aio: remove unnecessary debugging from aio_free_ring()
[deliverable/linux.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/anon_inodes.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46
47 #include "internal.h"
48
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head;
56 unsigned tail;
57
58 unsigned magic;
59 unsigned compat_features;
60 unsigned incompat_features;
61 unsigned header_length; /* size of aio_ring */
62
63
64 struct io_event io_events[0];
65 }; /* 128 bytes + ring size */
66
67 #define AIO_RING_PAGES 8
68
69 struct kioctx_table {
70 struct rcu_head rcu;
71 unsigned nr;
72 struct kioctx *table[];
73 };
74
75 struct kioctx_cpu {
76 unsigned reqs_available;
77 };
78
79 struct kioctx {
80 struct percpu_ref users;
81 atomic_t dead;
82
83 unsigned long user_id;
84
85 struct __percpu kioctx_cpu *cpu;
86
87 /*
88 * For percpu reqs_available, number of slots we move to/from global
89 * counter at a time:
90 */
91 unsigned req_batch;
92 /*
93 * This is what userspace passed to io_setup(), it's not used for
94 * anything but counting against the global max_reqs quota.
95 *
96 * The real limit is nr_events - 1, which will be larger (see
97 * aio_setup_ring())
98 */
99 unsigned max_reqs;
100
101 /* Size of ringbuffer, in units of struct io_event */
102 unsigned nr_events;
103
104 unsigned long mmap_base;
105 unsigned long mmap_size;
106
107 struct page **ring_pages;
108 long nr_pages;
109
110 struct rcu_head rcu_head;
111 struct work_struct free_work;
112
113 struct {
114 /*
115 * This counts the number of available slots in the ringbuffer,
116 * so we avoid overflowing it: it's decremented (if positive)
117 * when allocating a kiocb and incremented when the resulting
118 * io_event is pulled off the ringbuffer.
119 *
120 * We batch accesses to it with a percpu version.
121 */
122 atomic_t reqs_available;
123 } ____cacheline_aligned_in_smp;
124
125 struct {
126 spinlock_t ctx_lock;
127 struct list_head active_reqs; /* used for cancellation */
128 } ____cacheline_aligned_in_smp;
129
130 struct {
131 struct mutex ring_lock;
132 wait_queue_head_t wait;
133 } ____cacheline_aligned_in_smp;
134
135 struct {
136 unsigned tail;
137 spinlock_t completion_lock;
138 } ____cacheline_aligned_in_smp;
139
140 struct page *internal_pages[AIO_RING_PAGES];
141 struct file *aio_ring_file;
142
143 unsigned id;
144 };
145
146 /*------ sysctl variables----*/
147 static DEFINE_SPINLOCK(aio_nr_lock);
148 unsigned long aio_nr; /* current system wide number of aio requests */
149 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
150 /*----end sysctl variables---*/
151
152 static struct kmem_cache *kiocb_cachep;
153 static struct kmem_cache *kioctx_cachep;
154
155 /* aio_setup
156 * Creates the slab caches used by the aio routines, panic on
157 * failure as this is done early during the boot sequence.
158 */
159 static int __init aio_setup(void)
160 {
161 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
162 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
163
164 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
165
166 return 0;
167 }
168 __initcall(aio_setup);
169
170 static void aio_free_ring(struct kioctx *ctx)
171 {
172 int i;
173 struct file *aio_ring_file = ctx->aio_ring_file;
174
175 for (i = 0; i < ctx->nr_pages; i++) {
176 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
177 page_count(ctx->ring_pages[i]));
178 put_page(ctx->ring_pages[i]);
179 }
180
181 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
182 kfree(ctx->ring_pages);
183
184 if (aio_ring_file) {
185 truncate_setsize(aio_ring_file->f_inode, 0);
186 fput(aio_ring_file);
187 ctx->aio_ring_file = NULL;
188 }
189 }
190
191 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
192 {
193 vma->vm_ops = &generic_file_vm_ops;
194 return 0;
195 }
196
197 static const struct file_operations aio_ring_fops = {
198 .mmap = aio_ring_mmap,
199 };
200
201 static int aio_set_page_dirty(struct page *page)
202 {
203 return 0;
204 }
205
206 #if IS_ENABLED(CONFIG_MIGRATION)
207 static int aio_migratepage(struct address_space *mapping, struct page *new,
208 struct page *old, enum migrate_mode mode)
209 {
210 struct kioctx *ctx = mapping->private_data;
211 unsigned long flags;
212 unsigned idx = old->index;
213 int rc;
214
215 /* Writeback must be complete */
216 BUG_ON(PageWriteback(old));
217 put_page(old);
218
219 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
220 if (rc != MIGRATEPAGE_SUCCESS) {
221 get_page(old);
222 return rc;
223 }
224
225 get_page(new);
226
227 spin_lock_irqsave(&ctx->completion_lock, flags);
228 migrate_page_copy(new, old);
229 ctx->ring_pages[idx] = new;
230 spin_unlock_irqrestore(&ctx->completion_lock, flags);
231
232 return rc;
233 }
234 #endif
235
236 static const struct address_space_operations aio_ctx_aops = {
237 .set_page_dirty = aio_set_page_dirty,
238 #if IS_ENABLED(CONFIG_MIGRATION)
239 .migratepage = aio_migratepage,
240 #endif
241 };
242
243 static int aio_setup_ring(struct kioctx *ctx)
244 {
245 struct aio_ring *ring;
246 unsigned nr_events = ctx->max_reqs;
247 struct mm_struct *mm = current->mm;
248 unsigned long size, populate;
249 int nr_pages;
250 int i;
251 struct file *file;
252
253 /* Compensate for the ring buffer's head/tail overlap entry */
254 nr_events += 2; /* 1 is required, 2 for good luck */
255
256 size = sizeof(struct aio_ring);
257 size += sizeof(struct io_event) * nr_events;
258
259 nr_pages = PFN_UP(size);
260 if (nr_pages < 0)
261 return -EINVAL;
262
263 file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR);
264 if (IS_ERR(file)) {
265 ctx->aio_ring_file = NULL;
266 return -EAGAIN;
267 }
268
269 file->f_inode->i_mapping->a_ops = &aio_ctx_aops;
270 file->f_inode->i_mapping->private_data = ctx;
271 file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages;
272
273 for (i = 0; i < nr_pages; i++) {
274 struct page *page;
275 page = find_or_create_page(file->f_inode->i_mapping,
276 i, GFP_HIGHUSER | __GFP_ZERO);
277 if (!page)
278 break;
279 pr_debug("pid(%d) page[%d]->count=%d\n",
280 current->pid, i, page_count(page));
281 SetPageUptodate(page);
282 SetPageDirty(page);
283 unlock_page(page);
284 }
285 ctx->aio_ring_file = file;
286 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
287 / sizeof(struct io_event);
288
289 ctx->ring_pages = ctx->internal_pages;
290 if (nr_pages > AIO_RING_PAGES) {
291 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
292 GFP_KERNEL);
293 if (!ctx->ring_pages)
294 return -ENOMEM;
295 }
296
297 ctx->mmap_size = nr_pages * PAGE_SIZE;
298 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
299
300 down_write(&mm->mmap_sem);
301 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
302 PROT_READ | PROT_WRITE,
303 MAP_SHARED | MAP_POPULATE, 0, &populate);
304 if (IS_ERR((void *)ctx->mmap_base)) {
305 up_write(&mm->mmap_sem);
306 ctx->mmap_size = 0;
307 aio_free_ring(ctx);
308 return -EAGAIN;
309 }
310 up_write(&mm->mmap_sem);
311
312 mm_populate(ctx->mmap_base, populate);
313
314 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
315 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
316 1, 0, ctx->ring_pages, NULL);
317 for (i = 0; i < ctx->nr_pages; i++)
318 put_page(ctx->ring_pages[i]);
319
320 if (unlikely(ctx->nr_pages != nr_pages)) {
321 aio_free_ring(ctx);
322 return -EAGAIN;
323 }
324
325 ctx->user_id = ctx->mmap_base;
326 ctx->nr_events = nr_events; /* trusted copy */
327
328 ring = kmap_atomic(ctx->ring_pages[0]);
329 ring->nr = nr_events; /* user copy */
330 ring->id = ~0U;
331 ring->head = ring->tail = 0;
332 ring->magic = AIO_RING_MAGIC;
333 ring->compat_features = AIO_RING_COMPAT_FEATURES;
334 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
335 ring->header_length = sizeof(struct aio_ring);
336 kunmap_atomic(ring);
337 flush_dcache_page(ctx->ring_pages[0]);
338
339 return 0;
340 }
341
342 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
343 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
344 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
345
346 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
347 {
348 struct kioctx *ctx = req->ki_ctx;
349 unsigned long flags;
350
351 spin_lock_irqsave(&ctx->ctx_lock, flags);
352
353 if (!req->ki_list.next)
354 list_add(&req->ki_list, &ctx->active_reqs);
355
356 req->ki_cancel = cancel;
357
358 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
359 }
360 EXPORT_SYMBOL(kiocb_set_cancel_fn);
361
362 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
363 {
364 kiocb_cancel_fn *old, *cancel;
365
366 /*
367 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
368 * actually has a cancel function, hence the cmpxchg()
369 */
370
371 cancel = ACCESS_ONCE(kiocb->ki_cancel);
372 do {
373 if (!cancel || cancel == KIOCB_CANCELLED)
374 return -EINVAL;
375
376 old = cancel;
377 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
378 } while (cancel != old);
379
380 return cancel(kiocb);
381 }
382
383 static void free_ioctx_rcu(struct rcu_head *head)
384 {
385 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
386
387 free_percpu(ctx->cpu);
388 kmem_cache_free(kioctx_cachep, ctx);
389 }
390
391 /*
392 * When this function runs, the kioctx has been removed from the "hash table"
393 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
394 * now it's safe to cancel any that need to be.
395 */
396 static void free_ioctx(struct work_struct *work)
397 {
398 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
399 struct aio_ring *ring;
400 struct kiocb *req;
401 unsigned cpu, avail;
402 DEFINE_WAIT(wait);
403
404 spin_lock_irq(&ctx->ctx_lock);
405
406 while (!list_empty(&ctx->active_reqs)) {
407 req = list_first_entry(&ctx->active_reqs,
408 struct kiocb, ki_list);
409
410 list_del_init(&req->ki_list);
411 kiocb_cancel(ctx, req);
412 }
413
414 spin_unlock_irq(&ctx->ctx_lock);
415
416 for_each_possible_cpu(cpu) {
417 struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu);
418
419 atomic_add(kcpu->reqs_available, &ctx->reqs_available);
420 kcpu->reqs_available = 0;
421 }
422
423 while (1) {
424 prepare_to_wait(&ctx->wait, &wait, TASK_UNINTERRUPTIBLE);
425
426 ring = kmap_atomic(ctx->ring_pages[0]);
427 avail = (ring->head <= ring->tail)
428 ? ring->tail - ring->head
429 : ctx->nr_events - ring->head + ring->tail;
430
431 atomic_add(avail, &ctx->reqs_available);
432 ring->head = ring->tail;
433 kunmap_atomic(ring);
434
435 if (atomic_read(&ctx->reqs_available) >= ctx->nr_events - 1)
436 break;
437
438 schedule();
439 }
440 finish_wait(&ctx->wait, &wait);
441
442 WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1);
443
444 aio_free_ring(ctx);
445
446 pr_debug("freeing %p\n", ctx);
447
448 /*
449 * Here the call_rcu() is between the wait_event() for reqs_active to
450 * hit 0, and freeing the ioctx.
451 *
452 * aio_complete() decrements reqs_active, but it has to touch the ioctx
453 * after to issue a wakeup so we use rcu.
454 */
455 call_rcu(&ctx->rcu_head, free_ioctx_rcu);
456 }
457
458 static void free_ioctx_ref(struct percpu_ref *ref)
459 {
460 struct kioctx *ctx = container_of(ref, struct kioctx, users);
461
462 INIT_WORK(&ctx->free_work, free_ioctx);
463 schedule_work(&ctx->free_work);
464 }
465
466 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
467 {
468 unsigned i, new_nr;
469 struct kioctx_table *table, *old;
470 struct aio_ring *ring;
471
472 spin_lock(&mm->ioctx_lock);
473 table = mm->ioctx_table;
474
475 while (1) {
476 if (table)
477 for (i = 0; i < table->nr; i++)
478 if (!table->table[i]) {
479 ctx->id = i;
480 table->table[i] = ctx;
481 spin_unlock(&mm->ioctx_lock);
482
483 ring = kmap_atomic(ctx->ring_pages[0]);
484 ring->id = ctx->id;
485 kunmap_atomic(ring);
486 return 0;
487 }
488
489 new_nr = (table ? table->nr : 1) * 4;
490
491 spin_unlock(&mm->ioctx_lock);
492
493 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
494 new_nr, GFP_KERNEL);
495 if (!table)
496 return -ENOMEM;
497
498 table->nr = new_nr;
499
500 spin_lock(&mm->ioctx_lock);
501 old = mm->ioctx_table;
502
503 if (!old) {
504 rcu_assign_pointer(mm->ioctx_table, table);
505 } else if (table->nr > old->nr) {
506 memcpy(table->table, old->table,
507 old->nr * sizeof(struct kioctx *));
508
509 rcu_assign_pointer(mm->ioctx_table, table);
510 kfree_rcu(old, rcu);
511 } else {
512 kfree(table);
513 table = old;
514 }
515 }
516 }
517
518 /* ioctx_alloc
519 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
520 */
521 static struct kioctx *ioctx_alloc(unsigned nr_events)
522 {
523 struct mm_struct *mm = current->mm;
524 struct kioctx *ctx;
525 int err = -ENOMEM;
526
527 /*
528 * We keep track of the number of available ringbuffer slots, to prevent
529 * overflow (reqs_available), and we also use percpu counters for this.
530 *
531 * So since up to half the slots might be on other cpu's percpu counters
532 * and unavailable, double nr_events so userspace sees what they
533 * expected: additionally, we move req_batch slots to/from percpu
534 * counters at a time, so make sure that isn't 0:
535 */
536 nr_events = max(nr_events, num_possible_cpus() * 4);
537 nr_events *= 2;
538
539 /* Prevent overflows */
540 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
541 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
542 pr_debug("ENOMEM: nr_events too high\n");
543 return ERR_PTR(-EINVAL);
544 }
545
546 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
547 return ERR_PTR(-EAGAIN);
548
549 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
550 if (!ctx)
551 return ERR_PTR(-ENOMEM);
552
553 ctx->max_reqs = nr_events;
554
555 if (percpu_ref_init(&ctx->users, free_ioctx_ref))
556 goto out_freectx;
557
558 spin_lock_init(&ctx->ctx_lock);
559 spin_lock_init(&ctx->completion_lock);
560 mutex_init(&ctx->ring_lock);
561 init_waitqueue_head(&ctx->wait);
562
563 INIT_LIST_HEAD(&ctx->active_reqs);
564
565 ctx->cpu = alloc_percpu(struct kioctx_cpu);
566 if (!ctx->cpu)
567 goto out_freeref;
568
569 if (aio_setup_ring(ctx) < 0)
570 goto out_freepcpu;
571
572 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
573 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
574 if (ctx->req_batch < 1)
575 ctx->req_batch = 1;
576
577 /* limit the number of system wide aios */
578 spin_lock(&aio_nr_lock);
579 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
580 aio_nr + nr_events < aio_nr) {
581 spin_unlock(&aio_nr_lock);
582 goto out_cleanup;
583 }
584 aio_nr += ctx->max_reqs;
585 spin_unlock(&aio_nr_lock);
586
587 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
588
589 err = ioctx_add_table(ctx, mm);
590 if (err)
591 goto out_cleanup_put;
592
593 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
594 ctx, ctx->user_id, mm, ctx->nr_events);
595 return ctx;
596
597 out_cleanup_put:
598 percpu_ref_put(&ctx->users);
599 out_cleanup:
600 err = -EAGAIN;
601 aio_free_ring(ctx);
602 out_freepcpu:
603 free_percpu(ctx->cpu);
604 out_freeref:
605 free_percpu(ctx->users.pcpu_count);
606 out_freectx:
607 if (ctx->aio_ring_file)
608 fput(ctx->aio_ring_file);
609 kmem_cache_free(kioctx_cachep, ctx);
610 pr_debug("error allocating ioctx %d\n", err);
611 return ERR_PTR(err);
612 }
613
614 /* kill_ioctx
615 * Cancels all outstanding aio requests on an aio context. Used
616 * when the processes owning a context have all exited to encourage
617 * the rapid destruction of the kioctx.
618 */
619 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
620 {
621 if (!atomic_xchg(&ctx->dead, 1)) {
622 struct kioctx_table *table;
623
624 spin_lock(&mm->ioctx_lock);
625 table = mm->ioctx_table;
626
627 WARN_ON(ctx != table->table[ctx->id]);
628 table->table[ctx->id] = NULL;
629 spin_unlock(&mm->ioctx_lock);
630
631 /* percpu_ref_kill() will do the necessary call_rcu() */
632 wake_up_all(&ctx->wait);
633
634 /*
635 * It'd be more correct to do this in free_ioctx(), after all
636 * the outstanding kiocbs have finished - but by then io_destroy
637 * has already returned, so io_setup() could potentially return
638 * -EAGAIN with no ioctxs actually in use (as far as userspace
639 * could tell).
640 */
641 spin_lock(&aio_nr_lock);
642 BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
643 aio_nr -= ctx->max_reqs;
644 spin_unlock(&aio_nr_lock);
645
646 if (ctx->mmap_size)
647 vm_munmap(ctx->mmap_base, ctx->mmap_size);
648
649 percpu_ref_kill(&ctx->users);
650 }
651 }
652
653 /* wait_on_sync_kiocb:
654 * Waits on the given sync kiocb to complete.
655 */
656 ssize_t wait_on_sync_kiocb(struct kiocb *req)
657 {
658 while (!req->ki_ctx) {
659 set_current_state(TASK_UNINTERRUPTIBLE);
660 if (req->ki_ctx)
661 break;
662 io_schedule();
663 }
664 __set_current_state(TASK_RUNNING);
665 return req->ki_user_data;
666 }
667 EXPORT_SYMBOL(wait_on_sync_kiocb);
668
669 /*
670 * exit_aio: called when the last user of mm goes away. At this point, there is
671 * no way for any new requests to be submited or any of the io_* syscalls to be
672 * called on the context.
673 *
674 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
675 * them.
676 */
677 void exit_aio(struct mm_struct *mm)
678 {
679 struct kioctx_table *table;
680 struct kioctx *ctx;
681 unsigned i = 0;
682
683 while (1) {
684 rcu_read_lock();
685 table = rcu_dereference(mm->ioctx_table);
686
687 do {
688 if (!table || i >= table->nr) {
689 rcu_read_unlock();
690 rcu_assign_pointer(mm->ioctx_table, NULL);
691 if (table)
692 kfree(table);
693 return;
694 }
695
696 ctx = table->table[i++];
697 } while (!ctx);
698
699 rcu_read_unlock();
700
701 /*
702 * We don't need to bother with munmap() here -
703 * exit_mmap(mm) is coming and it'll unmap everything.
704 * Since aio_free_ring() uses non-zero ->mmap_size
705 * as indicator that it needs to unmap the area,
706 * just set it to 0; aio_free_ring() is the only
707 * place that uses ->mmap_size, so it's safe.
708 */
709 ctx->mmap_size = 0;
710
711 kill_ioctx(mm, ctx);
712 }
713 }
714
715 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
716 {
717 struct kioctx_cpu *kcpu;
718
719 preempt_disable();
720 kcpu = this_cpu_ptr(ctx->cpu);
721
722 kcpu->reqs_available += nr;
723 while (kcpu->reqs_available >= ctx->req_batch * 2) {
724 kcpu->reqs_available -= ctx->req_batch;
725 atomic_add(ctx->req_batch, &ctx->reqs_available);
726 }
727
728 preempt_enable();
729 }
730
731 static bool get_reqs_available(struct kioctx *ctx)
732 {
733 struct kioctx_cpu *kcpu;
734 bool ret = false;
735
736 preempt_disable();
737 kcpu = this_cpu_ptr(ctx->cpu);
738
739 if (!kcpu->reqs_available) {
740 int old, avail = atomic_read(&ctx->reqs_available);
741
742 do {
743 if (avail < ctx->req_batch)
744 goto out;
745
746 old = avail;
747 avail = atomic_cmpxchg(&ctx->reqs_available,
748 avail, avail - ctx->req_batch);
749 } while (avail != old);
750
751 kcpu->reqs_available += ctx->req_batch;
752 }
753
754 ret = true;
755 kcpu->reqs_available--;
756 out:
757 preempt_enable();
758 return ret;
759 }
760
761 /* aio_get_req
762 * Allocate a slot for an aio request.
763 * Returns NULL if no requests are free.
764 */
765 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
766 {
767 struct kiocb *req;
768
769 if (!get_reqs_available(ctx))
770 return NULL;
771
772 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
773 if (unlikely(!req))
774 goto out_put;
775
776 req->ki_ctx = ctx;
777 return req;
778 out_put:
779 put_reqs_available(ctx, 1);
780 return NULL;
781 }
782
783 static void kiocb_free(struct kiocb *req)
784 {
785 if (req->ki_filp)
786 fput(req->ki_filp);
787 if (req->ki_eventfd != NULL)
788 eventfd_ctx_put(req->ki_eventfd);
789 kmem_cache_free(kiocb_cachep, req);
790 }
791
792 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
793 {
794 struct aio_ring __user *ring = (void __user *)ctx_id;
795 struct mm_struct *mm = current->mm;
796 struct kioctx *ctx, *ret = NULL;
797 struct kioctx_table *table;
798 unsigned id;
799
800 if (get_user(id, &ring->id))
801 return NULL;
802
803 rcu_read_lock();
804 table = rcu_dereference(mm->ioctx_table);
805
806 if (!table || id >= table->nr)
807 goto out;
808
809 ctx = table->table[id];
810 if (ctx && ctx->user_id == ctx_id) {
811 percpu_ref_get(&ctx->users);
812 ret = ctx;
813 }
814 out:
815 rcu_read_unlock();
816 return ret;
817 }
818
819 /* aio_complete
820 * Called when the io request on the given iocb is complete.
821 */
822 void aio_complete(struct kiocb *iocb, long res, long res2)
823 {
824 struct kioctx *ctx = iocb->ki_ctx;
825 struct aio_ring *ring;
826 struct io_event *ev_page, *event;
827 unsigned long flags;
828 unsigned tail, pos;
829
830 /*
831 * Special case handling for sync iocbs:
832 * - events go directly into the iocb for fast handling
833 * - the sync task with the iocb in its stack holds the single iocb
834 * ref, no other paths have a way to get another ref
835 * - the sync task helpfully left a reference to itself in the iocb
836 */
837 if (is_sync_kiocb(iocb)) {
838 iocb->ki_user_data = res;
839 smp_wmb();
840 iocb->ki_ctx = ERR_PTR(-EXDEV);
841 wake_up_process(iocb->ki_obj.tsk);
842 return;
843 }
844
845 /*
846 * Take rcu_read_lock() in case the kioctx is being destroyed, as we
847 * need to issue a wakeup after incrementing reqs_available.
848 */
849 rcu_read_lock();
850
851 if (iocb->ki_list.next) {
852 unsigned long flags;
853
854 spin_lock_irqsave(&ctx->ctx_lock, flags);
855 list_del(&iocb->ki_list);
856 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
857 }
858
859 /*
860 * Add a completion event to the ring buffer. Must be done holding
861 * ctx->completion_lock to prevent other code from messing with the tail
862 * pointer since we might be called from irq context.
863 */
864 spin_lock_irqsave(&ctx->completion_lock, flags);
865
866 tail = ctx->tail;
867 pos = tail + AIO_EVENTS_OFFSET;
868
869 if (++tail >= ctx->nr_events)
870 tail = 0;
871
872 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
873 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
874
875 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
876 event->data = iocb->ki_user_data;
877 event->res = res;
878 event->res2 = res2;
879
880 kunmap_atomic(ev_page);
881 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
882
883 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
884 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
885 res, res2);
886
887 /* after flagging the request as done, we
888 * must never even look at it again
889 */
890 smp_wmb(); /* make event visible before updating tail */
891
892 ctx->tail = tail;
893
894 ring = kmap_atomic(ctx->ring_pages[0]);
895 ring->tail = tail;
896 kunmap_atomic(ring);
897 flush_dcache_page(ctx->ring_pages[0]);
898
899 spin_unlock_irqrestore(&ctx->completion_lock, flags);
900
901 pr_debug("added to ring %p at [%u]\n", iocb, tail);
902
903 /*
904 * Check if the user asked us to deliver the result through an
905 * eventfd. The eventfd_signal() function is safe to be called
906 * from IRQ context.
907 */
908 if (iocb->ki_eventfd != NULL)
909 eventfd_signal(iocb->ki_eventfd, 1);
910
911 /* everything turned out well, dispose of the aiocb. */
912 kiocb_free(iocb);
913
914 /*
915 * We have to order our ring_info tail store above and test
916 * of the wait list below outside the wait lock. This is
917 * like in wake_up_bit() where clearing a bit has to be
918 * ordered with the unlocked test.
919 */
920 smp_mb();
921
922 if (waitqueue_active(&ctx->wait))
923 wake_up(&ctx->wait);
924
925 rcu_read_unlock();
926 }
927 EXPORT_SYMBOL(aio_complete);
928
929 /* aio_read_events
930 * Pull an event off of the ioctx's event ring. Returns the number of
931 * events fetched
932 */
933 static long aio_read_events_ring(struct kioctx *ctx,
934 struct io_event __user *event, long nr)
935 {
936 struct aio_ring *ring;
937 unsigned head, tail, pos;
938 long ret = 0;
939 int copy_ret;
940
941 mutex_lock(&ctx->ring_lock);
942
943 ring = kmap_atomic(ctx->ring_pages[0]);
944 head = ring->head;
945 tail = ring->tail;
946 kunmap_atomic(ring);
947
948 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
949
950 if (head == tail)
951 goto out;
952
953 while (ret < nr) {
954 long avail;
955 struct io_event *ev;
956 struct page *page;
957
958 avail = (head <= tail ? tail : ctx->nr_events) - head;
959 if (head == tail)
960 break;
961
962 avail = min(avail, nr - ret);
963 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
964 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
965
966 pos = head + AIO_EVENTS_OFFSET;
967 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
968 pos %= AIO_EVENTS_PER_PAGE;
969
970 ev = kmap(page);
971 copy_ret = copy_to_user(event + ret, ev + pos,
972 sizeof(*ev) * avail);
973 kunmap(page);
974
975 if (unlikely(copy_ret)) {
976 ret = -EFAULT;
977 goto out;
978 }
979
980 ret += avail;
981 head += avail;
982 head %= ctx->nr_events;
983 }
984
985 ring = kmap_atomic(ctx->ring_pages[0]);
986 ring->head = head;
987 kunmap_atomic(ring);
988 flush_dcache_page(ctx->ring_pages[0]);
989
990 pr_debug("%li h%u t%u\n", ret, head, tail);
991
992 put_reqs_available(ctx, ret);
993 out:
994 mutex_unlock(&ctx->ring_lock);
995
996 return ret;
997 }
998
999 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1000 struct io_event __user *event, long *i)
1001 {
1002 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1003
1004 if (ret > 0)
1005 *i += ret;
1006
1007 if (unlikely(atomic_read(&ctx->dead)))
1008 ret = -EINVAL;
1009
1010 if (!*i)
1011 *i = ret;
1012
1013 return ret < 0 || *i >= min_nr;
1014 }
1015
1016 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1017 struct io_event __user *event,
1018 struct timespec __user *timeout)
1019 {
1020 ktime_t until = { .tv64 = KTIME_MAX };
1021 long ret = 0;
1022
1023 if (timeout) {
1024 struct timespec ts;
1025
1026 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1027 return -EFAULT;
1028
1029 until = timespec_to_ktime(ts);
1030 }
1031
1032 /*
1033 * Note that aio_read_events() is being called as the conditional - i.e.
1034 * we're calling it after prepare_to_wait() has set task state to
1035 * TASK_INTERRUPTIBLE.
1036 *
1037 * But aio_read_events() can block, and if it blocks it's going to flip
1038 * the task state back to TASK_RUNNING.
1039 *
1040 * This should be ok, provided it doesn't flip the state back to
1041 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1042 * will only happen if the mutex_lock() call blocks, and we then find
1043 * the ringbuffer empty. So in practice we should be ok, but it's
1044 * something to be aware of when touching this code.
1045 */
1046 wait_event_interruptible_hrtimeout(ctx->wait,
1047 aio_read_events(ctx, min_nr, nr, event, &ret), until);
1048
1049 if (!ret && signal_pending(current))
1050 ret = -EINTR;
1051
1052 return ret;
1053 }
1054
1055 /* sys_io_setup:
1056 * Create an aio_context capable of receiving at least nr_events.
1057 * ctxp must not point to an aio_context that already exists, and
1058 * must be initialized to 0 prior to the call. On successful
1059 * creation of the aio_context, *ctxp is filled in with the resulting
1060 * handle. May fail with -EINVAL if *ctxp is not initialized,
1061 * if the specified nr_events exceeds internal limits. May fail
1062 * with -EAGAIN if the specified nr_events exceeds the user's limit
1063 * of available events. May fail with -ENOMEM if insufficient kernel
1064 * resources are available. May fail with -EFAULT if an invalid
1065 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1066 * implemented.
1067 */
1068 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1069 {
1070 struct kioctx *ioctx = NULL;
1071 unsigned long ctx;
1072 long ret;
1073
1074 ret = get_user(ctx, ctxp);
1075 if (unlikely(ret))
1076 goto out;
1077
1078 ret = -EINVAL;
1079 if (unlikely(ctx || nr_events == 0)) {
1080 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1081 ctx, nr_events);
1082 goto out;
1083 }
1084
1085 ioctx = ioctx_alloc(nr_events);
1086 ret = PTR_ERR(ioctx);
1087 if (!IS_ERR(ioctx)) {
1088 ret = put_user(ioctx->user_id, ctxp);
1089 if (ret)
1090 kill_ioctx(current->mm, ioctx);
1091 percpu_ref_put(&ioctx->users);
1092 }
1093
1094 out:
1095 return ret;
1096 }
1097
1098 /* sys_io_destroy:
1099 * Destroy the aio_context specified. May cancel any outstanding
1100 * AIOs and block on completion. Will fail with -ENOSYS if not
1101 * implemented. May fail with -EINVAL if the context pointed to
1102 * is invalid.
1103 */
1104 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1105 {
1106 struct kioctx *ioctx = lookup_ioctx(ctx);
1107 if (likely(NULL != ioctx)) {
1108 kill_ioctx(current->mm, ioctx);
1109 percpu_ref_put(&ioctx->users);
1110 return 0;
1111 }
1112 pr_debug("EINVAL: io_destroy: invalid context id\n");
1113 return -EINVAL;
1114 }
1115
1116 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1117 unsigned long, loff_t);
1118
1119 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1120 int rw, char __user *buf,
1121 unsigned long *nr_segs,
1122 struct iovec **iovec,
1123 bool compat)
1124 {
1125 ssize_t ret;
1126
1127 *nr_segs = kiocb->ki_nbytes;
1128
1129 #ifdef CONFIG_COMPAT
1130 if (compat)
1131 ret = compat_rw_copy_check_uvector(rw,
1132 (struct compat_iovec __user *)buf,
1133 *nr_segs, 1, *iovec, iovec);
1134 else
1135 #endif
1136 ret = rw_copy_check_uvector(rw,
1137 (struct iovec __user *)buf,
1138 *nr_segs, 1, *iovec, iovec);
1139 if (ret < 0)
1140 return ret;
1141
1142 /* ki_nbytes now reflect bytes instead of segs */
1143 kiocb->ki_nbytes = ret;
1144 return 0;
1145 }
1146
1147 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1148 int rw, char __user *buf,
1149 unsigned long *nr_segs,
1150 struct iovec *iovec)
1151 {
1152 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1153 return -EFAULT;
1154
1155 iovec->iov_base = buf;
1156 iovec->iov_len = kiocb->ki_nbytes;
1157 *nr_segs = 1;
1158 return 0;
1159 }
1160
1161 /*
1162 * aio_setup_iocb:
1163 * Performs the initial checks and aio retry method
1164 * setup for the kiocb at the time of io submission.
1165 */
1166 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1167 char __user *buf, bool compat)
1168 {
1169 struct file *file = req->ki_filp;
1170 ssize_t ret;
1171 unsigned long nr_segs;
1172 int rw;
1173 fmode_t mode;
1174 aio_rw_op *rw_op;
1175 struct iovec inline_vec, *iovec = &inline_vec;
1176
1177 switch (opcode) {
1178 case IOCB_CMD_PREAD:
1179 case IOCB_CMD_PREADV:
1180 mode = FMODE_READ;
1181 rw = READ;
1182 rw_op = file->f_op->aio_read;
1183 goto rw_common;
1184
1185 case IOCB_CMD_PWRITE:
1186 case IOCB_CMD_PWRITEV:
1187 mode = FMODE_WRITE;
1188 rw = WRITE;
1189 rw_op = file->f_op->aio_write;
1190 goto rw_common;
1191 rw_common:
1192 if (unlikely(!(file->f_mode & mode)))
1193 return -EBADF;
1194
1195 if (!rw_op)
1196 return -EINVAL;
1197
1198 ret = (opcode == IOCB_CMD_PREADV ||
1199 opcode == IOCB_CMD_PWRITEV)
1200 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1201 &iovec, compat)
1202 : aio_setup_single_vector(req, rw, buf, &nr_segs,
1203 iovec);
1204 if (ret)
1205 return ret;
1206
1207 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1208 if (ret < 0) {
1209 if (iovec != &inline_vec)
1210 kfree(iovec);
1211 return ret;
1212 }
1213
1214 req->ki_nbytes = ret;
1215
1216 /* XXX: move/kill - rw_verify_area()? */
1217 /* This matches the pread()/pwrite() logic */
1218 if (req->ki_pos < 0) {
1219 ret = -EINVAL;
1220 break;
1221 }
1222
1223 if (rw == WRITE)
1224 file_start_write(file);
1225
1226 ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1227
1228 if (rw == WRITE)
1229 file_end_write(file);
1230 break;
1231
1232 case IOCB_CMD_FDSYNC:
1233 if (!file->f_op->aio_fsync)
1234 return -EINVAL;
1235
1236 ret = file->f_op->aio_fsync(req, 1);
1237 break;
1238
1239 case IOCB_CMD_FSYNC:
1240 if (!file->f_op->aio_fsync)
1241 return -EINVAL;
1242
1243 ret = file->f_op->aio_fsync(req, 0);
1244 break;
1245
1246 default:
1247 pr_debug("EINVAL: no operation provided\n");
1248 return -EINVAL;
1249 }
1250
1251 if (iovec != &inline_vec)
1252 kfree(iovec);
1253
1254 if (ret != -EIOCBQUEUED) {
1255 /*
1256 * There's no easy way to restart the syscall since other AIO's
1257 * may be already running. Just fail this IO with EINTR.
1258 */
1259 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1260 ret == -ERESTARTNOHAND ||
1261 ret == -ERESTART_RESTARTBLOCK))
1262 ret = -EINTR;
1263 aio_complete(req, ret, 0);
1264 }
1265
1266 return 0;
1267 }
1268
1269 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1270 struct iocb *iocb, bool compat)
1271 {
1272 struct kiocb *req;
1273 ssize_t ret;
1274
1275 /* enforce forwards compatibility on users */
1276 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1277 pr_debug("EINVAL: reserve field set\n");
1278 return -EINVAL;
1279 }
1280
1281 /* prevent overflows */
1282 if (unlikely(
1283 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1284 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1285 ((ssize_t)iocb->aio_nbytes < 0)
1286 )) {
1287 pr_debug("EINVAL: io_submit: overflow check\n");
1288 return -EINVAL;
1289 }
1290
1291 req = aio_get_req(ctx);
1292 if (unlikely(!req))
1293 return -EAGAIN;
1294
1295 req->ki_filp = fget(iocb->aio_fildes);
1296 if (unlikely(!req->ki_filp)) {
1297 ret = -EBADF;
1298 goto out_put_req;
1299 }
1300
1301 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1302 /*
1303 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1304 * instance of the file* now. The file descriptor must be
1305 * an eventfd() fd, and will be signaled for each completed
1306 * event using the eventfd_signal() function.
1307 */
1308 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1309 if (IS_ERR(req->ki_eventfd)) {
1310 ret = PTR_ERR(req->ki_eventfd);
1311 req->ki_eventfd = NULL;
1312 goto out_put_req;
1313 }
1314 }
1315
1316 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1317 if (unlikely(ret)) {
1318 pr_debug("EFAULT: aio_key\n");
1319 goto out_put_req;
1320 }
1321
1322 req->ki_obj.user = user_iocb;
1323 req->ki_user_data = iocb->aio_data;
1324 req->ki_pos = iocb->aio_offset;
1325 req->ki_nbytes = iocb->aio_nbytes;
1326
1327 ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1328 (char __user *)(unsigned long)iocb->aio_buf,
1329 compat);
1330 if (ret)
1331 goto out_put_req;
1332
1333 return 0;
1334 out_put_req:
1335 put_reqs_available(ctx, 1);
1336 kiocb_free(req);
1337 return ret;
1338 }
1339
1340 long do_io_submit(aio_context_t ctx_id, long nr,
1341 struct iocb __user *__user *iocbpp, bool compat)
1342 {
1343 struct kioctx *ctx;
1344 long ret = 0;
1345 int i = 0;
1346 struct blk_plug plug;
1347
1348 if (unlikely(nr < 0))
1349 return -EINVAL;
1350
1351 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1352 nr = LONG_MAX/sizeof(*iocbpp);
1353
1354 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1355 return -EFAULT;
1356
1357 ctx = lookup_ioctx(ctx_id);
1358 if (unlikely(!ctx)) {
1359 pr_debug("EINVAL: invalid context id\n");
1360 return -EINVAL;
1361 }
1362
1363 blk_start_plug(&plug);
1364
1365 /*
1366 * AKPM: should this return a partial result if some of the IOs were
1367 * successfully submitted?
1368 */
1369 for (i=0; i<nr; i++) {
1370 struct iocb __user *user_iocb;
1371 struct iocb tmp;
1372
1373 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1374 ret = -EFAULT;
1375 break;
1376 }
1377
1378 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1379 ret = -EFAULT;
1380 break;
1381 }
1382
1383 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1384 if (ret)
1385 break;
1386 }
1387 blk_finish_plug(&plug);
1388
1389 percpu_ref_put(&ctx->users);
1390 return i ? i : ret;
1391 }
1392
1393 /* sys_io_submit:
1394 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1395 * the number of iocbs queued. May return -EINVAL if the aio_context
1396 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1397 * *iocbpp[0] is not properly initialized, if the operation specified
1398 * is invalid for the file descriptor in the iocb. May fail with
1399 * -EFAULT if any of the data structures point to invalid data. May
1400 * fail with -EBADF if the file descriptor specified in the first
1401 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1402 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1403 * fail with -ENOSYS if not implemented.
1404 */
1405 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1406 struct iocb __user * __user *, iocbpp)
1407 {
1408 return do_io_submit(ctx_id, nr, iocbpp, 0);
1409 }
1410
1411 /* lookup_kiocb
1412 * Finds a given iocb for cancellation.
1413 */
1414 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1415 u32 key)
1416 {
1417 struct list_head *pos;
1418
1419 assert_spin_locked(&ctx->ctx_lock);
1420
1421 if (key != KIOCB_KEY)
1422 return NULL;
1423
1424 /* TODO: use a hash or array, this sucks. */
1425 list_for_each(pos, &ctx->active_reqs) {
1426 struct kiocb *kiocb = list_kiocb(pos);
1427 if (kiocb->ki_obj.user == iocb)
1428 return kiocb;
1429 }
1430 return NULL;
1431 }
1432
1433 /* sys_io_cancel:
1434 * Attempts to cancel an iocb previously passed to io_submit. If
1435 * the operation is successfully cancelled, the resulting event is
1436 * copied into the memory pointed to by result without being placed
1437 * into the completion queue and 0 is returned. May fail with
1438 * -EFAULT if any of the data structures pointed to are invalid.
1439 * May fail with -EINVAL if aio_context specified by ctx_id is
1440 * invalid. May fail with -EAGAIN if the iocb specified was not
1441 * cancelled. Will fail with -ENOSYS if not implemented.
1442 */
1443 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1444 struct io_event __user *, result)
1445 {
1446 struct kioctx *ctx;
1447 struct kiocb *kiocb;
1448 u32 key;
1449 int ret;
1450
1451 ret = get_user(key, &iocb->aio_key);
1452 if (unlikely(ret))
1453 return -EFAULT;
1454
1455 ctx = lookup_ioctx(ctx_id);
1456 if (unlikely(!ctx))
1457 return -EINVAL;
1458
1459 spin_lock_irq(&ctx->ctx_lock);
1460
1461 kiocb = lookup_kiocb(ctx, iocb, key);
1462 if (kiocb)
1463 ret = kiocb_cancel(ctx, kiocb);
1464 else
1465 ret = -EINVAL;
1466
1467 spin_unlock_irq(&ctx->ctx_lock);
1468
1469 if (!ret) {
1470 /*
1471 * The result argument is no longer used - the io_event is
1472 * always delivered via the ring buffer. -EINPROGRESS indicates
1473 * cancellation is progress:
1474 */
1475 ret = -EINPROGRESS;
1476 }
1477
1478 percpu_ref_put(&ctx->users);
1479
1480 return ret;
1481 }
1482
1483 /* io_getevents:
1484 * Attempts to read at least min_nr events and up to nr events from
1485 * the completion queue for the aio_context specified by ctx_id. If
1486 * it succeeds, the number of read events is returned. May fail with
1487 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1488 * out of range, if timeout is out of range. May fail with -EFAULT
1489 * if any of the memory specified is invalid. May return 0 or
1490 * < min_nr if the timeout specified by timeout has elapsed
1491 * before sufficient events are available, where timeout == NULL
1492 * specifies an infinite timeout. Note that the timeout pointed to by
1493 * timeout is relative. Will fail with -ENOSYS if not implemented.
1494 */
1495 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1496 long, min_nr,
1497 long, nr,
1498 struct io_event __user *, events,
1499 struct timespec __user *, timeout)
1500 {
1501 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1502 long ret = -EINVAL;
1503
1504 if (likely(ioctx)) {
1505 if (likely(min_nr <= nr && min_nr >= 0))
1506 ret = read_events(ioctx, min_nr, nr, events, timeout);
1507 percpu_ref_put(&ioctx->users);
1508 }
1509 return ret;
1510 }
This page took 0.060474 seconds and 6 git commands to generate.