Btrfs: convert printk to btrfs_ and fix BTRFS prefix
[deliverable/linux.git] / fs / btrfs / compression.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44
45 struct compressed_bio {
46 /* number of bios pending for this compressed extent */
47 atomic_t pending_bios;
48
49 /* the pages with the compressed data on them */
50 struct page **compressed_pages;
51
52 /* inode that owns this data */
53 struct inode *inode;
54
55 /* starting offset in the inode for our pages */
56 u64 start;
57
58 /* number of bytes in the inode we're working on */
59 unsigned long len;
60
61 /* number of bytes on disk */
62 unsigned long compressed_len;
63
64 /* the compression algorithm for this bio */
65 int compress_type;
66
67 /* number of compressed pages in the array */
68 unsigned long nr_pages;
69
70 /* IO errors */
71 int errors;
72 int mirror_num;
73
74 /* for reads, this is the bio we are copying the data into */
75 struct bio *orig_bio;
76
77 /*
78 * the start of a variable length array of checksums only
79 * used by reads
80 */
81 u32 sums;
82 };
83
84 static int btrfs_decompress_biovec(int type, struct page **pages_in,
85 u64 disk_start, struct bio_vec *bvec,
86 int vcnt, size_t srclen);
87
88 static inline int compressed_bio_size(struct btrfs_root *root,
89 unsigned long disk_size)
90 {
91 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92
93 return sizeof(struct compressed_bio) +
94 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
95 csum_size;
96 }
97
98 static struct bio *compressed_bio_alloc(struct block_device *bdev,
99 u64 first_byte, gfp_t gfp_flags)
100 {
101 int nr_vecs;
102
103 nr_vecs = bio_get_nr_vecs(bdev);
104 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
105 }
106
107 static int check_compressed_csum(struct inode *inode,
108 struct compressed_bio *cb,
109 u64 disk_start)
110 {
111 int ret;
112 struct page *page;
113 unsigned long i;
114 char *kaddr;
115 u32 csum;
116 u32 *cb_sum = &cb->sums;
117
118 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
119 return 0;
120
121 for (i = 0; i < cb->nr_pages; i++) {
122 page = cb->compressed_pages[i];
123 csum = ~(u32)0;
124
125 kaddr = kmap_atomic(page);
126 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
127 btrfs_csum_final(csum, (char *)&csum);
128 kunmap_atomic(kaddr);
129
130 if (csum != *cb_sum) {
131 btrfs_info(BTRFS_I(inode)->root->fs_info,
132 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
133 btrfs_ino(inode), disk_start, csum, *cb_sum,
134 cb->mirror_num);
135 ret = -EIO;
136 goto fail;
137 }
138 cb_sum++;
139
140 }
141 ret = 0;
142 fail:
143 return ret;
144 }
145
146 /* when we finish reading compressed pages from the disk, we
147 * decompress them and then run the bio end_io routines on the
148 * decompressed pages (in the inode address space).
149 *
150 * This allows the checksumming and other IO error handling routines
151 * to work normally
152 *
153 * The compressed pages are freed here, and it must be run
154 * in process context
155 */
156 static void end_compressed_bio_read(struct bio *bio, int err)
157 {
158 struct compressed_bio *cb = bio->bi_private;
159 struct inode *inode;
160 struct page *page;
161 unsigned long index;
162 int ret;
163
164 if (err)
165 cb->errors = 1;
166
167 /* if there are more bios still pending for this compressed
168 * extent, just exit
169 */
170 if (!atomic_dec_and_test(&cb->pending_bios))
171 goto out;
172
173 inode = cb->inode;
174 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
175 if (ret)
176 goto csum_failed;
177
178 /* ok, we're the last bio for this extent, lets start
179 * the decompression.
180 */
181 ret = btrfs_decompress_biovec(cb->compress_type,
182 cb->compressed_pages,
183 cb->start,
184 cb->orig_bio->bi_io_vec,
185 cb->orig_bio->bi_vcnt,
186 cb->compressed_len);
187 csum_failed:
188 if (ret)
189 cb->errors = 1;
190
191 /* release the compressed pages */
192 index = 0;
193 for (index = 0; index < cb->nr_pages; index++) {
194 page = cb->compressed_pages[index];
195 page->mapping = NULL;
196 page_cache_release(page);
197 }
198
199 /* do io completion on the original bio */
200 if (cb->errors) {
201 bio_io_error(cb->orig_bio);
202 } else {
203 int bio_index = 0;
204 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
205
206 /*
207 * we have verified the checksum already, set page
208 * checked so the end_io handlers know about it
209 */
210 while (bio_index < cb->orig_bio->bi_vcnt) {
211 SetPageChecked(bvec->bv_page);
212 bvec++;
213 bio_index++;
214 }
215 bio_endio(cb->orig_bio, 0);
216 }
217
218 /* finally free the cb struct */
219 kfree(cb->compressed_pages);
220 kfree(cb);
221 out:
222 bio_put(bio);
223 }
224
225 /*
226 * Clear the writeback bits on all of the file
227 * pages for a compressed write
228 */
229 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
230 unsigned long ram_size)
231 {
232 unsigned long index = start >> PAGE_CACHE_SHIFT;
233 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
234 struct page *pages[16];
235 unsigned long nr_pages = end_index - index + 1;
236 int i;
237 int ret;
238
239 while (nr_pages > 0) {
240 ret = find_get_pages_contig(inode->i_mapping, index,
241 min_t(unsigned long,
242 nr_pages, ARRAY_SIZE(pages)), pages);
243 if (ret == 0) {
244 nr_pages -= 1;
245 index += 1;
246 continue;
247 }
248 for (i = 0; i < ret; i++) {
249 end_page_writeback(pages[i]);
250 page_cache_release(pages[i]);
251 }
252 nr_pages -= ret;
253 index += ret;
254 }
255 /* the inode may be gone now */
256 }
257
258 /*
259 * do the cleanup once all the compressed pages hit the disk.
260 * This will clear writeback on the file pages and free the compressed
261 * pages.
262 *
263 * This also calls the writeback end hooks for the file pages so that
264 * metadata and checksums can be updated in the file.
265 */
266 static void end_compressed_bio_write(struct bio *bio, int err)
267 {
268 struct extent_io_tree *tree;
269 struct compressed_bio *cb = bio->bi_private;
270 struct inode *inode;
271 struct page *page;
272 unsigned long index;
273
274 if (err)
275 cb->errors = 1;
276
277 /* if there are more bios still pending for this compressed
278 * extent, just exit
279 */
280 if (!atomic_dec_and_test(&cb->pending_bios))
281 goto out;
282
283 /* ok, we're the last bio for this extent, step one is to
284 * call back into the FS and do all the end_io operations
285 */
286 inode = cb->inode;
287 tree = &BTRFS_I(inode)->io_tree;
288 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290 cb->start,
291 cb->start + cb->len - 1,
292 NULL, 1);
293 cb->compressed_pages[0]->mapping = NULL;
294
295 end_compressed_writeback(inode, cb->start, cb->len);
296 /* note, our inode could be gone now */
297
298 /*
299 * release the compressed pages, these came from alloc_page and
300 * are not attached to the inode at all
301 */
302 index = 0;
303 for (index = 0; index < cb->nr_pages; index++) {
304 page = cb->compressed_pages[index];
305 page->mapping = NULL;
306 page_cache_release(page);
307 }
308
309 /* finally free the cb struct */
310 kfree(cb->compressed_pages);
311 kfree(cb);
312 out:
313 bio_put(bio);
314 }
315
316 /*
317 * worker function to build and submit bios for previously compressed pages.
318 * The corresponding pages in the inode should be marked for writeback
319 * and the compressed pages should have a reference on them for dropping
320 * when the IO is complete.
321 *
322 * This also checksums the file bytes and gets things ready for
323 * the end io hooks.
324 */
325 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326 unsigned long len, u64 disk_start,
327 unsigned long compressed_len,
328 struct page **compressed_pages,
329 unsigned long nr_pages)
330 {
331 struct bio *bio = NULL;
332 struct btrfs_root *root = BTRFS_I(inode)->root;
333 struct compressed_bio *cb;
334 unsigned long bytes_left;
335 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
336 int pg_index = 0;
337 struct page *page;
338 u64 first_byte = disk_start;
339 struct block_device *bdev;
340 int ret;
341 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
342
343 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
344 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
345 if (!cb)
346 return -ENOMEM;
347 atomic_set(&cb->pending_bios, 0);
348 cb->errors = 0;
349 cb->inode = inode;
350 cb->start = start;
351 cb->len = len;
352 cb->mirror_num = 0;
353 cb->compressed_pages = compressed_pages;
354 cb->compressed_len = compressed_len;
355 cb->orig_bio = NULL;
356 cb->nr_pages = nr_pages;
357
358 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
359
360 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
361 if (!bio) {
362 kfree(cb);
363 return -ENOMEM;
364 }
365 bio->bi_private = cb;
366 bio->bi_end_io = end_compressed_bio_write;
367 atomic_inc(&cb->pending_bios);
368
369 /* create and submit bios for the compressed pages */
370 bytes_left = compressed_len;
371 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
372 page = compressed_pages[pg_index];
373 page->mapping = inode->i_mapping;
374 if (bio->bi_size)
375 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
376 PAGE_CACHE_SIZE,
377 bio, 0);
378 else
379 ret = 0;
380
381 page->mapping = NULL;
382 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
383 PAGE_CACHE_SIZE) {
384 bio_get(bio);
385
386 /*
387 * inc the count before we submit the bio so
388 * we know the end IO handler won't happen before
389 * we inc the count. Otherwise, the cb might get
390 * freed before we're done setting it up
391 */
392 atomic_inc(&cb->pending_bios);
393 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
394 BUG_ON(ret); /* -ENOMEM */
395
396 if (!skip_sum) {
397 ret = btrfs_csum_one_bio(root, inode, bio,
398 start, 1);
399 BUG_ON(ret); /* -ENOMEM */
400 }
401
402 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
403 BUG_ON(ret); /* -ENOMEM */
404
405 bio_put(bio);
406
407 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
408 BUG_ON(!bio);
409 bio->bi_private = cb;
410 bio->bi_end_io = end_compressed_bio_write;
411 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
412 }
413 if (bytes_left < PAGE_CACHE_SIZE) {
414 btrfs_info(BTRFS_I(inode)->root->fs_info,
415 "bytes left %lu compress len %lu nr %lu",
416 bytes_left, cb->compressed_len, cb->nr_pages);
417 }
418 bytes_left -= PAGE_CACHE_SIZE;
419 first_byte += PAGE_CACHE_SIZE;
420 cond_resched();
421 }
422 bio_get(bio);
423
424 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
425 BUG_ON(ret); /* -ENOMEM */
426
427 if (!skip_sum) {
428 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
429 BUG_ON(ret); /* -ENOMEM */
430 }
431
432 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
433 BUG_ON(ret); /* -ENOMEM */
434
435 bio_put(bio);
436 return 0;
437 }
438
439 static noinline int add_ra_bio_pages(struct inode *inode,
440 u64 compressed_end,
441 struct compressed_bio *cb)
442 {
443 unsigned long end_index;
444 unsigned long pg_index;
445 u64 last_offset;
446 u64 isize = i_size_read(inode);
447 int ret;
448 struct page *page;
449 unsigned long nr_pages = 0;
450 struct extent_map *em;
451 struct address_space *mapping = inode->i_mapping;
452 struct extent_map_tree *em_tree;
453 struct extent_io_tree *tree;
454 u64 end;
455 int misses = 0;
456
457 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
458 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
459 em_tree = &BTRFS_I(inode)->extent_tree;
460 tree = &BTRFS_I(inode)->io_tree;
461
462 if (isize == 0)
463 return 0;
464
465 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
466
467 while (last_offset < compressed_end) {
468 pg_index = last_offset >> PAGE_CACHE_SHIFT;
469
470 if (pg_index > end_index)
471 break;
472
473 rcu_read_lock();
474 page = radix_tree_lookup(&mapping->page_tree, pg_index);
475 rcu_read_unlock();
476 if (page) {
477 misses++;
478 if (misses > 4)
479 break;
480 goto next;
481 }
482
483 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
484 ~__GFP_FS);
485 if (!page)
486 break;
487
488 if (add_to_page_cache_lru(page, mapping, pg_index,
489 GFP_NOFS)) {
490 page_cache_release(page);
491 goto next;
492 }
493
494 end = last_offset + PAGE_CACHE_SIZE - 1;
495 /*
496 * at this point, we have a locked page in the page cache
497 * for these bytes in the file. But, we have to make
498 * sure they map to this compressed extent on disk.
499 */
500 set_page_extent_mapped(page);
501 lock_extent(tree, last_offset, end);
502 read_lock(&em_tree->lock);
503 em = lookup_extent_mapping(em_tree, last_offset,
504 PAGE_CACHE_SIZE);
505 read_unlock(&em_tree->lock);
506
507 if (!em || last_offset < em->start ||
508 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
509 (em->block_start >> 9) != cb->orig_bio->bi_sector) {
510 free_extent_map(em);
511 unlock_extent(tree, last_offset, end);
512 unlock_page(page);
513 page_cache_release(page);
514 break;
515 }
516 free_extent_map(em);
517
518 if (page->index == end_index) {
519 char *userpage;
520 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
521
522 if (zero_offset) {
523 int zeros;
524 zeros = PAGE_CACHE_SIZE - zero_offset;
525 userpage = kmap_atomic(page);
526 memset(userpage + zero_offset, 0, zeros);
527 flush_dcache_page(page);
528 kunmap_atomic(userpage);
529 }
530 }
531
532 ret = bio_add_page(cb->orig_bio, page,
533 PAGE_CACHE_SIZE, 0);
534
535 if (ret == PAGE_CACHE_SIZE) {
536 nr_pages++;
537 page_cache_release(page);
538 } else {
539 unlock_extent(tree, last_offset, end);
540 unlock_page(page);
541 page_cache_release(page);
542 break;
543 }
544 next:
545 last_offset += PAGE_CACHE_SIZE;
546 }
547 return 0;
548 }
549
550 /*
551 * for a compressed read, the bio we get passed has all the inode pages
552 * in it. We don't actually do IO on those pages but allocate new ones
553 * to hold the compressed pages on disk.
554 *
555 * bio->bi_sector points to the compressed extent on disk
556 * bio->bi_io_vec points to all of the inode pages
557 * bio->bi_vcnt is a count of pages
558 *
559 * After the compressed pages are read, we copy the bytes into the
560 * bio we were passed and then call the bio end_io calls
561 */
562 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
563 int mirror_num, unsigned long bio_flags)
564 {
565 struct extent_io_tree *tree;
566 struct extent_map_tree *em_tree;
567 struct compressed_bio *cb;
568 struct btrfs_root *root = BTRFS_I(inode)->root;
569 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
570 unsigned long compressed_len;
571 unsigned long nr_pages;
572 unsigned long pg_index;
573 struct page *page;
574 struct block_device *bdev;
575 struct bio *comp_bio;
576 u64 cur_disk_byte = (u64)bio->bi_sector << 9;
577 u64 em_len;
578 u64 em_start;
579 struct extent_map *em;
580 int ret = -ENOMEM;
581 int faili = 0;
582 u32 *sums;
583
584 tree = &BTRFS_I(inode)->io_tree;
585 em_tree = &BTRFS_I(inode)->extent_tree;
586
587 /* we need the actual starting offset of this extent in the file */
588 read_lock(&em_tree->lock);
589 em = lookup_extent_mapping(em_tree,
590 page_offset(bio->bi_io_vec->bv_page),
591 PAGE_CACHE_SIZE);
592 read_unlock(&em_tree->lock);
593 if (!em)
594 return -EIO;
595
596 compressed_len = em->block_len;
597 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
598 if (!cb)
599 goto out;
600
601 atomic_set(&cb->pending_bios, 0);
602 cb->errors = 0;
603 cb->inode = inode;
604 cb->mirror_num = mirror_num;
605 sums = &cb->sums;
606
607 cb->start = em->orig_start;
608 em_len = em->len;
609 em_start = em->start;
610
611 free_extent_map(em);
612 em = NULL;
613
614 cb->len = uncompressed_len;
615 cb->compressed_len = compressed_len;
616 cb->compress_type = extent_compress_type(bio_flags);
617 cb->orig_bio = bio;
618
619 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
620 PAGE_CACHE_SIZE;
621 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
622 GFP_NOFS);
623 if (!cb->compressed_pages)
624 goto fail1;
625
626 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
627
628 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
629 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
630 __GFP_HIGHMEM);
631 if (!cb->compressed_pages[pg_index]) {
632 faili = pg_index - 1;
633 ret = -ENOMEM;
634 goto fail2;
635 }
636 }
637 faili = nr_pages - 1;
638 cb->nr_pages = nr_pages;
639
640 /* In the parent-locked case, we only locked the range we are
641 * interested in. In all other cases, we can opportunistically
642 * cache decompressed data that goes beyond the requested range. */
643 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
644 add_ra_bio_pages(inode, em_start + em_len, cb);
645
646 /* include any pages we added in add_ra-bio_pages */
647 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
648 cb->len = uncompressed_len;
649
650 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
651 if (!comp_bio)
652 goto fail2;
653 comp_bio->bi_private = cb;
654 comp_bio->bi_end_io = end_compressed_bio_read;
655 atomic_inc(&cb->pending_bios);
656
657 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
658 page = cb->compressed_pages[pg_index];
659 page->mapping = inode->i_mapping;
660 page->index = em_start >> PAGE_CACHE_SHIFT;
661
662 if (comp_bio->bi_size)
663 ret = tree->ops->merge_bio_hook(READ, page, 0,
664 PAGE_CACHE_SIZE,
665 comp_bio, 0);
666 else
667 ret = 0;
668
669 page->mapping = NULL;
670 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
671 PAGE_CACHE_SIZE) {
672 bio_get(comp_bio);
673
674 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
675 BUG_ON(ret); /* -ENOMEM */
676
677 /*
678 * inc the count before we submit the bio so
679 * we know the end IO handler won't happen before
680 * we inc the count. Otherwise, the cb might get
681 * freed before we're done setting it up
682 */
683 atomic_inc(&cb->pending_bios);
684
685 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
686 ret = btrfs_lookup_bio_sums(root, inode,
687 comp_bio, sums);
688 BUG_ON(ret); /* -ENOMEM */
689 }
690 sums += (comp_bio->bi_size + root->sectorsize - 1) /
691 root->sectorsize;
692
693 ret = btrfs_map_bio(root, READ, comp_bio,
694 mirror_num, 0);
695 if (ret)
696 bio_endio(comp_bio, ret);
697
698 bio_put(comp_bio);
699
700 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
701 GFP_NOFS);
702 BUG_ON(!comp_bio);
703 comp_bio->bi_private = cb;
704 comp_bio->bi_end_io = end_compressed_bio_read;
705
706 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
707 }
708 cur_disk_byte += PAGE_CACHE_SIZE;
709 }
710 bio_get(comp_bio);
711
712 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
713 BUG_ON(ret); /* -ENOMEM */
714
715 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
716 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
717 BUG_ON(ret); /* -ENOMEM */
718 }
719
720 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
721 if (ret)
722 bio_endio(comp_bio, ret);
723
724 bio_put(comp_bio);
725 return 0;
726
727 fail2:
728 while (faili >= 0) {
729 __free_page(cb->compressed_pages[faili]);
730 faili--;
731 }
732
733 kfree(cb->compressed_pages);
734 fail1:
735 kfree(cb);
736 out:
737 free_extent_map(em);
738 return ret;
739 }
740
741 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
742 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
743 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
744 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
745 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
746
747 static struct btrfs_compress_op *btrfs_compress_op[] = {
748 &btrfs_zlib_compress,
749 &btrfs_lzo_compress,
750 };
751
752 void __init btrfs_init_compress(void)
753 {
754 int i;
755
756 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
757 INIT_LIST_HEAD(&comp_idle_workspace[i]);
758 spin_lock_init(&comp_workspace_lock[i]);
759 atomic_set(&comp_alloc_workspace[i], 0);
760 init_waitqueue_head(&comp_workspace_wait[i]);
761 }
762 }
763
764 /*
765 * this finds an available workspace or allocates a new one
766 * ERR_PTR is returned if things go bad.
767 */
768 static struct list_head *find_workspace(int type)
769 {
770 struct list_head *workspace;
771 int cpus = num_online_cpus();
772 int idx = type - 1;
773
774 struct list_head *idle_workspace = &comp_idle_workspace[idx];
775 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
776 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
777 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
778 int *num_workspace = &comp_num_workspace[idx];
779 again:
780 spin_lock(workspace_lock);
781 if (!list_empty(idle_workspace)) {
782 workspace = idle_workspace->next;
783 list_del(workspace);
784 (*num_workspace)--;
785 spin_unlock(workspace_lock);
786 return workspace;
787
788 }
789 if (atomic_read(alloc_workspace) > cpus) {
790 DEFINE_WAIT(wait);
791
792 spin_unlock(workspace_lock);
793 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
794 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
795 schedule();
796 finish_wait(workspace_wait, &wait);
797 goto again;
798 }
799 atomic_inc(alloc_workspace);
800 spin_unlock(workspace_lock);
801
802 workspace = btrfs_compress_op[idx]->alloc_workspace();
803 if (IS_ERR(workspace)) {
804 atomic_dec(alloc_workspace);
805 wake_up(workspace_wait);
806 }
807 return workspace;
808 }
809
810 /*
811 * put a workspace struct back on the list or free it if we have enough
812 * idle ones sitting around
813 */
814 static void free_workspace(int type, struct list_head *workspace)
815 {
816 int idx = type - 1;
817 struct list_head *idle_workspace = &comp_idle_workspace[idx];
818 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
819 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
820 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
821 int *num_workspace = &comp_num_workspace[idx];
822
823 spin_lock(workspace_lock);
824 if (*num_workspace < num_online_cpus()) {
825 list_add_tail(workspace, idle_workspace);
826 (*num_workspace)++;
827 spin_unlock(workspace_lock);
828 goto wake;
829 }
830 spin_unlock(workspace_lock);
831
832 btrfs_compress_op[idx]->free_workspace(workspace);
833 atomic_dec(alloc_workspace);
834 wake:
835 smp_mb();
836 if (waitqueue_active(workspace_wait))
837 wake_up(workspace_wait);
838 }
839
840 /*
841 * cleanup function for module exit
842 */
843 static void free_workspaces(void)
844 {
845 struct list_head *workspace;
846 int i;
847
848 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
849 while (!list_empty(&comp_idle_workspace[i])) {
850 workspace = comp_idle_workspace[i].next;
851 list_del(workspace);
852 btrfs_compress_op[i]->free_workspace(workspace);
853 atomic_dec(&comp_alloc_workspace[i]);
854 }
855 }
856 }
857
858 /*
859 * given an address space and start/len, compress the bytes.
860 *
861 * pages are allocated to hold the compressed result and stored
862 * in 'pages'
863 *
864 * out_pages is used to return the number of pages allocated. There
865 * may be pages allocated even if we return an error
866 *
867 * total_in is used to return the number of bytes actually read. It
868 * may be smaller then len if we had to exit early because we
869 * ran out of room in the pages array or because we cross the
870 * max_out threshold.
871 *
872 * total_out is used to return the total number of compressed bytes
873 *
874 * max_out tells us the max number of bytes that we're allowed to
875 * stuff into pages
876 */
877 int btrfs_compress_pages(int type, struct address_space *mapping,
878 u64 start, unsigned long len,
879 struct page **pages,
880 unsigned long nr_dest_pages,
881 unsigned long *out_pages,
882 unsigned long *total_in,
883 unsigned long *total_out,
884 unsigned long max_out)
885 {
886 struct list_head *workspace;
887 int ret;
888
889 workspace = find_workspace(type);
890 if (IS_ERR(workspace))
891 return -1;
892
893 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
894 start, len, pages,
895 nr_dest_pages, out_pages,
896 total_in, total_out,
897 max_out);
898 free_workspace(type, workspace);
899 return ret;
900 }
901
902 /*
903 * pages_in is an array of pages with compressed data.
904 *
905 * disk_start is the starting logical offset of this array in the file
906 *
907 * bvec is a bio_vec of pages from the file that we want to decompress into
908 *
909 * vcnt is the count of pages in the biovec
910 *
911 * srclen is the number of bytes in pages_in
912 *
913 * The basic idea is that we have a bio that was created by readpages.
914 * The pages in the bio are for the uncompressed data, and they may not
915 * be contiguous. They all correspond to the range of bytes covered by
916 * the compressed extent.
917 */
918 static int btrfs_decompress_biovec(int type, struct page **pages_in,
919 u64 disk_start, struct bio_vec *bvec,
920 int vcnt, size_t srclen)
921 {
922 struct list_head *workspace;
923 int ret;
924
925 workspace = find_workspace(type);
926 if (IS_ERR(workspace))
927 return -ENOMEM;
928
929 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
930 disk_start,
931 bvec, vcnt, srclen);
932 free_workspace(type, workspace);
933 return ret;
934 }
935
936 /*
937 * a less complex decompression routine. Our compressed data fits in a
938 * single page, and we want to read a single page out of it.
939 * start_byte tells us the offset into the compressed data we're interested in
940 */
941 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
942 unsigned long start_byte, size_t srclen, size_t destlen)
943 {
944 struct list_head *workspace;
945 int ret;
946
947 workspace = find_workspace(type);
948 if (IS_ERR(workspace))
949 return -ENOMEM;
950
951 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
952 dest_page, start_byte,
953 srclen, destlen);
954
955 free_workspace(type, workspace);
956 return ret;
957 }
958
959 void btrfs_exit_compress(void)
960 {
961 free_workspaces();
962 }
963
964 /*
965 * Copy uncompressed data from working buffer to pages.
966 *
967 * buf_start is the byte offset we're of the start of our workspace buffer.
968 *
969 * total_out is the last byte of the buffer
970 */
971 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
972 unsigned long total_out, u64 disk_start,
973 struct bio_vec *bvec, int vcnt,
974 unsigned long *pg_index,
975 unsigned long *pg_offset)
976 {
977 unsigned long buf_offset;
978 unsigned long current_buf_start;
979 unsigned long start_byte;
980 unsigned long working_bytes = total_out - buf_start;
981 unsigned long bytes;
982 char *kaddr;
983 struct page *page_out = bvec[*pg_index].bv_page;
984
985 /*
986 * start byte is the first byte of the page we're currently
987 * copying into relative to the start of the compressed data.
988 */
989 start_byte = page_offset(page_out) - disk_start;
990
991 /* we haven't yet hit data corresponding to this page */
992 if (total_out <= start_byte)
993 return 1;
994
995 /*
996 * the start of the data we care about is offset into
997 * the middle of our working buffer
998 */
999 if (total_out > start_byte && buf_start < start_byte) {
1000 buf_offset = start_byte - buf_start;
1001 working_bytes -= buf_offset;
1002 } else {
1003 buf_offset = 0;
1004 }
1005 current_buf_start = buf_start;
1006
1007 /* copy bytes from the working buffer into the pages */
1008 while (working_bytes > 0) {
1009 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1010 PAGE_CACHE_SIZE - buf_offset);
1011 bytes = min(bytes, working_bytes);
1012 kaddr = kmap_atomic(page_out);
1013 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1014 kunmap_atomic(kaddr);
1015 flush_dcache_page(page_out);
1016
1017 *pg_offset += bytes;
1018 buf_offset += bytes;
1019 working_bytes -= bytes;
1020 current_buf_start += bytes;
1021
1022 /* check if we need to pick another page */
1023 if (*pg_offset == PAGE_CACHE_SIZE) {
1024 (*pg_index)++;
1025 if (*pg_index >= vcnt)
1026 return 0;
1027
1028 page_out = bvec[*pg_index].bv_page;
1029 *pg_offset = 0;
1030 start_byte = page_offset(page_out) - disk_start;
1031
1032 /*
1033 * make sure our new page is covered by this
1034 * working buffer
1035 */
1036 if (total_out <= start_byte)
1037 return 1;
1038
1039 /*
1040 * the next page in the biovec might not be adjacent
1041 * to the last page, but it might still be found
1042 * inside this working buffer. bump our offset pointer
1043 */
1044 if (total_out > start_byte &&
1045 current_buf_start < start_byte) {
1046 buf_offset = start_byte - buf_start;
1047 working_bytes = total_out - start_byte;
1048 current_buf_start = buf_start + buf_offset;
1049 }
1050 }
1051 }
1052
1053 return 1;
1054 }
This page took 0.054164 seconds and 5 git commands to generate.