0d1e3b91e7bd35e8531001e24c5f536081febd70
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_key *ins_key,
30 struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 struct btrfs_root *root, struct extent_buffer *dst,
33 struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root,
36 struct extent_buffer *dst_buf,
37 struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 struct btrfs_path *path, int level, int slot);
40
41 inline void btrfs_init_path(struct btrfs_path *p)
42 {
43 memset(p, 0, sizeof(*p));
44 }
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 struct btrfs_path *path;
49 path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
50 if (path) {
51 btrfs_init_path(path);
52 path->reada = 1;
53 }
54 return path;
55 }
56
57 /*
58 * set all locked nodes in the path to blocking locks. This should
59 * be done before scheduling
60 */
61 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
62 {
63 int i;
64 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
65 if (p->nodes[i] && p->locks[i])
66 btrfs_set_lock_blocking(p->nodes[i]);
67 }
68 }
69
70 /*
71 * reset all the locked nodes in the patch to spinning locks.
72 */
73 noinline void btrfs_clear_path_blocking(struct btrfs_path *p)
74 {
75 int i;
76 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
77 if (p->nodes[i] && p->locks[i])
78 btrfs_clear_lock_blocking(p->nodes[i]);
79 }
80 }
81
82 /* this also releases the path */
83 void btrfs_free_path(struct btrfs_path *p)
84 {
85 btrfs_release_path(NULL, p);
86 kmem_cache_free(btrfs_path_cachep, p);
87 }
88
89 /*
90 * path release drops references on the extent buffers in the path
91 * and it drops any locks held by this path
92 *
93 * It is safe to call this on paths that no locks or extent buffers held.
94 */
95 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
96 {
97 int i;
98
99 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
100 p->slots[i] = 0;
101 if (!p->nodes[i])
102 continue;
103 if (p->locks[i]) {
104 btrfs_tree_unlock(p->nodes[i]);
105 p->locks[i] = 0;
106 }
107 free_extent_buffer(p->nodes[i]);
108 p->nodes[i] = NULL;
109 }
110 }
111
112 /*
113 * safely gets a reference on the root node of a tree. A lock
114 * is not taken, so a concurrent writer may put a different node
115 * at the root of the tree. See btrfs_lock_root_node for the
116 * looping required.
117 *
118 * The extent buffer returned by this has a reference taken, so
119 * it won't disappear. It may stop being the root of the tree
120 * at any time because there are no locks held.
121 */
122 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
123 {
124 struct extent_buffer *eb;
125 spin_lock(&root->node_lock);
126 eb = root->node;
127 extent_buffer_get(eb);
128 spin_unlock(&root->node_lock);
129 return eb;
130 }
131
132 /* loop around taking references on and locking the root node of the
133 * tree until you end up with a lock on the root. A locked buffer
134 * is returned, with a reference held.
135 */
136 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
137 {
138 struct extent_buffer *eb;
139
140 while (1) {
141 eb = btrfs_root_node(root);
142 btrfs_tree_lock(eb);
143
144 spin_lock(&root->node_lock);
145 if (eb == root->node) {
146 spin_unlock(&root->node_lock);
147 break;
148 }
149 spin_unlock(&root->node_lock);
150
151 btrfs_tree_unlock(eb);
152 free_extent_buffer(eb);
153 }
154 return eb;
155 }
156
157 /* cowonly root (everything not a reference counted cow subvolume), just get
158 * put onto a simple dirty list. transaction.c walks this to make sure they
159 * get properly updated on disk.
160 */
161 static void add_root_to_dirty_list(struct btrfs_root *root)
162 {
163 if (root->track_dirty && list_empty(&root->dirty_list)) {
164 list_add(&root->dirty_list,
165 &root->fs_info->dirty_cowonly_roots);
166 }
167 }
168
169 /*
170 * used by snapshot creation to make a copy of a root for a tree with
171 * a given objectid. The buffer with the new root node is returned in
172 * cow_ret, and this func returns zero on success or a negative error code.
173 */
174 int btrfs_copy_root(struct btrfs_trans_handle *trans,
175 struct btrfs_root *root,
176 struct extent_buffer *buf,
177 struct extent_buffer **cow_ret, u64 new_root_objectid)
178 {
179 struct extent_buffer *cow;
180 u32 nritems;
181 int ret = 0;
182 int level;
183 struct btrfs_root *new_root;
184
185 new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
186 if (!new_root)
187 return -ENOMEM;
188
189 memcpy(new_root, root, sizeof(*new_root));
190 new_root->root_key.objectid = new_root_objectid;
191
192 WARN_ON(root->ref_cows && trans->transid !=
193 root->fs_info->running_transaction->transid);
194 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
195
196 level = btrfs_header_level(buf);
197 nritems = btrfs_header_nritems(buf);
198
199 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
200 new_root_objectid, trans->transid,
201 level, buf->start, 0);
202 if (IS_ERR(cow)) {
203 kfree(new_root);
204 return PTR_ERR(cow);
205 }
206
207 copy_extent_buffer(cow, buf, 0, 0, cow->len);
208 btrfs_set_header_bytenr(cow, cow->start);
209 btrfs_set_header_generation(cow, trans->transid);
210 btrfs_set_header_owner(cow, new_root_objectid);
211 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
212
213 write_extent_buffer(cow, root->fs_info->fsid,
214 (unsigned long)btrfs_header_fsid(cow),
215 BTRFS_FSID_SIZE);
216
217 WARN_ON(btrfs_header_generation(buf) > trans->transid);
218 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
219 kfree(new_root);
220
221 if (ret)
222 return ret;
223
224 btrfs_mark_buffer_dirty(cow);
225 *cow_ret = cow;
226 return 0;
227 }
228
229 /*
230 * does the dirty work in cow of a single block. The parent block (if
231 * supplied) is updated to point to the new cow copy. The new buffer is marked
232 * dirty and returned locked. If you modify the block it needs to be marked
233 * dirty again.
234 *
235 * search_start -- an allocation hint for the new block
236 *
237 * empty_size -- a hint that you plan on doing more cow. This is the size in
238 * bytes the allocator should try to find free next to the block it returns.
239 * This is just a hint and may be ignored by the allocator.
240 *
241 * prealloc_dest -- if you have already reserved a destination for the cow,
242 * this uses that block instead of allocating a new one.
243 * btrfs_alloc_reserved_extent is used to finish the allocation.
244 */
245 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
246 struct btrfs_root *root,
247 struct extent_buffer *buf,
248 struct extent_buffer *parent, int parent_slot,
249 struct extent_buffer **cow_ret,
250 u64 search_start, u64 empty_size,
251 u64 prealloc_dest)
252 {
253 u64 parent_start;
254 struct extent_buffer *cow;
255 u32 nritems;
256 int ret = 0;
257 int level;
258 int unlock_orig = 0;
259
260 if (*cow_ret == buf)
261 unlock_orig = 1;
262
263 WARN_ON(!btrfs_tree_locked(buf));
264
265 if (parent)
266 parent_start = parent->start;
267 else
268 parent_start = 0;
269
270 WARN_ON(root->ref_cows && trans->transid !=
271 root->fs_info->running_transaction->transid);
272 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
273
274 level = btrfs_header_level(buf);
275 nritems = btrfs_header_nritems(buf);
276
277 if (prealloc_dest) {
278 struct btrfs_key ins;
279
280 ins.objectid = prealloc_dest;
281 ins.offset = buf->len;
282 ins.type = BTRFS_EXTENT_ITEM_KEY;
283
284 ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
285 root->root_key.objectid,
286 trans->transid, level, &ins);
287 BUG_ON(ret);
288 cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
289 buf->len);
290 } else {
291 cow = btrfs_alloc_free_block(trans, root, buf->len,
292 parent_start,
293 root->root_key.objectid,
294 trans->transid, level,
295 search_start, empty_size);
296 }
297 if (IS_ERR(cow))
298 return PTR_ERR(cow);
299
300 /* cow is set to blocking by btrfs_init_new_buffer */
301
302 copy_extent_buffer(cow, buf, 0, 0, cow->len);
303 btrfs_set_header_bytenr(cow, cow->start);
304 btrfs_set_header_generation(cow, trans->transid);
305 btrfs_set_header_owner(cow, root->root_key.objectid);
306 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
307
308 write_extent_buffer(cow, root->fs_info->fsid,
309 (unsigned long)btrfs_header_fsid(cow),
310 BTRFS_FSID_SIZE);
311
312 WARN_ON(btrfs_header_generation(buf) > trans->transid);
313 if (btrfs_header_generation(buf) != trans->transid) {
314 u32 nr_extents;
315 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
316 if (ret)
317 return ret;
318
319 ret = btrfs_cache_ref(trans, root, buf, nr_extents);
320 WARN_ON(ret);
321 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
322 /*
323 * There are only two places that can drop reference to
324 * tree blocks owned by living reloc trees, one is here,
325 * the other place is btrfs_drop_subtree. In both places,
326 * we check reference count while tree block is locked.
327 * Furthermore, if reference count is one, it won't get
328 * increased by someone else.
329 */
330 u32 refs;
331 ret = btrfs_lookup_extent_ref(trans, root, buf->start,
332 buf->len, &refs);
333 BUG_ON(ret);
334 if (refs == 1) {
335 ret = btrfs_update_ref(trans, root, buf, cow,
336 0, nritems);
337 clean_tree_block(trans, root, buf);
338 } else {
339 ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
340 }
341 BUG_ON(ret);
342 } else {
343 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
344 if (ret)
345 return ret;
346 clean_tree_block(trans, root, buf);
347 }
348
349 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
350 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
351 WARN_ON(ret);
352 }
353
354 if (buf == root->node) {
355 WARN_ON(parent && parent != buf);
356
357 spin_lock(&root->node_lock);
358 root->node = cow;
359 extent_buffer_get(cow);
360 spin_unlock(&root->node_lock);
361
362 if (buf != root->commit_root) {
363 btrfs_free_extent(trans, root, buf->start,
364 buf->len, buf->start,
365 root->root_key.objectid,
366 btrfs_header_generation(buf),
367 level, 1);
368 }
369 free_extent_buffer(buf);
370 add_root_to_dirty_list(root);
371 } else {
372 btrfs_set_node_blockptr(parent, parent_slot,
373 cow->start);
374 WARN_ON(trans->transid == 0);
375 btrfs_set_node_ptr_generation(parent, parent_slot,
376 trans->transid);
377 btrfs_mark_buffer_dirty(parent);
378 WARN_ON(btrfs_header_generation(parent) != trans->transid);
379 btrfs_free_extent(trans, root, buf->start, buf->len,
380 parent_start, btrfs_header_owner(parent),
381 btrfs_header_generation(parent), level, 1);
382 }
383 if (unlock_orig)
384 btrfs_tree_unlock(buf);
385 free_extent_buffer(buf);
386 btrfs_mark_buffer_dirty(cow);
387 *cow_ret = cow;
388 return 0;
389 }
390
391 /*
392 * cows a single block, see __btrfs_cow_block for the real work.
393 * This version of it has extra checks so that a block isn't cow'd more than
394 * once per transaction, as long as it hasn't been written yet
395 */
396 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
397 struct btrfs_root *root, struct extent_buffer *buf,
398 struct extent_buffer *parent, int parent_slot,
399 struct extent_buffer **cow_ret, u64 prealloc_dest)
400 {
401 u64 search_start;
402 int ret;
403
404 if (trans->transaction != root->fs_info->running_transaction) {
405 printk(KERN_CRIT "trans %llu running %llu\n",
406 (unsigned long long)trans->transid,
407 (unsigned long long)
408 root->fs_info->running_transaction->transid);
409 WARN_ON(1);
410 }
411 if (trans->transid != root->fs_info->generation) {
412 printk(KERN_CRIT "trans %llu running %llu\n",
413 (unsigned long long)trans->transid,
414 (unsigned long long)root->fs_info->generation);
415 WARN_ON(1);
416 }
417
418 if (btrfs_header_generation(buf) == trans->transid &&
419 btrfs_header_owner(buf) == root->root_key.objectid &&
420 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
421 *cow_ret = buf;
422 WARN_ON(prealloc_dest);
423 return 0;
424 }
425
426 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
427
428 if (parent)
429 btrfs_set_lock_blocking(parent);
430 btrfs_set_lock_blocking(buf);
431
432 ret = __btrfs_cow_block(trans, root, buf, parent,
433 parent_slot, cow_ret, search_start, 0,
434 prealloc_dest);
435 return ret;
436 }
437
438 /*
439 * helper function for defrag to decide if two blocks pointed to by a
440 * node are actually close by
441 */
442 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
443 {
444 if (blocknr < other && other - (blocknr + blocksize) < 32768)
445 return 1;
446 if (blocknr > other && blocknr - (other + blocksize) < 32768)
447 return 1;
448 return 0;
449 }
450
451 /*
452 * compare two keys in a memcmp fashion
453 */
454 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
455 {
456 struct btrfs_key k1;
457
458 btrfs_disk_key_to_cpu(&k1, disk);
459
460 if (k1.objectid > k2->objectid)
461 return 1;
462 if (k1.objectid < k2->objectid)
463 return -1;
464 if (k1.type > k2->type)
465 return 1;
466 if (k1.type < k2->type)
467 return -1;
468 if (k1.offset > k2->offset)
469 return 1;
470 if (k1.offset < k2->offset)
471 return -1;
472 return 0;
473 }
474
475 /*
476 * same as comp_keys only with two btrfs_key's
477 */
478 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
479 {
480 if (k1->objectid > k2->objectid)
481 return 1;
482 if (k1->objectid < k2->objectid)
483 return -1;
484 if (k1->type > k2->type)
485 return 1;
486 if (k1->type < k2->type)
487 return -1;
488 if (k1->offset > k2->offset)
489 return 1;
490 if (k1->offset < k2->offset)
491 return -1;
492 return 0;
493 }
494
495 /*
496 * this is used by the defrag code to go through all the
497 * leaves pointed to by a node and reallocate them so that
498 * disk order is close to key order
499 */
500 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
501 struct btrfs_root *root, struct extent_buffer *parent,
502 int start_slot, int cache_only, u64 *last_ret,
503 struct btrfs_key *progress)
504 {
505 struct extent_buffer *cur;
506 u64 blocknr;
507 u64 gen;
508 u64 search_start = *last_ret;
509 u64 last_block = 0;
510 u64 other;
511 u32 parent_nritems;
512 int end_slot;
513 int i;
514 int err = 0;
515 int parent_level;
516 int uptodate;
517 u32 blocksize;
518 int progress_passed = 0;
519 struct btrfs_disk_key disk_key;
520
521 parent_level = btrfs_header_level(parent);
522 if (cache_only && parent_level != 1)
523 return 0;
524
525 if (trans->transaction != root->fs_info->running_transaction)
526 WARN_ON(1);
527 if (trans->transid != root->fs_info->generation)
528 WARN_ON(1);
529
530 parent_nritems = btrfs_header_nritems(parent);
531 blocksize = btrfs_level_size(root, parent_level - 1);
532 end_slot = parent_nritems;
533
534 if (parent_nritems == 1)
535 return 0;
536
537 btrfs_set_lock_blocking(parent);
538
539 for (i = start_slot; i < end_slot; i++) {
540 int close = 1;
541
542 if (!parent->map_token) {
543 map_extent_buffer(parent,
544 btrfs_node_key_ptr_offset(i),
545 sizeof(struct btrfs_key_ptr),
546 &parent->map_token, &parent->kaddr,
547 &parent->map_start, &parent->map_len,
548 KM_USER1);
549 }
550 btrfs_node_key(parent, &disk_key, i);
551 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
552 continue;
553
554 progress_passed = 1;
555 blocknr = btrfs_node_blockptr(parent, i);
556 gen = btrfs_node_ptr_generation(parent, i);
557 if (last_block == 0)
558 last_block = blocknr;
559
560 if (i > 0) {
561 other = btrfs_node_blockptr(parent, i - 1);
562 close = close_blocks(blocknr, other, blocksize);
563 }
564 if (!close && i < end_slot - 2) {
565 other = btrfs_node_blockptr(parent, i + 1);
566 close = close_blocks(blocknr, other, blocksize);
567 }
568 if (close) {
569 last_block = blocknr;
570 continue;
571 }
572 if (parent->map_token) {
573 unmap_extent_buffer(parent, parent->map_token,
574 KM_USER1);
575 parent->map_token = NULL;
576 }
577
578 cur = btrfs_find_tree_block(root, blocknr, blocksize);
579 if (cur)
580 uptodate = btrfs_buffer_uptodate(cur, gen);
581 else
582 uptodate = 0;
583 if (!cur || !uptodate) {
584 if (cache_only) {
585 free_extent_buffer(cur);
586 continue;
587 }
588 if (!cur) {
589 cur = read_tree_block(root, blocknr,
590 blocksize, gen);
591 } else if (!uptodate) {
592 btrfs_read_buffer(cur, gen);
593 }
594 }
595 if (search_start == 0)
596 search_start = last_block;
597
598 btrfs_tree_lock(cur);
599 btrfs_set_lock_blocking(cur);
600 err = __btrfs_cow_block(trans, root, cur, parent, i,
601 &cur, search_start,
602 min(16 * blocksize,
603 (end_slot - i) * blocksize), 0);
604 if (err) {
605 btrfs_tree_unlock(cur);
606 free_extent_buffer(cur);
607 break;
608 }
609 search_start = cur->start;
610 last_block = cur->start;
611 *last_ret = search_start;
612 btrfs_tree_unlock(cur);
613 free_extent_buffer(cur);
614 }
615 if (parent->map_token) {
616 unmap_extent_buffer(parent, parent->map_token,
617 KM_USER1);
618 parent->map_token = NULL;
619 }
620 return err;
621 }
622
623 /*
624 * The leaf data grows from end-to-front in the node.
625 * this returns the address of the start of the last item,
626 * which is the stop of the leaf data stack
627 */
628 static inline unsigned int leaf_data_end(struct btrfs_root *root,
629 struct extent_buffer *leaf)
630 {
631 u32 nr = btrfs_header_nritems(leaf);
632 if (nr == 0)
633 return BTRFS_LEAF_DATA_SIZE(root);
634 return btrfs_item_offset_nr(leaf, nr - 1);
635 }
636
637 /*
638 * extra debugging checks to make sure all the items in a key are
639 * well formed and in the proper order
640 */
641 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
642 int level)
643 {
644 struct extent_buffer *parent = NULL;
645 struct extent_buffer *node = path->nodes[level];
646 struct btrfs_disk_key parent_key;
647 struct btrfs_disk_key node_key;
648 int parent_slot;
649 int slot;
650 struct btrfs_key cpukey;
651 u32 nritems = btrfs_header_nritems(node);
652
653 if (path->nodes[level + 1])
654 parent = path->nodes[level + 1];
655
656 slot = path->slots[level];
657 BUG_ON(nritems == 0);
658 if (parent) {
659 parent_slot = path->slots[level + 1];
660 btrfs_node_key(parent, &parent_key, parent_slot);
661 btrfs_node_key(node, &node_key, 0);
662 BUG_ON(memcmp(&parent_key, &node_key,
663 sizeof(struct btrfs_disk_key)));
664 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
665 btrfs_header_bytenr(node));
666 }
667 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
668 if (slot != 0) {
669 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
670 btrfs_node_key(node, &node_key, slot);
671 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
672 }
673 if (slot < nritems - 1) {
674 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
675 btrfs_node_key(node, &node_key, slot);
676 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
677 }
678 return 0;
679 }
680
681 /*
682 * extra checking to make sure all the items in a leaf are
683 * well formed and in the proper order
684 */
685 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
686 int level)
687 {
688 struct extent_buffer *leaf = path->nodes[level];
689 struct extent_buffer *parent = NULL;
690 int parent_slot;
691 struct btrfs_key cpukey;
692 struct btrfs_disk_key parent_key;
693 struct btrfs_disk_key leaf_key;
694 int slot = path->slots[0];
695
696 u32 nritems = btrfs_header_nritems(leaf);
697
698 if (path->nodes[level + 1])
699 parent = path->nodes[level + 1];
700
701 if (nritems == 0)
702 return 0;
703
704 if (parent) {
705 parent_slot = path->slots[level + 1];
706 btrfs_node_key(parent, &parent_key, parent_slot);
707 btrfs_item_key(leaf, &leaf_key, 0);
708
709 BUG_ON(memcmp(&parent_key, &leaf_key,
710 sizeof(struct btrfs_disk_key)));
711 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
712 btrfs_header_bytenr(leaf));
713 }
714 if (slot != 0 && slot < nritems - 1) {
715 btrfs_item_key(leaf, &leaf_key, slot);
716 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
717 if (comp_keys(&leaf_key, &cpukey) <= 0) {
718 btrfs_print_leaf(root, leaf);
719 printk(KERN_CRIT "slot %d offset bad key\n", slot);
720 BUG_ON(1);
721 }
722 if (btrfs_item_offset_nr(leaf, slot - 1) !=
723 btrfs_item_end_nr(leaf, slot)) {
724 btrfs_print_leaf(root, leaf);
725 printk(KERN_CRIT "slot %d offset bad\n", slot);
726 BUG_ON(1);
727 }
728 }
729 if (slot < nritems - 1) {
730 btrfs_item_key(leaf, &leaf_key, slot);
731 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
732 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
733 if (btrfs_item_offset_nr(leaf, slot) !=
734 btrfs_item_end_nr(leaf, slot + 1)) {
735 btrfs_print_leaf(root, leaf);
736 printk(KERN_CRIT "slot %d offset bad\n", slot);
737 BUG_ON(1);
738 }
739 }
740 BUG_ON(btrfs_item_offset_nr(leaf, 0) +
741 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
742 return 0;
743 }
744
745 static noinline int check_block(struct btrfs_root *root,
746 struct btrfs_path *path, int level)
747 {
748 return 0;
749 if (level == 0)
750 return check_leaf(root, path, level);
751 return check_node(root, path, level);
752 }
753
754 /*
755 * search for key in the extent_buffer. The items start at offset p,
756 * and they are item_size apart. There are 'max' items in p.
757 *
758 * the slot in the array is returned via slot, and it points to
759 * the place where you would insert key if it is not found in
760 * the array.
761 *
762 * slot may point to max if the key is bigger than all of the keys
763 */
764 static noinline int generic_bin_search(struct extent_buffer *eb,
765 unsigned long p,
766 int item_size, struct btrfs_key *key,
767 int max, int *slot)
768 {
769 int low = 0;
770 int high = max;
771 int mid;
772 int ret;
773 struct btrfs_disk_key *tmp = NULL;
774 struct btrfs_disk_key unaligned;
775 unsigned long offset;
776 char *map_token = NULL;
777 char *kaddr = NULL;
778 unsigned long map_start = 0;
779 unsigned long map_len = 0;
780 int err;
781
782 while (low < high) {
783 mid = (low + high) / 2;
784 offset = p + mid * item_size;
785
786 if (!map_token || offset < map_start ||
787 (offset + sizeof(struct btrfs_disk_key)) >
788 map_start + map_len) {
789 if (map_token) {
790 unmap_extent_buffer(eb, map_token, KM_USER0);
791 map_token = NULL;
792 }
793
794 err = map_private_extent_buffer(eb, offset,
795 sizeof(struct btrfs_disk_key),
796 &map_token, &kaddr,
797 &map_start, &map_len, KM_USER0);
798
799 if (!err) {
800 tmp = (struct btrfs_disk_key *)(kaddr + offset -
801 map_start);
802 } else {
803 read_extent_buffer(eb, &unaligned,
804 offset, sizeof(unaligned));
805 tmp = &unaligned;
806 }
807
808 } else {
809 tmp = (struct btrfs_disk_key *)(kaddr + offset -
810 map_start);
811 }
812 ret = comp_keys(tmp, key);
813
814 if (ret < 0)
815 low = mid + 1;
816 else if (ret > 0)
817 high = mid;
818 else {
819 *slot = mid;
820 if (map_token)
821 unmap_extent_buffer(eb, map_token, KM_USER0);
822 return 0;
823 }
824 }
825 *slot = low;
826 if (map_token)
827 unmap_extent_buffer(eb, map_token, KM_USER0);
828 return 1;
829 }
830
831 /*
832 * simple bin_search frontend that does the right thing for
833 * leaves vs nodes
834 */
835 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
836 int level, int *slot)
837 {
838 if (level == 0) {
839 return generic_bin_search(eb,
840 offsetof(struct btrfs_leaf, items),
841 sizeof(struct btrfs_item),
842 key, btrfs_header_nritems(eb),
843 slot);
844 } else {
845 return generic_bin_search(eb,
846 offsetof(struct btrfs_node, ptrs),
847 sizeof(struct btrfs_key_ptr),
848 key, btrfs_header_nritems(eb),
849 slot);
850 }
851 return -1;
852 }
853
854 /* given a node and slot number, this reads the blocks it points to. The
855 * extent buffer is returned with a reference taken (but unlocked).
856 * NULL is returned on error.
857 */
858 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
859 struct extent_buffer *parent, int slot)
860 {
861 int level = btrfs_header_level(parent);
862 if (slot < 0)
863 return NULL;
864 if (slot >= btrfs_header_nritems(parent))
865 return NULL;
866
867 BUG_ON(level == 0);
868
869 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
870 btrfs_level_size(root, level - 1),
871 btrfs_node_ptr_generation(parent, slot));
872 }
873
874 /*
875 * node level balancing, used to make sure nodes are in proper order for
876 * item deletion. We balance from the top down, so we have to make sure
877 * that a deletion won't leave an node completely empty later on.
878 */
879 static noinline int balance_level(struct btrfs_trans_handle *trans,
880 struct btrfs_root *root,
881 struct btrfs_path *path, int level)
882 {
883 struct extent_buffer *right = NULL;
884 struct extent_buffer *mid;
885 struct extent_buffer *left = NULL;
886 struct extent_buffer *parent = NULL;
887 int ret = 0;
888 int wret;
889 int pslot;
890 int orig_slot = path->slots[level];
891 int err_on_enospc = 0;
892 u64 orig_ptr;
893
894 if (level == 0)
895 return 0;
896
897 mid = path->nodes[level];
898
899 WARN_ON(!path->locks[level]);
900 WARN_ON(btrfs_header_generation(mid) != trans->transid);
901
902 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
903
904 if (level < BTRFS_MAX_LEVEL - 1)
905 parent = path->nodes[level + 1];
906 pslot = path->slots[level + 1];
907
908 /*
909 * deal with the case where there is only one pointer in the root
910 * by promoting the node below to a root
911 */
912 if (!parent) {
913 struct extent_buffer *child;
914
915 if (btrfs_header_nritems(mid) != 1)
916 return 0;
917
918 /* promote the child to a root */
919 child = read_node_slot(root, mid, 0);
920 btrfs_tree_lock(child);
921 btrfs_set_lock_blocking(child);
922 BUG_ON(!child);
923 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
924 BUG_ON(ret);
925
926 spin_lock(&root->node_lock);
927 root->node = child;
928 spin_unlock(&root->node_lock);
929
930 ret = btrfs_update_extent_ref(trans, root, child->start,
931 mid->start, child->start,
932 root->root_key.objectid,
933 trans->transid, level - 1);
934 BUG_ON(ret);
935
936 add_root_to_dirty_list(root);
937 btrfs_tree_unlock(child);
938
939 path->locks[level] = 0;
940 path->nodes[level] = NULL;
941 clean_tree_block(trans, root, mid);
942 btrfs_tree_unlock(mid);
943 /* once for the path */
944 free_extent_buffer(mid);
945 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
946 mid->start, root->root_key.objectid,
947 btrfs_header_generation(mid),
948 level, 1);
949 /* once for the root ptr */
950 free_extent_buffer(mid);
951 return ret;
952 }
953 if (btrfs_header_nritems(mid) >
954 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
955 return 0;
956
957 if (btrfs_header_nritems(mid) < 2)
958 err_on_enospc = 1;
959
960 left = read_node_slot(root, parent, pslot - 1);
961 if (left) {
962 btrfs_tree_lock(left);
963 btrfs_set_lock_blocking(left);
964 wret = btrfs_cow_block(trans, root, left,
965 parent, pslot - 1, &left, 0);
966 if (wret) {
967 ret = wret;
968 goto enospc;
969 }
970 }
971 right = read_node_slot(root, parent, pslot + 1);
972 if (right) {
973 btrfs_tree_lock(right);
974 btrfs_set_lock_blocking(right);
975 wret = btrfs_cow_block(trans, root, right,
976 parent, pslot + 1, &right, 0);
977 if (wret) {
978 ret = wret;
979 goto enospc;
980 }
981 }
982
983 /* first, try to make some room in the middle buffer */
984 if (left) {
985 orig_slot += btrfs_header_nritems(left);
986 wret = push_node_left(trans, root, left, mid, 1);
987 if (wret < 0)
988 ret = wret;
989 if (btrfs_header_nritems(mid) < 2)
990 err_on_enospc = 1;
991 }
992
993 /*
994 * then try to empty the right most buffer into the middle
995 */
996 if (right) {
997 wret = push_node_left(trans, root, mid, right, 1);
998 if (wret < 0 && wret != -ENOSPC)
999 ret = wret;
1000 if (btrfs_header_nritems(right) == 0) {
1001 u64 bytenr = right->start;
1002 u64 generation = btrfs_header_generation(parent);
1003 u32 blocksize = right->len;
1004
1005 clean_tree_block(trans, root, right);
1006 btrfs_tree_unlock(right);
1007 free_extent_buffer(right);
1008 right = NULL;
1009 wret = del_ptr(trans, root, path, level + 1, pslot +
1010 1);
1011 if (wret)
1012 ret = wret;
1013 wret = btrfs_free_extent(trans, root, bytenr,
1014 blocksize, parent->start,
1015 btrfs_header_owner(parent),
1016 generation, level, 1);
1017 if (wret)
1018 ret = wret;
1019 } else {
1020 struct btrfs_disk_key right_key;
1021 btrfs_node_key(right, &right_key, 0);
1022 btrfs_set_node_key(parent, &right_key, pslot + 1);
1023 btrfs_mark_buffer_dirty(parent);
1024 }
1025 }
1026 if (btrfs_header_nritems(mid) == 1) {
1027 /*
1028 * we're not allowed to leave a node with one item in the
1029 * tree during a delete. A deletion from lower in the tree
1030 * could try to delete the only pointer in this node.
1031 * So, pull some keys from the left.
1032 * There has to be a left pointer at this point because
1033 * otherwise we would have pulled some pointers from the
1034 * right
1035 */
1036 BUG_ON(!left);
1037 wret = balance_node_right(trans, root, mid, left);
1038 if (wret < 0) {
1039 ret = wret;
1040 goto enospc;
1041 }
1042 if (wret == 1) {
1043 wret = push_node_left(trans, root, left, mid, 1);
1044 if (wret < 0)
1045 ret = wret;
1046 }
1047 BUG_ON(wret == 1);
1048 }
1049 if (btrfs_header_nritems(mid) == 0) {
1050 /* we've managed to empty the middle node, drop it */
1051 u64 root_gen = btrfs_header_generation(parent);
1052 u64 bytenr = mid->start;
1053 u32 blocksize = mid->len;
1054
1055 clean_tree_block(trans, root, mid);
1056 btrfs_tree_unlock(mid);
1057 free_extent_buffer(mid);
1058 mid = NULL;
1059 wret = del_ptr(trans, root, path, level + 1, pslot);
1060 if (wret)
1061 ret = wret;
1062 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1063 parent->start,
1064 btrfs_header_owner(parent),
1065 root_gen, level, 1);
1066 if (wret)
1067 ret = wret;
1068 } else {
1069 /* update the parent key to reflect our changes */
1070 struct btrfs_disk_key mid_key;
1071 btrfs_node_key(mid, &mid_key, 0);
1072 btrfs_set_node_key(parent, &mid_key, pslot);
1073 btrfs_mark_buffer_dirty(parent);
1074 }
1075
1076 /* update the path */
1077 if (left) {
1078 if (btrfs_header_nritems(left) > orig_slot) {
1079 extent_buffer_get(left);
1080 /* left was locked after cow */
1081 path->nodes[level] = left;
1082 path->slots[level + 1] -= 1;
1083 path->slots[level] = orig_slot;
1084 if (mid) {
1085 btrfs_tree_unlock(mid);
1086 free_extent_buffer(mid);
1087 }
1088 } else {
1089 orig_slot -= btrfs_header_nritems(left);
1090 path->slots[level] = orig_slot;
1091 }
1092 }
1093 /* double check we haven't messed things up */
1094 check_block(root, path, level);
1095 if (orig_ptr !=
1096 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1097 BUG();
1098 enospc:
1099 if (right) {
1100 btrfs_tree_unlock(right);
1101 free_extent_buffer(right);
1102 }
1103 if (left) {
1104 if (path->nodes[level] != left)
1105 btrfs_tree_unlock(left);
1106 free_extent_buffer(left);
1107 }
1108 return ret;
1109 }
1110
1111 /* Node balancing for insertion. Here we only split or push nodes around
1112 * when they are completely full. This is also done top down, so we
1113 * have to be pessimistic.
1114 */
1115 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1116 struct btrfs_root *root,
1117 struct btrfs_path *path, int level)
1118 {
1119 struct extent_buffer *right = NULL;
1120 struct extent_buffer *mid;
1121 struct extent_buffer *left = NULL;
1122 struct extent_buffer *parent = NULL;
1123 int ret = 0;
1124 int wret;
1125 int pslot;
1126 int orig_slot = path->slots[level];
1127 u64 orig_ptr;
1128
1129 if (level == 0)
1130 return 1;
1131
1132 mid = path->nodes[level];
1133 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1134 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1135
1136 if (level < BTRFS_MAX_LEVEL - 1)
1137 parent = path->nodes[level + 1];
1138 pslot = path->slots[level + 1];
1139
1140 if (!parent)
1141 return 1;
1142
1143 left = read_node_slot(root, parent, pslot - 1);
1144
1145 /* first, try to make some room in the middle buffer */
1146 if (left) {
1147 u32 left_nr;
1148
1149 btrfs_tree_lock(left);
1150 btrfs_set_lock_blocking(left);
1151
1152 left_nr = btrfs_header_nritems(left);
1153 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1154 wret = 1;
1155 } else {
1156 ret = btrfs_cow_block(trans, root, left, parent,
1157 pslot - 1, &left, 0);
1158 if (ret)
1159 wret = 1;
1160 else {
1161 wret = push_node_left(trans, root,
1162 left, mid, 0);
1163 }
1164 }
1165 if (wret < 0)
1166 ret = wret;
1167 if (wret == 0) {
1168 struct btrfs_disk_key disk_key;
1169 orig_slot += left_nr;
1170 btrfs_node_key(mid, &disk_key, 0);
1171 btrfs_set_node_key(parent, &disk_key, pslot);
1172 btrfs_mark_buffer_dirty(parent);
1173 if (btrfs_header_nritems(left) > orig_slot) {
1174 path->nodes[level] = left;
1175 path->slots[level + 1] -= 1;
1176 path->slots[level] = orig_slot;
1177 btrfs_tree_unlock(mid);
1178 free_extent_buffer(mid);
1179 } else {
1180 orig_slot -=
1181 btrfs_header_nritems(left);
1182 path->slots[level] = orig_slot;
1183 btrfs_tree_unlock(left);
1184 free_extent_buffer(left);
1185 }
1186 return 0;
1187 }
1188 btrfs_tree_unlock(left);
1189 free_extent_buffer(left);
1190 }
1191 right = read_node_slot(root, parent, pslot + 1);
1192
1193 /*
1194 * then try to empty the right most buffer into the middle
1195 */
1196 if (right) {
1197 u32 right_nr;
1198
1199 btrfs_tree_lock(right);
1200 btrfs_set_lock_blocking(right);
1201
1202 right_nr = btrfs_header_nritems(right);
1203 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1204 wret = 1;
1205 } else {
1206 ret = btrfs_cow_block(trans, root, right,
1207 parent, pslot + 1,
1208 &right, 0);
1209 if (ret)
1210 wret = 1;
1211 else {
1212 wret = balance_node_right(trans, root,
1213 right, mid);
1214 }
1215 }
1216 if (wret < 0)
1217 ret = wret;
1218 if (wret == 0) {
1219 struct btrfs_disk_key disk_key;
1220
1221 btrfs_node_key(right, &disk_key, 0);
1222 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1223 btrfs_mark_buffer_dirty(parent);
1224
1225 if (btrfs_header_nritems(mid) <= orig_slot) {
1226 path->nodes[level] = right;
1227 path->slots[level + 1] += 1;
1228 path->slots[level] = orig_slot -
1229 btrfs_header_nritems(mid);
1230 btrfs_tree_unlock(mid);
1231 free_extent_buffer(mid);
1232 } else {
1233 btrfs_tree_unlock(right);
1234 free_extent_buffer(right);
1235 }
1236 return 0;
1237 }
1238 btrfs_tree_unlock(right);
1239 free_extent_buffer(right);
1240 }
1241 return 1;
1242 }
1243
1244 /*
1245 * readahead one full node of leaves, finding things that are close
1246 * to the block in 'slot', and triggering ra on them.
1247 */
1248 static noinline void reada_for_search(struct btrfs_root *root,
1249 struct btrfs_path *path,
1250 int level, int slot, u64 objectid)
1251 {
1252 struct extent_buffer *node;
1253 struct btrfs_disk_key disk_key;
1254 u32 nritems;
1255 u64 search;
1256 u64 target;
1257 u64 nread = 0;
1258 int direction = path->reada;
1259 struct extent_buffer *eb;
1260 u32 nr;
1261 u32 blocksize;
1262 u32 nscan = 0;
1263
1264 if (level != 1)
1265 return;
1266
1267 if (!path->nodes[level])
1268 return;
1269
1270 node = path->nodes[level];
1271
1272 search = btrfs_node_blockptr(node, slot);
1273 blocksize = btrfs_level_size(root, level - 1);
1274 eb = btrfs_find_tree_block(root, search, blocksize);
1275 if (eb) {
1276 free_extent_buffer(eb);
1277 return;
1278 }
1279
1280 target = search;
1281
1282 nritems = btrfs_header_nritems(node);
1283 nr = slot;
1284 while (1) {
1285 if (direction < 0) {
1286 if (nr == 0)
1287 break;
1288 nr--;
1289 } else if (direction > 0) {
1290 nr++;
1291 if (nr >= nritems)
1292 break;
1293 }
1294 if (path->reada < 0 && objectid) {
1295 btrfs_node_key(node, &disk_key, nr);
1296 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1297 break;
1298 }
1299 search = btrfs_node_blockptr(node, nr);
1300 if ((search <= target && target - search <= 65536) ||
1301 (search > target && search - target <= 65536)) {
1302 readahead_tree_block(root, search, blocksize,
1303 btrfs_node_ptr_generation(node, nr));
1304 nread += blocksize;
1305 }
1306 nscan++;
1307 if ((nread > 65536 || nscan > 32))
1308 break;
1309 }
1310 }
1311
1312 /*
1313 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1314 * cache
1315 */
1316 static noinline int reada_for_balance(struct btrfs_root *root,
1317 struct btrfs_path *path, int level)
1318 {
1319 int slot;
1320 int nritems;
1321 struct extent_buffer *parent;
1322 struct extent_buffer *eb;
1323 u64 gen;
1324 u64 block1 = 0;
1325 u64 block2 = 0;
1326 int ret = 0;
1327 int blocksize;
1328
1329 parent = path->nodes[level - 1];
1330 if (!parent)
1331 return 0;
1332
1333 nritems = btrfs_header_nritems(parent);
1334 slot = path->slots[level];
1335 blocksize = btrfs_level_size(root, level);
1336
1337 if (slot > 0) {
1338 block1 = btrfs_node_blockptr(parent, slot - 1);
1339 gen = btrfs_node_ptr_generation(parent, slot - 1);
1340 eb = btrfs_find_tree_block(root, block1, blocksize);
1341 if (eb && btrfs_buffer_uptodate(eb, gen))
1342 block1 = 0;
1343 free_extent_buffer(eb);
1344 }
1345 if (slot < nritems) {
1346 block2 = btrfs_node_blockptr(parent, slot + 1);
1347 gen = btrfs_node_ptr_generation(parent, slot + 1);
1348 eb = btrfs_find_tree_block(root, block2, blocksize);
1349 if (eb && btrfs_buffer_uptodate(eb, gen))
1350 block2 = 0;
1351 free_extent_buffer(eb);
1352 }
1353 if (block1 || block2) {
1354 ret = -EAGAIN;
1355 btrfs_release_path(root, path);
1356 if (block1)
1357 readahead_tree_block(root, block1, blocksize, 0);
1358 if (block2)
1359 readahead_tree_block(root, block2, blocksize, 0);
1360
1361 if (block1) {
1362 eb = read_tree_block(root, block1, blocksize, 0);
1363 free_extent_buffer(eb);
1364 }
1365 if (block1) {
1366 eb = read_tree_block(root, block2, blocksize, 0);
1367 free_extent_buffer(eb);
1368 }
1369 }
1370 return ret;
1371 }
1372
1373
1374 /*
1375 * when we walk down the tree, it is usually safe to unlock the higher layers
1376 * in the tree. The exceptions are when our path goes through slot 0, because
1377 * operations on the tree might require changing key pointers higher up in the
1378 * tree.
1379 *
1380 * callers might also have set path->keep_locks, which tells this code to keep
1381 * the lock if the path points to the last slot in the block. This is part of
1382 * walking through the tree, and selecting the next slot in the higher block.
1383 *
1384 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1385 * if lowest_unlock is 1, level 0 won't be unlocked
1386 */
1387 static noinline void unlock_up(struct btrfs_path *path, int level,
1388 int lowest_unlock)
1389 {
1390 int i;
1391 int skip_level = level;
1392 int no_skips = 0;
1393 struct extent_buffer *t;
1394
1395 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1396 if (!path->nodes[i])
1397 break;
1398 if (!path->locks[i])
1399 break;
1400 if (!no_skips && path->slots[i] == 0) {
1401 skip_level = i + 1;
1402 continue;
1403 }
1404 if (!no_skips && path->keep_locks) {
1405 u32 nritems;
1406 t = path->nodes[i];
1407 nritems = btrfs_header_nritems(t);
1408 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1409 skip_level = i + 1;
1410 continue;
1411 }
1412 }
1413 if (skip_level < i && i >= lowest_unlock)
1414 no_skips = 1;
1415
1416 t = path->nodes[i];
1417 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1418 btrfs_tree_unlock(t);
1419 path->locks[i] = 0;
1420 }
1421 }
1422 }
1423
1424 /*
1425 * This releases any locks held in the path starting at level and
1426 * going all the way up to the root.
1427 *
1428 * btrfs_search_slot will keep the lock held on higher nodes in a few
1429 * corner cases, such as COW of the block at slot zero in the node. This
1430 * ignores those rules, and it should only be called when there are no
1431 * more updates to be done higher up in the tree.
1432 */
1433 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1434 {
1435 int i;
1436
1437 if (path->keep_locks || path->lowest_level)
1438 return;
1439
1440 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1441 if (!path->nodes[i])
1442 continue;
1443 if (!path->locks[i])
1444 continue;
1445 btrfs_tree_unlock(path->nodes[i]);
1446 path->locks[i] = 0;
1447 }
1448 }
1449
1450 /*
1451 * look for key in the tree. path is filled in with nodes along the way
1452 * if key is found, we return zero and you can find the item in the leaf
1453 * level of the path (level 0)
1454 *
1455 * If the key isn't found, the path points to the slot where it should
1456 * be inserted, and 1 is returned. If there are other errors during the
1457 * search a negative error number is returned.
1458 *
1459 * if ins_len > 0, nodes and leaves will be split as we walk down the
1460 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1461 * possible)
1462 */
1463 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1464 *root, struct btrfs_key *key, struct btrfs_path *p, int
1465 ins_len, int cow)
1466 {
1467 struct extent_buffer *b;
1468 struct extent_buffer *tmp;
1469 int slot;
1470 int ret;
1471 int level;
1472 int should_reada = p->reada;
1473 int lowest_unlock = 1;
1474 int blocksize;
1475 u8 lowest_level = 0;
1476 u64 blocknr;
1477 u64 gen;
1478 struct btrfs_key prealloc_block;
1479
1480 lowest_level = p->lowest_level;
1481 WARN_ON(lowest_level && ins_len > 0);
1482 WARN_ON(p->nodes[0] != NULL);
1483
1484 if (ins_len < 0)
1485 lowest_unlock = 2;
1486
1487 prealloc_block.objectid = 0;
1488
1489 again:
1490 if (p->skip_locking)
1491 b = btrfs_root_node(root);
1492 else
1493 b = btrfs_lock_root_node(root);
1494
1495 while (b) {
1496 level = btrfs_header_level(b);
1497
1498 /*
1499 * setup the path here so we can release it under lock
1500 * contention with the cow code
1501 */
1502 p->nodes[level] = b;
1503 if (!p->skip_locking)
1504 p->locks[level] = 1;
1505
1506 if (cow) {
1507 int wret;
1508
1509 /* is a cow on this block not required */
1510 if (btrfs_header_generation(b) == trans->transid &&
1511 btrfs_header_owner(b) == root->root_key.objectid &&
1512 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1513 goto cow_done;
1514 }
1515
1516 /* ok, we have to cow, is our old prealloc the right
1517 * size?
1518 */
1519 if (prealloc_block.objectid &&
1520 prealloc_block.offset != b->len) {
1521 btrfs_set_path_blocking(p);
1522 btrfs_free_reserved_extent(root,
1523 prealloc_block.objectid,
1524 prealloc_block.offset);
1525 prealloc_block.objectid = 0;
1526 }
1527
1528 /*
1529 * for higher level blocks, try not to allocate blocks
1530 * with the block and the parent locks held.
1531 */
1532 if (level > 1 && !prealloc_block.objectid &&
1533 btrfs_path_lock_waiting(p, level)) {
1534 u32 size = b->len;
1535 u64 hint = b->start;
1536
1537 btrfs_release_path(root, p);
1538 ret = btrfs_reserve_extent(trans, root,
1539 size, size, 0,
1540 hint, (u64)-1,
1541 &prealloc_block, 0);
1542 BUG_ON(ret);
1543 goto again;
1544 }
1545
1546 btrfs_set_path_blocking(p);
1547
1548 wret = btrfs_cow_block(trans, root, b,
1549 p->nodes[level + 1],
1550 p->slots[level + 1],
1551 &b, prealloc_block.objectid);
1552 prealloc_block.objectid = 0;
1553 if (wret) {
1554 free_extent_buffer(b);
1555 ret = wret;
1556 goto done;
1557 }
1558 }
1559 cow_done:
1560 BUG_ON(!cow && ins_len);
1561 if (level != btrfs_header_level(b))
1562 WARN_ON(1);
1563 level = btrfs_header_level(b);
1564
1565 p->nodes[level] = b;
1566 if (!p->skip_locking)
1567 p->locks[level] = 1;
1568
1569 btrfs_clear_path_blocking(p);
1570
1571 /*
1572 * we have a lock on b and as long as we aren't changing
1573 * the tree, there is no way to for the items in b to change.
1574 * It is safe to drop the lock on our parent before we
1575 * go through the expensive btree search on b.
1576 *
1577 * If cow is true, then we might be changing slot zero,
1578 * which may require changing the parent. So, we can't
1579 * drop the lock until after we know which slot we're
1580 * operating on.
1581 */
1582 if (!cow)
1583 btrfs_unlock_up_safe(p, level + 1);
1584
1585 ret = check_block(root, p, level);
1586 if (ret) {
1587 ret = -1;
1588 goto done;
1589 }
1590
1591 ret = bin_search(b, key, level, &slot);
1592
1593 if (level != 0) {
1594 if (ret && slot > 0)
1595 slot -= 1;
1596 p->slots[level] = slot;
1597 if ((p->search_for_split || ins_len > 0) &&
1598 btrfs_header_nritems(b) >=
1599 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1600 int sret;
1601
1602 sret = reada_for_balance(root, p, level);
1603 if (sret)
1604 goto again;
1605
1606 btrfs_set_path_blocking(p);
1607 sret = split_node(trans, root, p, level);
1608 btrfs_clear_path_blocking(p);
1609
1610 BUG_ON(sret > 0);
1611 if (sret) {
1612 ret = sret;
1613 goto done;
1614 }
1615 b = p->nodes[level];
1616 slot = p->slots[level];
1617 } else if (ins_len < 0) {
1618 int sret;
1619
1620 sret = reada_for_balance(root, p, level);
1621 if (sret)
1622 goto again;
1623
1624 btrfs_set_path_blocking(p);
1625 sret = balance_level(trans, root, p, level);
1626 btrfs_clear_path_blocking(p);
1627
1628 if (sret) {
1629 ret = sret;
1630 goto done;
1631 }
1632 b = p->nodes[level];
1633 if (!b) {
1634 btrfs_release_path(NULL, p);
1635 goto again;
1636 }
1637 slot = p->slots[level];
1638 BUG_ON(btrfs_header_nritems(b) == 1);
1639 }
1640 unlock_up(p, level, lowest_unlock);
1641
1642 /* this is only true while dropping a snapshot */
1643 if (level == lowest_level) {
1644 ret = 0;
1645 goto done;
1646 }
1647
1648 blocknr = btrfs_node_blockptr(b, slot);
1649 gen = btrfs_node_ptr_generation(b, slot);
1650 blocksize = btrfs_level_size(root, level - 1);
1651
1652 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1653 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1654 b = tmp;
1655 } else {
1656 /*
1657 * reduce lock contention at high levels
1658 * of the btree by dropping locks before
1659 * we read.
1660 */
1661 if (level > 0) {
1662 btrfs_release_path(NULL, p);
1663 if (tmp)
1664 free_extent_buffer(tmp);
1665 if (should_reada)
1666 reada_for_search(root, p,
1667 level, slot,
1668 key->objectid);
1669
1670 tmp = read_tree_block(root, blocknr,
1671 blocksize, gen);
1672 if (tmp)
1673 free_extent_buffer(tmp);
1674 goto again;
1675 } else {
1676 btrfs_set_path_blocking(p);
1677 if (tmp)
1678 free_extent_buffer(tmp);
1679 if (should_reada)
1680 reada_for_search(root, p,
1681 level, slot,
1682 key->objectid);
1683 b = read_node_slot(root, b, slot);
1684 }
1685 }
1686 if (!p->skip_locking) {
1687 int lret;
1688
1689 btrfs_clear_path_blocking(p);
1690 lret = btrfs_try_spin_lock(b);
1691
1692 if (!lret) {
1693 btrfs_set_path_blocking(p);
1694 btrfs_tree_lock(b);
1695 btrfs_clear_path_blocking(p);
1696 }
1697 }
1698 } else {
1699 p->slots[level] = slot;
1700 if (ins_len > 0 &&
1701 btrfs_leaf_free_space(root, b) < ins_len) {
1702 int sret;
1703
1704 btrfs_set_path_blocking(p);
1705 sret = split_leaf(trans, root, key,
1706 p, ins_len, ret == 0);
1707 btrfs_clear_path_blocking(p);
1708
1709 BUG_ON(sret > 0);
1710 if (sret) {
1711 ret = sret;
1712 goto done;
1713 }
1714 }
1715 if (!p->search_for_split)
1716 unlock_up(p, level, lowest_unlock);
1717 goto done;
1718 }
1719 }
1720 ret = 1;
1721 done:
1722 /*
1723 * we don't really know what they plan on doing with the path
1724 * from here on, so for now just mark it as blocking
1725 */
1726 btrfs_set_path_blocking(p);
1727 if (prealloc_block.objectid) {
1728 btrfs_free_reserved_extent(root,
1729 prealloc_block.objectid,
1730 prealloc_block.offset);
1731 }
1732 return ret;
1733 }
1734
1735 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1736 struct btrfs_root *root,
1737 struct btrfs_key *node_keys,
1738 u64 *nodes, int lowest_level)
1739 {
1740 struct extent_buffer *eb;
1741 struct extent_buffer *parent;
1742 struct btrfs_key key;
1743 u64 bytenr;
1744 u64 generation;
1745 u32 blocksize;
1746 int level;
1747 int slot;
1748 int key_match;
1749 int ret;
1750
1751 eb = btrfs_lock_root_node(root);
1752 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
1753 BUG_ON(ret);
1754
1755 btrfs_set_lock_blocking(eb);
1756
1757 parent = eb;
1758 while (1) {
1759 level = btrfs_header_level(parent);
1760 if (level == 0 || level <= lowest_level)
1761 break;
1762
1763 ret = bin_search(parent, &node_keys[lowest_level], level,
1764 &slot);
1765 if (ret && slot > 0)
1766 slot--;
1767
1768 bytenr = btrfs_node_blockptr(parent, slot);
1769 if (nodes[level - 1] == bytenr)
1770 break;
1771
1772 blocksize = btrfs_level_size(root, level - 1);
1773 generation = btrfs_node_ptr_generation(parent, slot);
1774 btrfs_node_key_to_cpu(eb, &key, slot);
1775 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1776
1777 if (generation == trans->transid) {
1778 eb = read_tree_block(root, bytenr, blocksize,
1779 generation);
1780 btrfs_tree_lock(eb);
1781 btrfs_set_lock_blocking(eb);
1782 }
1783
1784 /*
1785 * if node keys match and node pointer hasn't been modified
1786 * in the running transaction, we can merge the path. for
1787 * blocks owened by reloc trees, the node pointer check is
1788 * skipped, this is because these blocks are fully controlled
1789 * by the space balance code, no one else can modify them.
1790 */
1791 if (!nodes[level - 1] || !key_match ||
1792 (generation == trans->transid &&
1793 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1794 if (level == 1 || level == lowest_level + 1) {
1795 if (generation == trans->transid) {
1796 btrfs_tree_unlock(eb);
1797 free_extent_buffer(eb);
1798 }
1799 break;
1800 }
1801
1802 if (generation != trans->transid) {
1803 eb = read_tree_block(root, bytenr, blocksize,
1804 generation);
1805 btrfs_tree_lock(eb);
1806 btrfs_set_lock_blocking(eb);
1807 }
1808
1809 ret = btrfs_cow_block(trans, root, eb, parent, slot,
1810 &eb, 0);
1811 BUG_ON(ret);
1812
1813 if (root->root_key.objectid ==
1814 BTRFS_TREE_RELOC_OBJECTID) {
1815 if (!nodes[level - 1]) {
1816 nodes[level - 1] = eb->start;
1817 memcpy(&node_keys[level - 1], &key,
1818 sizeof(node_keys[0]));
1819 } else {
1820 WARN_ON(1);
1821 }
1822 }
1823
1824 btrfs_tree_unlock(parent);
1825 free_extent_buffer(parent);
1826 parent = eb;
1827 continue;
1828 }
1829
1830 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1831 btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1832 btrfs_mark_buffer_dirty(parent);
1833
1834 ret = btrfs_inc_extent_ref(trans, root,
1835 nodes[level - 1],
1836 blocksize, parent->start,
1837 btrfs_header_owner(parent),
1838 btrfs_header_generation(parent),
1839 level - 1);
1840 BUG_ON(ret);
1841
1842 /*
1843 * If the block was created in the running transaction,
1844 * it's possible this is the last reference to it, so we
1845 * should drop the subtree.
1846 */
1847 if (generation == trans->transid) {
1848 ret = btrfs_drop_subtree(trans, root, eb, parent);
1849 BUG_ON(ret);
1850 btrfs_tree_unlock(eb);
1851 free_extent_buffer(eb);
1852 } else {
1853 ret = btrfs_free_extent(trans, root, bytenr,
1854 blocksize, parent->start,
1855 btrfs_header_owner(parent),
1856 btrfs_header_generation(parent),
1857 level - 1, 1);
1858 BUG_ON(ret);
1859 }
1860 break;
1861 }
1862 btrfs_tree_unlock(parent);
1863 free_extent_buffer(parent);
1864 return 0;
1865 }
1866
1867 /*
1868 * adjust the pointers going up the tree, starting at level
1869 * making sure the right key of each node is points to 'key'.
1870 * This is used after shifting pointers to the left, so it stops
1871 * fixing up pointers when a given leaf/node is not in slot 0 of the
1872 * higher levels
1873 *
1874 * If this fails to write a tree block, it returns -1, but continues
1875 * fixing up the blocks in ram so the tree is consistent.
1876 */
1877 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1878 struct btrfs_root *root, struct btrfs_path *path,
1879 struct btrfs_disk_key *key, int level)
1880 {
1881 int i;
1882 int ret = 0;
1883 struct extent_buffer *t;
1884
1885 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1886 int tslot = path->slots[i];
1887 if (!path->nodes[i])
1888 break;
1889 t = path->nodes[i];
1890 btrfs_set_node_key(t, key, tslot);
1891 btrfs_mark_buffer_dirty(path->nodes[i]);
1892 if (tslot != 0)
1893 break;
1894 }
1895 return ret;
1896 }
1897
1898 /*
1899 * update item key.
1900 *
1901 * This function isn't completely safe. It's the caller's responsibility
1902 * that the new key won't break the order
1903 */
1904 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1905 struct btrfs_root *root, struct btrfs_path *path,
1906 struct btrfs_key *new_key)
1907 {
1908 struct btrfs_disk_key disk_key;
1909 struct extent_buffer *eb;
1910 int slot;
1911
1912 eb = path->nodes[0];
1913 slot = path->slots[0];
1914 if (slot > 0) {
1915 btrfs_item_key(eb, &disk_key, slot - 1);
1916 if (comp_keys(&disk_key, new_key) >= 0)
1917 return -1;
1918 }
1919 if (slot < btrfs_header_nritems(eb) - 1) {
1920 btrfs_item_key(eb, &disk_key, slot + 1);
1921 if (comp_keys(&disk_key, new_key) <= 0)
1922 return -1;
1923 }
1924
1925 btrfs_cpu_key_to_disk(&disk_key, new_key);
1926 btrfs_set_item_key(eb, &disk_key, slot);
1927 btrfs_mark_buffer_dirty(eb);
1928 if (slot == 0)
1929 fixup_low_keys(trans, root, path, &disk_key, 1);
1930 return 0;
1931 }
1932
1933 /*
1934 * try to push data from one node into the next node left in the
1935 * tree.
1936 *
1937 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1938 * error, and > 0 if there was no room in the left hand block.
1939 */
1940 static int push_node_left(struct btrfs_trans_handle *trans,
1941 struct btrfs_root *root, struct extent_buffer *dst,
1942 struct extent_buffer *src, int empty)
1943 {
1944 int push_items = 0;
1945 int src_nritems;
1946 int dst_nritems;
1947 int ret = 0;
1948
1949 src_nritems = btrfs_header_nritems(src);
1950 dst_nritems = btrfs_header_nritems(dst);
1951 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1952 WARN_ON(btrfs_header_generation(src) != trans->transid);
1953 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1954
1955 if (!empty && src_nritems <= 8)
1956 return 1;
1957
1958 if (push_items <= 0)
1959 return 1;
1960
1961 if (empty) {
1962 push_items = min(src_nritems, push_items);
1963 if (push_items < src_nritems) {
1964 /* leave at least 8 pointers in the node if
1965 * we aren't going to empty it
1966 */
1967 if (src_nritems - push_items < 8) {
1968 if (push_items <= 8)
1969 return 1;
1970 push_items -= 8;
1971 }
1972 }
1973 } else
1974 push_items = min(src_nritems - 8, push_items);
1975
1976 copy_extent_buffer(dst, src,
1977 btrfs_node_key_ptr_offset(dst_nritems),
1978 btrfs_node_key_ptr_offset(0),
1979 push_items * sizeof(struct btrfs_key_ptr));
1980
1981 if (push_items < src_nritems) {
1982 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1983 btrfs_node_key_ptr_offset(push_items),
1984 (src_nritems - push_items) *
1985 sizeof(struct btrfs_key_ptr));
1986 }
1987 btrfs_set_header_nritems(src, src_nritems - push_items);
1988 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1989 btrfs_mark_buffer_dirty(src);
1990 btrfs_mark_buffer_dirty(dst);
1991
1992 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
1993 BUG_ON(ret);
1994
1995 return ret;
1996 }
1997
1998 /*
1999 * try to push data from one node into the next node right in the
2000 * tree.
2001 *
2002 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2003 * error, and > 0 if there was no room in the right hand block.
2004 *
2005 * this will only push up to 1/2 the contents of the left node over
2006 */
2007 static int balance_node_right(struct btrfs_trans_handle *trans,
2008 struct btrfs_root *root,
2009 struct extent_buffer *dst,
2010 struct extent_buffer *src)
2011 {
2012 int push_items = 0;
2013 int max_push;
2014 int src_nritems;
2015 int dst_nritems;
2016 int ret = 0;
2017
2018 WARN_ON(btrfs_header_generation(src) != trans->transid);
2019 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2020
2021 src_nritems = btrfs_header_nritems(src);
2022 dst_nritems = btrfs_header_nritems(dst);
2023 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2024 if (push_items <= 0)
2025 return 1;
2026
2027 if (src_nritems < 4)
2028 return 1;
2029
2030 max_push = src_nritems / 2 + 1;
2031 /* don't try to empty the node */
2032 if (max_push >= src_nritems)
2033 return 1;
2034
2035 if (max_push < push_items)
2036 push_items = max_push;
2037
2038 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2039 btrfs_node_key_ptr_offset(0),
2040 (dst_nritems) *
2041 sizeof(struct btrfs_key_ptr));
2042
2043 copy_extent_buffer(dst, src,
2044 btrfs_node_key_ptr_offset(0),
2045 btrfs_node_key_ptr_offset(src_nritems - push_items),
2046 push_items * sizeof(struct btrfs_key_ptr));
2047
2048 btrfs_set_header_nritems(src, src_nritems - push_items);
2049 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2050
2051 btrfs_mark_buffer_dirty(src);
2052 btrfs_mark_buffer_dirty(dst);
2053
2054 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2055 BUG_ON(ret);
2056
2057 return ret;
2058 }
2059
2060 /*
2061 * helper function to insert a new root level in the tree.
2062 * A new node is allocated, and a single item is inserted to
2063 * point to the existing root
2064 *
2065 * returns zero on success or < 0 on failure.
2066 */
2067 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2068 struct btrfs_root *root,
2069 struct btrfs_path *path, int level)
2070 {
2071 u64 lower_gen;
2072 struct extent_buffer *lower;
2073 struct extent_buffer *c;
2074 struct extent_buffer *old;
2075 struct btrfs_disk_key lower_key;
2076 int ret;
2077
2078 BUG_ON(path->nodes[level]);
2079 BUG_ON(path->nodes[level-1] != root->node);
2080
2081 lower = path->nodes[level-1];
2082 if (level == 1)
2083 btrfs_item_key(lower, &lower_key, 0);
2084 else
2085 btrfs_node_key(lower, &lower_key, 0);
2086
2087 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2088 root->root_key.objectid, trans->transid,
2089 level, root->node->start, 0);
2090 if (IS_ERR(c))
2091 return PTR_ERR(c);
2092
2093 memset_extent_buffer(c, 0, 0, root->nodesize);
2094 btrfs_set_header_nritems(c, 1);
2095 btrfs_set_header_level(c, level);
2096 btrfs_set_header_bytenr(c, c->start);
2097 btrfs_set_header_generation(c, trans->transid);
2098 btrfs_set_header_owner(c, root->root_key.objectid);
2099
2100 write_extent_buffer(c, root->fs_info->fsid,
2101 (unsigned long)btrfs_header_fsid(c),
2102 BTRFS_FSID_SIZE);
2103
2104 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2105 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2106 BTRFS_UUID_SIZE);
2107
2108 btrfs_set_node_key(c, &lower_key, 0);
2109 btrfs_set_node_blockptr(c, 0, lower->start);
2110 lower_gen = btrfs_header_generation(lower);
2111 WARN_ON(lower_gen != trans->transid);
2112
2113 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2114
2115 btrfs_mark_buffer_dirty(c);
2116
2117 spin_lock(&root->node_lock);
2118 old = root->node;
2119 root->node = c;
2120 spin_unlock(&root->node_lock);
2121
2122 ret = btrfs_update_extent_ref(trans, root, lower->start,
2123 lower->start, c->start,
2124 root->root_key.objectid,
2125 trans->transid, level - 1);
2126 BUG_ON(ret);
2127
2128 /* the super has an extra ref to root->node */
2129 free_extent_buffer(old);
2130
2131 add_root_to_dirty_list(root);
2132 extent_buffer_get(c);
2133 path->nodes[level] = c;
2134 path->locks[level] = 1;
2135 path->slots[level] = 0;
2136 return 0;
2137 }
2138
2139 /*
2140 * worker function to insert a single pointer in a node.
2141 * the node should have enough room for the pointer already
2142 *
2143 * slot and level indicate where you want the key to go, and
2144 * blocknr is the block the key points to.
2145 *
2146 * returns zero on success and < 0 on any error
2147 */
2148 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2149 *root, struct btrfs_path *path, struct btrfs_disk_key
2150 *key, u64 bytenr, int slot, int level)
2151 {
2152 struct extent_buffer *lower;
2153 int nritems;
2154
2155 BUG_ON(!path->nodes[level]);
2156 lower = path->nodes[level];
2157 nritems = btrfs_header_nritems(lower);
2158 if (slot > nritems)
2159 BUG();
2160 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2161 BUG();
2162 if (slot != nritems) {
2163 memmove_extent_buffer(lower,
2164 btrfs_node_key_ptr_offset(slot + 1),
2165 btrfs_node_key_ptr_offset(slot),
2166 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2167 }
2168 btrfs_set_node_key(lower, key, slot);
2169 btrfs_set_node_blockptr(lower, slot, bytenr);
2170 WARN_ON(trans->transid == 0);
2171 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2172 btrfs_set_header_nritems(lower, nritems + 1);
2173 btrfs_mark_buffer_dirty(lower);
2174 return 0;
2175 }
2176
2177 /*
2178 * split the node at the specified level in path in two.
2179 * The path is corrected to point to the appropriate node after the split
2180 *
2181 * Before splitting this tries to make some room in the node by pushing
2182 * left and right, if either one works, it returns right away.
2183 *
2184 * returns 0 on success and < 0 on failure
2185 */
2186 static noinline int split_node(struct btrfs_trans_handle *trans,
2187 struct btrfs_root *root,
2188 struct btrfs_path *path, int level)
2189 {
2190 struct extent_buffer *c;
2191 struct extent_buffer *split;
2192 struct btrfs_disk_key disk_key;
2193 int mid;
2194 int ret;
2195 int wret;
2196 u32 c_nritems;
2197
2198 c = path->nodes[level];
2199 WARN_ON(btrfs_header_generation(c) != trans->transid);
2200 if (c == root->node) {
2201 /* trying to split the root, lets make a new one */
2202 ret = insert_new_root(trans, root, path, level + 1);
2203 if (ret)
2204 return ret;
2205 } else {
2206 ret = push_nodes_for_insert(trans, root, path, level);
2207 c = path->nodes[level];
2208 if (!ret && btrfs_header_nritems(c) <
2209 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2210 return 0;
2211 if (ret < 0)
2212 return ret;
2213 }
2214
2215 c_nritems = btrfs_header_nritems(c);
2216
2217 split = btrfs_alloc_free_block(trans, root, root->nodesize,
2218 path->nodes[level + 1]->start,
2219 root->root_key.objectid,
2220 trans->transid, level, c->start, 0);
2221 if (IS_ERR(split))
2222 return PTR_ERR(split);
2223
2224 btrfs_set_header_flags(split, btrfs_header_flags(c));
2225 btrfs_set_header_level(split, btrfs_header_level(c));
2226 btrfs_set_header_bytenr(split, split->start);
2227 btrfs_set_header_generation(split, trans->transid);
2228 btrfs_set_header_owner(split, root->root_key.objectid);
2229 btrfs_set_header_flags(split, 0);
2230 write_extent_buffer(split, root->fs_info->fsid,
2231 (unsigned long)btrfs_header_fsid(split),
2232 BTRFS_FSID_SIZE);
2233 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2234 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2235 BTRFS_UUID_SIZE);
2236
2237 mid = (c_nritems + 1) / 2;
2238
2239 copy_extent_buffer(split, c,
2240 btrfs_node_key_ptr_offset(0),
2241 btrfs_node_key_ptr_offset(mid),
2242 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2243 btrfs_set_header_nritems(split, c_nritems - mid);
2244 btrfs_set_header_nritems(c, mid);
2245 ret = 0;
2246
2247 btrfs_mark_buffer_dirty(c);
2248 btrfs_mark_buffer_dirty(split);
2249
2250 btrfs_node_key(split, &disk_key, 0);
2251 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2252 path->slots[level + 1] + 1,
2253 level + 1);
2254 if (wret)
2255 ret = wret;
2256
2257 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2258 BUG_ON(ret);
2259
2260 if (path->slots[level] >= mid) {
2261 path->slots[level] -= mid;
2262 btrfs_tree_unlock(c);
2263 free_extent_buffer(c);
2264 path->nodes[level] = split;
2265 path->slots[level + 1] += 1;
2266 } else {
2267 btrfs_tree_unlock(split);
2268 free_extent_buffer(split);
2269 }
2270 return ret;
2271 }
2272
2273 /*
2274 * how many bytes are required to store the items in a leaf. start
2275 * and nr indicate which items in the leaf to check. This totals up the
2276 * space used both by the item structs and the item data
2277 */
2278 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2279 {
2280 int data_len;
2281 int nritems = btrfs_header_nritems(l);
2282 int end = min(nritems, start + nr) - 1;
2283
2284 if (!nr)
2285 return 0;
2286 data_len = btrfs_item_end_nr(l, start);
2287 data_len = data_len - btrfs_item_offset_nr(l, end);
2288 data_len += sizeof(struct btrfs_item) * nr;
2289 WARN_ON(data_len < 0);
2290 return data_len;
2291 }
2292
2293 /*
2294 * The space between the end of the leaf items and
2295 * the start of the leaf data. IOW, how much room
2296 * the leaf has left for both items and data
2297 */
2298 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2299 struct extent_buffer *leaf)
2300 {
2301 int nritems = btrfs_header_nritems(leaf);
2302 int ret;
2303 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2304 if (ret < 0) {
2305 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2306 "used %d nritems %d\n",
2307 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2308 leaf_space_used(leaf, 0, nritems), nritems);
2309 }
2310 return ret;
2311 }
2312
2313 /*
2314 * push some data in the path leaf to the right, trying to free up at
2315 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2316 *
2317 * returns 1 if the push failed because the other node didn't have enough
2318 * room, 0 if everything worked out and < 0 if there were major errors.
2319 */
2320 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2321 *root, struct btrfs_path *path, int data_size,
2322 int empty)
2323 {
2324 struct extent_buffer *left = path->nodes[0];
2325 struct extent_buffer *right;
2326 struct extent_buffer *upper;
2327 struct btrfs_disk_key disk_key;
2328 int slot;
2329 u32 i;
2330 int free_space;
2331 int push_space = 0;
2332 int push_items = 0;
2333 struct btrfs_item *item;
2334 u32 left_nritems;
2335 u32 nr;
2336 u32 right_nritems;
2337 u32 data_end;
2338 u32 this_item_size;
2339 int ret;
2340
2341 slot = path->slots[1];
2342 if (!path->nodes[1])
2343 return 1;
2344
2345 upper = path->nodes[1];
2346 if (slot >= btrfs_header_nritems(upper) - 1)
2347 return 1;
2348
2349 WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2350
2351 right = read_node_slot(root, upper, slot + 1);
2352 btrfs_tree_lock(right);
2353 btrfs_set_lock_blocking(right);
2354
2355 free_space = btrfs_leaf_free_space(root, right);
2356 if (free_space < data_size)
2357 goto out_unlock;
2358
2359 /* cow and double check */
2360 ret = btrfs_cow_block(trans, root, right, upper,
2361 slot + 1, &right, 0);
2362 if (ret)
2363 goto out_unlock;
2364
2365 free_space = btrfs_leaf_free_space(root, right);
2366 if (free_space < data_size)
2367 goto out_unlock;
2368
2369 left_nritems = btrfs_header_nritems(left);
2370 if (left_nritems == 0)
2371 goto out_unlock;
2372
2373 if (empty)
2374 nr = 0;
2375 else
2376 nr = 1;
2377
2378 if (path->slots[0] >= left_nritems)
2379 push_space += data_size;
2380
2381 i = left_nritems - 1;
2382 while (i >= nr) {
2383 item = btrfs_item_nr(left, i);
2384
2385 if (!empty && push_items > 0) {
2386 if (path->slots[0] > i)
2387 break;
2388 if (path->slots[0] == i) {
2389 int space = btrfs_leaf_free_space(root, left);
2390 if (space + push_space * 2 > free_space)
2391 break;
2392 }
2393 }
2394
2395 if (path->slots[0] == i)
2396 push_space += data_size;
2397
2398 if (!left->map_token) {
2399 map_extent_buffer(left, (unsigned long)item,
2400 sizeof(struct btrfs_item),
2401 &left->map_token, &left->kaddr,
2402 &left->map_start, &left->map_len,
2403 KM_USER1);
2404 }
2405
2406 this_item_size = btrfs_item_size(left, item);
2407 if (this_item_size + sizeof(*item) + push_space > free_space)
2408 break;
2409
2410 push_items++;
2411 push_space += this_item_size + sizeof(*item);
2412 if (i == 0)
2413 break;
2414 i--;
2415 }
2416 if (left->map_token) {
2417 unmap_extent_buffer(left, left->map_token, KM_USER1);
2418 left->map_token = NULL;
2419 }
2420
2421 if (push_items == 0)
2422 goto out_unlock;
2423
2424 if (!empty && push_items == left_nritems)
2425 WARN_ON(1);
2426
2427 /* push left to right */
2428 right_nritems = btrfs_header_nritems(right);
2429
2430 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2431 push_space -= leaf_data_end(root, left);
2432
2433 /* make room in the right data area */
2434 data_end = leaf_data_end(root, right);
2435 memmove_extent_buffer(right,
2436 btrfs_leaf_data(right) + data_end - push_space,
2437 btrfs_leaf_data(right) + data_end,
2438 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2439
2440 /* copy from the left data area */
2441 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2442 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2443 btrfs_leaf_data(left) + leaf_data_end(root, left),
2444 push_space);
2445
2446 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2447 btrfs_item_nr_offset(0),
2448 right_nritems * sizeof(struct btrfs_item));
2449
2450 /* copy the items from left to right */
2451 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2452 btrfs_item_nr_offset(left_nritems - push_items),
2453 push_items * sizeof(struct btrfs_item));
2454
2455 /* update the item pointers */
2456 right_nritems += push_items;
2457 btrfs_set_header_nritems(right, right_nritems);
2458 push_space = BTRFS_LEAF_DATA_SIZE(root);
2459 for (i = 0; i < right_nritems; i++) {
2460 item = btrfs_item_nr(right, i);
2461 if (!right->map_token) {
2462 map_extent_buffer(right, (unsigned long)item,
2463 sizeof(struct btrfs_item),
2464 &right->map_token, &right->kaddr,
2465 &right->map_start, &right->map_len,
2466 KM_USER1);
2467 }
2468 push_space -= btrfs_item_size(right, item);
2469 btrfs_set_item_offset(right, item, push_space);
2470 }
2471
2472 if (right->map_token) {
2473 unmap_extent_buffer(right, right->map_token, KM_USER1);
2474 right->map_token = NULL;
2475 }
2476 left_nritems -= push_items;
2477 btrfs_set_header_nritems(left, left_nritems);
2478
2479 if (left_nritems)
2480 btrfs_mark_buffer_dirty(left);
2481 btrfs_mark_buffer_dirty(right);
2482
2483 ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2484 BUG_ON(ret);
2485
2486 btrfs_item_key(right, &disk_key, 0);
2487 btrfs_set_node_key(upper, &disk_key, slot + 1);
2488 btrfs_mark_buffer_dirty(upper);
2489
2490 /* then fixup the leaf pointer in the path */
2491 if (path->slots[0] >= left_nritems) {
2492 path->slots[0] -= left_nritems;
2493 if (btrfs_header_nritems(path->nodes[0]) == 0)
2494 clean_tree_block(trans, root, path->nodes[0]);
2495 btrfs_tree_unlock(path->nodes[0]);
2496 free_extent_buffer(path->nodes[0]);
2497 path->nodes[0] = right;
2498 path->slots[1] += 1;
2499 } else {
2500 btrfs_tree_unlock(right);
2501 free_extent_buffer(right);
2502 }
2503 return 0;
2504
2505 out_unlock:
2506 btrfs_tree_unlock(right);
2507 free_extent_buffer(right);
2508 return 1;
2509 }
2510
2511 /*
2512 * push some data in the path leaf to the left, trying to free up at
2513 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2514 */
2515 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2516 *root, struct btrfs_path *path, int data_size,
2517 int empty)
2518 {
2519 struct btrfs_disk_key disk_key;
2520 struct extent_buffer *right = path->nodes[0];
2521 struct extent_buffer *left;
2522 int slot;
2523 int i;
2524 int free_space;
2525 int push_space = 0;
2526 int push_items = 0;
2527 struct btrfs_item *item;
2528 u32 old_left_nritems;
2529 u32 right_nritems;
2530 u32 nr;
2531 int ret = 0;
2532 int wret;
2533 u32 this_item_size;
2534 u32 old_left_item_size;
2535
2536 slot = path->slots[1];
2537 if (slot == 0)
2538 return 1;
2539 if (!path->nodes[1])
2540 return 1;
2541
2542 right_nritems = btrfs_header_nritems(right);
2543 if (right_nritems == 0)
2544 return 1;
2545
2546 WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2547
2548 left = read_node_slot(root, path->nodes[1], slot - 1);
2549 btrfs_tree_lock(left);
2550 btrfs_set_lock_blocking(left);
2551
2552 free_space = btrfs_leaf_free_space(root, left);
2553 if (free_space < data_size) {
2554 ret = 1;
2555 goto out;
2556 }
2557
2558 /* cow and double check */
2559 ret = btrfs_cow_block(trans, root, left,
2560 path->nodes[1], slot - 1, &left, 0);
2561 if (ret) {
2562 /* we hit -ENOSPC, but it isn't fatal here */
2563 ret = 1;
2564 goto out;
2565 }
2566
2567 free_space = btrfs_leaf_free_space(root, left);
2568 if (free_space < data_size) {
2569 ret = 1;
2570 goto out;
2571 }
2572
2573 if (empty)
2574 nr = right_nritems;
2575 else
2576 nr = right_nritems - 1;
2577
2578 for (i = 0; i < nr; i++) {
2579 item = btrfs_item_nr(right, i);
2580 if (!right->map_token) {
2581 map_extent_buffer(right, (unsigned long)item,
2582 sizeof(struct btrfs_item),
2583 &right->map_token, &right->kaddr,
2584 &right->map_start, &right->map_len,
2585 KM_USER1);
2586 }
2587
2588 if (!empty && push_items > 0) {
2589 if (path->slots[0] < i)
2590 break;
2591 if (path->slots[0] == i) {
2592 int space = btrfs_leaf_free_space(root, right);
2593 if (space + push_space * 2 > free_space)
2594 break;
2595 }
2596 }
2597
2598 if (path->slots[0] == i)
2599 push_space += data_size;
2600
2601 this_item_size = btrfs_item_size(right, item);
2602 if (this_item_size + sizeof(*item) + push_space > free_space)
2603 break;
2604
2605 push_items++;
2606 push_space += this_item_size + sizeof(*item);
2607 }
2608
2609 if (right->map_token) {
2610 unmap_extent_buffer(right, right->map_token, KM_USER1);
2611 right->map_token = NULL;
2612 }
2613
2614 if (push_items == 0) {
2615 ret = 1;
2616 goto out;
2617 }
2618 if (!empty && push_items == btrfs_header_nritems(right))
2619 WARN_ON(1);
2620
2621 /* push data from right to left */
2622 copy_extent_buffer(left, right,
2623 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2624 btrfs_item_nr_offset(0),
2625 push_items * sizeof(struct btrfs_item));
2626
2627 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2628 btrfs_item_offset_nr(right, push_items - 1);
2629
2630 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2631 leaf_data_end(root, left) - push_space,
2632 btrfs_leaf_data(right) +
2633 btrfs_item_offset_nr(right, push_items - 1),
2634 push_space);
2635 old_left_nritems = btrfs_header_nritems(left);
2636 BUG_ON(old_left_nritems <= 0);
2637
2638 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2639 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2640 u32 ioff;
2641
2642 item = btrfs_item_nr(left, i);
2643 if (!left->map_token) {
2644 map_extent_buffer(left, (unsigned long)item,
2645 sizeof(struct btrfs_item),
2646 &left->map_token, &left->kaddr,
2647 &left->map_start, &left->map_len,
2648 KM_USER1);
2649 }
2650
2651 ioff = btrfs_item_offset(left, item);
2652 btrfs_set_item_offset(left, item,
2653 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2654 }
2655 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2656 if (left->map_token) {
2657 unmap_extent_buffer(left, left->map_token, KM_USER1);
2658 left->map_token = NULL;
2659 }
2660
2661 /* fixup right node */
2662 if (push_items > right_nritems) {
2663 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2664 right_nritems);
2665 WARN_ON(1);
2666 }
2667
2668 if (push_items < right_nritems) {
2669 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2670 leaf_data_end(root, right);
2671 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2672 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2673 btrfs_leaf_data(right) +
2674 leaf_data_end(root, right), push_space);
2675
2676 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2677 btrfs_item_nr_offset(push_items),
2678 (btrfs_header_nritems(right) - push_items) *
2679 sizeof(struct btrfs_item));
2680 }
2681 right_nritems -= push_items;
2682 btrfs_set_header_nritems(right, right_nritems);
2683 push_space = BTRFS_LEAF_DATA_SIZE(root);
2684 for (i = 0; i < right_nritems; i++) {
2685 item = btrfs_item_nr(right, i);
2686
2687 if (!right->map_token) {
2688 map_extent_buffer(right, (unsigned long)item,
2689 sizeof(struct btrfs_item),
2690 &right->map_token, &right->kaddr,
2691 &right->map_start, &right->map_len,
2692 KM_USER1);
2693 }
2694
2695 push_space = push_space - btrfs_item_size(right, item);
2696 btrfs_set_item_offset(right, item, push_space);
2697 }
2698 if (right->map_token) {
2699 unmap_extent_buffer(right, right->map_token, KM_USER1);
2700 right->map_token = NULL;
2701 }
2702
2703 btrfs_mark_buffer_dirty(left);
2704 if (right_nritems)
2705 btrfs_mark_buffer_dirty(right);
2706
2707 ret = btrfs_update_ref(trans, root, right, left,
2708 old_left_nritems, push_items);
2709 BUG_ON(ret);
2710
2711 btrfs_item_key(right, &disk_key, 0);
2712 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2713 if (wret)
2714 ret = wret;
2715
2716 /* then fixup the leaf pointer in the path */
2717 if (path->slots[0] < push_items) {
2718 path->slots[0] += old_left_nritems;
2719 if (btrfs_header_nritems(path->nodes[0]) == 0)
2720 clean_tree_block(trans, root, path->nodes[0]);
2721 btrfs_tree_unlock(path->nodes[0]);
2722 free_extent_buffer(path->nodes[0]);
2723 path->nodes[0] = left;
2724 path->slots[1] -= 1;
2725 } else {
2726 btrfs_tree_unlock(left);
2727 free_extent_buffer(left);
2728 path->slots[0] -= push_items;
2729 }
2730 BUG_ON(path->slots[0] < 0);
2731 return ret;
2732 out:
2733 btrfs_tree_unlock(left);
2734 free_extent_buffer(left);
2735 return ret;
2736 }
2737
2738 /*
2739 * split the path's leaf in two, making sure there is at least data_size
2740 * available for the resulting leaf level of the path.
2741 *
2742 * returns 0 if all went well and < 0 on failure.
2743 */
2744 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2745 struct btrfs_root *root,
2746 struct btrfs_key *ins_key,
2747 struct btrfs_path *path, int data_size,
2748 int extend)
2749 {
2750 struct extent_buffer *l;
2751 u32 nritems;
2752 int mid;
2753 int slot;
2754 struct extent_buffer *right;
2755 int data_copy_size;
2756 int rt_data_off;
2757 int i;
2758 int ret = 0;
2759 int wret;
2760 int double_split;
2761 int num_doubles = 0;
2762 struct btrfs_disk_key disk_key;
2763
2764 /* first try to make some room by pushing left and right */
2765 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2766 wret = push_leaf_right(trans, root, path, data_size, 0);
2767 if (wret < 0)
2768 return wret;
2769 if (wret) {
2770 wret = push_leaf_left(trans, root, path, data_size, 0);
2771 if (wret < 0)
2772 return wret;
2773 }
2774 l = path->nodes[0];
2775
2776 /* did the pushes work? */
2777 if (btrfs_leaf_free_space(root, l) >= data_size)
2778 return 0;
2779 }
2780
2781 if (!path->nodes[1]) {
2782 ret = insert_new_root(trans, root, path, 1);
2783 if (ret)
2784 return ret;
2785 }
2786 again:
2787 double_split = 0;
2788 l = path->nodes[0];
2789 slot = path->slots[0];
2790 nritems = btrfs_header_nritems(l);
2791 mid = (nritems + 1) / 2;
2792
2793 right = btrfs_alloc_free_block(trans, root, root->leafsize,
2794 path->nodes[1]->start,
2795 root->root_key.objectid,
2796 trans->transid, 0, l->start, 0);
2797 if (IS_ERR(right)) {
2798 BUG_ON(1);
2799 return PTR_ERR(right);
2800 }
2801
2802 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2803 btrfs_set_header_bytenr(right, right->start);
2804 btrfs_set_header_generation(right, trans->transid);
2805 btrfs_set_header_owner(right, root->root_key.objectid);
2806 btrfs_set_header_level(right, 0);
2807 write_extent_buffer(right, root->fs_info->fsid,
2808 (unsigned long)btrfs_header_fsid(right),
2809 BTRFS_FSID_SIZE);
2810
2811 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2812 (unsigned long)btrfs_header_chunk_tree_uuid(right),
2813 BTRFS_UUID_SIZE);
2814 if (mid <= slot) {
2815 if (nritems == 1 ||
2816 leaf_space_used(l, mid, nritems - mid) + data_size >
2817 BTRFS_LEAF_DATA_SIZE(root)) {
2818 if (slot >= nritems) {
2819 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2820 btrfs_set_header_nritems(right, 0);
2821 wret = insert_ptr(trans, root, path,
2822 &disk_key, right->start,
2823 path->slots[1] + 1, 1);
2824 if (wret)
2825 ret = wret;
2826
2827 btrfs_tree_unlock(path->nodes[0]);
2828 free_extent_buffer(path->nodes[0]);
2829 path->nodes[0] = right;
2830 path->slots[0] = 0;
2831 path->slots[1] += 1;
2832 btrfs_mark_buffer_dirty(right);
2833 return ret;
2834 }
2835 mid = slot;
2836 if (mid != nritems &&
2837 leaf_space_used(l, mid, nritems - mid) +
2838 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2839 double_split = 1;
2840 }
2841 }
2842 } else {
2843 if (leaf_space_used(l, 0, mid) + data_size >
2844 BTRFS_LEAF_DATA_SIZE(root)) {
2845 if (!extend && data_size && slot == 0) {
2846 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2847 btrfs_set_header_nritems(right, 0);
2848 wret = insert_ptr(trans, root, path,
2849 &disk_key,
2850 right->start,
2851 path->slots[1], 1);
2852 if (wret)
2853 ret = wret;
2854 btrfs_tree_unlock(path->nodes[0]);
2855 free_extent_buffer(path->nodes[0]);
2856 path->nodes[0] = right;
2857 path->slots[0] = 0;
2858 if (path->slots[1] == 0) {
2859 wret = fixup_low_keys(trans, root,
2860 path, &disk_key, 1);
2861 if (wret)
2862 ret = wret;
2863 }
2864 btrfs_mark_buffer_dirty(right);
2865 return ret;
2866 } else if ((extend || !data_size) && slot == 0) {
2867 mid = 1;
2868 } else {
2869 mid = slot;
2870 if (mid != nritems &&
2871 leaf_space_used(l, mid, nritems - mid) +
2872 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2873 double_split = 1;
2874 }
2875 }
2876 }
2877 }
2878 nritems = nritems - mid;
2879 btrfs_set_header_nritems(right, nritems);
2880 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2881
2882 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2883 btrfs_item_nr_offset(mid),
2884 nritems * sizeof(struct btrfs_item));
2885
2886 copy_extent_buffer(right, l,
2887 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2888 data_copy_size, btrfs_leaf_data(l) +
2889 leaf_data_end(root, l), data_copy_size);
2890
2891 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2892 btrfs_item_end_nr(l, mid);
2893
2894 for (i = 0; i < nritems; i++) {
2895 struct btrfs_item *item = btrfs_item_nr(right, i);
2896 u32 ioff;
2897
2898 if (!right->map_token) {
2899 map_extent_buffer(right, (unsigned long)item,
2900 sizeof(struct btrfs_item),
2901 &right->map_token, &right->kaddr,
2902 &right->map_start, &right->map_len,
2903 KM_USER1);
2904 }
2905
2906 ioff = btrfs_item_offset(right, item);
2907 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2908 }
2909
2910 if (right->map_token) {
2911 unmap_extent_buffer(right, right->map_token, KM_USER1);
2912 right->map_token = NULL;
2913 }
2914
2915 btrfs_set_header_nritems(l, mid);
2916 ret = 0;
2917 btrfs_item_key(right, &disk_key, 0);
2918 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2919 path->slots[1] + 1, 1);
2920 if (wret)
2921 ret = wret;
2922
2923 btrfs_mark_buffer_dirty(right);
2924 btrfs_mark_buffer_dirty(l);
2925 BUG_ON(path->slots[0] != slot);
2926
2927 ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2928 BUG_ON(ret);
2929
2930 if (mid <= slot) {
2931 btrfs_tree_unlock(path->nodes[0]);
2932 free_extent_buffer(path->nodes[0]);
2933 path->nodes[0] = right;
2934 path->slots[0] -= mid;
2935 path->slots[1] += 1;
2936 } else {
2937 btrfs_tree_unlock(right);
2938 free_extent_buffer(right);
2939 }
2940
2941 BUG_ON(path->slots[0] < 0);
2942
2943 if (double_split) {
2944 BUG_ON(num_doubles != 0);
2945 num_doubles++;
2946 goto again;
2947 }
2948 return ret;
2949 }
2950
2951 /*
2952 * This function splits a single item into two items,
2953 * giving 'new_key' to the new item and splitting the
2954 * old one at split_offset (from the start of the item).
2955 *
2956 * The path may be released by this operation. After
2957 * the split, the path is pointing to the old item. The
2958 * new item is going to be in the same node as the old one.
2959 *
2960 * Note, the item being split must be smaller enough to live alone on
2961 * a tree block with room for one extra struct btrfs_item
2962 *
2963 * This allows us to split the item in place, keeping a lock on the
2964 * leaf the entire time.
2965 */
2966 int btrfs_split_item(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 struct btrfs_path *path,
2969 struct btrfs_key *new_key,
2970 unsigned long split_offset)
2971 {
2972 u32 item_size;
2973 struct extent_buffer *leaf;
2974 struct btrfs_key orig_key;
2975 struct btrfs_item *item;
2976 struct btrfs_item *new_item;
2977 int ret = 0;
2978 int slot;
2979 u32 nritems;
2980 u32 orig_offset;
2981 struct btrfs_disk_key disk_key;
2982 char *buf;
2983
2984 leaf = path->nodes[0];
2985 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
2986 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
2987 goto split;
2988
2989 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2990 btrfs_release_path(root, path);
2991
2992 path->search_for_split = 1;
2993 path->keep_locks = 1;
2994
2995 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
2996 path->search_for_split = 0;
2997
2998 /* if our item isn't there or got smaller, return now */
2999 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3000 path->slots[0])) {
3001 path->keep_locks = 0;
3002 return -EAGAIN;
3003 }
3004
3005 ret = split_leaf(trans, root, &orig_key, path,
3006 sizeof(struct btrfs_item), 1);
3007 path->keep_locks = 0;
3008 BUG_ON(ret);
3009
3010 /*
3011 * make sure any changes to the path from split_leaf leave it
3012 * in a blocking state
3013 */
3014 btrfs_set_path_blocking(path);
3015
3016 leaf = path->nodes[0];
3017 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3018
3019 split:
3020 item = btrfs_item_nr(leaf, path->slots[0]);
3021 orig_offset = btrfs_item_offset(leaf, item);
3022 item_size = btrfs_item_size(leaf, item);
3023
3024
3025 buf = kmalloc(item_size, GFP_NOFS);
3026 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3027 path->slots[0]), item_size);
3028 slot = path->slots[0] + 1;
3029 leaf = path->nodes[0];
3030
3031 nritems = btrfs_header_nritems(leaf);
3032
3033 if (slot != nritems) {
3034 /* shift the items */
3035 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3036 btrfs_item_nr_offset(slot),
3037 (nritems - slot) * sizeof(struct btrfs_item));
3038
3039 }
3040
3041 btrfs_cpu_key_to_disk(&disk_key, new_key);
3042 btrfs_set_item_key(leaf, &disk_key, slot);
3043
3044 new_item = btrfs_item_nr(leaf, slot);
3045
3046 btrfs_set_item_offset(leaf, new_item, orig_offset);
3047 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3048
3049 btrfs_set_item_offset(leaf, item,
3050 orig_offset + item_size - split_offset);
3051 btrfs_set_item_size(leaf, item, split_offset);
3052
3053 btrfs_set_header_nritems(leaf, nritems + 1);
3054
3055 /* write the data for the start of the original item */
3056 write_extent_buffer(leaf, buf,
3057 btrfs_item_ptr_offset(leaf, path->slots[0]),
3058 split_offset);
3059
3060 /* write the data for the new item */
3061 write_extent_buffer(leaf, buf + split_offset,
3062 btrfs_item_ptr_offset(leaf, slot),
3063 item_size - split_offset);
3064 btrfs_mark_buffer_dirty(leaf);
3065
3066 ret = 0;
3067 if (btrfs_leaf_free_space(root, leaf) < 0) {
3068 btrfs_print_leaf(root, leaf);
3069 BUG();
3070 }
3071 kfree(buf);
3072 return ret;
3073 }
3074
3075 /*
3076 * make the item pointed to by the path smaller. new_size indicates
3077 * how small to make it, and from_end tells us if we just chop bytes
3078 * off the end of the item or if we shift the item to chop bytes off
3079 * the front.
3080 */
3081 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3082 struct btrfs_root *root,
3083 struct btrfs_path *path,
3084 u32 new_size, int from_end)
3085 {
3086 int ret = 0;
3087 int slot;
3088 int slot_orig;
3089 struct extent_buffer *leaf;
3090 struct btrfs_item *item;
3091 u32 nritems;
3092 unsigned int data_end;
3093 unsigned int old_data_start;
3094 unsigned int old_size;
3095 unsigned int size_diff;
3096 int i;
3097
3098 slot_orig = path->slots[0];
3099 leaf = path->nodes[0];
3100 slot = path->slots[0];
3101
3102 old_size = btrfs_item_size_nr(leaf, slot);
3103 if (old_size == new_size)
3104 return 0;
3105
3106 nritems = btrfs_header_nritems(leaf);
3107 data_end = leaf_data_end(root, leaf);
3108
3109 old_data_start = btrfs_item_offset_nr(leaf, slot);
3110
3111 size_diff = old_size - new_size;
3112
3113 BUG_ON(slot < 0);
3114 BUG_ON(slot >= nritems);
3115
3116 /*
3117 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3118 */
3119 /* first correct the data pointers */
3120 for (i = slot; i < nritems; i++) {
3121 u32 ioff;
3122 item = btrfs_item_nr(leaf, i);
3123
3124 if (!leaf->map_token) {
3125 map_extent_buffer(leaf, (unsigned long)item,
3126 sizeof(struct btrfs_item),
3127 &leaf->map_token, &leaf->kaddr,
3128 &leaf->map_start, &leaf->map_len,
3129 KM_USER1);
3130 }
3131
3132 ioff = btrfs_item_offset(leaf, item);
3133 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3134 }
3135
3136 if (leaf->map_token) {
3137 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3138 leaf->map_token = NULL;
3139 }
3140
3141 /* shift the data */
3142 if (from_end) {
3143 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3144 data_end + size_diff, btrfs_leaf_data(leaf) +
3145 data_end, old_data_start + new_size - data_end);
3146 } else {
3147 struct btrfs_disk_key disk_key;
3148 u64 offset;
3149
3150 btrfs_item_key(leaf, &disk_key, slot);
3151
3152 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3153 unsigned long ptr;
3154 struct btrfs_file_extent_item *fi;
3155
3156 fi = btrfs_item_ptr(leaf, slot,
3157 struct btrfs_file_extent_item);
3158 fi = (struct btrfs_file_extent_item *)(
3159 (unsigned long)fi - size_diff);
3160
3161 if (btrfs_file_extent_type(leaf, fi) ==
3162 BTRFS_FILE_EXTENT_INLINE) {
3163 ptr = btrfs_item_ptr_offset(leaf, slot);
3164 memmove_extent_buffer(leaf, ptr,
3165 (unsigned long)fi,
3166 offsetof(struct btrfs_file_extent_item,
3167 disk_bytenr));
3168 }
3169 }
3170
3171 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3172 data_end + size_diff, btrfs_leaf_data(leaf) +
3173 data_end, old_data_start - data_end);
3174
3175 offset = btrfs_disk_key_offset(&disk_key);
3176 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3177 btrfs_set_item_key(leaf, &disk_key, slot);
3178 if (slot == 0)
3179 fixup_low_keys(trans, root, path, &disk_key, 1);
3180 }
3181
3182 item = btrfs_item_nr(leaf, slot);
3183 btrfs_set_item_size(leaf, item, new_size);
3184 btrfs_mark_buffer_dirty(leaf);
3185
3186 ret = 0;
3187 if (btrfs_leaf_free_space(root, leaf) < 0) {
3188 btrfs_print_leaf(root, leaf);
3189 BUG();
3190 }
3191 return ret;
3192 }
3193
3194 /*
3195 * make the item pointed to by the path bigger, data_size is the new size.
3196 */
3197 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3198 struct btrfs_root *root, struct btrfs_path *path,
3199 u32 data_size)
3200 {
3201 int ret = 0;
3202 int slot;
3203 int slot_orig;
3204 struct extent_buffer *leaf;
3205 struct btrfs_item *item;
3206 u32 nritems;
3207 unsigned int data_end;
3208 unsigned int old_data;
3209 unsigned int old_size;
3210 int i;
3211
3212 slot_orig = path->slots[0];
3213 leaf = path->nodes[0];
3214
3215 nritems = btrfs_header_nritems(leaf);
3216 data_end = leaf_data_end(root, leaf);
3217
3218 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3219 btrfs_print_leaf(root, leaf);
3220 BUG();
3221 }
3222 slot = path->slots[0];
3223 old_data = btrfs_item_end_nr(leaf, slot);
3224
3225 BUG_ON(slot < 0);
3226 if (slot >= nritems) {
3227 btrfs_print_leaf(root, leaf);
3228 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3229 slot, nritems);
3230 BUG_ON(1);
3231 }
3232
3233 /*
3234 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3235 */
3236 /* first correct the data pointers */
3237 for (i = slot; i < nritems; i++) {
3238 u32 ioff;
3239 item = btrfs_item_nr(leaf, i);
3240
3241 if (!leaf->map_token) {
3242 map_extent_buffer(leaf, (unsigned long)item,
3243 sizeof(struct btrfs_item),
3244 &leaf->map_token, &leaf->kaddr,
3245 &leaf->map_start, &leaf->map_len,
3246 KM_USER1);
3247 }
3248 ioff = btrfs_item_offset(leaf, item);
3249 btrfs_set_item_offset(leaf, item, ioff - data_size);
3250 }
3251
3252 if (leaf->map_token) {
3253 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3254 leaf->map_token = NULL;
3255 }
3256
3257 /* shift the data */
3258 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3259 data_end - data_size, btrfs_leaf_data(leaf) +
3260 data_end, old_data - data_end);
3261
3262 data_end = old_data;
3263 old_size = btrfs_item_size_nr(leaf, slot);
3264 item = btrfs_item_nr(leaf, slot);
3265 btrfs_set_item_size(leaf, item, old_size + data_size);
3266 btrfs_mark_buffer_dirty(leaf);
3267
3268 ret = 0;
3269 if (btrfs_leaf_free_space(root, leaf) < 0) {
3270 btrfs_print_leaf(root, leaf);
3271 BUG();
3272 }
3273 return ret;
3274 }
3275
3276 /*
3277 * Given a key and some data, insert items into the tree.
3278 * This does all the path init required, making room in the tree if needed.
3279 * Returns the number of keys that were inserted.
3280 */
3281 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3282 struct btrfs_root *root,
3283 struct btrfs_path *path,
3284 struct btrfs_key *cpu_key, u32 *data_size,
3285 int nr)
3286 {
3287 struct extent_buffer *leaf;
3288 struct btrfs_item *item;
3289 int ret = 0;
3290 int slot;
3291 int i;
3292 u32 nritems;
3293 u32 total_data = 0;
3294 u32 total_size = 0;
3295 unsigned int data_end;
3296 struct btrfs_disk_key disk_key;
3297 struct btrfs_key found_key;
3298
3299 for (i = 0; i < nr; i++) {
3300 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3301 BTRFS_LEAF_DATA_SIZE(root)) {
3302 break;
3303 nr = i;
3304 }
3305 total_data += data_size[i];
3306 total_size += data_size[i] + sizeof(struct btrfs_item);
3307 }
3308 BUG_ON(nr == 0);
3309
3310 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3311 if (ret == 0)
3312 return -EEXIST;
3313 if (ret < 0)
3314 goto out;
3315
3316 leaf = path->nodes[0];
3317
3318 nritems = btrfs_header_nritems(leaf);
3319 data_end = leaf_data_end(root, leaf);
3320
3321 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3322 for (i = nr; i >= 0; i--) {
3323 total_data -= data_size[i];
3324 total_size -= data_size[i] + sizeof(struct btrfs_item);
3325 if (total_size < btrfs_leaf_free_space(root, leaf))
3326 break;
3327 }
3328 nr = i;
3329 }
3330
3331 slot = path->slots[0];
3332 BUG_ON(slot < 0);
3333
3334 if (slot != nritems) {
3335 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3336
3337 item = btrfs_item_nr(leaf, slot);
3338 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3339
3340 /* figure out how many keys we can insert in here */
3341 total_data = data_size[0];
3342 for (i = 1; i < nr; i++) {
3343 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3344 break;
3345 total_data += data_size[i];
3346 }
3347 nr = i;
3348
3349 if (old_data < data_end) {
3350 btrfs_print_leaf(root, leaf);
3351 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3352 slot, old_data, data_end);
3353 BUG_ON(1);
3354 }
3355 /*
3356 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3357 */
3358 /* first correct the data pointers */
3359 WARN_ON(leaf->map_token);
3360 for (i = slot; i < nritems; i++) {
3361 u32 ioff;
3362
3363 item = btrfs_item_nr(leaf, i);
3364 if (!leaf->map_token) {
3365 map_extent_buffer(leaf, (unsigned long)item,
3366 sizeof(struct btrfs_item),
3367 &leaf->map_token, &leaf->kaddr,
3368 &leaf->map_start, &leaf->map_len,
3369 KM_USER1);
3370 }
3371
3372 ioff = btrfs_item_offset(leaf, item);
3373 btrfs_set_item_offset(leaf, item, ioff - total_data);
3374 }
3375 if (leaf->map_token) {
3376 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3377 leaf->map_token = NULL;
3378 }
3379
3380 /* shift the items */
3381 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3382 btrfs_item_nr_offset(slot),
3383 (nritems - slot) * sizeof(struct btrfs_item));
3384
3385 /* shift the data */
3386 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3387 data_end - total_data, btrfs_leaf_data(leaf) +
3388 data_end, old_data - data_end);
3389 data_end = old_data;
3390 } else {
3391 /*
3392 * this sucks but it has to be done, if we are inserting at
3393 * the end of the leaf only insert 1 of the items, since we
3394 * have no way of knowing whats on the next leaf and we'd have
3395 * to drop our current locks to figure it out
3396 */
3397 nr = 1;
3398 }
3399
3400 /* setup the item for the new data */
3401 for (i = 0; i < nr; i++) {
3402 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3403 btrfs_set_item_key(leaf, &disk_key, slot + i);
3404 item = btrfs_item_nr(leaf, slot + i);
3405 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3406 data_end -= data_size[i];
3407 btrfs_set_item_size(leaf, item, data_size[i]);
3408 }
3409 btrfs_set_header_nritems(leaf, nritems + nr);
3410 btrfs_mark_buffer_dirty(leaf);
3411
3412 ret = 0;
3413 if (slot == 0) {
3414 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3415 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3416 }
3417
3418 if (btrfs_leaf_free_space(root, leaf) < 0) {
3419 btrfs_print_leaf(root, leaf);
3420 BUG();
3421 }
3422 out:
3423 if (!ret)
3424 ret = nr;
3425 return ret;
3426 }
3427
3428 /*
3429 * Given a key and some data, insert items into the tree.
3430 * This does all the path init required, making room in the tree if needed.
3431 */
3432 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3433 struct btrfs_root *root,
3434 struct btrfs_path *path,
3435 struct btrfs_key *cpu_key, u32 *data_size,
3436 int nr)
3437 {
3438 struct extent_buffer *leaf;
3439 struct btrfs_item *item;
3440 int ret = 0;
3441 int slot;
3442 int slot_orig;
3443 int i;
3444 u32 nritems;
3445 u32 total_size = 0;
3446 u32 total_data = 0;
3447 unsigned int data_end;
3448 struct btrfs_disk_key disk_key;
3449
3450 for (i = 0; i < nr; i++)
3451 total_data += data_size[i];
3452
3453 total_size = total_data + (nr * sizeof(struct btrfs_item));
3454 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3455 if (ret == 0)
3456 return -EEXIST;
3457 if (ret < 0)
3458 goto out;
3459
3460 slot_orig = path->slots[0];
3461 leaf = path->nodes[0];
3462
3463 nritems = btrfs_header_nritems(leaf);
3464 data_end = leaf_data_end(root, leaf);
3465
3466 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3467 btrfs_print_leaf(root, leaf);
3468 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3469 total_size, btrfs_leaf_free_space(root, leaf));
3470 BUG();
3471 }
3472
3473 slot = path->slots[0];
3474 BUG_ON(slot < 0);
3475
3476 if (slot != nritems) {
3477 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3478
3479 if (old_data < data_end) {
3480 btrfs_print_leaf(root, leaf);
3481 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3482 slot, old_data, data_end);
3483 BUG_ON(1);
3484 }
3485 /*
3486 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3487 */
3488 /* first correct the data pointers */
3489 WARN_ON(leaf->map_token);
3490 for (i = slot; i < nritems; i++) {
3491 u32 ioff;
3492
3493 item = btrfs_item_nr(leaf, i);
3494 if (!leaf->map_token) {
3495 map_extent_buffer(leaf, (unsigned long)item,
3496 sizeof(struct btrfs_item),
3497 &leaf->map_token, &leaf->kaddr,
3498 &leaf->map_start, &leaf->map_len,
3499 KM_USER1);
3500 }
3501
3502 ioff = btrfs_item_offset(leaf, item);
3503 btrfs_set_item_offset(leaf, item, ioff - total_data);
3504 }
3505 if (leaf->map_token) {
3506 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3507 leaf->map_token = NULL;
3508 }
3509
3510 /* shift the items */
3511 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3512 btrfs_item_nr_offset(slot),
3513 (nritems - slot) * sizeof(struct btrfs_item));
3514
3515 /* shift the data */
3516 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3517 data_end - total_data, btrfs_leaf_data(leaf) +
3518 data_end, old_data - data_end);
3519 data_end = old_data;
3520 }
3521
3522 /* setup the item for the new data */
3523 for (i = 0; i < nr; i++) {
3524 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3525 btrfs_set_item_key(leaf, &disk_key, slot + i);
3526 item = btrfs_item_nr(leaf, slot + i);
3527 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3528 data_end -= data_size[i];
3529 btrfs_set_item_size(leaf, item, data_size[i]);
3530 }
3531 btrfs_set_header_nritems(leaf, nritems + nr);
3532 btrfs_mark_buffer_dirty(leaf);
3533
3534 ret = 0;
3535 if (slot == 0) {
3536 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3537 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3538 }
3539
3540 if (btrfs_leaf_free_space(root, leaf) < 0) {
3541 btrfs_print_leaf(root, leaf);
3542 BUG();
3543 }
3544 out:
3545 btrfs_unlock_up_safe(path, 1);
3546 return ret;
3547 }
3548
3549 /*
3550 * Given a key and some data, insert an item into the tree.
3551 * This does all the path init required, making room in the tree if needed.
3552 */
3553 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3554 *root, struct btrfs_key *cpu_key, void *data, u32
3555 data_size)
3556 {
3557 int ret = 0;
3558 struct btrfs_path *path;
3559 struct extent_buffer *leaf;
3560 unsigned long ptr;
3561
3562 path = btrfs_alloc_path();
3563 BUG_ON(!path);
3564 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3565 if (!ret) {
3566 leaf = path->nodes[0];
3567 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3568 write_extent_buffer(leaf, data, ptr, data_size);
3569 btrfs_mark_buffer_dirty(leaf);
3570 }
3571 btrfs_free_path(path);
3572 return ret;
3573 }
3574
3575 /*
3576 * delete the pointer from a given node.
3577 *
3578 * the tree should have been previously balanced so the deletion does not
3579 * empty a node.
3580 */
3581 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3582 struct btrfs_path *path, int level, int slot)
3583 {
3584 struct extent_buffer *parent = path->nodes[level];
3585 u32 nritems;
3586 int ret = 0;
3587 int wret;
3588
3589 nritems = btrfs_header_nritems(parent);
3590 if (slot != nritems - 1) {
3591 memmove_extent_buffer(parent,
3592 btrfs_node_key_ptr_offset(slot),
3593 btrfs_node_key_ptr_offset(slot + 1),
3594 sizeof(struct btrfs_key_ptr) *
3595 (nritems - slot - 1));
3596 }
3597 nritems--;
3598 btrfs_set_header_nritems(parent, nritems);
3599 if (nritems == 0 && parent == root->node) {
3600 BUG_ON(btrfs_header_level(root->node) != 1);
3601 /* just turn the root into a leaf and break */
3602 btrfs_set_header_level(root->node, 0);
3603 } else if (slot == 0) {
3604 struct btrfs_disk_key disk_key;
3605
3606 btrfs_node_key(parent, &disk_key, 0);
3607 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3608 if (wret)
3609 ret = wret;
3610 }
3611 btrfs_mark_buffer_dirty(parent);
3612 return ret;
3613 }
3614
3615 /*
3616 * a helper function to delete the leaf pointed to by path->slots[1] and
3617 * path->nodes[1]. bytenr is the node block pointer, but since the callers
3618 * already know it, it is faster to have them pass it down than to
3619 * read it out of the node again.
3620 *
3621 * This deletes the pointer in path->nodes[1] and frees the leaf
3622 * block extent. zero is returned if it all worked out, < 0 otherwise.
3623 *
3624 * The path must have already been setup for deleting the leaf, including
3625 * all the proper balancing. path->nodes[1] must be locked.
3626 */
3627 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3628 struct btrfs_root *root,
3629 struct btrfs_path *path, u64 bytenr)
3630 {
3631 int ret;
3632 u64 root_gen = btrfs_header_generation(path->nodes[1]);
3633 u64 parent_start = path->nodes[1]->start;
3634 u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3635
3636 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3637 if (ret)
3638 return ret;
3639
3640 /*
3641 * btrfs_free_extent is expensive, we want to make sure we
3642 * aren't holding any locks when we call it
3643 */
3644 btrfs_unlock_up_safe(path, 0);
3645
3646 ret = btrfs_free_extent(trans, root, bytenr,
3647 btrfs_level_size(root, 0),
3648 parent_start, parent_owner,
3649 root_gen, 0, 1);
3650 return ret;
3651 }
3652 /*
3653 * delete the item at the leaf level in path. If that empties
3654 * the leaf, remove it from the tree
3655 */
3656 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3657 struct btrfs_path *path, int slot, int nr)
3658 {
3659 struct extent_buffer *leaf;
3660 struct btrfs_item *item;
3661 int last_off;
3662 int dsize = 0;
3663 int ret = 0;
3664 int wret;
3665 int i;
3666 u32 nritems;
3667
3668 leaf = path->nodes[0];
3669 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3670
3671 for (i = 0; i < nr; i++)
3672 dsize += btrfs_item_size_nr(leaf, slot + i);
3673
3674 nritems = btrfs_header_nritems(leaf);
3675
3676 if (slot + nr != nritems) {
3677 int data_end = leaf_data_end(root, leaf);
3678
3679 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3680 data_end + dsize,
3681 btrfs_leaf_data(leaf) + data_end,
3682 last_off - data_end);
3683
3684 for (i = slot + nr; i < nritems; i++) {
3685 u32 ioff;
3686
3687 item = btrfs_item_nr(leaf, i);
3688 if (!leaf->map_token) {
3689 map_extent_buffer(leaf, (unsigned long)item,
3690 sizeof(struct btrfs_item),
3691 &leaf->map_token, &leaf->kaddr,
3692 &leaf->map_start, &leaf->map_len,
3693 KM_USER1);
3694 }
3695 ioff = btrfs_item_offset(leaf, item);
3696 btrfs_set_item_offset(leaf, item, ioff + dsize);
3697 }
3698
3699 if (leaf->map_token) {
3700 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3701 leaf->map_token = NULL;
3702 }
3703
3704 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3705 btrfs_item_nr_offset(slot + nr),
3706 sizeof(struct btrfs_item) *
3707 (nritems - slot - nr));
3708 }
3709 btrfs_set_header_nritems(leaf, nritems - nr);
3710 nritems -= nr;
3711
3712 /* delete the leaf if we've emptied it */
3713 if (nritems == 0) {
3714 if (leaf == root->node) {
3715 btrfs_set_header_level(leaf, 0);
3716 } else {
3717 ret = btrfs_del_leaf(trans, root, path, leaf->start);
3718 BUG_ON(ret);
3719 }
3720 } else {
3721 int used = leaf_space_used(leaf, 0, nritems);
3722 if (slot == 0) {
3723 struct btrfs_disk_key disk_key;
3724
3725 btrfs_item_key(leaf, &disk_key, 0);
3726 wret = fixup_low_keys(trans, root, path,
3727 &disk_key, 1);
3728 if (wret)
3729 ret = wret;
3730 }
3731
3732 /* delete the leaf if it is mostly empty */
3733 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
3734 /* push_leaf_left fixes the path.
3735 * make sure the path still points to our leaf
3736 * for possible call to del_ptr below
3737 */
3738 slot = path->slots[1];
3739 extent_buffer_get(leaf);
3740
3741 wret = push_leaf_left(trans, root, path, 1, 1);
3742 if (wret < 0 && wret != -ENOSPC)
3743 ret = wret;
3744
3745 if (path->nodes[0] == leaf &&
3746 btrfs_header_nritems(leaf)) {
3747 wret = push_leaf_right(trans, root, path, 1, 1);
3748 if (wret < 0 && wret != -ENOSPC)
3749 ret = wret;
3750 }
3751
3752 if (btrfs_header_nritems(leaf) == 0) {
3753 path->slots[1] = slot;
3754 ret = btrfs_del_leaf(trans, root, path,
3755 leaf->start);
3756 BUG_ON(ret);
3757 free_extent_buffer(leaf);
3758 } else {
3759 /* if we're still in the path, make sure
3760 * we're dirty. Otherwise, one of the
3761 * push_leaf functions must have already
3762 * dirtied this buffer
3763 */
3764 if (path->nodes[0] == leaf)
3765 btrfs_mark_buffer_dirty(leaf);
3766 free_extent_buffer(leaf);
3767 }
3768 } else {
3769 btrfs_mark_buffer_dirty(leaf);
3770 }
3771 }
3772 return ret;
3773 }
3774
3775 /*
3776 * search the tree again to find a leaf with lesser keys
3777 * returns 0 if it found something or 1 if there are no lesser leaves.
3778 * returns < 0 on io errors.
3779 *
3780 * This may release the path, and so you may lose any locks held at the
3781 * time you call it.
3782 */
3783 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3784 {
3785 struct btrfs_key key;
3786 struct btrfs_disk_key found_key;
3787 int ret;
3788
3789 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3790
3791 if (key.offset > 0)
3792 key.offset--;
3793 else if (key.type > 0)
3794 key.type--;
3795 else if (key.objectid > 0)
3796 key.objectid--;
3797 else
3798 return 1;
3799
3800 btrfs_release_path(root, path);
3801 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3802 if (ret < 0)
3803 return ret;
3804 btrfs_item_key(path->nodes[0], &found_key, 0);
3805 ret = comp_keys(&found_key, &key);
3806 if (ret < 0)
3807 return 0;
3808 return 1;
3809 }
3810
3811 /*
3812 * A helper function to walk down the tree starting at min_key, and looking
3813 * for nodes or leaves that are either in cache or have a minimum
3814 * transaction id. This is used by the btree defrag code, and tree logging
3815 *
3816 * This does not cow, but it does stuff the starting key it finds back
3817 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3818 * key and get a writable path.
3819 *
3820 * This does lock as it descends, and path->keep_locks should be set
3821 * to 1 by the caller.
3822 *
3823 * This honors path->lowest_level to prevent descent past a given level
3824 * of the tree.
3825 *
3826 * min_trans indicates the oldest transaction that you are interested
3827 * in walking through. Any nodes or leaves older than min_trans are
3828 * skipped over (without reading them).
3829 *
3830 * returns zero if something useful was found, < 0 on error and 1 if there
3831 * was nothing in the tree that matched the search criteria.
3832 */
3833 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3834 struct btrfs_key *max_key,
3835 struct btrfs_path *path, int cache_only,
3836 u64 min_trans)
3837 {
3838 struct extent_buffer *cur;
3839 struct btrfs_key found_key;
3840 int slot;
3841 int sret;
3842 u32 nritems;
3843 int level;
3844 int ret = 1;
3845
3846 WARN_ON(!path->keep_locks);
3847 again:
3848 cur = btrfs_lock_root_node(root);
3849 level = btrfs_header_level(cur);
3850 WARN_ON(path->nodes[level]);
3851 path->nodes[level] = cur;
3852 path->locks[level] = 1;
3853
3854 if (btrfs_header_generation(cur) < min_trans) {
3855 ret = 1;
3856 goto out;
3857 }
3858 while (1) {
3859 nritems = btrfs_header_nritems(cur);
3860 level = btrfs_header_level(cur);
3861 sret = bin_search(cur, min_key, level, &slot);
3862
3863 /* at the lowest level, we're done, setup the path and exit */
3864 if (level == path->lowest_level) {
3865 if (slot >= nritems)
3866 goto find_next_key;
3867 ret = 0;
3868 path->slots[level] = slot;
3869 btrfs_item_key_to_cpu(cur, &found_key, slot);
3870 goto out;
3871 }
3872 if (sret && slot > 0)
3873 slot--;
3874 /*
3875 * check this node pointer against the cache_only and
3876 * min_trans parameters. If it isn't in cache or is too
3877 * old, skip to the next one.
3878 */
3879 while (slot < nritems) {
3880 u64 blockptr;
3881 u64 gen;
3882 struct extent_buffer *tmp;
3883 struct btrfs_disk_key disk_key;
3884
3885 blockptr = btrfs_node_blockptr(cur, slot);
3886 gen = btrfs_node_ptr_generation(cur, slot);
3887 if (gen < min_trans) {
3888 slot++;
3889 continue;
3890 }
3891 if (!cache_only)
3892 break;
3893
3894 if (max_key) {
3895 btrfs_node_key(cur, &disk_key, slot);
3896 if (comp_keys(&disk_key, max_key) >= 0) {
3897 ret = 1;
3898 goto out;
3899 }
3900 }
3901
3902 tmp = btrfs_find_tree_block(root, blockptr,
3903 btrfs_level_size(root, level - 1));
3904
3905 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3906 free_extent_buffer(tmp);
3907 break;
3908 }
3909 if (tmp)
3910 free_extent_buffer(tmp);
3911 slot++;
3912 }
3913 find_next_key:
3914 /*
3915 * we didn't find a candidate key in this node, walk forward
3916 * and find another one
3917 */
3918 if (slot >= nritems) {
3919 path->slots[level] = slot;
3920 btrfs_set_path_blocking(path);
3921 sret = btrfs_find_next_key(root, path, min_key, level,
3922 cache_only, min_trans);
3923 if (sret == 0) {
3924 btrfs_release_path(root, path);
3925 goto again;
3926 } else {
3927 btrfs_clear_path_blocking(path);
3928 goto out;
3929 }
3930 }
3931 /* save our key for returning back */
3932 btrfs_node_key_to_cpu(cur, &found_key, slot);
3933 path->slots[level] = slot;
3934 if (level == path->lowest_level) {
3935 ret = 0;
3936 unlock_up(path, level, 1);
3937 goto out;
3938 }
3939 btrfs_set_path_blocking(path);
3940 cur = read_node_slot(root, cur, slot);
3941
3942 btrfs_tree_lock(cur);
3943
3944 path->locks[level - 1] = 1;
3945 path->nodes[level - 1] = cur;
3946 unlock_up(path, level, 1);
3947 btrfs_clear_path_blocking(path);
3948 }
3949 out:
3950 if (ret == 0)
3951 memcpy(min_key, &found_key, sizeof(found_key));
3952 btrfs_set_path_blocking(path);
3953 return ret;
3954 }
3955
3956 /*
3957 * this is similar to btrfs_next_leaf, but does not try to preserve
3958 * and fixup the path. It looks for and returns the next key in the
3959 * tree based on the current path and the cache_only and min_trans
3960 * parameters.
3961 *
3962 * 0 is returned if another key is found, < 0 if there are any errors
3963 * and 1 is returned if there are no higher keys in the tree
3964 *
3965 * path->keep_locks should be set to 1 on the search made before
3966 * calling this function.
3967 */
3968 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3969 struct btrfs_key *key, int lowest_level,
3970 int cache_only, u64 min_trans)
3971 {
3972 int level = lowest_level;
3973 int slot;
3974 struct extent_buffer *c;
3975
3976 WARN_ON(!path->keep_locks);
3977 while (level < BTRFS_MAX_LEVEL) {
3978 if (!path->nodes[level])
3979 return 1;
3980
3981 slot = path->slots[level] + 1;
3982 c = path->nodes[level];
3983 next:
3984 if (slot >= btrfs_header_nritems(c)) {
3985 level++;
3986 if (level == BTRFS_MAX_LEVEL)
3987 return 1;
3988 continue;
3989 }
3990 if (level == 0)
3991 btrfs_item_key_to_cpu(c, key, slot);
3992 else {
3993 u64 blockptr = btrfs_node_blockptr(c, slot);
3994 u64 gen = btrfs_node_ptr_generation(c, slot);
3995
3996 if (cache_only) {
3997 struct extent_buffer *cur;
3998 cur = btrfs_find_tree_block(root, blockptr,
3999 btrfs_level_size(root, level - 1));
4000 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4001 slot++;
4002 if (cur)
4003 free_extent_buffer(cur);
4004 goto next;
4005 }
4006 free_extent_buffer(cur);
4007 }
4008 if (gen < min_trans) {
4009 slot++;
4010 goto next;
4011 }
4012 btrfs_node_key_to_cpu(c, key, slot);
4013 }
4014 return 0;
4015 }
4016 return 1;
4017 }
4018
4019 /*
4020 * search the tree again to find a leaf with greater keys
4021 * returns 0 if it found something or 1 if there are no greater leaves.
4022 * returns < 0 on io errors.
4023 */
4024 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4025 {
4026 int slot;
4027 int level = 1;
4028 struct extent_buffer *c;
4029 struct extent_buffer *next = NULL;
4030 struct btrfs_key key;
4031 u32 nritems;
4032 int ret;
4033
4034 nritems = btrfs_header_nritems(path->nodes[0]);
4035 if (nritems == 0)
4036 return 1;
4037
4038 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4039
4040 btrfs_release_path(root, path);
4041 path->keep_locks = 1;
4042 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4043 path->keep_locks = 0;
4044
4045 if (ret < 0)
4046 return ret;
4047
4048 btrfs_set_path_blocking(path);
4049 nritems = btrfs_header_nritems(path->nodes[0]);
4050 /*
4051 * by releasing the path above we dropped all our locks. A balance
4052 * could have added more items next to the key that used to be
4053 * at the very end of the block. So, check again here and
4054 * advance the path if there are now more items available.
4055 */
4056 if (nritems > 0 && path->slots[0] < nritems - 1) {
4057 path->slots[0]++;
4058 goto done;
4059 }
4060
4061 while (level < BTRFS_MAX_LEVEL) {
4062 if (!path->nodes[level])
4063 return 1;
4064
4065 slot = path->slots[level] + 1;
4066 c = path->nodes[level];
4067 if (slot >= btrfs_header_nritems(c)) {
4068 level++;
4069 if (level == BTRFS_MAX_LEVEL)
4070 return 1;
4071 continue;
4072 }
4073
4074 if (next) {
4075 btrfs_tree_unlock(next);
4076 free_extent_buffer(next);
4077 }
4078
4079 /* the path was set to blocking above */
4080 if (level == 1 && (path->locks[1] || path->skip_locking) &&
4081 path->reada)
4082 reada_for_search(root, path, level, slot, 0);
4083
4084 next = read_node_slot(root, c, slot);
4085 if (!path->skip_locking) {
4086 WARN_ON(!btrfs_tree_locked(c));
4087 btrfs_tree_lock(next);
4088 btrfs_set_lock_blocking(next);
4089 }
4090 break;
4091 }
4092 path->slots[level] = slot;
4093 while (1) {
4094 level--;
4095 c = path->nodes[level];
4096 if (path->locks[level])
4097 btrfs_tree_unlock(c);
4098 free_extent_buffer(c);
4099 path->nodes[level] = next;
4100 path->slots[level] = 0;
4101 if (!path->skip_locking)
4102 path->locks[level] = 1;
4103 if (!level)
4104 break;
4105
4106 btrfs_set_path_blocking(path);
4107 if (level == 1 && path->locks[1] && path->reada)
4108 reada_for_search(root, path, level, slot, 0);
4109 next = read_node_slot(root, next, 0);
4110 if (!path->skip_locking) {
4111 WARN_ON(!btrfs_tree_locked(path->nodes[level]));
4112 btrfs_tree_lock(next);
4113 btrfs_set_lock_blocking(next);
4114 }
4115 }
4116 done:
4117 unlock_up(path, 0, 1);
4118 return 0;
4119 }
4120
4121 /*
4122 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4123 * searching until it gets past min_objectid or finds an item of 'type'
4124 *
4125 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4126 */
4127 int btrfs_previous_item(struct btrfs_root *root,
4128 struct btrfs_path *path, u64 min_objectid,
4129 int type)
4130 {
4131 struct btrfs_key found_key;
4132 struct extent_buffer *leaf;
4133 u32 nritems;
4134 int ret;
4135
4136 while (1) {
4137 if (path->slots[0] == 0) {
4138 btrfs_set_path_blocking(path);
4139 ret = btrfs_prev_leaf(root, path);
4140 if (ret != 0)
4141 return ret;
4142 } else {
4143 path->slots[0]--;
4144 }
4145 leaf = path->nodes[0];
4146 nritems = btrfs_header_nritems(leaf);
4147 if (nritems == 0)
4148 return 1;
4149 if (path->slots[0] == nritems)
4150 path->slots[0]--;
4151
4152 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4153 if (found_key.type == type)
4154 return 0;
4155 if (found_key.objectid < min_objectid)
4156 break;
4157 if (found_key.objectid == min_objectid &&
4158 found_key.type < type)
4159 break;
4160 }
4161 return 1;
4162 }
This page took 0.110251 seconds and 4 git commands to generate.