 kunmap_atomic(ring);
957
958 refill_reqs_available(ctx, head, ctx->tail);
959 }
960
961 spin_unlock_irq(&ctx->completion_lock);
962 }
963
964 /* aio_get_req
965 * Allocate a slot for an aio request.
966 * Returns NULL if no requests are free.
967 */
968 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
969 {
970 struct aio_kiocb *req;
971
972 if (!get_reqs_available(ctx)) {
973 user_refill_reqs_available(ctx);
974 if (!get_reqs_available(ctx))
975 return NULL;
976 }
977
978 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
979 if (unlikely(!req))
980 goto out_put;
981
982 percpu_ref_get(&ctx->reqs);
983
984 req->ki_ctx = ctx;
985 return req;
986 out_put:
987 put_reqs_available(ctx, 1);
988 return NULL;
989 }
990
991 static void kiocb_free(struct aio_kiocb *req)
992 {
993 if (req->common.ki_filp)
994 fput(req->common.ki_filp);
995 if (req->ki_eventfd != NULL)
996 eventfd_ctx_put(req->ki_eventfd);
997 kmem_cache_free(kiocb_cachep, req);
998 }
999
1000 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1001 {
1002 struct aio_ring __user *ring = (void __user *)ctx_id;
1003 struct mm_struct *mm = current->mm;
1004 struct kioctx *ctx, *ret = NULL;
1005 struct kioctx_table *table;
1006 unsigned id;
1007
1008 if (get_user(id, &ring->id))
1009 return NULL;
1010
1011 rcu_read_lock();
1012 table = rcu_dereference(mm->ioctx_table);
1013
1014 if (!table || id >= table->nr)
1015 goto out;
1016
1017 ctx = table->table[id];
1018 if (ctx && ctx->user_id == ctx_id) {
1019 percpu_ref_get(&ctx->users);
1020 ret = ctx;
1021 }
1022 out:
1023 rcu_read_unlock();
1024 return ret;
1025 }
1026
1027 /* aio_complete
1028 * Called when the io request on the given iocb is complete.
1029 */
1030 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1031 {
1032 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1033 struct kioctx *ctx = iocb->ki_ctx;
1034 struct aio_ring *ring;
1035 struct io_event *ev_page, *event;
1036 unsigned tail, pos, head;
1037 unsigned long flags;
1038
1039 /*
1040 * Special case handling for sync iocbs:
1041 * - events go directly into the iocb for fast handling
1042 * - the sync task with the iocb in its stack holds the single iocb
1043 * ref, no other paths have a way to get another ref
1044 * - the sync task helpfully left a reference to itself in the iocb
1045 */
1046 BUG_ON(is_sync_kiocb(kiocb));
1047
1048 if (iocb->ki_list.next) {
1049 unsigned long flags;
1050
1051 spin_lock_irqsave(&ctx->ctx_lock, flags);
1052 list_del(&iocb->ki_list);
1053 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1054 }
1055
1056 /*
1057 * Add a completion event to the ring buffer. Must be done holding
1058 * ctx->completion_lock to prevent other code from messing with the tail
1059 * pointer since we might be called from irq context.
1060 */
1061 spin_lock_irqsave(&ctx->completion_lock, flags);
1062
1063 tail = ctx->tail;
1064 pos = tail + AIO_EVENTS_OFFSET;
1065
1066 if (++tail >= ctx->nr_events)
1067 tail = 0;
1068
1069 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1070 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1071
1072 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1073 event->data = iocb->ki_user_data;
1074 event->res = res;
1075 event->res2 = res2;
1076
1077 kunmap_atomic(ev_page);
1078 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1079
1080 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1081 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1082 res, res2);
1083
1084 /* after flagging the request as done, we
1085 * must never even look at it again
1086 */
1087 smp_wmb(); /* make event visible before updating tail */
1088
1089 ctx->tail = tail;
1090
1091 ring = kmap_atomic(ctx->ring_pages[0]);
1092 head = ring->head;
1093 ring->tail = tail;
1094 kunmap_atomic(ring);
1095 flush_dcache_page(ctx->ring_pages[0]);
1096
1097 ctx->completed_events++;
1098 if (ctx->completed_events > 1)
1099 refill_reqs_available(ctx, head, tail);
1100 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1101
1102 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1103
1104 /*
1105 * Check if the user asked us to deliver the result through an
1106 * eventfd. The eventfd_signal() function is safe to be called
1107 * from IRQ context.
1108 */
1109 if (iocb->ki_eventfd != NULL)
1110 eventfd_signal(iocb->ki_eventfd, 1);
1111
1112 /* everything turned out well, dispose of the aiocb. */
1113 kiocb_free(iocb);
1114
1115 /*
1116 * We have to order our ring_info tail store above and test
1117 * of the wait list below outside the wait lock. This is
1118 * like in wake_up_bit() where clearing a bit has to be
1119 * ordered with the unlocked test.
1120 */
1121 smp_mb();
1122
1123 if (waitqueue_active(&ctx->wait))
1124 wake_up(&ctx->wait);
1125
1126 percpu_ref_put(&ctx->reqs);
1127 }
1128
1129 /* aio_read_events_ring
1130 * Pull an event off of the ioctx's event ring. Returns the number of
1131 * events fetched
1132 */
1133 static long aio_read_events_ring(struct kioctx *ctx,
1134 struct io_event __user *event, long nr)
1135 {
1136 struct aio_ring *ring;
1137 unsigned head, tail, pos;
1138 long ret = 0;
1139 int copy_ret;
1140
1141 /*
1142 * The mutex can block and wake us up and that will cause
1143 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1144 * and repeat. This should be rare enough that it doesn't cause
1145 * peformance issues. See the comment in read_events() for more detail.
1146 */
1147 sched_annotate_sleep();
1148 mutex_lock(&ctx->ring_lock);
1149
1150 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1151 ring = kmap_atomic(ctx->ring_pages[0]);
1152 head = ring->head;
1153 tail = ring->tail;
1154 kunmap_atomic(ring);
1155
1156 /*
1157 * Ensure that once we've read the current tail pointer, that
1158 * we also see the events that were stored up to the tail.
1159 */
1160 smp_rmb();
1161
1162 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1163
1164 if (head == tail)
1165 goto out;
1166
1167 head %= ctx->nr_events;
1168 tail %= ctx->nr_events;
1169
1170 while (ret < nr) {
1171 long avail;
1172 struct io_event *ev;
1173 struct page *page;
1174
1175 avail = (head <= tail ? tail : ctx->nr_events) - head;
1176 if (head == tail)
1177 break;
1178
1179 avail = min(avail, nr - ret);
1180 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1181 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1182
1183 pos = head + AIO_EVENTS_OFFSET;
1184 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1185 pos %= AIO_EVENTS_PER_PAGE;
1186
1187 ev = kmap(page);
1188 copy_ret = copy_to_user(event + ret, ev + pos,
1189 sizeof(*ev) * avail);
1190 kunmap(page);
1191
1192 if (unlikely(copy_ret)) {
1193 ret = -EFAULT;
1194 goto out;
1195 }
1196
1197 ret += avail;
1198 head += avail;
1199 head %= ctx->nr_events;
1200 }
1201
1202 ring = kmap_atomic(ctx->ring_pages[0]);
1203 ring->head = head;
1204 kunmap_atomic(ring);
1205 flush_dcache_page(ctx->ring_pages[0]);
1206
1207 pr_debug("%li h%u t%u\n", ret, head, tail);
1208 out:
1209 mutex_unlock(&ctx->ring_lock);
1210
1211 return ret;
1212 }
1213
1214 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1215 struct io_event __user *event, long *i)
1216 {
1217 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1218
1219 if (ret > 0)
1220 *i += ret;
1221
1222 if (unlikely(atomic_read(&ctx->dead)))
1223 ret = -EINVAL;
1224
1225 if (!*i)
1226 *i = ret;
1227
1228 return ret < 0 || *i >= min_nr;
1229 }
1230
1231 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1232 struct io_event __user *event,
1233 struct timespec __user *timeout)
1234 {
1235 ktime_t until = { .tv64 = KTIME_MAX };
1236 long ret = 0;
1237
1238 if (timeout) {
1239 struct timespec ts;
1240
1241 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1242 return -EFAULT;
1243
1244 until = timespec_to_ktime(ts);
1245 }
1246
1247 /*
1248 * Note that aio_read_events() is being called as the conditional - i.e.
1249 * we're calling it after prepare_to_wait() has set task state to
1250 * TASK_INTERRUPTIBLE.
1251 *
1252 * But aio_read_events() can block, and if it blocks it's going to flip
1253 * the task state back to TASK_RUNNING.
1254 *
1255 * This should be ok, provided it doesn't flip the state back to
1256 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1257 * will only happen if the mutex_lock() call blocks, and we then find
1258 * the ringbuffer empty. So in practice we should be ok, but it's
1259 * something to be aware of when touching this code.
1260 */
1261 if (until.tv64 == 0)
1262 aio_read_events(ctx, min_nr, nr, event, &ret);
1263 else
1264 wait_event_interruptible_hrtimeout(ctx->wait,
1265 aio_read_events(ctx, min_nr, nr, event, &ret),
1266 until);
1267
1268 if (!ret && signal_pending(current))
1269 ret = -EINTR;
1270
1271 return ret;
1272 }
1273
1274 /* sys_io_setup:
1275 * Create an aio_context capable of receiving at least nr_events.
1276 * ctxp must not point to an aio_context that already exists, and
1277 * must be initialized to 0 prior to the call. On successful
1278 * creation of the aio_context, *ctxp is filled in with the resulting
1279 * handle. May fail with -EINVAL if *ctxp is not initialized,
1280 * if the specified nr_events exceeds internal limits. May fail
1281 * with -EAGAIN if the specified nr_events exceeds the user's limit
1282 * of available events. May fail with -ENOMEM if insufficient kernel
1283 * resources are available. May fail with -EFAULT if an invalid
1284 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1285 * implemented.
1286 */
1287 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1288 {
1289 struct kioctx *ioctx = NULL;
1290 unsigned long ctx;
1291 long ret;
1292
1293 ret = get_user(ctx, ctxp);
1294 if (unlikely(ret))
1295 goto out;
1296
1297 ret = -EINVAL;
1298 if (unlikely(ctx || nr_events == 0)) {
1299 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1300 ctx, nr_events);
1301 goto out;
1302 }
1303
1304 ioctx = ioctx_alloc(nr_events);
1305 ret = PTR_ERR(ioctx);
1306 if (!IS_ERR(ioctx)) {
1307 ret = put_user(ioctx->user_id, ctxp);
1308 if (ret)
1309 kill_ioctx(current->mm, ioctx, NULL);
1310 percpu_ref_put(&ioctx->users);
1311 }
1312
1313 out:
1314 return ret;
1315 }
1316
1317 /* sys_io_destroy:
1318 * Destroy the aio_context specified. May cancel any outstanding
1319 * AIOs and block on completion. Will fail with -ENOSYS if not
1320 * implemented. May fail with -EINVAL if the context pointed to
1321 * is invalid.
1322 */
1323 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1324 {
1325 struct kioctx *ioctx = lookup_ioctx(ctx);
1326 if (likely(NULL != ioctx)) {
1327 struct completion requests_done =
1328 COMPLETION_INITIALIZER_ONSTACK(requests_done);
1329 int ret;
1330
1331 /* Pass requests_done to kill_ioctx() where it can be set
1332 * in a thread-safe way. If we try to set it here then we have
1333 * a race condition if two io_destroy() called simultaneously.
1334 */
1335 ret = kill_ioctx(current->mm, ioctx, &requests_done);
1336 percpu_ref_put(&ioctx->users);
1337
1338 /* Wait until all IO for the context are done. Otherwise kernel
1339 * keep using user-space buffers even if user thinks the context
1340 * is destroyed.
1341 */
1342 if (!ret)
1343 wait_for_completion(&requests_done);
1344
1345 return ret;
1346 }
1347 pr_debug("EINVAL: invalid context id\n");
1348 return -EINVAL;
1349 }
1350
1351 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1352 unsigned long, loff_t);
1353 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1354
1355 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1356 int rw, char __user *buf,
1357 unsigned long *nr_segs,
1358 size_t *len,
1359 struct iovec **iovec,
1360 bool compat,
1361 struct iov_iter *iter)
1362 {
1363 ssize_t ret;
1364
1365 *nr_segs = *len;
1366
1367 #ifdef CONFIG_COMPAT
1368 if (compat)
1369 ret = compat_rw_copy_check_uvector(rw,
1370 (struct compat_iovec __user *)buf,
1371 *nr_segs, UIO_FASTIOV, *iovec, iovec);
1372 else
1373 #endif
1374 ret = rw_copy_check_uvector(rw,
1375 (struct iovec __user *)buf,
1376 *nr_segs, UIO_FASTIOV, *iovec, iovec);
1377 if (ret < 0)
1378 return ret;
1379
1380 /* len now reflect bytes instead of segs */
1381 *len = ret;
1382 iov_iter_init(iter, rw, *iovec, *nr_segs, *len);
1383 return 0;
1384 }
1385
1386 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1387 int rw, char __user *buf,
1388 unsigned long *nr_segs,
1389 size_t len,
1390 struct iovec *iovec,
1391 struct iov_iter *iter)
1392 {
1393 if (len > MAX_RW_COUNT)
1394 len = MAX_RW_COUNT;
1395 if (unlikely(!access_ok(!rw, buf, len)))
1396 return -EFAULT;
1397
1398 iovec->iov_base = buf;
1399 iovec->iov_len = len;
1400 *nr_segs = 1;
1401 iov_iter_init(iter, rw, iovec, *nr_segs, len);
1402 return 0;
1403 }
1404
1405 /*
1406 * aio_run_iocb:
1407 * Performs the initial checks and io submission.
1408 */
1409 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1410 char __user *buf, size_t len, bool compat)
1411 {
1412 struct file *file = req->ki_filp;
1413 ssize_t ret;
1414 unsigned long nr_segs;
1415 int rw;
1416 fmode_t mode;
1417 aio_rw_op *rw_op;
1418 rw_iter_op *iter_op;
1419 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1420 struct iov_iter iter;
1421
1422 switch (opcode) {
1423 case IOCB_CMD_PREAD:
1424 case IOCB_CMD_PREADV:
1425 mode = FMODE_READ;
1426 rw = READ;
1427 rw_op = file->f_op->aio_read;
1428 iter_op = file->f_op->read_iter;
1429 goto rw_common;
1430
1431 case IOCB_CMD_PWRITE:
1432 case IOCB_CMD_PWRITEV:
1433 mode = FMODE_WRITE;
1434 rw = WRITE;
1435 rw_op = file->f_op->aio_write;
1436 iter_op = file->f_op->write_iter;
1437 goto rw_common;
1438 rw_common:
1439 if (unlikely(!(file->f_mode & mode)))
1440 return -EBADF;
1441
1442 if (!rw_op && !iter_op)
1443 return -EINVAL;
1444
1445 if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
1446 ret = aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1447 &len, &iovec, compat, &iter);
1448 else
1449 ret = aio_setup_single_vector(req, rw, buf, &nr_segs,
1450 len, iovec, &iter);
1451 if (!ret)
1452 ret = rw_verify_area(rw, file, &req->ki_pos, len);
1453 if (ret < 0) {
1454 if (iovec != inline_vecs)
1455 kfree(iovec);
1456 return ret;
1457 }
1458
1459 len = ret;
1460
1461 /* XXX: move/kill - rw_verify_area()? */
1462 /* This matches the pread()/pwrite() logic */
1463 if (req->ki_pos < 0) {
1464 ret = -EINVAL;
1465 break;
1466 }
1467
1468 if (rw == WRITE)
1469 file_start_write(file);
1470
1471 if (iter_op) {
1472 ret = iter_op(req, &iter);
1473 } else {
1474 ret = rw_op(req, iter.iov, iter.nr_segs, req->ki_pos);
1475 }
1476
1477 if (rw == WRITE)
1478 file_end_write(file);
1479 break;
1480
1481 case IOCB_CMD_FDSYNC:
1482 if (!file->f_op->aio_fsync)
1483 return -EINVAL;
1484
1485 ret = file->f_op->aio_fsync(req, 1);
1486 break;
1487
1488 case IOCB_CMD_FSYNC:
1489 if (!file->f_op->aio_fsync)
1490 return -EINVAL;
1491
1492 ret = file->f_op->aio_fsync(req, 0);
1493 break;
1494
1495 default:
1496 pr_debug("EINVAL: no operation provided\n");
1497 return -EINVAL;
1498 }
1499
1500 if (iovec != inline_vecs)
1501 kfree(iovec);
1502
1503 if (ret != -EIOCBQUEUED) {
1504 /*
1505 * There's no easy way to restart the syscall since other AIO's
1506 * may be already running. Just fail this IO with EINTR.
1507 */
1508 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1509 ret == -ERESTARTNOHAND ||
1510 ret == -ERESTART_RESTARTBLOCK))
1511 ret = -EINTR;
1512 aio_complete(req, ret, 0);
1513 }
1514
1515 return 0;
1516 }
1517
1518 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1519 struct iocb *iocb, bool compat)
1520 {
1521 struct aio_kiocb *req;
1522 ssize_t ret;
1523
1524 /* enforce forwards compatibility on users */
1525 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1526 pr_debug("EINVAL: reserve field set\n");
1527 return -EINVAL;
1528 }
1529
1530 /* prevent overflows */
1531 if (unlikely(
1532 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1533 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1534 ((ssize_t)iocb->aio_nbytes < 0)
1535 )) {
1536 pr_debug("EINVAL: overflow check\n");
1537 return -EINVAL;
1538 }
1539
1540 req = aio_get_req(ctx);
1541 if (unlikely(!req))
1542 return -EAGAIN;
1543
1544 req->common.ki_filp = fget(iocb->aio_fildes);
1545 if (unlikely(!req->common.ki_filp)) {
1546 ret = -EBADF;
1547 goto out_put_req;
1548 }
1549 req->common.ki_pos = iocb->aio_offset;
1550 req->common.ki_complete = aio_complete;
1551 req->common.ki_flags = 0;
1552
1553 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1554 /*
1555 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1556 * instance of the file* now. The file descriptor must be
1557 * an eventfd() fd, and will be signaled for each completed
1558 * event using the eventfd_signal() function.
1559 */
1560 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1561 if (IS_ERR(req->ki_eventfd)) {
1562 ret = PTR_ERR(req->ki_eventfd);
1563 req->ki_eventfd = NULL;
1564 goto out_put_req;
1565 }
1566
1567 req->common.ki_flags |= IOCB_EVENTFD;
1568 }
1569
1570 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1571 if (unlikely(ret)) {
1572 pr_debug("EFAULT: aio_key\n");
1573 goto out_put_req;
1574 }
1575
1576 req->ki_user_iocb = user_iocb;
1577 req->ki_user_data = iocb->aio_data;
1578
1579 ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
1580 (char __user *)(unsigned long)iocb->aio_buf,
1581 iocb->aio_nbytes,
1582 compat);
1583 if (ret)
1584 goto out_put_req;
1585
1586 return 0;
1587 out_put_req:
1588 put_reqs_available(ctx, 1);
1589 percpu_ref_put(&ctx->reqs);
1590 kiocb_free(req);
1591 return ret;
1592 }
1593
1594 long do_io_submit(aio_context_t ctx_id, long nr,
1595 struct iocb __user *__user *iocbpp, bool compat)
1596 {
1597 struct kioctx *ctx;
1598 long ret = 0;
1599 int i = 0;
1600 struct blk_plug plug;
1601
1602 if (unlikely(nr < 0))
1603 return -EINVAL;
1604
1605 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1606 nr = LONG_MAX/sizeof(*iocbpp);
1607
1608 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1609 return -EFAULT;
1610
1611 ctx = lookup_ioctx(ctx_id);
1612 if (unlikely(!ctx)) {
1613 pr_debug("EINVAL: invalid context id\n");
1614 return -EINVAL;
1615 }
1616
1617 blk_start_plug(&plug);
1618
1619 /*
1620 * AKPM: should this return a partial result if some of the IOs were
1621 * successfully submitted?
1622 */
1623 for (i=0; i<nr; i++) {
1624 struct iocb __user *user_iocb;
1625 struct iocb tmp;
1626
1627 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1628 ret = -EFAULT;
1629 break;
1630 }
1631
1632 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1633 ret = -EFAULT;
1634 break;
1635 }
1636
1637 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1638 if (ret)
1639 break;
1640 }
1641 blk_finish_plug(&plug);
1642
1643 percpu_ref_put(&ctx->users);
1644 return i ? i : ret;
1645 }
1646
1647 /* sys_io_submit:
1648 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1649 * the number of iocbs queued. May return -EINVAL if the aio_context
1650 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1651 * *iocbpp[0] is not properly initialized, if the operation specified
1652 * is invalid for the file descriptor in the iocb. May fail with
1653 * -EFAULT if any of the data structures point to invalid data. May
1654 * fail with -EBADF if the file descriptor specified in the first
1655 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1656 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1657 * fail with -ENOSYS if not implemented.
1658 */
1659 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1660 struct iocb __user * __user *, iocbpp)
1661 {
1662 return do_io_submit(ctx_id, nr, iocbpp, 0);
1663 }
1664
1665 /* lookup_kiocb
1666 * Finds a given iocb for cancellation.
1667 */
1668 static struct aio_kiocb *
1669 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1670 {
1671 struct aio_kiocb *kiocb;
1672
1673 assert_spin_locked(&ctx->ctx_lock);
1674
1675 if (key != KIOCB_KEY)
1676 return NULL;
1677
1678 /* TODO: use a hash or array, this sucks. */
1679 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1680 if (kiocb->ki_user_iocb == iocb)
1681 return kiocb;
1682 }
1683 return NULL;
1684 }
1685
1686 /* sys_io_cancel:
1687 * Attempts to cancel an iocb previously passed to io_submit. If
1688 * the operation is successfully cancelled, the resulting event is
1689 * copied into the memory pointed to by result without being placed
1690 * into the completion queue and 0 is returned. May fail with
1691 * -EFAULT if any of the data structures pointed to are invalid.
1692 * May fail with -EINVAL if aio_context specified by ctx_id is
1693 * invalid. May fail with -EAGAIN if the iocb specified was not
1694 * cancelled. Will fail with -ENOSYS if not implemented.
1695 */
1696 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1697 struct io_event __user *, result)
1698 {
1699 struct kioctx *ctx;
1700 struct aio_kiocb *kiocb;
1701 u32 key;
1702 int ret;
1703
1704 ret = get_user(key, &iocb->aio_key);
1705 if (unlikely(ret))
1706 return -EFAULT;
1707
1708 ctx = lookup_ioctx(ctx_id);
1709 if (unlikely(!ctx))
1710 return -EINVAL;
1711
1712 spin_lock_irq(&ctx->ctx_lock);
1713
1714 kiocb = lookup_kiocb(ctx, iocb, key);
1715 if (kiocb)
1716 ret = kiocb_cancel(kiocb);
1717 else
1718 ret = -EINVAL;
1719
1720 spin_unlock_irq(&ctx->ctx_lock);
1721
1722 if (!ret) {
1723 /*
1724 * The result argument is no longer used - the io_event is
1725 * always delivered via the ring buffer. -EINPROGRESS indicates
1726 * cancellation is progress:
1727 */
1728 ret = -EINPROGRESS;
1729 }
1730
1731 percpu_ref_put(&ctx->users);
1732
1733 return ret;
1734 }
1735
1736 /* io_getevents:
1737 * Attempts to read at least min_nr events and up to nr events from
1738 * the completion queue for the aio_context specified by ctx_id. If
1739 * it succeeds, the number of read events is returned. May fail with
1740 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1741 * out of range, if timeout is out of range. May fail with -EFAULT
1742 * if any of the memory specified is invalid. May return 0 or
1743 * < min_nr if the timeout specified by timeout has elapsed
1744 * before sufficient events are available, where timeout == NULL
1745 * specifies an infinite timeout. Note that the timeout pointed to by
1746 * timeout is relative. Will fail with -ENOSYS if not implemented.
1747 */
1748 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1749 long, min_nr,
1750 long, nr,
1751 struct io_event __user *, events,
1752 struct timespec __user *, timeout)
1753 {
1754 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1755 long ret = -EINVAL;
1756
1757 if (likely(ioctx)) {
1758 if (likely(min_nr <= nr && min_nr >= 0))
1759 ret = read_events(ioctx, min_nr, nr, events, timeout);
1760 percpu_ref_put(&ioctx->users);
1761 }
1762 return ret;
1763 }
This page took 0.101169 seconds and 5 git commands to generate.