Merge branch 'fixes' into for-next
[deliverable/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <asm/uaccess.h>
34 #include "internal.h"
35
36 struct bdev_inode {
37 struct block_device bdev;
38 struct inode vfs_inode;
39 };
40
41 static const struct address_space_operations def_blk_aops;
42
43 static inline struct bdev_inode *BDEV_I(struct inode *inode)
44 {
45 return container_of(inode, struct bdev_inode, vfs_inode);
46 }
47
48 struct block_device *I_BDEV(struct inode *inode)
49 {
50 return &BDEV_I(inode)->bdev;
51 }
52 EXPORT_SYMBOL(I_BDEV);
53
54 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
55 {
56 struct va_format vaf;
57 va_list args;
58
59 va_start(args, fmt);
60 vaf.fmt = fmt;
61 vaf.va = &args;
62 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
63 va_end(args);
64 }
65
66 static void bdev_write_inode(struct block_device *bdev)
67 {
68 struct inode *inode = bdev->bd_inode;
69 int ret;
70
71 spin_lock(&inode->i_lock);
72 while (inode->i_state & I_DIRTY) {
73 spin_unlock(&inode->i_lock);
74 ret = write_inode_now(inode, true);
75 if (ret) {
76 char name[BDEVNAME_SIZE];
77 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
78 "for block device %s (err=%d).\n",
79 bdevname(bdev, name), ret);
80 }
81 spin_lock(&inode->i_lock);
82 }
83 spin_unlock(&inode->i_lock);
84 }
85
86 /* Kill _all_ buffers and pagecache , dirty or not.. */
87 void kill_bdev(struct block_device *bdev)
88 {
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
92 return;
93
94 invalidate_bh_lrus();
95 truncate_inode_pages(mapping, 0);
96 }
97 EXPORT_SYMBOL(kill_bdev);
98
99 /* Invalidate clean unused buffers and pagecache. */
100 void invalidate_bdev(struct block_device *bdev)
101 {
102 struct address_space *mapping = bdev->bd_inode->i_mapping;
103
104 if (mapping->nrpages == 0)
105 return;
106
107 invalidate_bh_lrus();
108 lru_add_drain_all(); /* make sure all lru add caches are flushed */
109 invalidate_mapping_pages(mapping, 0, -1);
110 /* 99% of the time, we don't need to flush the cleancache on the bdev.
111 * But, for the strange corners, lets be cautious
112 */
113 cleancache_invalidate_inode(mapping);
114 }
115 EXPORT_SYMBOL(invalidate_bdev);
116
117 int set_blocksize(struct block_device *bdev, int size)
118 {
119 /* Size must be a power of two, and between 512 and PAGE_SIZE */
120 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
121 return -EINVAL;
122
123 /* Size cannot be smaller than the size supported by the device */
124 if (size < bdev_logical_block_size(bdev))
125 return -EINVAL;
126
127 /* Don't change the size if it is same as current */
128 if (bdev->bd_block_size != size) {
129 sync_blockdev(bdev);
130 bdev->bd_block_size = size;
131 bdev->bd_inode->i_blkbits = blksize_bits(size);
132 kill_bdev(bdev);
133 }
134 return 0;
135 }
136
137 EXPORT_SYMBOL(set_blocksize);
138
139 int sb_set_blocksize(struct super_block *sb, int size)
140 {
141 if (set_blocksize(sb->s_bdev, size))
142 return 0;
143 /* If we get here, we know size is power of two
144 * and it's value is between 512 and PAGE_SIZE */
145 sb->s_blocksize = size;
146 sb->s_blocksize_bits = blksize_bits(size);
147 return sb->s_blocksize;
148 }
149
150 EXPORT_SYMBOL(sb_set_blocksize);
151
152 int sb_min_blocksize(struct super_block *sb, int size)
153 {
154 int minsize = bdev_logical_block_size(sb->s_bdev);
155 if (size < minsize)
156 size = minsize;
157 return sb_set_blocksize(sb, size);
158 }
159
160 EXPORT_SYMBOL(sb_min_blocksize);
161
162 static int
163 blkdev_get_block(struct inode *inode, sector_t iblock,
164 struct buffer_head *bh, int create)
165 {
166 bh->b_bdev = I_BDEV(inode);
167 bh->b_blocknr = iblock;
168 set_buffer_mapped(bh);
169 return 0;
170 }
171
172 static struct inode *bdev_file_inode(struct file *file)
173 {
174 return file->f_mapping->host;
175 }
176
177 static ssize_t
178 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
179 {
180 struct file *file = iocb->ki_filp;
181 struct inode *inode = bdev_file_inode(file);
182
183 if (IS_DAX(inode))
184 return dax_do_io(iocb, inode, iter, blkdev_get_block,
185 NULL, DIO_SKIP_DIO_COUNT);
186 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter,
187 blkdev_get_block, NULL, NULL,
188 DIO_SKIP_DIO_COUNT);
189 }
190
191 int __sync_blockdev(struct block_device *bdev, int wait)
192 {
193 if (!bdev)
194 return 0;
195 if (!wait)
196 return filemap_flush(bdev->bd_inode->i_mapping);
197 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
198 }
199
200 /*
201 * Write out and wait upon all the dirty data associated with a block
202 * device via its mapping. Does not take the superblock lock.
203 */
204 int sync_blockdev(struct block_device *bdev)
205 {
206 return __sync_blockdev(bdev, 1);
207 }
208 EXPORT_SYMBOL(sync_blockdev);
209
210 /*
211 * Write out and wait upon all dirty data associated with this
212 * device. Filesystem data as well as the underlying block
213 * device. Takes the superblock lock.
214 */
215 int fsync_bdev(struct block_device *bdev)
216 {
217 struct super_block *sb = get_super(bdev);
218 if (sb) {
219 int res = sync_filesystem(sb);
220 drop_super(sb);
221 return res;
222 }
223 return sync_blockdev(bdev);
224 }
225 EXPORT_SYMBOL(fsync_bdev);
226
227 /**
228 * freeze_bdev -- lock a filesystem and force it into a consistent state
229 * @bdev: blockdevice to lock
230 *
231 * If a superblock is found on this device, we take the s_umount semaphore
232 * on it to make sure nobody unmounts until the snapshot creation is done.
233 * The reference counter (bd_fsfreeze_count) guarantees that only the last
234 * unfreeze process can unfreeze the frozen filesystem actually when multiple
235 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
236 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
237 * actually.
238 */
239 struct super_block *freeze_bdev(struct block_device *bdev)
240 {
241 struct super_block *sb;
242 int error = 0;
243
244 mutex_lock(&bdev->bd_fsfreeze_mutex);
245 if (++bdev->bd_fsfreeze_count > 1) {
246 /*
247 * We don't even need to grab a reference - the first call
248 * to freeze_bdev grab an active reference and only the last
249 * thaw_bdev drops it.
250 */
251 sb = get_super(bdev);
252 if (sb)
253 drop_super(sb);
254 mutex_unlock(&bdev->bd_fsfreeze_mutex);
255 return sb;
256 }
257
258 sb = get_active_super(bdev);
259 if (!sb)
260 goto out;
261 if (sb->s_op->freeze_super)
262 error = sb->s_op->freeze_super(sb);
263 else
264 error = freeze_super(sb);
265 if (error) {
266 deactivate_super(sb);
267 bdev->bd_fsfreeze_count--;
268 mutex_unlock(&bdev->bd_fsfreeze_mutex);
269 return ERR_PTR(error);
270 }
271 deactivate_super(sb);
272 out:
273 sync_blockdev(bdev);
274 mutex_unlock(&bdev->bd_fsfreeze_mutex);
275 return sb; /* thaw_bdev releases s->s_umount */
276 }
277 EXPORT_SYMBOL(freeze_bdev);
278
279 /**
280 * thaw_bdev -- unlock filesystem
281 * @bdev: blockdevice to unlock
282 * @sb: associated superblock
283 *
284 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
285 */
286 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
287 {
288 int error = -EINVAL;
289
290 mutex_lock(&bdev->bd_fsfreeze_mutex);
291 if (!bdev->bd_fsfreeze_count)
292 goto out;
293
294 error = 0;
295 if (--bdev->bd_fsfreeze_count > 0)
296 goto out;
297
298 if (!sb)
299 goto out;
300
301 if (sb->s_op->thaw_super)
302 error = sb->s_op->thaw_super(sb);
303 else
304 error = thaw_super(sb);
305 if (error) {
306 bdev->bd_fsfreeze_count++;
307 mutex_unlock(&bdev->bd_fsfreeze_mutex);
308 return error;
309 }
310 out:
311 mutex_unlock(&bdev->bd_fsfreeze_mutex);
312 return 0;
313 }
314 EXPORT_SYMBOL(thaw_bdev);
315
316 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
317 {
318 return block_write_full_page(page, blkdev_get_block, wbc);
319 }
320
321 static int blkdev_readpage(struct file * file, struct page * page)
322 {
323 return block_read_full_page(page, blkdev_get_block);
324 }
325
326 static int blkdev_readpages(struct file *file, struct address_space *mapping,
327 struct list_head *pages, unsigned nr_pages)
328 {
329 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
330 }
331
332 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
333 loff_t pos, unsigned len, unsigned flags,
334 struct page **pagep, void **fsdata)
335 {
336 return block_write_begin(mapping, pos, len, flags, pagep,
337 blkdev_get_block);
338 }
339
340 static int blkdev_write_end(struct file *file, struct address_space *mapping,
341 loff_t pos, unsigned len, unsigned copied,
342 struct page *page, void *fsdata)
343 {
344 int ret;
345 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
346
347 unlock_page(page);
348 put_page(page);
349
350 return ret;
351 }
352
353 /*
354 * private llseek:
355 * for a block special file file_inode(file)->i_size is zero
356 * so we compute the size by hand (just as in block_read/write above)
357 */
358 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
359 {
360 struct inode *bd_inode = bdev_file_inode(file);
361 loff_t retval;
362
363 inode_lock(bd_inode);
364 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
365 inode_unlock(bd_inode);
366 return retval;
367 }
368
369 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
370 {
371 struct inode *bd_inode = bdev_file_inode(filp);
372 struct block_device *bdev = I_BDEV(bd_inode);
373 int error;
374
375 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
376 if (error)
377 return error;
378
379 /*
380 * There is no need to serialise calls to blkdev_issue_flush with
381 * i_mutex and doing so causes performance issues with concurrent
382 * O_SYNC writers to a block device.
383 */
384 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
385 if (error == -EOPNOTSUPP)
386 error = 0;
387
388 return error;
389 }
390 EXPORT_SYMBOL(blkdev_fsync);
391
392 /**
393 * bdev_read_page() - Start reading a page from a block device
394 * @bdev: The device to read the page from
395 * @sector: The offset on the device to read the page to (need not be aligned)
396 * @page: The page to read
397 *
398 * On entry, the page should be locked. It will be unlocked when the page
399 * has been read. If the block driver implements rw_page synchronously,
400 * that will be true on exit from this function, but it need not be.
401 *
402 * Errors returned by this function are usually "soft", eg out of memory, or
403 * queue full; callers should try a different route to read this page rather
404 * than propagate an error back up the stack.
405 *
406 * Return: negative errno if an error occurs, 0 if submission was successful.
407 */
408 int bdev_read_page(struct block_device *bdev, sector_t sector,
409 struct page *page)
410 {
411 const struct block_device_operations *ops = bdev->bd_disk->fops;
412 int result = -EOPNOTSUPP;
413
414 if (!ops->rw_page || bdev_get_integrity(bdev))
415 return result;
416
417 result = blk_queue_enter(bdev->bd_queue, false);
418 if (result)
419 return result;
420 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
421 blk_queue_exit(bdev->bd_queue);
422 return result;
423 }
424 EXPORT_SYMBOL_GPL(bdev_read_page);
425
426 /**
427 * bdev_write_page() - Start writing a page to a block device
428 * @bdev: The device to write the page to
429 * @sector: The offset on the device to write the page to (need not be aligned)
430 * @page: The page to write
431 * @wbc: The writeback_control for the write
432 *
433 * On entry, the page should be locked and not currently under writeback.
434 * On exit, if the write started successfully, the page will be unlocked and
435 * under writeback. If the write failed already (eg the driver failed to
436 * queue the page to the device), the page will still be locked. If the
437 * caller is a ->writepage implementation, it will need to unlock the page.
438 *
439 * Errors returned by this function are usually "soft", eg out of memory, or
440 * queue full; callers should try a different route to write this page rather
441 * than propagate an error back up the stack.
442 *
443 * Return: negative errno if an error occurs, 0 if submission was successful.
444 */
445 int bdev_write_page(struct block_device *bdev, sector_t sector,
446 struct page *page, struct writeback_control *wbc)
447 {
448 int result;
449 const struct block_device_operations *ops = bdev->bd_disk->fops;
450
451 if (!ops->rw_page || bdev_get_integrity(bdev))
452 return -EOPNOTSUPP;
453 result = blk_queue_enter(bdev->bd_queue, false);
454 if (result)
455 return result;
456
457 set_page_writeback(page);
458 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
459 if (result)
460 end_page_writeback(page);
461 else
462 unlock_page(page);
463 blk_queue_exit(bdev->bd_queue);
464 return result;
465 }
466 EXPORT_SYMBOL_GPL(bdev_write_page);
467
468 /**
469 * bdev_direct_access() - Get the address for directly-accessibly memory
470 * @bdev: The device containing the memory
471 * @dax: control and output parameters for ->direct_access
472 *
473 * If a block device is made up of directly addressable memory, this function
474 * will tell the caller the PFN and the address of the memory. The address
475 * may be directly dereferenced within the kernel without the need to call
476 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
477 * page tables.
478 *
479 * Return: negative errno if an error occurs, otherwise the number of bytes
480 * accessible at this address.
481 */
482 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
483 {
484 sector_t sector = dax->sector;
485 long avail, size = dax->size;
486 const struct block_device_operations *ops = bdev->bd_disk->fops;
487
488 /*
489 * The device driver is allowed to sleep, in order to make the
490 * memory directly accessible.
491 */
492 might_sleep();
493
494 if (size < 0)
495 return size;
496 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
497 return -EOPNOTSUPP;
498 if ((sector + DIV_ROUND_UP(size, 512)) >
499 part_nr_sects_read(bdev->bd_part))
500 return -ERANGE;
501 sector += get_start_sect(bdev);
502 if (sector % (PAGE_SIZE / 512))
503 return -EINVAL;
504 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
505 if (!avail)
506 return -ERANGE;
507 if (avail > 0 && avail & ~PAGE_MASK)
508 return -ENXIO;
509 return min(avail, size);
510 }
511 EXPORT_SYMBOL_GPL(bdev_direct_access);
512
513 /**
514 * bdev_dax_supported() - Check if the device supports dax for filesystem
515 * @sb: The superblock of the device
516 * @blocksize: The block size of the device
517 *
518 * This is a library function for filesystems to check if the block device
519 * can be mounted with dax option.
520 *
521 * Return: negative errno if unsupported, 0 if supported.
522 */
523 int bdev_dax_supported(struct super_block *sb, int blocksize)
524 {
525 struct blk_dax_ctl dax = {
526 .sector = 0,
527 .size = PAGE_SIZE,
528 };
529 int err;
530
531 if (blocksize != PAGE_SIZE) {
532 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
533 return -EINVAL;
534 }
535
536 err = bdev_direct_access(sb->s_bdev, &dax);
537 if (err < 0) {
538 switch (err) {
539 case -EOPNOTSUPP:
540 vfs_msg(sb, KERN_ERR,
541 "error: device does not support dax");
542 break;
543 case -EINVAL:
544 vfs_msg(sb, KERN_ERR,
545 "error: unaligned partition for dax");
546 break;
547 default:
548 vfs_msg(sb, KERN_ERR,
549 "error: dax access failed (%d)", err);
550 }
551 return err;
552 }
553
554 return 0;
555 }
556 EXPORT_SYMBOL_GPL(bdev_dax_supported);
557
558 /**
559 * bdev_dax_capable() - Return if the raw device is capable for dax
560 * @bdev: The device for raw block device access
561 */
562 bool bdev_dax_capable(struct block_device *bdev)
563 {
564 struct blk_dax_ctl dax = {
565 .size = PAGE_SIZE,
566 };
567
568 if (!IS_ENABLED(CONFIG_FS_DAX))
569 return false;
570
571 dax.sector = 0;
572 if (bdev_direct_access(bdev, &dax) < 0)
573 return false;
574
575 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
576 if (bdev_direct_access(bdev, &dax) < 0)
577 return false;
578
579 return true;
580 }
581
582 /*
583 * pseudo-fs
584 */
585
586 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
587 static struct kmem_cache * bdev_cachep __read_mostly;
588
589 static struct inode *bdev_alloc_inode(struct super_block *sb)
590 {
591 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
592 if (!ei)
593 return NULL;
594 return &ei->vfs_inode;
595 }
596
597 static void bdev_i_callback(struct rcu_head *head)
598 {
599 struct inode *inode = container_of(head, struct inode, i_rcu);
600 struct bdev_inode *bdi = BDEV_I(inode);
601
602 kmem_cache_free(bdev_cachep, bdi);
603 }
604
605 static void bdev_destroy_inode(struct inode *inode)
606 {
607 call_rcu(&inode->i_rcu, bdev_i_callback);
608 }
609
610 static void init_once(void *foo)
611 {
612 struct bdev_inode *ei = (struct bdev_inode *) foo;
613 struct block_device *bdev = &ei->bdev;
614
615 memset(bdev, 0, sizeof(*bdev));
616 mutex_init(&bdev->bd_mutex);
617 INIT_LIST_HEAD(&bdev->bd_list);
618 #ifdef CONFIG_SYSFS
619 INIT_LIST_HEAD(&bdev->bd_holder_disks);
620 #endif
621 inode_init_once(&ei->vfs_inode);
622 /* Initialize mutex for freeze. */
623 mutex_init(&bdev->bd_fsfreeze_mutex);
624 }
625
626 static void bdev_evict_inode(struct inode *inode)
627 {
628 struct block_device *bdev = &BDEV_I(inode)->bdev;
629 truncate_inode_pages_final(&inode->i_data);
630 invalidate_inode_buffers(inode); /* is it needed here? */
631 clear_inode(inode);
632 spin_lock(&bdev_lock);
633 list_del_init(&bdev->bd_list);
634 spin_unlock(&bdev_lock);
635 }
636
637 static const struct super_operations bdev_sops = {
638 .statfs = simple_statfs,
639 .alloc_inode = bdev_alloc_inode,
640 .destroy_inode = bdev_destroy_inode,
641 .drop_inode = generic_delete_inode,
642 .evict_inode = bdev_evict_inode,
643 };
644
645 static struct dentry *bd_mount(struct file_system_type *fs_type,
646 int flags, const char *dev_name, void *data)
647 {
648 struct dentry *dent;
649 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
650 if (!IS_ERR(dent))
651 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
652 return dent;
653 }
654
655 static struct file_system_type bd_type = {
656 .name = "bdev",
657 .mount = bd_mount,
658 .kill_sb = kill_anon_super,
659 };
660
661 struct super_block *blockdev_superblock __read_mostly;
662 EXPORT_SYMBOL_GPL(blockdev_superblock);
663
664 void __init bdev_cache_init(void)
665 {
666 int err;
667 static struct vfsmount *bd_mnt;
668
669 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
670 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
671 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
672 init_once);
673 err = register_filesystem(&bd_type);
674 if (err)
675 panic("Cannot register bdev pseudo-fs");
676 bd_mnt = kern_mount(&bd_type);
677 if (IS_ERR(bd_mnt))
678 panic("Cannot create bdev pseudo-fs");
679 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
680 }
681
682 /*
683 * Most likely _very_ bad one - but then it's hardly critical for small
684 * /dev and can be fixed when somebody will need really large one.
685 * Keep in mind that it will be fed through icache hash function too.
686 */
687 static inline unsigned long hash(dev_t dev)
688 {
689 return MAJOR(dev)+MINOR(dev);
690 }
691
692 static int bdev_test(struct inode *inode, void *data)
693 {
694 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
695 }
696
697 static int bdev_set(struct inode *inode, void *data)
698 {
699 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
700 return 0;
701 }
702
703 static LIST_HEAD(all_bdevs);
704
705 struct block_device *bdget(dev_t dev)
706 {
707 struct block_device *bdev;
708 struct inode *inode;
709
710 inode = iget5_locked(blockdev_superblock, hash(dev),
711 bdev_test, bdev_set, &dev);
712
713 if (!inode)
714 return NULL;
715
716 bdev = &BDEV_I(inode)->bdev;
717
718 if (inode->i_state & I_NEW) {
719 bdev->bd_contains = NULL;
720 bdev->bd_super = NULL;
721 bdev->bd_inode = inode;
722 bdev->bd_block_size = (1 << inode->i_blkbits);
723 bdev->bd_part_count = 0;
724 bdev->bd_invalidated = 0;
725 inode->i_mode = S_IFBLK;
726 inode->i_rdev = dev;
727 inode->i_bdev = bdev;
728 inode->i_data.a_ops = &def_blk_aops;
729 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
730 spin_lock(&bdev_lock);
731 list_add(&bdev->bd_list, &all_bdevs);
732 spin_unlock(&bdev_lock);
733 unlock_new_inode(inode);
734 }
735 return bdev;
736 }
737
738 EXPORT_SYMBOL(bdget);
739
740 /**
741 * bdgrab -- Grab a reference to an already referenced block device
742 * @bdev: Block device to grab a reference to.
743 */
744 struct block_device *bdgrab(struct block_device *bdev)
745 {
746 ihold(bdev->bd_inode);
747 return bdev;
748 }
749 EXPORT_SYMBOL(bdgrab);
750
751 long nr_blockdev_pages(void)
752 {
753 struct block_device *bdev;
754 long ret = 0;
755 spin_lock(&bdev_lock);
756 list_for_each_entry(bdev, &all_bdevs, bd_list) {
757 ret += bdev->bd_inode->i_mapping->nrpages;
758 }
759 spin_unlock(&bdev_lock);
760 return ret;
761 }
762
763 void bdput(struct block_device *bdev)
764 {
765 iput(bdev->bd_inode);
766 }
767
768 EXPORT_SYMBOL(bdput);
769
770 static struct block_device *bd_acquire(struct inode *inode)
771 {
772 struct block_device *bdev;
773
774 spin_lock(&bdev_lock);
775 bdev = inode->i_bdev;
776 if (bdev) {
777 bdgrab(bdev);
778 spin_unlock(&bdev_lock);
779 return bdev;
780 }
781 spin_unlock(&bdev_lock);
782
783 bdev = bdget(inode->i_rdev);
784 if (bdev) {
785 spin_lock(&bdev_lock);
786 if (!inode->i_bdev) {
787 /*
788 * We take an additional reference to bd_inode,
789 * and it's released in clear_inode() of inode.
790 * So, we can access it via ->i_mapping always
791 * without igrab().
792 */
793 bdgrab(bdev);
794 inode->i_bdev = bdev;
795 inode->i_mapping = bdev->bd_inode->i_mapping;
796 }
797 spin_unlock(&bdev_lock);
798 }
799 return bdev;
800 }
801
802 /* Call when you free inode */
803
804 void bd_forget(struct inode *inode)
805 {
806 struct block_device *bdev = NULL;
807
808 spin_lock(&bdev_lock);
809 if (!sb_is_blkdev_sb(inode->i_sb))
810 bdev = inode->i_bdev;
811 inode->i_bdev = NULL;
812 inode->i_mapping = &inode->i_data;
813 spin_unlock(&bdev_lock);
814
815 if (bdev)
816 bdput(bdev);
817 }
818
819 /**
820 * bd_may_claim - test whether a block device can be claimed
821 * @bdev: block device of interest
822 * @whole: whole block device containing @bdev, may equal @bdev
823 * @holder: holder trying to claim @bdev
824 *
825 * Test whether @bdev can be claimed by @holder.
826 *
827 * CONTEXT:
828 * spin_lock(&bdev_lock).
829 *
830 * RETURNS:
831 * %true if @bdev can be claimed, %false otherwise.
832 */
833 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
834 void *holder)
835 {
836 if (bdev->bd_holder == holder)
837 return true; /* already a holder */
838 else if (bdev->bd_holder != NULL)
839 return false; /* held by someone else */
840 else if (bdev->bd_contains == bdev)
841 return true; /* is a whole device which isn't held */
842
843 else if (whole->bd_holder == bd_may_claim)
844 return true; /* is a partition of a device that is being partitioned */
845 else if (whole->bd_holder != NULL)
846 return false; /* is a partition of a held device */
847 else
848 return true; /* is a partition of an un-held device */
849 }
850
851 /**
852 * bd_prepare_to_claim - prepare to claim a block device
853 * @bdev: block device of interest
854 * @whole: the whole device containing @bdev, may equal @bdev
855 * @holder: holder trying to claim @bdev
856 *
857 * Prepare to claim @bdev. This function fails if @bdev is already
858 * claimed by another holder and waits if another claiming is in
859 * progress. This function doesn't actually claim. On successful
860 * return, the caller has ownership of bd_claiming and bd_holder[s].
861 *
862 * CONTEXT:
863 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
864 * it multiple times.
865 *
866 * RETURNS:
867 * 0 if @bdev can be claimed, -EBUSY otherwise.
868 */
869 static int bd_prepare_to_claim(struct block_device *bdev,
870 struct block_device *whole, void *holder)
871 {
872 retry:
873 /* if someone else claimed, fail */
874 if (!bd_may_claim(bdev, whole, holder))
875 return -EBUSY;
876
877 /* if claiming is already in progress, wait for it to finish */
878 if (whole->bd_claiming) {
879 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
880 DEFINE_WAIT(wait);
881
882 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
883 spin_unlock(&bdev_lock);
884 schedule();
885 finish_wait(wq, &wait);
886 spin_lock(&bdev_lock);
887 goto retry;
888 }
889
890 /* yay, all mine */
891 return 0;
892 }
893
894 /**
895 * bd_start_claiming - start claiming a block device
896 * @bdev: block device of interest
897 * @holder: holder trying to claim @bdev
898 *
899 * @bdev is about to be opened exclusively. Check @bdev can be opened
900 * exclusively and mark that an exclusive open is in progress. Each
901 * successful call to this function must be matched with a call to
902 * either bd_finish_claiming() or bd_abort_claiming() (which do not
903 * fail).
904 *
905 * This function is used to gain exclusive access to the block device
906 * without actually causing other exclusive open attempts to fail. It
907 * should be used when the open sequence itself requires exclusive
908 * access but may subsequently fail.
909 *
910 * CONTEXT:
911 * Might sleep.
912 *
913 * RETURNS:
914 * Pointer to the block device containing @bdev on success, ERR_PTR()
915 * value on failure.
916 */
917 static struct block_device *bd_start_claiming(struct block_device *bdev,
918 void *holder)
919 {
920 struct gendisk *disk;
921 struct block_device *whole;
922 int partno, err;
923
924 might_sleep();
925
926 /*
927 * @bdev might not have been initialized properly yet, look up
928 * and grab the outer block device the hard way.
929 */
930 disk = get_gendisk(bdev->bd_dev, &partno);
931 if (!disk)
932 return ERR_PTR(-ENXIO);
933
934 /*
935 * Normally, @bdev should equal what's returned from bdget_disk()
936 * if partno is 0; however, some drivers (floppy) use multiple
937 * bdev's for the same physical device and @bdev may be one of the
938 * aliases. Keep @bdev if partno is 0. This means claimer
939 * tracking is broken for those devices but it has always been that
940 * way.
941 */
942 if (partno)
943 whole = bdget_disk(disk, 0);
944 else
945 whole = bdgrab(bdev);
946
947 module_put(disk->fops->owner);
948 put_disk(disk);
949 if (!whole)
950 return ERR_PTR(-ENOMEM);
951
952 /* prepare to claim, if successful, mark claiming in progress */
953 spin_lock(&bdev_lock);
954
955 err = bd_prepare_to_claim(bdev, whole, holder);
956 if (err == 0) {
957 whole->bd_claiming = holder;
958 spin_unlock(&bdev_lock);
959 return whole;
960 } else {
961 spin_unlock(&bdev_lock);
962 bdput(whole);
963 return ERR_PTR(err);
964 }
965 }
966
967 #ifdef CONFIG_SYSFS
968 struct bd_holder_disk {
969 struct list_head list;
970 struct gendisk *disk;
971 int refcnt;
972 };
973
974 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
975 struct gendisk *disk)
976 {
977 struct bd_holder_disk *holder;
978
979 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
980 if (holder->disk == disk)
981 return holder;
982 return NULL;
983 }
984
985 static int add_symlink(struct kobject *from, struct kobject *to)
986 {
987 return sysfs_create_link(from, to, kobject_name(to));
988 }
989
990 static void del_symlink(struct kobject *from, struct kobject *to)
991 {
992 sysfs_remove_link(from, kobject_name(to));
993 }
994
995 /**
996 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
997 * @bdev: the claimed slave bdev
998 * @disk: the holding disk
999 *
1000 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1001 *
1002 * This functions creates the following sysfs symlinks.
1003 *
1004 * - from "slaves" directory of the holder @disk to the claimed @bdev
1005 * - from "holders" directory of the @bdev to the holder @disk
1006 *
1007 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1008 * passed to bd_link_disk_holder(), then:
1009 *
1010 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1011 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1012 *
1013 * The caller must have claimed @bdev before calling this function and
1014 * ensure that both @bdev and @disk are valid during the creation and
1015 * lifetime of these symlinks.
1016 *
1017 * CONTEXT:
1018 * Might sleep.
1019 *
1020 * RETURNS:
1021 * 0 on success, -errno on failure.
1022 */
1023 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1024 {
1025 struct bd_holder_disk *holder;
1026 int ret = 0;
1027
1028 mutex_lock(&bdev->bd_mutex);
1029
1030 WARN_ON_ONCE(!bdev->bd_holder);
1031
1032 /* FIXME: remove the following once add_disk() handles errors */
1033 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1034 goto out_unlock;
1035
1036 holder = bd_find_holder_disk(bdev, disk);
1037 if (holder) {
1038 holder->refcnt++;
1039 goto out_unlock;
1040 }
1041
1042 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1043 if (!holder) {
1044 ret = -ENOMEM;
1045 goto out_unlock;
1046 }
1047
1048 INIT_LIST_HEAD(&holder->list);
1049 holder->disk = disk;
1050 holder->refcnt = 1;
1051
1052 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1053 if (ret)
1054 goto out_free;
1055
1056 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1057 if (ret)
1058 goto out_del;
1059 /*
1060 * bdev could be deleted beneath us which would implicitly destroy
1061 * the holder directory. Hold on to it.
1062 */
1063 kobject_get(bdev->bd_part->holder_dir);
1064
1065 list_add(&holder->list, &bdev->bd_holder_disks);
1066 goto out_unlock;
1067
1068 out_del:
1069 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1070 out_free:
1071 kfree(holder);
1072 out_unlock:
1073 mutex_unlock(&bdev->bd_mutex);
1074 return ret;
1075 }
1076 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1077
1078 /**
1079 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1080 * @bdev: the calimed slave bdev
1081 * @disk: the holding disk
1082 *
1083 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1084 *
1085 * CONTEXT:
1086 * Might sleep.
1087 */
1088 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1089 {
1090 struct bd_holder_disk *holder;
1091
1092 mutex_lock(&bdev->bd_mutex);
1093
1094 holder = bd_find_holder_disk(bdev, disk);
1095
1096 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1097 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1098 del_symlink(bdev->bd_part->holder_dir,
1099 &disk_to_dev(disk)->kobj);
1100 kobject_put(bdev->bd_part->holder_dir);
1101 list_del_init(&holder->list);
1102 kfree(holder);
1103 }
1104
1105 mutex_unlock(&bdev->bd_mutex);
1106 }
1107 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1108 #endif
1109
1110 /**
1111 * flush_disk - invalidates all buffer-cache entries on a disk
1112 *
1113 * @bdev: struct block device to be flushed
1114 * @kill_dirty: flag to guide handling of dirty inodes
1115 *
1116 * Invalidates all buffer-cache entries on a disk. It should be called
1117 * when a disk has been changed -- either by a media change or online
1118 * resize.
1119 */
1120 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1121 {
1122 if (__invalidate_device(bdev, kill_dirty)) {
1123 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1124 "resized disk %s\n",
1125 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1126 }
1127
1128 if (!bdev->bd_disk)
1129 return;
1130 if (disk_part_scan_enabled(bdev->bd_disk))
1131 bdev->bd_invalidated = 1;
1132 }
1133
1134 /**
1135 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1136 * @disk: struct gendisk to check
1137 * @bdev: struct bdev to adjust.
1138 *
1139 * This routine checks to see if the bdev size does not match the disk size
1140 * and adjusts it if it differs.
1141 */
1142 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1143 {
1144 loff_t disk_size, bdev_size;
1145
1146 disk_size = (loff_t)get_capacity(disk) << 9;
1147 bdev_size = i_size_read(bdev->bd_inode);
1148 if (disk_size != bdev_size) {
1149 printk(KERN_INFO
1150 "%s: detected capacity change from %lld to %lld\n",
1151 disk->disk_name, bdev_size, disk_size);
1152 i_size_write(bdev->bd_inode, disk_size);
1153 flush_disk(bdev, false);
1154 }
1155 }
1156 EXPORT_SYMBOL(check_disk_size_change);
1157
1158 /**
1159 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1160 * @disk: struct gendisk to be revalidated
1161 *
1162 * This routine is a wrapper for lower-level driver's revalidate_disk
1163 * call-backs. It is used to do common pre and post operations needed
1164 * for all revalidate_disk operations.
1165 */
1166 int revalidate_disk(struct gendisk *disk)
1167 {
1168 struct block_device *bdev;
1169 int ret = 0;
1170
1171 if (disk->fops->revalidate_disk)
1172 ret = disk->fops->revalidate_disk(disk);
1173 blk_integrity_revalidate(disk);
1174 bdev = bdget_disk(disk, 0);
1175 if (!bdev)
1176 return ret;
1177
1178 mutex_lock(&bdev->bd_mutex);
1179 check_disk_size_change(disk, bdev);
1180 bdev->bd_invalidated = 0;
1181 mutex_unlock(&bdev->bd_mutex);
1182 bdput(bdev);
1183 return ret;
1184 }
1185 EXPORT_SYMBOL(revalidate_disk);
1186
1187 /*
1188 * This routine checks whether a removable media has been changed,
1189 * and invalidates all buffer-cache-entries in that case. This
1190 * is a relatively slow routine, so we have to try to minimize using
1191 * it. Thus it is called only upon a 'mount' or 'open'. This
1192 * is the best way of combining speed and utility, I think.
1193 * People changing diskettes in the middle of an operation deserve
1194 * to lose :-)
1195 */
1196 int check_disk_change(struct block_device *bdev)
1197 {
1198 struct gendisk *disk = bdev->bd_disk;
1199 const struct block_device_operations *bdops = disk->fops;
1200 unsigned int events;
1201
1202 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1203 DISK_EVENT_EJECT_REQUEST);
1204 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1205 return 0;
1206
1207 flush_disk(bdev, true);
1208 if (bdops->revalidate_disk)
1209 bdops->revalidate_disk(bdev->bd_disk);
1210 return 1;
1211 }
1212
1213 EXPORT_SYMBOL(check_disk_change);
1214
1215 void bd_set_size(struct block_device *bdev, loff_t size)
1216 {
1217 unsigned bsize = bdev_logical_block_size(bdev);
1218
1219 inode_lock(bdev->bd_inode);
1220 i_size_write(bdev->bd_inode, size);
1221 inode_unlock(bdev->bd_inode);
1222 while (bsize < PAGE_SIZE) {
1223 if (size & bsize)
1224 break;
1225 bsize <<= 1;
1226 }
1227 bdev->bd_block_size = bsize;
1228 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1229 }
1230 EXPORT_SYMBOL(bd_set_size);
1231
1232 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1233
1234 /*
1235 * bd_mutex locking:
1236 *
1237 * mutex_lock(part->bd_mutex)
1238 * mutex_lock_nested(whole->bd_mutex, 1)
1239 */
1240
1241 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1242 {
1243 struct gendisk *disk;
1244 struct module *owner;
1245 int ret;
1246 int partno;
1247 int perm = 0;
1248
1249 if (mode & FMODE_READ)
1250 perm |= MAY_READ;
1251 if (mode & FMODE_WRITE)
1252 perm |= MAY_WRITE;
1253 /*
1254 * hooks: /n/, see "layering violations".
1255 */
1256 if (!for_part) {
1257 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1258 if (ret != 0) {
1259 bdput(bdev);
1260 return ret;
1261 }
1262 }
1263
1264 restart:
1265
1266 ret = -ENXIO;
1267 disk = get_gendisk(bdev->bd_dev, &partno);
1268 if (!disk)
1269 goto out;
1270 owner = disk->fops->owner;
1271
1272 disk_block_events(disk);
1273 mutex_lock_nested(&bdev->bd_mutex, for_part);
1274 if (!bdev->bd_openers) {
1275 bdev->bd_disk = disk;
1276 bdev->bd_queue = disk->queue;
1277 bdev->bd_contains = bdev;
1278 bdev->bd_inode->i_flags = 0;
1279
1280 if (!partno) {
1281 ret = -ENXIO;
1282 bdev->bd_part = disk_get_part(disk, partno);
1283 if (!bdev->bd_part)
1284 goto out_clear;
1285
1286 ret = 0;
1287 if (disk->fops->open) {
1288 ret = disk->fops->open(bdev, mode);
1289 if (ret == -ERESTARTSYS) {
1290 /* Lost a race with 'disk' being
1291 * deleted, try again.
1292 * See md.c
1293 */
1294 disk_put_part(bdev->bd_part);
1295 bdev->bd_part = NULL;
1296 bdev->bd_disk = NULL;
1297 bdev->bd_queue = NULL;
1298 mutex_unlock(&bdev->bd_mutex);
1299 disk_unblock_events(disk);
1300 put_disk(disk);
1301 module_put(owner);
1302 goto restart;
1303 }
1304 }
1305
1306 if (!ret) {
1307 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1308 if (!bdev_dax_capable(bdev))
1309 bdev->bd_inode->i_flags &= ~S_DAX;
1310 }
1311
1312 /*
1313 * If the device is invalidated, rescan partition
1314 * if open succeeded or failed with -ENOMEDIUM.
1315 * The latter is necessary to prevent ghost
1316 * partitions on a removed medium.
1317 */
1318 if (bdev->bd_invalidated) {
1319 if (!ret)
1320 rescan_partitions(disk, bdev);
1321 else if (ret == -ENOMEDIUM)
1322 invalidate_partitions(disk, bdev);
1323 }
1324
1325 if (ret)
1326 goto out_clear;
1327 } else {
1328 struct block_device *whole;
1329 whole = bdget_disk(disk, 0);
1330 ret = -ENOMEM;
1331 if (!whole)
1332 goto out_clear;
1333 BUG_ON(for_part);
1334 ret = __blkdev_get(whole, mode, 1);
1335 if (ret)
1336 goto out_clear;
1337 bdev->bd_contains = whole;
1338 bdev->bd_part = disk_get_part(disk, partno);
1339 if (!(disk->flags & GENHD_FL_UP) ||
1340 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1341 ret = -ENXIO;
1342 goto out_clear;
1343 }
1344 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1345 if (!bdev_dax_capable(bdev))
1346 bdev->bd_inode->i_flags &= ~S_DAX;
1347 }
1348 } else {
1349 if (bdev->bd_contains == bdev) {
1350 ret = 0;
1351 if (bdev->bd_disk->fops->open)
1352 ret = bdev->bd_disk->fops->open(bdev, mode);
1353 /* the same as first opener case, read comment there */
1354 if (bdev->bd_invalidated) {
1355 if (!ret)
1356 rescan_partitions(bdev->bd_disk, bdev);
1357 else if (ret == -ENOMEDIUM)
1358 invalidate_partitions(bdev->bd_disk, bdev);
1359 }
1360 if (ret)
1361 goto out_unlock_bdev;
1362 }
1363 /* only one opener holds refs to the module and disk */
1364 put_disk(disk);
1365 module_put(owner);
1366 }
1367 bdev->bd_openers++;
1368 if (for_part)
1369 bdev->bd_part_count++;
1370 mutex_unlock(&bdev->bd_mutex);
1371 disk_unblock_events(disk);
1372 return 0;
1373
1374 out_clear:
1375 disk_put_part(bdev->bd_part);
1376 bdev->bd_disk = NULL;
1377 bdev->bd_part = NULL;
1378 bdev->bd_queue = NULL;
1379 if (bdev != bdev->bd_contains)
1380 __blkdev_put(bdev->bd_contains, mode, 1);
1381 bdev->bd_contains = NULL;
1382 out_unlock_bdev:
1383 mutex_unlock(&bdev->bd_mutex);
1384 disk_unblock_events(disk);
1385 put_disk(disk);
1386 module_put(owner);
1387 out:
1388 bdput(bdev);
1389
1390 return ret;
1391 }
1392
1393 /**
1394 * blkdev_get - open a block device
1395 * @bdev: block_device to open
1396 * @mode: FMODE_* mask
1397 * @holder: exclusive holder identifier
1398 *
1399 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1400 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1401 * @holder is invalid. Exclusive opens may nest for the same @holder.
1402 *
1403 * On success, the reference count of @bdev is unchanged. On failure,
1404 * @bdev is put.
1405 *
1406 * CONTEXT:
1407 * Might sleep.
1408 *
1409 * RETURNS:
1410 * 0 on success, -errno on failure.
1411 */
1412 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1413 {
1414 struct block_device *whole = NULL;
1415 int res;
1416
1417 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1418
1419 if ((mode & FMODE_EXCL) && holder) {
1420 whole = bd_start_claiming(bdev, holder);
1421 if (IS_ERR(whole)) {
1422 bdput(bdev);
1423 return PTR_ERR(whole);
1424 }
1425 }
1426
1427 res = __blkdev_get(bdev, mode, 0);
1428
1429 if (whole) {
1430 struct gendisk *disk = whole->bd_disk;
1431
1432 /* finish claiming */
1433 mutex_lock(&bdev->bd_mutex);
1434 spin_lock(&bdev_lock);
1435
1436 if (!res) {
1437 BUG_ON(!bd_may_claim(bdev, whole, holder));
1438 /*
1439 * Note that for a whole device bd_holders
1440 * will be incremented twice, and bd_holder
1441 * will be set to bd_may_claim before being
1442 * set to holder
1443 */
1444 whole->bd_holders++;
1445 whole->bd_holder = bd_may_claim;
1446 bdev->bd_holders++;
1447 bdev->bd_holder = holder;
1448 }
1449
1450 /* tell others that we're done */
1451 BUG_ON(whole->bd_claiming != holder);
1452 whole->bd_claiming = NULL;
1453 wake_up_bit(&whole->bd_claiming, 0);
1454
1455 spin_unlock(&bdev_lock);
1456
1457 /*
1458 * Block event polling for write claims if requested. Any
1459 * write holder makes the write_holder state stick until
1460 * all are released. This is good enough and tracking
1461 * individual writeable reference is too fragile given the
1462 * way @mode is used in blkdev_get/put().
1463 */
1464 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1465 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1466 bdev->bd_write_holder = true;
1467 disk_block_events(disk);
1468 }
1469
1470 mutex_unlock(&bdev->bd_mutex);
1471 bdput(whole);
1472 }
1473
1474 return res;
1475 }
1476 EXPORT_SYMBOL(blkdev_get);
1477
1478 /**
1479 * blkdev_get_by_path - open a block device by name
1480 * @path: path to the block device to open
1481 * @mode: FMODE_* mask
1482 * @holder: exclusive holder identifier
1483 *
1484 * Open the blockdevice described by the device file at @path. @mode
1485 * and @holder are identical to blkdev_get().
1486 *
1487 * On success, the returned block_device has reference count of one.
1488 *
1489 * CONTEXT:
1490 * Might sleep.
1491 *
1492 * RETURNS:
1493 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1494 */
1495 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1496 void *holder)
1497 {
1498 struct block_device *bdev;
1499 int err;
1500
1501 bdev = lookup_bdev(path);
1502 if (IS_ERR(bdev))
1503 return bdev;
1504
1505 err = blkdev_get(bdev, mode, holder);
1506 if (err)
1507 return ERR_PTR(err);
1508
1509 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1510 blkdev_put(bdev, mode);
1511 return ERR_PTR(-EACCES);
1512 }
1513
1514 return bdev;
1515 }
1516 EXPORT_SYMBOL(blkdev_get_by_path);
1517
1518 /**
1519 * blkdev_get_by_dev - open a block device by device number
1520 * @dev: device number of block device to open
1521 * @mode: FMODE_* mask
1522 * @holder: exclusive holder identifier
1523 *
1524 * Open the blockdevice described by device number @dev. @mode and
1525 * @holder are identical to blkdev_get().
1526 *
1527 * Use it ONLY if you really do not have anything better - i.e. when
1528 * you are behind a truly sucky interface and all you are given is a
1529 * device number. _Never_ to be used for internal purposes. If you
1530 * ever need it - reconsider your API.
1531 *
1532 * On success, the returned block_device has reference count of one.
1533 *
1534 * CONTEXT:
1535 * Might sleep.
1536 *
1537 * RETURNS:
1538 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1539 */
1540 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1541 {
1542 struct block_device *bdev;
1543 int err;
1544
1545 bdev = bdget(dev);
1546 if (!bdev)
1547 return ERR_PTR(-ENOMEM);
1548
1549 err = blkdev_get(bdev, mode, holder);
1550 if (err)
1551 return ERR_PTR(err);
1552
1553 return bdev;
1554 }
1555 EXPORT_SYMBOL(blkdev_get_by_dev);
1556
1557 static int blkdev_open(struct inode * inode, struct file * filp)
1558 {
1559 struct block_device *bdev;
1560
1561 /*
1562 * Preserve backwards compatibility and allow large file access
1563 * even if userspace doesn't ask for it explicitly. Some mkfs
1564 * binary needs it. We might want to drop this workaround
1565 * during an unstable branch.
1566 */
1567 filp->f_flags |= O_LARGEFILE;
1568
1569 if (filp->f_flags & O_NDELAY)
1570 filp->f_mode |= FMODE_NDELAY;
1571 if (filp->f_flags & O_EXCL)
1572 filp->f_mode |= FMODE_EXCL;
1573 if ((filp->f_flags & O_ACCMODE) == 3)
1574 filp->f_mode |= FMODE_WRITE_IOCTL;
1575
1576 bdev = bd_acquire(inode);
1577 if (bdev == NULL)
1578 return -ENOMEM;
1579
1580 filp->f_mapping = bdev->bd_inode->i_mapping;
1581
1582 return blkdev_get(bdev, filp->f_mode, filp);
1583 }
1584
1585 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1586 {
1587 struct gendisk *disk = bdev->bd_disk;
1588 struct block_device *victim = NULL;
1589
1590 mutex_lock_nested(&bdev->bd_mutex, for_part);
1591 if (for_part)
1592 bdev->bd_part_count--;
1593
1594 if (!--bdev->bd_openers) {
1595 WARN_ON_ONCE(bdev->bd_holders);
1596 sync_blockdev(bdev);
1597 kill_bdev(bdev);
1598
1599 bdev_write_inode(bdev);
1600 /*
1601 * Detaching bdev inode from its wb in __destroy_inode()
1602 * is too late: the queue which embeds its bdi (along with
1603 * root wb) can be gone as soon as we put_disk() below.
1604 */
1605 inode_detach_wb(bdev->bd_inode);
1606 }
1607 if (bdev->bd_contains == bdev) {
1608 if (disk->fops->release)
1609 disk->fops->release(disk, mode);
1610 }
1611 if (!bdev->bd_openers) {
1612 struct module *owner = disk->fops->owner;
1613
1614 disk_put_part(bdev->bd_part);
1615 bdev->bd_part = NULL;
1616 bdev->bd_disk = NULL;
1617 if (bdev != bdev->bd_contains)
1618 victim = bdev->bd_contains;
1619 bdev->bd_contains = NULL;
1620
1621 put_disk(disk);
1622 module_put(owner);
1623 }
1624 mutex_unlock(&bdev->bd_mutex);
1625 bdput(bdev);
1626 if (victim)
1627 __blkdev_put(victim, mode, 1);
1628 }
1629
1630 void blkdev_put(struct block_device *bdev, fmode_t mode)
1631 {
1632 mutex_lock(&bdev->bd_mutex);
1633
1634 if (mode & FMODE_EXCL) {
1635 bool bdev_free;
1636
1637 /*
1638 * Release a claim on the device. The holder fields
1639 * are protected with bdev_lock. bd_mutex is to
1640 * synchronize disk_holder unlinking.
1641 */
1642 spin_lock(&bdev_lock);
1643
1644 WARN_ON_ONCE(--bdev->bd_holders < 0);
1645 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1646
1647 /* bd_contains might point to self, check in a separate step */
1648 if ((bdev_free = !bdev->bd_holders))
1649 bdev->bd_holder = NULL;
1650 if (!bdev->bd_contains->bd_holders)
1651 bdev->bd_contains->bd_holder = NULL;
1652
1653 spin_unlock(&bdev_lock);
1654
1655 /*
1656 * If this was the last claim, remove holder link and
1657 * unblock evpoll if it was a write holder.
1658 */
1659 if (bdev_free && bdev->bd_write_holder) {
1660 disk_unblock_events(bdev->bd_disk);
1661 bdev->bd_write_holder = false;
1662 }
1663 }
1664
1665 /*
1666 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1667 * event. This is to ensure detection of media removal commanded
1668 * from userland - e.g. eject(1).
1669 */
1670 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1671
1672 mutex_unlock(&bdev->bd_mutex);
1673
1674 __blkdev_put(bdev, mode, 0);
1675 }
1676 EXPORT_SYMBOL(blkdev_put);
1677
1678 static int blkdev_close(struct inode * inode, struct file * filp)
1679 {
1680 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1681 blkdev_put(bdev, filp->f_mode);
1682 return 0;
1683 }
1684
1685 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1686 {
1687 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1688 fmode_t mode = file->f_mode;
1689
1690 /*
1691 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1692 * to updated it before every ioctl.
1693 */
1694 if (file->f_flags & O_NDELAY)
1695 mode |= FMODE_NDELAY;
1696 else
1697 mode &= ~FMODE_NDELAY;
1698
1699 return blkdev_ioctl(bdev, mode, cmd, arg);
1700 }
1701
1702 /*
1703 * Write data to the block device. Only intended for the block device itself
1704 * and the raw driver which basically is a fake block device.
1705 *
1706 * Does not take i_mutex for the write and thus is not for general purpose
1707 * use.
1708 */
1709 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1710 {
1711 struct file *file = iocb->ki_filp;
1712 struct inode *bd_inode = bdev_file_inode(file);
1713 loff_t size = i_size_read(bd_inode);
1714 struct blk_plug plug;
1715 ssize_t ret;
1716
1717 if (bdev_read_only(I_BDEV(bd_inode)))
1718 return -EPERM;
1719
1720 if (!iov_iter_count(from))
1721 return 0;
1722
1723 if (iocb->ki_pos >= size)
1724 return -ENOSPC;
1725
1726 iov_iter_truncate(from, size - iocb->ki_pos);
1727
1728 blk_start_plug(&plug);
1729 ret = __generic_file_write_iter(iocb, from);
1730 if (ret > 0)
1731 ret = generic_write_sync(iocb, ret);
1732 blk_finish_plug(&plug);
1733 return ret;
1734 }
1735 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1736
1737 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1738 {
1739 struct file *file = iocb->ki_filp;
1740 struct inode *bd_inode = bdev_file_inode(file);
1741 loff_t size = i_size_read(bd_inode);
1742 loff_t pos = iocb->ki_pos;
1743
1744 if (pos >= size)
1745 return 0;
1746
1747 size -= pos;
1748 iov_iter_truncate(to, size);
1749 return generic_file_read_iter(iocb, to);
1750 }
1751 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1752
1753 /*
1754 * Try to release a page associated with block device when the system
1755 * is under memory pressure.
1756 */
1757 static int blkdev_releasepage(struct page *page, gfp_t wait)
1758 {
1759 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1760
1761 if (super && super->s_op->bdev_try_to_free_page)
1762 return super->s_op->bdev_try_to_free_page(super, page, wait);
1763
1764 return try_to_free_buffers(page);
1765 }
1766
1767 static int blkdev_writepages(struct address_space *mapping,
1768 struct writeback_control *wbc)
1769 {
1770 if (dax_mapping(mapping)) {
1771 struct block_device *bdev = I_BDEV(mapping->host);
1772
1773 return dax_writeback_mapping_range(mapping, bdev, wbc);
1774 }
1775 return generic_writepages(mapping, wbc);
1776 }
1777
1778 static const struct address_space_operations def_blk_aops = {
1779 .readpage = blkdev_readpage,
1780 .readpages = blkdev_readpages,
1781 .writepage = blkdev_writepage,
1782 .write_begin = blkdev_write_begin,
1783 .write_end = blkdev_write_end,
1784 .writepages = blkdev_writepages,
1785 .releasepage = blkdev_releasepage,
1786 .direct_IO = blkdev_direct_IO,
1787 .is_dirty_writeback = buffer_check_dirty_writeback,
1788 };
1789
1790 const struct file_operations def_blk_fops = {
1791 .open = blkdev_open,
1792 .release = blkdev_close,
1793 .llseek = block_llseek,
1794 .read_iter = blkdev_read_iter,
1795 .write_iter = blkdev_write_iter,
1796 .mmap = generic_file_mmap,
1797 .fsync = blkdev_fsync,
1798 .unlocked_ioctl = block_ioctl,
1799 #ifdef CONFIG_COMPAT
1800 .compat_ioctl = compat_blkdev_ioctl,
1801 #endif
1802 .splice_read = generic_file_splice_read,
1803 .splice_write = iter_file_splice_write,
1804 };
1805
1806 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1807 {
1808 int res;
1809 mm_segment_t old_fs = get_fs();
1810 set_fs(KERNEL_DS);
1811 res = blkdev_ioctl(bdev, 0, cmd, arg);
1812 set_fs(old_fs);
1813 return res;
1814 }
1815
1816 EXPORT_SYMBOL(ioctl_by_bdev);
1817
1818 /**
1819 * lookup_bdev - lookup a struct block_device by name
1820 * @pathname: special file representing the block device
1821 *
1822 * Get a reference to the blockdevice at @pathname in the current
1823 * namespace if possible and return it. Return ERR_PTR(error)
1824 * otherwise.
1825 */
1826 struct block_device *lookup_bdev(const char *pathname)
1827 {
1828 struct block_device *bdev;
1829 struct inode *inode;
1830 struct path path;
1831 int error;
1832
1833 if (!pathname || !*pathname)
1834 return ERR_PTR(-EINVAL);
1835
1836 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1837 if (error)
1838 return ERR_PTR(error);
1839
1840 inode = d_backing_inode(path.dentry);
1841 error = -ENOTBLK;
1842 if (!S_ISBLK(inode->i_mode))
1843 goto fail;
1844 error = -EACCES;
1845 if (!may_open_dev(&path))
1846 goto fail;
1847 error = -ENOMEM;
1848 bdev = bd_acquire(inode);
1849 if (!bdev)
1850 goto fail;
1851 out:
1852 path_put(&path);
1853 return bdev;
1854 fail:
1855 bdev = ERR_PTR(error);
1856 goto out;
1857 }
1858 EXPORT_SYMBOL(lookup_bdev);
1859
1860 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1861 {
1862 struct super_block *sb = get_super(bdev);
1863 int res = 0;
1864
1865 if (sb) {
1866 /*
1867 * no need to lock the super, get_super holds the
1868 * read mutex so the filesystem cannot go away
1869 * under us (->put_super runs with the write lock
1870 * hold).
1871 */
1872 shrink_dcache_sb(sb);
1873 res = invalidate_inodes(sb, kill_dirty);
1874 drop_super(sb);
1875 }
1876 invalidate_bdev(bdev);
1877 return res;
1878 }
1879 EXPORT_SYMBOL(__invalidate_device);
1880
1881 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1882 {
1883 struct inode *inode, *old_inode = NULL;
1884
1885 spin_lock(&blockdev_superblock->s_inode_list_lock);
1886 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1887 struct address_space *mapping = inode->i_mapping;
1888
1889 spin_lock(&inode->i_lock);
1890 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1891 mapping->nrpages == 0) {
1892 spin_unlock(&inode->i_lock);
1893 continue;
1894 }
1895 __iget(inode);
1896 spin_unlock(&inode->i_lock);
1897 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1898 /*
1899 * We hold a reference to 'inode' so it couldn't have been
1900 * removed from s_inodes list while we dropped the
1901 * s_inode_list_lock We cannot iput the inode now as we can
1902 * be holding the last reference and we cannot iput it under
1903 * s_inode_list_lock. So we keep the reference and iput it
1904 * later.
1905 */
1906 iput(old_inode);
1907 old_inode = inode;
1908
1909 func(I_BDEV(inode), arg);
1910
1911 spin_lock(&blockdev_superblock->s_inode_list_lock);
1912 }
1913 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1914 iput(old_inode);
1915 }
This page took 0.110431 seconds and 6 git commands to generate.