Btrfs: progress on file_write
[deliverable/linux.git] / fs / btrfs / ctree.c
1 #include <linux/module.h>
2 #include "ctree.h"
3 #include "disk-io.h"
4 #include "transaction.h"
5
6 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
7 *root, struct btrfs_path *path, int level);
8 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
9 *root, struct btrfs_key *ins_key,
10 struct btrfs_path *path, int data_size);
11 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
12 *root, struct buffer_head *dst, struct buffer_head
13 *src);
14 static int balance_node_right(struct btrfs_trans_handle *trans, struct
15 btrfs_root *root, struct buffer_head *dst_buf,
16 struct buffer_head *src_buf);
17 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
18 struct btrfs_path *path, int level, int slot);
19
20 inline void btrfs_init_path(struct btrfs_path *p)
21 {
22 memset(p, 0, sizeof(*p));
23 }
24
25 struct btrfs_path *btrfs_alloc_path(void)
26 {
27 struct btrfs_path *path;
28 path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
29 if (path)
30 btrfs_init_path(path);
31 return path;
32 }
33
34 void btrfs_free_path(struct btrfs_path *p)
35 {
36 btrfs_release_path(NULL, p);
37 kmem_cache_free(btrfs_path_cachep, p);
38 }
39
40 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
41 {
42 int i;
43 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
44 if (!p->nodes[i])
45 break;
46 btrfs_block_release(root, p->nodes[i]);
47 }
48 memset(p, 0, sizeof(*p));
49 }
50
51 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
52 *root, struct buffer_head *buf, struct buffer_head
53 *parent, int parent_slot, struct buffer_head
54 **cow_ret)
55 {
56 struct buffer_head *cow;
57 struct btrfs_node *cow_node;
58
59 if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
60 trans->transid) {
61 *cow_ret = buf;
62 return 0;
63 }
64 cow = btrfs_alloc_free_block(trans, root);
65 cow_node = btrfs_buffer_node(cow);
66 if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
67 WARN_ON(1);
68 memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
69 btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
70 btrfs_set_header_generation(&cow_node->header, trans->transid);
71 btrfs_inc_ref(trans, root, buf);
72 if (buf == root->node) {
73 root->node = cow;
74 get_bh(cow);
75 if (buf != root->commit_root) {
76 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
77 }
78 btrfs_block_release(root, buf);
79 } else {
80 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
81 bh_blocknr(cow));
82 btrfs_mark_buffer_dirty(parent);
83 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
84 }
85 btrfs_block_release(root, buf);
86 mark_buffer_dirty(cow);
87 *cow_ret = cow;
88 return 0;
89 }
90
91 /*
92 * The leaf data grows from end-to-front in the node.
93 * this returns the address of the start of the last item,
94 * which is the stop of the leaf data stack
95 */
96 static inline unsigned int leaf_data_end(struct btrfs_root *root,
97 struct btrfs_leaf *leaf)
98 {
99 u32 nr = btrfs_header_nritems(&leaf->header);
100 if (nr == 0)
101 return BTRFS_LEAF_DATA_SIZE(root);
102 return btrfs_item_offset(leaf->items + nr - 1);
103 }
104
105 /*
106 * compare two keys in a memcmp fashion
107 */
108 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
109 {
110 struct btrfs_key k1;
111
112 btrfs_disk_key_to_cpu(&k1, disk);
113
114 if (k1.objectid > k2->objectid)
115 return 1;
116 if (k1.objectid < k2->objectid)
117 return -1;
118 if (k1.offset > k2->offset)
119 return 1;
120 if (k1.offset < k2->offset)
121 return -1;
122 if (k1.flags > k2->flags)
123 return 1;
124 if (k1.flags < k2->flags)
125 return -1;
126 return 0;
127 }
128
129 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
130 int level)
131 {
132 int i;
133 struct btrfs_node *parent = NULL;
134 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
135 int parent_slot;
136 u32 nritems = btrfs_header_nritems(&node->header);
137
138 if (path->nodes[level + 1])
139 parent = btrfs_buffer_node(path->nodes[level + 1]);
140 parent_slot = path->slots[level + 1];
141 BUG_ON(nritems == 0);
142 if (parent) {
143 struct btrfs_disk_key *parent_key;
144 parent_key = &parent->ptrs[parent_slot].key;
145 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
146 sizeof(struct btrfs_disk_key)));
147 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
148 btrfs_header_blocknr(&node->header));
149 }
150 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
151 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
152 struct btrfs_key cpukey;
153 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
154 BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0);
155 }
156 return 0;
157 }
158
159 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
160 int level)
161 {
162 int i;
163 struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
164 struct btrfs_node *parent = NULL;
165 int parent_slot;
166 u32 nritems = btrfs_header_nritems(&leaf->header);
167
168 if (path->nodes[level + 1])
169 parent = btrfs_buffer_node(path->nodes[level + 1]);
170 parent_slot = path->slots[level + 1];
171 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
172
173 if (nritems == 0)
174 return 0;
175
176 if (parent) {
177 struct btrfs_disk_key *parent_key;
178 parent_key = &parent->ptrs[parent_slot].key;
179 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
180 sizeof(struct btrfs_disk_key)));
181 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
182 btrfs_header_blocknr(&leaf->header));
183 }
184 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
185 struct btrfs_key cpukey;
186 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
187 BUG_ON(comp_keys(&leaf->items[i].key,
188 &cpukey) >= 0);
189 BUG_ON(btrfs_item_offset(leaf->items + i) !=
190 btrfs_item_end(leaf->items + i + 1));
191 if (i == 0) {
192 BUG_ON(btrfs_item_offset(leaf->items + i) +
193 btrfs_item_size(leaf->items + i) !=
194 BTRFS_LEAF_DATA_SIZE(root));
195 }
196 }
197 return 0;
198 }
199
200 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
201 int level)
202 {
203 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
204 if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
205 sizeof(node->header.fsid)))
206 BUG();
207 if (level == 0)
208 return check_leaf(root, path, level);
209 return check_node(root, path, level);
210 }
211
212 /*
213 * search for key in the array p. items p are item_size apart
214 * and there are 'max' items in p
215 * the slot in the array is returned via slot, and it points to
216 * the place where you would insert key if it is not found in
217 * the array.
218 *
219 * slot may point to max if the key is bigger than all of the keys
220 */
221 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
222 int max, int *slot)
223 {
224 int low = 0;
225 int high = max;
226 int mid;
227 int ret;
228 struct btrfs_disk_key *tmp;
229
230 while(low < high) {
231 mid = (low + high) / 2;
232 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
233 ret = comp_keys(tmp, key);
234
235 if (ret < 0)
236 low = mid + 1;
237 else if (ret > 0)
238 high = mid;
239 else {
240 *slot = mid;
241 return 0;
242 }
243 }
244 *slot = low;
245 return 1;
246 }
247
248 /*
249 * simple bin_search frontend that does the right thing for
250 * leaves vs nodes
251 */
252 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
253 {
254 if (btrfs_is_leaf(c)) {
255 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
256 return generic_bin_search((void *)l->items,
257 sizeof(struct btrfs_item),
258 key, btrfs_header_nritems(&c->header),
259 slot);
260 } else {
261 return generic_bin_search((void *)c->ptrs,
262 sizeof(struct btrfs_key_ptr),
263 key, btrfs_header_nritems(&c->header),
264 slot);
265 }
266 return -1;
267 }
268
269 static struct buffer_head *read_node_slot(struct btrfs_root *root,
270 struct buffer_head *parent_buf,
271 int slot)
272 {
273 struct btrfs_node *node = btrfs_buffer_node(parent_buf);
274 if (slot < 0)
275 return NULL;
276 if (slot >= btrfs_header_nritems(&node->header))
277 return NULL;
278 return read_tree_block(root, btrfs_node_blockptr(node, slot));
279 }
280
281 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
282 *root, struct btrfs_path *path, int level)
283 {
284 struct buffer_head *right_buf;
285 struct buffer_head *mid_buf;
286 struct buffer_head *left_buf;
287 struct buffer_head *parent_buf = NULL;
288 struct btrfs_node *right = NULL;
289 struct btrfs_node *mid;
290 struct btrfs_node *left = NULL;
291 struct btrfs_node *parent = NULL;
292 int ret = 0;
293 int wret;
294 int pslot;
295 int orig_slot = path->slots[level];
296 u64 orig_ptr;
297
298 if (level == 0)
299 return 0;
300
301 mid_buf = path->nodes[level];
302 mid = btrfs_buffer_node(mid_buf);
303 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
304
305 if (level < BTRFS_MAX_LEVEL - 1)
306 parent_buf = path->nodes[level + 1];
307 pslot = path->slots[level + 1];
308
309 /*
310 * deal with the case where there is only one pointer in the root
311 * by promoting the node below to a root
312 */
313 if (!parent_buf) {
314 struct buffer_head *child;
315 u64 blocknr = bh_blocknr(mid_buf);
316
317 if (btrfs_header_nritems(&mid->header) != 1)
318 return 0;
319
320 /* promote the child to a root */
321 child = read_node_slot(root, mid_buf, 0);
322 BUG_ON(!child);
323 root->node = child;
324 path->nodes[level] = NULL;
325 clean_tree_block(trans, root, mid_buf);
326 wait_on_buffer(mid_buf);
327 /* once for the path */
328 btrfs_block_release(root, mid_buf);
329 /* once for the root ptr */
330 btrfs_block_release(root, mid_buf);
331 return btrfs_free_extent(trans, root, blocknr, 1, 1);
332 }
333 parent = btrfs_buffer_node(parent_buf);
334
335 if (btrfs_header_nritems(&mid->header) >
336 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
337 return 0;
338
339 left_buf = read_node_slot(root, parent_buf, pslot - 1);
340 right_buf = read_node_slot(root, parent_buf, pslot + 1);
341
342 /* first, try to make some room in the middle buffer */
343 if (left_buf) {
344 btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
345 &left_buf);
346 left = btrfs_buffer_node(left_buf);
347 orig_slot += btrfs_header_nritems(&left->header);
348 wret = push_node_left(trans, root, left_buf, mid_buf);
349 if (wret < 0)
350 ret = wret;
351 }
352
353 /*
354 * then try to empty the right most buffer into the middle
355 */
356 if (right_buf) {
357 btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
358 &right_buf);
359 right = btrfs_buffer_node(right_buf);
360 wret = push_node_left(trans, root, mid_buf, right_buf);
361 if (wret < 0)
362 ret = wret;
363 if (btrfs_header_nritems(&right->header) == 0) {
364 u64 blocknr = bh_blocknr(right_buf);
365 clean_tree_block(trans, root, right_buf);
366 wait_on_buffer(right_buf);
367 btrfs_block_release(root, right_buf);
368 right_buf = NULL;
369 right = NULL;
370 wret = del_ptr(trans, root, path, level + 1, pslot +
371 1);
372 if (wret)
373 ret = wret;
374 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
375 if (wret)
376 ret = wret;
377 } else {
378 btrfs_memcpy(root, parent,
379 &parent->ptrs[pslot + 1].key,
380 &right->ptrs[0].key,
381 sizeof(struct btrfs_disk_key));
382 btrfs_mark_buffer_dirty(parent_buf);
383 }
384 }
385 if (btrfs_header_nritems(&mid->header) == 1) {
386 /*
387 * we're not allowed to leave a node with one item in the
388 * tree during a delete. A deletion from lower in the tree
389 * could try to delete the only pointer in this node.
390 * So, pull some keys from the left.
391 * There has to be a left pointer at this point because
392 * otherwise we would have pulled some pointers from the
393 * right
394 */
395 BUG_ON(!left_buf);
396 wret = balance_node_right(trans, root, mid_buf, left_buf);
397 if (wret < 0)
398 ret = wret;
399 BUG_ON(wret == 1);
400 }
401 if (btrfs_header_nritems(&mid->header) == 0) {
402 /* we've managed to empty the middle node, drop it */
403 u64 blocknr = bh_blocknr(mid_buf);
404 clean_tree_block(trans, root, mid_buf);
405 wait_on_buffer(mid_buf);
406 btrfs_block_release(root, mid_buf);
407 mid_buf = NULL;
408 mid = NULL;
409 wret = del_ptr(trans, root, path, level + 1, pslot);
410 if (wret)
411 ret = wret;
412 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
413 if (wret)
414 ret = wret;
415 } else {
416 /* update the parent key to reflect our changes */
417 btrfs_memcpy(root, parent,
418 &parent->ptrs[pslot].key, &mid->ptrs[0].key,
419 sizeof(struct btrfs_disk_key));
420 btrfs_mark_buffer_dirty(parent_buf);
421 }
422
423 /* update the path */
424 if (left_buf) {
425 if (btrfs_header_nritems(&left->header) > orig_slot) {
426 get_bh(left_buf);
427 path->nodes[level] = left_buf;
428 path->slots[level + 1] -= 1;
429 path->slots[level] = orig_slot;
430 if (mid_buf)
431 btrfs_block_release(root, mid_buf);
432 } else {
433 orig_slot -= btrfs_header_nritems(&left->header);
434 path->slots[level] = orig_slot;
435 }
436 }
437 /* double check we haven't messed things up */
438 check_block(root, path, level);
439 if (orig_ptr !=
440 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
441 path->slots[level]))
442 BUG();
443
444 if (right_buf)
445 btrfs_block_release(root, right_buf);
446 if (left_buf)
447 btrfs_block_release(root, left_buf);
448 return ret;
449 }
450
451 /*
452 * look for key in the tree. path is filled in with nodes along the way
453 * if key is found, we return zero and you can find the item in the leaf
454 * level of the path (level 0)
455 *
456 * If the key isn't found, the path points to the slot where it should
457 * be inserted, and 1 is returned. If there are other errors during the
458 * search a negative error number is returned.
459 *
460 * if ins_len > 0, nodes and leaves will be split as we walk down the
461 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
462 * possible)
463 */
464 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
465 *root, struct btrfs_key *key, struct btrfs_path *p, int
466 ins_len, int cow)
467 {
468 struct buffer_head *b;
469 struct buffer_head *cow_buf;
470 struct btrfs_node *c;
471 int slot;
472 int ret;
473 int level;
474
475 WARN_ON(p->nodes[0] != NULL);
476 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
477 again:
478 b = root->node;
479 get_bh(b);
480 while (b) {
481 c = btrfs_buffer_node(b);
482 level = btrfs_header_level(&c->header);
483 if (cow) {
484 int wret;
485 wret = btrfs_cow_block(trans, root, b,
486 p->nodes[level + 1],
487 p->slots[level + 1],
488 &cow_buf);
489 b = cow_buf;
490 c = btrfs_buffer_node(b);
491 }
492 BUG_ON(!cow && ins_len);
493 if (level != btrfs_header_level(&c->header))
494 WARN_ON(1);
495 level = btrfs_header_level(&c->header);
496 p->nodes[level] = b;
497 ret = check_block(root, p, level);
498 if (ret)
499 return -1;
500 ret = bin_search(c, key, &slot);
501 if (!btrfs_is_leaf(c)) {
502 if (ret && slot > 0)
503 slot -= 1;
504 p->slots[level] = slot;
505 if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
506 BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
507 int sret = split_node(trans, root, p, level);
508 BUG_ON(sret > 0);
509 if (sret)
510 return sret;
511 b = p->nodes[level];
512 c = btrfs_buffer_node(b);
513 slot = p->slots[level];
514 } else if (ins_len < 0) {
515 int sret = balance_level(trans, root, p,
516 level);
517 if (sret)
518 return sret;
519 b = p->nodes[level];
520 if (!b)
521 goto again;
522 c = btrfs_buffer_node(b);
523 slot = p->slots[level];
524 BUG_ON(btrfs_header_nritems(&c->header) == 1);
525 }
526 b = read_tree_block(root, btrfs_node_blockptr(c, slot));
527 } else {
528 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
529 p->slots[level] = slot;
530 if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
531 sizeof(struct btrfs_item) + ins_len) {
532 int sret = split_leaf(trans, root, key,
533 p, ins_len);
534 BUG_ON(sret > 0);
535 if (sret)
536 return sret;
537 }
538 return ret;
539 }
540 }
541 return 1;
542 }
543
544 /*
545 * adjust the pointers going up the tree, starting at level
546 * making sure the right key of each node is points to 'key'.
547 * This is used after shifting pointers to the left, so it stops
548 * fixing up pointers when a given leaf/node is not in slot 0 of the
549 * higher levels
550 *
551 * If this fails to write a tree block, it returns -1, but continues
552 * fixing up the blocks in ram so the tree is consistent.
553 */
554 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
555 *root, struct btrfs_path *path, struct btrfs_disk_key
556 *key, int level)
557 {
558 int i;
559 int ret = 0;
560 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
561 struct btrfs_node *t;
562 int tslot = path->slots[i];
563 if (!path->nodes[i])
564 break;
565 t = btrfs_buffer_node(path->nodes[i]);
566 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
567 btrfs_mark_buffer_dirty(path->nodes[i]);
568 if (tslot != 0)
569 break;
570 }
571 return ret;
572 }
573
574 /*
575 * try to push data from one node into the next node left in the
576 * tree.
577 *
578 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
579 * error, and > 0 if there was no room in the left hand block.
580 */
581 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
582 *root, struct buffer_head *dst_buf, struct
583 buffer_head *src_buf)
584 {
585 struct btrfs_node *src = btrfs_buffer_node(src_buf);
586 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
587 int push_items = 0;
588 int src_nritems;
589 int dst_nritems;
590 int ret = 0;
591
592 src_nritems = btrfs_header_nritems(&src->header);
593 dst_nritems = btrfs_header_nritems(&dst->header);
594 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
595 if (push_items <= 0) {
596 return 1;
597 }
598
599 if (src_nritems < push_items)
600 push_items = src_nritems;
601
602 btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
603 push_items * sizeof(struct btrfs_key_ptr));
604 if (push_items < src_nritems) {
605 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
606 (src_nritems - push_items) *
607 sizeof(struct btrfs_key_ptr));
608 }
609 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
610 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
611 btrfs_mark_buffer_dirty(src_buf);
612 btrfs_mark_buffer_dirty(dst_buf);
613 return ret;
614 }
615
616 /*
617 * try to push data from one node into the next node right in the
618 * tree.
619 *
620 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
621 * error, and > 0 if there was no room in the right hand block.
622 *
623 * this will only push up to 1/2 the contents of the left node over
624 */
625 static int balance_node_right(struct btrfs_trans_handle *trans, struct
626 btrfs_root *root, struct buffer_head *dst_buf,
627 struct buffer_head *src_buf)
628 {
629 struct btrfs_node *src = btrfs_buffer_node(src_buf);
630 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
631 int push_items = 0;
632 int max_push;
633 int src_nritems;
634 int dst_nritems;
635 int ret = 0;
636
637 src_nritems = btrfs_header_nritems(&src->header);
638 dst_nritems = btrfs_header_nritems(&dst->header);
639 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
640 if (push_items <= 0) {
641 return 1;
642 }
643
644 max_push = src_nritems / 2 + 1;
645 /* don't try to empty the node */
646 if (max_push > src_nritems)
647 return 1;
648 if (max_push < push_items)
649 push_items = max_push;
650
651 btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
652 dst_nritems * sizeof(struct btrfs_key_ptr));
653
654 btrfs_memcpy(root, dst, dst->ptrs,
655 src->ptrs + src_nritems - push_items,
656 push_items * sizeof(struct btrfs_key_ptr));
657
658 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
659 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
660
661 btrfs_mark_buffer_dirty(src_buf);
662 btrfs_mark_buffer_dirty(dst_buf);
663 return ret;
664 }
665
666 /*
667 * helper function to insert a new root level in the tree.
668 * A new node is allocated, and a single item is inserted to
669 * point to the existing root
670 *
671 * returns zero on success or < 0 on failure.
672 */
673 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
674 *root, struct btrfs_path *path, int level)
675 {
676 struct buffer_head *t;
677 struct btrfs_node *lower;
678 struct btrfs_node *c;
679 struct btrfs_disk_key *lower_key;
680
681 BUG_ON(path->nodes[level]);
682 BUG_ON(path->nodes[level-1] != root->node);
683
684 t = btrfs_alloc_free_block(trans, root);
685 c = btrfs_buffer_node(t);
686 memset(c, 0, root->blocksize);
687 btrfs_set_header_nritems(&c->header, 1);
688 btrfs_set_header_level(&c->header, level);
689 btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
690 btrfs_set_header_generation(&c->header, trans->transid);
691 lower = btrfs_buffer_node(path->nodes[level-1]);
692 memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
693 sizeof(c->header.fsid));
694 if (btrfs_is_leaf(lower))
695 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
696 else
697 lower_key = &lower->ptrs[0].key;
698 btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
699 sizeof(struct btrfs_disk_key));
700 btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
701
702 btrfs_mark_buffer_dirty(t);
703
704 /* the super has an extra ref to root->node */
705 btrfs_block_release(root, root->node);
706 root->node = t;
707 get_bh(t);
708 path->nodes[level] = t;
709 path->slots[level] = 0;
710 return 0;
711 }
712
713 /*
714 * worker function to insert a single pointer in a node.
715 * the node should have enough room for the pointer already
716 *
717 * slot and level indicate where you want the key to go, and
718 * blocknr is the block the key points to.
719 *
720 * returns zero on success and < 0 on any error
721 */
722 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
723 *root, struct btrfs_path *path, struct btrfs_disk_key
724 *key, u64 blocknr, int slot, int level)
725 {
726 struct btrfs_node *lower;
727 int nritems;
728
729 BUG_ON(!path->nodes[level]);
730 lower = btrfs_buffer_node(path->nodes[level]);
731 nritems = btrfs_header_nritems(&lower->header);
732 if (slot > nritems)
733 BUG();
734 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
735 BUG();
736 if (slot != nritems) {
737 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
738 lower->ptrs + slot,
739 (nritems - slot) * sizeof(struct btrfs_key_ptr));
740 }
741 btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
742 key, sizeof(struct btrfs_disk_key));
743 btrfs_set_node_blockptr(lower, slot, blocknr);
744 btrfs_set_header_nritems(&lower->header, nritems + 1);
745 btrfs_mark_buffer_dirty(path->nodes[level]);
746 return 0;
747 }
748
749 /*
750 * split the node at the specified level in path in two.
751 * The path is corrected to point to the appropriate node after the split
752 *
753 * Before splitting this tries to make some room in the node by pushing
754 * left and right, if either one works, it returns right away.
755 *
756 * returns 0 on success and < 0 on failure
757 */
758 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
759 *root, struct btrfs_path *path, int level)
760 {
761 struct buffer_head *t;
762 struct btrfs_node *c;
763 struct buffer_head *split_buffer;
764 struct btrfs_node *split;
765 int mid;
766 int ret;
767 int wret;
768 u32 c_nritems;
769
770 t = path->nodes[level];
771 c = btrfs_buffer_node(t);
772 if (t == root->node) {
773 /* trying to split the root, lets make a new one */
774 ret = insert_new_root(trans, root, path, level + 1);
775 if (ret)
776 return ret;
777 }
778 c_nritems = btrfs_header_nritems(&c->header);
779 split_buffer = btrfs_alloc_free_block(trans, root);
780 split = btrfs_buffer_node(split_buffer);
781 btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
782 btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
783 btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
784 btrfs_set_header_generation(&split->header, trans->transid);
785 memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
786 sizeof(split->header.fsid));
787 mid = (c_nritems + 1) / 2;
788 btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
789 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
790 btrfs_set_header_nritems(&split->header, c_nritems - mid);
791 btrfs_set_header_nritems(&c->header, mid);
792 ret = 0;
793
794 btrfs_mark_buffer_dirty(t);
795 btrfs_mark_buffer_dirty(split_buffer);
796 wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
797 bh_blocknr(split_buffer), path->slots[level + 1] + 1,
798 level + 1);
799 if (wret)
800 ret = wret;
801
802 if (path->slots[level] >= mid) {
803 path->slots[level] -= mid;
804 btrfs_block_release(root, t);
805 path->nodes[level] = split_buffer;
806 path->slots[level + 1] += 1;
807 } else {
808 btrfs_block_release(root, split_buffer);
809 }
810 return ret;
811 }
812
813 /*
814 * how many bytes are required to store the items in a leaf. start
815 * and nr indicate which items in the leaf to check. This totals up the
816 * space used both by the item structs and the item data
817 */
818 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
819 {
820 int data_len;
821 int nritems = btrfs_header_nritems(&l->header);
822 int end = min(nritems, start + nr) - 1;
823
824 if (!nr)
825 return 0;
826 data_len = btrfs_item_end(l->items + start);
827 data_len = data_len - btrfs_item_offset(l->items + end);
828 data_len += sizeof(struct btrfs_item) * nr;
829 WARN_ON(data_len < 0);
830 return data_len;
831 }
832
833 /*
834 * The space between the end of the leaf items and
835 * the start of the leaf data. IOW, how much room
836 * the leaf has left for both items and data
837 */
838 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
839 {
840 int nritems = btrfs_header_nritems(&leaf->header);
841 return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
842 }
843
844 /*
845 * push some data in the path leaf to the right, trying to free up at
846 * least data_size bytes. returns zero if the push worked, nonzero otherwise
847 *
848 * returns 1 if the push failed because the other node didn't have enough
849 * room, 0 if everything worked out and < 0 if there were major errors.
850 */
851 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
852 *root, struct btrfs_path *path, int data_size)
853 {
854 struct buffer_head *left_buf = path->nodes[0];
855 struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
856 struct btrfs_leaf *right;
857 struct buffer_head *right_buf;
858 struct buffer_head *upper;
859 struct btrfs_node *upper_node;
860 int slot;
861 int i;
862 int free_space;
863 int push_space = 0;
864 int push_items = 0;
865 struct btrfs_item *item;
866 u32 left_nritems;
867 u32 right_nritems;
868
869 slot = path->slots[1];
870 if (!path->nodes[1]) {
871 return 1;
872 }
873 upper = path->nodes[1];
874 upper_node = btrfs_buffer_node(upper);
875 if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
876 return 1;
877 }
878 right_buf = read_tree_block(root,
879 btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
880 right = btrfs_buffer_leaf(right_buf);
881 free_space = btrfs_leaf_free_space(root, right);
882 if (free_space < data_size + sizeof(struct btrfs_item)) {
883 btrfs_block_release(root, right_buf);
884 return 1;
885 }
886 /* cow and double check */
887 btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
888 right = btrfs_buffer_leaf(right_buf);
889 free_space = btrfs_leaf_free_space(root, right);
890 if (free_space < data_size + sizeof(struct btrfs_item)) {
891 btrfs_block_release(root, right_buf);
892 return 1;
893 }
894
895 left_nritems = btrfs_header_nritems(&left->header);
896 for (i = left_nritems - 1; i >= 0; i--) {
897 item = left->items + i;
898 if (path->slots[0] == i)
899 push_space += data_size + sizeof(*item);
900 if (btrfs_item_size(item) + sizeof(*item) + push_space >
901 free_space)
902 break;
903 push_items++;
904 push_space += btrfs_item_size(item) + sizeof(*item);
905 }
906 if (push_items == 0) {
907 btrfs_block_release(root, right_buf);
908 return 1;
909 }
910 right_nritems = btrfs_header_nritems(&right->header);
911 /* push left to right */
912 push_space = btrfs_item_end(left->items + left_nritems - push_items);
913 push_space -= leaf_data_end(root, left);
914 /* make room in the right data area */
915 btrfs_memmove(root, right, btrfs_leaf_data(right) +
916 leaf_data_end(root, right) - push_space,
917 btrfs_leaf_data(right) +
918 leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
919 leaf_data_end(root, right));
920 /* copy from the left data area */
921 btrfs_memcpy(root, right, btrfs_leaf_data(right) +
922 BTRFS_LEAF_DATA_SIZE(root) - push_space,
923 btrfs_leaf_data(left) + leaf_data_end(root, left),
924 push_space);
925 btrfs_memmove(root, right, right->items + push_items, right->items,
926 right_nritems * sizeof(struct btrfs_item));
927 /* copy the items from left to right */
928 btrfs_memcpy(root, right, right->items, left->items +
929 left_nritems - push_items,
930 push_items * sizeof(struct btrfs_item));
931
932 /* update the item pointers */
933 right_nritems += push_items;
934 btrfs_set_header_nritems(&right->header, right_nritems);
935 push_space = BTRFS_LEAF_DATA_SIZE(root);
936 for (i = 0; i < right_nritems; i++) {
937 btrfs_set_item_offset(right->items + i, push_space -
938 btrfs_item_size(right->items + i));
939 push_space = btrfs_item_offset(right->items + i);
940 }
941 left_nritems -= push_items;
942 btrfs_set_header_nritems(&left->header, left_nritems);
943
944 btrfs_mark_buffer_dirty(left_buf);
945 btrfs_mark_buffer_dirty(right_buf);
946 btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
947 &right->items[0].key, sizeof(struct btrfs_disk_key));
948 btrfs_mark_buffer_dirty(upper);
949
950 /* then fixup the leaf pointer in the path */
951 if (path->slots[0] >= left_nritems) {
952 path->slots[0] -= left_nritems;
953 btrfs_block_release(root, path->nodes[0]);
954 path->nodes[0] = right_buf;
955 path->slots[1] += 1;
956 } else {
957 btrfs_block_release(root, right_buf);
958 }
959 return 0;
960 }
961 /*
962 * push some data in the path leaf to the left, trying to free up at
963 * least data_size bytes. returns zero if the push worked, nonzero otherwise
964 */
965 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
966 *root, struct btrfs_path *path, int data_size)
967 {
968 struct buffer_head *right_buf = path->nodes[0];
969 struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
970 struct buffer_head *t;
971 struct btrfs_leaf *left;
972 int slot;
973 int i;
974 int free_space;
975 int push_space = 0;
976 int push_items = 0;
977 struct btrfs_item *item;
978 u32 old_left_nritems;
979 int ret = 0;
980 int wret;
981
982 slot = path->slots[1];
983 if (slot == 0) {
984 return 1;
985 }
986 if (!path->nodes[1]) {
987 return 1;
988 }
989 t = read_tree_block(root,
990 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
991 left = btrfs_buffer_leaf(t);
992 free_space = btrfs_leaf_free_space(root, left);
993 if (free_space < data_size + sizeof(struct btrfs_item)) {
994 btrfs_block_release(root, t);
995 return 1;
996 }
997
998 /* cow and double check */
999 btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1000 left = btrfs_buffer_leaf(t);
1001 free_space = btrfs_leaf_free_space(root, left);
1002 if (free_space < data_size + sizeof(struct btrfs_item)) {
1003 btrfs_block_release(root, t);
1004 return 1;
1005 }
1006
1007 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1008 item = right->items + i;
1009 if (path->slots[0] == i)
1010 push_space += data_size + sizeof(*item);
1011 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1012 free_space)
1013 break;
1014 push_items++;
1015 push_space += btrfs_item_size(item) + sizeof(*item);
1016 }
1017 if (push_items == 0) {
1018 btrfs_block_release(root, t);
1019 return 1;
1020 }
1021 /* push data from right to left */
1022 btrfs_memcpy(root, left, left->items +
1023 btrfs_header_nritems(&left->header),
1024 right->items, push_items * sizeof(struct btrfs_item));
1025 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1026 btrfs_item_offset(right->items + push_items -1);
1027 btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1028 leaf_data_end(root, left) - push_space,
1029 btrfs_leaf_data(right) +
1030 btrfs_item_offset(right->items + push_items - 1),
1031 push_space);
1032 old_left_nritems = btrfs_header_nritems(&left->header);
1033 BUG_ON(old_left_nritems < 0);
1034
1035 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1036 u32 ioff = btrfs_item_offset(left->items + i);
1037 btrfs_set_item_offset(left->items + i, ioff -
1038 (BTRFS_LEAF_DATA_SIZE(root) -
1039 btrfs_item_offset(left->items +
1040 old_left_nritems - 1)));
1041 }
1042 btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1043
1044 /* fixup right node */
1045 push_space = btrfs_item_offset(right->items + push_items - 1) -
1046 leaf_data_end(root, right);
1047 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1048 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1049 btrfs_leaf_data(right) +
1050 leaf_data_end(root, right), push_space);
1051 btrfs_memmove(root, right, right->items, right->items + push_items,
1052 (btrfs_header_nritems(&right->header) - push_items) *
1053 sizeof(struct btrfs_item));
1054 btrfs_set_header_nritems(&right->header,
1055 btrfs_header_nritems(&right->header) -
1056 push_items);
1057 push_space = BTRFS_LEAF_DATA_SIZE(root);
1058
1059 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1060 btrfs_set_item_offset(right->items + i, push_space -
1061 btrfs_item_size(right->items + i));
1062 push_space = btrfs_item_offset(right->items + i);
1063 }
1064
1065 btrfs_mark_buffer_dirty(t);
1066 btrfs_mark_buffer_dirty(right_buf);
1067
1068 wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1069 if (wret)
1070 ret = wret;
1071
1072 /* then fixup the leaf pointer in the path */
1073 if (path->slots[0] < push_items) {
1074 path->slots[0] += old_left_nritems;
1075 btrfs_block_release(root, path->nodes[0]);
1076 path->nodes[0] = t;
1077 path->slots[1] -= 1;
1078 } else {
1079 btrfs_block_release(root, t);
1080 path->slots[0] -= push_items;
1081 }
1082 BUG_ON(path->slots[0] < 0);
1083 return ret;
1084 }
1085
1086 /*
1087 * split the path's leaf in two, making sure there is at least data_size
1088 * available for the resulting leaf level of the path.
1089 *
1090 * returns 0 if all went well and < 0 on failure.
1091 */
1092 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1093 *root, struct btrfs_key *ins_key,
1094 struct btrfs_path *path, int data_size)
1095 {
1096 struct buffer_head *l_buf;
1097 struct btrfs_leaf *l;
1098 u32 nritems;
1099 int mid;
1100 int slot;
1101 struct btrfs_leaf *right;
1102 struct buffer_head *right_buffer;
1103 int space_needed = data_size + sizeof(struct btrfs_item);
1104 int data_copy_size;
1105 int rt_data_off;
1106 int i;
1107 int ret = 0;
1108 int wret;
1109 int double_split = 0;
1110 struct btrfs_disk_key disk_key;
1111
1112 /* first try to make some room by pushing left and right */
1113 wret = push_leaf_left(trans, root, path, data_size);
1114 if (wret < 0)
1115 return wret;
1116 if (wret) {
1117 wret = push_leaf_right(trans, root, path, data_size);
1118 if (wret < 0)
1119 return wret;
1120 }
1121 l_buf = path->nodes[0];
1122 l = btrfs_buffer_leaf(l_buf);
1123
1124 /* did the pushes work? */
1125 if (btrfs_leaf_free_space(root, l) >=
1126 sizeof(struct btrfs_item) + data_size)
1127 return 0;
1128
1129 if (!path->nodes[1]) {
1130 ret = insert_new_root(trans, root, path, 1);
1131 if (ret)
1132 return ret;
1133 }
1134 slot = path->slots[0];
1135 nritems = btrfs_header_nritems(&l->header);
1136 mid = (nritems + 1)/ 2;
1137 right_buffer = btrfs_alloc_free_block(trans, root);
1138 BUG_ON(!right_buffer);
1139 right = btrfs_buffer_leaf(right_buffer);
1140 memset(&right->header, 0, sizeof(right->header));
1141 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1142 btrfs_set_header_generation(&right->header, trans->transid);
1143 btrfs_set_header_level(&right->header, 0);
1144 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1145 sizeof(right->header.fsid));
1146 if (mid <= slot) {
1147 if (nritems == 1 ||
1148 leaf_space_used(l, mid, nritems - mid) + space_needed >
1149 BTRFS_LEAF_DATA_SIZE(root)) {
1150 if (slot >= nritems) {
1151 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1152 btrfs_set_header_nritems(&right->header, 0);
1153 wret = insert_ptr(trans, root, path,
1154 &disk_key,
1155 bh_blocknr(right_buffer),
1156 path->slots[1] + 1, 1);
1157 if (wret)
1158 ret = wret;
1159 btrfs_block_release(root, path->nodes[0]);
1160 path->nodes[0] = right_buffer;
1161 path->slots[0] = 0;
1162 path->slots[1] += 1;
1163 return ret;
1164 }
1165 mid = slot;
1166 double_split = 1;
1167 }
1168 } else {
1169 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1170 BTRFS_LEAF_DATA_SIZE(root)) {
1171 if (slot == 0) {
1172 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1173 btrfs_set_header_nritems(&right->header, 0);
1174 wret = insert_ptr(trans, root, path,
1175 &disk_key,
1176 bh_blocknr(right_buffer),
1177 path->slots[1] - 1, 1);
1178 if (wret)
1179 ret = wret;
1180 btrfs_block_release(root, path->nodes[0]);
1181 path->nodes[0] = right_buffer;
1182 path->slots[0] = 0;
1183 path->slots[1] -= 1;
1184 return ret;
1185 }
1186 mid = slot;
1187 double_split = 1;
1188 }
1189 }
1190 btrfs_set_header_nritems(&right->header, nritems - mid);
1191 data_copy_size = btrfs_item_end(l->items + mid) -
1192 leaf_data_end(root, l);
1193 btrfs_memcpy(root, right, right->items, l->items + mid,
1194 (nritems - mid) * sizeof(struct btrfs_item));
1195 btrfs_memcpy(root, right,
1196 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1197 data_copy_size, btrfs_leaf_data(l) +
1198 leaf_data_end(root, l), data_copy_size);
1199 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1200 btrfs_item_end(l->items + mid);
1201
1202 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1203 u32 ioff = btrfs_item_offset(right->items + i);
1204 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1205 }
1206
1207 btrfs_set_header_nritems(&l->header, mid);
1208 ret = 0;
1209 wret = insert_ptr(trans, root, path, &right->items[0].key,
1210 bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1211 if (wret)
1212 ret = wret;
1213 btrfs_mark_buffer_dirty(right_buffer);
1214 btrfs_mark_buffer_dirty(l_buf);
1215 BUG_ON(path->slots[0] != slot);
1216 if (mid <= slot) {
1217 btrfs_block_release(root, path->nodes[0]);
1218 path->nodes[0] = right_buffer;
1219 path->slots[0] -= mid;
1220 path->slots[1] += 1;
1221 } else
1222 btrfs_block_release(root, right_buffer);
1223 BUG_ON(path->slots[0] < 0);
1224
1225 if (!double_split)
1226 return ret;
1227 right_buffer = btrfs_alloc_free_block(trans, root);
1228 BUG_ON(!right_buffer);
1229 right = btrfs_buffer_leaf(right_buffer);
1230 memset(&right->header, 0, sizeof(right->header));
1231 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1232 btrfs_set_header_generation(&right->header, trans->transid);
1233 btrfs_set_header_level(&right->header, 0);
1234 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1235 sizeof(right->header.fsid));
1236 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1237 btrfs_set_header_nritems(&right->header, 0);
1238 wret = insert_ptr(trans, root, path,
1239 &disk_key,
1240 bh_blocknr(right_buffer),
1241 path->slots[1], 1);
1242 if (wret)
1243 ret = wret;
1244 btrfs_block_release(root, path->nodes[0]);
1245 path->nodes[0] = right_buffer;
1246 path->slots[0] = 0;
1247 check_node(root, path, 1);
1248 check_leaf(root, path, 0);
1249 return ret;
1250 }
1251
1252 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1253 struct btrfs_root *root,
1254 struct btrfs_path *path,
1255 u32 new_size)
1256 {
1257 int ret = 0;
1258 int slot;
1259 int slot_orig;
1260 struct btrfs_leaf *leaf;
1261 struct buffer_head *leaf_buf;
1262 u32 nritems;
1263 unsigned int data_end;
1264 unsigned int old_data_start;
1265 unsigned int old_size;
1266 unsigned int size_diff;
1267 int i;
1268
1269 slot_orig = path->slots[0];
1270 leaf_buf = path->nodes[0];
1271 leaf = btrfs_buffer_leaf(leaf_buf);
1272
1273 nritems = btrfs_header_nritems(&leaf->header);
1274 data_end = leaf_data_end(root, leaf);
1275
1276 slot = path->slots[0];
1277 old_data_start = btrfs_item_offset(leaf->items + slot);
1278 old_size = btrfs_item_size(leaf->items + slot);
1279 BUG_ON(old_size <= new_size);
1280 size_diff = old_size - new_size;
1281
1282 BUG_ON(slot < 0);
1283 BUG_ON(slot >= nritems);
1284
1285 /*
1286 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1287 */
1288 /* first correct the data pointers */
1289 for (i = slot; i < nritems; i++) {
1290 u32 ioff = btrfs_item_offset(leaf->items + i);
1291 btrfs_set_item_offset(leaf->items + i,
1292 ioff + size_diff);
1293 }
1294 /* shift the data */
1295 printk("truncate item, new_size %u old_size %u, diff %u, bufp %p, dst, %p, num %u, old_data_start %u, data_end %u\n", new_size, old_size, size_diff, leaf, btrfs_leaf_data(leaf) + data_end + size_diff, old_data_start-data_end, old_data_start, data_end);
1296 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1297 data_end + size_diff, btrfs_leaf_data(leaf) +
1298 data_end, old_data_start + new_size - data_end);
1299 btrfs_set_item_size(leaf->items + slot, new_size);
1300 btrfs_mark_buffer_dirty(leaf_buf);
1301
1302 ret = 0;
1303 if (btrfs_leaf_free_space(root, leaf) < 0)
1304 BUG();
1305 check_leaf(root, path, 0);
1306 return ret;
1307 }
1308
1309 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1310 *root, struct btrfs_path *path, u32 data_size)
1311 {
1312 int ret = 0;
1313 int slot;
1314 int slot_orig;
1315 struct btrfs_leaf *leaf;
1316 struct buffer_head *leaf_buf;
1317 u32 nritems;
1318 unsigned int data_end;
1319 unsigned int old_data;
1320 unsigned int old_size;
1321 int i;
1322
1323 slot_orig = path->slots[0];
1324 leaf_buf = path->nodes[0];
1325 leaf = btrfs_buffer_leaf(leaf_buf);
1326
1327 nritems = btrfs_header_nritems(&leaf->header);
1328 data_end = leaf_data_end(root, leaf);
1329
1330 if (btrfs_leaf_free_space(root, leaf) < data_size)
1331 BUG();
1332 slot = path->slots[0];
1333 old_data = btrfs_item_end(leaf->items + slot);
1334
1335 BUG_ON(slot < 0);
1336 BUG_ON(slot >= nritems);
1337
1338 /*
1339 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1340 */
1341 /* first correct the data pointers */
1342 for (i = slot; i < nritems; i++) {
1343 u32 ioff = btrfs_item_offset(leaf->items + i);
1344 btrfs_set_item_offset(leaf->items + i,
1345 ioff - data_size);
1346 }
1347 /* shift the data */
1348 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1349 data_end - data_size, btrfs_leaf_data(leaf) +
1350 data_end, old_data - data_end);
1351 data_end = old_data;
1352 old_size = btrfs_item_size(leaf->items + slot);
1353 btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1354 btrfs_mark_buffer_dirty(leaf_buf);
1355
1356 ret = 0;
1357 if (btrfs_leaf_free_space(root, leaf) < 0)
1358 BUG();
1359 check_leaf(root, path, 0);
1360 return ret;
1361 }
1362
1363 /*
1364 * Given a key and some data, insert an item into the tree.
1365 * This does all the path init required, making room in the tree if needed.
1366 */
1367 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1368 *root, struct btrfs_path *path, struct btrfs_key
1369 *cpu_key, u32 data_size)
1370 {
1371 int ret = 0;
1372 int slot;
1373 int slot_orig;
1374 struct btrfs_leaf *leaf;
1375 struct buffer_head *leaf_buf;
1376 u32 nritems;
1377 unsigned int data_end;
1378 struct btrfs_disk_key disk_key;
1379
1380 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1381
1382 /* create a root if there isn't one */
1383 if (!root->node)
1384 BUG();
1385 ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1386 if (ret == 0) {
1387 return -EEXIST;
1388 }
1389 if (ret < 0)
1390 goto out;
1391
1392 slot_orig = path->slots[0];
1393 leaf_buf = path->nodes[0];
1394 leaf = btrfs_buffer_leaf(leaf_buf);
1395
1396 nritems = btrfs_header_nritems(&leaf->header);
1397 data_end = leaf_data_end(root, leaf);
1398
1399 if (btrfs_leaf_free_space(root, leaf) <
1400 sizeof(struct btrfs_item) + data_size) {
1401 BUG();
1402 }
1403 slot = path->slots[0];
1404 BUG_ON(slot < 0);
1405 if (slot != nritems) {
1406 int i;
1407 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1408
1409 /*
1410 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1411 */
1412 /* first correct the data pointers */
1413 for (i = slot; i < nritems; i++) {
1414 u32 ioff = btrfs_item_offset(leaf->items + i);
1415 btrfs_set_item_offset(leaf->items + i,
1416 ioff - data_size);
1417 }
1418
1419 /* shift the items */
1420 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1421 leaf->items + slot,
1422 (nritems - slot) * sizeof(struct btrfs_item));
1423
1424 /* shift the data */
1425 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1426 data_end - data_size, btrfs_leaf_data(leaf) +
1427 data_end, old_data - data_end);
1428 data_end = old_data;
1429 }
1430 /* setup the item for the new data */
1431 btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1432 sizeof(struct btrfs_disk_key));
1433 btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1434 btrfs_set_item_size(leaf->items + slot, data_size);
1435 btrfs_set_header_nritems(&leaf->header, nritems + 1);
1436 btrfs_mark_buffer_dirty(leaf_buf);
1437
1438 ret = 0;
1439 if (slot == 0)
1440 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1441
1442 if (btrfs_leaf_free_space(root, leaf) < 0)
1443 BUG();
1444 check_leaf(root, path, 0);
1445 out:
1446 return ret;
1447 }
1448
1449 /*
1450 * Given a key and some data, insert an item into the tree.
1451 * This does all the path init required, making room in the tree if needed.
1452 */
1453 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1454 *root, struct btrfs_key *cpu_key, void *data, u32
1455 data_size)
1456 {
1457 int ret = 0;
1458 struct btrfs_path *path;
1459 u8 *ptr;
1460
1461 path = btrfs_alloc_path();
1462 BUG_ON(!path);
1463 btrfs_init_path(path);
1464 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1465 if (!ret) {
1466 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1467 path->slots[0], u8);
1468 btrfs_memcpy(root, path->nodes[0]->b_data,
1469 ptr, data, data_size);
1470 btrfs_mark_buffer_dirty(path->nodes[0]);
1471 }
1472 btrfs_release_path(root, path);
1473 btrfs_free_path(path);
1474 return ret;
1475 }
1476
1477 /*
1478 * delete the pointer from a given node.
1479 *
1480 * If the delete empties a node, the node is removed from the tree,
1481 * continuing all the way the root if required. The root is converted into
1482 * a leaf if all the nodes are emptied.
1483 */
1484 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1485 struct btrfs_path *path, int level, int slot)
1486 {
1487 struct btrfs_node *node;
1488 struct buffer_head *parent = path->nodes[level];
1489 u32 nritems;
1490 int ret = 0;
1491 int wret;
1492
1493 node = btrfs_buffer_node(parent);
1494 nritems = btrfs_header_nritems(&node->header);
1495 if (slot != nritems -1) {
1496 btrfs_memmove(root, node, node->ptrs + slot,
1497 node->ptrs + slot + 1,
1498 sizeof(struct btrfs_key_ptr) *
1499 (nritems - slot - 1));
1500 }
1501 nritems--;
1502 btrfs_set_header_nritems(&node->header, nritems);
1503 if (nritems == 0 && parent == root->node) {
1504 struct btrfs_header *header = btrfs_buffer_header(root->node);
1505 BUG_ON(btrfs_header_level(header) != 1);
1506 /* just turn the root into a leaf and break */
1507 btrfs_set_header_level(header, 0);
1508 } else if (slot == 0) {
1509 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1510 level + 1);
1511 if (wret)
1512 ret = wret;
1513 }
1514 btrfs_mark_buffer_dirty(parent);
1515 return ret;
1516 }
1517
1518 /*
1519 * delete the item at the leaf level in path. If that empties
1520 * the leaf, remove it from the tree
1521 */
1522 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1523 struct btrfs_path *path)
1524 {
1525 int slot;
1526 struct btrfs_leaf *leaf;
1527 struct buffer_head *leaf_buf;
1528 int doff;
1529 int dsize;
1530 int ret = 0;
1531 int wret;
1532 u32 nritems;
1533
1534 leaf_buf = path->nodes[0];
1535 leaf = btrfs_buffer_leaf(leaf_buf);
1536 slot = path->slots[0];
1537 doff = btrfs_item_offset(leaf->items + slot);
1538 dsize = btrfs_item_size(leaf->items + slot);
1539 nritems = btrfs_header_nritems(&leaf->header);
1540
1541 if (slot != nritems - 1) {
1542 int i;
1543 int data_end = leaf_data_end(root, leaf);
1544 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1545 data_end + dsize,
1546 btrfs_leaf_data(leaf) + data_end,
1547 doff - data_end);
1548 for (i = slot + 1; i < nritems; i++) {
1549 u32 ioff = btrfs_item_offset(leaf->items + i);
1550 btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1551 }
1552 btrfs_memmove(root, leaf, leaf->items + slot,
1553 leaf->items + slot + 1,
1554 sizeof(struct btrfs_item) *
1555 (nritems - slot - 1));
1556 }
1557 btrfs_set_header_nritems(&leaf->header, nritems - 1);
1558 nritems--;
1559 /* delete the leaf if we've emptied it */
1560 if (nritems == 0) {
1561 if (leaf_buf == root->node) {
1562 btrfs_set_header_level(&leaf->header, 0);
1563 } else {
1564 clean_tree_block(trans, root, leaf_buf);
1565 wait_on_buffer(leaf_buf);
1566 wret = del_ptr(trans, root, path, 1, path->slots[1]);
1567 if (wret)
1568 ret = wret;
1569 wret = btrfs_free_extent(trans, root,
1570 bh_blocknr(leaf_buf), 1, 1);
1571 if (wret)
1572 ret = wret;
1573 }
1574 } else {
1575 int used = leaf_space_used(leaf, 0, nritems);
1576 if (slot == 0) {
1577 wret = fixup_low_keys(trans, root, path,
1578 &leaf->items[0].key, 1);
1579 if (wret)
1580 ret = wret;
1581 }
1582
1583 /* delete the leaf if it is mostly empty */
1584 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1585 /* push_leaf_left fixes the path.
1586 * make sure the path still points to our leaf
1587 * for possible call to del_ptr below
1588 */
1589 slot = path->slots[1];
1590 get_bh(leaf_buf);
1591 wret = push_leaf_left(trans, root, path, 1);
1592 if (wret < 0)
1593 ret = wret;
1594 if (path->nodes[0] == leaf_buf &&
1595 btrfs_header_nritems(&leaf->header)) {
1596 wret = push_leaf_right(trans, root, path, 1);
1597 if (wret < 0)
1598 ret = wret;
1599 }
1600 if (btrfs_header_nritems(&leaf->header) == 0) {
1601 u64 blocknr = bh_blocknr(leaf_buf);
1602 clean_tree_block(trans, root, leaf_buf);
1603 wait_on_buffer(leaf_buf);
1604 wret = del_ptr(trans, root, path, 1, slot);
1605 if (wret)
1606 ret = wret;
1607 btrfs_block_release(root, leaf_buf);
1608 wret = btrfs_free_extent(trans, root, blocknr,
1609 1, 1);
1610 if (wret)
1611 ret = wret;
1612 } else {
1613 btrfs_mark_buffer_dirty(leaf_buf);
1614 btrfs_block_release(root, leaf_buf);
1615 }
1616 } else {
1617 btrfs_mark_buffer_dirty(leaf_buf);
1618 }
1619 }
1620 return ret;
1621 }
1622
1623 /*
1624 * walk up the tree as far as required to find the next leaf.
1625 * returns 0 if it found something or 1 if there are no greater leaves.
1626 * returns < 0 on io errors.
1627 */
1628 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1629 {
1630 int slot;
1631 int level = 1;
1632 u64 blocknr;
1633 struct buffer_head *c;
1634 struct btrfs_node *c_node;
1635 struct buffer_head *next = NULL;
1636
1637 while(level < BTRFS_MAX_LEVEL) {
1638 if (!path->nodes[level])
1639 return 1;
1640 slot = path->slots[level] + 1;
1641 c = path->nodes[level];
1642 c_node = btrfs_buffer_node(c);
1643 if (slot >= btrfs_header_nritems(&c_node->header)) {
1644 level++;
1645 continue;
1646 }
1647 blocknr = btrfs_node_blockptr(c_node, slot);
1648 if (next)
1649 btrfs_block_release(root, next);
1650 next = read_tree_block(root, blocknr);
1651 break;
1652 }
1653 path->slots[level] = slot;
1654 while(1) {
1655 level--;
1656 c = path->nodes[level];
1657 btrfs_block_release(root, c);
1658 path->nodes[level] = next;
1659 path->slots[level] = 0;
1660 if (!level)
1661 break;
1662 next = read_tree_block(root,
1663 btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1664 }
1665 return 0;
1666 }
This page took 0.069884 seconds and 5 git commands to generate.