Btrfs: rework qgroup accounting
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47 struct btrfs_path *path;
48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 return path;
50 }
51
52 /*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 }
68 }
69
70 /*
71 * reset all the locked nodes in the patch to spinning locks.
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
77 */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 struct extent_buffer *held, int held_rw)
80 {
81 int i;
82
83 #ifdef CONFIG_DEBUG_LOCK_ALLOC
84 /* lockdep really cares that we take all of these spinlocks
85 * in the right order. If any of the locks in the path are not
86 * currently blocking, it is going to complain. So, make really
87 * really sure by forcing the path to blocking before we clear
88 * the path blocking.
89 */
90 if (held) {
91 btrfs_set_lock_blocking_rw(held, held_rw);
92 if (held_rw == BTRFS_WRITE_LOCK)
93 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
94 else if (held_rw == BTRFS_READ_LOCK)
95 held_rw = BTRFS_READ_LOCK_BLOCKING;
96 }
97 btrfs_set_path_blocking(p);
98 #endif
99
100 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
101 if (p->nodes[i] && p->locks[i]) {
102 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
103 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
104 p->locks[i] = BTRFS_WRITE_LOCK;
105 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
106 p->locks[i] = BTRFS_READ_LOCK;
107 }
108 }
109
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 if (held)
112 btrfs_clear_lock_blocking_rw(held, held_rw);
113 #endif
114 }
115
116 /* this also releases the path */
117 void btrfs_free_path(struct btrfs_path *p)
118 {
119 if (!p)
120 return;
121 btrfs_release_path(p);
122 kmem_cache_free(btrfs_path_cachep, p);
123 }
124
125 /*
126 * path release drops references on the extent buffers in the path
127 * and it drops any locks held by this path
128 *
129 * It is safe to call this on paths that no locks or extent buffers held.
130 */
131 noinline void btrfs_release_path(struct btrfs_path *p)
132 {
133 int i;
134
135 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
136 p->slots[i] = 0;
137 if (!p->nodes[i])
138 continue;
139 if (p->locks[i]) {
140 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
141 p->locks[i] = 0;
142 }
143 free_extent_buffer(p->nodes[i]);
144 p->nodes[i] = NULL;
145 }
146 }
147
148 /*
149 * safely gets a reference on the root node of a tree. A lock
150 * is not taken, so a concurrent writer may put a different node
151 * at the root of the tree. See btrfs_lock_root_node for the
152 * looping required.
153 *
154 * The extent buffer returned by this has a reference taken, so
155 * it won't disappear. It may stop being the root of the tree
156 * at any time because there are no locks held.
157 */
158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
159 {
160 struct extent_buffer *eb;
161
162 while (1) {
163 rcu_read_lock();
164 eb = rcu_dereference(root->node);
165
166 /*
167 * RCU really hurts here, we could free up the root node because
168 * it was cow'ed but we may not get the new root node yet so do
169 * the inc_not_zero dance and if it doesn't work then
170 * synchronize_rcu and try again.
171 */
172 if (atomic_inc_not_zero(&eb->refs)) {
173 rcu_read_unlock();
174 break;
175 }
176 rcu_read_unlock();
177 synchronize_rcu();
178 }
179 return eb;
180 }
181
182 /* loop around taking references on and locking the root node of the
183 * tree until you end up with a lock on the root. A locked buffer
184 * is returned, with a reference held.
185 */
186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
187 {
188 struct extent_buffer *eb;
189
190 while (1) {
191 eb = btrfs_root_node(root);
192 btrfs_tree_lock(eb);
193 if (eb == root->node)
194 break;
195 btrfs_tree_unlock(eb);
196 free_extent_buffer(eb);
197 }
198 return eb;
199 }
200
201 /* loop around taking references on and locking the root node of the
202 * tree until you end up with a lock on the root. A locked buffer
203 * is returned, with a reference held.
204 */
205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
206 {
207 struct extent_buffer *eb;
208
209 while (1) {
210 eb = btrfs_root_node(root);
211 btrfs_tree_read_lock(eb);
212 if (eb == root->node)
213 break;
214 btrfs_tree_read_unlock(eb);
215 free_extent_buffer(eb);
216 }
217 return eb;
218 }
219
220 /* cowonly root (everything not a reference counted cow subvolume), just get
221 * put onto a simple dirty list. transaction.c walks this to make sure they
222 * get properly updated on disk.
223 */
224 static void add_root_to_dirty_list(struct btrfs_root *root)
225 {
226 spin_lock(&root->fs_info->trans_lock);
227 if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) &&
228 list_empty(&root->dirty_list)) {
229 list_add(&root->dirty_list,
230 &root->fs_info->dirty_cowonly_roots);
231 }
232 spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245 struct extent_buffer *cow;
246 int ret = 0;
247 int level;
248 struct btrfs_disk_key disk_key;
249
250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251 trans->transid != root->fs_info->running_transaction->transid);
252 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
253 trans->transid != root->last_trans);
254
255 level = btrfs_header_level(buf);
256 if (level == 0)
257 btrfs_item_key(buf, &disk_key, 0);
258 else
259 btrfs_node_key(buf, &disk_key, 0);
260
261 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
262 new_root_objectid, &disk_key, level,
263 buf->start, 0);
264 if (IS_ERR(cow))
265 return PTR_ERR(cow);
266
267 copy_extent_buffer(cow, buf, 0, 0, cow->len);
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 else
276 btrfs_set_header_owner(cow, new_root_objectid);
277
278 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
279 BTRFS_FSID_SIZE);
280
281 WARN_ON(btrfs_header_generation(buf) > trans->transid);
282 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
283 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
284 else
285 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
286
287 if (ret)
288 return ret;
289
290 btrfs_mark_buffer_dirty(cow);
291 *cow_ret = cow;
292 return 0;
293 }
294
295 enum mod_log_op {
296 MOD_LOG_KEY_REPLACE,
297 MOD_LOG_KEY_ADD,
298 MOD_LOG_KEY_REMOVE,
299 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301 MOD_LOG_MOVE_KEYS,
302 MOD_LOG_ROOT_REPLACE,
303 };
304
305 struct tree_mod_move {
306 int dst_slot;
307 int nr_items;
308 };
309
310 struct tree_mod_root {
311 u64 logical;
312 u8 level;
313 };
314
315 struct tree_mod_elem {
316 struct rb_node node;
317 u64 index; /* shifted logical */
318 u64 seq;
319 enum mod_log_op op;
320
321 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 int slot;
323
324 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 u64 generation;
326
327 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328 struct btrfs_disk_key key;
329 u64 blockptr;
330
331 /* this is used for op == MOD_LOG_MOVE_KEYS */
332 struct tree_mod_move move;
333
334 /* this is used for op == MOD_LOG_ROOT_REPLACE */
335 struct tree_mod_root old_root;
336 };
337
338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
339 {
340 read_lock(&fs_info->tree_mod_log_lock);
341 }
342
343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344 {
345 read_unlock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349 {
350 write_lock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354 {
355 write_unlock(&fs_info->tree_mod_log_lock);
356 }
357
358 /*
359 * Pull a new tree mod seq number for our operation.
360 */
361 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
362 {
363 return atomic64_inc_return(&fs_info->tree_mod_seq);
364 }
365
366 /*
367 * This adds a new blocker to the tree mod log's blocker list if the @elem
368 * passed does not already have a sequence number set. So when a caller expects
369 * to record tree modifications, it should ensure to set elem->seq to zero
370 * before calling btrfs_get_tree_mod_seq.
371 * Returns a fresh, unused tree log modification sequence number, even if no new
372 * blocker was added.
373 */
374 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
375 struct seq_list *elem)
376 {
377 tree_mod_log_write_lock(fs_info);
378 spin_lock(&fs_info->tree_mod_seq_lock);
379 if (!elem->seq) {
380 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382 }
383 spin_unlock(&fs_info->tree_mod_seq_lock);
384 tree_mod_log_write_unlock(fs_info);
385
386 return elem->seq;
387 }
388
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 struct seq_list *elem)
391 {
392 struct rb_root *tm_root;
393 struct rb_node *node;
394 struct rb_node *next;
395 struct seq_list *cur_elem;
396 struct tree_mod_elem *tm;
397 u64 min_seq = (u64)-1;
398 u64 seq_putting = elem->seq;
399
400 if (!seq_putting)
401 return;
402
403 spin_lock(&fs_info->tree_mod_seq_lock);
404 list_del(&elem->list);
405 elem->seq = 0;
406
407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408 if (cur_elem->seq < min_seq) {
409 if (seq_putting > cur_elem->seq) {
410 /*
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
413 */
414 spin_unlock(&fs_info->tree_mod_seq_lock);
415 return;
416 }
417 min_seq = cur_elem->seq;
418 }
419 }
420 spin_unlock(&fs_info->tree_mod_seq_lock);
421
422 /*
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
425 */
426 tree_mod_log_write_lock(fs_info);
427 tm_root = &fs_info->tree_mod_log;
428 for (node = rb_first(tm_root); node; node = next) {
429 next = rb_next(node);
430 tm = container_of(node, struct tree_mod_elem, node);
431 if (tm->seq > min_seq)
432 continue;
433 rb_erase(node, tm_root);
434 kfree(tm);
435 }
436 tree_mod_log_write_unlock(fs_info);
437 }
438
439 /*
440 * key order of the log:
441 * index -> sequence
442 *
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
445 * operations.
446 *
447 * Note: must be called with write lock (tree_mod_log_write_lock).
448 */
449 static noinline int
450 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
451 {
452 struct rb_root *tm_root;
453 struct rb_node **new;
454 struct rb_node *parent = NULL;
455 struct tree_mod_elem *cur;
456
457 BUG_ON(!tm);
458
459 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
460
461 tm_root = &fs_info->tree_mod_log;
462 new = &tm_root->rb_node;
463 while (*new) {
464 cur = container_of(*new, struct tree_mod_elem, node);
465 parent = *new;
466 if (cur->index < tm->index)
467 new = &((*new)->rb_left);
468 else if (cur->index > tm->index)
469 new = &((*new)->rb_right);
470 else if (cur->seq < tm->seq)
471 new = &((*new)->rb_left);
472 else if (cur->seq > tm->seq)
473 new = &((*new)->rb_right);
474 else
475 return -EEXIST;
476 }
477
478 rb_link_node(&tm->node, parent, new);
479 rb_insert_color(&tm->node, tm_root);
480 return 0;
481 }
482
483 /*
484 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
485 * returns zero with the tree_mod_log_lock acquired. The caller must hold
486 * this until all tree mod log insertions are recorded in the rb tree and then
487 * call tree_mod_log_write_unlock() to release.
488 */
489 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
490 struct extent_buffer *eb) {
491 smp_mb();
492 if (list_empty(&(fs_info)->tree_mod_seq_list))
493 return 1;
494 if (eb && btrfs_header_level(eb) == 0)
495 return 1;
496
497 tree_mod_log_write_lock(fs_info);
498 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
499 tree_mod_log_write_unlock(fs_info);
500 return 1;
501 }
502
503 return 0;
504 }
505
506 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
507 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
508 struct extent_buffer *eb)
509 {
510 smp_mb();
511 if (list_empty(&(fs_info)->tree_mod_seq_list))
512 return 0;
513 if (eb && btrfs_header_level(eb) == 0)
514 return 0;
515
516 return 1;
517 }
518
519 static struct tree_mod_elem *
520 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
521 enum mod_log_op op, gfp_t flags)
522 {
523 struct tree_mod_elem *tm;
524
525 tm = kzalloc(sizeof(*tm), flags);
526 if (!tm)
527 return NULL;
528
529 tm->index = eb->start >> PAGE_CACHE_SHIFT;
530 if (op != MOD_LOG_KEY_ADD) {
531 btrfs_node_key(eb, &tm->key, slot);
532 tm->blockptr = btrfs_node_blockptr(eb, slot);
533 }
534 tm->op = op;
535 tm->slot = slot;
536 tm->generation = btrfs_node_ptr_generation(eb, slot);
537 RB_CLEAR_NODE(&tm->node);
538
539 return tm;
540 }
541
542 static noinline int
543 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
544 struct extent_buffer *eb, int slot,
545 enum mod_log_op op, gfp_t flags)
546 {
547 struct tree_mod_elem *tm;
548 int ret;
549
550 if (!tree_mod_need_log(fs_info, eb))
551 return 0;
552
553 tm = alloc_tree_mod_elem(eb, slot, op, flags);
554 if (!tm)
555 return -ENOMEM;
556
557 if (tree_mod_dont_log(fs_info, eb)) {
558 kfree(tm);
559 return 0;
560 }
561
562 ret = __tree_mod_log_insert(fs_info, tm);
563 tree_mod_log_write_unlock(fs_info);
564 if (ret)
565 kfree(tm);
566
567 return ret;
568 }
569
570 static noinline int
571 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
572 struct extent_buffer *eb, int dst_slot, int src_slot,
573 int nr_items, gfp_t flags)
574 {
575 struct tree_mod_elem *tm = NULL;
576 struct tree_mod_elem **tm_list = NULL;
577 int ret = 0;
578 int i;
579 int locked = 0;
580
581 if (!tree_mod_need_log(fs_info, eb))
582 return 0;
583
584 tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
585 if (!tm_list)
586 return -ENOMEM;
587
588 tm = kzalloc(sizeof(*tm), flags);
589 if (!tm) {
590 ret = -ENOMEM;
591 goto free_tms;
592 }
593
594 tm->index = eb->start >> PAGE_CACHE_SHIFT;
595 tm->slot = src_slot;
596 tm->move.dst_slot = dst_slot;
597 tm->move.nr_items = nr_items;
598 tm->op = MOD_LOG_MOVE_KEYS;
599
600 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
601 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
602 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
603 if (!tm_list[i]) {
604 ret = -ENOMEM;
605 goto free_tms;
606 }
607 }
608
609 if (tree_mod_dont_log(fs_info, eb))
610 goto free_tms;
611 locked = 1;
612
613 /*
614 * When we override something during the move, we log these removals.
615 * This can only happen when we move towards the beginning of the
616 * buffer, i.e. dst_slot < src_slot.
617 */
618 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
619 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
620 if (ret)
621 goto free_tms;
622 }
623
624 ret = __tree_mod_log_insert(fs_info, tm);
625 if (ret)
626 goto free_tms;
627 tree_mod_log_write_unlock(fs_info);
628 kfree(tm_list);
629
630 return 0;
631 free_tms:
632 for (i = 0; i < nr_items; i++) {
633 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
634 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
635 kfree(tm_list[i]);
636 }
637 if (locked)
638 tree_mod_log_write_unlock(fs_info);
639 kfree(tm_list);
640 kfree(tm);
641
642 return ret;
643 }
644
645 static inline int
646 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
647 struct tree_mod_elem **tm_list,
648 int nritems)
649 {
650 int i, j;
651 int ret;
652
653 for (i = nritems - 1; i >= 0; i--) {
654 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
655 if (ret) {
656 for (j = nritems - 1; j > i; j--)
657 rb_erase(&tm_list[j]->node,
658 &fs_info->tree_mod_log);
659 return ret;
660 }
661 }
662
663 return 0;
664 }
665
666 static noinline int
667 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
668 struct extent_buffer *old_root,
669 struct extent_buffer *new_root, gfp_t flags,
670 int log_removal)
671 {
672 struct tree_mod_elem *tm = NULL;
673 struct tree_mod_elem **tm_list = NULL;
674 int nritems = 0;
675 int ret = 0;
676 int i;
677
678 if (!tree_mod_need_log(fs_info, NULL))
679 return 0;
680
681 if (log_removal && btrfs_header_level(old_root) > 0) {
682 nritems = btrfs_header_nritems(old_root);
683 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
684 flags);
685 if (!tm_list) {
686 ret = -ENOMEM;
687 goto free_tms;
688 }
689 for (i = 0; i < nritems; i++) {
690 tm_list[i] = alloc_tree_mod_elem(old_root, i,
691 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
692 if (!tm_list[i]) {
693 ret = -ENOMEM;
694 goto free_tms;
695 }
696 }
697 }
698
699 tm = kzalloc(sizeof(*tm), flags);
700 if (!tm) {
701 ret = -ENOMEM;
702 goto free_tms;
703 }
704
705 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
706 tm->old_root.logical = old_root->start;
707 tm->old_root.level = btrfs_header_level(old_root);
708 tm->generation = btrfs_header_generation(old_root);
709 tm->op = MOD_LOG_ROOT_REPLACE;
710
711 if (tree_mod_dont_log(fs_info, NULL))
712 goto free_tms;
713
714 if (tm_list)
715 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
716 if (!ret)
717 ret = __tree_mod_log_insert(fs_info, tm);
718
719 tree_mod_log_write_unlock(fs_info);
720 if (ret)
721 goto free_tms;
722 kfree(tm_list);
723
724 return ret;
725
726 free_tms:
727 if (tm_list) {
728 for (i = 0; i < nritems; i++)
729 kfree(tm_list[i]);
730 kfree(tm_list);
731 }
732 kfree(tm);
733
734 return ret;
735 }
736
737 static struct tree_mod_elem *
738 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
739 int smallest)
740 {
741 struct rb_root *tm_root;
742 struct rb_node *node;
743 struct tree_mod_elem *cur = NULL;
744 struct tree_mod_elem *found = NULL;
745 u64 index = start >> PAGE_CACHE_SHIFT;
746
747 tree_mod_log_read_lock(fs_info);
748 tm_root = &fs_info->tree_mod_log;
749 node = tm_root->rb_node;
750 while (node) {
751 cur = container_of(node, struct tree_mod_elem, node);
752 if (cur->index < index) {
753 node = node->rb_left;
754 } else if (cur->index > index) {
755 node = node->rb_right;
756 } else if (cur->seq < min_seq) {
757 node = node->rb_left;
758 } else if (!smallest) {
759 /* we want the node with the highest seq */
760 if (found)
761 BUG_ON(found->seq > cur->seq);
762 found = cur;
763 node = node->rb_left;
764 } else if (cur->seq > min_seq) {
765 /* we want the node with the smallest seq */
766 if (found)
767 BUG_ON(found->seq < cur->seq);
768 found = cur;
769 node = node->rb_right;
770 } else {
771 found = cur;
772 break;
773 }
774 }
775 tree_mod_log_read_unlock(fs_info);
776
777 return found;
778 }
779
780 /*
781 * this returns the element from the log with the smallest time sequence
782 * value that's in the log (the oldest log item). any element with a time
783 * sequence lower than min_seq will be ignored.
784 */
785 static struct tree_mod_elem *
786 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
787 u64 min_seq)
788 {
789 return __tree_mod_log_search(fs_info, start, min_seq, 1);
790 }
791
792 /*
793 * this returns the element from the log with the largest time sequence
794 * value that's in the log (the most recent log item). any element with
795 * a time sequence lower than min_seq will be ignored.
796 */
797 static struct tree_mod_elem *
798 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
799 {
800 return __tree_mod_log_search(fs_info, start, min_seq, 0);
801 }
802
803 static noinline int
804 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
805 struct extent_buffer *src, unsigned long dst_offset,
806 unsigned long src_offset, int nr_items)
807 {
808 int ret = 0;
809 struct tree_mod_elem **tm_list = NULL;
810 struct tree_mod_elem **tm_list_add, **tm_list_rem;
811 int i;
812 int locked = 0;
813
814 if (!tree_mod_need_log(fs_info, NULL))
815 return 0;
816
817 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
818 return 0;
819
820 tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
821 GFP_NOFS);
822 if (!tm_list)
823 return -ENOMEM;
824
825 tm_list_add = tm_list;
826 tm_list_rem = tm_list + nr_items;
827 for (i = 0; i < nr_items; i++) {
828 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
829 MOD_LOG_KEY_REMOVE, GFP_NOFS);
830 if (!tm_list_rem[i]) {
831 ret = -ENOMEM;
832 goto free_tms;
833 }
834
835 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
836 MOD_LOG_KEY_ADD, GFP_NOFS);
837 if (!tm_list_add[i]) {
838 ret = -ENOMEM;
839 goto free_tms;
840 }
841 }
842
843 if (tree_mod_dont_log(fs_info, NULL))
844 goto free_tms;
845 locked = 1;
846
847 for (i = 0; i < nr_items; i++) {
848 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
849 if (ret)
850 goto free_tms;
851 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
852 if (ret)
853 goto free_tms;
854 }
855
856 tree_mod_log_write_unlock(fs_info);
857 kfree(tm_list);
858
859 return 0;
860
861 free_tms:
862 for (i = 0; i < nr_items * 2; i++) {
863 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
864 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
865 kfree(tm_list[i]);
866 }
867 if (locked)
868 tree_mod_log_write_unlock(fs_info);
869 kfree(tm_list);
870
871 return ret;
872 }
873
874 static inline void
875 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
876 int dst_offset, int src_offset, int nr_items)
877 {
878 int ret;
879 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
880 nr_items, GFP_NOFS);
881 BUG_ON(ret < 0);
882 }
883
884 static noinline void
885 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
886 struct extent_buffer *eb, int slot, int atomic)
887 {
888 int ret;
889
890 ret = tree_mod_log_insert_key(fs_info, eb, slot,
891 MOD_LOG_KEY_REPLACE,
892 atomic ? GFP_ATOMIC : GFP_NOFS);
893 BUG_ON(ret < 0);
894 }
895
896 static noinline int
897 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
898 {
899 struct tree_mod_elem **tm_list = NULL;
900 int nritems = 0;
901 int i;
902 int ret = 0;
903
904 if (btrfs_header_level(eb) == 0)
905 return 0;
906
907 if (!tree_mod_need_log(fs_info, NULL))
908 return 0;
909
910 nritems = btrfs_header_nritems(eb);
911 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
912 GFP_NOFS);
913 if (!tm_list)
914 return -ENOMEM;
915
916 for (i = 0; i < nritems; i++) {
917 tm_list[i] = alloc_tree_mod_elem(eb, i,
918 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
919 if (!tm_list[i]) {
920 ret = -ENOMEM;
921 goto free_tms;
922 }
923 }
924
925 if (tree_mod_dont_log(fs_info, eb))
926 goto free_tms;
927
928 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
929 tree_mod_log_write_unlock(fs_info);
930 if (ret)
931 goto free_tms;
932 kfree(tm_list);
933
934 return 0;
935
936 free_tms:
937 for (i = 0; i < nritems; i++)
938 kfree(tm_list[i]);
939 kfree(tm_list);
940
941 return ret;
942 }
943
944 static noinline void
945 tree_mod_log_set_root_pointer(struct btrfs_root *root,
946 struct extent_buffer *new_root_node,
947 int log_removal)
948 {
949 int ret;
950 ret = tree_mod_log_insert_root(root->fs_info, root->node,
951 new_root_node, GFP_NOFS, log_removal);
952 BUG_ON(ret < 0);
953 }
954
955 /*
956 * check if the tree block can be shared by multiple trees
957 */
958 int btrfs_block_can_be_shared(struct btrfs_root *root,
959 struct extent_buffer *buf)
960 {
961 /*
962 * Tree blocks not in refernece counted trees and tree roots
963 * are never shared. If a block was allocated after the last
964 * snapshot and the block was not allocated by tree relocation,
965 * we know the block is not shared.
966 */
967 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
968 buf != root->node && buf != root->commit_root &&
969 (btrfs_header_generation(buf) <=
970 btrfs_root_last_snapshot(&root->root_item) ||
971 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
972 return 1;
973 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
974 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
975 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
976 return 1;
977 #endif
978 return 0;
979 }
980
981 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
982 struct btrfs_root *root,
983 struct extent_buffer *buf,
984 struct extent_buffer *cow,
985 int *last_ref)
986 {
987 u64 refs;
988 u64 owner;
989 u64 flags;
990 u64 new_flags = 0;
991 int ret;
992
993 /*
994 * Backrefs update rules:
995 *
996 * Always use full backrefs for extent pointers in tree block
997 * allocated by tree relocation.
998 *
999 * If a shared tree block is no longer referenced by its owner
1000 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1001 * use full backrefs for extent pointers in tree block.
1002 *
1003 * If a tree block is been relocating
1004 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1005 * use full backrefs for extent pointers in tree block.
1006 * The reason for this is some operations (such as drop tree)
1007 * are only allowed for blocks use full backrefs.
1008 */
1009
1010 if (btrfs_block_can_be_shared(root, buf)) {
1011 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1012 btrfs_header_level(buf), 1,
1013 &refs, &flags);
1014 if (ret)
1015 return ret;
1016 if (refs == 0) {
1017 ret = -EROFS;
1018 btrfs_std_error(root->fs_info, ret);
1019 return ret;
1020 }
1021 } else {
1022 refs = 1;
1023 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1024 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1025 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1026 else
1027 flags = 0;
1028 }
1029
1030 owner = btrfs_header_owner(buf);
1031 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1032 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1033
1034 if (refs > 1) {
1035 if ((owner == root->root_key.objectid ||
1036 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1037 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1038 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
1039 BUG_ON(ret); /* -ENOMEM */
1040
1041 if (root->root_key.objectid ==
1042 BTRFS_TREE_RELOC_OBJECTID) {
1043 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
1044 BUG_ON(ret); /* -ENOMEM */
1045 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1046 BUG_ON(ret); /* -ENOMEM */
1047 }
1048 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1049 } else {
1050
1051 if (root->root_key.objectid ==
1052 BTRFS_TREE_RELOC_OBJECTID)
1053 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1054 else
1055 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1056 BUG_ON(ret); /* -ENOMEM */
1057 }
1058 if (new_flags != 0) {
1059 int level = btrfs_header_level(buf);
1060
1061 ret = btrfs_set_disk_extent_flags(trans, root,
1062 buf->start,
1063 buf->len,
1064 new_flags, level, 0);
1065 if (ret)
1066 return ret;
1067 }
1068 } else {
1069 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1070 if (root->root_key.objectid ==
1071 BTRFS_TREE_RELOC_OBJECTID)
1072 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1073 else
1074 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1075 BUG_ON(ret); /* -ENOMEM */
1076 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
1077 BUG_ON(ret); /* -ENOMEM */
1078 }
1079 clean_tree_block(trans, root, buf);
1080 *last_ref = 1;
1081 }
1082 return 0;
1083 }
1084
1085 /*
1086 * does the dirty work in cow of a single block. The parent block (if
1087 * supplied) is updated to point to the new cow copy. The new buffer is marked
1088 * dirty and returned locked. If you modify the block it needs to be marked
1089 * dirty again.
1090 *
1091 * search_start -- an allocation hint for the new block
1092 *
1093 * empty_size -- a hint that you plan on doing more cow. This is the size in
1094 * bytes the allocator should try to find free next to the block it returns.
1095 * This is just a hint and may be ignored by the allocator.
1096 */
1097 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root,
1099 struct extent_buffer *buf,
1100 struct extent_buffer *parent, int parent_slot,
1101 struct extent_buffer **cow_ret,
1102 u64 search_start, u64 empty_size)
1103 {
1104 struct btrfs_disk_key disk_key;
1105 struct extent_buffer *cow;
1106 int level, ret;
1107 int last_ref = 0;
1108 int unlock_orig = 0;
1109 u64 parent_start;
1110
1111 if (*cow_ret == buf)
1112 unlock_orig = 1;
1113
1114 btrfs_assert_tree_locked(buf);
1115
1116 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1117 trans->transid != root->fs_info->running_transaction->transid);
1118 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1119 trans->transid != root->last_trans);
1120
1121 level = btrfs_header_level(buf);
1122
1123 if (level == 0)
1124 btrfs_item_key(buf, &disk_key, 0);
1125 else
1126 btrfs_node_key(buf, &disk_key, 0);
1127
1128 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1129 if (parent)
1130 parent_start = parent->start;
1131 else
1132 parent_start = 0;
1133 } else
1134 parent_start = 0;
1135
1136 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1137 root->root_key.objectid, &disk_key,
1138 level, search_start, empty_size);
1139 if (IS_ERR(cow))
1140 return PTR_ERR(cow);
1141
1142 /* cow is set to blocking by btrfs_init_new_buffer */
1143
1144 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1145 btrfs_set_header_bytenr(cow, cow->start);
1146 btrfs_set_header_generation(cow, trans->transid);
1147 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1148 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1149 BTRFS_HEADER_FLAG_RELOC);
1150 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1151 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1152 else
1153 btrfs_set_header_owner(cow, root->root_key.objectid);
1154
1155 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1156 BTRFS_FSID_SIZE);
1157
1158 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1159 if (ret) {
1160 btrfs_abort_transaction(trans, root, ret);
1161 return ret;
1162 }
1163
1164 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1165 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1166 if (ret)
1167 return ret;
1168 }
1169
1170 if (buf == root->node) {
1171 WARN_ON(parent && parent != buf);
1172 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1173 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1174 parent_start = buf->start;
1175 else
1176 parent_start = 0;
1177
1178 extent_buffer_get(cow);
1179 tree_mod_log_set_root_pointer(root, cow, 1);
1180 rcu_assign_pointer(root->node, cow);
1181
1182 btrfs_free_tree_block(trans, root, buf, parent_start,
1183 last_ref);
1184 free_extent_buffer(buf);
1185 add_root_to_dirty_list(root);
1186 } else {
1187 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1188 parent_start = parent->start;
1189 else
1190 parent_start = 0;
1191
1192 WARN_ON(trans->transid != btrfs_header_generation(parent));
1193 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1194 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1195 btrfs_set_node_blockptr(parent, parent_slot,
1196 cow->start);
1197 btrfs_set_node_ptr_generation(parent, parent_slot,
1198 trans->transid);
1199 btrfs_mark_buffer_dirty(parent);
1200 if (last_ref) {
1201 ret = tree_mod_log_free_eb(root->fs_info, buf);
1202 if (ret) {
1203 btrfs_abort_transaction(trans, root, ret);
1204 return ret;
1205 }
1206 }
1207 btrfs_free_tree_block(trans, root, buf, parent_start,
1208 last_ref);
1209 }
1210 if (unlock_orig)
1211 btrfs_tree_unlock(buf);
1212 free_extent_buffer_stale(buf);
1213 btrfs_mark_buffer_dirty(cow);
1214 *cow_ret = cow;
1215 return 0;
1216 }
1217
1218 /*
1219 * returns the logical address of the oldest predecessor of the given root.
1220 * entries older than time_seq are ignored.
1221 */
1222 static struct tree_mod_elem *
1223 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1224 struct extent_buffer *eb_root, u64 time_seq)
1225 {
1226 struct tree_mod_elem *tm;
1227 struct tree_mod_elem *found = NULL;
1228 u64 root_logical = eb_root->start;
1229 int looped = 0;
1230
1231 if (!time_seq)
1232 return NULL;
1233
1234 /*
1235 * the very last operation that's logged for a root is the replacement
1236 * operation (if it is replaced at all). this has the index of the *new*
1237 * root, making it the very first operation that's logged for this root.
1238 */
1239 while (1) {
1240 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1241 time_seq);
1242 if (!looped && !tm)
1243 return NULL;
1244 /*
1245 * if there are no tree operation for the oldest root, we simply
1246 * return it. this should only happen if that (old) root is at
1247 * level 0.
1248 */
1249 if (!tm)
1250 break;
1251
1252 /*
1253 * if there's an operation that's not a root replacement, we
1254 * found the oldest version of our root. normally, we'll find a
1255 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1256 */
1257 if (tm->op != MOD_LOG_ROOT_REPLACE)
1258 break;
1259
1260 found = tm;
1261 root_logical = tm->old_root.logical;
1262 looped = 1;
1263 }
1264
1265 /* if there's no old root to return, return what we found instead */
1266 if (!found)
1267 found = tm;
1268
1269 return found;
1270 }
1271
1272 /*
1273 * tm is a pointer to the first operation to rewind within eb. then, all
1274 * previous operations will be rewinded (until we reach something older than
1275 * time_seq).
1276 */
1277 static void
1278 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1279 u64 time_seq, struct tree_mod_elem *first_tm)
1280 {
1281 u32 n;
1282 struct rb_node *next;
1283 struct tree_mod_elem *tm = first_tm;
1284 unsigned long o_dst;
1285 unsigned long o_src;
1286 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1287
1288 n = btrfs_header_nritems(eb);
1289 tree_mod_log_read_lock(fs_info);
1290 while (tm && tm->seq >= time_seq) {
1291 /*
1292 * all the operations are recorded with the operator used for
1293 * the modification. as we're going backwards, we do the
1294 * opposite of each operation here.
1295 */
1296 switch (tm->op) {
1297 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1298 BUG_ON(tm->slot < n);
1299 /* Fallthrough */
1300 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1301 case MOD_LOG_KEY_REMOVE:
1302 btrfs_set_node_key(eb, &tm->key, tm->slot);
1303 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1304 btrfs_set_node_ptr_generation(eb, tm->slot,
1305 tm->generation);
1306 n++;
1307 break;
1308 case MOD_LOG_KEY_REPLACE:
1309 BUG_ON(tm->slot >= n);
1310 btrfs_set_node_key(eb, &tm->key, tm->slot);
1311 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1312 btrfs_set_node_ptr_generation(eb, tm->slot,
1313 tm->generation);
1314 break;
1315 case MOD_LOG_KEY_ADD:
1316 /* if a move operation is needed it's in the log */
1317 n--;
1318 break;
1319 case MOD_LOG_MOVE_KEYS:
1320 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1321 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1322 memmove_extent_buffer(eb, o_dst, o_src,
1323 tm->move.nr_items * p_size);
1324 break;
1325 case MOD_LOG_ROOT_REPLACE:
1326 /*
1327 * this operation is special. for roots, this must be
1328 * handled explicitly before rewinding.
1329 * for non-roots, this operation may exist if the node
1330 * was a root: root A -> child B; then A gets empty and
1331 * B is promoted to the new root. in the mod log, we'll
1332 * have a root-replace operation for B, a tree block
1333 * that is no root. we simply ignore that operation.
1334 */
1335 break;
1336 }
1337 next = rb_next(&tm->node);
1338 if (!next)
1339 break;
1340 tm = container_of(next, struct tree_mod_elem, node);
1341 if (tm->index != first_tm->index)
1342 break;
1343 }
1344 tree_mod_log_read_unlock(fs_info);
1345 btrfs_set_header_nritems(eb, n);
1346 }
1347
1348 /*
1349 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1350 * is returned. If rewind operations happen, a fresh buffer is returned. The
1351 * returned buffer is always read-locked. If the returned buffer is not the
1352 * input buffer, the lock on the input buffer is released and the input buffer
1353 * is freed (its refcount is decremented).
1354 */
1355 static struct extent_buffer *
1356 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1357 struct extent_buffer *eb, u64 time_seq)
1358 {
1359 struct extent_buffer *eb_rewin;
1360 struct tree_mod_elem *tm;
1361
1362 if (!time_seq)
1363 return eb;
1364
1365 if (btrfs_header_level(eb) == 0)
1366 return eb;
1367
1368 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1369 if (!tm)
1370 return eb;
1371
1372 btrfs_set_path_blocking(path);
1373 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1374
1375 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1376 BUG_ON(tm->slot != 0);
1377 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1378 fs_info->tree_root->nodesize);
1379 if (!eb_rewin) {
1380 btrfs_tree_read_unlock_blocking(eb);
1381 free_extent_buffer(eb);
1382 return NULL;
1383 }
1384 btrfs_set_header_bytenr(eb_rewin, eb->start);
1385 btrfs_set_header_backref_rev(eb_rewin,
1386 btrfs_header_backref_rev(eb));
1387 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1388 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1389 } else {
1390 eb_rewin = btrfs_clone_extent_buffer(eb);
1391 if (!eb_rewin) {
1392 btrfs_tree_read_unlock_blocking(eb);
1393 free_extent_buffer(eb);
1394 return NULL;
1395 }
1396 }
1397
1398 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1399 btrfs_tree_read_unlock_blocking(eb);
1400 free_extent_buffer(eb);
1401
1402 extent_buffer_get(eb_rewin);
1403 btrfs_tree_read_lock(eb_rewin);
1404 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1405 WARN_ON(btrfs_header_nritems(eb_rewin) >
1406 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1407
1408 return eb_rewin;
1409 }
1410
1411 /*
1412 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1413 * value. If there are no changes, the current root->root_node is returned. If
1414 * anything changed in between, there's a fresh buffer allocated on which the
1415 * rewind operations are done. In any case, the returned buffer is read locked.
1416 * Returns NULL on error (with no locks held).
1417 */
1418 static inline struct extent_buffer *
1419 get_old_root(struct btrfs_root *root, u64 time_seq)
1420 {
1421 struct tree_mod_elem *tm;
1422 struct extent_buffer *eb = NULL;
1423 struct extent_buffer *eb_root;
1424 struct extent_buffer *old;
1425 struct tree_mod_root *old_root = NULL;
1426 u64 old_generation = 0;
1427 u64 logical;
1428 u32 blocksize;
1429
1430 eb_root = btrfs_read_lock_root_node(root);
1431 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1432 if (!tm)
1433 return eb_root;
1434
1435 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1436 old_root = &tm->old_root;
1437 old_generation = tm->generation;
1438 logical = old_root->logical;
1439 } else {
1440 logical = eb_root->start;
1441 }
1442
1443 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1444 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1445 btrfs_tree_read_unlock(eb_root);
1446 free_extent_buffer(eb_root);
1447 blocksize = btrfs_level_size(root, old_root->level);
1448 old = read_tree_block(root, logical, blocksize, 0);
1449 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1450 free_extent_buffer(old);
1451 btrfs_warn(root->fs_info,
1452 "failed to read tree block %llu from get_old_root", logical);
1453 } else {
1454 eb = btrfs_clone_extent_buffer(old);
1455 free_extent_buffer(old);
1456 }
1457 } else if (old_root) {
1458 btrfs_tree_read_unlock(eb_root);
1459 free_extent_buffer(eb_root);
1460 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1461 } else {
1462 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1463 eb = btrfs_clone_extent_buffer(eb_root);
1464 btrfs_tree_read_unlock_blocking(eb_root);
1465 free_extent_buffer(eb_root);
1466 }
1467
1468 if (!eb)
1469 return NULL;
1470 extent_buffer_get(eb);
1471 btrfs_tree_read_lock(eb);
1472 if (old_root) {
1473 btrfs_set_header_bytenr(eb, eb->start);
1474 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1475 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1476 btrfs_set_header_level(eb, old_root->level);
1477 btrfs_set_header_generation(eb, old_generation);
1478 }
1479 if (tm)
1480 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1481 else
1482 WARN_ON(btrfs_header_level(eb) != 0);
1483 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1484
1485 return eb;
1486 }
1487
1488 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1489 {
1490 struct tree_mod_elem *tm;
1491 int level;
1492 struct extent_buffer *eb_root = btrfs_root_node(root);
1493
1494 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1495 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1496 level = tm->old_root.level;
1497 } else {
1498 level = btrfs_header_level(eb_root);
1499 }
1500 free_extent_buffer(eb_root);
1501
1502 return level;
1503 }
1504
1505 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1506 struct btrfs_root *root,
1507 struct extent_buffer *buf)
1508 {
1509 /* ensure we can see the force_cow */
1510 smp_rmb();
1511
1512 /*
1513 * We do not need to cow a block if
1514 * 1) this block is not created or changed in this transaction;
1515 * 2) this block does not belong to TREE_RELOC tree;
1516 * 3) the root is not forced COW.
1517 *
1518 * What is forced COW:
1519 * when we create snapshot during commiting the transaction,
1520 * after we've finished coping src root, we must COW the shared
1521 * block to ensure the metadata consistency.
1522 */
1523 if (btrfs_header_generation(buf) == trans->transid &&
1524 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1525 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1526 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1527 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1528 return 0;
1529 return 1;
1530 }
1531
1532 /*
1533 * cows a single block, see __btrfs_cow_block for the real work.
1534 * This version of it has extra checks so that a block isn't cow'd more than
1535 * once per transaction, as long as it hasn't been written yet
1536 */
1537 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1538 struct btrfs_root *root, struct extent_buffer *buf,
1539 struct extent_buffer *parent, int parent_slot,
1540 struct extent_buffer **cow_ret)
1541 {
1542 u64 search_start;
1543 int ret;
1544
1545 if (trans->transaction != root->fs_info->running_transaction)
1546 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1547 trans->transid,
1548 root->fs_info->running_transaction->transid);
1549
1550 if (trans->transid != root->fs_info->generation)
1551 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1552 trans->transid, root->fs_info->generation);
1553
1554 if (!should_cow_block(trans, root, buf)) {
1555 *cow_ret = buf;
1556 return 0;
1557 }
1558
1559 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1560
1561 if (parent)
1562 btrfs_set_lock_blocking(parent);
1563 btrfs_set_lock_blocking(buf);
1564
1565 ret = __btrfs_cow_block(trans, root, buf, parent,
1566 parent_slot, cow_ret, search_start, 0);
1567
1568 trace_btrfs_cow_block(root, buf, *cow_ret);
1569
1570 return ret;
1571 }
1572
1573 /*
1574 * helper function for defrag to decide if two blocks pointed to by a
1575 * node are actually close by
1576 */
1577 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1578 {
1579 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1580 return 1;
1581 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1582 return 1;
1583 return 0;
1584 }
1585
1586 /*
1587 * compare two keys in a memcmp fashion
1588 */
1589 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1590 {
1591 struct btrfs_key k1;
1592
1593 btrfs_disk_key_to_cpu(&k1, disk);
1594
1595 return btrfs_comp_cpu_keys(&k1, k2);
1596 }
1597
1598 /*
1599 * same as comp_keys only with two btrfs_key's
1600 */
1601 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1602 {
1603 if (k1->objectid > k2->objectid)
1604 return 1;
1605 if (k1->objectid < k2->objectid)
1606 return -1;
1607 if (k1->type > k2->type)
1608 return 1;
1609 if (k1->type < k2->type)
1610 return -1;
1611 if (k1->offset > k2->offset)
1612 return 1;
1613 if (k1->offset < k2->offset)
1614 return -1;
1615 return 0;
1616 }
1617
1618 /*
1619 * this is used by the defrag code to go through all the
1620 * leaves pointed to by a node and reallocate them so that
1621 * disk order is close to key order
1622 */
1623 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1624 struct btrfs_root *root, struct extent_buffer *parent,
1625 int start_slot, u64 *last_ret,
1626 struct btrfs_key *progress)
1627 {
1628 struct extent_buffer *cur;
1629 u64 blocknr;
1630 u64 gen;
1631 u64 search_start = *last_ret;
1632 u64 last_block = 0;
1633 u64 other;
1634 u32 parent_nritems;
1635 int end_slot;
1636 int i;
1637 int err = 0;
1638 int parent_level;
1639 int uptodate;
1640 u32 blocksize;
1641 int progress_passed = 0;
1642 struct btrfs_disk_key disk_key;
1643
1644 parent_level = btrfs_header_level(parent);
1645
1646 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1647 WARN_ON(trans->transid != root->fs_info->generation);
1648
1649 parent_nritems = btrfs_header_nritems(parent);
1650 blocksize = btrfs_level_size(root, parent_level - 1);
1651 end_slot = parent_nritems;
1652
1653 if (parent_nritems == 1)
1654 return 0;
1655
1656 btrfs_set_lock_blocking(parent);
1657
1658 for (i = start_slot; i < end_slot; i++) {
1659 int close = 1;
1660
1661 btrfs_node_key(parent, &disk_key, i);
1662 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1663 continue;
1664
1665 progress_passed = 1;
1666 blocknr = btrfs_node_blockptr(parent, i);
1667 gen = btrfs_node_ptr_generation(parent, i);
1668 if (last_block == 0)
1669 last_block = blocknr;
1670
1671 if (i > 0) {
1672 other = btrfs_node_blockptr(parent, i - 1);
1673 close = close_blocks(blocknr, other, blocksize);
1674 }
1675 if (!close && i < end_slot - 2) {
1676 other = btrfs_node_blockptr(parent, i + 1);
1677 close = close_blocks(blocknr, other, blocksize);
1678 }
1679 if (close) {
1680 last_block = blocknr;
1681 continue;
1682 }
1683
1684 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1685 if (cur)
1686 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1687 else
1688 uptodate = 0;
1689 if (!cur || !uptodate) {
1690 if (!cur) {
1691 cur = read_tree_block(root, blocknr,
1692 blocksize, gen);
1693 if (!cur || !extent_buffer_uptodate(cur)) {
1694 free_extent_buffer(cur);
1695 return -EIO;
1696 }
1697 } else if (!uptodate) {
1698 err = btrfs_read_buffer(cur, gen);
1699 if (err) {
1700 free_extent_buffer(cur);
1701 return err;
1702 }
1703 }
1704 }
1705 if (search_start == 0)
1706 search_start = last_block;
1707
1708 btrfs_tree_lock(cur);
1709 btrfs_set_lock_blocking(cur);
1710 err = __btrfs_cow_block(trans, root, cur, parent, i,
1711 &cur, search_start,
1712 min(16 * blocksize,
1713 (end_slot - i) * blocksize));
1714 if (err) {
1715 btrfs_tree_unlock(cur);
1716 free_extent_buffer(cur);
1717 break;
1718 }
1719 search_start = cur->start;
1720 last_block = cur->start;
1721 *last_ret = search_start;
1722 btrfs_tree_unlock(cur);
1723 free_extent_buffer(cur);
1724 }
1725 return err;
1726 }
1727
1728 /*
1729 * The leaf data grows from end-to-front in the node.
1730 * this returns the address of the start of the last item,
1731 * which is the stop of the leaf data stack
1732 */
1733 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1734 struct extent_buffer *leaf)
1735 {
1736 u32 nr = btrfs_header_nritems(leaf);
1737 if (nr == 0)
1738 return BTRFS_LEAF_DATA_SIZE(root);
1739 return btrfs_item_offset_nr(leaf, nr - 1);
1740 }
1741
1742
1743 /*
1744 * search for key in the extent_buffer. The items start at offset p,
1745 * and they are item_size apart. There are 'max' items in p.
1746 *
1747 * the slot in the array is returned via slot, and it points to
1748 * the place where you would insert key if it is not found in
1749 * the array.
1750 *
1751 * slot may point to max if the key is bigger than all of the keys
1752 */
1753 static noinline int generic_bin_search(struct extent_buffer *eb,
1754 unsigned long p,
1755 int item_size, struct btrfs_key *key,
1756 int max, int *slot)
1757 {
1758 int low = 0;
1759 int high = max;
1760 int mid;
1761 int ret;
1762 struct btrfs_disk_key *tmp = NULL;
1763 struct btrfs_disk_key unaligned;
1764 unsigned long offset;
1765 char *kaddr = NULL;
1766 unsigned long map_start = 0;
1767 unsigned long map_len = 0;
1768 int err;
1769
1770 while (low < high) {
1771 mid = (low + high) / 2;
1772 offset = p + mid * item_size;
1773
1774 if (!kaddr || offset < map_start ||
1775 (offset + sizeof(struct btrfs_disk_key)) >
1776 map_start + map_len) {
1777
1778 err = map_private_extent_buffer(eb, offset,
1779 sizeof(struct btrfs_disk_key),
1780 &kaddr, &map_start, &map_len);
1781
1782 if (!err) {
1783 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1784 map_start);
1785 } else {
1786 read_extent_buffer(eb, &unaligned,
1787 offset, sizeof(unaligned));
1788 tmp = &unaligned;
1789 }
1790
1791 } else {
1792 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1793 map_start);
1794 }
1795 ret = comp_keys(tmp, key);
1796
1797 if (ret < 0)
1798 low = mid + 1;
1799 else if (ret > 0)
1800 high = mid;
1801 else {
1802 *slot = mid;
1803 return 0;
1804 }
1805 }
1806 *slot = low;
1807 return 1;
1808 }
1809
1810 /*
1811 * simple bin_search frontend that does the right thing for
1812 * leaves vs nodes
1813 */
1814 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1815 int level, int *slot)
1816 {
1817 if (level == 0)
1818 return generic_bin_search(eb,
1819 offsetof(struct btrfs_leaf, items),
1820 sizeof(struct btrfs_item),
1821 key, btrfs_header_nritems(eb),
1822 slot);
1823 else
1824 return generic_bin_search(eb,
1825 offsetof(struct btrfs_node, ptrs),
1826 sizeof(struct btrfs_key_ptr),
1827 key, btrfs_header_nritems(eb),
1828 slot);
1829 }
1830
1831 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1832 int level, int *slot)
1833 {
1834 return bin_search(eb, key, level, slot);
1835 }
1836
1837 static void root_add_used(struct btrfs_root *root, u32 size)
1838 {
1839 spin_lock(&root->accounting_lock);
1840 btrfs_set_root_used(&root->root_item,
1841 btrfs_root_used(&root->root_item) + size);
1842 spin_unlock(&root->accounting_lock);
1843 }
1844
1845 static void root_sub_used(struct btrfs_root *root, u32 size)
1846 {
1847 spin_lock(&root->accounting_lock);
1848 btrfs_set_root_used(&root->root_item,
1849 btrfs_root_used(&root->root_item) - size);
1850 spin_unlock(&root->accounting_lock);
1851 }
1852
1853 /* given a node and slot number, this reads the blocks it points to. The
1854 * extent buffer is returned with a reference taken (but unlocked).
1855 * NULL is returned on error.
1856 */
1857 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1858 struct extent_buffer *parent, int slot)
1859 {
1860 int level = btrfs_header_level(parent);
1861 struct extent_buffer *eb;
1862
1863 if (slot < 0)
1864 return NULL;
1865 if (slot >= btrfs_header_nritems(parent))
1866 return NULL;
1867
1868 BUG_ON(level == 0);
1869
1870 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1871 btrfs_level_size(root, level - 1),
1872 btrfs_node_ptr_generation(parent, slot));
1873 if (eb && !extent_buffer_uptodate(eb)) {
1874 free_extent_buffer(eb);
1875 eb = NULL;
1876 }
1877
1878 return eb;
1879 }
1880
1881 /*
1882 * node level balancing, used to make sure nodes are in proper order for
1883 * item deletion. We balance from the top down, so we have to make sure
1884 * that a deletion won't leave an node completely empty later on.
1885 */
1886 static noinline int balance_level(struct btrfs_trans_handle *trans,
1887 struct btrfs_root *root,
1888 struct btrfs_path *path, int level)
1889 {
1890 struct extent_buffer *right = NULL;
1891 struct extent_buffer *mid;
1892 struct extent_buffer *left = NULL;
1893 struct extent_buffer *parent = NULL;
1894 int ret = 0;
1895 int wret;
1896 int pslot;
1897 int orig_slot = path->slots[level];
1898 u64 orig_ptr;
1899
1900 if (level == 0)
1901 return 0;
1902
1903 mid = path->nodes[level];
1904
1905 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1906 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1907 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1908
1909 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1910
1911 if (level < BTRFS_MAX_LEVEL - 1) {
1912 parent = path->nodes[level + 1];
1913 pslot = path->slots[level + 1];
1914 }
1915
1916 /*
1917 * deal with the case where there is only one pointer in the root
1918 * by promoting the node below to a root
1919 */
1920 if (!parent) {
1921 struct extent_buffer *child;
1922
1923 if (btrfs_header_nritems(mid) != 1)
1924 return 0;
1925
1926 /* promote the child to a root */
1927 child = read_node_slot(root, mid, 0);
1928 if (!child) {
1929 ret = -EROFS;
1930 btrfs_std_error(root->fs_info, ret);
1931 goto enospc;
1932 }
1933
1934 btrfs_tree_lock(child);
1935 btrfs_set_lock_blocking(child);
1936 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1937 if (ret) {
1938 btrfs_tree_unlock(child);
1939 free_extent_buffer(child);
1940 goto enospc;
1941 }
1942
1943 tree_mod_log_set_root_pointer(root, child, 1);
1944 rcu_assign_pointer(root->node, child);
1945
1946 add_root_to_dirty_list(root);
1947 btrfs_tree_unlock(child);
1948
1949 path->locks[level] = 0;
1950 path->nodes[level] = NULL;
1951 clean_tree_block(trans, root, mid);
1952 btrfs_tree_unlock(mid);
1953 /* once for the path */
1954 free_extent_buffer(mid);
1955
1956 root_sub_used(root, mid->len);
1957 btrfs_free_tree_block(trans, root, mid, 0, 1);
1958 /* once for the root ptr */
1959 free_extent_buffer_stale(mid);
1960 return 0;
1961 }
1962 if (btrfs_header_nritems(mid) >
1963 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1964 return 0;
1965
1966 left = read_node_slot(root, parent, pslot - 1);
1967 if (left) {
1968 btrfs_tree_lock(left);
1969 btrfs_set_lock_blocking(left);
1970 wret = btrfs_cow_block(trans, root, left,
1971 parent, pslot - 1, &left);
1972 if (wret) {
1973 ret = wret;
1974 goto enospc;
1975 }
1976 }
1977 right = read_node_slot(root, parent, pslot + 1);
1978 if (right) {
1979 btrfs_tree_lock(right);
1980 btrfs_set_lock_blocking(right);
1981 wret = btrfs_cow_block(trans, root, right,
1982 parent, pslot + 1, &right);
1983 if (wret) {
1984 ret = wret;
1985 goto enospc;
1986 }
1987 }
1988
1989 /* first, try to make some room in the middle buffer */
1990 if (left) {
1991 orig_slot += btrfs_header_nritems(left);
1992 wret = push_node_left(trans, root, left, mid, 1);
1993 if (wret < 0)
1994 ret = wret;
1995 }
1996
1997 /*
1998 * then try to empty the right most buffer into the middle
1999 */
2000 if (right) {
2001 wret = push_node_left(trans, root, mid, right, 1);
2002 if (wret < 0 && wret != -ENOSPC)
2003 ret = wret;
2004 if (btrfs_header_nritems(right) == 0) {
2005 clean_tree_block(trans, root, right);
2006 btrfs_tree_unlock(right);
2007 del_ptr(root, path, level + 1, pslot + 1);
2008 root_sub_used(root, right->len);
2009 btrfs_free_tree_block(trans, root, right, 0, 1);
2010 free_extent_buffer_stale(right);
2011 right = NULL;
2012 } else {
2013 struct btrfs_disk_key right_key;
2014 btrfs_node_key(right, &right_key, 0);
2015 tree_mod_log_set_node_key(root->fs_info, parent,
2016 pslot + 1, 0);
2017 btrfs_set_node_key(parent, &right_key, pslot + 1);
2018 btrfs_mark_buffer_dirty(parent);
2019 }
2020 }
2021 if (btrfs_header_nritems(mid) == 1) {
2022 /*
2023 * we're not allowed to leave a node with one item in the
2024 * tree during a delete. A deletion from lower in the tree
2025 * could try to delete the only pointer in this node.
2026 * So, pull some keys from the left.
2027 * There has to be a left pointer at this point because
2028 * otherwise we would have pulled some pointers from the
2029 * right
2030 */
2031 if (!left) {
2032 ret = -EROFS;
2033 btrfs_std_error(root->fs_info, ret);
2034 goto enospc;
2035 }
2036 wret = balance_node_right(trans, root, mid, left);
2037 if (wret < 0) {
2038 ret = wret;
2039 goto enospc;
2040 }
2041 if (wret == 1) {
2042 wret = push_node_left(trans, root, left, mid, 1);
2043 if (wret < 0)
2044 ret = wret;
2045 }
2046 BUG_ON(wret == 1);
2047 }
2048 if (btrfs_header_nritems(mid) == 0) {
2049 clean_tree_block(trans, root, mid);
2050 btrfs_tree_unlock(mid);
2051 del_ptr(root, path, level + 1, pslot);
2052 root_sub_used(root, mid->len);
2053 btrfs_free_tree_block(trans, root, mid, 0, 1);
2054 free_extent_buffer_stale(mid);
2055 mid = NULL;
2056 } else {
2057 /* update the parent key to reflect our changes */
2058 struct btrfs_disk_key mid_key;
2059 btrfs_node_key(mid, &mid_key, 0);
2060 tree_mod_log_set_node_key(root->fs_info, parent,
2061 pslot, 0);
2062 btrfs_set_node_key(parent, &mid_key, pslot);
2063 btrfs_mark_buffer_dirty(parent);
2064 }
2065
2066 /* update the path */
2067 if (left) {
2068 if (btrfs_header_nritems(left) > orig_slot) {
2069 extent_buffer_get(left);
2070 /* left was locked after cow */
2071 path->nodes[level] = left;
2072 path->slots[level + 1] -= 1;
2073 path->slots[level] = orig_slot;
2074 if (mid) {
2075 btrfs_tree_unlock(mid);
2076 free_extent_buffer(mid);
2077 }
2078 } else {
2079 orig_slot -= btrfs_header_nritems(left);
2080 path->slots[level] = orig_slot;
2081 }
2082 }
2083 /* double check we haven't messed things up */
2084 if (orig_ptr !=
2085 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2086 BUG();
2087 enospc:
2088 if (right) {
2089 btrfs_tree_unlock(right);
2090 free_extent_buffer(right);
2091 }
2092 if (left) {
2093 if (path->nodes[level] != left)
2094 btrfs_tree_unlock(left);
2095 free_extent_buffer(left);
2096 }
2097 return ret;
2098 }
2099
2100 /* Node balancing for insertion. Here we only split or push nodes around
2101 * when they are completely full. This is also done top down, so we
2102 * have to be pessimistic.
2103 */
2104 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2105 struct btrfs_root *root,
2106 struct btrfs_path *path, int level)
2107 {
2108 struct extent_buffer *right = NULL;
2109 struct extent_buffer *mid;
2110 struct extent_buffer *left = NULL;
2111 struct extent_buffer *parent = NULL;
2112 int ret = 0;
2113 int wret;
2114 int pslot;
2115 int orig_slot = path->slots[level];
2116
2117 if (level == 0)
2118 return 1;
2119
2120 mid = path->nodes[level];
2121 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2122
2123 if (level < BTRFS_MAX_LEVEL - 1) {
2124 parent = path->nodes[level + 1];
2125 pslot = path->slots[level + 1];
2126 }
2127
2128 if (!parent)
2129 return 1;
2130
2131 left = read_node_slot(root, parent, pslot - 1);
2132
2133 /* first, try to make some room in the middle buffer */
2134 if (left) {
2135 u32 left_nr;
2136
2137 btrfs_tree_lock(left);
2138 btrfs_set_lock_blocking(left);
2139
2140 left_nr = btrfs_header_nritems(left);
2141 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2142 wret = 1;
2143 } else {
2144 ret = btrfs_cow_block(trans, root, left, parent,
2145 pslot - 1, &left);
2146 if (ret)
2147 wret = 1;
2148 else {
2149 wret = push_node_left(trans, root,
2150 left, mid, 0);
2151 }
2152 }
2153 if (wret < 0)
2154 ret = wret;
2155 if (wret == 0) {
2156 struct btrfs_disk_key disk_key;
2157 orig_slot += left_nr;
2158 btrfs_node_key(mid, &disk_key, 0);
2159 tree_mod_log_set_node_key(root->fs_info, parent,
2160 pslot, 0);
2161 btrfs_set_node_key(parent, &disk_key, pslot);
2162 btrfs_mark_buffer_dirty(parent);
2163 if (btrfs_header_nritems(left) > orig_slot) {
2164 path->nodes[level] = left;
2165 path->slots[level + 1] -= 1;
2166 path->slots[level] = orig_slot;
2167 btrfs_tree_unlock(mid);
2168 free_extent_buffer(mid);
2169 } else {
2170 orig_slot -=
2171 btrfs_header_nritems(left);
2172 path->slots[level] = orig_slot;
2173 btrfs_tree_unlock(left);
2174 free_extent_buffer(left);
2175 }
2176 return 0;
2177 }
2178 btrfs_tree_unlock(left);
2179 free_extent_buffer(left);
2180 }
2181 right = read_node_slot(root, parent, pslot + 1);
2182
2183 /*
2184 * then try to empty the right most buffer into the middle
2185 */
2186 if (right) {
2187 u32 right_nr;
2188
2189 btrfs_tree_lock(right);
2190 btrfs_set_lock_blocking(right);
2191
2192 right_nr = btrfs_header_nritems(right);
2193 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2194 wret = 1;
2195 } else {
2196 ret = btrfs_cow_block(trans, root, right,
2197 parent, pslot + 1,
2198 &right);
2199 if (ret)
2200 wret = 1;
2201 else {
2202 wret = balance_node_right(trans, root,
2203 right, mid);
2204 }
2205 }
2206 if (wret < 0)
2207 ret = wret;
2208 if (wret == 0) {
2209 struct btrfs_disk_key disk_key;
2210
2211 btrfs_node_key(right, &disk_key, 0);
2212 tree_mod_log_set_node_key(root->fs_info, parent,
2213 pslot + 1, 0);
2214 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2215 btrfs_mark_buffer_dirty(parent);
2216
2217 if (btrfs_header_nritems(mid) <= orig_slot) {
2218 path->nodes[level] = right;
2219 path->slots[level + 1] += 1;
2220 path->slots[level] = orig_slot -
2221 btrfs_header_nritems(mid);
2222 btrfs_tree_unlock(mid);
2223 free_extent_buffer(mid);
2224 } else {
2225 btrfs_tree_unlock(right);
2226 free_extent_buffer(right);
2227 }
2228 return 0;
2229 }
2230 btrfs_tree_unlock(right);
2231 free_extent_buffer(right);
2232 }
2233 return 1;
2234 }
2235
2236 /*
2237 * readahead one full node of leaves, finding things that are close
2238 * to the block in 'slot', and triggering ra on them.
2239 */
2240 static void reada_for_search(struct btrfs_root *root,
2241 struct btrfs_path *path,
2242 int level, int slot, u64 objectid)
2243 {
2244 struct extent_buffer *node;
2245 struct btrfs_disk_key disk_key;
2246 u32 nritems;
2247 u64 search;
2248 u64 target;
2249 u64 nread = 0;
2250 u64 gen;
2251 int direction = path->reada;
2252 struct extent_buffer *eb;
2253 u32 nr;
2254 u32 blocksize;
2255 u32 nscan = 0;
2256
2257 if (level != 1)
2258 return;
2259
2260 if (!path->nodes[level])
2261 return;
2262
2263 node = path->nodes[level];
2264
2265 search = btrfs_node_blockptr(node, slot);
2266 blocksize = btrfs_level_size(root, level - 1);
2267 eb = btrfs_find_tree_block(root, search, blocksize);
2268 if (eb) {
2269 free_extent_buffer(eb);
2270 return;
2271 }
2272
2273 target = search;
2274
2275 nritems = btrfs_header_nritems(node);
2276 nr = slot;
2277
2278 while (1) {
2279 if (direction < 0) {
2280 if (nr == 0)
2281 break;
2282 nr--;
2283 } else if (direction > 0) {
2284 nr++;
2285 if (nr >= nritems)
2286 break;
2287 }
2288 if (path->reada < 0 && objectid) {
2289 btrfs_node_key(node, &disk_key, nr);
2290 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2291 break;
2292 }
2293 search = btrfs_node_blockptr(node, nr);
2294 if ((search <= target && target - search <= 65536) ||
2295 (search > target && search - target <= 65536)) {
2296 gen = btrfs_node_ptr_generation(node, nr);
2297 readahead_tree_block(root, search, blocksize, gen);
2298 nread += blocksize;
2299 }
2300 nscan++;
2301 if ((nread > 65536 || nscan > 32))
2302 break;
2303 }
2304 }
2305
2306 static noinline void reada_for_balance(struct btrfs_root *root,
2307 struct btrfs_path *path, int level)
2308 {
2309 int slot;
2310 int nritems;
2311 struct extent_buffer *parent;
2312 struct extent_buffer *eb;
2313 u64 gen;
2314 u64 block1 = 0;
2315 u64 block2 = 0;
2316 int blocksize;
2317
2318 parent = path->nodes[level + 1];
2319 if (!parent)
2320 return;
2321
2322 nritems = btrfs_header_nritems(parent);
2323 slot = path->slots[level + 1];
2324 blocksize = btrfs_level_size(root, level);
2325
2326 if (slot > 0) {
2327 block1 = btrfs_node_blockptr(parent, slot - 1);
2328 gen = btrfs_node_ptr_generation(parent, slot - 1);
2329 eb = btrfs_find_tree_block(root, block1, blocksize);
2330 /*
2331 * if we get -eagain from btrfs_buffer_uptodate, we
2332 * don't want to return eagain here. That will loop
2333 * forever
2334 */
2335 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2336 block1 = 0;
2337 free_extent_buffer(eb);
2338 }
2339 if (slot + 1 < nritems) {
2340 block2 = btrfs_node_blockptr(parent, slot + 1);
2341 gen = btrfs_node_ptr_generation(parent, slot + 1);
2342 eb = btrfs_find_tree_block(root, block2, blocksize);
2343 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2344 block2 = 0;
2345 free_extent_buffer(eb);
2346 }
2347
2348 if (block1)
2349 readahead_tree_block(root, block1, blocksize, 0);
2350 if (block2)
2351 readahead_tree_block(root, block2, blocksize, 0);
2352 }
2353
2354
2355 /*
2356 * when we walk down the tree, it is usually safe to unlock the higher layers
2357 * in the tree. The exceptions are when our path goes through slot 0, because
2358 * operations on the tree might require changing key pointers higher up in the
2359 * tree.
2360 *
2361 * callers might also have set path->keep_locks, which tells this code to keep
2362 * the lock if the path points to the last slot in the block. This is part of
2363 * walking through the tree, and selecting the next slot in the higher block.
2364 *
2365 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2366 * if lowest_unlock is 1, level 0 won't be unlocked
2367 */
2368 static noinline void unlock_up(struct btrfs_path *path, int level,
2369 int lowest_unlock, int min_write_lock_level,
2370 int *write_lock_level)
2371 {
2372 int i;
2373 int skip_level = level;
2374 int no_skips = 0;
2375 struct extent_buffer *t;
2376
2377 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2378 if (!path->nodes[i])
2379 break;
2380 if (!path->locks[i])
2381 break;
2382 if (!no_skips && path->slots[i] == 0) {
2383 skip_level = i + 1;
2384 continue;
2385 }
2386 if (!no_skips && path->keep_locks) {
2387 u32 nritems;
2388 t = path->nodes[i];
2389 nritems = btrfs_header_nritems(t);
2390 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2391 skip_level = i + 1;
2392 continue;
2393 }
2394 }
2395 if (skip_level < i && i >= lowest_unlock)
2396 no_skips = 1;
2397
2398 t = path->nodes[i];
2399 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2400 btrfs_tree_unlock_rw(t, path->locks[i]);
2401 path->locks[i] = 0;
2402 if (write_lock_level &&
2403 i > min_write_lock_level &&
2404 i <= *write_lock_level) {
2405 *write_lock_level = i - 1;
2406 }
2407 }
2408 }
2409 }
2410
2411 /*
2412 * This releases any locks held in the path starting at level and
2413 * going all the way up to the root.
2414 *
2415 * btrfs_search_slot will keep the lock held on higher nodes in a few
2416 * corner cases, such as COW of the block at slot zero in the node. This
2417 * ignores those rules, and it should only be called when there are no
2418 * more updates to be done higher up in the tree.
2419 */
2420 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2421 {
2422 int i;
2423
2424 if (path->keep_locks)
2425 return;
2426
2427 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2428 if (!path->nodes[i])
2429 continue;
2430 if (!path->locks[i])
2431 continue;
2432 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2433 path->locks[i] = 0;
2434 }
2435 }
2436
2437 /*
2438 * helper function for btrfs_search_slot. The goal is to find a block
2439 * in cache without setting the path to blocking. If we find the block
2440 * we return zero and the path is unchanged.
2441 *
2442 * If we can't find the block, we set the path blocking and do some
2443 * reada. -EAGAIN is returned and the search must be repeated.
2444 */
2445 static int
2446 read_block_for_search(struct btrfs_trans_handle *trans,
2447 struct btrfs_root *root, struct btrfs_path *p,
2448 struct extent_buffer **eb_ret, int level, int slot,
2449 struct btrfs_key *key, u64 time_seq)
2450 {
2451 u64 blocknr;
2452 u64 gen;
2453 u32 blocksize;
2454 struct extent_buffer *b = *eb_ret;
2455 struct extent_buffer *tmp;
2456 int ret;
2457
2458 blocknr = btrfs_node_blockptr(b, slot);
2459 gen = btrfs_node_ptr_generation(b, slot);
2460 blocksize = btrfs_level_size(root, level - 1);
2461
2462 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2463 if (tmp) {
2464 /* first we do an atomic uptodate check */
2465 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2466 *eb_ret = tmp;
2467 return 0;
2468 }
2469
2470 /* the pages were up to date, but we failed
2471 * the generation number check. Do a full
2472 * read for the generation number that is correct.
2473 * We must do this without dropping locks so
2474 * we can trust our generation number
2475 */
2476 btrfs_set_path_blocking(p);
2477
2478 /* now we're allowed to do a blocking uptodate check */
2479 ret = btrfs_read_buffer(tmp, gen);
2480 if (!ret) {
2481 *eb_ret = tmp;
2482 return 0;
2483 }
2484 free_extent_buffer(tmp);
2485 btrfs_release_path(p);
2486 return -EIO;
2487 }
2488
2489 /*
2490 * reduce lock contention at high levels
2491 * of the btree by dropping locks before
2492 * we read. Don't release the lock on the current
2493 * level because we need to walk this node to figure
2494 * out which blocks to read.
2495 */
2496 btrfs_unlock_up_safe(p, level + 1);
2497 btrfs_set_path_blocking(p);
2498
2499 free_extent_buffer(tmp);
2500 if (p->reada)
2501 reada_for_search(root, p, level, slot, key->objectid);
2502
2503 btrfs_release_path(p);
2504
2505 ret = -EAGAIN;
2506 tmp = read_tree_block(root, blocknr, blocksize, 0);
2507 if (tmp) {
2508 /*
2509 * If the read above didn't mark this buffer up to date,
2510 * it will never end up being up to date. Set ret to EIO now
2511 * and give up so that our caller doesn't loop forever
2512 * on our EAGAINs.
2513 */
2514 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2515 ret = -EIO;
2516 free_extent_buffer(tmp);
2517 }
2518 return ret;
2519 }
2520
2521 /*
2522 * helper function for btrfs_search_slot. This does all of the checks
2523 * for node-level blocks and does any balancing required based on
2524 * the ins_len.
2525 *
2526 * If no extra work was required, zero is returned. If we had to
2527 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2528 * start over
2529 */
2530 static int
2531 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2532 struct btrfs_root *root, struct btrfs_path *p,
2533 struct extent_buffer *b, int level, int ins_len,
2534 int *write_lock_level)
2535 {
2536 int ret;
2537 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2538 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2539 int sret;
2540
2541 if (*write_lock_level < level + 1) {
2542 *write_lock_level = level + 1;
2543 btrfs_release_path(p);
2544 goto again;
2545 }
2546
2547 btrfs_set_path_blocking(p);
2548 reada_for_balance(root, p, level);
2549 sret = split_node(trans, root, p, level);
2550 btrfs_clear_path_blocking(p, NULL, 0);
2551
2552 BUG_ON(sret > 0);
2553 if (sret) {
2554 ret = sret;
2555 goto done;
2556 }
2557 b = p->nodes[level];
2558 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2559 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2560 int sret;
2561
2562 if (*write_lock_level < level + 1) {
2563 *write_lock_level = level + 1;
2564 btrfs_release_path(p);
2565 goto again;
2566 }
2567
2568 btrfs_set_path_blocking(p);
2569 reada_for_balance(root, p, level);
2570 sret = balance_level(trans, root, p, level);
2571 btrfs_clear_path_blocking(p, NULL, 0);
2572
2573 if (sret) {
2574 ret = sret;
2575 goto done;
2576 }
2577 b = p->nodes[level];
2578 if (!b) {
2579 btrfs_release_path(p);
2580 goto again;
2581 }
2582 BUG_ON(btrfs_header_nritems(b) == 1);
2583 }
2584 return 0;
2585
2586 again:
2587 ret = -EAGAIN;
2588 done:
2589 return ret;
2590 }
2591
2592 static void key_search_validate(struct extent_buffer *b,
2593 struct btrfs_key *key,
2594 int level)
2595 {
2596 #ifdef CONFIG_BTRFS_ASSERT
2597 struct btrfs_disk_key disk_key;
2598
2599 btrfs_cpu_key_to_disk(&disk_key, key);
2600
2601 if (level == 0)
2602 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2603 offsetof(struct btrfs_leaf, items[0].key),
2604 sizeof(disk_key)));
2605 else
2606 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2607 offsetof(struct btrfs_node, ptrs[0].key),
2608 sizeof(disk_key)));
2609 #endif
2610 }
2611
2612 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2613 int level, int *prev_cmp, int *slot)
2614 {
2615 if (*prev_cmp != 0) {
2616 *prev_cmp = bin_search(b, key, level, slot);
2617 return *prev_cmp;
2618 }
2619
2620 key_search_validate(b, key, level);
2621 *slot = 0;
2622
2623 return 0;
2624 }
2625
2626 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2627 u64 iobjectid, u64 ioff, u8 key_type,
2628 struct btrfs_key *found_key)
2629 {
2630 int ret;
2631 struct btrfs_key key;
2632 struct extent_buffer *eb;
2633 struct btrfs_path *path;
2634
2635 key.type = key_type;
2636 key.objectid = iobjectid;
2637 key.offset = ioff;
2638
2639 if (found_path == NULL) {
2640 path = btrfs_alloc_path();
2641 if (!path)
2642 return -ENOMEM;
2643 } else
2644 path = found_path;
2645
2646 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2647 if ((ret < 0) || (found_key == NULL)) {
2648 if (path != found_path)
2649 btrfs_free_path(path);
2650 return ret;
2651 }
2652
2653 eb = path->nodes[0];
2654 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2655 ret = btrfs_next_leaf(fs_root, path);
2656 if (ret)
2657 return ret;
2658 eb = path->nodes[0];
2659 }
2660
2661 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2662 if (found_key->type != key.type ||
2663 found_key->objectid != key.objectid)
2664 return 1;
2665
2666 return 0;
2667 }
2668
2669 /*
2670 * look for key in the tree. path is filled in with nodes along the way
2671 * if key is found, we return zero and you can find the item in the leaf
2672 * level of the path (level 0)
2673 *
2674 * If the key isn't found, the path points to the slot where it should
2675 * be inserted, and 1 is returned. If there are other errors during the
2676 * search a negative error number is returned.
2677 *
2678 * if ins_len > 0, nodes and leaves will be split as we walk down the
2679 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2680 * possible)
2681 */
2682 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2683 *root, struct btrfs_key *key, struct btrfs_path *p, int
2684 ins_len, int cow)
2685 {
2686 struct extent_buffer *b;
2687 int slot;
2688 int ret;
2689 int err;
2690 int level;
2691 int lowest_unlock = 1;
2692 int root_lock;
2693 /* everything at write_lock_level or lower must be write locked */
2694 int write_lock_level = 0;
2695 u8 lowest_level = 0;
2696 int min_write_lock_level;
2697 int prev_cmp;
2698
2699 lowest_level = p->lowest_level;
2700 WARN_ON(lowest_level && ins_len > 0);
2701 WARN_ON(p->nodes[0] != NULL);
2702 BUG_ON(!cow && ins_len);
2703
2704 if (ins_len < 0) {
2705 lowest_unlock = 2;
2706
2707 /* when we are removing items, we might have to go up to level
2708 * two as we update tree pointers Make sure we keep write
2709 * for those levels as well
2710 */
2711 write_lock_level = 2;
2712 } else if (ins_len > 0) {
2713 /*
2714 * for inserting items, make sure we have a write lock on
2715 * level 1 so we can update keys
2716 */
2717 write_lock_level = 1;
2718 }
2719
2720 if (!cow)
2721 write_lock_level = -1;
2722
2723 if (cow && (p->keep_locks || p->lowest_level))
2724 write_lock_level = BTRFS_MAX_LEVEL;
2725
2726 min_write_lock_level = write_lock_level;
2727
2728 again:
2729 prev_cmp = -1;
2730 /*
2731 * we try very hard to do read locks on the root
2732 */
2733 root_lock = BTRFS_READ_LOCK;
2734 level = 0;
2735 if (p->search_commit_root) {
2736 /*
2737 * the commit roots are read only
2738 * so we always do read locks
2739 */
2740 if (p->need_commit_sem)
2741 down_read(&root->fs_info->commit_root_sem);
2742 b = root->commit_root;
2743 extent_buffer_get(b);
2744 level = btrfs_header_level(b);
2745 if (p->need_commit_sem)
2746 up_read(&root->fs_info->commit_root_sem);
2747 if (!p->skip_locking)
2748 btrfs_tree_read_lock(b);
2749 } else {
2750 if (p->skip_locking) {
2751 b = btrfs_root_node(root);
2752 level = btrfs_header_level(b);
2753 } else {
2754 /* we don't know the level of the root node
2755 * until we actually have it read locked
2756 */
2757 b = btrfs_read_lock_root_node(root);
2758 level = btrfs_header_level(b);
2759 if (level <= write_lock_level) {
2760 /* whoops, must trade for write lock */
2761 btrfs_tree_read_unlock(b);
2762 free_extent_buffer(b);
2763 b = btrfs_lock_root_node(root);
2764 root_lock = BTRFS_WRITE_LOCK;
2765
2766 /* the level might have changed, check again */
2767 level = btrfs_header_level(b);
2768 }
2769 }
2770 }
2771 p->nodes[level] = b;
2772 if (!p->skip_locking)
2773 p->locks[level] = root_lock;
2774
2775 while (b) {
2776 level = btrfs_header_level(b);
2777
2778 /*
2779 * setup the path here so we can release it under lock
2780 * contention with the cow code
2781 */
2782 if (cow) {
2783 /*
2784 * if we don't really need to cow this block
2785 * then we don't want to set the path blocking,
2786 * so we test it here
2787 */
2788 if (!should_cow_block(trans, root, b))
2789 goto cow_done;
2790
2791 btrfs_set_path_blocking(p);
2792
2793 /*
2794 * must have write locks on this node and the
2795 * parent
2796 */
2797 if (level > write_lock_level ||
2798 (level + 1 > write_lock_level &&
2799 level + 1 < BTRFS_MAX_LEVEL &&
2800 p->nodes[level + 1])) {
2801 write_lock_level = level + 1;
2802 btrfs_release_path(p);
2803 goto again;
2804 }
2805
2806 err = btrfs_cow_block(trans, root, b,
2807 p->nodes[level + 1],
2808 p->slots[level + 1], &b);
2809 if (err) {
2810 ret = err;
2811 goto done;
2812 }
2813 }
2814 cow_done:
2815 p->nodes[level] = b;
2816 btrfs_clear_path_blocking(p, NULL, 0);
2817
2818 /*
2819 * we have a lock on b and as long as we aren't changing
2820 * the tree, there is no way to for the items in b to change.
2821 * It is safe to drop the lock on our parent before we
2822 * go through the expensive btree search on b.
2823 *
2824 * If we're inserting or deleting (ins_len != 0), then we might
2825 * be changing slot zero, which may require changing the parent.
2826 * So, we can't drop the lock until after we know which slot
2827 * we're operating on.
2828 */
2829 if (!ins_len && !p->keep_locks) {
2830 int u = level + 1;
2831
2832 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2833 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2834 p->locks[u] = 0;
2835 }
2836 }
2837
2838 ret = key_search(b, key, level, &prev_cmp, &slot);
2839
2840 if (level != 0) {
2841 int dec = 0;
2842 if (ret && slot > 0) {
2843 dec = 1;
2844 slot -= 1;
2845 }
2846 p->slots[level] = slot;
2847 err = setup_nodes_for_search(trans, root, p, b, level,
2848 ins_len, &write_lock_level);
2849 if (err == -EAGAIN)
2850 goto again;
2851 if (err) {
2852 ret = err;
2853 goto done;
2854 }
2855 b = p->nodes[level];
2856 slot = p->slots[level];
2857
2858 /*
2859 * slot 0 is special, if we change the key
2860 * we have to update the parent pointer
2861 * which means we must have a write lock
2862 * on the parent
2863 */
2864 if (slot == 0 && ins_len &&
2865 write_lock_level < level + 1) {
2866 write_lock_level = level + 1;
2867 btrfs_release_path(p);
2868 goto again;
2869 }
2870
2871 unlock_up(p, level, lowest_unlock,
2872 min_write_lock_level, &write_lock_level);
2873
2874 if (level == lowest_level) {
2875 if (dec)
2876 p->slots[level]++;
2877 goto done;
2878 }
2879
2880 err = read_block_for_search(trans, root, p,
2881 &b, level, slot, key, 0);
2882 if (err == -EAGAIN)
2883 goto again;
2884 if (err) {
2885 ret = err;
2886 goto done;
2887 }
2888
2889 if (!p->skip_locking) {
2890 level = btrfs_header_level(b);
2891 if (level <= write_lock_level) {
2892 err = btrfs_try_tree_write_lock(b);
2893 if (!err) {
2894 btrfs_set_path_blocking(p);
2895 btrfs_tree_lock(b);
2896 btrfs_clear_path_blocking(p, b,
2897 BTRFS_WRITE_LOCK);
2898 }
2899 p->locks[level] = BTRFS_WRITE_LOCK;
2900 } else {
2901 err = btrfs_try_tree_read_lock(b);
2902 if (!err) {
2903 btrfs_set_path_blocking(p);
2904 btrfs_tree_read_lock(b);
2905 btrfs_clear_path_blocking(p, b,
2906 BTRFS_READ_LOCK);
2907 }
2908 p->locks[level] = BTRFS_READ_LOCK;
2909 }
2910 p->nodes[level] = b;
2911 }
2912 } else {
2913 p->slots[level] = slot;
2914 if (ins_len > 0 &&
2915 btrfs_leaf_free_space(root, b) < ins_len) {
2916 if (write_lock_level < 1) {
2917 write_lock_level = 1;
2918 btrfs_release_path(p);
2919 goto again;
2920 }
2921
2922 btrfs_set_path_blocking(p);
2923 err = split_leaf(trans, root, key,
2924 p, ins_len, ret == 0);
2925 btrfs_clear_path_blocking(p, NULL, 0);
2926
2927 BUG_ON(err > 0);
2928 if (err) {
2929 ret = err;
2930 goto done;
2931 }
2932 }
2933 if (!p->search_for_split)
2934 unlock_up(p, level, lowest_unlock,
2935 min_write_lock_level, &write_lock_level);
2936 goto done;
2937 }
2938 }
2939 ret = 1;
2940 done:
2941 /*
2942 * we don't really know what they plan on doing with the path
2943 * from here on, so for now just mark it as blocking
2944 */
2945 if (!p->leave_spinning)
2946 btrfs_set_path_blocking(p);
2947 if (ret < 0)
2948 btrfs_release_path(p);
2949 return ret;
2950 }
2951
2952 /*
2953 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2954 * current state of the tree together with the operations recorded in the tree
2955 * modification log to search for the key in a previous version of this tree, as
2956 * denoted by the time_seq parameter.
2957 *
2958 * Naturally, there is no support for insert, delete or cow operations.
2959 *
2960 * The resulting path and return value will be set up as if we called
2961 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2962 */
2963 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2964 struct btrfs_path *p, u64 time_seq)
2965 {
2966 struct extent_buffer *b;
2967 int slot;
2968 int ret;
2969 int err;
2970 int level;
2971 int lowest_unlock = 1;
2972 u8 lowest_level = 0;
2973 int prev_cmp = -1;
2974
2975 lowest_level = p->lowest_level;
2976 WARN_ON(p->nodes[0] != NULL);
2977
2978 if (p->search_commit_root) {
2979 BUG_ON(time_seq);
2980 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2981 }
2982
2983 again:
2984 b = get_old_root(root, time_seq);
2985 level = btrfs_header_level(b);
2986 p->locks[level] = BTRFS_READ_LOCK;
2987
2988 while (b) {
2989 level = btrfs_header_level(b);
2990 p->nodes[level] = b;
2991 btrfs_clear_path_blocking(p, NULL, 0);
2992
2993 /*
2994 * we have a lock on b and as long as we aren't changing
2995 * the tree, there is no way to for the items in b to change.
2996 * It is safe to drop the lock on our parent before we
2997 * go through the expensive btree search on b.
2998 */
2999 btrfs_unlock_up_safe(p, level + 1);
3000
3001 /*
3002 * Since we can unwind eb's we want to do a real search every
3003 * time.
3004 */
3005 prev_cmp = -1;
3006 ret = key_search(b, key, level, &prev_cmp, &slot);
3007
3008 if (level != 0) {
3009 int dec = 0;
3010 if (ret && slot > 0) {
3011 dec = 1;
3012 slot -= 1;
3013 }
3014 p->slots[level] = slot;
3015 unlock_up(p, level, lowest_unlock, 0, NULL);
3016
3017 if (level == lowest_level) {
3018 if (dec)
3019 p->slots[level]++;
3020 goto done;
3021 }
3022
3023 err = read_block_for_search(NULL, root, p, &b, level,
3024 slot, key, time_seq);
3025 if (err == -EAGAIN)
3026 goto again;
3027 if (err) {
3028 ret = err;
3029 goto done;
3030 }
3031
3032 level = btrfs_header_level(b);
3033 err = btrfs_try_tree_read_lock(b);
3034 if (!err) {
3035 btrfs_set_path_blocking(p);
3036 btrfs_tree_read_lock(b);
3037 btrfs_clear_path_blocking(p, b,
3038 BTRFS_READ_LOCK);
3039 }
3040 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3041 if (!b) {
3042 ret = -ENOMEM;
3043 goto done;
3044 }
3045 p->locks[level] = BTRFS_READ_LOCK;
3046 p->nodes[level] = b;
3047 } else {
3048 p->slots[level] = slot;
3049 unlock_up(p, level, lowest_unlock, 0, NULL);
3050 goto done;
3051 }
3052 }
3053 ret = 1;
3054 done:
3055 if (!p->leave_spinning)
3056 btrfs_set_path_blocking(p);
3057 if (ret < 0)
3058 btrfs_release_path(p);
3059
3060 return ret;
3061 }
3062
3063 /*
3064 * helper to use instead of search slot if no exact match is needed but
3065 * instead the next or previous item should be returned.
3066 * When find_higher is true, the next higher item is returned, the next lower
3067 * otherwise.
3068 * When return_any and find_higher are both true, and no higher item is found,
3069 * return the next lower instead.
3070 * When return_any is true and find_higher is false, and no lower item is found,
3071 * return the next higher instead.
3072 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3073 * < 0 on error
3074 */
3075 int btrfs_search_slot_for_read(struct btrfs_root *root,
3076 struct btrfs_key *key, struct btrfs_path *p,
3077 int find_higher, int return_any)
3078 {
3079 int ret;
3080 struct extent_buffer *leaf;
3081
3082 again:
3083 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3084 if (ret <= 0)
3085 return ret;
3086 /*
3087 * a return value of 1 means the path is at the position where the
3088 * item should be inserted. Normally this is the next bigger item,
3089 * but in case the previous item is the last in a leaf, path points
3090 * to the first free slot in the previous leaf, i.e. at an invalid
3091 * item.
3092 */
3093 leaf = p->nodes[0];
3094
3095 if (find_higher) {
3096 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3097 ret = btrfs_next_leaf(root, p);
3098 if (ret <= 0)
3099 return ret;
3100 if (!return_any)
3101 return 1;
3102 /*
3103 * no higher item found, return the next
3104 * lower instead
3105 */
3106 return_any = 0;
3107 find_higher = 0;
3108 btrfs_release_path(p);
3109 goto again;
3110 }
3111 } else {
3112 if (p->slots[0] == 0) {
3113 ret = btrfs_prev_leaf(root, p);
3114 if (ret < 0)
3115 return ret;
3116 if (!ret) {
3117 leaf = p->nodes[0];
3118 if (p->slots[0] == btrfs_header_nritems(leaf))
3119 p->slots[0]--;
3120 return 0;
3121 }
3122 if (!return_any)
3123 return 1;
3124 /*
3125 * no lower item found, return the next
3126 * higher instead
3127 */
3128 return_any = 0;
3129 find_higher = 1;
3130 btrfs_release_path(p);
3131 goto again;
3132 } else {
3133 --p->slots[0];
3134 }
3135 }
3136 return 0;
3137 }
3138
3139 /*
3140 * adjust the pointers going up the tree, starting at level
3141 * making sure the right key of each node is points to 'key'.
3142 * This is used after shifting pointers to the left, so it stops
3143 * fixing up pointers when a given leaf/node is not in slot 0 of the
3144 * higher levels
3145 *
3146 */
3147 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3148 struct btrfs_disk_key *key, int level)
3149 {
3150 int i;
3151 struct extent_buffer *t;
3152
3153 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3154 int tslot = path->slots[i];
3155 if (!path->nodes[i])
3156 break;
3157 t = path->nodes[i];
3158 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3159 btrfs_set_node_key(t, key, tslot);
3160 btrfs_mark_buffer_dirty(path->nodes[i]);
3161 if (tslot != 0)
3162 break;
3163 }
3164 }
3165
3166 /*
3167 * update item key.
3168 *
3169 * This function isn't completely safe. It's the caller's responsibility
3170 * that the new key won't break the order
3171 */
3172 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3173 struct btrfs_key *new_key)
3174 {
3175 struct btrfs_disk_key disk_key;
3176 struct extent_buffer *eb;
3177 int slot;
3178
3179 eb = path->nodes[0];
3180 slot = path->slots[0];
3181 if (slot > 0) {
3182 btrfs_item_key(eb, &disk_key, slot - 1);
3183 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3184 }
3185 if (slot < btrfs_header_nritems(eb) - 1) {
3186 btrfs_item_key(eb, &disk_key, slot + 1);
3187 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3188 }
3189
3190 btrfs_cpu_key_to_disk(&disk_key, new_key);
3191 btrfs_set_item_key(eb, &disk_key, slot);
3192 btrfs_mark_buffer_dirty(eb);
3193 if (slot == 0)
3194 fixup_low_keys(root, path, &disk_key, 1);
3195 }
3196
3197 /*
3198 * try to push data from one node into the next node left in the
3199 * tree.
3200 *
3201 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3202 * error, and > 0 if there was no room in the left hand block.
3203 */
3204 static int push_node_left(struct btrfs_trans_handle *trans,
3205 struct btrfs_root *root, struct extent_buffer *dst,
3206 struct extent_buffer *src, int empty)
3207 {
3208 int push_items = 0;
3209 int src_nritems;
3210 int dst_nritems;
3211 int ret = 0;
3212
3213 src_nritems = btrfs_header_nritems(src);
3214 dst_nritems = btrfs_header_nritems(dst);
3215 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3216 WARN_ON(btrfs_header_generation(src) != trans->transid);
3217 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3218
3219 if (!empty && src_nritems <= 8)
3220 return 1;
3221
3222 if (push_items <= 0)
3223 return 1;
3224
3225 if (empty) {
3226 push_items = min(src_nritems, push_items);
3227 if (push_items < src_nritems) {
3228 /* leave at least 8 pointers in the node if
3229 * we aren't going to empty it
3230 */
3231 if (src_nritems - push_items < 8) {
3232 if (push_items <= 8)
3233 return 1;
3234 push_items -= 8;
3235 }
3236 }
3237 } else
3238 push_items = min(src_nritems - 8, push_items);
3239
3240 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3241 push_items);
3242 if (ret) {
3243 btrfs_abort_transaction(trans, root, ret);
3244 return ret;
3245 }
3246 copy_extent_buffer(dst, src,
3247 btrfs_node_key_ptr_offset(dst_nritems),
3248 btrfs_node_key_ptr_offset(0),
3249 push_items * sizeof(struct btrfs_key_ptr));
3250
3251 if (push_items < src_nritems) {
3252 /*
3253 * don't call tree_mod_log_eb_move here, key removal was already
3254 * fully logged by tree_mod_log_eb_copy above.
3255 */
3256 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3257 btrfs_node_key_ptr_offset(push_items),
3258 (src_nritems - push_items) *
3259 sizeof(struct btrfs_key_ptr));
3260 }
3261 btrfs_set_header_nritems(src, src_nritems - push_items);
3262 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3263 btrfs_mark_buffer_dirty(src);
3264 btrfs_mark_buffer_dirty(dst);
3265
3266 return ret;
3267 }
3268
3269 /*
3270 * try to push data from one node into the next node right in the
3271 * tree.
3272 *
3273 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3274 * error, and > 0 if there was no room in the right hand block.
3275 *
3276 * this will only push up to 1/2 the contents of the left node over
3277 */
3278 static int balance_node_right(struct btrfs_trans_handle *trans,
3279 struct btrfs_root *root,
3280 struct extent_buffer *dst,
3281 struct extent_buffer *src)
3282 {
3283 int push_items = 0;
3284 int max_push;
3285 int src_nritems;
3286 int dst_nritems;
3287 int ret = 0;
3288
3289 WARN_ON(btrfs_header_generation(src) != trans->transid);
3290 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3291
3292 src_nritems = btrfs_header_nritems(src);
3293 dst_nritems = btrfs_header_nritems(dst);
3294 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3295 if (push_items <= 0)
3296 return 1;
3297
3298 if (src_nritems < 4)
3299 return 1;
3300
3301 max_push = src_nritems / 2 + 1;
3302 /* don't try to empty the node */
3303 if (max_push >= src_nritems)
3304 return 1;
3305
3306 if (max_push < push_items)
3307 push_items = max_push;
3308
3309 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3310 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3311 btrfs_node_key_ptr_offset(0),
3312 (dst_nritems) *
3313 sizeof(struct btrfs_key_ptr));
3314
3315 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3316 src_nritems - push_items, push_items);
3317 if (ret) {
3318 btrfs_abort_transaction(trans, root, ret);
3319 return ret;
3320 }
3321 copy_extent_buffer(dst, src,
3322 btrfs_node_key_ptr_offset(0),
3323 btrfs_node_key_ptr_offset(src_nritems - push_items),
3324 push_items * sizeof(struct btrfs_key_ptr));
3325
3326 btrfs_set_header_nritems(src, src_nritems - push_items);
3327 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3328
3329 btrfs_mark_buffer_dirty(src);
3330 btrfs_mark_buffer_dirty(dst);
3331
3332 return ret;
3333 }
3334
3335 /*
3336 * helper function to insert a new root level in the tree.
3337 * A new node is allocated, and a single item is inserted to
3338 * point to the existing root
3339 *
3340 * returns zero on success or < 0 on failure.
3341 */
3342 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3343 struct btrfs_root *root,
3344 struct btrfs_path *path, int level)
3345 {
3346 u64 lower_gen;
3347 struct extent_buffer *lower;
3348 struct extent_buffer *c;
3349 struct extent_buffer *old;
3350 struct btrfs_disk_key lower_key;
3351
3352 BUG_ON(path->nodes[level]);
3353 BUG_ON(path->nodes[level-1] != root->node);
3354
3355 lower = path->nodes[level-1];
3356 if (level == 1)
3357 btrfs_item_key(lower, &lower_key, 0);
3358 else
3359 btrfs_node_key(lower, &lower_key, 0);
3360
3361 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3362 root->root_key.objectid, &lower_key,
3363 level, root->node->start, 0);
3364 if (IS_ERR(c))
3365 return PTR_ERR(c);
3366
3367 root_add_used(root, root->nodesize);
3368
3369 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3370 btrfs_set_header_nritems(c, 1);
3371 btrfs_set_header_level(c, level);
3372 btrfs_set_header_bytenr(c, c->start);
3373 btrfs_set_header_generation(c, trans->transid);
3374 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3375 btrfs_set_header_owner(c, root->root_key.objectid);
3376
3377 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3378 BTRFS_FSID_SIZE);
3379
3380 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3381 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3382
3383 btrfs_set_node_key(c, &lower_key, 0);
3384 btrfs_set_node_blockptr(c, 0, lower->start);
3385 lower_gen = btrfs_header_generation(lower);
3386 WARN_ON(lower_gen != trans->transid);
3387
3388 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3389
3390 btrfs_mark_buffer_dirty(c);
3391
3392 old = root->node;
3393 tree_mod_log_set_root_pointer(root, c, 0);
3394 rcu_assign_pointer(root->node, c);
3395
3396 /* the super has an extra ref to root->node */
3397 free_extent_buffer(old);
3398
3399 add_root_to_dirty_list(root);
3400 extent_buffer_get(c);
3401 path->nodes[level] = c;
3402 path->locks[level] = BTRFS_WRITE_LOCK;
3403 path->slots[level] = 0;
3404 return 0;
3405 }
3406
3407 /*
3408 * worker function to insert a single pointer in a node.
3409 * the node should have enough room for the pointer already
3410 *
3411 * slot and level indicate where you want the key to go, and
3412 * blocknr is the block the key points to.
3413 */
3414 static void insert_ptr(struct btrfs_trans_handle *trans,
3415 struct btrfs_root *root, struct btrfs_path *path,
3416 struct btrfs_disk_key *key, u64 bytenr,
3417 int slot, int level)
3418 {
3419 struct extent_buffer *lower;
3420 int nritems;
3421 int ret;
3422
3423 BUG_ON(!path->nodes[level]);
3424 btrfs_assert_tree_locked(path->nodes[level]);
3425 lower = path->nodes[level];
3426 nritems = btrfs_header_nritems(lower);
3427 BUG_ON(slot > nritems);
3428 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3429 if (slot != nritems) {
3430 if (level)
3431 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3432 slot, nritems - slot);
3433 memmove_extent_buffer(lower,
3434 btrfs_node_key_ptr_offset(slot + 1),
3435 btrfs_node_key_ptr_offset(slot),
3436 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3437 }
3438 if (level) {
3439 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3440 MOD_LOG_KEY_ADD, GFP_NOFS);
3441 BUG_ON(ret < 0);
3442 }
3443 btrfs_set_node_key(lower, key, slot);
3444 btrfs_set_node_blockptr(lower, slot, bytenr);
3445 WARN_ON(trans->transid == 0);
3446 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3447 btrfs_set_header_nritems(lower, nritems + 1);
3448 btrfs_mark_buffer_dirty(lower);
3449 }
3450
3451 /*
3452 * split the node at the specified level in path in two.
3453 * The path is corrected to point to the appropriate node after the split
3454 *
3455 * Before splitting this tries to make some room in the node by pushing
3456 * left and right, if either one works, it returns right away.
3457 *
3458 * returns 0 on success and < 0 on failure
3459 */
3460 static noinline int split_node(struct btrfs_trans_handle *trans,
3461 struct btrfs_root *root,
3462 struct btrfs_path *path, int level)
3463 {
3464 struct extent_buffer *c;
3465 struct extent_buffer *split;
3466 struct btrfs_disk_key disk_key;
3467 int mid;
3468 int ret;
3469 u32 c_nritems;
3470
3471 c = path->nodes[level];
3472 WARN_ON(btrfs_header_generation(c) != trans->transid);
3473 if (c == root->node) {
3474 /*
3475 * trying to split the root, lets make a new one
3476 *
3477 * tree mod log: We don't log_removal old root in
3478 * insert_new_root, because that root buffer will be kept as a
3479 * normal node. We are going to log removal of half of the
3480 * elements below with tree_mod_log_eb_copy. We're holding a
3481 * tree lock on the buffer, which is why we cannot race with
3482 * other tree_mod_log users.
3483 */
3484 ret = insert_new_root(trans, root, path, level + 1);
3485 if (ret)
3486 return ret;
3487 } else {
3488 ret = push_nodes_for_insert(trans, root, path, level);
3489 c = path->nodes[level];
3490 if (!ret && btrfs_header_nritems(c) <
3491 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3492 return 0;
3493 if (ret < 0)
3494 return ret;
3495 }
3496
3497 c_nritems = btrfs_header_nritems(c);
3498 mid = (c_nritems + 1) / 2;
3499 btrfs_node_key(c, &disk_key, mid);
3500
3501 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3502 root->root_key.objectid,
3503 &disk_key, level, c->start, 0);
3504 if (IS_ERR(split))
3505 return PTR_ERR(split);
3506
3507 root_add_used(root, root->nodesize);
3508
3509 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3510 btrfs_set_header_level(split, btrfs_header_level(c));
3511 btrfs_set_header_bytenr(split, split->start);
3512 btrfs_set_header_generation(split, trans->transid);
3513 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3514 btrfs_set_header_owner(split, root->root_key.objectid);
3515 write_extent_buffer(split, root->fs_info->fsid,
3516 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3517 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3518 btrfs_header_chunk_tree_uuid(split),
3519 BTRFS_UUID_SIZE);
3520
3521 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3522 mid, c_nritems - mid);
3523 if (ret) {
3524 btrfs_abort_transaction(trans, root, ret);
3525 return ret;
3526 }
3527 copy_extent_buffer(split, c,
3528 btrfs_node_key_ptr_offset(0),
3529 btrfs_node_key_ptr_offset(mid),
3530 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3531 btrfs_set_header_nritems(split, c_nritems - mid);
3532 btrfs_set_header_nritems(c, mid);
3533 ret = 0;
3534
3535 btrfs_mark_buffer_dirty(c);
3536 btrfs_mark_buffer_dirty(split);
3537
3538 insert_ptr(trans, root, path, &disk_key, split->start,
3539 path->slots[level + 1] + 1, level + 1);
3540
3541 if (path->slots[level] >= mid) {
3542 path->slots[level] -= mid;
3543 btrfs_tree_unlock(c);
3544 free_extent_buffer(c);
3545 path->nodes[level] = split;
3546 path->slots[level + 1] += 1;
3547 } else {
3548 btrfs_tree_unlock(split);
3549 free_extent_buffer(split);
3550 }
3551 return ret;
3552 }
3553
3554 /*
3555 * how many bytes are required to store the items in a leaf. start
3556 * and nr indicate which items in the leaf to check. This totals up the
3557 * space used both by the item structs and the item data
3558 */
3559 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3560 {
3561 struct btrfs_item *start_item;
3562 struct btrfs_item *end_item;
3563 struct btrfs_map_token token;
3564 int data_len;
3565 int nritems = btrfs_header_nritems(l);
3566 int end = min(nritems, start + nr) - 1;
3567
3568 if (!nr)
3569 return 0;
3570 btrfs_init_map_token(&token);
3571 start_item = btrfs_item_nr(start);
3572 end_item = btrfs_item_nr(end);
3573 data_len = btrfs_token_item_offset(l, start_item, &token) +
3574 btrfs_token_item_size(l, start_item, &token);
3575 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3576 data_len += sizeof(struct btrfs_item) * nr;
3577 WARN_ON(data_len < 0);
3578 return data_len;
3579 }
3580
3581 /*
3582 * The space between the end of the leaf items and
3583 * the start of the leaf data. IOW, how much room
3584 * the leaf has left for both items and data
3585 */
3586 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3587 struct extent_buffer *leaf)
3588 {
3589 int nritems = btrfs_header_nritems(leaf);
3590 int ret;
3591 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3592 if (ret < 0) {
3593 btrfs_crit(root->fs_info,
3594 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3595 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3596 leaf_space_used(leaf, 0, nritems), nritems);
3597 }
3598 return ret;
3599 }
3600
3601 /*
3602 * min slot controls the lowest index we're willing to push to the
3603 * right. We'll push up to and including min_slot, but no lower
3604 */
3605 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3606 struct btrfs_root *root,
3607 struct btrfs_path *path,
3608 int data_size, int empty,
3609 struct extent_buffer *right,
3610 int free_space, u32 left_nritems,
3611 u32 min_slot)
3612 {
3613 struct extent_buffer *left = path->nodes[0];
3614 struct extent_buffer *upper = path->nodes[1];
3615 struct btrfs_map_token token;
3616 struct btrfs_disk_key disk_key;
3617 int slot;
3618 u32 i;
3619 int push_space = 0;
3620 int push_items = 0;
3621 struct btrfs_item *item;
3622 u32 nr;
3623 u32 right_nritems;
3624 u32 data_end;
3625 u32 this_item_size;
3626
3627 btrfs_init_map_token(&token);
3628
3629 if (empty)
3630 nr = 0;
3631 else
3632 nr = max_t(u32, 1, min_slot);
3633
3634 if (path->slots[0] >= left_nritems)
3635 push_space += data_size;
3636
3637 slot = path->slots[1];
3638 i = left_nritems - 1;
3639 while (i >= nr) {
3640 item = btrfs_item_nr(i);
3641
3642 if (!empty && push_items > 0) {
3643 if (path->slots[0] > i)
3644 break;
3645 if (path->slots[0] == i) {
3646 int space = btrfs_leaf_free_space(root, left);
3647 if (space + push_space * 2 > free_space)
3648 break;
3649 }
3650 }
3651
3652 if (path->slots[0] == i)
3653 push_space += data_size;
3654
3655 this_item_size = btrfs_item_size(left, item);
3656 if (this_item_size + sizeof(*item) + push_space > free_space)
3657 break;
3658
3659 push_items++;
3660 push_space += this_item_size + sizeof(*item);
3661 if (i == 0)
3662 break;
3663 i--;
3664 }
3665
3666 if (push_items == 0)
3667 goto out_unlock;
3668
3669 WARN_ON(!empty && push_items == left_nritems);
3670
3671 /* push left to right */
3672 right_nritems = btrfs_header_nritems(right);
3673
3674 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3675 push_space -= leaf_data_end(root, left);
3676
3677 /* make room in the right data area */
3678 data_end = leaf_data_end(root, right);
3679 memmove_extent_buffer(right,
3680 btrfs_leaf_data(right) + data_end - push_space,
3681 btrfs_leaf_data(right) + data_end,
3682 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3683
3684 /* copy from the left data area */
3685 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3686 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3687 btrfs_leaf_data(left) + leaf_data_end(root, left),
3688 push_space);
3689
3690 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3691 btrfs_item_nr_offset(0),
3692 right_nritems * sizeof(struct btrfs_item));
3693
3694 /* copy the items from left to right */
3695 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3696 btrfs_item_nr_offset(left_nritems - push_items),
3697 push_items * sizeof(struct btrfs_item));
3698
3699 /* update the item pointers */
3700 right_nritems += push_items;
3701 btrfs_set_header_nritems(right, right_nritems);
3702 push_space = BTRFS_LEAF_DATA_SIZE(root);
3703 for (i = 0; i < right_nritems; i++) {
3704 item = btrfs_item_nr(i);
3705 push_space -= btrfs_token_item_size(right, item, &token);
3706 btrfs_set_token_item_offset(right, item, push_space, &token);
3707 }
3708
3709 left_nritems -= push_items;
3710 btrfs_set_header_nritems(left, left_nritems);
3711
3712 if (left_nritems)
3713 btrfs_mark_buffer_dirty(left);
3714 else
3715 clean_tree_block(trans, root, left);
3716
3717 btrfs_mark_buffer_dirty(right);
3718
3719 btrfs_item_key(right, &disk_key, 0);
3720 btrfs_set_node_key(upper, &disk_key, slot + 1);
3721 btrfs_mark_buffer_dirty(upper);
3722
3723 /* then fixup the leaf pointer in the path */
3724 if (path->slots[0] >= left_nritems) {
3725 path->slots[0] -= left_nritems;
3726 if (btrfs_header_nritems(path->nodes[0]) == 0)
3727 clean_tree_block(trans, root, path->nodes[0]);
3728 btrfs_tree_unlock(path->nodes[0]);
3729 free_extent_buffer(path->nodes[0]);
3730 path->nodes[0] = right;
3731 path->slots[1] += 1;
3732 } else {
3733 btrfs_tree_unlock(right);
3734 free_extent_buffer(right);
3735 }
3736 return 0;
3737
3738 out_unlock:
3739 btrfs_tree_unlock(right);
3740 free_extent_buffer(right);
3741 return 1;
3742 }
3743
3744 /*
3745 * push some data in the path leaf to the right, trying to free up at
3746 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3747 *
3748 * returns 1 if the push failed because the other node didn't have enough
3749 * room, 0 if everything worked out and < 0 if there were major errors.
3750 *
3751 * this will push starting from min_slot to the end of the leaf. It won't
3752 * push any slot lower than min_slot
3753 */
3754 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3755 *root, struct btrfs_path *path,
3756 int min_data_size, int data_size,
3757 int empty, u32 min_slot)
3758 {
3759 struct extent_buffer *left = path->nodes[0];
3760 struct extent_buffer *right;
3761 struct extent_buffer *upper;
3762 int slot;
3763 int free_space;
3764 u32 left_nritems;
3765 int ret;
3766
3767 if (!path->nodes[1])
3768 return 1;
3769
3770 slot = path->slots[1];
3771 upper = path->nodes[1];
3772 if (slot >= btrfs_header_nritems(upper) - 1)
3773 return 1;
3774
3775 btrfs_assert_tree_locked(path->nodes[1]);
3776
3777 right = read_node_slot(root, upper, slot + 1);
3778 if (right == NULL)
3779 return 1;
3780
3781 btrfs_tree_lock(right);
3782 btrfs_set_lock_blocking(right);
3783
3784 free_space = btrfs_leaf_free_space(root, right);
3785 if (free_space < data_size)
3786 goto out_unlock;
3787
3788 /* cow and double check */
3789 ret = btrfs_cow_block(trans, root, right, upper,
3790 slot + 1, &right);
3791 if (ret)
3792 goto out_unlock;
3793
3794 free_space = btrfs_leaf_free_space(root, right);
3795 if (free_space < data_size)
3796 goto out_unlock;
3797
3798 left_nritems = btrfs_header_nritems(left);
3799 if (left_nritems == 0)
3800 goto out_unlock;
3801
3802 if (path->slots[0] == left_nritems && !empty) {
3803 /* Key greater than all keys in the leaf, right neighbor has
3804 * enough room for it and we're not emptying our leaf to delete
3805 * it, therefore use right neighbor to insert the new item and
3806 * no need to touch/dirty our left leaft. */
3807 btrfs_tree_unlock(left);
3808 free_extent_buffer(left);
3809 path->nodes[0] = right;
3810 path->slots[0] = 0;
3811 path->slots[1]++;
3812 return 0;
3813 }
3814
3815 return __push_leaf_right(trans, root, path, min_data_size, empty,
3816 right, free_space, left_nritems, min_slot);
3817 out_unlock:
3818 btrfs_tree_unlock(right);
3819 free_extent_buffer(right);
3820 return 1;
3821 }
3822
3823 /*
3824 * push some data in the path leaf to the left, trying to free up at
3825 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3826 *
3827 * max_slot can put a limit on how far into the leaf we'll push items. The
3828 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3829 * items
3830 */
3831 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3832 struct btrfs_root *root,
3833 struct btrfs_path *path, int data_size,
3834 int empty, struct extent_buffer *left,
3835 int free_space, u32 right_nritems,
3836 u32 max_slot)
3837 {
3838 struct btrfs_disk_key disk_key;
3839 struct extent_buffer *right = path->nodes[0];
3840 int i;
3841 int push_space = 0;
3842 int push_items = 0;
3843 struct btrfs_item *item;
3844 u32 old_left_nritems;
3845 u32 nr;
3846 int ret = 0;
3847 u32 this_item_size;
3848 u32 old_left_item_size;
3849 struct btrfs_map_token token;
3850
3851 btrfs_init_map_token(&token);
3852
3853 if (empty)
3854 nr = min(right_nritems, max_slot);
3855 else
3856 nr = min(right_nritems - 1, max_slot);
3857
3858 for (i = 0; i < nr; i++) {
3859 item = btrfs_item_nr(i);
3860
3861 if (!empty && push_items > 0) {
3862 if (path->slots[0] < i)
3863 break;
3864 if (path->slots[0] == i) {
3865 int space = btrfs_leaf_free_space(root, right);
3866 if (space + push_space * 2 > free_space)
3867 break;
3868 }
3869 }
3870
3871 if (path->slots[0] == i)
3872 push_space += data_size;
3873
3874 this_item_size = btrfs_item_size(right, item);
3875 if (this_item_size + sizeof(*item) + push_space > free_space)
3876 break;
3877
3878 push_items++;
3879 push_space += this_item_size + sizeof(*item);
3880 }
3881
3882 if (push_items == 0) {
3883 ret = 1;
3884 goto out;
3885 }
3886 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3887
3888 /* push data from right to left */
3889 copy_extent_buffer(left, right,
3890 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3891 btrfs_item_nr_offset(0),
3892 push_items * sizeof(struct btrfs_item));
3893
3894 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3895 btrfs_item_offset_nr(right, push_items - 1);
3896
3897 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3898 leaf_data_end(root, left) - push_space,
3899 btrfs_leaf_data(right) +
3900 btrfs_item_offset_nr(right, push_items - 1),
3901 push_space);
3902 old_left_nritems = btrfs_header_nritems(left);
3903 BUG_ON(old_left_nritems <= 0);
3904
3905 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3906 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3907 u32 ioff;
3908
3909 item = btrfs_item_nr(i);
3910
3911 ioff = btrfs_token_item_offset(left, item, &token);
3912 btrfs_set_token_item_offset(left, item,
3913 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3914 &token);
3915 }
3916 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3917
3918 /* fixup right node */
3919 if (push_items > right_nritems)
3920 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3921 right_nritems);
3922
3923 if (push_items < right_nritems) {
3924 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3925 leaf_data_end(root, right);
3926 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3927 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3928 btrfs_leaf_data(right) +
3929 leaf_data_end(root, right), push_space);
3930
3931 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3932 btrfs_item_nr_offset(push_items),
3933 (btrfs_header_nritems(right) - push_items) *
3934 sizeof(struct btrfs_item));
3935 }
3936 right_nritems -= push_items;
3937 btrfs_set_header_nritems(right, right_nritems);
3938 push_space = BTRFS_LEAF_DATA_SIZE(root);
3939 for (i = 0; i < right_nritems; i++) {
3940 item = btrfs_item_nr(i);
3941
3942 push_space = push_space - btrfs_token_item_size(right,
3943 item, &token);
3944 btrfs_set_token_item_offset(right, item, push_space, &token);
3945 }
3946
3947 btrfs_mark_buffer_dirty(left);
3948 if (right_nritems)
3949 btrfs_mark_buffer_dirty(right);
3950 else
3951 clean_tree_block(trans, root, right);
3952
3953 btrfs_item_key(right, &disk_key, 0);
3954 fixup_low_keys(root, path, &disk_key, 1);
3955
3956 /* then fixup the leaf pointer in the path */
3957 if (path->slots[0] < push_items) {
3958 path->slots[0] += old_left_nritems;
3959 btrfs_tree_unlock(path->nodes[0]);
3960 free_extent_buffer(path->nodes[0]);
3961 path->nodes[0] = left;
3962 path->slots[1] -= 1;
3963 } else {
3964 btrfs_tree_unlock(left);
3965 free_extent_buffer(left);
3966 path->slots[0] -= push_items;
3967 }
3968 BUG_ON(path->slots[0] < 0);
3969 return ret;
3970 out:
3971 btrfs_tree_unlock(left);
3972 free_extent_buffer(left);
3973 return ret;
3974 }
3975
3976 /*
3977 * push some data in the path leaf to the left, trying to free up at
3978 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3979 *
3980 * max_slot can put a limit on how far into the leaf we'll push items. The
3981 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3982 * items
3983 */
3984 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3985 *root, struct btrfs_path *path, int min_data_size,
3986 int data_size, int empty, u32 max_slot)
3987 {
3988 struct extent_buffer *right = path->nodes[0];
3989 struct extent_buffer *left;
3990 int slot;
3991 int free_space;
3992 u32 right_nritems;
3993 int ret = 0;
3994
3995 slot = path->slots[1];
3996 if (slot == 0)
3997 return 1;
3998 if (!path->nodes[1])
3999 return 1;
4000
4001 right_nritems = btrfs_header_nritems(right);
4002 if (right_nritems == 0)
4003 return 1;
4004
4005 btrfs_assert_tree_locked(path->nodes[1]);
4006
4007 left = read_node_slot(root, path->nodes[1], slot - 1);
4008 if (left == NULL)
4009 return 1;
4010
4011 btrfs_tree_lock(left);
4012 btrfs_set_lock_blocking(left);
4013
4014 free_space = btrfs_leaf_free_space(root, left);
4015 if (free_space < data_size) {
4016 ret = 1;
4017 goto out;
4018 }
4019
4020 /* cow and double check */
4021 ret = btrfs_cow_block(trans, root, left,
4022 path->nodes[1], slot - 1, &left);
4023 if (ret) {
4024 /* we hit -ENOSPC, but it isn't fatal here */
4025 if (ret == -ENOSPC)
4026 ret = 1;
4027 goto out;
4028 }
4029
4030 free_space = btrfs_leaf_free_space(root, left);
4031 if (free_space < data_size) {
4032 ret = 1;
4033 goto out;
4034 }
4035
4036 return __push_leaf_left(trans, root, path, min_data_size,
4037 empty, left, free_space, right_nritems,
4038 max_slot);
4039 out:
4040 btrfs_tree_unlock(left);
4041 free_extent_buffer(left);
4042 return ret;
4043 }
4044
4045 /*
4046 * split the path's leaf in two, making sure there is at least data_size
4047 * available for the resulting leaf level of the path.
4048 */
4049 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4050 struct btrfs_root *root,
4051 struct btrfs_path *path,
4052 struct extent_buffer *l,
4053 struct extent_buffer *right,
4054 int slot, int mid, int nritems)
4055 {
4056 int data_copy_size;
4057 int rt_data_off;
4058 int i;
4059 struct btrfs_disk_key disk_key;
4060 struct btrfs_map_token token;
4061
4062 btrfs_init_map_token(&token);
4063
4064 nritems = nritems - mid;
4065 btrfs_set_header_nritems(right, nritems);
4066 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4067
4068 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4069 btrfs_item_nr_offset(mid),
4070 nritems * sizeof(struct btrfs_item));
4071
4072 copy_extent_buffer(right, l,
4073 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4074 data_copy_size, btrfs_leaf_data(l) +
4075 leaf_data_end(root, l), data_copy_size);
4076
4077 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4078 btrfs_item_end_nr(l, mid);
4079
4080 for (i = 0; i < nritems; i++) {
4081 struct btrfs_item *item = btrfs_item_nr(i);
4082 u32 ioff;
4083
4084 ioff = btrfs_token_item_offset(right, item, &token);
4085 btrfs_set_token_item_offset(right, item,
4086 ioff + rt_data_off, &token);
4087 }
4088
4089 btrfs_set_header_nritems(l, mid);
4090 btrfs_item_key(right, &disk_key, 0);
4091 insert_ptr(trans, root, path, &disk_key, right->start,
4092 path->slots[1] + 1, 1);
4093
4094 btrfs_mark_buffer_dirty(right);
4095 btrfs_mark_buffer_dirty(l);
4096 BUG_ON(path->slots[0] != slot);
4097
4098 if (mid <= slot) {
4099 btrfs_tree_unlock(path->nodes[0]);
4100 free_extent_buffer(path->nodes[0]);
4101 path->nodes[0] = right;
4102 path->slots[0] -= mid;
4103 path->slots[1] += 1;
4104 } else {
4105 btrfs_tree_unlock(right);
4106 free_extent_buffer(right);
4107 }
4108
4109 BUG_ON(path->slots[0] < 0);
4110 }
4111
4112 /*
4113 * double splits happen when we need to insert a big item in the middle
4114 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4115 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4116 * A B C
4117 *
4118 * We avoid this by trying to push the items on either side of our target
4119 * into the adjacent leaves. If all goes well we can avoid the double split
4120 * completely.
4121 */
4122 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4123 struct btrfs_root *root,
4124 struct btrfs_path *path,
4125 int data_size)
4126 {
4127 int ret;
4128 int progress = 0;
4129 int slot;
4130 u32 nritems;
4131 int space_needed = data_size;
4132
4133 slot = path->slots[0];
4134 if (slot < btrfs_header_nritems(path->nodes[0]))
4135 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4136
4137 /*
4138 * try to push all the items after our slot into the
4139 * right leaf
4140 */
4141 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4142 if (ret < 0)
4143 return ret;
4144
4145 if (ret == 0)
4146 progress++;
4147
4148 nritems = btrfs_header_nritems(path->nodes[0]);
4149 /*
4150 * our goal is to get our slot at the start or end of a leaf. If
4151 * we've done so we're done
4152 */
4153 if (path->slots[0] == 0 || path->slots[0] == nritems)
4154 return 0;
4155
4156 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4157 return 0;
4158
4159 /* try to push all the items before our slot into the next leaf */
4160 slot = path->slots[0];
4161 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4162 if (ret < 0)
4163 return ret;
4164
4165 if (ret == 0)
4166 progress++;
4167
4168 if (progress)
4169 return 0;
4170 return 1;
4171 }
4172
4173 /*
4174 * split the path's leaf in two, making sure there is at least data_size
4175 * available for the resulting leaf level of the path.
4176 *
4177 * returns 0 if all went well and < 0 on failure.
4178 */
4179 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4180 struct btrfs_root *root,
4181 struct btrfs_key *ins_key,
4182 struct btrfs_path *path, int data_size,
4183 int extend)
4184 {
4185 struct btrfs_disk_key disk_key;
4186 struct extent_buffer *l;
4187 u32 nritems;
4188 int mid;
4189 int slot;
4190 struct extent_buffer *right;
4191 int ret = 0;
4192 int wret;
4193 int split;
4194 int num_doubles = 0;
4195 int tried_avoid_double = 0;
4196
4197 l = path->nodes[0];
4198 slot = path->slots[0];
4199 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4200 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4201 return -EOVERFLOW;
4202
4203 /* first try to make some room by pushing left and right */
4204 if (data_size && path->nodes[1]) {
4205 int space_needed = data_size;
4206
4207 if (slot < btrfs_header_nritems(l))
4208 space_needed -= btrfs_leaf_free_space(root, l);
4209
4210 wret = push_leaf_right(trans, root, path, space_needed,
4211 space_needed, 0, 0);
4212 if (wret < 0)
4213 return wret;
4214 if (wret) {
4215 wret = push_leaf_left(trans, root, path, space_needed,
4216 space_needed, 0, (u32)-1);
4217 if (wret < 0)
4218 return wret;
4219 }
4220 l = path->nodes[0];
4221
4222 /* did the pushes work? */
4223 if (btrfs_leaf_free_space(root, l) >= data_size)
4224 return 0;
4225 }
4226
4227 if (!path->nodes[1]) {
4228 ret = insert_new_root(trans, root, path, 1);
4229 if (ret)
4230 return ret;
4231 }
4232 again:
4233 split = 1;
4234 l = path->nodes[0];
4235 slot = path->slots[0];
4236 nritems = btrfs_header_nritems(l);
4237 mid = (nritems + 1) / 2;
4238
4239 if (mid <= slot) {
4240 if (nritems == 1 ||
4241 leaf_space_used(l, mid, nritems - mid) + data_size >
4242 BTRFS_LEAF_DATA_SIZE(root)) {
4243 if (slot >= nritems) {
4244 split = 0;
4245 } else {
4246 mid = slot;
4247 if (mid != nritems &&
4248 leaf_space_used(l, mid, nritems - mid) +
4249 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4250 if (data_size && !tried_avoid_double)
4251 goto push_for_double;
4252 split = 2;
4253 }
4254 }
4255 }
4256 } else {
4257 if (leaf_space_used(l, 0, mid) + data_size >
4258 BTRFS_LEAF_DATA_SIZE(root)) {
4259 if (!extend && data_size && slot == 0) {
4260 split = 0;
4261 } else if ((extend || !data_size) && slot == 0) {
4262 mid = 1;
4263 } else {
4264 mid = slot;
4265 if (mid != nritems &&
4266 leaf_space_used(l, mid, nritems - mid) +
4267 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4268 if (data_size && !tried_avoid_double)
4269 goto push_for_double;
4270 split = 2;
4271 }
4272 }
4273 }
4274 }
4275
4276 if (split == 0)
4277 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4278 else
4279 btrfs_item_key(l, &disk_key, mid);
4280
4281 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4282 root->root_key.objectid,
4283 &disk_key, 0, l->start, 0);
4284 if (IS_ERR(right))
4285 return PTR_ERR(right);
4286
4287 root_add_used(root, root->leafsize);
4288
4289 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4290 btrfs_set_header_bytenr(right, right->start);
4291 btrfs_set_header_generation(right, trans->transid);
4292 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4293 btrfs_set_header_owner(right, root->root_key.objectid);
4294 btrfs_set_header_level(right, 0);
4295 write_extent_buffer(right, root->fs_info->fsid,
4296 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4297
4298 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4299 btrfs_header_chunk_tree_uuid(right),
4300 BTRFS_UUID_SIZE);
4301
4302 if (split == 0) {
4303 if (mid <= slot) {
4304 btrfs_set_header_nritems(right, 0);
4305 insert_ptr(trans, root, path, &disk_key, right->start,
4306 path->slots[1] + 1, 1);
4307 btrfs_tree_unlock(path->nodes[0]);
4308 free_extent_buffer(path->nodes[0]);
4309 path->nodes[0] = right;
4310 path->slots[0] = 0;
4311 path->slots[1] += 1;
4312 } else {
4313 btrfs_set_header_nritems(right, 0);
4314 insert_ptr(trans, root, path, &disk_key, right->start,
4315 path->slots[1], 1);
4316 btrfs_tree_unlock(path->nodes[0]);
4317 free_extent_buffer(path->nodes[0]);
4318 path->nodes[0] = right;
4319 path->slots[0] = 0;
4320 if (path->slots[1] == 0)
4321 fixup_low_keys(root, path, &disk_key, 1);
4322 }
4323 btrfs_mark_buffer_dirty(right);
4324 return ret;
4325 }
4326
4327 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4328
4329 if (split == 2) {
4330 BUG_ON(num_doubles != 0);
4331 num_doubles++;
4332 goto again;
4333 }
4334
4335 return 0;
4336
4337 push_for_double:
4338 push_for_double_split(trans, root, path, data_size);
4339 tried_avoid_double = 1;
4340 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4341 return 0;
4342 goto again;
4343 }
4344
4345 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4346 struct btrfs_root *root,
4347 struct btrfs_path *path, int ins_len)
4348 {
4349 struct btrfs_key key;
4350 struct extent_buffer *leaf;
4351 struct btrfs_file_extent_item *fi;
4352 u64 extent_len = 0;
4353 u32 item_size;
4354 int ret;
4355
4356 leaf = path->nodes[0];
4357 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4358
4359 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4360 key.type != BTRFS_EXTENT_CSUM_KEY);
4361
4362 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4363 return 0;
4364
4365 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4366 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4367 fi = btrfs_item_ptr(leaf, path->slots[0],
4368 struct btrfs_file_extent_item);
4369 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4370 }
4371 btrfs_release_path(path);
4372
4373 path->keep_locks = 1;
4374 path->search_for_split = 1;
4375 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4376 path->search_for_split = 0;
4377 if (ret < 0)
4378 goto err;
4379
4380 ret = -EAGAIN;
4381 leaf = path->nodes[0];
4382 /* if our item isn't there or got smaller, return now */
4383 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4384 goto err;
4385
4386 /* the leaf has changed, it now has room. return now */
4387 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4388 goto err;
4389
4390 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4391 fi = btrfs_item_ptr(leaf, path->slots[0],
4392 struct btrfs_file_extent_item);
4393 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4394 goto err;
4395 }
4396
4397 btrfs_set_path_blocking(path);
4398 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4399 if (ret)
4400 goto err;
4401
4402 path->keep_locks = 0;
4403 btrfs_unlock_up_safe(path, 1);
4404 return 0;
4405 err:
4406 path->keep_locks = 0;
4407 return ret;
4408 }
4409
4410 static noinline int split_item(struct btrfs_trans_handle *trans,
4411 struct btrfs_root *root,
4412 struct btrfs_path *path,
4413 struct btrfs_key *new_key,
4414 unsigned long split_offset)
4415 {
4416 struct extent_buffer *leaf;
4417 struct btrfs_item *item;
4418 struct btrfs_item *new_item;
4419 int slot;
4420 char *buf;
4421 u32 nritems;
4422 u32 item_size;
4423 u32 orig_offset;
4424 struct btrfs_disk_key disk_key;
4425
4426 leaf = path->nodes[0];
4427 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4428
4429 btrfs_set_path_blocking(path);
4430
4431 item = btrfs_item_nr(path->slots[0]);
4432 orig_offset = btrfs_item_offset(leaf, item);
4433 item_size = btrfs_item_size(leaf, item);
4434
4435 buf = kmalloc(item_size, GFP_NOFS);
4436 if (!buf)
4437 return -ENOMEM;
4438
4439 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4440 path->slots[0]), item_size);
4441
4442 slot = path->slots[0] + 1;
4443 nritems = btrfs_header_nritems(leaf);
4444 if (slot != nritems) {
4445 /* shift the items */
4446 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4447 btrfs_item_nr_offset(slot),
4448 (nritems - slot) * sizeof(struct btrfs_item));
4449 }
4450
4451 btrfs_cpu_key_to_disk(&disk_key, new_key);
4452 btrfs_set_item_key(leaf, &disk_key, slot);
4453
4454 new_item = btrfs_item_nr(slot);
4455
4456 btrfs_set_item_offset(leaf, new_item, orig_offset);
4457 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4458
4459 btrfs_set_item_offset(leaf, item,
4460 orig_offset + item_size - split_offset);
4461 btrfs_set_item_size(leaf, item, split_offset);
4462
4463 btrfs_set_header_nritems(leaf, nritems + 1);
4464
4465 /* write the data for the start of the original item */
4466 write_extent_buffer(leaf, buf,
4467 btrfs_item_ptr_offset(leaf, path->slots[0]),
4468 split_offset);
4469
4470 /* write the data for the new item */
4471 write_extent_buffer(leaf, buf + split_offset,
4472 btrfs_item_ptr_offset(leaf, slot),
4473 item_size - split_offset);
4474 btrfs_mark_buffer_dirty(leaf);
4475
4476 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4477 kfree(buf);
4478 return 0;
4479 }
4480
4481 /*
4482 * This function splits a single item into two items,
4483 * giving 'new_key' to the new item and splitting the
4484 * old one at split_offset (from the start of the item).
4485 *
4486 * The path may be released by this operation. After
4487 * the split, the path is pointing to the old item. The
4488 * new item is going to be in the same node as the old one.
4489 *
4490 * Note, the item being split must be smaller enough to live alone on
4491 * a tree block with room for one extra struct btrfs_item
4492 *
4493 * This allows us to split the item in place, keeping a lock on the
4494 * leaf the entire time.
4495 */
4496 int btrfs_split_item(struct btrfs_trans_handle *trans,
4497 struct btrfs_root *root,
4498 struct btrfs_path *path,
4499 struct btrfs_key *new_key,
4500 unsigned long split_offset)
4501 {
4502 int ret;
4503 ret = setup_leaf_for_split(trans, root, path,
4504 sizeof(struct btrfs_item));
4505 if (ret)
4506 return ret;
4507
4508 ret = split_item(trans, root, path, new_key, split_offset);
4509 return ret;
4510 }
4511
4512 /*
4513 * This function duplicate a item, giving 'new_key' to the new item.
4514 * It guarantees both items live in the same tree leaf and the new item
4515 * is contiguous with the original item.
4516 *
4517 * This allows us to split file extent in place, keeping a lock on the
4518 * leaf the entire time.
4519 */
4520 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4521 struct btrfs_root *root,
4522 struct btrfs_path *path,
4523 struct btrfs_key *new_key)
4524 {
4525 struct extent_buffer *leaf;
4526 int ret;
4527 u32 item_size;
4528
4529 leaf = path->nodes[0];
4530 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4531 ret = setup_leaf_for_split(trans, root, path,
4532 item_size + sizeof(struct btrfs_item));
4533 if (ret)
4534 return ret;
4535
4536 path->slots[0]++;
4537 setup_items_for_insert(root, path, new_key, &item_size,
4538 item_size, item_size +
4539 sizeof(struct btrfs_item), 1);
4540 leaf = path->nodes[0];
4541 memcpy_extent_buffer(leaf,
4542 btrfs_item_ptr_offset(leaf, path->slots[0]),
4543 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4544 item_size);
4545 return 0;
4546 }
4547
4548 /*
4549 * make the item pointed to by the path smaller. new_size indicates
4550 * how small to make it, and from_end tells us if we just chop bytes
4551 * off the end of the item or if we shift the item to chop bytes off
4552 * the front.
4553 */
4554 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4555 u32 new_size, int from_end)
4556 {
4557 int slot;
4558 struct extent_buffer *leaf;
4559 struct btrfs_item *item;
4560 u32 nritems;
4561 unsigned int data_end;
4562 unsigned int old_data_start;
4563 unsigned int old_size;
4564 unsigned int size_diff;
4565 int i;
4566 struct btrfs_map_token token;
4567
4568 btrfs_init_map_token(&token);
4569
4570 leaf = path->nodes[0];
4571 slot = path->slots[0];
4572
4573 old_size = btrfs_item_size_nr(leaf, slot);
4574 if (old_size == new_size)
4575 return;
4576
4577 nritems = btrfs_header_nritems(leaf);
4578 data_end = leaf_data_end(root, leaf);
4579
4580 old_data_start = btrfs_item_offset_nr(leaf, slot);
4581
4582 size_diff = old_size - new_size;
4583
4584 BUG_ON(slot < 0);
4585 BUG_ON(slot >= nritems);
4586
4587 /*
4588 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4589 */
4590 /* first correct the data pointers */
4591 for (i = slot; i < nritems; i++) {
4592 u32 ioff;
4593 item = btrfs_item_nr(i);
4594
4595 ioff = btrfs_token_item_offset(leaf, item, &token);
4596 btrfs_set_token_item_offset(leaf, item,
4597 ioff + size_diff, &token);
4598 }
4599
4600 /* shift the data */
4601 if (from_end) {
4602 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4603 data_end + size_diff, btrfs_leaf_data(leaf) +
4604 data_end, old_data_start + new_size - data_end);
4605 } else {
4606 struct btrfs_disk_key disk_key;
4607 u64 offset;
4608
4609 btrfs_item_key(leaf, &disk_key, slot);
4610
4611 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4612 unsigned long ptr;
4613 struct btrfs_file_extent_item *fi;
4614
4615 fi = btrfs_item_ptr(leaf, slot,
4616 struct btrfs_file_extent_item);
4617 fi = (struct btrfs_file_extent_item *)(
4618 (unsigned long)fi - size_diff);
4619
4620 if (btrfs_file_extent_type(leaf, fi) ==
4621 BTRFS_FILE_EXTENT_INLINE) {
4622 ptr = btrfs_item_ptr_offset(leaf, slot);
4623 memmove_extent_buffer(leaf, ptr,
4624 (unsigned long)fi,
4625 offsetof(struct btrfs_file_extent_item,
4626 disk_bytenr));
4627 }
4628 }
4629
4630 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4631 data_end + size_diff, btrfs_leaf_data(leaf) +
4632 data_end, old_data_start - data_end);
4633
4634 offset = btrfs_disk_key_offset(&disk_key);
4635 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4636 btrfs_set_item_key(leaf, &disk_key, slot);
4637 if (slot == 0)
4638 fixup_low_keys(root, path, &disk_key, 1);
4639 }
4640
4641 item = btrfs_item_nr(slot);
4642 btrfs_set_item_size(leaf, item, new_size);
4643 btrfs_mark_buffer_dirty(leaf);
4644
4645 if (btrfs_leaf_free_space(root, leaf) < 0) {
4646 btrfs_print_leaf(root, leaf);
4647 BUG();
4648 }
4649 }
4650
4651 /*
4652 * make the item pointed to by the path bigger, data_size is the added size.
4653 */
4654 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4655 u32 data_size)
4656 {
4657 int slot;
4658 struct extent_buffer *leaf;
4659 struct btrfs_item *item;
4660 u32 nritems;
4661 unsigned int data_end;
4662 unsigned int old_data;
4663 unsigned int old_size;
4664 int i;
4665 struct btrfs_map_token token;
4666
4667 btrfs_init_map_token(&token);
4668
4669 leaf = path->nodes[0];
4670
4671 nritems = btrfs_header_nritems(leaf);
4672 data_end = leaf_data_end(root, leaf);
4673
4674 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4675 btrfs_print_leaf(root, leaf);
4676 BUG();
4677 }
4678 slot = path->slots[0];
4679 old_data = btrfs_item_end_nr(leaf, slot);
4680
4681 BUG_ON(slot < 0);
4682 if (slot >= nritems) {
4683 btrfs_print_leaf(root, leaf);
4684 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4685 slot, nritems);
4686 BUG_ON(1);
4687 }
4688
4689 /*
4690 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4691 */
4692 /* first correct the data pointers */
4693 for (i = slot; i < nritems; i++) {
4694 u32 ioff;
4695 item = btrfs_item_nr(i);
4696
4697 ioff = btrfs_token_item_offset(leaf, item, &token);
4698 btrfs_set_token_item_offset(leaf, item,
4699 ioff - data_size, &token);
4700 }
4701
4702 /* shift the data */
4703 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4704 data_end - data_size, btrfs_leaf_data(leaf) +
4705 data_end, old_data - data_end);
4706
4707 data_end = old_data;
4708 old_size = btrfs_item_size_nr(leaf, slot);
4709 item = btrfs_item_nr(slot);
4710 btrfs_set_item_size(leaf, item, old_size + data_size);
4711 btrfs_mark_buffer_dirty(leaf);
4712
4713 if (btrfs_leaf_free_space(root, leaf) < 0) {
4714 btrfs_print_leaf(root, leaf);
4715 BUG();
4716 }
4717 }
4718
4719 /*
4720 * this is a helper for btrfs_insert_empty_items, the main goal here is
4721 * to save stack depth by doing the bulk of the work in a function
4722 * that doesn't call btrfs_search_slot
4723 */
4724 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4725 struct btrfs_key *cpu_key, u32 *data_size,
4726 u32 total_data, u32 total_size, int nr)
4727 {
4728 struct btrfs_item *item;
4729 int i;
4730 u32 nritems;
4731 unsigned int data_end;
4732 struct btrfs_disk_key disk_key;
4733 struct extent_buffer *leaf;
4734 int slot;
4735 struct btrfs_map_token token;
4736
4737 btrfs_init_map_token(&token);
4738
4739 leaf = path->nodes[0];
4740 slot = path->slots[0];
4741
4742 nritems = btrfs_header_nritems(leaf);
4743 data_end = leaf_data_end(root, leaf);
4744
4745 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4746 btrfs_print_leaf(root, leaf);
4747 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4748 total_size, btrfs_leaf_free_space(root, leaf));
4749 BUG();
4750 }
4751
4752 if (slot != nritems) {
4753 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4754
4755 if (old_data < data_end) {
4756 btrfs_print_leaf(root, leaf);
4757 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4758 slot, old_data, data_end);
4759 BUG_ON(1);
4760 }
4761 /*
4762 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4763 */
4764 /* first correct the data pointers */
4765 for (i = slot; i < nritems; i++) {
4766 u32 ioff;
4767
4768 item = btrfs_item_nr( i);
4769 ioff = btrfs_token_item_offset(leaf, item, &token);
4770 btrfs_set_token_item_offset(leaf, item,
4771 ioff - total_data, &token);
4772 }
4773 /* shift the items */
4774 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4775 btrfs_item_nr_offset(slot),
4776 (nritems - slot) * sizeof(struct btrfs_item));
4777
4778 /* shift the data */
4779 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4780 data_end - total_data, btrfs_leaf_data(leaf) +
4781 data_end, old_data - data_end);
4782 data_end = old_data;
4783 }
4784
4785 /* setup the item for the new data */
4786 for (i = 0; i < nr; i++) {
4787 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4788 btrfs_set_item_key(leaf, &disk_key, slot + i);
4789 item = btrfs_item_nr(slot + i);
4790 btrfs_set_token_item_offset(leaf, item,
4791 data_end - data_size[i], &token);
4792 data_end -= data_size[i];
4793 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4794 }
4795
4796 btrfs_set_header_nritems(leaf, nritems + nr);
4797
4798 if (slot == 0) {
4799 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4800 fixup_low_keys(root, path, &disk_key, 1);
4801 }
4802 btrfs_unlock_up_safe(path, 1);
4803 btrfs_mark_buffer_dirty(leaf);
4804
4805 if (btrfs_leaf_free_space(root, leaf) < 0) {
4806 btrfs_print_leaf(root, leaf);
4807 BUG();
4808 }
4809 }
4810
4811 /*
4812 * Given a key and some data, insert items into the tree.
4813 * This does all the path init required, making room in the tree if needed.
4814 */
4815 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4816 struct btrfs_root *root,
4817 struct btrfs_path *path,
4818 struct btrfs_key *cpu_key, u32 *data_size,
4819 int nr)
4820 {
4821 int ret = 0;
4822 int slot;
4823 int i;
4824 u32 total_size = 0;
4825 u32 total_data = 0;
4826
4827 for (i = 0; i < nr; i++)
4828 total_data += data_size[i];
4829
4830 total_size = total_data + (nr * sizeof(struct btrfs_item));
4831 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4832 if (ret == 0)
4833 return -EEXIST;
4834 if (ret < 0)
4835 return ret;
4836
4837 slot = path->slots[0];
4838 BUG_ON(slot < 0);
4839
4840 setup_items_for_insert(root, path, cpu_key, data_size,
4841 total_data, total_size, nr);
4842 return 0;
4843 }
4844
4845 /*
4846 * Given a key and some data, insert an item into the tree.
4847 * This does all the path init required, making room in the tree if needed.
4848 */
4849 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4850 *root, struct btrfs_key *cpu_key, void *data, u32
4851 data_size)
4852 {
4853 int ret = 0;
4854 struct btrfs_path *path;
4855 struct extent_buffer *leaf;
4856 unsigned long ptr;
4857
4858 path = btrfs_alloc_path();
4859 if (!path)
4860 return -ENOMEM;
4861 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4862 if (!ret) {
4863 leaf = path->nodes[0];
4864 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4865 write_extent_buffer(leaf, data, ptr, data_size);
4866 btrfs_mark_buffer_dirty(leaf);
4867 }
4868 btrfs_free_path(path);
4869 return ret;
4870 }
4871
4872 /*
4873 * delete the pointer from a given node.
4874 *
4875 * the tree should have been previously balanced so the deletion does not
4876 * empty a node.
4877 */
4878 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4879 int level, int slot)
4880 {
4881 struct extent_buffer *parent = path->nodes[level];
4882 u32 nritems;
4883 int ret;
4884
4885 nritems = btrfs_header_nritems(parent);
4886 if (slot != nritems - 1) {
4887 if (level)
4888 tree_mod_log_eb_move(root->fs_info, parent, slot,
4889 slot + 1, nritems - slot - 1);
4890 memmove_extent_buffer(parent,
4891 btrfs_node_key_ptr_offset(slot),
4892 btrfs_node_key_ptr_offset(slot + 1),
4893 sizeof(struct btrfs_key_ptr) *
4894 (nritems - slot - 1));
4895 } else if (level) {
4896 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4897 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4898 BUG_ON(ret < 0);
4899 }
4900
4901 nritems--;
4902 btrfs_set_header_nritems(parent, nritems);
4903 if (nritems == 0 && parent == root->node) {
4904 BUG_ON(btrfs_header_level(root->node) != 1);
4905 /* just turn the root into a leaf and break */
4906 btrfs_set_header_level(root->node, 0);
4907 } else if (slot == 0) {
4908 struct btrfs_disk_key disk_key;
4909
4910 btrfs_node_key(parent, &disk_key, 0);
4911 fixup_low_keys(root, path, &disk_key, level + 1);
4912 }
4913 btrfs_mark_buffer_dirty(parent);
4914 }
4915
4916 /*
4917 * a helper function to delete the leaf pointed to by path->slots[1] and
4918 * path->nodes[1].
4919 *
4920 * This deletes the pointer in path->nodes[1] and frees the leaf
4921 * block extent. zero is returned if it all worked out, < 0 otherwise.
4922 *
4923 * The path must have already been setup for deleting the leaf, including
4924 * all the proper balancing. path->nodes[1] must be locked.
4925 */
4926 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4927 struct btrfs_root *root,
4928 struct btrfs_path *path,
4929 struct extent_buffer *leaf)
4930 {
4931 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4932 del_ptr(root, path, 1, path->slots[1]);
4933
4934 /*
4935 * btrfs_free_extent is expensive, we want to make sure we
4936 * aren't holding any locks when we call it
4937 */
4938 btrfs_unlock_up_safe(path, 0);
4939
4940 root_sub_used(root, leaf->len);
4941
4942 extent_buffer_get(leaf);
4943 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4944 free_extent_buffer_stale(leaf);
4945 }
4946 /*
4947 * delete the item at the leaf level in path. If that empties
4948 * the leaf, remove it from the tree
4949 */
4950 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4951 struct btrfs_path *path, int slot, int nr)
4952 {
4953 struct extent_buffer *leaf;
4954 struct btrfs_item *item;
4955 int last_off;
4956 int dsize = 0;
4957 int ret = 0;
4958 int wret;
4959 int i;
4960 u32 nritems;
4961 struct btrfs_map_token token;
4962
4963 btrfs_init_map_token(&token);
4964
4965 leaf = path->nodes[0];
4966 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4967
4968 for (i = 0; i < nr; i++)
4969 dsize += btrfs_item_size_nr(leaf, slot + i);
4970
4971 nritems = btrfs_header_nritems(leaf);
4972
4973 if (slot + nr != nritems) {
4974 int data_end = leaf_data_end(root, leaf);
4975
4976 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4977 data_end + dsize,
4978 btrfs_leaf_data(leaf) + data_end,
4979 last_off - data_end);
4980
4981 for (i = slot + nr; i < nritems; i++) {
4982 u32 ioff;
4983
4984 item = btrfs_item_nr(i);
4985 ioff = btrfs_token_item_offset(leaf, item, &token);
4986 btrfs_set_token_item_offset(leaf, item,
4987 ioff + dsize, &token);
4988 }
4989
4990 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4991 btrfs_item_nr_offset(slot + nr),
4992 sizeof(struct btrfs_item) *
4993 (nritems - slot - nr));
4994 }
4995 btrfs_set_header_nritems(leaf, nritems - nr);
4996 nritems -= nr;
4997
4998 /* delete the leaf if we've emptied it */
4999 if (nritems == 0) {
5000 if (leaf == root->node) {
5001 btrfs_set_header_level(leaf, 0);
5002 } else {
5003 btrfs_set_path_blocking(path);
5004 clean_tree_block(trans, root, leaf);
5005 btrfs_del_leaf(trans, root, path, leaf);
5006 }
5007 } else {
5008 int used = leaf_space_used(leaf, 0, nritems);
5009 if (slot == 0) {
5010 struct btrfs_disk_key disk_key;
5011
5012 btrfs_item_key(leaf, &disk_key, 0);
5013 fixup_low_keys(root, path, &disk_key, 1);
5014 }
5015
5016 /* delete the leaf if it is mostly empty */
5017 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5018 /* push_leaf_left fixes the path.
5019 * make sure the path still points to our leaf
5020 * for possible call to del_ptr below
5021 */
5022 slot = path->slots[1];
5023 extent_buffer_get(leaf);
5024
5025 btrfs_set_path_blocking(path);
5026 wret = push_leaf_left(trans, root, path, 1, 1,
5027 1, (u32)-1);
5028 if (wret < 0 && wret != -ENOSPC)
5029 ret = wret;
5030
5031 if (path->nodes[0] == leaf &&
5032 btrfs_header_nritems(leaf)) {
5033 wret = push_leaf_right(trans, root, path, 1,
5034 1, 1, 0);
5035 if (wret < 0 && wret != -ENOSPC)
5036 ret = wret;
5037 }
5038
5039 if (btrfs_header_nritems(leaf) == 0) {
5040 path->slots[1] = slot;
5041 btrfs_del_leaf(trans, root, path, leaf);
5042 free_extent_buffer(leaf);
5043 ret = 0;
5044 } else {
5045 /* if we're still in the path, make sure
5046 * we're dirty. Otherwise, one of the
5047 * push_leaf functions must have already
5048 * dirtied this buffer
5049 */
5050 if (path->nodes[0] == leaf)
5051 btrfs_mark_buffer_dirty(leaf);
5052 free_extent_buffer(leaf);
5053 }
5054 } else {
5055 btrfs_mark_buffer_dirty(leaf);
5056 }
5057 }
5058 return ret;
5059 }
5060
5061 /*
5062 * search the tree again to find a leaf with lesser keys
5063 * returns 0 if it found something or 1 if there are no lesser leaves.
5064 * returns < 0 on io errors.
5065 *
5066 * This may release the path, and so you may lose any locks held at the
5067 * time you call it.
5068 */
5069 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5070 {
5071 struct btrfs_key key;
5072 struct btrfs_disk_key found_key;
5073 int ret;
5074
5075 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5076
5077 if (key.offset > 0) {
5078 key.offset--;
5079 } else if (key.type > 0) {
5080 key.type--;
5081 key.offset = (u64)-1;
5082 } else if (key.objectid > 0) {
5083 key.objectid--;
5084 key.type = (u8)-1;
5085 key.offset = (u64)-1;
5086 } else {
5087 return 1;
5088 }
5089
5090 btrfs_release_path(path);
5091 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5092 if (ret < 0)
5093 return ret;
5094 btrfs_item_key(path->nodes[0], &found_key, 0);
5095 ret = comp_keys(&found_key, &key);
5096 if (ret < 0)
5097 return 0;
5098 return 1;
5099 }
5100
5101 /*
5102 * A helper function to walk down the tree starting at min_key, and looking
5103 * for nodes or leaves that are have a minimum transaction id.
5104 * This is used by the btree defrag code, and tree logging
5105 *
5106 * This does not cow, but it does stuff the starting key it finds back
5107 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5108 * key and get a writable path.
5109 *
5110 * This does lock as it descends, and path->keep_locks should be set
5111 * to 1 by the caller.
5112 *
5113 * This honors path->lowest_level to prevent descent past a given level
5114 * of the tree.
5115 *
5116 * min_trans indicates the oldest transaction that you are interested
5117 * in walking through. Any nodes or leaves older than min_trans are
5118 * skipped over (without reading them).
5119 *
5120 * returns zero if something useful was found, < 0 on error and 1 if there
5121 * was nothing in the tree that matched the search criteria.
5122 */
5123 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5124 struct btrfs_path *path,
5125 u64 min_trans)
5126 {
5127 struct extent_buffer *cur;
5128 struct btrfs_key found_key;
5129 int slot;
5130 int sret;
5131 u32 nritems;
5132 int level;
5133 int ret = 1;
5134
5135 WARN_ON(!path->keep_locks);
5136 again:
5137 cur = btrfs_read_lock_root_node(root);
5138 level = btrfs_header_level(cur);
5139 WARN_ON(path->nodes[level]);
5140 path->nodes[level] = cur;
5141 path->locks[level] = BTRFS_READ_LOCK;
5142
5143 if (btrfs_header_generation(cur) < min_trans) {
5144 ret = 1;
5145 goto out;
5146 }
5147 while (1) {
5148 nritems = btrfs_header_nritems(cur);
5149 level = btrfs_header_level(cur);
5150 sret = bin_search(cur, min_key, level, &slot);
5151
5152 /* at the lowest level, we're done, setup the path and exit */
5153 if (level == path->lowest_level) {
5154 if (slot >= nritems)
5155 goto find_next_key;
5156 ret = 0;
5157 path->slots[level] = slot;
5158 btrfs_item_key_to_cpu(cur, &found_key, slot);
5159 goto out;
5160 }
5161 if (sret && slot > 0)
5162 slot--;
5163 /*
5164 * check this node pointer against the min_trans parameters.
5165 * If it is too old, old, skip to the next one.
5166 */
5167 while (slot < nritems) {
5168 u64 gen;
5169
5170 gen = btrfs_node_ptr_generation(cur, slot);
5171 if (gen < min_trans) {
5172 slot++;
5173 continue;
5174 }
5175 break;
5176 }
5177 find_next_key:
5178 /*
5179 * we didn't find a candidate key in this node, walk forward
5180 * and find another one
5181 */
5182 if (slot >= nritems) {
5183 path->slots[level] = slot;
5184 btrfs_set_path_blocking(path);
5185 sret = btrfs_find_next_key(root, path, min_key, level,
5186 min_trans);
5187 if (sret == 0) {
5188 btrfs_release_path(path);
5189 goto again;
5190 } else {
5191 goto out;
5192 }
5193 }
5194 /* save our key for returning back */
5195 btrfs_node_key_to_cpu(cur, &found_key, slot);
5196 path->slots[level] = slot;
5197 if (level == path->lowest_level) {
5198 ret = 0;
5199 unlock_up(path, level, 1, 0, NULL);
5200 goto out;
5201 }
5202 btrfs_set_path_blocking(path);
5203 cur = read_node_slot(root, cur, slot);
5204 BUG_ON(!cur); /* -ENOMEM */
5205
5206 btrfs_tree_read_lock(cur);
5207
5208 path->locks[level - 1] = BTRFS_READ_LOCK;
5209 path->nodes[level - 1] = cur;
5210 unlock_up(path, level, 1, 0, NULL);
5211 btrfs_clear_path_blocking(path, NULL, 0);
5212 }
5213 out:
5214 if (ret == 0)
5215 memcpy(min_key, &found_key, sizeof(found_key));
5216 btrfs_set_path_blocking(path);
5217 return ret;
5218 }
5219
5220 static void tree_move_down(struct btrfs_root *root,
5221 struct btrfs_path *path,
5222 int *level, int root_level)
5223 {
5224 BUG_ON(*level == 0);
5225 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5226 path->slots[*level]);
5227 path->slots[*level - 1] = 0;
5228 (*level)--;
5229 }
5230
5231 static int tree_move_next_or_upnext(struct btrfs_root *root,
5232 struct btrfs_path *path,
5233 int *level, int root_level)
5234 {
5235 int ret = 0;
5236 int nritems;
5237 nritems = btrfs_header_nritems(path->nodes[*level]);
5238
5239 path->slots[*level]++;
5240
5241 while (path->slots[*level] >= nritems) {
5242 if (*level == root_level)
5243 return -1;
5244
5245 /* move upnext */
5246 path->slots[*level] = 0;
5247 free_extent_buffer(path->nodes[*level]);
5248 path->nodes[*level] = NULL;
5249 (*level)++;
5250 path->slots[*level]++;
5251
5252 nritems = btrfs_header_nritems(path->nodes[*level]);
5253 ret = 1;
5254 }
5255 return ret;
5256 }
5257
5258 /*
5259 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5260 * or down.
5261 */
5262 static int tree_advance(struct btrfs_root *root,
5263 struct btrfs_path *path,
5264 int *level, int root_level,
5265 int allow_down,
5266 struct btrfs_key *key)
5267 {
5268 int ret;
5269
5270 if (*level == 0 || !allow_down) {
5271 ret = tree_move_next_or_upnext(root, path, level, root_level);
5272 } else {
5273 tree_move_down(root, path, level, root_level);
5274 ret = 0;
5275 }
5276 if (ret >= 0) {
5277 if (*level == 0)
5278 btrfs_item_key_to_cpu(path->nodes[*level], key,
5279 path->slots[*level]);
5280 else
5281 btrfs_node_key_to_cpu(path->nodes[*level], key,
5282 path->slots[*level]);
5283 }
5284 return ret;
5285 }
5286
5287 static int tree_compare_item(struct btrfs_root *left_root,
5288 struct btrfs_path *left_path,
5289 struct btrfs_path *right_path,
5290 char *tmp_buf)
5291 {
5292 int cmp;
5293 int len1, len2;
5294 unsigned long off1, off2;
5295
5296 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5297 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5298 if (len1 != len2)
5299 return 1;
5300
5301 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5302 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5303 right_path->slots[0]);
5304
5305 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5306
5307 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5308 if (cmp)
5309 return 1;
5310 return 0;
5311 }
5312
5313 #define ADVANCE 1
5314 #define ADVANCE_ONLY_NEXT -1
5315
5316 /*
5317 * This function compares two trees and calls the provided callback for
5318 * every changed/new/deleted item it finds.
5319 * If shared tree blocks are encountered, whole subtrees are skipped, making
5320 * the compare pretty fast on snapshotted subvolumes.
5321 *
5322 * This currently works on commit roots only. As commit roots are read only,
5323 * we don't do any locking. The commit roots are protected with transactions.
5324 * Transactions are ended and rejoined when a commit is tried in between.
5325 *
5326 * This function checks for modifications done to the trees while comparing.
5327 * If it detects a change, it aborts immediately.
5328 */
5329 int btrfs_compare_trees(struct btrfs_root *left_root,
5330 struct btrfs_root *right_root,
5331 btrfs_changed_cb_t changed_cb, void *ctx)
5332 {
5333 int ret;
5334 int cmp;
5335 struct btrfs_path *left_path = NULL;
5336 struct btrfs_path *right_path = NULL;
5337 struct btrfs_key left_key;
5338 struct btrfs_key right_key;
5339 char *tmp_buf = NULL;
5340 int left_root_level;
5341 int right_root_level;
5342 int left_level;
5343 int right_level;
5344 int left_end_reached;
5345 int right_end_reached;
5346 int advance_left;
5347 int advance_right;
5348 u64 left_blockptr;
5349 u64 right_blockptr;
5350 u64 left_gen;
5351 u64 right_gen;
5352
5353 left_path = btrfs_alloc_path();
5354 if (!left_path) {
5355 ret = -ENOMEM;
5356 goto out;
5357 }
5358 right_path = btrfs_alloc_path();
5359 if (!right_path) {
5360 ret = -ENOMEM;
5361 goto out;
5362 }
5363
5364 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5365 if (!tmp_buf) {
5366 ret = -ENOMEM;
5367 goto out;
5368 }
5369
5370 left_path->search_commit_root = 1;
5371 left_path->skip_locking = 1;
5372 right_path->search_commit_root = 1;
5373 right_path->skip_locking = 1;
5374
5375 /*
5376 * Strategy: Go to the first items of both trees. Then do
5377 *
5378 * If both trees are at level 0
5379 * Compare keys of current items
5380 * If left < right treat left item as new, advance left tree
5381 * and repeat
5382 * If left > right treat right item as deleted, advance right tree
5383 * and repeat
5384 * If left == right do deep compare of items, treat as changed if
5385 * needed, advance both trees and repeat
5386 * If both trees are at the same level but not at level 0
5387 * Compare keys of current nodes/leafs
5388 * If left < right advance left tree and repeat
5389 * If left > right advance right tree and repeat
5390 * If left == right compare blockptrs of the next nodes/leafs
5391 * If they match advance both trees but stay at the same level
5392 * and repeat
5393 * If they don't match advance both trees while allowing to go
5394 * deeper and repeat
5395 * If tree levels are different
5396 * Advance the tree that needs it and repeat
5397 *
5398 * Advancing a tree means:
5399 * If we are at level 0, try to go to the next slot. If that's not
5400 * possible, go one level up and repeat. Stop when we found a level
5401 * where we could go to the next slot. We may at this point be on a
5402 * node or a leaf.
5403 *
5404 * If we are not at level 0 and not on shared tree blocks, go one
5405 * level deeper.
5406 *
5407 * If we are not at level 0 and on shared tree blocks, go one slot to
5408 * the right if possible or go up and right.
5409 */
5410
5411 down_read(&left_root->fs_info->commit_root_sem);
5412 left_level = btrfs_header_level(left_root->commit_root);
5413 left_root_level = left_level;
5414 left_path->nodes[left_level] = left_root->commit_root;
5415 extent_buffer_get(left_path->nodes[left_level]);
5416
5417 right_level = btrfs_header_level(right_root->commit_root);
5418 right_root_level = right_level;
5419 right_path->nodes[right_level] = right_root->commit_root;
5420 extent_buffer_get(right_path->nodes[right_level]);
5421 up_read(&left_root->fs_info->commit_root_sem);
5422
5423 if (left_level == 0)
5424 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5425 &left_key, left_path->slots[left_level]);
5426 else
5427 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5428 &left_key, left_path->slots[left_level]);
5429 if (right_level == 0)
5430 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5431 &right_key, right_path->slots[right_level]);
5432 else
5433 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5434 &right_key, right_path->slots[right_level]);
5435
5436 left_end_reached = right_end_reached = 0;
5437 advance_left = advance_right = 0;
5438
5439 while (1) {
5440 if (advance_left && !left_end_reached) {
5441 ret = tree_advance(left_root, left_path, &left_level,
5442 left_root_level,
5443 advance_left != ADVANCE_ONLY_NEXT,
5444 &left_key);
5445 if (ret < 0)
5446 left_end_reached = ADVANCE;
5447 advance_left = 0;
5448 }
5449 if (advance_right && !right_end_reached) {
5450 ret = tree_advance(right_root, right_path, &right_level,
5451 right_root_level,
5452 advance_right != ADVANCE_ONLY_NEXT,
5453 &right_key);
5454 if (ret < 0)
5455 right_end_reached = ADVANCE;
5456 advance_right = 0;
5457 }
5458
5459 if (left_end_reached && right_end_reached) {
5460 ret = 0;
5461 goto out;
5462 } else if (left_end_reached) {
5463 if (right_level == 0) {
5464 ret = changed_cb(left_root, right_root,
5465 left_path, right_path,
5466 &right_key,
5467 BTRFS_COMPARE_TREE_DELETED,
5468 ctx);
5469 if (ret < 0)
5470 goto out;
5471 }
5472 advance_right = ADVANCE;
5473 continue;
5474 } else if (right_end_reached) {
5475 if (left_level == 0) {
5476 ret = changed_cb(left_root, right_root,
5477 left_path, right_path,
5478 &left_key,
5479 BTRFS_COMPARE_TREE_NEW,
5480 ctx);
5481 if (ret < 0)
5482 goto out;
5483 }
5484 advance_left = ADVANCE;
5485 continue;
5486 }
5487
5488 if (left_level == 0 && right_level == 0) {
5489 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5490 if (cmp < 0) {
5491 ret = changed_cb(left_root, right_root,
5492 left_path, right_path,
5493 &left_key,
5494 BTRFS_COMPARE_TREE_NEW,
5495 ctx);
5496 if (ret < 0)
5497 goto out;
5498 advance_left = ADVANCE;
5499 } else if (cmp > 0) {
5500 ret = changed_cb(left_root, right_root,
5501 left_path, right_path,
5502 &right_key,
5503 BTRFS_COMPARE_TREE_DELETED,
5504 ctx);
5505 if (ret < 0)
5506 goto out;
5507 advance_right = ADVANCE;
5508 } else {
5509 enum btrfs_compare_tree_result cmp;
5510
5511 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5512 ret = tree_compare_item(left_root, left_path,
5513 right_path, tmp_buf);
5514 if (ret)
5515 cmp = BTRFS_COMPARE_TREE_CHANGED;
5516 else
5517 cmp = BTRFS_COMPARE_TREE_SAME;
5518 ret = changed_cb(left_root, right_root,
5519 left_path, right_path,
5520 &left_key, cmp, ctx);
5521 if (ret < 0)
5522 goto out;
5523 advance_left = ADVANCE;
5524 advance_right = ADVANCE;
5525 }
5526 } else if (left_level == right_level) {
5527 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5528 if (cmp < 0) {
5529 advance_left = ADVANCE;
5530 } else if (cmp > 0) {
5531 advance_right = ADVANCE;
5532 } else {
5533 left_blockptr = btrfs_node_blockptr(
5534 left_path->nodes[left_level],
5535 left_path->slots[left_level]);
5536 right_blockptr = btrfs_node_blockptr(
5537 right_path->nodes[right_level],
5538 right_path->slots[right_level]);
5539 left_gen = btrfs_node_ptr_generation(
5540 left_path->nodes[left_level],
5541 left_path->slots[left_level]);
5542 right_gen = btrfs_node_ptr_generation(
5543 right_path->nodes[right_level],
5544 right_path->slots[right_level]);
5545 if (left_blockptr == right_blockptr &&
5546 left_gen == right_gen) {
5547 /*
5548 * As we're on a shared block, don't
5549 * allow to go deeper.
5550 */
5551 advance_left = ADVANCE_ONLY_NEXT;
5552 advance_right = ADVANCE_ONLY_NEXT;
5553 } else {
5554 advance_left = ADVANCE;
5555 advance_right = ADVANCE;
5556 }
5557 }
5558 } else if (left_level < right_level) {
5559 advance_right = ADVANCE;
5560 } else {
5561 advance_left = ADVANCE;
5562 }
5563 }
5564
5565 out:
5566 btrfs_free_path(left_path);
5567 btrfs_free_path(right_path);
5568 kfree(tmp_buf);
5569 return ret;
5570 }
5571
5572 /*
5573 * this is similar to btrfs_next_leaf, but does not try to preserve
5574 * and fixup the path. It looks for and returns the next key in the
5575 * tree based on the current path and the min_trans parameters.
5576 *
5577 * 0 is returned if another key is found, < 0 if there are any errors
5578 * and 1 is returned if there are no higher keys in the tree
5579 *
5580 * path->keep_locks should be set to 1 on the search made before
5581 * calling this function.
5582 */
5583 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5584 struct btrfs_key *key, int level, u64 min_trans)
5585 {
5586 int slot;
5587 struct extent_buffer *c;
5588
5589 WARN_ON(!path->keep_locks);
5590 while (level < BTRFS_MAX_LEVEL) {
5591 if (!path->nodes[level])
5592 return 1;
5593
5594 slot = path->slots[level] + 1;
5595 c = path->nodes[level];
5596 next:
5597 if (slot >= btrfs_header_nritems(c)) {
5598 int ret;
5599 int orig_lowest;
5600 struct btrfs_key cur_key;
5601 if (level + 1 >= BTRFS_MAX_LEVEL ||
5602 !path->nodes[level + 1])
5603 return 1;
5604
5605 if (path->locks[level + 1]) {
5606 level++;
5607 continue;
5608 }
5609
5610 slot = btrfs_header_nritems(c) - 1;
5611 if (level == 0)
5612 btrfs_item_key_to_cpu(c, &cur_key, slot);
5613 else
5614 btrfs_node_key_to_cpu(c, &cur_key, slot);
5615
5616 orig_lowest = path->lowest_level;
5617 btrfs_release_path(path);
5618 path->lowest_level = level;
5619 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5620 0, 0);
5621 path->lowest_level = orig_lowest;
5622 if (ret < 0)
5623 return ret;
5624
5625 c = path->nodes[level];
5626 slot = path->slots[level];
5627 if (ret == 0)
5628 slot++;
5629 goto next;
5630 }
5631
5632 if (level == 0)
5633 btrfs_item_key_to_cpu(c, key, slot);
5634 else {
5635 u64 gen = btrfs_node_ptr_generation(c, slot);
5636
5637 if (gen < min_trans) {
5638 slot++;
5639 goto next;
5640 }
5641 btrfs_node_key_to_cpu(c, key, slot);
5642 }
5643 return 0;
5644 }
5645 return 1;
5646 }
5647
5648 /*
5649 * search the tree again to find a leaf with greater keys
5650 * returns 0 if it found something or 1 if there are no greater leaves.
5651 * returns < 0 on io errors.
5652 */
5653 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5654 {
5655 return btrfs_next_old_leaf(root, path, 0);
5656 }
5657
5658 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5659 u64 time_seq)
5660 {
5661 int slot;
5662 int level;
5663 struct extent_buffer *c;
5664 struct extent_buffer *next;
5665 struct btrfs_key key;
5666 u32 nritems;
5667 int ret;
5668 int old_spinning = path->leave_spinning;
5669 int next_rw_lock = 0;
5670
5671 nritems = btrfs_header_nritems(path->nodes[0]);
5672 if (nritems == 0)
5673 return 1;
5674
5675 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5676 again:
5677 level = 1;
5678 next = NULL;
5679 next_rw_lock = 0;
5680 btrfs_release_path(path);
5681
5682 path->keep_locks = 1;
5683 path->leave_spinning = 1;
5684
5685 if (time_seq)
5686 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5687 else
5688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5689 path->keep_locks = 0;
5690
5691 if (ret < 0)
5692 return ret;
5693
5694 nritems = btrfs_header_nritems(path->nodes[0]);
5695 /*
5696 * by releasing the path above we dropped all our locks. A balance
5697 * could have added more items next to the key that used to be
5698 * at the very end of the block. So, check again here and
5699 * advance the path if there are now more items available.
5700 */
5701 if (nritems > 0 && path->slots[0] < nritems - 1) {
5702 if (ret == 0)
5703 path->slots[0]++;
5704 ret = 0;
5705 goto done;
5706 }
5707
5708 while (level < BTRFS_MAX_LEVEL) {
5709 if (!path->nodes[level]) {
5710 ret = 1;
5711 goto done;
5712 }
5713
5714 slot = path->slots[level] + 1;
5715 c = path->nodes[level];
5716 if (slot >= btrfs_header_nritems(c)) {
5717 level++;
5718 if (level == BTRFS_MAX_LEVEL) {
5719 ret = 1;
5720 goto done;
5721 }
5722 continue;
5723 }
5724
5725 if (next) {
5726 btrfs_tree_unlock_rw(next, next_rw_lock);
5727 free_extent_buffer(next);
5728 }
5729
5730 next = c;
5731 next_rw_lock = path->locks[level];
5732 ret = read_block_for_search(NULL, root, path, &next, level,
5733 slot, &key, 0);
5734 if (ret == -EAGAIN)
5735 goto again;
5736
5737 if (ret < 0) {
5738 btrfs_release_path(path);
5739 goto done;
5740 }
5741
5742 if (!path->skip_locking) {
5743 ret = btrfs_try_tree_read_lock(next);
5744 if (!ret && time_seq) {
5745 /*
5746 * If we don't get the lock, we may be racing
5747 * with push_leaf_left, holding that lock while
5748 * itself waiting for the leaf we've currently
5749 * locked. To solve this situation, we give up
5750 * on our lock and cycle.
5751 */
5752 free_extent_buffer(next);
5753 btrfs_release_path(path);
5754 cond_resched();
5755 goto again;
5756 }
5757 if (!ret) {
5758 btrfs_set_path_blocking(path);
5759 btrfs_tree_read_lock(next);
5760 btrfs_clear_path_blocking(path, next,
5761 BTRFS_READ_LOCK);
5762 }
5763 next_rw_lock = BTRFS_READ_LOCK;
5764 }
5765 break;
5766 }
5767 path->slots[level] = slot;
5768 while (1) {
5769 level--;
5770 c = path->nodes[level];
5771 if (path->locks[level])
5772 btrfs_tree_unlock_rw(c, path->locks[level]);
5773
5774 free_extent_buffer(c);
5775 path->nodes[level] = next;
5776 path->slots[level] = 0;
5777 if (!path->skip_locking)
5778 path->locks[level] = next_rw_lock;
5779 if (!level)
5780 break;
5781
5782 ret = read_block_for_search(NULL, root, path, &next, level,
5783 0, &key, 0);
5784 if (ret == -EAGAIN)
5785 goto again;
5786
5787 if (ret < 0) {
5788 btrfs_release_path(path);
5789 goto done;
5790 }
5791
5792 if (!path->skip_locking) {
5793 ret = btrfs_try_tree_read_lock(next);
5794 if (!ret) {
5795 btrfs_set_path_blocking(path);
5796 btrfs_tree_read_lock(next);
5797 btrfs_clear_path_blocking(path, next,
5798 BTRFS_READ_LOCK);
5799 }
5800 next_rw_lock = BTRFS_READ_LOCK;
5801 }
5802 }
5803 ret = 0;
5804 done:
5805 unlock_up(path, 0, 1, 0, NULL);
5806 path->leave_spinning = old_spinning;
5807 if (!old_spinning)
5808 btrfs_set_path_blocking(path);
5809
5810 return ret;
5811 }
5812
5813 /*
5814 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5815 * searching until it gets past min_objectid or finds an item of 'type'
5816 *
5817 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5818 */
5819 int btrfs_previous_item(struct btrfs_root *root,
5820 struct btrfs_path *path, u64 min_objectid,
5821 int type)
5822 {
5823 struct btrfs_key found_key;
5824 struct extent_buffer *leaf;
5825 u32 nritems;
5826 int ret;
5827
5828 while (1) {
5829 if (path->slots[0] == 0) {
5830 btrfs_set_path_blocking(path);
5831 ret = btrfs_prev_leaf(root, path);
5832 if (ret != 0)
5833 return ret;
5834 } else {
5835 path->slots[0]--;
5836 }
5837 leaf = path->nodes[0];
5838 nritems = btrfs_header_nritems(leaf);
5839 if (nritems == 0)
5840 return 1;
5841 if (path->slots[0] == nritems)
5842 path->slots[0]--;
5843
5844 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5845 if (found_key.objectid < min_objectid)
5846 break;
5847 if (found_key.type == type)
5848 return 0;
5849 if (found_key.objectid == min_objectid &&
5850 found_key.type < type)
5851 break;
5852 }
5853 return 1;
5854 }
5855
5856 /*
5857 * search in extent tree to find a previous Metadata/Data extent item with
5858 * min objecitd.
5859 *
5860 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5861 */
5862 int btrfs_previous_extent_item(struct btrfs_root *root,
5863 struct btrfs_path *path, u64 min_objectid)
5864 {
5865 struct btrfs_key found_key;
5866 struct extent_buffer *leaf;
5867 u32 nritems;
5868 int ret;
5869
5870 while (1) {
5871 if (path->slots[0] == 0) {
5872 btrfs_set_path_blocking(path);
5873 ret = btrfs_prev_leaf(root, path);
5874 if (ret != 0)
5875 return ret;
5876 } else {
5877 path->slots[0]--;
5878 }
5879 leaf = path->nodes[0];
5880 nritems = btrfs_header_nritems(leaf);
5881 if (nritems == 0)
5882 return 1;
5883 if (path->slots[0] == nritems)
5884 path->slots[0]--;
5885
5886 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5887 if (found_key.objectid < min_objectid)
5888 break;
5889 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5890 found_key.type == BTRFS_METADATA_ITEM_KEY)
5891 return 0;
5892 if (found_key.objectid == min_objectid &&
5893 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5894 break;
5895 }
5896 return 1;
5897 }
This page took 0.15209 seconds and 5 git commands to generate.