Merge branch 'for-3.20/bdi' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <linux/aio.h>
31 #include <asm/uaccess.h>
32 #include "internal.h"
33
34 struct bdev_inode {
35 struct block_device bdev;
36 struct inode vfs_inode;
37 };
38
39 static const struct address_space_operations def_blk_aops;
40
41 static inline struct bdev_inode *BDEV_I(struct inode *inode)
42 {
43 return container_of(inode, struct bdev_inode, vfs_inode);
44 }
45
46 inline struct block_device *I_BDEV(struct inode *inode)
47 {
48 return &BDEV_I(inode)->bdev;
49 }
50 EXPORT_SYMBOL(I_BDEV);
51
52 static void bdev_write_inode(struct inode *inode)
53 {
54 spin_lock(&inode->i_lock);
55 while (inode->i_state & I_DIRTY) {
56 spin_unlock(&inode->i_lock);
57 WARN_ON_ONCE(write_inode_now(inode, true));
58 spin_lock(&inode->i_lock);
59 }
60 spin_unlock(&inode->i_lock);
61 }
62
63 /* Kill _all_ buffers and pagecache , dirty or not.. */
64 void kill_bdev(struct block_device *bdev)
65 {
66 struct address_space *mapping = bdev->bd_inode->i_mapping;
67
68 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
69 return;
70
71 invalidate_bh_lrus();
72 truncate_inode_pages(mapping, 0);
73 }
74 EXPORT_SYMBOL(kill_bdev);
75
76 /* Invalidate clean unused buffers and pagecache. */
77 void invalidate_bdev(struct block_device *bdev)
78 {
79 struct address_space *mapping = bdev->bd_inode->i_mapping;
80
81 if (mapping->nrpages == 0)
82 return;
83
84 invalidate_bh_lrus();
85 lru_add_drain_all(); /* make sure all lru add caches are flushed */
86 invalidate_mapping_pages(mapping, 0, -1);
87 /* 99% of the time, we don't need to flush the cleancache on the bdev.
88 * But, for the strange corners, lets be cautious
89 */
90 cleancache_invalidate_inode(mapping);
91 }
92 EXPORT_SYMBOL(invalidate_bdev);
93
94 int set_blocksize(struct block_device *bdev, int size)
95 {
96 /* Size must be a power of two, and between 512 and PAGE_SIZE */
97 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
98 return -EINVAL;
99
100 /* Size cannot be smaller than the size supported by the device */
101 if (size < bdev_logical_block_size(bdev))
102 return -EINVAL;
103
104 /* Don't change the size if it is same as current */
105 if (bdev->bd_block_size != size) {
106 sync_blockdev(bdev);
107 bdev->bd_block_size = size;
108 bdev->bd_inode->i_blkbits = blksize_bits(size);
109 kill_bdev(bdev);
110 }
111 return 0;
112 }
113
114 EXPORT_SYMBOL(set_blocksize);
115
116 int sb_set_blocksize(struct super_block *sb, int size)
117 {
118 if (set_blocksize(sb->s_bdev, size))
119 return 0;
120 /* If we get here, we know size is power of two
121 * and it's value is between 512 and PAGE_SIZE */
122 sb->s_blocksize = size;
123 sb->s_blocksize_bits = blksize_bits(size);
124 return sb->s_blocksize;
125 }
126
127 EXPORT_SYMBOL(sb_set_blocksize);
128
129 int sb_min_blocksize(struct super_block *sb, int size)
130 {
131 int minsize = bdev_logical_block_size(sb->s_bdev);
132 if (size < minsize)
133 size = minsize;
134 return sb_set_blocksize(sb, size);
135 }
136
137 EXPORT_SYMBOL(sb_min_blocksize);
138
139 static int
140 blkdev_get_block(struct inode *inode, sector_t iblock,
141 struct buffer_head *bh, int create)
142 {
143 bh->b_bdev = I_BDEV(inode);
144 bh->b_blocknr = iblock;
145 set_buffer_mapped(bh);
146 return 0;
147 }
148
149 static ssize_t
150 blkdev_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter,
151 loff_t offset)
152 {
153 struct file *file = iocb->ki_filp;
154 struct inode *inode = file->f_mapping->host;
155
156 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iter,
157 offset, blkdev_get_block,
158 NULL, NULL, 0);
159 }
160
161 int __sync_blockdev(struct block_device *bdev, int wait)
162 {
163 if (!bdev)
164 return 0;
165 if (!wait)
166 return filemap_flush(bdev->bd_inode->i_mapping);
167 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
168 }
169
170 /*
171 * Write out and wait upon all the dirty data associated with a block
172 * device via its mapping. Does not take the superblock lock.
173 */
174 int sync_blockdev(struct block_device *bdev)
175 {
176 return __sync_blockdev(bdev, 1);
177 }
178 EXPORT_SYMBOL(sync_blockdev);
179
180 /*
181 * Write out and wait upon all dirty data associated with this
182 * device. Filesystem data as well as the underlying block
183 * device. Takes the superblock lock.
184 */
185 int fsync_bdev(struct block_device *bdev)
186 {
187 struct super_block *sb = get_super(bdev);
188 if (sb) {
189 int res = sync_filesystem(sb);
190 drop_super(sb);
191 return res;
192 }
193 return sync_blockdev(bdev);
194 }
195 EXPORT_SYMBOL(fsync_bdev);
196
197 /**
198 * freeze_bdev -- lock a filesystem and force it into a consistent state
199 * @bdev: blockdevice to lock
200 *
201 * If a superblock is found on this device, we take the s_umount semaphore
202 * on it to make sure nobody unmounts until the snapshot creation is done.
203 * The reference counter (bd_fsfreeze_count) guarantees that only the last
204 * unfreeze process can unfreeze the frozen filesystem actually when multiple
205 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
206 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
207 * actually.
208 */
209 struct super_block *freeze_bdev(struct block_device *bdev)
210 {
211 struct super_block *sb;
212 int error = 0;
213
214 mutex_lock(&bdev->bd_fsfreeze_mutex);
215 if (++bdev->bd_fsfreeze_count > 1) {
216 /*
217 * We don't even need to grab a reference - the first call
218 * to freeze_bdev grab an active reference and only the last
219 * thaw_bdev drops it.
220 */
221 sb = get_super(bdev);
222 drop_super(sb);
223 mutex_unlock(&bdev->bd_fsfreeze_mutex);
224 return sb;
225 }
226
227 sb = get_active_super(bdev);
228 if (!sb)
229 goto out;
230 if (sb->s_op->freeze_super)
231 error = sb->s_op->freeze_super(sb);
232 else
233 error = freeze_super(sb);
234 if (error) {
235 deactivate_super(sb);
236 bdev->bd_fsfreeze_count--;
237 mutex_unlock(&bdev->bd_fsfreeze_mutex);
238 return ERR_PTR(error);
239 }
240 deactivate_super(sb);
241 out:
242 sync_blockdev(bdev);
243 mutex_unlock(&bdev->bd_fsfreeze_mutex);
244 return sb; /* thaw_bdev releases s->s_umount */
245 }
246 EXPORT_SYMBOL(freeze_bdev);
247
248 /**
249 * thaw_bdev -- unlock filesystem
250 * @bdev: blockdevice to unlock
251 * @sb: associated superblock
252 *
253 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
254 */
255 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
256 {
257 int error = -EINVAL;
258
259 mutex_lock(&bdev->bd_fsfreeze_mutex);
260 if (!bdev->bd_fsfreeze_count)
261 goto out;
262
263 error = 0;
264 if (--bdev->bd_fsfreeze_count > 0)
265 goto out;
266
267 if (!sb)
268 goto out;
269
270 if (sb->s_op->thaw_super)
271 error = sb->s_op->thaw_super(sb);
272 else
273 error = thaw_super(sb);
274 if (error) {
275 bdev->bd_fsfreeze_count++;
276 mutex_unlock(&bdev->bd_fsfreeze_mutex);
277 return error;
278 }
279 out:
280 mutex_unlock(&bdev->bd_fsfreeze_mutex);
281 return 0;
282 }
283 EXPORT_SYMBOL(thaw_bdev);
284
285 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
286 {
287 return block_write_full_page(page, blkdev_get_block, wbc);
288 }
289
290 static int blkdev_readpage(struct file * file, struct page * page)
291 {
292 return block_read_full_page(page, blkdev_get_block);
293 }
294
295 static int blkdev_readpages(struct file *file, struct address_space *mapping,
296 struct list_head *pages, unsigned nr_pages)
297 {
298 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
299 }
300
301 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
302 loff_t pos, unsigned len, unsigned flags,
303 struct page **pagep, void **fsdata)
304 {
305 return block_write_begin(mapping, pos, len, flags, pagep,
306 blkdev_get_block);
307 }
308
309 static int blkdev_write_end(struct file *file, struct address_space *mapping,
310 loff_t pos, unsigned len, unsigned copied,
311 struct page *page, void *fsdata)
312 {
313 int ret;
314 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
315
316 unlock_page(page);
317 page_cache_release(page);
318
319 return ret;
320 }
321
322 /*
323 * private llseek:
324 * for a block special file file_inode(file)->i_size is zero
325 * so we compute the size by hand (just as in block_read/write above)
326 */
327 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
328 {
329 struct inode *bd_inode = file->f_mapping->host;
330 loff_t retval;
331
332 mutex_lock(&bd_inode->i_mutex);
333 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
334 mutex_unlock(&bd_inode->i_mutex);
335 return retval;
336 }
337
338 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
339 {
340 struct inode *bd_inode = filp->f_mapping->host;
341 struct block_device *bdev = I_BDEV(bd_inode);
342 int error;
343
344 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
345 if (error)
346 return error;
347
348 /*
349 * There is no need to serialise calls to blkdev_issue_flush with
350 * i_mutex and doing so causes performance issues with concurrent
351 * O_SYNC writers to a block device.
352 */
353 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
354 if (error == -EOPNOTSUPP)
355 error = 0;
356
357 return error;
358 }
359 EXPORT_SYMBOL(blkdev_fsync);
360
361 /**
362 * bdev_read_page() - Start reading a page from a block device
363 * @bdev: The device to read the page from
364 * @sector: The offset on the device to read the page to (need not be aligned)
365 * @page: The page to read
366 *
367 * On entry, the page should be locked. It will be unlocked when the page
368 * has been read. If the block driver implements rw_page synchronously,
369 * that will be true on exit from this function, but it need not be.
370 *
371 * Errors returned by this function are usually "soft", eg out of memory, or
372 * queue full; callers should try a different route to read this page rather
373 * than propagate an error back up the stack.
374 *
375 * Return: negative errno if an error occurs, 0 if submission was successful.
376 */
377 int bdev_read_page(struct block_device *bdev, sector_t sector,
378 struct page *page)
379 {
380 const struct block_device_operations *ops = bdev->bd_disk->fops;
381 if (!ops->rw_page)
382 return -EOPNOTSUPP;
383 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
384 }
385 EXPORT_SYMBOL_GPL(bdev_read_page);
386
387 /**
388 * bdev_write_page() - Start writing a page to a block device
389 * @bdev: The device to write the page to
390 * @sector: The offset on the device to write the page to (need not be aligned)
391 * @page: The page to write
392 * @wbc: The writeback_control for the write
393 *
394 * On entry, the page should be locked and not currently under writeback.
395 * On exit, if the write started successfully, the page will be unlocked and
396 * under writeback. If the write failed already (eg the driver failed to
397 * queue the page to the device), the page will still be locked. If the
398 * caller is a ->writepage implementation, it will need to unlock the page.
399 *
400 * Errors returned by this function are usually "soft", eg out of memory, or
401 * queue full; callers should try a different route to write this page rather
402 * than propagate an error back up the stack.
403 *
404 * Return: negative errno if an error occurs, 0 if submission was successful.
405 */
406 int bdev_write_page(struct block_device *bdev, sector_t sector,
407 struct page *page, struct writeback_control *wbc)
408 {
409 int result;
410 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
411 const struct block_device_operations *ops = bdev->bd_disk->fops;
412 if (!ops->rw_page)
413 return -EOPNOTSUPP;
414 set_page_writeback(page);
415 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
416 if (result)
417 end_page_writeback(page);
418 else
419 unlock_page(page);
420 return result;
421 }
422 EXPORT_SYMBOL_GPL(bdev_write_page);
423
424 /*
425 * pseudo-fs
426 */
427
428 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
429 static struct kmem_cache * bdev_cachep __read_mostly;
430
431 static struct inode *bdev_alloc_inode(struct super_block *sb)
432 {
433 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
434 if (!ei)
435 return NULL;
436 return &ei->vfs_inode;
437 }
438
439 static void bdev_i_callback(struct rcu_head *head)
440 {
441 struct inode *inode = container_of(head, struct inode, i_rcu);
442 struct bdev_inode *bdi = BDEV_I(inode);
443
444 kmem_cache_free(bdev_cachep, bdi);
445 }
446
447 static void bdev_destroy_inode(struct inode *inode)
448 {
449 call_rcu(&inode->i_rcu, bdev_i_callback);
450 }
451
452 static void init_once(void *foo)
453 {
454 struct bdev_inode *ei = (struct bdev_inode *) foo;
455 struct block_device *bdev = &ei->bdev;
456
457 memset(bdev, 0, sizeof(*bdev));
458 mutex_init(&bdev->bd_mutex);
459 INIT_LIST_HEAD(&bdev->bd_inodes);
460 INIT_LIST_HEAD(&bdev->bd_list);
461 #ifdef CONFIG_SYSFS
462 INIT_LIST_HEAD(&bdev->bd_holder_disks);
463 #endif
464 inode_init_once(&ei->vfs_inode);
465 /* Initialize mutex for freeze. */
466 mutex_init(&bdev->bd_fsfreeze_mutex);
467 }
468
469 static inline void __bd_forget(struct inode *inode)
470 {
471 list_del_init(&inode->i_devices);
472 inode->i_bdev = NULL;
473 inode->i_mapping = &inode->i_data;
474 }
475
476 static void bdev_evict_inode(struct inode *inode)
477 {
478 struct block_device *bdev = &BDEV_I(inode)->bdev;
479 struct list_head *p;
480 truncate_inode_pages_final(&inode->i_data);
481 invalidate_inode_buffers(inode); /* is it needed here? */
482 clear_inode(inode);
483 spin_lock(&bdev_lock);
484 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
485 __bd_forget(list_entry(p, struct inode, i_devices));
486 }
487 list_del_init(&bdev->bd_list);
488 spin_unlock(&bdev_lock);
489 }
490
491 static const struct super_operations bdev_sops = {
492 .statfs = simple_statfs,
493 .alloc_inode = bdev_alloc_inode,
494 .destroy_inode = bdev_destroy_inode,
495 .drop_inode = generic_delete_inode,
496 .evict_inode = bdev_evict_inode,
497 };
498
499 static struct dentry *bd_mount(struct file_system_type *fs_type,
500 int flags, const char *dev_name, void *data)
501 {
502 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
503 }
504
505 static struct file_system_type bd_type = {
506 .name = "bdev",
507 .mount = bd_mount,
508 .kill_sb = kill_anon_super,
509 };
510
511 static struct super_block *blockdev_superblock __read_mostly;
512
513 void __init bdev_cache_init(void)
514 {
515 int err;
516 static struct vfsmount *bd_mnt;
517
518 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
519 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
520 SLAB_MEM_SPREAD|SLAB_PANIC),
521 init_once);
522 err = register_filesystem(&bd_type);
523 if (err)
524 panic("Cannot register bdev pseudo-fs");
525 bd_mnt = kern_mount(&bd_type);
526 if (IS_ERR(bd_mnt))
527 panic("Cannot create bdev pseudo-fs");
528 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
529 }
530
531 /*
532 * Most likely _very_ bad one - but then it's hardly critical for small
533 * /dev and can be fixed when somebody will need really large one.
534 * Keep in mind that it will be fed through icache hash function too.
535 */
536 static inline unsigned long hash(dev_t dev)
537 {
538 return MAJOR(dev)+MINOR(dev);
539 }
540
541 static int bdev_test(struct inode *inode, void *data)
542 {
543 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
544 }
545
546 static int bdev_set(struct inode *inode, void *data)
547 {
548 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
549 return 0;
550 }
551
552 static LIST_HEAD(all_bdevs);
553
554 struct block_device *bdget(dev_t dev)
555 {
556 struct block_device *bdev;
557 struct inode *inode;
558
559 inode = iget5_locked(blockdev_superblock, hash(dev),
560 bdev_test, bdev_set, &dev);
561
562 if (!inode)
563 return NULL;
564
565 bdev = &BDEV_I(inode)->bdev;
566
567 if (inode->i_state & I_NEW) {
568 bdev->bd_contains = NULL;
569 bdev->bd_super = NULL;
570 bdev->bd_inode = inode;
571 bdev->bd_block_size = (1 << inode->i_blkbits);
572 bdev->bd_part_count = 0;
573 bdev->bd_invalidated = 0;
574 inode->i_mode = S_IFBLK;
575 inode->i_rdev = dev;
576 inode->i_bdev = bdev;
577 inode->i_data.a_ops = &def_blk_aops;
578 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
579 spin_lock(&bdev_lock);
580 list_add(&bdev->bd_list, &all_bdevs);
581 spin_unlock(&bdev_lock);
582 unlock_new_inode(inode);
583 }
584 return bdev;
585 }
586
587 EXPORT_SYMBOL(bdget);
588
589 /**
590 * bdgrab -- Grab a reference to an already referenced block device
591 * @bdev: Block device to grab a reference to.
592 */
593 struct block_device *bdgrab(struct block_device *bdev)
594 {
595 ihold(bdev->bd_inode);
596 return bdev;
597 }
598 EXPORT_SYMBOL(bdgrab);
599
600 long nr_blockdev_pages(void)
601 {
602 struct block_device *bdev;
603 long ret = 0;
604 spin_lock(&bdev_lock);
605 list_for_each_entry(bdev, &all_bdevs, bd_list) {
606 ret += bdev->bd_inode->i_mapping->nrpages;
607 }
608 spin_unlock(&bdev_lock);
609 return ret;
610 }
611
612 void bdput(struct block_device *bdev)
613 {
614 iput(bdev->bd_inode);
615 }
616
617 EXPORT_SYMBOL(bdput);
618
619 static struct block_device *bd_acquire(struct inode *inode)
620 {
621 struct block_device *bdev;
622
623 spin_lock(&bdev_lock);
624 bdev = inode->i_bdev;
625 if (bdev) {
626 ihold(bdev->bd_inode);
627 spin_unlock(&bdev_lock);
628 return bdev;
629 }
630 spin_unlock(&bdev_lock);
631
632 bdev = bdget(inode->i_rdev);
633 if (bdev) {
634 spin_lock(&bdev_lock);
635 if (!inode->i_bdev) {
636 /*
637 * We take an additional reference to bd_inode,
638 * and it's released in clear_inode() of inode.
639 * So, we can access it via ->i_mapping always
640 * without igrab().
641 */
642 ihold(bdev->bd_inode);
643 inode->i_bdev = bdev;
644 inode->i_mapping = bdev->bd_inode->i_mapping;
645 list_add(&inode->i_devices, &bdev->bd_inodes);
646 }
647 spin_unlock(&bdev_lock);
648 }
649 return bdev;
650 }
651
652 int sb_is_blkdev_sb(struct super_block *sb)
653 {
654 return sb == blockdev_superblock;
655 }
656
657 /* Call when you free inode */
658
659 void bd_forget(struct inode *inode)
660 {
661 struct block_device *bdev = NULL;
662
663 spin_lock(&bdev_lock);
664 if (!sb_is_blkdev_sb(inode->i_sb))
665 bdev = inode->i_bdev;
666 __bd_forget(inode);
667 spin_unlock(&bdev_lock);
668
669 if (bdev)
670 iput(bdev->bd_inode);
671 }
672
673 /**
674 * bd_may_claim - test whether a block device can be claimed
675 * @bdev: block device of interest
676 * @whole: whole block device containing @bdev, may equal @bdev
677 * @holder: holder trying to claim @bdev
678 *
679 * Test whether @bdev can be claimed by @holder.
680 *
681 * CONTEXT:
682 * spin_lock(&bdev_lock).
683 *
684 * RETURNS:
685 * %true if @bdev can be claimed, %false otherwise.
686 */
687 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
688 void *holder)
689 {
690 if (bdev->bd_holder == holder)
691 return true; /* already a holder */
692 else if (bdev->bd_holder != NULL)
693 return false; /* held by someone else */
694 else if (bdev->bd_contains == bdev)
695 return true; /* is a whole device which isn't held */
696
697 else if (whole->bd_holder == bd_may_claim)
698 return true; /* is a partition of a device that is being partitioned */
699 else if (whole->bd_holder != NULL)
700 return false; /* is a partition of a held device */
701 else
702 return true; /* is a partition of an un-held device */
703 }
704
705 /**
706 * bd_prepare_to_claim - prepare to claim a block device
707 * @bdev: block device of interest
708 * @whole: the whole device containing @bdev, may equal @bdev
709 * @holder: holder trying to claim @bdev
710 *
711 * Prepare to claim @bdev. This function fails if @bdev is already
712 * claimed by another holder and waits if another claiming is in
713 * progress. This function doesn't actually claim. On successful
714 * return, the caller has ownership of bd_claiming and bd_holder[s].
715 *
716 * CONTEXT:
717 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
718 * it multiple times.
719 *
720 * RETURNS:
721 * 0 if @bdev can be claimed, -EBUSY otherwise.
722 */
723 static int bd_prepare_to_claim(struct block_device *bdev,
724 struct block_device *whole, void *holder)
725 {
726 retry:
727 /* if someone else claimed, fail */
728 if (!bd_may_claim(bdev, whole, holder))
729 return -EBUSY;
730
731 /* if claiming is already in progress, wait for it to finish */
732 if (whole->bd_claiming) {
733 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
734 DEFINE_WAIT(wait);
735
736 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
737 spin_unlock(&bdev_lock);
738 schedule();
739 finish_wait(wq, &wait);
740 spin_lock(&bdev_lock);
741 goto retry;
742 }
743
744 /* yay, all mine */
745 return 0;
746 }
747
748 /**
749 * bd_start_claiming - start claiming a block device
750 * @bdev: block device of interest
751 * @holder: holder trying to claim @bdev
752 *
753 * @bdev is about to be opened exclusively. Check @bdev can be opened
754 * exclusively and mark that an exclusive open is in progress. Each
755 * successful call to this function must be matched with a call to
756 * either bd_finish_claiming() or bd_abort_claiming() (which do not
757 * fail).
758 *
759 * This function is used to gain exclusive access to the block device
760 * without actually causing other exclusive open attempts to fail. It
761 * should be used when the open sequence itself requires exclusive
762 * access but may subsequently fail.
763 *
764 * CONTEXT:
765 * Might sleep.
766 *
767 * RETURNS:
768 * Pointer to the block device containing @bdev on success, ERR_PTR()
769 * value on failure.
770 */
771 static struct block_device *bd_start_claiming(struct block_device *bdev,
772 void *holder)
773 {
774 struct gendisk *disk;
775 struct block_device *whole;
776 int partno, err;
777
778 might_sleep();
779
780 /*
781 * @bdev might not have been initialized properly yet, look up
782 * and grab the outer block device the hard way.
783 */
784 disk = get_gendisk(bdev->bd_dev, &partno);
785 if (!disk)
786 return ERR_PTR(-ENXIO);
787
788 /*
789 * Normally, @bdev should equal what's returned from bdget_disk()
790 * if partno is 0; however, some drivers (floppy) use multiple
791 * bdev's for the same physical device and @bdev may be one of the
792 * aliases. Keep @bdev if partno is 0. This means claimer
793 * tracking is broken for those devices but it has always been that
794 * way.
795 */
796 if (partno)
797 whole = bdget_disk(disk, 0);
798 else
799 whole = bdgrab(bdev);
800
801 module_put(disk->fops->owner);
802 put_disk(disk);
803 if (!whole)
804 return ERR_PTR(-ENOMEM);
805
806 /* prepare to claim, if successful, mark claiming in progress */
807 spin_lock(&bdev_lock);
808
809 err = bd_prepare_to_claim(bdev, whole, holder);
810 if (err == 0) {
811 whole->bd_claiming = holder;
812 spin_unlock(&bdev_lock);
813 return whole;
814 } else {
815 spin_unlock(&bdev_lock);
816 bdput(whole);
817 return ERR_PTR(err);
818 }
819 }
820
821 #ifdef CONFIG_SYSFS
822 struct bd_holder_disk {
823 struct list_head list;
824 struct gendisk *disk;
825 int refcnt;
826 };
827
828 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
829 struct gendisk *disk)
830 {
831 struct bd_holder_disk *holder;
832
833 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
834 if (holder->disk == disk)
835 return holder;
836 return NULL;
837 }
838
839 static int add_symlink(struct kobject *from, struct kobject *to)
840 {
841 return sysfs_create_link(from, to, kobject_name(to));
842 }
843
844 static void del_symlink(struct kobject *from, struct kobject *to)
845 {
846 sysfs_remove_link(from, kobject_name(to));
847 }
848
849 /**
850 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
851 * @bdev: the claimed slave bdev
852 * @disk: the holding disk
853 *
854 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
855 *
856 * This functions creates the following sysfs symlinks.
857 *
858 * - from "slaves" directory of the holder @disk to the claimed @bdev
859 * - from "holders" directory of the @bdev to the holder @disk
860 *
861 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
862 * passed to bd_link_disk_holder(), then:
863 *
864 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
865 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
866 *
867 * The caller must have claimed @bdev before calling this function and
868 * ensure that both @bdev and @disk are valid during the creation and
869 * lifetime of these symlinks.
870 *
871 * CONTEXT:
872 * Might sleep.
873 *
874 * RETURNS:
875 * 0 on success, -errno on failure.
876 */
877 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
878 {
879 struct bd_holder_disk *holder;
880 int ret = 0;
881
882 mutex_lock(&bdev->bd_mutex);
883
884 WARN_ON_ONCE(!bdev->bd_holder);
885
886 /* FIXME: remove the following once add_disk() handles errors */
887 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
888 goto out_unlock;
889
890 holder = bd_find_holder_disk(bdev, disk);
891 if (holder) {
892 holder->refcnt++;
893 goto out_unlock;
894 }
895
896 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
897 if (!holder) {
898 ret = -ENOMEM;
899 goto out_unlock;
900 }
901
902 INIT_LIST_HEAD(&holder->list);
903 holder->disk = disk;
904 holder->refcnt = 1;
905
906 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
907 if (ret)
908 goto out_free;
909
910 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
911 if (ret)
912 goto out_del;
913 /*
914 * bdev could be deleted beneath us which would implicitly destroy
915 * the holder directory. Hold on to it.
916 */
917 kobject_get(bdev->bd_part->holder_dir);
918
919 list_add(&holder->list, &bdev->bd_holder_disks);
920 goto out_unlock;
921
922 out_del:
923 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
924 out_free:
925 kfree(holder);
926 out_unlock:
927 mutex_unlock(&bdev->bd_mutex);
928 return ret;
929 }
930 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
931
932 /**
933 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
934 * @bdev: the calimed slave bdev
935 * @disk: the holding disk
936 *
937 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
938 *
939 * CONTEXT:
940 * Might sleep.
941 */
942 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
943 {
944 struct bd_holder_disk *holder;
945
946 mutex_lock(&bdev->bd_mutex);
947
948 holder = bd_find_holder_disk(bdev, disk);
949
950 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
951 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
952 del_symlink(bdev->bd_part->holder_dir,
953 &disk_to_dev(disk)->kobj);
954 kobject_put(bdev->bd_part->holder_dir);
955 list_del_init(&holder->list);
956 kfree(holder);
957 }
958
959 mutex_unlock(&bdev->bd_mutex);
960 }
961 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
962 #endif
963
964 /**
965 * flush_disk - invalidates all buffer-cache entries on a disk
966 *
967 * @bdev: struct block device to be flushed
968 * @kill_dirty: flag to guide handling of dirty inodes
969 *
970 * Invalidates all buffer-cache entries on a disk. It should be called
971 * when a disk has been changed -- either by a media change or online
972 * resize.
973 */
974 static void flush_disk(struct block_device *bdev, bool kill_dirty)
975 {
976 if (__invalidate_device(bdev, kill_dirty)) {
977 char name[BDEVNAME_SIZE] = "";
978
979 if (bdev->bd_disk)
980 disk_name(bdev->bd_disk, 0, name);
981 printk(KERN_WARNING "VFS: busy inodes on changed media or "
982 "resized disk %s\n", name);
983 }
984
985 if (!bdev->bd_disk)
986 return;
987 if (disk_part_scan_enabled(bdev->bd_disk))
988 bdev->bd_invalidated = 1;
989 }
990
991 /**
992 * check_disk_size_change - checks for disk size change and adjusts bdev size.
993 * @disk: struct gendisk to check
994 * @bdev: struct bdev to adjust.
995 *
996 * This routine checks to see if the bdev size does not match the disk size
997 * and adjusts it if it differs.
998 */
999 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1000 {
1001 loff_t disk_size, bdev_size;
1002
1003 disk_size = (loff_t)get_capacity(disk) << 9;
1004 bdev_size = i_size_read(bdev->bd_inode);
1005 if (disk_size != bdev_size) {
1006 char name[BDEVNAME_SIZE];
1007
1008 disk_name(disk, 0, name);
1009 printk(KERN_INFO
1010 "%s: detected capacity change from %lld to %lld\n",
1011 name, bdev_size, disk_size);
1012 i_size_write(bdev->bd_inode, disk_size);
1013 flush_disk(bdev, false);
1014 }
1015 }
1016 EXPORT_SYMBOL(check_disk_size_change);
1017
1018 /**
1019 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1020 * @disk: struct gendisk to be revalidated
1021 *
1022 * This routine is a wrapper for lower-level driver's revalidate_disk
1023 * call-backs. It is used to do common pre and post operations needed
1024 * for all revalidate_disk operations.
1025 */
1026 int revalidate_disk(struct gendisk *disk)
1027 {
1028 struct block_device *bdev;
1029 int ret = 0;
1030
1031 if (disk->fops->revalidate_disk)
1032 ret = disk->fops->revalidate_disk(disk);
1033
1034 bdev = bdget_disk(disk, 0);
1035 if (!bdev)
1036 return ret;
1037
1038 mutex_lock(&bdev->bd_mutex);
1039 check_disk_size_change(disk, bdev);
1040 bdev->bd_invalidated = 0;
1041 mutex_unlock(&bdev->bd_mutex);
1042 bdput(bdev);
1043 return ret;
1044 }
1045 EXPORT_SYMBOL(revalidate_disk);
1046
1047 /*
1048 * This routine checks whether a removable media has been changed,
1049 * and invalidates all buffer-cache-entries in that case. This
1050 * is a relatively slow routine, so we have to try to minimize using
1051 * it. Thus it is called only upon a 'mount' or 'open'. This
1052 * is the best way of combining speed and utility, I think.
1053 * People changing diskettes in the middle of an operation deserve
1054 * to lose :-)
1055 */
1056 int check_disk_change(struct block_device *bdev)
1057 {
1058 struct gendisk *disk = bdev->bd_disk;
1059 const struct block_device_operations *bdops = disk->fops;
1060 unsigned int events;
1061
1062 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1063 DISK_EVENT_EJECT_REQUEST);
1064 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1065 return 0;
1066
1067 flush_disk(bdev, true);
1068 if (bdops->revalidate_disk)
1069 bdops->revalidate_disk(bdev->bd_disk);
1070 return 1;
1071 }
1072
1073 EXPORT_SYMBOL(check_disk_change);
1074
1075 void bd_set_size(struct block_device *bdev, loff_t size)
1076 {
1077 unsigned bsize = bdev_logical_block_size(bdev);
1078
1079 mutex_lock(&bdev->bd_inode->i_mutex);
1080 i_size_write(bdev->bd_inode, size);
1081 mutex_unlock(&bdev->bd_inode->i_mutex);
1082 while (bsize < PAGE_CACHE_SIZE) {
1083 if (size & bsize)
1084 break;
1085 bsize <<= 1;
1086 }
1087 bdev->bd_block_size = bsize;
1088 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1089 }
1090 EXPORT_SYMBOL(bd_set_size);
1091
1092 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1093
1094 /*
1095 * bd_mutex locking:
1096 *
1097 * mutex_lock(part->bd_mutex)
1098 * mutex_lock_nested(whole->bd_mutex, 1)
1099 */
1100
1101 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1102 {
1103 struct gendisk *disk;
1104 struct module *owner;
1105 int ret;
1106 int partno;
1107 int perm = 0;
1108
1109 if (mode & FMODE_READ)
1110 perm |= MAY_READ;
1111 if (mode & FMODE_WRITE)
1112 perm |= MAY_WRITE;
1113 /*
1114 * hooks: /n/, see "layering violations".
1115 */
1116 if (!for_part) {
1117 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1118 if (ret != 0) {
1119 bdput(bdev);
1120 return ret;
1121 }
1122 }
1123
1124 restart:
1125
1126 ret = -ENXIO;
1127 disk = get_gendisk(bdev->bd_dev, &partno);
1128 if (!disk)
1129 goto out;
1130 owner = disk->fops->owner;
1131
1132 disk_block_events(disk);
1133 mutex_lock_nested(&bdev->bd_mutex, for_part);
1134 if (!bdev->bd_openers) {
1135 bdev->bd_disk = disk;
1136 bdev->bd_queue = disk->queue;
1137 bdev->bd_contains = bdev;
1138 if (!partno) {
1139 ret = -ENXIO;
1140 bdev->bd_part = disk_get_part(disk, partno);
1141 if (!bdev->bd_part)
1142 goto out_clear;
1143
1144 ret = 0;
1145 if (disk->fops->open) {
1146 ret = disk->fops->open(bdev, mode);
1147 if (ret == -ERESTARTSYS) {
1148 /* Lost a race with 'disk' being
1149 * deleted, try again.
1150 * See md.c
1151 */
1152 disk_put_part(bdev->bd_part);
1153 bdev->bd_part = NULL;
1154 bdev->bd_disk = NULL;
1155 bdev->bd_queue = NULL;
1156 mutex_unlock(&bdev->bd_mutex);
1157 disk_unblock_events(disk);
1158 put_disk(disk);
1159 module_put(owner);
1160 goto restart;
1161 }
1162 }
1163
1164 if (!ret)
1165 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1166
1167 /*
1168 * If the device is invalidated, rescan partition
1169 * if open succeeded or failed with -ENOMEDIUM.
1170 * The latter is necessary to prevent ghost
1171 * partitions on a removed medium.
1172 */
1173 if (bdev->bd_invalidated) {
1174 if (!ret)
1175 rescan_partitions(disk, bdev);
1176 else if (ret == -ENOMEDIUM)
1177 invalidate_partitions(disk, bdev);
1178 }
1179 if (ret)
1180 goto out_clear;
1181 } else {
1182 struct block_device *whole;
1183 whole = bdget_disk(disk, 0);
1184 ret = -ENOMEM;
1185 if (!whole)
1186 goto out_clear;
1187 BUG_ON(for_part);
1188 ret = __blkdev_get(whole, mode, 1);
1189 if (ret)
1190 goto out_clear;
1191 bdev->bd_contains = whole;
1192 bdev->bd_part = disk_get_part(disk, partno);
1193 if (!(disk->flags & GENHD_FL_UP) ||
1194 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1195 ret = -ENXIO;
1196 goto out_clear;
1197 }
1198 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1199 }
1200 } else {
1201 if (bdev->bd_contains == bdev) {
1202 ret = 0;
1203 if (bdev->bd_disk->fops->open)
1204 ret = bdev->bd_disk->fops->open(bdev, mode);
1205 /* the same as first opener case, read comment there */
1206 if (bdev->bd_invalidated) {
1207 if (!ret)
1208 rescan_partitions(bdev->bd_disk, bdev);
1209 else if (ret == -ENOMEDIUM)
1210 invalidate_partitions(bdev->bd_disk, bdev);
1211 }
1212 if (ret)
1213 goto out_unlock_bdev;
1214 }
1215 /* only one opener holds refs to the module and disk */
1216 put_disk(disk);
1217 module_put(owner);
1218 }
1219 bdev->bd_openers++;
1220 if (for_part)
1221 bdev->bd_part_count++;
1222 mutex_unlock(&bdev->bd_mutex);
1223 disk_unblock_events(disk);
1224 return 0;
1225
1226 out_clear:
1227 disk_put_part(bdev->bd_part);
1228 bdev->bd_disk = NULL;
1229 bdev->bd_part = NULL;
1230 bdev->bd_queue = NULL;
1231 if (bdev != bdev->bd_contains)
1232 __blkdev_put(bdev->bd_contains, mode, 1);
1233 bdev->bd_contains = NULL;
1234 out_unlock_bdev:
1235 mutex_unlock(&bdev->bd_mutex);
1236 disk_unblock_events(disk);
1237 put_disk(disk);
1238 module_put(owner);
1239 out:
1240 bdput(bdev);
1241
1242 return ret;
1243 }
1244
1245 /**
1246 * blkdev_get - open a block device
1247 * @bdev: block_device to open
1248 * @mode: FMODE_* mask
1249 * @holder: exclusive holder identifier
1250 *
1251 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1252 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1253 * @holder is invalid. Exclusive opens may nest for the same @holder.
1254 *
1255 * On success, the reference count of @bdev is unchanged. On failure,
1256 * @bdev is put.
1257 *
1258 * CONTEXT:
1259 * Might sleep.
1260 *
1261 * RETURNS:
1262 * 0 on success, -errno on failure.
1263 */
1264 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1265 {
1266 struct block_device *whole = NULL;
1267 int res;
1268
1269 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1270
1271 if ((mode & FMODE_EXCL) && holder) {
1272 whole = bd_start_claiming(bdev, holder);
1273 if (IS_ERR(whole)) {
1274 bdput(bdev);
1275 return PTR_ERR(whole);
1276 }
1277 }
1278
1279 res = __blkdev_get(bdev, mode, 0);
1280
1281 if (whole) {
1282 struct gendisk *disk = whole->bd_disk;
1283
1284 /* finish claiming */
1285 mutex_lock(&bdev->bd_mutex);
1286 spin_lock(&bdev_lock);
1287
1288 if (!res) {
1289 BUG_ON(!bd_may_claim(bdev, whole, holder));
1290 /*
1291 * Note that for a whole device bd_holders
1292 * will be incremented twice, and bd_holder
1293 * will be set to bd_may_claim before being
1294 * set to holder
1295 */
1296 whole->bd_holders++;
1297 whole->bd_holder = bd_may_claim;
1298 bdev->bd_holders++;
1299 bdev->bd_holder = holder;
1300 }
1301
1302 /* tell others that we're done */
1303 BUG_ON(whole->bd_claiming != holder);
1304 whole->bd_claiming = NULL;
1305 wake_up_bit(&whole->bd_claiming, 0);
1306
1307 spin_unlock(&bdev_lock);
1308
1309 /*
1310 * Block event polling for write claims if requested. Any
1311 * write holder makes the write_holder state stick until
1312 * all are released. This is good enough and tracking
1313 * individual writeable reference is too fragile given the
1314 * way @mode is used in blkdev_get/put().
1315 */
1316 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1317 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1318 bdev->bd_write_holder = true;
1319 disk_block_events(disk);
1320 }
1321
1322 mutex_unlock(&bdev->bd_mutex);
1323 bdput(whole);
1324 }
1325
1326 return res;
1327 }
1328 EXPORT_SYMBOL(blkdev_get);
1329
1330 /**
1331 * blkdev_get_by_path - open a block device by name
1332 * @path: path to the block device to open
1333 * @mode: FMODE_* mask
1334 * @holder: exclusive holder identifier
1335 *
1336 * Open the blockdevice described by the device file at @path. @mode
1337 * and @holder are identical to blkdev_get().
1338 *
1339 * On success, the returned block_device has reference count of one.
1340 *
1341 * CONTEXT:
1342 * Might sleep.
1343 *
1344 * RETURNS:
1345 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1346 */
1347 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1348 void *holder)
1349 {
1350 struct block_device *bdev;
1351 int err;
1352
1353 bdev = lookup_bdev(path);
1354 if (IS_ERR(bdev))
1355 return bdev;
1356
1357 err = blkdev_get(bdev, mode, holder);
1358 if (err)
1359 return ERR_PTR(err);
1360
1361 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1362 blkdev_put(bdev, mode);
1363 return ERR_PTR(-EACCES);
1364 }
1365
1366 return bdev;
1367 }
1368 EXPORT_SYMBOL(blkdev_get_by_path);
1369
1370 /**
1371 * blkdev_get_by_dev - open a block device by device number
1372 * @dev: device number of block device to open
1373 * @mode: FMODE_* mask
1374 * @holder: exclusive holder identifier
1375 *
1376 * Open the blockdevice described by device number @dev. @mode and
1377 * @holder are identical to blkdev_get().
1378 *
1379 * Use it ONLY if you really do not have anything better - i.e. when
1380 * you are behind a truly sucky interface and all you are given is a
1381 * device number. _Never_ to be used for internal purposes. If you
1382 * ever need it - reconsider your API.
1383 *
1384 * On success, the returned block_device has reference count of one.
1385 *
1386 * CONTEXT:
1387 * Might sleep.
1388 *
1389 * RETURNS:
1390 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1391 */
1392 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1393 {
1394 struct block_device *bdev;
1395 int err;
1396
1397 bdev = bdget(dev);
1398 if (!bdev)
1399 return ERR_PTR(-ENOMEM);
1400
1401 err = blkdev_get(bdev, mode, holder);
1402 if (err)
1403 return ERR_PTR(err);
1404
1405 return bdev;
1406 }
1407 EXPORT_SYMBOL(blkdev_get_by_dev);
1408
1409 static int blkdev_open(struct inode * inode, struct file * filp)
1410 {
1411 struct block_device *bdev;
1412
1413 /*
1414 * Preserve backwards compatibility and allow large file access
1415 * even if userspace doesn't ask for it explicitly. Some mkfs
1416 * binary needs it. We might want to drop this workaround
1417 * during an unstable branch.
1418 */
1419 filp->f_flags |= O_LARGEFILE;
1420
1421 if (filp->f_flags & O_NDELAY)
1422 filp->f_mode |= FMODE_NDELAY;
1423 if (filp->f_flags & O_EXCL)
1424 filp->f_mode |= FMODE_EXCL;
1425 if ((filp->f_flags & O_ACCMODE) == 3)
1426 filp->f_mode |= FMODE_WRITE_IOCTL;
1427
1428 bdev = bd_acquire(inode);
1429 if (bdev == NULL)
1430 return -ENOMEM;
1431
1432 filp->f_mapping = bdev->bd_inode->i_mapping;
1433
1434 return blkdev_get(bdev, filp->f_mode, filp);
1435 }
1436
1437 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1438 {
1439 struct gendisk *disk = bdev->bd_disk;
1440 struct block_device *victim = NULL;
1441
1442 mutex_lock_nested(&bdev->bd_mutex, for_part);
1443 if (for_part)
1444 bdev->bd_part_count--;
1445
1446 if (!--bdev->bd_openers) {
1447 WARN_ON_ONCE(bdev->bd_holders);
1448 sync_blockdev(bdev);
1449 kill_bdev(bdev);
1450 /*
1451 * ->release can cause the queue to disappear, so flush all
1452 * dirty data before.
1453 */
1454 bdev_write_inode(bdev->bd_inode);
1455 }
1456 if (bdev->bd_contains == bdev) {
1457 if (disk->fops->release)
1458 disk->fops->release(disk, mode);
1459 }
1460 if (!bdev->bd_openers) {
1461 struct module *owner = disk->fops->owner;
1462
1463 disk_put_part(bdev->bd_part);
1464 bdev->bd_part = NULL;
1465 bdev->bd_disk = NULL;
1466 if (bdev != bdev->bd_contains)
1467 victim = bdev->bd_contains;
1468 bdev->bd_contains = NULL;
1469
1470 put_disk(disk);
1471 module_put(owner);
1472 }
1473 mutex_unlock(&bdev->bd_mutex);
1474 bdput(bdev);
1475 if (victim)
1476 __blkdev_put(victim, mode, 1);
1477 }
1478
1479 void blkdev_put(struct block_device *bdev, fmode_t mode)
1480 {
1481 mutex_lock(&bdev->bd_mutex);
1482
1483 if (mode & FMODE_EXCL) {
1484 bool bdev_free;
1485
1486 /*
1487 * Release a claim on the device. The holder fields
1488 * are protected with bdev_lock. bd_mutex is to
1489 * synchronize disk_holder unlinking.
1490 */
1491 spin_lock(&bdev_lock);
1492
1493 WARN_ON_ONCE(--bdev->bd_holders < 0);
1494 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1495
1496 /* bd_contains might point to self, check in a separate step */
1497 if ((bdev_free = !bdev->bd_holders))
1498 bdev->bd_holder = NULL;
1499 if (!bdev->bd_contains->bd_holders)
1500 bdev->bd_contains->bd_holder = NULL;
1501
1502 spin_unlock(&bdev_lock);
1503
1504 /*
1505 * If this was the last claim, remove holder link and
1506 * unblock evpoll if it was a write holder.
1507 */
1508 if (bdev_free && bdev->bd_write_holder) {
1509 disk_unblock_events(bdev->bd_disk);
1510 bdev->bd_write_holder = false;
1511 }
1512 }
1513
1514 /*
1515 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1516 * event. This is to ensure detection of media removal commanded
1517 * from userland - e.g. eject(1).
1518 */
1519 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1520
1521 mutex_unlock(&bdev->bd_mutex);
1522
1523 __blkdev_put(bdev, mode, 0);
1524 }
1525 EXPORT_SYMBOL(blkdev_put);
1526
1527 static int blkdev_close(struct inode * inode, struct file * filp)
1528 {
1529 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1530 blkdev_put(bdev, filp->f_mode);
1531 return 0;
1532 }
1533
1534 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1535 {
1536 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1537 fmode_t mode = file->f_mode;
1538
1539 /*
1540 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1541 * to updated it before every ioctl.
1542 */
1543 if (file->f_flags & O_NDELAY)
1544 mode |= FMODE_NDELAY;
1545 else
1546 mode &= ~FMODE_NDELAY;
1547
1548 return blkdev_ioctl(bdev, mode, cmd, arg);
1549 }
1550
1551 /*
1552 * Write data to the block device. Only intended for the block device itself
1553 * and the raw driver which basically is a fake block device.
1554 *
1555 * Does not take i_mutex for the write and thus is not for general purpose
1556 * use.
1557 */
1558 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1559 {
1560 struct file *file = iocb->ki_filp;
1561 struct blk_plug plug;
1562 ssize_t ret;
1563
1564 blk_start_plug(&plug);
1565 ret = __generic_file_write_iter(iocb, from);
1566 if (ret > 0) {
1567 ssize_t err;
1568 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1569 if (err < 0)
1570 ret = err;
1571 }
1572 blk_finish_plug(&plug);
1573 return ret;
1574 }
1575 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1576
1577 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1578 {
1579 struct file *file = iocb->ki_filp;
1580 struct inode *bd_inode = file->f_mapping->host;
1581 loff_t size = i_size_read(bd_inode);
1582 loff_t pos = iocb->ki_pos;
1583
1584 if (pos >= size)
1585 return 0;
1586
1587 size -= pos;
1588 iov_iter_truncate(to, size);
1589 return generic_file_read_iter(iocb, to);
1590 }
1591 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1592
1593 /*
1594 * Try to release a page associated with block device when the system
1595 * is under memory pressure.
1596 */
1597 static int blkdev_releasepage(struct page *page, gfp_t wait)
1598 {
1599 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1600
1601 if (super && super->s_op->bdev_try_to_free_page)
1602 return super->s_op->bdev_try_to_free_page(super, page, wait);
1603
1604 return try_to_free_buffers(page);
1605 }
1606
1607 static const struct address_space_operations def_blk_aops = {
1608 .readpage = blkdev_readpage,
1609 .readpages = blkdev_readpages,
1610 .writepage = blkdev_writepage,
1611 .write_begin = blkdev_write_begin,
1612 .write_end = blkdev_write_end,
1613 .writepages = generic_writepages,
1614 .releasepage = blkdev_releasepage,
1615 .direct_IO = blkdev_direct_IO,
1616 .is_dirty_writeback = buffer_check_dirty_writeback,
1617 };
1618
1619 const struct file_operations def_blk_fops = {
1620 .open = blkdev_open,
1621 .release = blkdev_close,
1622 .llseek = block_llseek,
1623 .read = new_sync_read,
1624 .write = new_sync_write,
1625 .read_iter = blkdev_read_iter,
1626 .write_iter = blkdev_write_iter,
1627 .mmap = generic_file_mmap,
1628 .fsync = blkdev_fsync,
1629 .unlocked_ioctl = block_ioctl,
1630 #ifdef CONFIG_COMPAT
1631 .compat_ioctl = compat_blkdev_ioctl,
1632 #endif
1633 .splice_read = generic_file_splice_read,
1634 .splice_write = iter_file_splice_write,
1635 };
1636
1637 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1638 {
1639 int res;
1640 mm_segment_t old_fs = get_fs();
1641 set_fs(KERNEL_DS);
1642 res = blkdev_ioctl(bdev, 0, cmd, arg);
1643 set_fs(old_fs);
1644 return res;
1645 }
1646
1647 EXPORT_SYMBOL(ioctl_by_bdev);
1648
1649 /**
1650 * lookup_bdev - lookup a struct block_device by name
1651 * @pathname: special file representing the block device
1652 *
1653 * Get a reference to the blockdevice at @pathname in the current
1654 * namespace if possible and return it. Return ERR_PTR(error)
1655 * otherwise.
1656 */
1657 struct block_device *lookup_bdev(const char *pathname)
1658 {
1659 struct block_device *bdev;
1660 struct inode *inode;
1661 struct path path;
1662 int error;
1663
1664 if (!pathname || !*pathname)
1665 return ERR_PTR(-EINVAL);
1666
1667 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1668 if (error)
1669 return ERR_PTR(error);
1670
1671 inode = path.dentry->d_inode;
1672 error = -ENOTBLK;
1673 if (!S_ISBLK(inode->i_mode))
1674 goto fail;
1675 error = -EACCES;
1676 if (path.mnt->mnt_flags & MNT_NODEV)
1677 goto fail;
1678 error = -ENOMEM;
1679 bdev = bd_acquire(inode);
1680 if (!bdev)
1681 goto fail;
1682 out:
1683 path_put(&path);
1684 return bdev;
1685 fail:
1686 bdev = ERR_PTR(error);
1687 goto out;
1688 }
1689 EXPORT_SYMBOL(lookup_bdev);
1690
1691 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1692 {
1693 struct super_block *sb = get_super(bdev);
1694 int res = 0;
1695
1696 if (sb) {
1697 /*
1698 * no need to lock the super, get_super holds the
1699 * read mutex so the filesystem cannot go away
1700 * under us (->put_super runs with the write lock
1701 * hold).
1702 */
1703 shrink_dcache_sb(sb);
1704 res = invalidate_inodes(sb, kill_dirty);
1705 drop_super(sb);
1706 }
1707 invalidate_bdev(bdev);
1708 return res;
1709 }
1710 EXPORT_SYMBOL(__invalidate_device);
1711
1712 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1713 {
1714 struct inode *inode, *old_inode = NULL;
1715
1716 spin_lock(&inode_sb_list_lock);
1717 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1718 struct address_space *mapping = inode->i_mapping;
1719
1720 spin_lock(&inode->i_lock);
1721 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1722 mapping->nrpages == 0) {
1723 spin_unlock(&inode->i_lock);
1724 continue;
1725 }
1726 __iget(inode);
1727 spin_unlock(&inode->i_lock);
1728 spin_unlock(&inode_sb_list_lock);
1729 /*
1730 * We hold a reference to 'inode' so it couldn't have been
1731 * removed from s_inodes list while we dropped the
1732 * inode_sb_list_lock. We cannot iput the inode now as we can
1733 * be holding the last reference and we cannot iput it under
1734 * inode_sb_list_lock. So we keep the reference and iput it
1735 * later.
1736 */
1737 iput(old_inode);
1738 old_inode = inode;
1739
1740 func(I_BDEV(inode), arg);
1741
1742 spin_lock(&inode_sb_list_lock);
1743 }
1744 spin_unlock(&inode_sb_list_lock);
1745 iput(old_inode);
1746 }
This page took 0.071424 seconds and 6 git commands to generate.