Merge branches 'fixes' and 'misc' into for-next
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47 struct btrfs_path *path;
48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 return path;
50 }
51
52 /*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 }
68 }
69
70 /*
71 * reset all the locked nodes in the patch to spinning locks.
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
77 */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 struct extent_buffer *held, int held_rw)
80 {
81 int i;
82
83 #ifdef CONFIG_DEBUG_LOCK_ALLOC
84 /* lockdep really cares that we take all of these spinlocks
85 * in the right order. If any of the locks in the path are not
86 * currently blocking, it is going to complain. So, make really
87 * really sure by forcing the path to blocking before we clear
88 * the path blocking.
89 */
90 if (held) {
91 btrfs_set_lock_blocking_rw(held, held_rw);
92 if (held_rw == BTRFS_WRITE_LOCK)
93 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
94 else if (held_rw == BTRFS_READ_LOCK)
95 held_rw = BTRFS_READ_LOCK_BLOCKING;
96 }
97 btrfs_set_path_blocking(p);
98 #endif
99
100 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
101 if (p->nodes[i] && p->locks[i]) {
102 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
103 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
104 p->locks[i] = BTRFS_WRITE_LOCK;
105 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
106 p->locks[i] = BTRFS_READ_LOCK;
107 }
108 }
109
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 if (held)
112 btrfs_clear_lock_blocking_rw(held, held_rw);
113 #endif
114 }
115
116 /* this also releases the path */
117 void btrfs_free_path(struct btrfs_path *p)
118 {
119 if (!p)
120 return;
121 btrfs_release_path(p);
122 kmem_cache_free(btrfs_path_cachep, p);
123 }
124
125 /*
126 * path release drops references on the extent buffers in the path
127 * and it drops any locks held by this path
128 *
129 * It is safe to call this on paths that no locks or extent buffers held.
130 */
131 noinline void btrfs_release_path(struct btrfs_path *p)
132 {
133 int i;
134
135 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
136 p->slots[i] = 0;
137 if (!p->nodes[i])
138 continue;
139 if (p->locks[i]) {
140 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
141 p->locks[i] = 0;
142 }
143 free_extent_buffer(p->nodes[i]);
144 p->nodes[i] = NULL;
145 }
146 }
147
148 /*
149 * safely gets a reference on the root node of a tree. A lock
150 * is not taken, so a concurrent writer may put a different node
151 * at the root of the tree. See btrfs_lock_root_node for the
152 * looping required.
153 *
154 * The extent buffer returned by this has a reference taken, so
155 * it won't disappear. It may stop being the root of the tree
156 * at any time because there are no locks held.
157 */
158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
159 {
160 struct extent_buffer *eb;
161
162 while (1) {
163 rcu_read_lock();
164 eb = rcu_dereference(root->node);
165
166 /*
167 * RCU really hurts here, we could free up the root node because
168 * it was cow'ed but we may not get the new root node yet so do
169 * the inc_not_zero dance and if it doesn't work then
170 * synchronize_rcu and try again.
171 */
172 if (atomic_inc_not_zero(&eb->refs)) {
173 rcu_read_unlock();
174 break;
175 }
176 rcu_read_unlock();
177 synchronize_rcu();
178 }
179 return eb;
180 }
181
182 /* loop around taking references on and locking the root node of the
183 * tree until you end up with a lock on the root. A locked buffer
184 * is returned, with a reference held.
185 */
186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
187 {
188 struct extent_buffer *eb;
189
190 while (1) {
191 eb = btrfs_root_node(root);
192 btrfs_tree_lock(eb);
193 if (eb == root->node)
194 break;
195 btrfs_tree_unlock(eb);
196 free_extent_buffer(eb);
197 }
198 return eb;
199 }
200
201 /* loop around taking references on and locking the root node of the
202 * tree until you end up with a lock on the root. A locked buffer
203 * is returned, with a reference held.
204 */
205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
206 {
207 struct extent_buffer *eb;
208
209 while (1) {
210 eb = btrfs_root_node(root);
211 btrfs_tree_read_lock(eb);
212 if (eb == root->node)
213 break;
214 btrfs_tree_read_unlock(eb);
215 free_extent_buffer(eb);
216 }
217 return eb;
218 }
219
220 /* cowonly root (everything not a reference counted cow subvolume), just get
221 * put onto a simple dirty list. transaction.c walks this to make sure they
222 * get properly updated on disk.
223 */
224 static void add_root_to_dirty_list(struct btrfs_root *root)
225 {
226 spin_lock(&root->fs_info->trans_lock);
227 if (root->track_dirty && list_empty(&root->dirty_list)) {
228 list_add(&root->dirty_list,
229 &root->fs_info->dirty_cowonly_roots);
230 }
231 spin_unlock(&root->fs_info->trans_lock);
232 }
233
234 /*
235 * used by snapshot creation to make a copy of a root for a tree with
236 * a given objectid. The buffer with the new root node is returned in
237 * cow_ret, and this func returns zero on success or a negative error code.
238 */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240 struct btrfs_root *root,
241 struct extent_buffer *buf,
242 struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244 struct extent_buffer *cow;
245 int ret = 0;
246 int level;
247 struct btrfs_disk_key disk_key;
248
249 WARN_ON(root->ref_cows && trans->transid !=
250 root->fs_info->running_transaction->transid);
251 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
252
253 level = btrfs_header_level(buf);
254 if (level == 0)
255 btrfs_item_key(buf, &disk_key, 0);
256 else
257 btrfs_node_key(buf, &disk_key, 0);
258
259 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
260 new_root_objectid, &disk_key, level,
261 buf->start, 0);
262 if (IS_ERR(cow))
263 return PTR_ERR(cow);
264
265 copy_extent_buffer(cow, buf, 0, 0, cow->len);
266 btrfs_set_header_bytenr(cow, cow->start);
267 btrfs_set_header_generation(cow, trans->transid);
268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270 BTRFS_HEADER_FLAG_RELOC);
271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273 else
274 btrfs_set_header_owner(cow, new_root_objectid);
275
276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277 BTRFS_FSID_SIZE);
278
279 WARN_ON(btrfs_header_generation(buf) > trans->transid);
280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
282 else
283 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
284
285 if (ret)
286 return ret;
287
288 btrfs_mark_buffer_dirty(cow);
289 *cow_ret = cow;
290 return 0;
291 }
292
293 enum mod_log_op {
294 MOD_LOG_KEY_REPLACE,
295 MOD_LOG_KEY_ADD,
296 MOD_LOG_KEY_REMOVE,
297 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299 MOD_LOG_MOVE_KEYS,
300 MOD_LOG_ROOT_REPLACE,
301 };
302
303 struct tree_mod_move {
304 int dst_slot;
305 int nr_items;
306 };
307
308 struct tree_mod_root {
309 u64 logical;
310 u8 level;
311 };
312
313 struct tree_mod_elem {
314 struct rb_node node;
315 u64 index; /* shifted logical */
316 u64 seq;
317 enum mod_log_op op;
318
319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320 int slot;
321
322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323 u64 generation;
324
325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 struct btrfs_disk_key key;
327 u64 blockptr;
328
329 /* this is used for op == MOD_LOG_MOVE_KEYS */
330 struct tree_mod_move move;
331
332 /* this is used for op == MOD_LOG_ROOT_REPLACE */
333 struct tree_mod_root old_root;
334 };
335
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338 read_lock(&fs_info->tree_mod_log_lock);
339 }
340
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343 read_unlock(&fs_info->tree_mod_log_lock);
344 }
345
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348 write_lock(&fs_info->tree_mod_log_lock);
349 }
350
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353 write_unlock(&fs_info->tree_mod_log_lock);
354 }
355
356 /*
357 * Increment the upper half of tree_mod_seq, set lower half zero.
358 *
359 * Must be called with fs_info->tree_mod_seq_lock held.
360 */
361 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
362 {
363 u64 seq = atomic64_read(&fs_info->tree_mod_seq);
364 seq &= 0xffffffff00000000ull;
365 seq += 1ull << 32;
366 atomic64_set(&fs_info->tree_mod_seq, seq);
367 return seq;
368 }
369
370 /*
371 * Increment the lower half of tree_mod_seq.
372 *
373 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
374 * are generated should not technically require a spin lock here. (Rationale:
375 * incrementing the minor while incrementing the major seq number is between its
376 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
377 * just returns a unique sequence number as usual.) We have decided to leave
378 * that requirement in here and rethink it once we notice it really imposes a
379 * problem on some workload.
380 */
381 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
382 {
383 return atomic64_inc_return(&fs_info->tree_mod_seq);
384 }
385
386 /*
387 * return the last minor in the previous major tree_mod_seq number
388 */
389 u64 btrfs_tree_mod_seq_prev(u64 seq)
390 {
391 return (seq & 0xffffffff00000000ull) - 1ull;
392 }
393
394 /*
395 * This adds a new blocker to the tree mod log's blocker list if the @elem
396 * passed does not already have a sequence number set. So when a caller expects
397 * to record tree modifications, it should ensure to set elem->seq to zero
398 * before calling btrfs_get_tree_mod_seq.
399 * Returns a fresh, unused tree log modification sequence number, even if no new
400 * blocker was added.
401 */
402 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
403 struct seq_list *elem)
404 {
405 u64 seq;
406
407 tree_mod_log_write_lock(fs_info);
408 spin_lock(&fs_info->tree_mod_seq_lock);
409 if (!elem->seq) {
410 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
411 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
412 }
413 seq = btrfs_inc_tree_mod_seq_minor(fs_info);
414 spin_unlock(&fs_info->tree_mod_seq_lock);
415 tree_mod_log_write_unlock(fs_info);
416
417 return seq;
418 }
419
420 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
421 struct seq_list *elem)
422 {
423 struct rb_root *tm_root;
424 struct rb_node *node;
425 struct rb_node *next;
426 struct seq_list *cur_elem;
427 struct tree_mod_elem *tm;
428 u64 min_seq = (u64)-1;
429 u64 seq_putting = elem->seq;
430
431 if (!seq_putting)
432 return;
433
434 spin_lock(&fs_info->tree_mod_seq_lock);
435 list_del(&elem->list);
436 elem->seq = 0;
437
438 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
439 if (cur_elem->seq < min_seq) {
440 if (seq_putting > cur_elem->seq) {
441 /*
442 * blocker with lower sequence number exists, we
443 * cannot remove anything from the log
444 */
445 spin_unlock(&fs_info->tree_mod_seq_lock);
446 return;
447 }
448 min_seq = cur_elem->seq;
449 }
450 }
451 spin_unlock(&fs_info->tree_mod_seq_lock);
452
453 /*
454 * anything that's lower than the lowest existing (read: blocked)
455 * sequence number can be removed from the tree.
456 */
457 tree_mod_log_write_lock(fs_info);
458 tm_root = &fs_info->tree_mod_log;
459 for (node = rb_first(tm_root); node; node = next) {
460 next = rb_next(node);
461 tm = container_of(node, struct tree_mod_elem, node);
462 if (tm->seq > min_seq)
463 continue;
464 rb_erase(node, tm_root);
465 kfree(tm);
466 }
467 tree_mod_log_write_unlock(fs_info);
468 }
469
470 /*
471 * key order of the log:
472 * index -> sequence
473 *
474 * the index is the shifted logical of the *new* root node for root replace
475 * operations, or the shifted logical of the affected block for all other
476 * operations.
477 *
478 * Note: must be called with write lock (tree_mod_log_write_lock).
479 */
480 static noinline int
481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
482 {
483 struct rb_root *tm_root;
484 struct rb_node **new;
485 struct rb_node *parent = NULL;
486 struct tree_mod_elem *cur;
487
488 BUG_ON(!tm);
489
490 spin_lock(&fs_info->tree_mod_seq_lock);
491 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
492 spin_unlock(&fs_info->tree_mod_seq_lock);
493
494 tm_root = &fs_info->tree_mod_log;
495 new = &tm_root->rb_node;
496 while (*new) {
497 cur = container_of(*new, struct tree_mod_elem, node);
498 parent = *new;
499 if (cur->index < tm->index)
500 new = &((*new)->rb_left);
501 else if (cur->index > tm->index)
502 new = &((*new)->rb_right);
503 else if (cur->seq < tm->seq)
504 new = &((*new)->rb_left);
505 else if (cur->seq > tm->seq)
506 new = &((*new)->rb_right);
507 else
508 return -EEXIST;
509 }
510
511 rb_link_node(&tm->node, parent, new);
512 rb_insert_color(&tm->node, tm_root);
513 return 0;
514 }
515
516 /*
517 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
518 * returns zero with the tree_mod_log_lock acquired. The caller must hold
519 * this until all tree mod log insertions are recorded in the rb tree and then
520 * call tree_mod_log_write_unlock() to release.
521 */
522 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
523 struct extent_buffer *eb) {
524 smp_mb();
525 if (list_empty(&(fs_info)->tree_mod_seq_list))
526 return 1;
527 if (eb && btrfs_header_level(eb) == 0)
528 return 1;
529
530 tree_mod_log_write_lock(fs_info);
531 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
532 tree_mod_log_write_unlock(fs_info);
533 return 1;
534 }
535
536 return 0;
537 }
538
539 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
540 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb)
542 {
543 smp_mb();
544 if (list_empty(&(fs_info)->tree_mod_seq_list))
545 return 0;
546 if (eb && btrfs_header_level(eb) == 0)
547 return 0;
548
549 return 1;
550 }
551
552 static struct tree_mod_elem *
553 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
554 enum mod_log_op op, gfp_t flags)
555 {
556 struct tree_mod_elem *tm;
557
558 tm = kzalloc(sizeof(*tm), flags);
559 if (!tm)
560 return NULL;
561
562 tm->index = eb->start >> PAGE_CACHE_SHIFT;
563 if (op != MOD_LOG_KEY_ADD) {
564 btrfs_node_key(eb, &tm->key, slot);
565 tm->blockptr = btrfs_node_blockptr(eb, slot);
566 }
567 tm->op = op;
568 tm->slot = slot;
569 tm->generation = btrfs_node_ptr_generation(eb, slot);
570 RB_CLEAR_NODE(&tm->node);
571
572 return tm;
573 }
574
575 static noinline int
576 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
577 struct extent_buffer *eb, int slot,
578 enum mod_log_op op, gfp_t flags)
579 {
580 struct tree_mod_elem *tm;
581 int ret;
582
583 if (!tree_mod_need_log(fs_info, eb))
584 return 0;
585
586 tm = alloc_tree_mod_elem(eb, slot, op, flags);
587 if (!tm)
588 return -ENOMEM;
589
590 if (tree_mod_dont_log(fs_info, eb)) {
591 kfree(tm);
592 return 0;
593 }
594
595 ret = __tree_mod_log_insert(fs_info, tm);
596 tree_mod_log_write_unlock(fs_info);
597 if (ret)
598 kfree(tm);
599
600 return ret;
601 }
602
603 static noinline int
604 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
605 struct extent_buffer *eb, int dst_slot, int src_slot,
606 int nr_items, gfp_t flags)
607 {
608 struct tree_mod_elem *tm = NULL;
609 struct tree_mod_elem **tm_list = NULL;
610 int ret = 0;
611 int i;
612 int locked = 0;
613
614 if (!tree_mod_need_log(fs_info, eb))
615 return 0;
616
617 tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
618 if (!tm_list)
619 return -ENOMEM;
620
621 tm = kzalloc(sizeof(*tm), flags);
622 if (!tm) {
623 ret = -ENOMEM;
624 goto free_tms;
625 }
626
627 tm->index = eb->start >> PAGE_CACHE_SHIFT;
628 tm->slot = src_slot;
629 tm->move.dst_slot = dst_slot;
630 tm->move.nr_items = nr_items;
631 tm->op = MOD_LOG_MOVE_KEYS;
632
633 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
634 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
635 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
636 if (!tm_list[i]) {
637 ret = -ENOMEM;
638 goto free_tms;
639 }
640 }
641
642 if (tree_mod_dont_log(fs_info, eb))
643 goto free_tms;
644 locked = 1;
645
646 /*
647 * When we override something during the move, we log these removals.
648 * This can only happen when we move towards the beginning of the
649 * buffer, i.e. dst_slot < src_slot.
650 */
651 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
652 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653 if (ret)
654 goto free_tms;
655 }
656
657 ret = __tree_mod_log_insert(fs_info, tm);
658 if (ret)
659 goto free_tms;
660 tree_mod_log_write_unlock(fs_info);
661 kfree(tm_list);
662
663 return 0;
664 free_tms:
665 for (i = 0; i < nr_items; i++) {
666 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
667 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
668 kfree(tm_list[i]);
669 }
670 if (locked)
671 tree_mod_log_write_unlock(fs_info);
672 kfree(tm_list);
673 kfree(tm);
674
675 return ret;
676 }
677
678 static inline int
679 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
680 struct tree_mod_elem **tm_list,
681 int nritems)
682 {
683 int i, j;
684 int ret;
685
686 for (i = nritems - 1; i >= 0; i--) {
687 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
688 if (ret) {
689 for (j = nritems - 1; j > i; j--)
690 rb_erase(&tm_list[j]->node,
691 &fs_info->tree_mod_log);
692 return ret;
693 }
694 }
695
696 return 0;
697 }
698
699 static noinline int
700 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
701 struct extent_buffer *old_root,
702 struct extent_buffer *new_root, gfp_t flags,
703 int log_removal)
704 {
705 struct tree_mod_elem *tm = NULL;
706 struct tree_mod_elem **tm_list = NULL;
707 int nritems = 0;
708 int ret = 0;
709 int i;
710
711 if (!tree_mod_need_log(fs_info, NULL))
712 return 0;
713
714 if (log_removal && btrfs_header_level(old_root) > 0) {
715 nritems = btrfs_header_nritems(old_root);
716 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
717 flags);
718 if (!tm_list) {
719 ret = -ENOMEM;
720 goto free_tms;
721 }
722 for (i = 0; i < nritems; i++) {
723 tm_list[i] = alloc_tree_mod_elem(old_root, i,
724 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
725 if (!tm_list[i]) {
726 ret = -ENOMEM;
727 goto free_tms;
728 }
729 }
730 }
731
732 tm = kzalloc(sizeof(*tm), flags);
733 if (!tm) {
734 ret = -ENOMEM;
735 goto free_tms;
736 }
737
738 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
739 tm->old_root.logical = old_root->start;
740 tm->old_root.level = btrfs_header_level(old_root);
741 tm->generation = btrfs_header_generation(old_root);
742 tm->op = MOD_LOG_ROOT_REPLACE;
743
744 if (tree_mod_dont_log(fs_info, NULL))
745 goto free_tms;
746
747 if (tm_list)
748 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
749 if (!ret)
750 ret = __tree_mod_log_insert(fs_info, tm);
751
752 tree_mod_log_write_unlock(fs_info);
753 if (ret)
754 goto free_tms;
755 kfree(tm_list);
756
757 return ret;
758
759 free_tms:
760 if (tm_list) {
761 for (i = 0; i < nritems; i++)
762 kfree(tm_list[i]);
763 kfree(tm_list);
764 }
765 kfree(tm);
766
767 return ret;
768 }
769
770 static struct tree_mod_elem *
771 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
772 int smallest)
773 {
774 struct rb_root *tm_root;
775 struct rb_node *node;
776 struct tree_mod_elem *cur = NULL;
777 struct tree_mod_elem *found = NULL;
778 u64 index = start >> PAGE_CACHE_SHIFT;
779
780 tree_mod_log_read_lock(fs_info);
781 tm_root = &fs_info->tree_mod_log;
782 node = tm_root->rb_node;
783 while (node) {
784 cur = container_of(node, struct tree_mod_elem, node);
785 if (cur->index < index) {
786 node = node->rb_left;
787 } else if (cur->index > index) {
788 node = node->rb_right;
789 } else if (cur->seq < min_seq) {
790 node = node->rb_left;
791 } else if (!smallest) {
792 /* we want the node with the highest seq */
793 if (found)
794 BUG_ON(found->seq > cur->seq);
795 found = cur;
796 node = node->rb_left;
797 } else if (cur->seq > min_seq) {
798 /* we want the node with the smallest seq */
799 if (found)
800 BUG_ON(found->seq < cur->seq);
801 found = cur;
802 node = node->rb_right;
803 } else {
804 found = cur;
805 break;
806 }
807 }
808 tree_mod_log_read_unlock(fs_info);
809
810 return found;
811 }
812
813 /*
814 * this returns the element from the log with the smallest time sequence
815 * value that's in the log (the oldest log item). any element with a time
816 * sequence lower than min_seq will be ignored.
817 */
818 static struct tree_mod_elem *
819 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
820 u64 min_seq)
821 {
822 return __tree_mod_log_search(fs_info, start, min_seq, 1);
823 }
824
825 /*
826 * this returns the element from the log with the largest time sequence
827 * value that's in the log (the most recent log item). any element with
828 * a time sequence lower than min_seq will be ignored.
829 */
830 static struct tree_mod_elem *
831 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
832 {
833 return __tree_mod_log_search(fs_info, start, min_seq, 0);
834 }
835
836 static noinline int
837 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
838 struct extent_buffer *src, unsigned long dst_offset,
839 unsigned long src_offset, int nr_items)
840 {
841 int ret = 0;
842 struct tree_mod_elem **tm_list = NULL;
843 struct tree_mod_elem **tm_list_add, **tm_list_rem;
844 int i;
845 int locked = 0;
846
847 if (!tree_mod_need_log(fs_info, NULL))
848 return 0;
849
850 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
851 return 0;
852
853 tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
854 GFP_NOFS);
855 if (!tm_list)
856 return -ENOMEM;
857
858 tm_list_add = tm_list;
859 tm_list_rem = tm_list + nr_items;
860 for (i = 0; i < nr_items; i++) {
861 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
862 MOD_LOG_KEY_REMOVE, GFP_NOFS);
863 if (!tm_list_rem[i]) {
864 ret = -ENOMEM;
865 goto free_tms;
866 }
867
868 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
869 MOD_LOG_KEY_ADD, GFP_NOFS);
870 if (!tm_list_add[i]) {
871 ret = -ENOMEM;
872 goto free_tms;
873 }
874 }
875
876 if (tree_mod_dont_log(fs_info, NULL))
877 goto free_tms;
878 locked = 1;
879
880 for (i = 0; i < nr_items; i++) {
881 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
882 if (ret)
883 goto free_tms;
884 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
885 if (ret)
886 goto free_tms;
887 }
888
889 tree_mod_log_write_unlock(fs_info);
890 kfree(tm_list);
891
892 return 0;
893
894 free_tms:
895 for (i = 0; i < nr_items * 2; i++) {
896 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
897 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
898 kfree(tm_list[i]);
899 }
900 if (locked)
901 tree_mod_log_write_unlock(fs_info);
902 kfree(tm_list);
903
904 return ret;
905 }
906
907 static inline void
908 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
909 int dst_offset, int src_offset, int nr_items)
910 {
911 int ret;
912 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
913 nr_items, GFP_NOFS);
914 BUG_ON(ret < 0);
915 }
916
917 static noinline void
918 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
919 struct extent_buffer *eb, int slot, int atomic)
920 {
921 int ret;
922
923 ret = tree_mod_log_insert_key(fs_info, eb, slot,
924 MOD_LOG_KEY_REPLACE,
925 atomic ? GFP_ATOMIC : GFP_NOFS);
926 BUG_ON(ret < 0);
927 }
928
929 static noinline int
930 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
931 {
932 struct tree_mod_elem **tm_list = NULL;
933 int nritems = 0;
934 int i;
935 int ret = 0;
936
937 if (btrfs_header_level(eb) == 0)
938 return 0;
939
940 if (!tree_mod_need_log(fs_info, NULL))
941 return 0;
942
943 nritems = btrfs_header_nritems(eb);
944 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
945 GFP_NOFS);
946 if (!tm_list)
947 return -ENOMEM;
948
949 for (i = 0; i < nritems; i++) {
950 tm_list[i] = alloc_tree_mod_elem(eb, i,
951 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
952 if (!tm_list[i]) {
953 ret = -ENOMEM;
954 goto free_tms;
955 }
956 }
957
958 if (tree_mod_dont_log(fs_info, eb))
959 goto free_tms;
960
961 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
962 tree_mod_log_write_unlock(fs_info);
963 if (ret)
964 goto free_tms;
965 kfree(tm_list);
966
967 return 0;
968
969 free_tms:
970 for (i = 0; i < nritems; i++)
971 kfree(tm_list[i]);
972 kfree(tm_list);
973
974 return ret;
975 }
976
977 static noinline void
978 tree_mod_log_set_root_pointer(struct btrfs_root *root,
979 struct extent_buffer *new_root_node,
980 int log_removal)
981 {
982 int ret;
983 ret = tree_mod_log_insert_root(root->fs_info, root->node,
984 new_root_node, GFP_NOFS, log_removal);
985 BUG_ON(ret < 0);
986 }
987
988 /*
989 * check if the tree block can be shared by multiple trees
990 */
991 int btrfs_block_can_be_shared(struct btrfs_root *root,
992 struct extent_buffer *buf)
993 {
994 /*
995 * Tree blocks not in refernece counted trees and tree roots
996 * are never shared. If a block was allocated after the last
997 * snapshot and the block was not allocated by tree relocation,
998 * we know the block is not shared.
999 */
1000 if (root->ref_cows &&
1001 buf != root->node && buf != root->commit_root &&
1002 (btrfs_header_generation(buf) <=
1003 btrfs_root_last_snapshot(&root->root_item) ||
1004 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
1005 return 1;
1006 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1007 if (root->ref_cows &&
1008 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1009 return 1;
1010 #endif
1011 return 0;
1012 }
1013
1014 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
1015 struct btrfs_root *root,
1016 struct extent_buffer *buf,
1017 struct extent_buffer *cow,
1018 int *last_ref)
1019 {
1020 u64 refs;
1021 u64 owner;
1022 u64 flags;
1023 u64 new_flags = 0;
1024 int ret;
1025
1026 /*
1027 * Backrefs update rules:
1028 *
1029 * Always use full backrefs for extent pointers in tree block
1030 * allocated by tree relocation.
1031 *
1032 * If a shared tree block is no longer referenced by its owner
1033 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1034 * use full backrefs for extent pointers in tree block.
1035 *
1036 * If a tree block is been relocating
1037 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1038 * use full backrefs for extent pointers in tree block.
1039 * The reason for this is some operations (such as drop tree)
1040 * are only allowed for blocks use full backrefs.
1041 */
1042
1043 if (btrfs_block_can_be_shared(root, buf)) {
1044 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1045 btrfs_header_level(buf), 1,
1046 &refs, &flags);
1047 if (ret)
1048 return ret;
1049 if (refs == 0) {
1050 ret = -EROFS;
1051 btrfs_std_error(root->fs_info, ret);
1052 return ret;
1053 }
1054 } else {
1055 refs = 1;
1056 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1057 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1058 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1059 else
1060 flags = 0;
1061 }
1062
1063 owner = btrfs_header_owner(buf);
1064 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1065 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1066
1067 if (refs > 1) {
1068 if ((owner == root->root_key.objectid ||
1069 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1070 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1071 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
1072 BUG_ON(ret); /* -ENOMEM */
1073
1074 if (root->root_key.objectid ==
1075 BTRFS_TREE_RELOC_OBJECTID) {
1076 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
1077 BUG_ON(ret); /* -ENOMEM */
1078 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1079 BUG_ON(ret); /* -ENOMEM */
1080 }
1081 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1082 } else {
1083
1084 if (root->root_key.objectid ==
1085 BTRFS_TREE_RELOC_OBJECTID)
1086 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1087 else
1088 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1089 BUG_ON(ret); /* -ENOMEM */
1090 }
1091 if (new_flags != 0) {
1092 int level = btrfs_header_level(buf);
1093
1094 ret = btrfs_set_disk_extent_flags(trans, root,
1095 buf->start,
1096 buf->len,
1097 new_flags, level, 0);
1098 if (ret)
1099 return ret;
1100 }
1101 } else {
1102 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1103 if (root->root_key.objectid ==
1104 BTRFS_TREE_RELOC_OBJECTID)
1105 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1106 else
1107 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1108 BUG_ON(ret); /* -ENOMEM */
1109 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
1110 BUG_ON(ret); /* -ENOMEM */
1111 }
1112 clean_tree_block(trans, root, buf);
1113 *last_ref = 1;
1114 }
1115 return 0;
1116 }
1117
1118 /*
1119 * does the dirty work in cow of a single block. The parent block (if
1120 * supplied) is updated to point to the new cow copy. The new buffer is marked
1121 * dirty and returned locked. If you modify the block it needs to be marked
1122 * dirty again.
1123 *
1124 * search_start -- an allocation hint for the new block
1125 *
1126 * empty_size -- a hint that you plan on doing more cow. This is the size in
1127 * bytes the allocator should try to find free next to the block it returns.
1128 * This is just a hint and may be ignored by the allocator.
1129 */
1130 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1131 struct btrfs_root *root,
1132 struct extent_buffer *buf,
1133 struct extent_buffer *parent, int parent_slot,
1134 struct extent_buffer **cow_ret,
1135 u64 search_start, u64 empty_size)
1136 {
1137 struct btrfs_disk_key disk_key;
1138 struct extent_buffer *cow;
1139 int level, ret;
1140 int last_ref = 0;
1141 int unlock_orig = 0;
1142 u64 parent_start;
1143
1144 if (*cow_ret == buf)
1145 unlock_orig = 1;
1146
1147 btrfs_assert_tree_locked(buf);
1148
1149 WARN_ON(root->ref_cows && trans->transid !=
1150 root->fs_info->running_transaction->transid);
1151 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1152
1153 level = btrfs_header_level(buf);
1154
1155 if (level == 0)
1156 btrfs_item_key(buf, &disk_key, 0);
1157 else
1158 btrfs_node_key(buf, &disk_key, 0);
1159
1160 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1161 if (parent)
1162 parent_start = parent->start;
1163 else
1164 parent_start = 0;
1165 } else
1166 parent_start = 0;
1167
1168 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1169 root->root_key.objectid, &disk_key,
1170 level, search_start, empty_size);
1171 if (IS_ERR(cow))
1172 return PTR_ERR(cow);
1173
1174 /* cow is set to blocking by btrfs_init_new_buffer */
1175
1176 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1177 btrfs_set_header_bytenr(cow, cow->start);
1178 btrfs_set_header_generation(cow, trans->transid);
1179 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1180 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1181 BTRFS_HEADER_FLAG_RELOC);
1182 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1183 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1184 else
1185 btrfs_set_header_owner(cow, root->root_key.objectid);
1186
1187 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1188 BTRFS_FSID_SIZE);
1189
1190 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1191 if (ret) {
1192 btrfs_abort_transaction(trans, root, ret);
1193 return ret;
1194 }
1195
1196 if (root->ref_cows) {
1197 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1198 if (ret)
1199 return ret;
1200 }
1201
1202 if (buf == root->node) {
1203 WARN_ON(parent && parent != buf);
1204 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1205 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1206 parent_start = buf->start;
1207 else
1208 parent_start = 0;
1209
1210 extent_buffer_get(cow);
1211 tree_mod_log_set_root_pointer(root, cow, 1);
1212 rcu_assign_pointer(root->node, cow);
1213
1214 btrfs_free_tree_block(trans, root, buf, parent_start,
1215 last_ref);
1216 free_extent_buffer(buf);
1217 add_root_to_dirty_list(root);
1218 } else {
1219 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1220 parent_start = parent->start;
1221 else
1222 parent_start = 0;
1223
1224 WARN_ON(trans->transid != btrfs_header_generation(parent));
1225 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1226 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1227 btrfs_set_node_blockptr(parent, parent_slot,
1228 cow->start);
1229 btrfs_set_node_ptr_generation(parent, parent_slot,
1230 trans->transid);
1231 btrfs_mark_buffer_dirty(parent);
1232 if (last_ref) {
1233 ret = tree_mod_log_free_eb(root->fs_info, buf);
1234 if (ret) {
1235 btrfs_abort_transaction(trans, root, ret);
1236 return ret;
1237 }
1238 }
1239 btrfs_free_tree_block(trans, root, buf, parent_start,
1240 last_ref);
1241 }
1242 if (unlock_orig)
1243 btrfs_tree_unlock(buf);
1244 free_extent_buffer_stale(buf);
1245 btrfs_mark_buffer_dirty(cow);
1246 *cow_ret = cow;
1247 return 0;
1248 }
1249
1250 /*
1251 * returns the logical address of the oldest predecessor of the given root.
1252 * entries older than time_seq are ignored.
1253 */
1254 static struct tree_mod_elem *
1255 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1256 struct extent_buffer *eb_root, u64 time_seq)
1257 {
1258 struct tree_mod_elem *tm;
1259 struct tree_mod_elem *found = NULL;
1260 u64 root_logical = eb_root->start;
1261 int looped = 0;
1262
1263 if (!time_seq)
1264 return NULL;
1265
1266 /*
1267 * the very last operation that's logged for a root is the replacement
1268 * operation (if it is replaced at all). this has the index of the *new*
1269 * root, making it the very first operation that's logged for this root.
1270 */
1271 while (1) {
1272 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1273 time_seq);
1274 if (!looped && !tm)
1275 return NULL;
1276 /*
1277 * if there are no tree operation for the oldest root, we simply
1278 * return it. this should only happen if that (old) root is at
1279 * level 0.
1280 */
1281 if (!tm)
1282 break;
1283
1284 /*
1285 * if there's an operation that's not a root replacement, we
1286 * found the oldest version of our root. normally, we'll find a
1287 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1288 */
1289 if (tm->op != MOD_LOG_ROOT_REPLACE)
1290 break;
1291
1292 found = tm;
1293 root_logical = tm->old_root.logical;
1294 looped = 1;
1295 }
1296
1297 /* if there's no old root to return, return what we found instead */
1298 if (!found)
1299 found = tm;
1300
1301 return found;
1302 }
1303
1304 /*
1305 * tm is a pointer to the first operation to rewind within eb. then, all
1306 * previous operations will be rewinded (until we reach something older than
1307 * time_seq).
1308 */
1309 static void
1310 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1311 u64 time_seq, struct tree_mod_elem *first_tm)
1312 {
1313 u32 n;
1314 struct rb_node *next;
1315 struct tree_mod_elem *tm = first_tm;
1316 unsigned long o_dst;
1317 unsigned long o_src;
1318 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1319
1320 n = btrfs_header_nritems(eb);
1321 tree_mod_log_read_lock(fs_info);
1322 while (tm && tm->seq >= time_seq) {
1323 /*
1324 * all the operations are recorded with the operator used for
1325 * the modification. as we're going backwards, we do the
1326 * opposite of each operation here.
1327 */
1328 switch (tm->op) {
1329 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1330 BUG_ON(tm->slot < n);
1331 /* Fallthrough */
1332 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1333 case MOD_LOG_KEY_REMOVE:
1334 btrfs_set_node_key(eb, &tm->key, tm->slot);
1335 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1336 btrfs_set_node_ptr_generation(eb, tm->slot,
1337 tm->generation);
1338 n++;
1339 break;
1340 case MOD_LOG_KEY_REPLACE:
1341 BUG_ON(tm->slot >= n);
1342 btrfs_set_node_key(eb, &tm->key, tm->slot);
1343 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1344 btrfs_set_node_ptr_generation(eb, tm->slot,
1345 tm->generation);
1346 break;
1347 case MOD_LOG_KEY_ADD:
1348 /* if a move operation is needed it's in the log */
1349 n--;
1350 break;
1351 case MOD_LOG_MOVE_KEYS:
1352 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1353 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1354 memmove_extent_buffer(eb, o_dst, o_src,
1355 tm->move.nr_items * p_size);
1356 break;
1357 case MOD_LOG_ROOT_REPLACE:
1358 /*
1359 * this operation is special. for roots, this must be
1360 * handled explicitly before rewinding.
1361 * for non-roots, this operation may exist if the node
1362 * was a root: root A -> child B; then A gets empty and
1363 * B is promoted to the new root. in the mod log, we'll
1364 * have a root-replace operation for B, a tree block
1365 * that is no root. we simply ignore that operation.
1366 */
1367 break;
1368 }
1369 next = rb_next(&tm->node);
1370 if (!next)
1371 break;
1372 tm = container_of(next, struct tree_mod_elem, node);
1373 if (tm->index != first_tm->index)
1374 break;
1375 }
1376 tree_mod_log_read_unlock(fs_info);
1377 btrfs_set_header_nritems(eb, n);
1378 }
1379
1380 /*
1381 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1382 * is returned. If rewind operations happen, a fresh buffer is returned. The
1383 * returned buffer is always read-locked. If the returned buffer is not the
1384 * input buffer, the lock on the input buffer is released and the input buffer
1385 * is freed (its refcount is decremented).
1386 */
1387 static struct extent_buffer *
1388 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1389 struct extent_buffer *eb, u64 time_seq)
1390 {
1391 struct extent_buffer *eb_rewin;
1392 struct tree_mod_elem *tm;
1393
1394 if (!time_seq)
1395 return eb;
1396
1397 if (btrfs_header_level(eb) == 0)
1398 return eb;
1399
1400 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1401 if (!tm)
1402 return eb;
1403
1404 btrfs_set_path_blocking(path);
1405 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1406
1407 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1408 BUG_ON(tm->slot != 0);
1409 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1410 fs_info->tree_root->nodesize);
1411 if (!eb_rewin) {
1412 btrfs_tree_read_unlock_blocking(eb);
1413 free_extent_buffer(eb);
1414 return NULL;
1415 }
1416 btrfs_set_header_bytenr(eb_rewin, eb->start);
1417 btrfs_set_header_backref_rev(eb_rewin,
1418 btrfs_header_backref_rev(eb));
1419 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1420 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1421 } else {
1422 eb_rewin = btrfs_clone_extent_buffer(eb);
1423 if (!eb_rewin) {
1424 btrfs_tree_read_unlock_blocking(eb);
1425 free_extent_buffer(eb);
1426 return NULL;
1427 }
1428 }
1429
1430 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1431 btrfs_tree_read_unlock_blocking(eb);
1432 free_extent_buffer(eb);
1433
1434 extent_buffer_get(eb_rewin);
1435 btrfs_tree_read_lock(eb_rewin);
1436 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1437 WARN_ON(btrfs_header_nritems(eb_rewin) >
1438 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1439
1440 return eb_rewin;
1441 }
1442
1443 /*
1444 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1445 * value. If there are no changes, the current root->root_node is returned. If
1446 * anything changed in between, there's a fresh buffer allocated on which the
1447 * rewind operations are done. In any case, the returned buffer is read locked.
1448 * Returns NULL on error (with no locks held).
1449 */
1450 static inline struct extent_buffer *
1451 get_old_root(struct btrfs_root *root, u64 time_seq)
1452 {
1453 struct tree_mod_elem *tm;
1454 struct extent_buffer *eb = NULL;
1455 struct extent_buffer *eb_root;
1456 struct extent_buffer *old;
1457 struct tree_mod_root *old_root = NULL;
1458 u64 old_generation = 0;
1459 u64 logical;
1460 u32 blocksize;
1461
1462 eb_root = btrfs_read_lock_root_node(root);
1463 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1464 if (!tm)
1465 return eb_root;
1466
1467 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1468 old_root = &tm->old_root;
1469 old_generation = tm->generation;
1470 logical = old_root->logical;
1471 } else {
1472 logical = eb_root->start;
1473 }
1474
1475 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1476 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1477 btrfs_tree_read_unlock(eb_root);
1478 free_extent_buffer(eb_root);
1479 blocksize = btrfs_level_size(root, old_root->level);
1480 old = read_tree_block(root, logical, blocksize, 0);
1481 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1482 free_extent_buffer(old);
1483 btrfs_warn(root->fs_info,
1484 "failed to read tree block %llu from get_old_root", logical);
1485 } else {
1486 eb = btrfs_clone_extent_buffer(old);
1487 free_extent_buffer(old);
1488 }
1489 } else if (old_root) {
1490 btrfs_tree_read_unlock(eb_root);
1491 free_extent_buffer(eb_root);
1492 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1493 } else {
1494 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1495 eb = btrfs_clone_extent_buffer(eb_root);
1496 btrfs_tree_read_unlock_blocking(eb_root);
1497 free_extent_buffer(eb_root);
1498 }
1499
1500 if (!eb)
1501 return NULL;
1502 extent_buffer_get(eb);
1503 btrfs_tree_read_lock(eb);
1504 if (old_root) {
1505 btrfs_set_header_bytenr(eb, eb->start);
1506 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1507 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1508 btrfs_set_header_level(eb, old_root->level);
1509 btrfs_set_header_generation(eb, old_generation);
1510 }
1511 if (tm)
1512 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1513 else
1514 WARN_ON(btrfs_header_level(eb) != 0);
1515 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1516
1517 return eb;
1518 }
1519
1520 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1521 {
1522 struct tree_mod_elem *tm;
1523 int level;
1524 struct extent_buffer *eb_root = btrfs_root_node(root);
1525
1526 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1527 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1528 level = tm->old_root.level;
1529 } else {
1530 level = btrfs_header_level(eb_root);
1531 }
1532 free_extent_buffer(eb_root);
1533
1534 return level;
1535 }
1536
1537 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1538 struct btrfs_root *root,
1539 struct extent_buffer *buf)
1540 {
1541 /* ensure we can see the force_cow */
1542 smp_rmb();
1543
1544 /*
1545 * We do not need to cow a block if
1546 * 1) this block is not created or changed in this transaction;
1547 * 2) this block does not belong to TREE_RELOC tree;
1548 * 3) the root is not forced COW.
1549 *
1550 * What is forced COW:
1551 * when we create snapshot during commiting the transaction,
1552 * after we've finished coping src root, we must COW the shared
1553 * block to ensure the metadata consistency.
1554 */
1555 if (btrfs_header_generation(buf) == trans->transid &&
1556 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1557 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1558 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1559 !root->force_cow)
1560 return 0;
1561 return 1;
1562 }
1563
1564 /*
1565 * cows a single block, see __btrfs_cow_block for the real work.
1566 * This version of it has extra checks so that a block isn't cow'd more than
1567 * once per transaction, as long as it hasn't been written yet
1568 */
1569 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1570 struct btrfs_root *root, struct extent_buffer *buf,
1571 struct extent_buffer *parent, int parent_slot,
1572 struct extent_buffer **cow_ret)
1573 {
1574 u64 search_start;
1575 int ret;
1576
1577 if (trans->transaction != root->fs_info->running_transaction)
1578 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1579 trans->transid,
1580 root->fs_info->running_transaction->transid);
1581
1582 if (trans->transid != root->fs_info->generation)
1583 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1584 trans->transid, root->fs_info->generation);
1585
1586 if (!should_cow_block(trans, root, buf)) {
1587 *cow_ret = buf;
1588 return 0;
1589 }
1590
1591 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1592
1593 if (parent)
1594 btrfs_set_lock_blocking(parent);
1595 btrfs_set_lock_blocking(buf);
1596
1597 ret = __btrfs_cow_block(trans, root, buf, parent,
1598 parent_slot, cow_ret, search_start, 0);
1599
1600 trace_btrfs_cow_block(root, buf, *cow_ret);
1601
1602 return ret;
1603 }
1604
1605 /*
1606 * helper function for defrag to decide if two blocks pointed to by a
1607 * node are actually close by
1608 */
1609 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1610 {
1611 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1612 return 1;
1613 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1614 return 1;
1615 return 0;
1616 }
1617
1618 /*
1619 * compare two keys in a memcmp fashion
1620 */
1621 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1622 {
1623 struct btrfs_key k1;
1624
1625 btrfs_disk_key_to_cpu(&k1, disk);
1626
1627 return btrfs_comp_cpu_keys(&k1, k2);
1628 }
1629
1630 /*
1631 * same as comp_keys only with two btrfs_key's
1632 */
1633 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1634 {
1635 if (k1->objectid > k2->objectid)
1636 return 1;
1637 if (k1->objectid < k2->objectid)
1638 return -1;
1639 if (k1->type > k2->type)
1640 return 1;
1641 if (k1->type < k2->type)
1642 return -1;
1643 if (k1->offset > k2->offset)
1644 return 1;
1645 if (k1->offset < k2->offset)
1646 return -1;
1647 return 0;
1648 }
1649
1650 /*
1651 * this is used by the defrag code to go through all the
1652 * leaves pointed to by a node and reallocate them so that
1653 * disk order is close to key order
1654 */
1655 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root, struct extent_buffer *parent,
1657 int start_slot, u64 *last_ret,
1658 struct btrfs_key *progress)
1659 {
1660 struct extent_buffer *cur;
1661 u64 blocknr;
1662 u64 gen;
1663 u64 search_start = *last_ret;
1664 u64 last_block = 0;
1665 u64 other;
1666 u32 parent_nritems;
1667 int end_slot;
1668 int i;
1669 int err = 0;
1670 int parent_level;
1671 int uptodate;
1672 u32 blocksize;
1673 int progress_passed = 0;
1674 struct btrfs_disk_key disk_key;
1675
1676 parent_level = btrfs_header_level(parent);
1677
1678 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1679 WARN_ON(trans->transid != root->fs_info->generation);
1680
1681 parent_nritems = btrfs_header_nritems(parent);
1682 blocksize = btrfs_level_size(root, parent_level - 1);
1683 end_slot = parent_nritems;
1684
1685 if (parent_nritems == 1)
1686 return 0;
1687
1688 btrfs_set_lock_blocking(parent);
1689
1690 for (i = start_slot; i < end_slot; i++) {
1691 int close = 1;
1692
1693 btrfs_node_key(parent, &disk_key, i);
1694 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1695 continue;
1696
1697 progress_passed = 1;
1698 blocknr = btrfs_node_blockptr(parent, i);
1699 gen = btrfs_node_ptr_generation(parent, i);
1700 if (last_block == 0)
1701 last_block = blocknr;
1702
1703 if (i > 0) {
1704 other = btrfs_node_blockptr(parent, i - 1);
1705 close = close_blocks(blocknr, other, blocksize);
1706 }
1707 if (!close && i < end_slot - 2) {
1708 other = btrfs_node_blockptr(parent, i + 1);
1709 close = close_blocks(blocknr, other, blocksize);
1710 }
1711 if (close) {
1712 last_block = blocknr;
1713 continue;
1714 }
1715
1716 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1717 if (cur)
1718 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1719 else
1720 uptodate = 0;
1721 if (!cur || !uptodate) {
1722 if (!cur) {
1723 cur = read_tree_block(root, blocknr,
1724 blocksize, gen);
1725 if (!cur || !extent_buffer_uptodate(cur)) {
1726 free_extent_buffer(cur);
1727 return -EIO;
1728 }
1729 } else if (!uptodate) {
1730 err = btrfs_read_buffer(cur, gen);
1731 if (err) {
1732 free_extent_buffer(cur);
1733 return err;
1734 }
1735 }
1736 }
1737 if (search_start == 0)
1738 search_start = last_block;
1739
1740 btrfs_tree_lock(cur);
1741 btrfs_set_lock_blocking(cur);
1742 err = __btrfs_cow_block(trans, root, cur, parent, i,
1743 &cur, search_start,
1744 min(16 * blocksize,
1745 (end_slot - i) * blocksize));
1746 if (err) {
1747 btrfs_tree_unlock(cur);
1748 free_extent_buffer(cur);
1749 break;
1750 }
1751 search_start = cur->start;
1752 last_block = cur->start;
1753 *last_ret = search_start;
1754 btrfs_tree_unlock(cur);
1755 free_extent_buffer(cur);
1756 }
1757 return err;
1758 }
1759
1760 /*
1761 * The leaf data grows from end-to-front in the node.
1762 * this returns the address of the start of the last item,
1763 * which is the stop of the leaf data stack
1764 */
1765 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1766 struct extent_buffer *leaf)
1767 {
1768 u32 nr = btrfs_header_nritems(leaf);
1769 if (nr == 0)
1770 return BTRFS_LEAF_DATA_SIZE(root);
1771 return btrfs_item_offset_nr(leaf, nr - 1);
1772 }
1773
1774
1775 /*
1776 * search for key in the extent_buffer. The items start at offset p,
1777 * and they are item_size apart. There are 'max' items in p.
1778 *
1779 * the slot in the array is returned via slot, and it points to
1780 * the place where you would insert key if it is not found in
1781 * the array.
1782 *
1783 * slot may point to max if the key is bigger than all of the keys
1784 */
1785 static noinline int generic_bin_search(struct extent_buffer *eb,
1786 unsigned long p,
1787 int item_size, struct btrfs_key *key,
1788 int max, int *slot)
1789 {
1790 int low = 0;
1791 int high = max;
1792 int mid;
1793 int ret;
1794 struct btrfs_disk_key *tmp = NULL;
1795 struct btrfs_disk_key unaligned;
1796 unsigned long offset;
1797 char *kaddr = NULL;
1798 unsigned long map_start = 0;
1799 unsigned long map_len = 0;
1800 int err;
1801
1802 while (low < high) {
1803 mid = (low + high) / 2;
1804 offset = p + mid * item_size;
1805
1806 if (!kaddr || offset < map_start ||
1807 (offset + sizeof(struct btrfs_disk_key)) >
1808 map_start + map_len) {
1809
1810 err = map_private_extent_buffer(eb, offset,
1811 sizeof(struct btrfs_disk_key),
1812 &kaddr, &map_start, &map_len);
1813
1814 if (!err) {
1815 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1816 map_start);
1817 } else {
1818 read_extent_buffer(eb, &unaligned,
1819 offset, sizeof(unaligned));
1820 tmp = &unaligned;
1821 }
1822
1823 } else {
1824 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1825 map_start);
1826 }
1827 ret = comp_keys(tmp, key);
1828
1829 if (ret < 0)
1830 low = mid + 1;
1831 else if (ret > 0)
1832 high = mid;
1833 else {
1834 *slot = mid;
1835 return 0;
1836 }
1837 }
1838 *slot = low;
1839 return 1;
1840 }
1841
1842 /*
1843 * simple bin_search frontend that does the right thing for
1844 * leaves vs nodes
1845 */
1846 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1847 int level, int *slot)
1848 {
1849 if (level == 0)
1850 return generic_bin_search(eb,
1851 offsetof(struct btrfs_leaf, items),
1852 sizeof(struct btrfs_item),
1853 key, btrfs_header_nritems(eb),
1854 slot);
1855 else
1856 return generic_bin_search(eb,
1857 offsetof(struct btrfs_node, ptrs),
1858 sizeof(struct btrfs_key_ptr),
1859 key, btrfs_header_nritems(eb),
1860 slot);
1861 }
1862
1863 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1864 int level, int *slot)
1865 {
1866 return bin_search(eb, key, level, slot);
1867 }
1868
1869 static void root_add_used(struct btrfs_root *root, u32 size)
1870 {
1871 spin_lock(&root->accounting_lock);
1872 btrfs_set_root_used(&root->root_item,
1873 btrfs_root_used(&root->root_item) + size);
1874 spin_unlock(&root->accounting_lock);
1875 }
1876
1877 static void root_sub_used(struct btrfs_root *root, u32 size)
1878 {
1879 spin_lock(&root->accounting_lock);
1880 btrfs_set_root_used(&root->root_item,
1881 btrfs_root_used(&root->root_item) - size);
1882 spin_unlock(&root->accounting_lock);
1883 }
1884
1885 /* given a node and slot number, this reads the blocks it points to. The
1886 * extent buffer is returned with a reference taken (but unlocked).
1887 * NULL is returned on error.
1888 */
1889 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1890 struct extent_buffer *parent, int slot)
1891 {
1892 int level = btrfs_header_level(parent);
1893 struct extent_buffer *eb;
1894
1895 if (slot < 0)
1896 return NULL;
1897 if (slot >= btrfs_header_nritems(parent))
1898 return NULL;
1899
1900 BUG_ON(level == 0);
1901
1902 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1903 btrfs_level_size(root, level - 1),
1904 btrfs_node_ptr_generation(parent, slot));
1905 if (eb && !extent_buffer_uptodate(eb)) {
1906 free_extent_buffer(eb);
1907 eb = NULL;
1908 }
1909
1910 return eb;
1911 }
1912
1913 /*
1914 * node level balancing, used to make sure nodes are in proper order for
1915 * item deletion. We balance from the top down, so we have to make sure
1916 * that a deletion won't leave an node completely empty later on.
1917 */
1918 static noinline int balance_level(struct btrfs_trans_handle *trans,
1919 struct btrfs_root *root,
1920 struct btrfs_path *path, int level)
1921 {
1922 struct extent_buffer *right = NULL;
1923 struct extent_buffer *mid;
1924 struct extent_buffer *left = NULL;
1925 struct extent_buffer *parent = NULL;
1926 int ret = 0;
1927 int wret;
1928 int pslot;
1929 int orig_slot = path->slots[level];
1930 u64 orig_ptr;
1931
1932 if (level == 0)
1933 return 0;
1934
1935 mid = path->nodes[level];
1936
1937 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1938 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1939 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1940
1941 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1942
1943 if (level < BTRFS_MAX_LEVEL - 1) {
1944 parent = path->nodes[level + 1];
1945 pslot = path->slots[level + 1];
1946 }
1947
1948 /*
1949 * deal with the case where there is only one pointer in the root
1950 * by promoting the node below to a root
1951 */
1952 if (!parent) {
1953 struct extent_buffer *child;
1954
1955 if (btrfs_header_nritems(mid) != 1)
1956 return 0;
1957
1958 /* promote the child to a root */
1959 child = read_node_slot(root, mid, 0);
1960 if (!child) {
1961 ret = -EROFS;
1962 btrfs_std_error(root->fs_info, ret);
1963 goto enospc;
1964 }
1965
1966 btrfs_tree_lock(child);
1967 btrfs_set_lock_blocking(child);
1968 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1969 if (ret) {
1970 btrfs_tree_unlock(child);
1971 free_extent_buffer(child);
1972 goto enospc;
1973 }
1974
1975 tree_mod_log_set_root_pointer(root, child, 1);
1976 rcu_assign_pointer(root->node, child);
1977
1978 add_root_to_dirty_list(root);
1979 btrfs_tree_unlock(child);
1980
1981 path->locks[level] = 0;
1982 path->nodes[level] = NULL;
1983 clean_tree_block(trans, root, mid);
1984 btrfs_tree_unlock(mid);
1985 /* once for the path */
1986 free_extent_buffer(mid);
1987
1988 root_sub_used(root, mid->len);
1989 btrfs_free_tree_block(trans, root, mid, 0, 1);
1990 /* once for the root ptr */
1991 free_extent_buffer_stale(mid);
1992 return 0;
1993 }
1994 if (btrfs_header_nritems(mid) >
1995 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1996 return 0;
1997
1998 left = read_node_slot(root, parent, pslot - 1);
1999 if (left) {
2000 btrfs_tree_lock(left);
2001 btrfs_set_lock_blocking(left);
2002 wret = btrfs_cow_block(trans, root, left,
2003 parent, pslot - 1, &left);
2004 if (wret) {
2005 ret = wret;
2006 goto enospc;
2007 }
2008 }
2009 right = read_node_slot(root, parent, pslot + 1);
2010 if (right) {
2011 btrfs_tree_lock(right);
2012 btrfs_set_lock_blocking(right);
2013 wret = btrfs_cow_block(trans, root, right,
2014 parent, pslot + 1, &right);
2015 if (wret) {
2016 ret = wret;
2017 goto enospc;
2018 }
2019 }
2020
2021 /* first, try to make some room in the middle buffer */
2022 if (left) {
2023 orig_slot += btrfs_header_nritems(left);
2024 wret = push_node_left(trans, root, left, mid, 1);
2025 if (wret < 0)
2026 ret = wret;
2027 }
2028
2029 /*
2030 * then try to empty the right most buffer into the middle
2031 */
2032 if (right) {
2033 wret = push_node_left(trans, root, mid, right, 1);
2034 if (wret < 0 && wret != -ENOSPC)
2035 ret = wret;
2036 if (btrfs_header_nritems(right) == 0) {
2037 clean_tree_block(trans, root, right);
2038 btrfs_tree_unlock(right);
2039 del_ptr(root, path, level + 1, pslot + 1);
2040 root_sub_used(root, right->len);
2041 btrfs_free_tree_block(trans, root, right, 0, 1);
2042 free_extent_buffer_stale(right);
2043 right = NULL;
2044 } else {
2045 struct btrfs_disk_key right_key;
2046 btrfs_node_key(right, &right_key, 0);
2047 tree_mod_log_set_node_key(root->fs_info, parent,
2048 pslot + 1, 0);
2049 btrfs_set_node_key(parent, &right_key, pslot + 1);
2050 btrfs_mark_buffer_dirty(parent);
2051 }
2052 }
2053 if (btrfs_header_nritems(mid) == 1) {
2054 /*
2055 * we're not allowed to leave a node with one item in the
2056 * tree during a delete. A deletion from lower in the tree
2057 * could try to delete the only pointer in this node.
2058 * So, pull some keys from the left.
2059 * There has to be a left pointer at this point because
2060 * otherwise we would have pulled some pointers from the
2061 * right
2062 */
2063 if (!left) {
2064 ret = -EROFS;
2065 btrfs_std_error(root->fs_info, ret);
2066 goto enospc;
2067 }
2068 wret = balance_node_right(trans, root, mid, left);
2069 if (wret < 0) {
2070 ret = wret;
2071 goto enospc;
2072 }
2073 if (wret == 1) {
2074 wret = push_node_left(trans, root, left, mid, 1);
2075 if (wret < 0)
2076 ret = wret;
2077 }
2078 BUG_ON(wret == 1);
2079 }
2080 if (btrfs_header_nritems(mid) == 0) {
2081 clean_tree_block(trans, root, mid);
2082 btrfs_tree_unlock(mid);
2083 del_ptr(root, path, level + 1, pslot);
2084 root_sub_used(root, mid->len);
2085 btrfs_free_tree_block(trans, root, mid, 0, 1);
2086 free_extent_buffer_stale(mid);
2087 mid = NULL;
2088 } else {
2089 /* update the parent key to reflect our changes */
2090 struct btrfs_disk_key mid_key;
2091 btrfs_node_key(mid, &mid_key, 0);
2092 tree_mod_log_set_node_key(root->fs_info, parent,
2093 pslot, 0);
2094 btrfs_set_node_key(parent, &mid_key, pslot);
2095 btrfs_mark_buffer_dirty(parent);
2096 }
2097
2098 /* update the path */
2099 if (left) {
2100 if (btrfs_header_nritems(left) > orig_slot) {
2101 extent_buffer_get(left);
2102 /* left was locked after cow */
2103 path->nodes[level] = left;
2104 path->slots[level + 1] -= 1;
2105 path->slots[level] = orig_slot;
2106 if (mid) {
2107 btrfs_tree_unlock(mid);
2108 free_extent_buffer(mid);
2109 }
2110 } else {
2111 orig_slot -= btrfs_header_nritems(left);
2112 path->slots[level] = orig_slot;
2113 }
2114 }
2115 /* double check we haven't messed things up */
2116 if (orig_ptr !=
2117 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2118 BUG();
2119 enospc:
2120 if (right) {
2121 btrfs_tree_unlock(right);
2122 free_extent_buffer(right);
2123 }
2124 if (left) {
2125 if (path->nodes[level] != left)
2126 btrfs_tree_unlock(left);
2127 free_extent_buffer(left);
2128 }
2129 return ret;
2130 }
2131
2132 /* Node balancing for insertion. Here we only split or push nodes around
2133 * when they are completely full. This is also done top down, so we
2134 * have to be pessimistic.
2135 */
2136 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2137 struct btrfs_root *root,
2138 struct btrfs_path *path, int level)
2139 {
2140 struct extent_buffer *right = NULL;
2141 struct extent_buffer *mid;
2142 struct extent_buffer *left = NULL;
2143 struct extent_buffer *parent = NULL;
2144 int ret = 0;
2145 int wret;
2146 int pslot;
2147 int orig_slot = path->slots[level];
2148
2149 if (level == 0)
2150 return 1;
2151
2152 mid = path->nodes[level];
2153 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2154
2155 if (level < BTRFS_MAX_LEVEL - 1) {
2156 parent = path->nodes[level + 1];
2157 pslot = path->slots[level + 1];
2158 }
2159
2160 if (!parent)
2161 return 1;
2162
2163 left = read_node_slot(root, parent, pslot - 1);
2164
2165 /* first, try to make some room in the middle buffer */
2166 if (left) {
2167 u32 left_nr;
2168
2169 btrfs_tree_lock(left);
2170 btrfs_set_lock_blocking(left);
2171
2172 left_nr = btrfs_header_nritems(left);
2173 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2174 wret = 1;
2175 } else {
2176 ret = btrfs_cow_block(trans, root, left, parent,
2177 pslot - 1, &left);
2178 if (ret)
2179 wret = 1;
2180 else {
2181 wret = push_node_left(trans, root,
2182 left, mid, 0);
2183 }
2184 }
2185 if (wret < 0)
2186 ret = wret;
2187 if (wret == 0) {
2188 struct btrfs_disk_key disk_key;
2189 orig_slot += left_nr;
2190 btrfs_node_key(mid, &disk_key, 0);
2191 tree_mod_log_set_node_key(root->fs_info, parent,
2192 pslot, 0);
2193 btrfs_set_node_key(parent, &disk_key, pslot);
2194 btrfs_mark_buffer_dirty(parent);
2195 if (btrfs_header_nritems(left) > orig_slot) {
2196 path->nodes[level] = left;
2197 path->slots[level + 1] -= 1;
2198 path->slots[level] = orig_slot;
2199 btrfs_tree_unlock(mid);
2200 free_extent_buffer(mid);
2201 } else {
2202 orig_slot -=
2203 btrfs_header_nritems(left);
2204 path->slots[level] = orig_slot;
2205 btrfs_tree_unlock(left);
2206 free_extent_buffer(left);
2207 }
2208 return 0;
2209 }
2210 btrfs_tree_unlock(left);
2211 free_extent_buffer(left);
2212 }
2213 right = read_node_slot(root, parent, pslot + 1);
2214
2215 /*
2216 * then try to empty the right most buffer into the middle
2217 */
2218 if (right) {
2219 u32 right_nr;
2220
2221 btrfs_tree_lock(right);
2222 btrfs_set_lock_blocking(right);
2223
2224 right_nr = btrfs_header_nritems(right);
2225 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2226 wret = 1;
2227 } else {
2228 ret = btrfs_cow_block(trans, root, right,
2229 parent, pslot + 1,
2230 &right);
2231 if (ret)
2232 wret = 1;
2233 else {
2234 wret = balance_node_right(trans, root,
2235 right, mid);
2236 }
2237 }
2238 if (wret < 0)
2239 ret = wret;
2240 if (wret == 0) {
2241 struct btrfs_disk_key disk_key;
2242
2243 btrfs_node_key(right, &disk_key, 0);
2244 tree_mod_log_set_node_key(root->fs_info, parent,
2245 pslot + 1, 0);
2246 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2247 btrfs_mark_buffer_dirty(parent);
2248
2249 if (btrfs_header_nritems(mid) <= orig_slot) {
2250 path->nodes[level] = right;
2251 path->slots[level + 1] += 1;
2252 path->slots[level] = orig_slot -
2253 btrfs_header_nritems(mid);
2254 btrfs_tree_unlock(mid);
2255 free_extent_buffer(mid);
2256 } else {
2257 btrfs_tree_unlock(right);
2258 free_extent_buffer(right);
2259 }
2260 return 0;
2261 }
2262 btrfs_tree_unlock(right);
2263 free_extent_buffer(right);
2264 }
2265 return 1;
2266 }
2267
2268 /*
2269 * readahead one full node of leaves, finding things that are close
2270 * to the block in 'slot', and triggering ra on them.
2271 */
2272 static void reada_for_search(struct btrfs_root *root,
2273 struct btrfs_path *path,
2274 int level, int slot, u64 objectid)
2275 {
2276 struct extent_buffer *node;
2277 struct btrfs_disk_key disk_key;
2278 u32 nritems;
2279 u64 search;
2280 u64 target;
2281 u64 nread = 0;
2282 u64 gen;
2283 int direction = path->reada;
2284 struct extent_buffer *eb;
2285 u32 nr;
2286 u32 blocksize;
2287 u32 nscan = 0;
2288
2289 if (level != 1)
2290 return;
2291
2292 if (!path->nodes[level])
2293 return;
2294
2295 node = path->nodes[level];
2296
2297 search = btrfs_node_blockptr(node, slot);
2298 blocksize = btrfs_level_size(root, level - 1);
2299 eb = btrfs_find_tree_block(root, search, blocksize);
2300 if (eb) {
2301 free_extent_buffer(eb);
2302 return;
2303 }
2304
2305 target = search;
2306
2307 nritems = btrfs_header_nritems(node);
2308 nr = slot;
2309
2310 while (1) {
2311 if (direction < 0) {
2312 if (nr == 0)
2313 break;
2314 nr--;
2315 } else if (direction > 0) {
2316 nr++;
2317 if (nr >= nritems)
2318 break;
2319 }
2320 if (path->reada < 0 && objectid) {
2321 btrfs_node_key(node, &disk_key, nr);
2322 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2323 break;
2324 }
2325 search = btrfs_node_blockptr(node, nr);
2326 if ((search <= target && target - search <= 65536) ||
2327 (search > target && search - target <= 65536)) {
2328 gen = btrfs_node_ptr_generation(node, nr);
2329 readahead_tree_block(root, search, blocksize, gen);
2330 nread += blocksize;
2331 }
2332 nscan++;
2333 if ((nread > 65536 || nscan > 32))
2334 break;
2335 }
2336 }
2337
2338 static noinline void reada_for_balance(struct btrfs_root *root,
2339 struct btrfs_path *path, int level)
2340 {
2341 int slot;
2342 int nritems;
2343 struct extent_buffer *parent;
2344 struct extent_buffer *eb;
2345 u64 gen;
2346 u64 block1 = 0;
2347 u64 block2 = 0;
2348 int blocksize;
2349
2350 parent = path->nodes[level + 1];
2351 if (!parent)
2352 return;
2353
2354 nritems = btrfs_header_nritems(parent);
2355 slot = path->slots[level + 1];
2356 blocksize = btrfs_level_size(root, level);
2357
2358 if (slot > 0) {
2359 block1 = btrfs_node_blockptr(parent, slot - 1);
2360 gen = btrfs_node_ptr_generation(parent, slot - 1);
2361 eb = btrfs_find_tree_block(root, block1, blocksize);
2362 /*
2363 * if we get -eagain from btrfs_buffer_uptodate, we
2364 * don't want to return eagain here. That will loop
2365 * forever
2366 */
2367 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2368 block1 = 0;
2369 free_extent_buffer(eb);
2370 }
2371 if (slot + 1 < nritems) {
2372 block2 = btrfs_node_blockptr(parent, slot + 1);
2373 gen = btrfs_node_ptr_generation(parent, slot + 1);
2374 eb = btrfs_find_tree_block(root, block2, blocksize);
2375 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2376 block2 = 0;
2377 free_extent_buffer(eb);
2378 }
2379
2380 if (block1)
2381 readahead_tree_block(root, block1, blocksize, 0);
2382 if (block2)
2383 readahead_tree_block(root, block2, blocksize, 0);
2384 }
2385
2386
2387 /*
2388 * when we walk down the tree, it is usually safe to unlock the higher layers
2389 * in the tree. The exceptions are when our path goes through slot 0, because
2390 * operations on the tree might require changing key pointers higher up in the
2391 * tree.
2392 *
2393 * callers might also have set path->keep_locks, which tells this code to keep
2394 * the lock if the path points to the last slot in the block. This is part of
2395 * walking through the tree, and selecting the next slot in the higher block.
2396 *
2397 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2398 * if lowest_unlock is 1, level 0 won't be unlocked
2399 */
2400 static noinline void unlock_up(struct btrfs_path *path, int level,
2401 int lowest_unlock, int min_write_lock_level,
2402 int *write_lock_level)
2403 {
2404 int i;
2405 int skip_level = level;
2406 int no_skips = 0;
2407 struct extent_buffer *t;
2408
2409 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2410 if (!path->nodes[i])
2411 break;
2412 if (!path->locks[i])
2413 break;
2414 if (!no_skips && path->slots[i] == 0) {
2415 skip_level = i + 1;
2416 continue;
2417 }
2418 if (!no_skips && path->keep_locks) {
2419 u32 nritems;
2420 t = path->nodes[i];
2421 nritems = btrfs_header_nritems(t);
2422 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2423 skip_level = i + 1;
2424 continue;
2425 }
2426 }
2427 if (skip_level < i && i >= lowest_unlock)
2428 no_skips = 1;
2429
2430 t = path->nodes[i];
2431 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2432 btrfs_tree_unlock_rw(t, path->locks[i]);
2433 path->locks[i] = 0;
2434 if (write_lock_level &&
2435 i > min_write_lock_level &&
2436 i <= *write_lock_level) {
2437 *write_lock_level = i - 1;
2438 }
2439 }
2440 }
2441 }
2442
2443 /*
2444 * This releases any locks held in the path starting at level and
2445 * going all the way up to the root.
2446 *
2447 * btrfs_search_slot will keep the lock held on higher nodes in a few
2448 * corner cases, such as COW of the block at slot zero in the node. This
2449 * ignores those rules, and it should only be called when there are no
2450 * more updates to be done higher up in the tree.
2451 */
2452 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2453 {
2454 int i;
2455
2456 if (path->keep_locks)
2457 return;
2458
2459 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2460 if (!path->nodes[i])
2461 continue;
2462 if (!path->locks[i])
2463 continue;
2464 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2465 path->locks[i] = 0;
2466 }
2467 }
2468
2469 /*
2470 * helper function for btrfs_search_slot. The goal is to find a block
2471 * in cache without setting the path to blocking. If we find the block
2472 * we return zero and the path is unchanged.
2473 *
2474 * If we can't find the block, we set the path blocking and do some
2475 * reada. -EAGAIN is returned and the search must be repeated.
2476 */
2477 static int
2478 read_block_for_search(struct btrfs_trans_handle *trans,
2479 struct btrfs_root *root, struct btrfs_path *p,
2480 struct extent_buffer **eb_ret, int level, int slot,
2481 struct btrfs_key *key, u64 time_seq)
2482 {
2483 u64 blocknr;
2484 u64 gen;
2485 u32 blocksize;
2486 struct extent_buffer *b = *eb_ret;
2487 struct extent_buffer *tmp;
2488 int ret;
2489
2490 blocknr = btrfs_node_blockptr(b, slot);
2491 gen = btrfs_node_ptr_generation(b, slot);
2492 blocksize = btrfs_level_size(root, level - 1);
2493
2494 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2495 if (tmp) {
2496 /* first we do an atomic uptodate check */
2497 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2498 *eb_ret = tmp;
2499 return 0;
2500 }
2501
2502 /* the pages were up to date, but we failed
2503 * the generation number check. Do a full
2504 * read for the generation number that is correct.
2505 * We must do this without dropping locks so
2506 * we can trust our generation number
2507 */
2508 btrfs_set_path_blocking(p);
2509
2510 /* now we're allowed to do a blocking uptodate check */
2511 ret = btrfs_read_buffer(tmp, gen);
2512 if (!ret) {
2513 *eb_ret = tmp;
2514 return 0;
2515 }
2516 free_extent_buffer(tmp);
2517 btrfs_release_path(p);
2518 return -EIO;
2519 }
2520
2521 /*
2522 * reduce lock contention at high levels
2523 * of the btree by dropping locks before
2524 * we read. Don't release the lock on the current
2525 * level because we need to walk this node to figure
2526 * out which blocks to read.
2527 */
2528 btrfs_unlock_up_safe(p, level + 1);
2529 btrfs_set_path_blocking(p);
2530
2531 free_extent_buffer(tmp);
2532 if (p->reada)
2533 reada_for_search(root, p, level, slot, key->objectid);
2534
2535 btrfs_release_path(p);
2536
2537 ret = -EAGAIN;
2538 tmp = read_tree_block(root, blocknr, blocksize, 0);
2539 if (tmp) {
2540 /*
2541 * If the read above didn't mark this buffer up to date,
2542 * it will never end up being up to date. Set ret to EIO now
2543 * and give up so that our caller doesn't loop forever
2544 * on our EAGAINs.
2545 */
2546 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2547 ret = -EIO;
2548 free_extent_buffer(tmp);
2549 }
2550 return ret;
2551 }
2552
2553 /*
2554 * helper function for btrfs_search_slot. This does all of the checks
2555 * for node-level blocks and does any balancing required based on
2556 * the ins_len.
2557 *
2558 * If no extra work was required, zero is returned. If we had to
2559 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2560 * start over
2561 */
2562 static int
2563 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2564 struct btrfs_root *root, struct btrfs_path *p,
2565 struct extent_buffer *b, int level, int ins_len,
2566 int *write_lock_level)
2567 {
2568 int ret;
2569 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2570 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2571 int sret;
2572
2573 if (*write_lock_level < level + 1) {
2574 *write_lock_level = level + 1;
2575 btrfs_release_path(p);
2576 goto again;
2577 }
2578
2579 btrfs_set_path_blocking(p);
2580 reada_for_balance(root, p, level);
2581 sret = split_node(trans, root, p, level);
2582 btrfs_clear_path_blocking(p, NULL, 0);
2583
2584 BUG_ON(sret > 0);
2585 if (sret) {
2586 ret = sret;
2587 goto done;
2588 }
2589 b = p->nodes[level];
2590 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2591 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2592 int sret;
2593
2594 if (*write_lock_level < level + 1) {
2595 *write_lock_level = level + 1;
2596 btrfs_release_path(p);
2597 goto again;
2598 }
2599
2600 btrfs_set_path_blocking(p);
2601 reada_for_balance(root, p, level);
2602 sret = balance_level(trans, root, p, level);
2603 btrfs_clear_path_blocking(p, NULL, 0);
2604
2605 if (sret) {
2606 ret = sret;
2607 goto done;
2608 }
2609 b = p->nodes[level];
2610 if (!b) {
2611 btrfs_release_path(p);
2612 goto again;
2613 }
2614 BUG_ON(btrfs_header_nritems(b) == 1);
2615 }
2616 return 0;
2617
2618 again:
2619 ret = -EAGAIN;
2620 done:
2621 return ret;
2622 }
2623
2624 static void key_search_validate(struct extent_buffer *b,
2625 struct btrfs_key *key,
2626 int level)
2627 {
2628 #ifdef CONFIG_BTRFS_ASSERT
2629 struct btrfs_disk_key disk_key;
2630
2631 btrfs_cpu_key_to_disk(&disk_key, key);
2632
2633 if (level == 0)
2634 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2635 offsetof(struct btrfs_leaf, items[0].key),
2636 sizeof(disk_key)));
2637 else
2638 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2639 offsetof(struct btrfs_node, ptrs[0].key),
2640 sizeof(disk_key)));
2641 #endif
2642 }
2643
2644 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2645 int level, int *prev_cmp, int *slot)
2646 {
2647 if (*prev_cmp != 0) {
2648 *prev_cmp = bin_search(b, key, level, slot);
2649 return *prev_cmp;
2650 }
2651
2652 key_search_validate(b, key, level);
2653 *slot = 0;
2654
2655 return 0;
2656 }
2657
2658 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2659 u64 iobjectid, u64 ioff, u8 key_type,
2660 struct btrfs_key *found_key)
2661 {
2662 int ret;
2663 struct btrfs_key key;
2664 struct extent_buffer *eb;
2665 struct btrfs_path *path;
2666
2667 key.type = key_type;
2668 key.objectid = iobjectid;
2669 key.offset = ioff;
2670
2671 if (found_path == NULL) {
2672 path = btrfs_alloc_path();
2673 if (!path)
2674 return -ENOMEM;
2675 } else
2676 path = found_path;
2677
2678 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2679 if ((ret < 0) || (found_key == NULL)) {
2680 if (path != found_path)
2681 btrfs_free_path(path);
2682 return ret;
2683 }
2684
2685 eb = path->nodes[0];
2686 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2687 ret = btrfs_next_leaf(fs_root, path);
2688 if (ret)
2689 return ret;
2690 eb = path->nodes[0];
2691 }
2692
2693 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2694 if (found_key->type != key.type ||
2695 found_key->objectid != key.objectid)
2696 return 1;
2697
2698 return 0;
2699 }
2700
2701 /*
2702 * look for key in the tree. path is filled in with nodes along the way
2703 * if key is found, we return zero and you can find the item in the leaf
2704 * level of the path (level 0)
2705 *
2706 * If the key isn't found, the path points to the slot where it should
2707 * be inserted, and 1 is returned. If there are other errors during the
2708 * search a negative error number is returned.
2709 *
2710 * if ins_len > 0, nodes and leaves will be split as we walk down the
2711 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2712 * possible)
2713 */
2714 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2715 *root, struct btrfs_key *key, struct btrfs_path *p, int
2716 ins_len, int cow)
2717 {
2718 struct extent_buffer *b;
2719 int slot;
2720 int ret;
2721 int err;
2722 int level;
2723 int lowest_unlock = 1;
2724 int root_lock;
2725 /* everything at write_lock_level or lower must be write locked */
2726 int write_lock_level = 0;
2727 u8 lowest_level = 0;
2728 int min_write_lock_level;
2729 int prev_cmp;
2730
2731 lowest_level = p->lowest_level;
2732 WARN_ON(lowest_level && ins_len > 0);
2733 WARN_ON(p->nodes[0] != NULL);
2734 BUG_ON(!cow && ins_len);
2735
2736 if (ins_len < 0) {
2737 lowest_unlock = 2;
2738
2739 /* when we are removing items, we might have to go up to level
2740 * two as we update tree pointers Make sure we keep write
2741 * for those levels as well
2742 */
2743 write_lock_level = 2;
2744 } else if (ins_len > 0) {
2745 /*
2746 * for inserting items, make sure we have a write lock on
2747 * level 1 so we can update keys
2748 */
2749 write_lock_level = 1;
2750 }
2751
2752 if (!cow)
2753 write_lock_level = -1;
2754
2755 if (cow && (p->keep_locks || p->lowest_level))
2756 write_lock_level = BTRFS_MAX_LEVEL;
2757
2758 min_write_lock_level = write_lock_level;
2759
2760 again:
2761 prev_cmp = -1;
2762 /*
2763 * we try very hard to do read locks on the root
2764 */
2765 root_lock = BTRFS_READ_LOCK;
2766 level = 0;
2767 if (p->search_commit_root) {
2768 /*
2769 * the commit roots are read only
2770 * so we always do read locks
2771 */
2772 b = root->commit_root;
2773 extent_buffer_get(b);
2774 level = btrfs_header_level(b);
2775 if (!p->skip_locking)
2776 btrfs_tree_read_lock(b);
2777 } else {
2778 if (p->skip_locking) {
2779 b = btrfs_root_node(root);
2780 level = btrfs_header_level(b);
2781 } else {
2782 /* we don't know the level of the root node
2783 * until we actually have it read locked
2784 */
2785 b = btrfs_read_lock_root_node(root);
2786 level = btrfs_header_level(b);
2787 if (level <= write_lock_level) {
2788 /* whoops, must trade for write lock */
2789 btrfs_tree_read_unlock(b);
2790 free_extent_buffer(b);
2791 b = btrfs_lock_root_node(root);
2792 root_lock = BTRFS_WRITE_LOCK;
2793
2794 /* the level might have changed, check again */
2795 level = btrfs_header_level(b);
2796 }
2797 }
2798 }
2799 p->nodes[level] = b;
2800 if (!p->skip_locking)
2801 p->locks[level] = root_lock;
2802
2803 while (b) {
2804 level = btrfs_header_level(b);
2805
2806 /*
2807 * setup the path here so we can release it under lock
2808 * contention with the cow code
2809 */
2810 if (cow) {
2811 /*
2812 * if we don't really need to cow this block
2813 * then we don't want to set the path blocking,
2814 * so we test it here
2815 */
2816 if (!should_cow_block(trans, root, b))
2817 goto cow_done;
2818
2819 btrfs_set_path_blocking(p);
2820
2821 /*
2822 * must have write locks on this node and the
2823 * parent
2824 */
2825 if (level > write_lock_level ||
2826 (level + 1 > write_lock_level &&
2827 level + 1 < BTRFS_MAX_LEVEL &&
2828 p->nodes[level + 1])) {
2829 write_lock_level = level + 1;
2830 btrfs_release_path(p);
2831 goto again;
2832 }
2833
2834 err = btrfs_cow_block(trans, root, b,
2835 p->nodes[level + 1],
2836 p->slots[level + 1], &b);
2837 if (err) {
2838 ret = err;
2839 goto done;
2840 }
2841 }
2842 cow_done:
2843 p->nodes[level] = b;
2844 btrfs_clear_path_blocking(p, NULL, 0);
2845
2846 /*
2847 * we have a lock on b and as long as we aren't changing
2848 * the tree, there is no way to for the items in b to change.
2849 * It is safe to drop the lock on our parent before we
2850 * go through the expensive btree search on b.
2851 *
2852 * If we're inserting or deleting (ins_len != 0), then we might
2853 * be changing slot zero, which may require changing the parent.
2854 * So, we can't drop the lock until after we know which slot
2855 * we're operating on.
2856 */
2857 if (!ins_len && !p->keep_locks) {
2858 int u = level + 1;
2859
2860 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2861 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2862 p->locks[u] = 0;
2863 }
2864 }
2865
2866 ret = key_search(b, key, level, &prev_cmp, &slot);
2867
2868 if (level != 0) {
2869 int dec = 0;
2870 if (ret && slot > 0) {
2871 dec = 1;
2872 slot -= 1;
2873 }
2874 p->slots[level] = slot;
2875 err = setup_nodes_for_search(trans, root, p, b, level,
2876 ins_len, &write_lock_level);
2877 if (err == -EAGAIN)
2878 goto again;
2879 if (err) {
2880 ret = err;
2881 goto done;
2882 }
2883 b = p->nodes[level];
2884 slot = p->slots[level];
2885
2886 /*
2887 * slot 0 is special, if we change the key
2888 * we have to update the parent pointer
2889 * which means we must have a write lock
2890 * on the parent
2891 */
2892 if (slot == 0 && ins_len &&
2893 write_lock_level < level + 1) {
2894 write_lock_level = level + 1;
2895 btrfs_release_path(p);
2896 goto again;
2897 }
2898
2899 unlock_up(p, level, lowest_unlock,
2900 min_write_lock_level, &write_lock_level);
2901
2902 if (level == lowest_level) {
2903 if (dec)
2904 p->slots[level]++;
2905 goto done;
2906 }
2907
2908 err = read_block_for_search(trans, root, p,
2909 &b, level, slot, key, 0);
2910 if (err == -EAGAIN)
2911 goto again;
2912 if (err) {
2913 ret = err;
2914 goto done;
2915 }
2916
2917 if (!p->skip_locking) {
2918 level = btrfs_header_level(b);
2919 if (level <= write_lock_level) {
2920 err = btrfs_try_tree_write_lock(b);
2921 if (!err) {
2922 btrfs_set_path_blocking(p);
2923 btrfs_tree_lock(b);
2924 btrfs_clear_path_blocking(p, b,
2925 BTRFS_WRITE_LOCK);
2926 }
2927 p->locks[level] = BTRFS_WRITE_LOCK;
2928 } else {
2929 err = btrfs_try_tree_read_lock(b);
2930 if (!err) {
2931 btrfs_set_path_blocking(p);
2932 btrfs_tree_read_lock(b);
2933 btrfs_clear_path_blocking(p, b,
2934 BTRFS_READ_LOCK);
2935 }
2936 p->locks[level] = BTRFS_READ_LOCK;
2937 }
2938 p->nodes[level] = b;
2939 }
2940 } else {
2941 p->slots[level] = slot;
2942 if (ins_len > 0 &&
2943 btrfs_leaf_free_space(root, b) < ins_len) {
2944 if (write_lock_level < 1) {
2945 write_lock_level = 1;
2946 btrfs_release_path(p);
2947 goto again;
2948 }
2949
2950 btrfs_set_path_blocking(p);
2951 err = split_leaf(trans, root, key,
2952 p, ins_len, ret == 0);
2953 btrfs_clear_path_blocking(p, NULL, 0);
2954
2955 BUG_ON(err > 0);
2956 if (err) {
2957 ret = err;
2958 goto done;
2959 }
2960 }
2961 if (!p->search_for_split)
2962 unlock_up(p, level, lowest_unlock,
2963 min_write_lock_level, &write_lock_level);
2964 goto done;
2965 }
2966 }
2967 ret = 1;
2968 done:
2969 /*
2970 * we don't really know what they plan on doing with the path
2971 * from here on, so for now just mark it as blocking
2972 */
2973 if (!p->leave_spinning)
2974 btrfs_set_path_blocking(p);
2975 if (ret < 0)
2976 btrfs_release_path(p);
2977 return ret;
2978 }
2979
2980 /*
2981 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2982 * current state of the tree together with the operations recorded in the tree
2983 * modification log to search for the key in a previous version of this tree, as
2984 * denoted by the time_seq parameter.
2985 *
2986 * Naturally, there is no support for insert, delete or cow operations.
2987 *
2988 * The resulting path and return value will be set up as if we called
2989 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2990 */
2991 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2992 struct btrfs_path *p, u64 time_seq)
2993 {
2994 struct extent_buffer *b;
2995 int slot;
2996 int ret;
2997 int err;
2998 int level;
2999 int lowest_unlock = 1;
3000 u8 lowest_level = 0;
3001 int prev_cmp = -1;
3002
3003 lowest_level = p->lowest_level;
3004 WARN_ON(p->nodes[0] != NULL);
3005
3006 if (p->search_commit_root) {
3007 BUG_ON(time_seq);
3008 return btrfs_search_slot(NULL, root, key, p, 0, 0);
3009 }
3010
3011 again:
3012 b = get_old_root(root, time_seq);
3013 level = btrfs_header_level(b);
3014 p->locks[level] = BTRFS_READ_LOCK;
3015
3016 while (b) {
3017 level = btrfs_header_level(b);
3018 p->nodes[level] = b;
3019 btrfs_clear_path_blocking(p, NULL, 0);
3020
3021 /*
3022 * we have a lock on b and as long as we aren't changing
3023 * the tree, there is no way to for the items in b to change.
3024 * It is safe to drop the lock on our parent before we
3025 * go through the expensive btree search on b.
3026 */
3027 btrfs_unlock_up_safe(p, level + 1);
3028
3029 /*
3030 * Since we can unwind eb's we want to do a real search every
3031 * time.
3032 */
3033 prev_cmp = -1;
3034 ret = key_search(b, key, level, &prev_cmp, &slot);
3035
3036 if (level != 0) {
3037 int dec = 0;
3038 if (ret && slot > 0) {
3039 dec = 1;
3040 slot -= 1;
3041 }
3042 p->slots[level] = slot;
3043 unlock_up(p, level, lowest_unlock, 0, NULL);
3044
3045 if (level == lowest_level) {
3046 if (dec)
3047 p->slots[level]++;
3048 goto done;
3049 }
3050
3051 err = read_block_for_search(NULL, root, p, &b, level,
3052 slot, key, time_seq);
3053 if (err == -EAGAIN)
3054 goto again;
3055 if (err) {
3056 ret = err;
3057 goto done;
3058 }
3059
3060 level = btrfs_header_level(b);
3061 err = btrfs_try_tree_read_lock(b);
3062 if (!err) {
3063 btrfs_set_path_blocking(p);
3064 btrfs_tree_read_lock(b);
3065 btrfs_clear_path_blocking(p, b,
3066 BTRFS_READ_LOCK);
3067 }
3068 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3069 if (!b) {
3070 ret = -ENOMEM;
3071 goto done;
3072 }
3073 p->locks[level] = BTRFS_READ_LOCK;
3074 p->nodes[level] = b;
3075 } else {
3076 p->slots[level] = slot;
3077 unlock_up(p, level, lowest_unlock, 0, NULL);
3078 goto done;
3079 }
3080 }
3081 ret = 1;
3082 done:
3083 if (!p->leave_spinning)
3084 btrfs_set_path_blocking(p);
3085 if (ret < 0)
3086 btrfs_release_path(p);
3087
3088 return ret;
3089 }
3090
3091 /*
3092 * helper to use instead of search slot if no exact match is needed but
3093 * instead the next or previous item should be returned.
3094 * When find_higher is true, the next higher item is returned, the next lower
3095 * otherwise.
3096 * When return_any and find_higher are both true, and no higher item is found,
3097 * return the next lower instead.
3098 * When return_any is true and find_higher is false, and no lower item is found,
3099 * return the next higher instead.
3100 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3101 * < 0 on error
3102 */
3103 int btrfs_search_slot_for_read(struct btrfs_root *root,
3104 struct btrfs_key *key, struct btrfs_path *p,
3105 int find_higher, int return_any)
3106 {
3107 int ret;
3108 struct extent_buffer *leaf;
3109
3110 again:
3111 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3112 if (ret <= 0)
3113 return ret;
3114 /*
3115 * a return value of 1 means the path is at the position where the
3116 * item should be inserted. Normally this is the next bigger item,
3117 * but in case the previous item is the last in a leaf, path points
3118 * to the first free slot in the previous leaf, i.e. at an invalid
3119 * item.
3120 */
3121 leaf = p->nodes[0];
3122
3123 if (find_higher) {
3124 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3125 ret = btrfs_next_leaf(root, p);
3126 if (ret <= 0)
3127 return ret;
3128 if (!return_any)
3129 return 1;
3130 /*
3131 * no higher item found, return the next
3132 * lower instead
3133 */
3134 return_any = 0;
3135 find_higher = 0;
3136 btrfs_release_path(p);
3137 goto again;
3138 }
3139 } else {
3140 if (p->slots[0] == 0) {
3141 ret = btrfs_prev_leaf(root, p);
3142 if (ret < 0)
3143 return ret;
3144 if (!ret) {
3145 leaf = p->nodes[0];
3146 if (p->slots[0] == btrfs_header_nritems(leaf))
3147 p->slots[0]--;
3148 return 0;
3149 }
3150 if (!return_any)
3151 return 1;
3152 /*
3153 * no lower item found, return the next
3154 * higher instead
3155 */
3156 return_any = 0;
3157 find_higher = 1;
3158 btrfs_release_path(p);
3159 goto again;
3160 } else {
3161 --p->slots[0];
3162 }
3163 }
3164 return 0;
3165 }
3166
3167 /*
3168 * adjust the pointers going up the tree, starting at level
3169 * making sure the right key of each node is points to 'key'.
3170 * This is used after shifting pointers to the left, so it stops
3171 * fixing up pointers when a given leaf/node is not in slot 0 of the
3172 * higher levels
3173 *
3174 */
3175 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3176 struct btrfs_disk_key *key, int level)
3177 {
3178 int i;
3179 struct extent_buffer *t;
3180
3181 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3182 int tslot = path->slots[i];
3183 if (!path->nodes[i])
3184 break;
3185 t = path->nodes[i];
3186 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3187 btrfs_set_node_key(t, key, tslot);
3188 btrfs_mark_buffer_dirty(path->nodes[i]);
3189 if (tslot != 0)
3190 break;
3191 }
3192 }
3193
3194 /*
3195 * update item key.
3196 *
3197 * This function isn't completely safe. It's the caller's responsibility
3198 * that the new key won't break the order
3199 */
3200 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3201 struct btrfs_key *new_key)
3202 {
3203 struct btrfs_disk_key disk_key;
3204 struct extent_buffer *eb;
3205 int slot;
3206
3207 eb = path->nodes[0];
3208 slot = path->slots[0];
3209 if (slot > 0) {
3210 btrfs_item_key(eb, &disk_key, slot - 1);
3211 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3212 }
3213 if (slot < btrfs_header_nritems(eb) - 1) {
3214 btrfs_item_key(eb, &disk_key, slot + 1);
3215 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3216 }
3217
3218 btrfs_cpu_key_to_disk(&disk_key, new_key);
3219 btrfs_set_item_key(eb, &disk_key, slot);
3220 btrfs_mark_buffer_dirty(eb);
3221 if (slot == 0)
3222 fixup_low_keys(root, path, &disk_key, 1);
3223 }
3224
3225 /*
3226 * try to push data from one node into the next node left in the
3227 * tree.
3228 *
3229 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3230 * error, and > 0 if there was no room in the left hand block.
3231 */
3232 static int push_node_left(struct btrfs_trans_handle *trans,
3233 struct btrfs_root *root, struct extent_buffer *dst,
3234 struct extent_buffer *src, int empty)
3235 {
3236 int push_items = 0;
3237 int src_nritems;
3238 int dst_nritems;
3239 int ret = 0;
3240
3241 src_nritems = btrfs_header_nritems(src);
3242 dst_nritems = btrfs_header_nritems(dst);
3243 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3244 WARN_ON(btrfs_header_generation(src) != trans->transid);
3245 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3246
3247 if (!empty && src_nritems <= 8)
3248 return 1;
3249
3250 if (push_items <= 0)
3251 return 1;
3252
3253 if (empty) {
3254 push_items = min(src_nritems, push_items);
3255 if (push_items < src_nritems) {
3256 /* leave at least 8 pointers in the node if
3257 * we aren't going to empty it
3258 */
3259 if (src_nritems - push_items < 8) {
3260 if (push_items <= 8)
3261 return 1;
3262 push_items -= 8;
3263 }
3264 }
3265 } else
3266 push_items = min(src_nritems - 8, push_items);
3267
3268 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3269 push_items);
3270 if (ret) {
3271 btrfs_abort_transaction(trans, root, ret);
3272 return ret;
3273 }
3274 copy_extent_buffer(dst, src,
3275 btrfs_node_key_ptr_offset(dst_nritems),
3276 btrfs_node_key_ptr_offset(0),
3277 push_items * sizeof(struct btrfs_key_ptr));
3278
3279 if (push_items < src_nritems) {
3280 /*
3281 * don't call tree_mod_log_eb_move here, key removal was already
3282 * fully logged by tree_mod_log_eb_copy above.
3283 */
3284 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3285 btrfs_node_key_ptr_offset(push_items),
3286 (src_nritems - push_items) *
3287 sizeof(struct btrfs_key_ptr));
3288 }
3289 btrfs_set_header_nritems(src, src_nritems - push_items);
3290 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3291 btrfs_mark_buffer_dirty(src);
3292 btrfs_mark_buffer_dirty(dst);
3293
3294 return ret;
3295 }
3296
3297 /*
3298 * try to push data from one node into the next node right in the
3299 * tree.
3300 *
3301 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3302 * error, and > 0 if there was no room in the right hand block.
3303 *
3304 * this will only push up to 1/2 the contents of the left node over
3305 */
3306 static int balance_node_right(struct btrfs_trans_handle *trans,
3307 struct btrfs_root *root,
3308 struct extent_buffer *dst,
3309 struct extent_buffer *src)
3310 {
3311 int push_items = 0;
3312 int max_push;
3313 int src_nritems;
3314 int dst_nritems;
3315 int ret = 0;
3316
3317 WARN_ON(btrfs_header_generation(src) != trans->transid);
3318 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3319
3320 src_nritems = btrfs_header_nritems(src);
3321 dst_nritems = btrfs_header_nritems(dst);
3322 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3323 if (push_items <= 0)
3324 return 1;
3325
3326 if (src_nritems < 4)
3327 return 1;
3328
3329 max_push = src_nritems / 2 + 1;
3330 /* don't try to empty the node */
3331 if (max_push >= src_nritems)
3332 return 1;
3333
3334 if (max_push < push_items)
3335 push_items = max_push;
3336
3337 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3338 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3339 btrfs_node_key_ptr_offset(0),
3340 (dst_nritems) *
3341 sizeof(struct btrfs_key_ptr));
3342
3343 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3344 src_nritems - push_items, push_items);
3345 if (ret) {
3346 btrfs_abort_transaction(trans, root, ret);
3347 return ret;
3348 }
3349 copy_extent_buffer(dst, src,
3350 btrfs_node_key_ptr_offset(0),
3351 btrfs_node_key_ptr_offset(src_nritems - push_items),
3352 push_items * sizeof(struct btrfs_key_ptr));
3353
3354 btrfs_set_header_nritems(src, src_nritems - push_items);
3355 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3356
3357 btrfs_mark_buffer_dirty(src);
3358 btrfs_mark_buffer_dirty(dst);
3359
3360 return ret;
3361 }
3362
3363 /*
3364 * helper function to insert a new root level in the tree.
3365 * A new node is allocated, and a single item is inserted to
3366 * point to the existing root
3367 *
3368 * returns zero on success or < 0 on failure.
3369 */
3370 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3371 struct btrfs_root *root,
3372 struct btrfs_path *path, int level)
3373 {
3374 u64 lower_gen;
3375 struct extent_buffer *lower;
3376 struct extent_buffer *c;
3377 struct extent_buffer *old;
3378 struct btrfs_disk_key lower_key;
3379
3380 BUG_ON(path->nodes[level]);
3381 BUG_ON(path->nodes[level-1] != root->node);
3382
3383 lower = path->nodes[level-1];
3384 if (level == 1)
3385 btrfs_item_key(lower, &lower_key, 0);
3386 else
3387 btrfs_node_key(lower, &lower_key, 0);
3388
3389 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3390 root->root_key.objectid, &lower_key,
3391 level, root->node->start, 0);
3392 if (IS_ERR(c))
3393 return PTR_ERR(c);
3394
3395 root_add_used(root, root->nodesize);
3396
3397 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3398 btrfs_set_header_nritems(c, 1);
3399 btrfs_set_header_level(c, level);
3400 btrfs_set_header_bytenr(c, c->start);
3401 btrfs_set_header_generation(c, trans->transid);
3402 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3403 btrfs_set_header_owner(c, root->root_key.objectid);
3404
3405 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3406 BTRFS_FSID_SIZE);
3407
3408 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3409 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3410
3411 btrfs_set_node_key(c, &lower_key, 0);
3412 btrfs_set_node_blockptr(c, 0, lower->start);
3413 lower_gen = btrfs_header_generation(lower);
3414 WARN_ON(lower_gen != trans->transid);
3415
3416 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3417
3418 btrfs_mark_buffer_dirty(c);
3419
3420 old = root->node;
3421 tree_mod_log_set_root_pointer(root, c, 0);
3422 rcu_assign_pointer(root->node, c);
3423
3424 /* the super has an extra ref to root->node */
3425 free_extent_buffer(old);
3426
3427 add_root_to_dirty_list(root);
3428 extent_buffer_get(c);
3429 path->nodes[level] = c;
3430 path->locks[level] = BTRFS_WRITE_LOCK;
3431 path->slots[level] = 0;
3432 return 0;
3433 }
3434
3435 /*
3436 * worker function to insert a single pointer in a node.
3437 * the node should have enough room for the pointer already
3438 *
3439 * slot and level indicate where you want the key to go, and
3440 * blocknr is the block the key points to.
3441 */
3442 static void insert_ptr(struct btrfs_trans_handle *trans,
3443 struct btrfs_root *root, struct btrfs_path *path,
3444 struct btrfs_disk_key *key, u64 bytenr,
3445 int slot, int level)
3446 {
3447 struct extent_buffer *lower;
3448 int nritems;
3449 int ret;
3450
3451 BUG_ON(!path->nodes[level]);
3452 btrfs_assert_tree_locked(path->nodes[level]);
3453 lower = path->nodes[level];
3454 nritems = btrfs_header_nritems(lower);
3455 BUG_ON(slot > nritems);
3456 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3457 if (slot != nritems) {
3458 if (level)
3459 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3460 slot, nritems - slot);
3461 memmove_extent_buffer(lower,
3462 btrfs_node_key_ptr_offset(slot + 1),
3463 btrfs_node_key_ptr_offset(slot),
3464 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3465 }
3466 if (level) {
3467 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3468 MOD_LOG_KEY_ADD, GFP_NOFS);
3469 BUG_ON(ret < 0);
3470 }
3471 btrfs_set_node_key(lower, key, slot);
3472 btrfs_set_node_blockptr(lower, slot, bytenr);
3473 WARN_ON(trans->transid == 0);
3474 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3475 btrfs_set_header_nritems(lower, nritems + 1);
3476 btrfs_mark_buffer_dirty(lower);
3477 }
3478
3479 /*
3480 * split the node at the specified level in path in two.
3481 * The path is corrected to point to the appropriate node after the split
3482 *
3483 * Before splitting this tries to make some room in the node by pushing
3484 * left and right, if either one works, it returns right away.
3485 *
3486 * returns 0 on success and < 0 on failure
3487 */
3488 static noinline int split_node(struct btrfs_trans_handle *trans,
3489 struct btrfs_root *root,
3490 struct btrfs_path *path, int level)
3491 {
3492 struct extent_buffer *c;
3493 struct extent_buffer *split;
3494 struct btrfs_disk_key disk_key;
3495 int mid;
3496 int ret;
3497 u32 c_nritems;
3498
3499 c = path->nodes[level];
3500 WARN_ON(btrfs_header_generation(c) != trans->transid);
3501 if (c == root->node) {
3502 /*
3503 * trying to split the root, lets make a new one
3504 *
3505 * tree mod log: We don't log_removal old root in
3506 * insert_new_root, because that root buffer will be kept as a
3507 * normal node. We are going to log removal of half of the
3508 * elements below with tree_mod_log_eb_copy. We're holding a
3509 * tree lock on the buffer, which is why we cannot race with
3510 * other tree_mod_log users.
3511 */
3512 ret = insert_new_root(trans, root, path, level + 1);
3513 if (ret)
3514 return ret;
3515 } else {
3516 ret = push_nodes_for_insert(trans, root, path, level);
3517 c = path->nodes[level];
3518 if (!ret && btrfs_header_nritems(c) <
3519 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3520 return 0;
3521 if (ret < 0)
3522 return ret;
3523 }
3524
3525 c_nritems = btrfs_header_nritems(c);
3526 mid = (c_nritems + 1) / 2;
3527 btrfs_node_key(c, &disk_key, mid);
3528
3529 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3530 root->root_key.objectid,
3531 &disk_key, level, c->start, 0);
3532 if (IS_ERR(split))
3533 return PTR_ERR(split);
3534
3535 root_add_used(root, root->nodesize);
3536
3537 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3538 btrfs_set_header_level(split, btrfs_header_level(c));
3539 btrfs_set_header_bytenr(split, split->start);
3540 btrfs_set_header_generation(split, trans->transid);
3541 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3542 btrfs_set_header_owner(split, root->root_key.objectid);
3543 write_extent_buffer(split, root->fs_info->fsid,
3544 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3545 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3546 btrfs_header_chunk_tree_uuid(split),
3547 BTRFS_UUID_SIZE);
3548
3549 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3550 mid, c_nritems - mid);
3551 if (ret) {
3552 btrfs_abort_transaction(trans, root, ret);
3553 return ret;
3554 }
3555 copy_extent_buffer(split, c,
3556 btrfs_node_key_ptr_offset(0),
3557 btrfs_node_key_ptr_offset(mid),
3558 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3559 btrfs_set_header_nritems(split, c_nritems - mid);
3560 btrfs_set_header_nritems(c, mid);
3561 ret = 0;
3562
3563 btrfs_mark_buffer_dirty(c);
3564 btrfs_mark_buffer_dirty(split);
3565
3566 insert_ptr(trans, root, path, &disk_key, split->start,
3567 path->slots[level + 1] + 1, level + 1);
3568
3569 if (path->slots[level] >= mid) {
3570 path->slots[level] -= mid;
3571 btrfs_tree_unlock(c);
3572 free_extent_buffer(c);
3573 path->nodes[level] = split;
3574 path->slots[level + 1] += 1;
3575 } else {
3576 btrfs_tree_unlock(split);
3577 free_extent_buffer(split);
3578 }
3579 return ret;
3580 }
3581
3582 /*
3583 * how many bytes are required to store the items in a leaf. start
3584 * and nr indicate which items in the leaf to check. This totals up the
3585 * space used both by the item structs and the item data
3586 */
3587 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3588 {
3589 struct btrfs_item *start_item;
3590 struct btrfs_item *end_item;
3591 struct btrfs_map_token token;
3592 int data_len;
3593 int nritems = btrfs_header_nritems(l);
3594 int end = min(nritems, start + nr) - 1;
3595
3596 if (!nr)
3597 return 0;
3598 btrfs_init_map_token(&token);
3599 start_item = btrfs_item_nr(start);
3600 end_item = btrfs_item_nr(end);
3601 data_len = btrfs_token_item_offset(l, start_item, &token) +
3602 btrfs_token_item_size(l, start_item, &token);
3603 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3604 data_len += sizeof(struct btrfs_item) * nr;
3605 WARN_ON(data_len < 0);
3606 return data_len;
3607 }
3608
3609 /*
3610 * The space between the end of the leaf items and
3611 * the start of the leaf data. IOW, how much room
3612 * the leaf has left for both items and data
3613 */
3614 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3615 struct extent_buffer *leaf)
3616 {
3617 int nritems = btrfs_header_nritems(leaf);
3618 int ret;
3619 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3620 if (ret < 0) {
3621 btrfs_crit(root->fs_info,
3622 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3623 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3624 leaf_space_used(leaf, 0, nritems), nritems);
3625 }
3626 return ret;
3627 }
3628
3629 /*
3630 * min slot controls the lowest index we're willing to push to the
3631 * right. We'll push up to and including min_slot, but no lower
3632 */
3633 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3634 struct btrfs_root *root,
3635 struct btrfs_path *path,
3636 int data_size, int empty,
3637 struct extent_buffer *right,
3638 int free_space, u32 left_nritems,
3639 u32 min_slot)
3640 {
3641 struct extent_buffer *left = path->nodes[0];
3642 struct extent_buffer *upper = path->nodes[1];
3643 struct btrfs_map_token token;
3644 struct btrfs_disk_key disk_key;
3645 int slot;
3646 u32 i;
3647 int push_space = 0;
3648 int push_items = 0;
3649 struct btrfs_item *item;
3650 u32 nr;
3651 u32 right_nritems;
3652 u32 data_end;
3653 u32 this_item_size;
3654
3655 btrfs_init_map_token(&token);
3656
3657 if (empty)
3658 nr = 0;
3659 else
3660 nr = max_t(u32, 1, min_slot);
3661
3662 if (path->slots[0] >= left_nritems)
3663 push_space += data_size;
3664
3665 slot = path->slots[1];
3666 i = left_nritems - 1;
3667 while (i >= nr) {
3668 item = btrfs_item_nr(i);
3669
3670 if (!empty && push_items > 0) {
3671 if (path->slots[0] > i)
3672 break;
3673 if (path->slots[0] == i) {
3674 int space = btrfs_leaf_free_space(root, left);
3675 if (space + push_space * 2 > free_space)
3676 break;
3677 }
3678 }
3679
3680 if (path->slots[0] == i)
3681 push_space += data_size;
3682
3683 this_item_size = btrfs_item_size(left, item);
3684 if (this_item_size + sizeof(*item) + push_space > free_space)
3685 break;
3686
3687 push_items++;
3688 push_space += this_item_size + sizeof(*item);
3689 if (i == 0)
3690 break;
3691 i--;
3692 }
3693
3694 if (push_items == 0)
3695 goto out_unlock;
3696
3697 WARN_ON(!empty && push_items == left_nritems);
3698
3699 /* push left to right */
3700 right_nritems = btrfs_header_nritems(right);
3701
3702 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3703 push_space -= leaf_data_end(root, left);
3704
3705 /* make room in the right data area */
3706 data_end = leaf_data_end(root, right);
3707 memmove_extent_buffer(right,
3708 btrfs_leaf_data(right) + data_end - push_space,
3709 btrfs_leaf_data(right) + data_end,
3710 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3711
3712 /* copy from the left data area */
3713 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3714 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3715 btrfs_leaf_data(left) + leaf_data_end(root, left),
3716 push_space);
3717
3718 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3719 btrfs_item_nr_offset(0),
3720 right_nritems * sizeof(struct btrfs_item));
3721
3722 /* copy the items from left to right */
3723 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3724 btrfs_item_nr_offset(left_nritems - push_items),
3725 push_items * sizeof(struct btrfs_item));
3726
3727 /* update the item pointers */
3728 right_nritems += push_items;
3729 btrfs_set_header_nritems(right, right_nritems);
3730 push_space = BTRFS_LEAF_DATA_SIZE(root);
3731 for (i = 0; i < right_nritems; i++) {
3732 item = btrfs_item_nr(i);
3733 push_space -= btrfs_token_item_size(right, item, &token);
3734 btrfs_set_token_item_offset(right, item, push_space, &token);
3735 }
3736
3737 left_nritems -= push_items;
3738 btrfs_set_header_nritems(left, left_nritems);
3739
3740 if (left_nritems)
3741 btrfs_mark_buffer_dirty(left);
3742 else
3743 clean_tree_block(trans, root, left);
3744
3745 btrfs_mark_buffer_dirty(right);
3746
3747 btrfs_item_key(right, &disk_key, 0);
3748 btrfs_set_node_key(upper, &disk_key, slot + 1);
3749 btrfs_mark_buffer_dirty(upper);
3750
3751 /* then fixup the leaf pointer in the path */
3752 if (path->slots[0] >= left_nritems) {
3753 path->slots[0] -= left_nritems;
3754 if (btrfs_header_nritems(path->nodes[0]) == 0)
3755 clean_tree_block(trans, root, path->nodes[0]);
3756 btrfs_tree_unlock(path->nodes[0]);
3757 free_extent_buffer(path->nodes[0]);
3758 path->nodes[0] = right;
3759 path->slots[1] += 1;
3760 } else {
3761 btrfs_tree_unlock(right);
3762 free_extent_buffer(right);
3763 }
3764 return 0;
3765
3766 out_unlock:
3767 btrfs_tree_unlock(right);
3768 free_extent_buffer(right);
3769 return 1;
3770 }
3771
3772 /*
3773 * push some data in the path leaf to the right, trying to free up at
3774 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3775 *
3776 * returns 1 if the push failed because the other node didn't have enough
3777 * room, 0 if everything worked out and < 0 if there were major errors.
3778 *
3779 * this will push starting from min_slot to the end of the leaf. It won't
3780 * push any slot lower than min_slot
3781 */
3782 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3783 *root, struct btrfs_path *path,
3784 int min_data_size, int data_size,
3785 int empty, u32 min_slot)
3786 {
3787 struct extent_buffer *left = path->nodes[0];
3788 struct extent_buffer *right;
3789 struct extent_buffer *upper;
3790 int slot;
3791 int free_space;
3792 u32 left_nritems;
3793 int ret;
3794
3795 if (!path->nodes[1])
3796 return 1;
3797
3798 slot = path->slots[1];
3799 upper = path->nodes[1];
3800 if (slot >= btrfs_header_nritems(upper) - 1)
3801 return 1;
3802
3803 btrfs_assert_tree_locked(path->nodes[1]);
3804
3805 right = read_node_slot(root, upper, slot + 1);
3806 if (right == NULL)
3807 return 1;
3808
3809 btrfs_tree_lock(right);
3810 btrfs_set_lock_blocking(right);
3811
3812 free_space = btrfs_leaf_free_space(root, right);
3813 if (free_space < data_size)
3814 goto out_unlock;
3815
3816 /* cow and double check */
3817 ret = btrfs_cow_block(trans, root, right, upper,
3818 slot + 1, &right);
3819 if (ret)
3820 goto out_unlock;
3821
3822 free_space = btrfs_leaf_free_space(root, right);
3823 if (free_space < data_size)
3824 goto out_unlock;
3825
3826 left_nritems = btrfs_header_nritems(left);
3827 if (left_nritems == 0)
3828 goto out_unlock;
3829
3830 if (path->slots[0] == left_nritems && !empty) {
3831 /* Key greater than all keys in the leaf, right neighbor has
3832 * enough room for it and we're not emptying our leaf to delete
3833 * it, therefore use right neighbor to insert the new item and
3834 * no need to touch/dirty our left leaft. */
3835 btrfs_tree_unlock(left);
3836 free_extent_buffer(left);
3837 path->nodes[0] = right;
3838 path->slots[0] = 0;
3839 path->slots[1]++;
3840 return 0;
3841 }
3842
3843 return __push_leaf_right(trans, root, path, min_data_size, empty,
3844 right, free_space, left_nritems, min_slot);
3845 out_unlock:
3846 btrfs_tree_unlock(right);
3847 free_extent_buffer(right);
3848 return 1;
3849 }
3850
3851 /*
3852 * push some data in the path leaf to the left, trying to free up at
3853 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3854 *
3855 * max_slot can put a limit on how far into the leaf we'll push items. The
3856 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3857 * items
3858 */
3859 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3860 struct btrfs_root *root,
3861 struct btrfs_path *path, int data_size,
3862 int empty, struct extent_buffer *left,
3863 int free_space, u32 right_nritems,
3864 u32 max_slot)
3865 {
3866 struct btrfs_disk_key disk_key;
3867 struct extent_buffer *right = path->nodes[0];
3868 int i;
3869 int push_space = 0;
3870 int push_items = 0;
3871 struct btrfs_item *item;
3872 u32 old_left_nritems;
3873 u32 nr;
3874 int ret = 0;
3875 u32 this_item_size;
3876 u32 old_left_item_size;
3877 struct btrfs_map_token token;
3878
3879 btrfs_init_map_token(&token);
3880
3881 if (empty)
3882 nr = min(right_nritems, max_slot);
3883 else
3884 nr = min(right_nritems - 1, max_slot);
3885
3886 for (i = 0; i < nr; i++) {
3887 item = btrfs_item_nr(i);
3888
3889 if (!empty && push_items > 0) {
3890 if (path->slots[0] < i)
3891 break;
3892 if (path->slots[0] == i) {
3893 int space = btrfs_leaf_free_space(root, right);
3894 if (space + push_space * 2 > free_space)
3895 break;
3896 }
3897 }
3898
3899 if (path->slots[0] == i)
3900 push_space += data_size;
3901
3902 this_item_size = btrfs_item_size(right, item);
3903 if (this_item_size + sizeof(*item) + push_space > free_space)
3904 break;
3905
3906 push_items++;
3907 push_space += this_item_size + sizeof(*item);
3908 }
3909
3910 if (push_items == 0) {
3911 ret = 1;
3912 goto out;
3913 }
3914 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3915
3916 /* push data from right to left */
3917 copy_extent_buffer(left, right,
3918 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3919 btrfs_item_nr_offset(0),
3920 push_items * sizeof(struct btrfs_item));
3921
3922 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3923 btrfs_item_offset_nr(right, push_items - 1);
3924
3925 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3926 leaf_data_end(root, left) - push_space,
3927 btrfs_leaf_data(right) +
3928 btrfs_item_offset_nr(right, push_items - 1),
3929 push_space);
3930 old_left_nritems = btrfs_header_nritems(left);
3931 BUG_ON(old_left_nritems <= 0);
3932
3933 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3934 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3935 u32 ioff;
3936
3937 item = btrfs_item_nr(i);
3938
3939 ioff = btrfs_token_item_offset(left, item, &token);
3940 btrfs_set_token_item_offset(left, item,
3941 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3942 &token);
3943 }
3944 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3945
3946 /* fixup right node */
3947 if (push_items > right_nritems)
3948 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3949 right_nritems);
3950
3951 if (push_items < right_nritems) {
3952 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3953 leaf_data_end(root, right);
3954 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3955 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3956 btrfs_leaf_data(right) +
3957 leaf_data_end(root, right), push_space);
3958
3959 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3960 btrfs_item_nr_offset(push_items),
3961 (btrfs_header_nritems(right) - push_items) *
3962 sizeof(struct btrfs_item));
3963 }
3964 right_nritems -= push_items;
3965 btrfs_set_header_nritems(right, right_nritems);
3966 push_space = BTRFS_LEAF_DATA_SIZE(root);
3967 for (i = 0; i < right_nritems; i++) {
3968 item = btrfs_item_nr(i);
3969
3970 push_space = push_space - btrfs_token_item_size(right,
3971 item, &token);
3972 btrfs_set_token_item_offset(right, item, push_space, &token);
3973 }
3974
3975 btrfs_mark_buffer_dirty(left);
3976 if (right_nritems)
3977 btrfs_mark_buffer_dirty(right);
3978 else
3979 clean_tree_block(trans, root, right);
3980
3981 btrfs_item_key(right, &disk_key, 0);
3982 fixup_low_keys(root, path, &disk_key, 1);
3983
3984 /* then fixup the leaf pointer in the path */
3985 if (path->slots[0] < push_items) {
3986 path->slots[0] += old_left_nritems;
3987 btrfs_tree_unlock(path->nodes[0]);
3988 free_extent_buffer(path->nodes[0]);
3989 path->nodes[0] = left;
3990 path->slots[1] -= 1;
3991 } else {
3992 btrfs_tree_unlock(left);
3993 free_extent_buffer(left);
3994 path->slots[0] -= push_items;
3995 }
3996 BUG_ON(path->slots[0] < 0);
3997 return ret;
3998 out:
3999 btrfs_tree_unlock(left);
4000 free_extent_buffer(left);
4001 return ret;
4002 }
4003
4004 /*
4005 * push some data in the path leaf to the left, trying to free up at
4006 * least data_size bytes. returns zero if the push worked, nonzero otherwise
4007 *
4008 * max_slot can put a limit on how far into the leaf we'll push items. The
4009 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
4010 * items
4011 */
4012 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4013 *root, struct btrfs_path *path, int min_data_size,
4014 int data_size, int empty, u32 max_slot)
4015 {
4016 struct extent_buffer *right = path->nodes[0];
4017 struct extent_buffer *left;
4018 int slot;
4019 int free_space;
4020 u32 right_nritems;
4021 int ret = 0;
4022
4023 slot = path->slots[1];
4024 if (slot == 0)
4025 return 1;
4026 if (!path->nodes[1])
4027 return 1;
4028
4029 right_nritems = btrfs_header_nritems(right);
4030 if (right_nritems == 0)
4031 return 1;
4032
4033 btrfs_assert_tree_locked(path->nodes[1]);
4034
4035 left = read_node_slot(root, path->nodes[1], slot - 1);
4036 if (left == NULL)
4037 return 1;
4038
4039 btrfs_tree_lock(left);
4040 btrfs_set_lock_blocking(left);
4041
4042 free_space = btrfs_leaf_free_space(root, left);
4043 if (free_space < data_size) {
4044 ret = 1;
4045 goto out;
4046 }
4047
4048 /* cow and double check */
4049 ret = btrfs_cow_block(trans, root, left,
4050 path->nodes[1], slot - 1, &left);
4051 if (ret) {
4052 /* we hit -ENOSPC, but it isn't fatal here */
4053 if (ret == -ENOSPC)
4054 ret = 1;
4055 goto out;
4056 }
4057
4058 free_space = btrfs_leaf_free_space(root, left);
4059 if (free_space < data_size) {
4060 ret = 1;
4061 goto out;
4062 }
4063
4064 return __push_leaf_left(trans, root, path, min_data_size,
4065 empty, left, free_space, right_nritems,
4066 max_slot);
4067 out:
4068 btrfs_tree_unlock(left);
4069 free_extent_buffer(left);
4070 return ret;
4071 }
4072
4073 /*
4074 * split the path's leaf in two, making sure there is at least data_size
4075 * available for the resulting leaf level of the path.
4076 */
4077 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4078 struct btrfs_root *root,
4079 struct btrfs_path *path,
4080 struct extent_buffer *l,
4081 struct extent_buffer *right,
4082 int slot, int mid, int nritems)
4083 {
4084 int data_copy_size;
4085 int rt_data_off;
4086 int i;
4087 struct btrfs_disk_key disk_key;
4088 struct btrfs_map_token token;
4089
4090 btrfs_init_map_token(&token);
4091
4092 nritems = nritems - mid;
4093 btrfs_set_header_nritems(right, nritems);
4094 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4095
4096 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4097 btrfs_item_nr_offset(mid),
4098 nritems * sizeof(struct btrfs_item));
4099
4100 copy_extent_buffer(right, l,
4101 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4102 data_copy_size, btrfs_leaf_data(l) +
4103 leaf_data_end(root, l), data_copy_size);
4104
4105 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4106 btrfs_item_end_nr(l, mid);
4107
4108 for (i = 0; i < nritems; i++) {
4109 struct btrfs_item *item = btrfs_item_nr(i);
4110 u32 ioff;
4111
4112 ioff = btrfs_token_item_offset(right, item, &token);
4113 btrfs_set_token_item_offset(right, item,
4114 ioff + rt_data_off, &token);
4115 }
4116
4117 btrfs_set_header_nritems(l, mid);
4118 btrfs_item_key(right, &disk_key, 0);
4119 insert_ptr(trans, root, path, &disk_key, right->start,
4120 path->slots[1] + 1, 1);
4121
4122 btrfs_mark_buffer_dirty(right);
4123 btrfs_mark_buffer_dirty(l);
4124 BUG_ON(path->slots[0] != slot);
4125
4126 if (mid <= slot) {
4127 btrfs_tree_unlock(path->nodes[0]);
4128 free_extent_buffer(path->nodes[0]);
4129 path->nodes[0] = right;
4130 path->slots[0] -= mid;
4131 path->slots[1] += 1;
4132 } else {
4133 btrfs_tree_unlock(right);
4134 free_extent_buffer(right);
4135 }
4136
4137 BUG_ON(path->slots[0] < 0);
4138 }
4139
4140 /*
4141 * double splits happen when we need to insert a big item in the middle
4142 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4143 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4144 * A B C
4145 *
4146 * We avoid this by trying to push the items on either side of our target
4147 * into the adjacent leaves. If all goes well we can avoid the double split
4148 * completely.
4149 */
4150 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4151 struct btrfs_root *root,
4152 struct btrfs_path *path,
4153 int data_size)
4154 {
4155 int ret;
4156 int progress = 0;
4157 int slot;
4158 u32 nritems;
4159 int space_needed = data_size;
4160
4161 slot = path->slots[0];
4162 if (slot < btrfs_header_nritems(path->nodes[0]))
4163 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4164
4165 /*
4166 * try to push all the items after our slot into the
4167 * right leaf
4168 */
4169 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4170 if (ret < 0)
4171 return ret;
4172
4173 if (ret == 0)
4174 progress++;
4175
4176 nritems = btrfs_header_nritems(path->nodes[0]);
4177 /*
4178 * our goal is to get our slot at the start or end of a leaf. If
4179 * we've done so we're done
4180 */
4181 if (path->slots[0] == 0 || path->slots[0] == nritems)
4182 return 0;
4183
4184 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4185 return 0;
4186
4187 /* try to push all the items before our slot into the next leaf */
4188 slot = path->slots[0];
4189 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4190 if (ret < 0)
4191 return ret;
4192
4193 if (ret == 0)
4194 progress++;
4195
4196 if (progress)
4197 return 0;
4198 return 1;
4199 }
4200
4201 /*
4202 * split the path's leaf in two, making sure there is at least data_size
4203 * available for the resulting leaf level of the path.
4204 *
4205 * returns 0 if all went well and < 0 on failure.
4206 */
4207 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4208 struct btrfs_root *root,
4209 struct btrfs_key *ins_key,
4210 struct btrfs_path *path, int data_size,
4211 int extend)
4212 {
4213 struct btrfs_disk_key disk_key;
4214 struct extent_buffer *l;
4215 u32 nritems;
4216 int mid;
4217 int slot;
4218 struct extent_buffer *right;
4219 int ret = 0;
4220 int wret;
4221 int split;
4222 int num_doubles = 0;
4223 int tried_avoid_double = 0;
4224
4225 l = path->nodes[0];
4226 slot = path->slots[0];
4227 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4228 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4229 return -EOVERFLOW;
4230
4231 /* first try to make some room by pushing left and right */
4232 if (data_size && path->nodes[1]) {
4233 int space_needed = data_size;
4234
4235 if (slot < btrfs_header_nritems(l))
4236 space_needed -= btrfs_leaf_free_space(root, l);
4237
4238 wret = push_leaf_right(trans, root, path, space_needed,
4239 space_needed, 0, 0);
4240 if (wret < 0)
4241 return wret;
4242 if (wret) {
4243 wret = push_leaf_left(trans, root, path, space_needed,
4244 space_needed, 0, (u32)-1);
4245 if (wret < 0)
4246 return wret;
4247 }
4248 l = path->nodes[0];
4249
4250 /* did the pushes work? */
4251 if (btrfs_leaf_free_space(root, l) >= data_size)
4252 return 0;
4253 }
4254
4255 if (!path->nodes[1]) {
4256 ret = insert_new_root(trans, root, path, 1);
4257 if (ret)
4258 return ret;
4259 }
4260 again:
4261 split = 1;
4262 l = path->nodes[0];
4263 slot = path->slots[0];
4264 nritems = btrfs_header_nritems(l);
4265 mid = (nritems + 1) / 2;
4266
4267 if (mid <= slot) {
4268 if (nritems == 1 ||
4269 leaf_space_used(l, mid, nritems - mid) + data_size >
4270 BTRFS_LEAF_DATA_SIZE(root)) {
4271 if (slot >= nritems) {
4272 split = 0;
4273 } else {
4274 mid = slot;
4275 if (mid != nritems &&
4276 leaf_space_used(l, mid, nritems - mid) +
4277 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4278 if (data_size && !tried_avoid_double)
4279 goto push_for_double;
4280 split = 2;
4281 }
4282 }
4283 }
4284 } else {
4285 if (leaf_space_used(l, 0, mid) + data_size >
4286 BTRFS_LEAF_DATA_SIZE(root)) {
4287 if (!extend && data_size && slot == 0) {
4288 split = 0;
4289 } else if ((extend || !data_size) && slot == 0) {
4290 mid = 1;
4291 } else {
4292 mid = slot;
4293 if (mid != nritems &&
4294 leaf_space_used(l, mid, nritems - mid) +
4295 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4296 if (data_size && !tried_avoid_double)
4297 goto push_for_double;
4298 split = 2;
4299 }
4300 }
4301 }
4302 }
4303
4304 if (split == 0)
4305 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4306 else
4307 btrfs_item_key(l, &disk_key, mid);
4308
4309 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4310 root->root_key.objectid,
4311 &disk_key, 0, l->start, 0);
4312 if (IS_ERR(right))
4313 return PTR_ERR(right);
4314
4315 root_add_used(root, root->leafsize);
4316
4317 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4318 btrfs_set_header_bytenr(right, right->start);
4319 btrfs_set_header_generation(right, trans->transid);
4320 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4321 btrfs_set_header_owner(right, root->root_key.objectid);
4322 btrfs_set_header_level(right, 0);
4323 write_extent_buffer(right, root->fs_info->fsid,
4324 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4325
4326 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4327 btrfs_header_chunk_tree_uuid(right),
4328 BTRFS_UUID_SIZE);
4329
4330 if (split == 0) {
4331 if (mid <= slot) {
4332 btrfs_set_header_nritems(right, 0);
4333 insert_ptr(trans, root, path, &disk_key, right->start,
4334 path->slots[1] + 1, 1);
4335 btrfs_tree_unlock(path->nodes[0]);
4336 free_extent_buffer(path->nodes[0]);
4337 path->nodes[0] = right;
4338 path->slots[0] = 0;
4339 path->slots[1] += 1;
4340 } else {
4341 btrfs_set_header_nritems(right, 0);
4342 insert_ptr(trans, root, path, &disk_key, right->start,
4343 path->slots[1], 1);
4344 btrfs_tree_unlock(path->nodes[0]);
4345 free_extent_buffer(path->nodes[0]);
4346 path->nodes[0] = right;
4347 path->slots[0] = 0;
4348 if (path->slots[1] == 0)
4349 fixup_low_keys(root, path, &disk_key, 1);
4350 }
4351 btrfs_mark_buffer_dirty(right);
4352 return ret;
4353 }
4354
4355 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4356
4357 if (split == 2) {
4358 BUG_ON(num_doubles != 0);
4359 num_doubles++;
4360 goto again;
4361 }
4362
4363 return 0;
4364
4365 push_for_double:
4366 push_for_double_split(trans, root, path, data_size);
4367 tried_avoid_double = 1;
4368 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4369 return 0;
4370 goto again;
4371 }
4372
4373 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4374 struct btrfs_root *root,
4375 struct btrfs_path *path, int ins_len)
4376 {
4377 struct btrfs_key key;
4378 struct extent_buffer *leaf;
4379 struct btrfs_file_extent_item *fi;
4380 u64 extent_len = 0;
4381 u32 item_size;
4382 int ret;
4383
4384 leaf = path->nodes[0];
4385 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4386
4387 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4388 key.type != BTRFS_EXTENT_CSUM_KEY);
4389
4390 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4391 return 0;
4392
4393 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4394 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4395 fi = btrfs_item_ptr(leaf, path->slots[0],
4396 struct btrfs_file_extent_item);
4397 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4398 }
4399 btrfs_release_path(path);
4400
4401 path->keep_locks = 1;
4402 path->search_for_split = 1;
4403 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4404 path->search_for_split = 0;
4405 if (ret < 0)
4406 goto err;
4407
4408 ret = -EAGAIN;
4409 leaf = path->nodes[0];
4410 /* if our item isn't there or got smaller, return now */
4411 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4412 goto err;
4413
4414 /* the leaf has changed, it now has room. return now */
4415 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4416 goto err;
4417
4418 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4419 fi = btrfs_item_ptr(leaf, path->slots[0],
4420 struct btrfs_file_extent_item);
4421 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4422 goto err;
4423 }
4424
4425 btrfs_set_path_blocking(path);
4426 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4427 if (ret)
4428 goto err;
4429
4430 path->keep_locks = 0;
4431 btrfs_unlock_up_safe(path, 1);
4432 return 0;
4433 err:
4434 path->keep_locks = 0;
4435 return ret;
4436 }
4437
4438 static noinline int split_item(struct btrfs_trans_handle *trans,
4439 struct btrfs_root *root,
4440 struct btrfs_path *path,
4441 struct btrfs_key *new_key,
4442 unsigned long split_offset)
4443 {
4444 struct extent_buffer *leaf;
4445 struct btrfs_item *item;
4446 struct btrfs_item *new_item;
4447 int slot;
4448 char *buf;
4449 u32 nritems;
4450 u32 item_size;
4451 u32 orig_offset;
4452 struct btrfs_disk_key disk_key;
4453
4454 leaf = path->nodes[0];
4455 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4456
4457 btrfs_set_path_blocking(path);
4458
4459 item = btrfs_item_nr(path->slots[0]);
4460 orig_offset = btrfs_item_offset(leaf, item);
4461 item_size = btrfs_item_size(leaf, item);
4462
4463 buf = kmalloc(item_size, GFP_NOFS);
4464 if (!buf)
4465 return -ENOMEM;
4466
4467 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4468 path->slots[0]), item_size);
4469
4470 slot = path->slots[0] + 1;
4471 nritems = btrfs_header_nritems(leaf);
4472 if (slot != nritems) {
4473 /* shift the items */
4474 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4475 btrfs_item_nr_offset(slot),
4476 (nritems - slot) * sizeof(struct btrfs_item));
4477 }
4478
4479 btrfs_cpu_key_to_disk(&disk_key, new_key);
4480 btrfs_set_item_key(leaf, &disk_key, slot);
4481
4482 new_item = btrfs_item_nr(slot);
4483
4484 btrfs_set_item_offset(leaf, new_item, orig_offset);
4485 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4486
4487 btrfs_set_item_offset(leaf, item,
4488 orig_offset + item_size - split_offset);
4489 btrfs_set_item_size(leaf, item, split_offset);
4490
4491 btrfs_set_header_nritems(leaf, nritems + 1);
4492
4493 /* write the data for the start of the original item */
4494 write_extent_buffer(leaf, buf,
4495 btrfs_item_ptr_offset(leaf, path->slots[0]),
4496 split_offset);
4497
4498 /* write the data for the new item */
4499 write_extent_buffer(leaf, buf + split_offset,
4500 btrfs_item_ptr_offset(leaf, slot),
4501 item_size - split_offset);
4502 btrfs_mark_buffer_dirty(leaf);
4503
4504 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4505 kfree(buf);
4506 return 0;
4507 }
4508
4509 /*
4510 * This function splits a single item into two items,
4511 * giving 'new_key' to the new item and splitting the
4512 * old one at split_offset (from the start of the item).
4513 *
4514 * The path may be released by this operation. After
4515 * the split, the path is pointing to the old item. The
4516 * new item is going to be in the same node as the old one.
4517 *
4518 * Note, the item being split must be smaller enough to live alone on
4519 * a tree block with room for one extra struct btrfs_item
4520 *
4521 * This allows us to split the item in place, keeping a lock on the
4522 * leaf the entire time.
4523 */
4524 int btrfs_split_item(struct btrfs_trans_handle *trans,
4525 struct btrfs_root *root,
4526 struct btrfs_path *path,
4527 struct btrfs_key *new_key,
4528 unsigned long split_offset)
4529 {
4530 int ret;
4531 ret = setup_leaf_for_split(trans, root, path,
4532 sizeof(struct btrfs_item));
4533 if (ret)
4534 return ret;
4535
4536 ret = split_item(trans, root, path, new_key, split_offset);
4537 return ret;
4538 }
4539
4540 /*
4541 * This function duplicate a item, giving 'new_key' to the new item.
4542 * It guarantees both items live in the same tree leaf and the new item
4543 * is contiguous with the original item.
4544 *
4545 * This allows us to split file extent in place, keeping a lock on the
4546 * leaf the entire time.
4547 */
4548 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4549 struct btrfs_root *root,
4550 struct btrfs_path *path,
4551 struct btrfs_key *new_key)
4552 {
4553 struct extent_buffer *leaf;
4554 int ret;
4555 u32 item_size;
4556
4557 leaf = path->nodes[0];
4558 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4559 ret = setup_leaf_for_split(trans, root, path,
4560 item_size + sizeof(struct btrfs_item));
4561 if (ret)
4562 return ret;
4563
4564 path->slots[0]++;
4565 setup_items_for_insert(root, path, new_key, &item_size,
4566 item_size, item_size +
4567 sizeof(struct btrfs_item), 1);
4568 leaf = path->nodes[0];
4569 memcpy_extent_buffer(leaf,
4570 btrfs_item_ptr_offset(leaf, path->slots[0]),
4571 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4572 item_size);
4573 return 0;
4574 }
4575
4576 /*
4577 * make the item pointed to by the path smaller. new_size indicates
4578 * how small to make it, and from_end tells us if we just chop bytes
4579 * off the end of the item or if we shift the item to chop bytes off
4580 * the front.
4581 */
4582 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4583 u32 new_size, int from_end)
4584 {
4585 int slot;
4586 struct extent_buffer *leaf;
4587 struct btrfs_item *item;
4588 u32 nritems;
4589 unsigned int data_end;
4590 unsigned int old_data_start;
4591 unsigned int old_size;
4592 unsigned int size_diff;
4593 int i;
4594 struct btrfs_map_token token;
4595
4596 btrfs_init_map_token(&token);
4597
4598 leaf = path->nodes[0];
4599 slot = path->slots[0];
4600
4601 old_size = btrfs_item_size_nr(leaf, slot);
4602 if (old_size == new_size)
4603 return;
4604
4605 nritems = btrfs_header_nritems(leaf);
4606 data_end = leaf_data_end(root, leaf);
4607
4608 old_data_start = btrfs_item_offset_nr(leaf, slot);
4609
4610 size_diff = old_size - new_size;
4611
4612 BUG_ON(slot < 0);
4613 BUG_ON(slot >= nritems);
4614
4615 /*
4616 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4617 */
4618 /* first correct the data pointers */
4619 for (i = slot; i < nritems; i++) {
4620 u32 ioff;
4621 item = btrfs_item_nr(i);
4622
4623 ioff = btrfs_token_item_offset(leaf, item, &token);
4624 btrfs_set_token_item_offset(leaf, item,
4625 ioff + size_diff, &token);
4626 }
4627
4628 /* shift the data */
4629 if (from_end) {
4630 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4631 data_end + size_diff, btrfs_leaf_data(leaf) +
4632 data_end, old_data_start + new_size - data_end);
4633 } else {
4634 struct btrfs_disk_key disk_key;
4635 u64 offset;
4636
4637 btrfs_item_key(leaf, &disk_key, slot);
4638
4639 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4640 unsigned long ptr;
4641 struct btrfs_file_extent_item *fi;
4642
4643 fi = btrfs_item_ptr(leaf, slot,
4644 struct btrfs_file_extent_item);
4645 fi = (struct btrfs_file_extent_item *)(
4646 (unsigned long)fi - size_diff);
4647
4648 if (btrfs_file_extent_type(leaf, fi) ==
4649 BTRFS_FILE_EXTENT_INLINE) {
4650 ptr = btrfs_item_ptr_offset(leaf, slot);
4651 memmove_extent_buffer(leaf, ptr,
4652 (unsigned long)fi,
4653 offsetof(struct btrfs_file_extent_item,
4654 disk_bytenr));
4655 }
4656 }
4657
4658 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4659 data_end + size_diff, btrfs_leaf_data(leaf) +
4660 data_end, old_data_start - data_end);
4661
4662 offset = btrfs_disk_key_offset(&disk_key);
4663 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4664 btrfs_set_item_key(leaf, &disk_key, slot);
4665 if (slot == 0)
4666 fixup_low_keys(root, path, &disk_key, 1);
4667 }
4668
4669 item = btrfs_item_nr(slot);
4670 btrfs_set_item_size(leaf, item, new_size);
4671 btrfs_mark_buffer_dirty(leaf);
4672
4673 if (btrfs_leaf_free_space(root, leaf) < 0) {
4674 btrfs_print_leaf(root, leaf);
4675 BUG();
4676 }
4677 }
4678
4679 /*
4680 * make the item pointed to by the path bigger, data_size is the added size.
4681 */
4682 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4683 u32 data_size)
4684 {
4685 int slot;
4686 struct extent_buffer *leaf;
4687 struct btrfs_item *item;
4688 u32 nritems;
4689 unsigned int data_end;
4690 unsigned int old_data;
4691 unsigned int old_size;
4692 int i;
4693 struct btrfs_map_token token;
4694
4695 btrfs_init_map_token(&token);
4696
4697 leaf = path->nodes[0];
4698
4699 nritems = btrfs_header_nritems(leaf);
4700 data_end = leaf_data_end(root, leaf);
4701
4702 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4703 btrfs_print_leaf(root, leaf);
4704 BUG();
4705 }
4706 slot = path->slots[0];
4707 old_data = btrfs_item_end_nr(leaf, slot);
4708
4709 BUG_ON(slot < 0);
4710 if (slot >= nritems) {
4711 btrfs_print_leaf(root, leaf);
4712 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4713 slot, nritems);
4714 BUG_ON(1);
4715 }
4716
4717 /*
4718 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4719 */
4720 /* first correct the data pointers */
4721 for (i = slot; i < nritems; i++) {
4722 u32 ioff;
4723 item = btrfs_item_nr(i);
4724
4725 ioff = btrfs_token_item_offset(leaf, item, &token);
4726 btrfs_set_token_item_offset(leaf, item,
4727 ioff - data_size, &token);
4728 }
4729
4730 /* shift the data */
4731 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4732 data_end - data_size, btrfs_leaf_data(leaf) +
4733 data_end, old_data - data_end);
4734
4735 data_end = old_data;
4736 old_size = btrfs_item_size_nr(leaf, slot);
4737 item = btrfs_item_nr(slot);
4738 btrfs_set_item_size(leaf, item, old_size + data_size);
4739 btrfs_mark_buffer_dirty(leaf);
4740
4741 if (btrfs_leaf_free_space(root, leaf) < 0) {
4742 btrfs_print_leaf(root, leaf);
4743 BUG();
4744 }
4745 }
4746
4747 /*
4748 * this is a helper for btrfs_insert_empty_items, the main goal here is
4749 * to save stack depth by doing the bulk of the work in a function
4750 * that doesn't call btrfs_search_slot
4751 */
4752 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4753 struct btrfs_key *cpu_key, u32 *data_size,
4754 u32 total_data, u32 total_size, int nr)
4755 {
4756 struct btrfs_item *item;
4757 int i;
4758 u32 nritems;
4759 unsigned int data_end;
4760 struct btrfs_disk_key disk_key;
4761 struct extent_buffer *leaf;
4762 int slot;
4763 struct btrfs_map_token token;
4764
4765 btrfs_init_map_token(&token);
4766
4767 leaf = path->nodes[0];
4768 slot = path->slots[0];
4769
4770 nritems = btrfs_header_nritems(leaf);
4771 data_end = leaf_data_end(root, leaf);
4772
4773 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4774 btrfs_print_leaf(root, leaf);
4775 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4776 total_size, btrfs_leaf_free_space(root, leaf));
4777 BUG();
4778 }
4779
4780 if (slot != nritems) {
4781 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4782
4783 if (old_data < data_end) {
4784 btrfs_print_leaf(root, leaf);
4785 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4786 slot, old_data, data_end);
4787 BUG_ON(1);
4788 }
4789 /*
4790 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4791 */
4792 /* first correct the data pointers */
4793 for (i = slot; i < nritems; i++) {
4794 u32 ioff;
4795
4796 item = btrfs_item_nr( i);
4797 ioff = btrfs_token_item_offset(leaf, item, &token);
4798 btrfs_set_token_item_offset(leaf, item,
4799 ioff - total_data, &token);
4800 }
4801 /* shift the items */
4802 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4803 btrfs_item_nr_offset(slot),
4804 (nritems - slot) * sizeof(struct btrfs_item));
4805
4806 /* shift the data */
4807 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4808 data_end - total_data, btrfs_leaf_data(leaf) +
4809 data_end, old_data - data_end);
4810 data_end = old_data;
4811 }
4812
4813 /* setup the item for the new data */
4814 for (i = 0; i < nr; i++) {
4815 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4816 btrfs_set_item_key(leaf, &disk_key, slot + i);
4817 item = btrfs_item_nr(slot + i);
4818 btrfs_set_token_item_offset(leaf, item,
4819 data_end - data_size[i], &token);
4820 data_end -= data_size[i];
4821 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4822 }
4823
4824 btrfs_set_header_nritems(leaf, nritems + nr);
4825
4826 if (slot == 0) {
4827 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4828 fixup_low_keys(root, path, &disk_key, 1);
4829 }
4830 btrfs_unlock_up_safe(path, 1);
4831 btrfs_mark_buffer_dirty(leaf);
4832
4833 if (btrfs_leaf_free_space(root, leaf) < 0) {
4834 btrfs_print_leaf(root, leaf);
4835 BUG();
4836 }
4837 }
4838
4839 /*
4840 * Given a key and some data, insert items into the tree.
4841 * This does all the path init required, making room in the tree if needed.
4842 */
4843 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4844 struct btrfs_root *root,
4845 struct btrfs_path *path,
4846 struct btrfs_key *cpu_key, u32 *data_size,
4847 int nr)
4848 {
4849 int ret = 0;
4850 int slot;
4851 int i;
4852 u32 total_size = 0;
4853 u32 total_data = 0;
4854
4855 for (i = 0; i < nr; i++)
4856 total_data += data_size[i];
4857
4858 total_size = total_data + (nr * sizeof(struct btrfs_item));
4859 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4860 if (ret == 0)
4861 return -EEXIST;
4862 if (ret < 0)
4863 return ret;
4864
4865 slot = path->slots[0];
4866 BUG_ON(slot < 0);
4867
4868 setup_items_for_insert(root, path, cpu_key, data_size,
4869 total_data, total_size, nr);
4870 return 0;
4871 }
4872
4873 /*
4874 * Given a key and some data, insert an item into the tree.
4875 * This does all the path init required, making room in the tree if needed.
4876 */
4877 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4878 *root, struct btrfs_key *cpu_key, void *data, u32
4879 data_size)
4880 {
4881 int ret = 0;
4882 struct btrfs_path *path;
4883 struct extent_buffer *leaf;
4884 unsigned long ptr;
4885
4886 path = btrfs_alloc_path();
4887 if (!path)
4888 return -ENOMEM;
4889 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4890 if (!ret) {
4891 leaf = path->nodes[0];
4892 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4893 write_extent_buffer(leaf, data, ptr, data_size);
4894 btrfs_mark_buffer_dirty(leaf);
4895 }
4896 btrfs_free_path(path);
4897 return ret;
4898 }
4899
4900 /*
4901 * delete the pointer from a given node.
4902 *
4903 * the tree should have been previously balanced so the deletion does not
4904 * empty a node.
4905 */
4906 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4907 int level, int slot)
4908 {
4909 struct extent_buffer *parent = path->nodes[level];
4910 u32 nritems;
4911 int ret;
4912
4913 nritems = btrfs_header_nritems(parent);
4914 if (slot != nritems - 1) {
4915 if (level)
4916 tree_mod_log_eb_move(root->fs_info, parent, slot,
4917 slot + 1, nritems - slot - 1);
4918 memmove_extent_buffer(parent,
4919 btrfs_node_key_ptr_offset(slot),
4920 btrfs_node_key_ptr_offset(slot + 1),
4921 sizeof(struct btrfs_key_ptr) *
4922 (nritems - slot - 1));
4923 } else if (level) {
4924 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4925 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4926 BUG_ON(ret < 0);
4927 }
4928
4929 nritems--;
4930 btrfs_set_header_nritems(parent, nritems);
4931 if (nritems == 0 && parent == root->node) {
4932 BUG_ON(btrfs_header_level(root->node) != 1);
4933 /* just turn the root into a leaf and break */
4934 btrfs_set_header_level(root->node, 0);
4935 } else if (slot == 0) {
4936 struct btrfs_disk_key disk_key;
4937
4938 btrfs_node_key(parent, &disk_key, 0);
4939 fixup_low_keys(root, path, &disk_key, level + 1);
4940 }
4941 btrfs_mark_buffer_dirty(parent);
4942 }
4943
4944 /*
4945 * a helper function to delete the leaf pointed to by path->slots[1] and
4946 * path->nodes[1].
4947 *
4948 * This deletes the pointer in path->nodes[1] and frees the leaf
4949 * block extent. zero is returned if it all worked out, < 0 otherwise.
4950 *
4951 * The path must have already been setup for deleting the leaf, including
4952 * all the proper balancing. path->nodes[1] must be locked.
4953 */
4954 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4955 struct btrfs_root *root,
4956 struct btrfs_path *path,
4957 struct extent_buffer *leaf)
4958 {
4959 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4960 del_ptr(root, path, 1, path->slots[1]);
4961
4962 /*
4963 * btrfs_free_extent is expensive, we want to make sure we
4964 * aren't holding any locks when we call it
4965 */
4966 btrfs_unlock_up_safe(path, 0);
4967
4968 root_sub_used(root, leaf->len);
4969
4970 extent_buffer_get(leaf);
4971 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4972 free_extent_buffer_stale(leaf);
4973 }
4974 /*
4975 * delete the item at the leaf level in path. If that empties
4976 * the leaf, remove it from the tree
4977 */
4978 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4979 struct btrfs_path *path, int slot, int nr)
4980 {
4981 struct extent_buffer *leaf;
4982 struct btrfs_item *item;
4983 int last_off;
4984 int dsize = 0;
4985 int ret = 0;
4986 int wret;
4987 int i;
4988 u32 nritems;
4989 struct btrfs_map_token token;
4990
4991 btrfs_init_map_token(&token);
4992
4993 leaf = path->nodes[0];
4994 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4995
4996 for (i = 0; i < nr; i++)
4997 dsize += btrfs_item_size_nr(leaf, slot + i);
4998
4999 nritems = btrfs_header_nritems(leaf);
5000
5001 if (slot + nr != nritems) {
5002 int data_end = leaf_data_end(root, leaf);
5003
5004 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
5005 data_end + dsize,
5006 btrfs_leaf_data(leaf) + data_end,
5007 last_off - data_end);
5008
5009 for (i = slot + nr; i < nritems; i++) {
5010 u32 ioff;
5011
5012 item = btrfs_item_nr(i);
5013 ioff = btrfs_token_item_offset(leaf, item, &token);
5014 btrfs_set_token_item_offset(leaf, item,
5015 ioff + dsize, &token);
5016 }
5017
5018 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5019 btrfs_item_nr_offset(slot + nr),
5020 sizeof(struct btrfs_item) *
5021 (nritems - slot - nr));
5022 }
5023 btrfs_set_header_nritems(leaf, nritems - nr);
5024 nritems -= nr;
5025
5026 /* delete the leaf if we've emptied it */
5027 if (nritems == 0) {
5028 if (leaf == root->node) {
5029 btrfs_set_header_level(leaf, 0);
5030 } else {
5031 btrfs_set_path_blocking(path);
5032 clean_tree_block(trans, root, leaf);
5033 btrfs_del_leaf(trans, root, path, leaf);
5034 }
5035 } else {
5036 int used = leaf_space_used(leaf, 0, nritems);
5037 if (slot == 0) {
5038 struct btrfs_disk_key disk_key;
5039
5040 btrfs_item_key(leaf, &disk_key, 0);
5041 fixup_low_keys(root, path, &disk_key, 1);
5042 }
5043
5044 /* delete the leaf if it is mostly empty */
5045 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5046 /* push_leaf_left fixes the path.
5047 * make sure the path still points to our leaf
5048 * for possible call to del_ptr below
5049 */
5050 slot = path->slots[1];
5051 extent_buffer_get(leaf);
5052
5053 btrfs_set_path_blocking(path);
5054 wret = push_leaf_left(trans, root, path, 1, 1,
5055 1, (u32)-1);
5056 if (wret < 0 && wret != -ENOSPC)
5057 ret = wret;
5058
5059 if (path->nodes[0] == leaf &&
5060 btrfs_header_nritems(leaf)) {
5061 wret = push_leaf_right(trans, root, path, 1,
5062 1, 1, 0);
5063 if (wret < 0 && wret != -ENOSPC)
5064 ret = wret;
5065 }
5066
5067 if (btrfs_header_nritems(leaf) == 0) {
5068 path->slots[1] = slot;
5069 btrfs_del_leaf(trans, root, path, leaf);
5070 free_extent_buffer(leaf);
5071 ret = 0;
5072 } else {
5073 /* if we're still in the path, make sure
5074 * we're dirty. Otherwise, one of the
5075 * push_leaf functions must have already
5076 * dirtied this buffer
5077 */
5078 if (path->nodes[0] == leaf)
5079 btrfs_mark_buffer_dirty(leaf);
5080 free_extent_buffer(leaf);
5081 }
5082 } else {
5083 btrfs_mark_buffer_dirty(leaf);
5084 }
5085 }
5086 return ret;
5087 }
5088
5089 /*
5090 * search the tree again to find a leaf with lesser keys
5091 * returns 0 if it found something or 1 if there are no lesser leaves.
5092 * returns < 0 on io errors.
5093 *
5094 * This may release the path, and so you may lose any locks held at the
5095 * time you call it.
5096 */
5097 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5098 {
5099 struct btrfs_key key;
5100 struct btrfs_disk_key found_key;
5101 int ret;
5102
5103 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5104
5105 if (key.offset > 0) {
5106 key.offset--;
5107 } else if (key.type > 0) {
5108 key.type--;
5109 key.offset = (u64)-1;
5110 } else if (key.objectid > 0) {
5111 key.objectid--;
5112 key.type = (u8)-1;
5113 key.offset = (u64)-1;
5114 } else {
5115 return 1;
5116 }
5117
5118 btrfs_release_path(path);
5119 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5120 if (ret < 0)
5121 return ret;
5122 btrfs_item_key(path->nodes[0], &found_key, 0);
5123 ret = comp_keys(&found_key, &key);
5124 if (ret < 0)
5125 return 0;
5126 return 1;
5127 }
5128
5129 /*
5130 * A helper function to walk down the tree starting at min_key, and looking
5131 * for nodes or leaves that are have a minimum transaction id.
5132 * This is used by the btree defrag code, and tree logging
5133 *
5134 * This does not cow, but it does stuff the starting key it finds back
5135 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5136 * key and get a writable path.
5137 *
5138 * This does lock as it descends, and path->keep_locks should be set
5139 * to 1 by the caller.
5140 *
5141 * This honors path->lowest_level to prevent descent past a given level
5142 * of the tree.
5143 *
5144 * min_trans indicates the oldest transaction that you are interested
5145 * in walking through. Any nodes or leaves older than min_trans are
5146 * skipped over (without reading them).
5147 *
5148 * returns zero if something useful was found, < 0 on error and 1 if there
5149 * was nothing in the tree that matched the search criteria.
5150 */
5151 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5152 struct btrfs_path *path,
5153 u64 min_trans)
5154 {
5155 struct extent_buffer *cur;
5156 struct btrfs_key found_key;
5157 int slot;
5158 int sret;
5159 u32 nritems;
5160 int level;
5161 int ret = 1;
5162
5163 WARN_ON(!path->keep_locks);
5164 again:
5165 cur = btrfs_read_lock_root_node(root);
5166 level = btrfs_header_level(cur);
5167 WARN_ON(path->nodes[level]);
5168 path->nodes[level] = cur;
5169 path->locks[level] = BTRFS_READ_LOCK;
5170
5171 if (btrfs_header_generation(cur) < min_trans) {
5172 ret = 1;
5173 goto out;
5174 }
5175 while (1) {
5176 nritems = btrfs_header_nritems(cur);
5177 level = btrfs_header_level(cur);
5178 sret = bin_search(cur, min_key, level, &slot);
5179
5180 /* at the lowest level, we're done, setup the path and exit */
5181 if (level == path->lowest_level) {
5182 if (slot >= nritems)
5183 goto find_next_key;
5184 ret = 0;
5185 path->slots[level] = slot;
5186 btrfs_item_key_to_cpu(cur, &found_key, slot);
5187 goto out;
5188 }
5189 if (sret && slot > 0)
5190 slot--;
5191 /*
5192 * check this node pointer against the min_trans parameters.
5193 * If it is too old, old, skip to the next one.
5194 */
5195 while (slot < nritems) {
5196 u64 gen;
5197
5198 gen = btrfs_node_ptr_generation(cur, slot);
5199 if (gen < min_trans) {
5200 slot++;
5201 continue;
5202 }
5203 break;
5204 }
5205 find_next_key:
5206 /*
5207 * we didn't find a candidate key in this node, walk forward
5208 * and find another one
5209 */
5210 if (slot >= nritems) {
5211 path->slots[level] = slot;
5212 btrfs_set_path_blocking(path);
5213 sret = btrfs_find_next_key(root, path, min_key, level,
5214 min_trans);
5215 if (sret == 0) {
5216 btrfs_release_path(path);
5217 goto again;
5218 } else {
5219 goto out;
5220 }
5221 }
5222 /* save our key for returning back */
5223 btrfs_node_key_to_cpu(cur, &found_key, slot);
5224 path->slots[level] = slot;
5225 if (level == path->lowest_level) {
5226 ret = 0;
5227 unlock_up(path, level, 1, 0, NULL);
5228 goto out;
5229 }
5230 btrfs_set_path_blocking(path);
5231 cur = read_node_slot(root, cur, slot);
5232 BUG_ON(!cur); /* -ENOMEM */
5233
5234 btrfs_tree_read_lock(cur);
5235
5236 path->locks[level - 1] = BTRFS_READ_LOCK;
5237 path->nodes[level - 1] = cur;
5238 unlock_up(path, level, 1, 0, NULL);
5239 btrfs_clear_path_blocking(path, NULL, 0);
5240 }
5241 out:
5242 if (ret == 0)
5243 memcpy(min_key, &found_key, sizeof(found_key));
5244 btrfs_set_path_blocking(path);
5245 return ret;
5246 }
5247
5248 static void tree_move_down(struct btrfs_root *root,
5249 struct btrfs_path *path,
5250 int *level, int root_level)
5251 {
5252 BUG_ON(*level == 0);
5253 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5254 path->slots[*level]);
5255 path->slots[*level - 1] = 0;
5256 (*level)--;
5257 }
5258
5259 static int tree_move_next_or_upnext(struct btrfs_root *root,
5260 struct btrfs_path *path,
5261 int *level, int root_level)
5262 {
5263 int ret = 0;
5264 int nritems;
5265 nritems = btrfs_header_nritems(path->nodes[*level]);
5266
5267 path->slots[*level]++;
5268
5269 while (path->slots[*level] >= nritems) {
5270 if (*level == root_level)
5271 return -1;
5272
5273 /* move upnext */
5274 path->slots[*level] = 0;
5275 free_extent_buffer(path->nodes[*level]);
5276 path->nodes[*level] = NULL;
5277 (*level)++;
5278 path->slots[*level]++;
5279
5280 nritems = btrfs_header_nritems(path->nodes[*level]);
5281 ret = 1;
5282 }
5283 return ret;
5284 }
5285
5286 /*
5287 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5288 * or down.
5289 */
5290 static int tree_advance(struct btrfs_root *root,
5291 struct btrfs_path *path,
5292 int *level, int root_level,
5293 int allow_down,
5294 struct btrfs_key *key)
5295 {
5296 int ret;
5297
5298 if (*level == 0 || !allow_down) {
5299 ret = tree_move_next_or_upnext(root, path, level, root_level);
5300 } else {
5301 tree_move_down(root, path, level, root_level);
5302 ret = 0;
5303 }
5304 if (ret >= 0) {
5305 if (*level == 0)
5306 btrfs_item_key_to_cpu(path->nodes[*level], key,
5307 path->slots[*level]);
5308 else
5309 btrfs_node_key_to_cpu(path->nodes[*level], key,
5310 path->slots[*level]);
5311 }
5312 return ret;
5313 }
5314
5315 static int tree_compare_item(struct btrfs_root *left_root,
5316 struct btrfs_path *left_path,
5317 struct btrfs_path *right_path,
5318 char *tmp_buf)
5319 {
5320 int cmp;
5321 int len1, len2;
5322 unsigned long off1, off2;
5323
5324 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5325 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5326 if (len1 != len2)
5327 return 1;
5328
5329 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5330 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5331 right_path->slots[0]);
5332
5333 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5334
5335 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5336 if (cmp)
5337 return 1;
5338 return 0;
5339 }
5340
5341 #define ADVANCE 1
5342 #define ADVANCE_ONLY_NEXT -1
5343
5344 /*
5345 * This function compares two trees and calls the provided callback for
5346 * every changed/new/deleted item it finds.
5347 * If shared tree blocks are encountered, whole subtrees are skipped, making
5348 * the compare pretty fast on snapshotted subvolumes.
5349 *
5350 * This currently works on commit roots only. As commit roots are read only,
5351 * we don't do any locking. The commit roots are protected with transactions.
5352 * Transactions are ended and rejoined when a commit is tried in between.
5353 *
5354 * This function checks for modifications done to the trees while comparing.
5355 * If it detects a change, it aborts immediately.
5356 */
5357 int btrfs_compare_trees(struct btrfs_root *left_root,
5358 struct btrfs_root *right_root,
5359 btrfs_changed_cb_t changed_cb, void *ctx)
5360 {
5361 int ret;
5362 int cmp;
5363 struct btrfs_trans_handle *trans = NULL;
5364 struct btrfs_path *left_path = NULL;
5365 struct btrfs_path *right_path = NULL;
5366 struct btrfs_key left_key;
5367 struct btrfs_key right_key;
5368 char *tmp_buf = NULL;
5369 int left_root_level;
5370 int right_root_level;
5371 int left_level;
5372 int right_level;
5373 int left_end_reached;
5374 int right_end_reached;
5375 int advance_left;
5376 int advance_right;
5377 u64 left_blockptr;
5378 u64 right_blockptr;
5379 u64 left_start_ctransid;
5380 u64 right_start_ctransid;
5381 u64 ctransid;
5382
5383 left_path = btrfs_alloc_path();
5384 if (!left_path) {
5385 ret = -ENOMEM;
5386 goto out;
5387 }
5388 right_path = btrfs_alloc_path();
5389 if (!right_path) {
5390 ret = -ENOMEM;
5391 goto out;
5392 }
5393
5394 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5395 if (!tmp_buf) {
5396 ret = -ENOMEM;
5397 goto out;
5398 }
5399
5400 left_path->search_commit_root = 1;
5401 left_path->skip_locking = 1;
5402 right_path->search_commit_root = 1;
5403 right_path->skip_locking = 1;
5404
5405 spin_lock(&left_root->root_item_lock);
5406 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5407 spin_unlock(&left_root->root_item_lock);
5408
5409 spin_lock(&right_root->root_item_lock);
5410 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5411 spin_unlock(&right_root->root_item_lock);
5412
5413 trans = btrfs_join_transaction(left_root);
5414 if (IS_ERR(trans)) {
5415 ret = PTR_ERR(trans);
5416 trans = NULL;
5417 goto out;
5418 }
5419
5420 /*
5421 * Strategy: Go to the first items of both trees. Then do
5422 *
5423 * If both trees are at level 0
5424 * Compare keys of current items
5425 * If left < right treat left item as new, advance left tree
5426 * and repeat
5427 * If left > right treat right item as deleted, advance right tree
5428 * and repeat
5429 * If left == right do deep compare of items, treat as changed if
5430 * needed, advance both trees and repeat
5431 * If both trees are at the same level but not at level 0
5432 * Compare keys of current nodes/leafs
5433 * If left < right advance left tree and repeat
5434 * If left > right advance right tree and repeat
5435 * If left == right compare blockptrs of the next nodes/leafs
5436 * If they match advance both trees but stay at the same level
5437 * and repeat
5438 * If they don't match advance both trees while allowing to go
5439 * deeper and repeat
5440 * If tree levels are different
5441 * Advance the tree that needs it and repeat
5442 *
5443 * Advancing a tree means:
5444 * If we are at level 0, try to go to the next slot. If that's not
5445 * possible, go one level up and repeat. Stop when we found a level
5446 * where we could go to the next slot. We may at this point be on a
5447 * node or a leaf.
5448 *
5449 * If we are not at level 0 and not on shared tree blocks, go one
5450 * level deeper.
5451 *
5452 * If we are not at level 0 and on shared tree blocks, go one slot to
5453 * the right if possible or go up and right.
5454 */
5455
5456 left_level = btrfs_header_level(left_root->commit_root);
5457 left_root_level = left_level;
5458 left_path->nodes[left_level] = left_root->commit_root;
5459 extent_buffer_get(left_path->nodes[left_level]);
5460
5461 right_level = btrfs_header_level(right_root->commit_root);
5462 right_root_level = right_level;
5463 right_path->nodes[right_level] = right_root->commit_root;
5464 extent_buffer_get(right_path->nodes[right_level]);
5465
5466 if (left_level == 0)
5467 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5468 &left_key, left_path->slots[left_level]);
5469 else
5470 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5471 &left_key, left_path->slots[left_level]);
5472 if (right_level == 0)
5473 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5474 &right_key, right_path->slots[right_level]);
5475 else
5476 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5477 &right_key, right_path->slots[right_level]);
5478
5479 left_end_reached = right_end_reached = 0;
5480 advance_left = advance_right = 0;
5481
5482 while (1) {
5483 /*
5484 * We need to make sure the transaction does not get committed
5485 * while we do anything on commit roots. This means, we need to
5486 * join and leave transactions for every item that we process.
5487 */
5488 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5489 btrfs_release_path(left_path);
5490 btrfs_release_path(right_path);
5491
5492 ret = btrfs_end_transaction(trans, left_root);
5493 trans = NULL;
5494 if (ret < 0)
5495 goto out;
5496 }
5497 /* now rejoin the transaction */
5498 if (!trans) {
5499 trans = btrfs_join_transaction(left_root);
5500 if (IS_ERR(trans)) {
5501 ret = PTR_ERR(trans);
5502 trans = NULL;
5503 goto out;
5504 }
5505
5506 spin_lock(&left_root->root_item_lock);
5507 ctransid = btrfs_root_ctransid(&left_root->root_item);
5508 spin_unlock(&left_root->root_item_lock);
5509 if (ctransid != left_start_ctransid)
5510 left_start_ctransid = 0;
5511
5512 spin_lock(&right_root->root_item_lock);
5513 ctransid = btrfs_root_ctransid(&right_root->root_item);
5514 spin_unlock(&right_root->root_item_lock);
5515 if (ctransid != right_start_ctransid)
5516 right_start_ctransid = 0;
5517
5518 if (!left_start_ctransid || !right_start_ctransid) {
5519 WARN(1, KERN_WARNING
5520 "BTRFS: btrfs_compare_tree detected "
5521 "a change in one of the trees while "
5522 "iterating. This is probably a "
5523 "bug.\n");
5524 ret = -EIO;
5525 goto out;
5526 }
5527
5528 /*
5529 * the commit root may have changed, so start again
5530 * where we stopped
5531 */
5532 left_path->lowest_level = left_level;
5533 right_path->lowest_level = right_level;
5534 ret = btrfs_search_slot(NULL, left_root,
5535 &left_key, left_path, 0, 0);
5536 if (ret < 0)
5537 goto out;
5538 ret = btrfs_search_slot(NULL, right_root,
5539 &right_key, right_path, 0, 0);
5540 if (ret < 0)
5541 goto out;
5542 }
5543
5544 if (advance_left && !left_end_reached) {
5545 ret = tree_advance(left_root, left_path, &left_level,
5546 left_root_level,
5547 advance_left != ADVANCE_ONLY_NEXT,
5548 &left_key);
5549 if (ret < 0)
5550 left_end_reached = ADVANCE;
5551 advance_left = 0;
5552 }
5553 if (advance_right && !right_end_reached) {
5554 ret = tree_advance(right_root, right_path, &right_level,
5555 right_root_level,
5556 advance_right != ADVANCE_ONLY_NEXT,
5557 &right_key);
5558 if (ret < 0)
5559 right_end_reached = ADVANCE;
5560 advance_right = 0;
5561 }
5562
5563 if (left_end_reached && right_end_reached) {
5564 ret = 0;
5565 goto out;
5566 } else if (left_end_reached) {
5567 if (right_level == 0) {
5568 ret = changed_cb(left_root, right_root,
5569 left_path, right_path,
5570 &right_key,
5571 BTRFS_COMPARE_TREE_DELETED,
5572 ctx);
5573 if (ret < 0)
5574 goto out;
5575 }
5576 advance_right = ADVANCE;
5577 continue;
5578 } else if (right_end_reached) {
5579 if (left_level == 0) {
5580 ret = changed_cb(left_root, right_root,
5581 left_path, right_path,
5582 &left_key,
5583 BTRFS_COMPARE_TREE_NEW,
5584 ctx);
5585 if (ret < 0)
5586 goto out;
5587 }
5588 advance_left = ADVANCE;
5589 continue;
5590 }
5591
5592 if (left_level == 0 && right_level == 0) {
5593 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5594 if (cmp < 0) {
5595 ret = changed_cb(left_root, right_root,
5596 left_path, right_path,
5597 &left_key,
5598 BTRFS_COMPARE_TREE_NEW,
5599 ctx);
5600 if (ret < 0)
5601 goto out;
5602 advance_left = ADVANCE;
5603 } else if (cmp > 0) {
5604 ret = changed_cb(left_root, right_root,
5605 left_path, right_path,
5606 &right_key,
5607 BTRFS_COMPARE_TREE_DELETED,
5608 ctx);
5609 if (ret < 0)
5610 goto out;
5611 advance_right = ADVANCE;
5612 } else {
5613 enum btrfs_compare_tree_result cmp;
5614
5615 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5616 ret = tree_compare_item(left_root, left_path,
5617 right_path, tmp_buf);
5618 if (ret)
5619 cmp = BTRFS_COMPARE_TREE_CHANGED;
5620 else
5621 cmp = BTRFS_COMPARE_TREE_SAME;
5622 ret = changed_cb(left_root, right_root,
5623 left_path, right_path,
5624 &left_key, cmp, ctx);
5625 if (ret < 0)
5626 goto out;
5627 advance_left = ADVANCE;
5628 advance_right = ADVANCE;
5629 }
5630 } else if (left_level == right_level) {
5631 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5632 if (cmp < 0) {
5633 advance_left = ADVANCE;
5634 } else if (cmp > 0) {
5635 advance_right = ADVANCE;
5636 } else {
5637 left_blockptr = btrfs_node_blockptr(
5638 left_path->nodes[left_level],
5639 left_path->slots[left_level]);
5640 right_blockptr = btrfs_node_blockptr(
5641 right_path->nodes[right_level],
5642 right_path->slots[right_level]);
5643 if (left_blockptr == right_blockptr) {
5644 /*
5645 * As we're on a shared block, don't
5646 * allow to go deeper.
5647 */
5648 advance_left = ADVANCE_ONLY_NEXT;
5649 advance_right = ADVANCE_ONLY_NEXT;
5650 } else {
5651 advance_left = ADVANCE;
5652 advance_right = ADVANCE;
5653 }
5654 }
5655 } else if (left_level < right_level) {
5656 advance_right = ADVANCE;
5657 } else {
5658 advance_left = ADVANCE;
5659 }
5660 }
5661
5662 out:
5663 btrfs_free_path(left_path);
5664 btrfs_free_path(right_path);
5665 kfree(tmp_buf);
5666
5667 if (trans) {
5668 if (!ret)
5669 ret = btrfs_end_transaction(trans, left_root);
5670 else
5671 btrfs_end_transaction(trans, left_root);
5672 }
5673
5674 return ret;
5675 }
5676
5677 /*
5678 * this is similar to btrfs_next_leaf, but does not try to preserve
5679 * and fixup the path. It looks for and returns the next key in the
5680 * tree based on the current path and the min_trans parameters.
5681 *
5682 * 0 is returned if another key is found, < 0 if there are any errors
5683 * and 1 is returned if there are no higher keys in the tree
5684 *
5685 * path->keep_locks should be set to 1 on the search made before
5686 * calling this function.
5687 */
5688 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5689 struct btrfs_key *key, int level, u64 min_trans)
5690 {
5691 int slot;
5692 struct extent_buffer *c;
5693
5694 WARN_ON(!path->keep_locks);
5695 while (level < BTRFS_MAX_LEVEL) {
5696 if (!path->nodes[level])
5697 return 1;
5698
5699 slot = path->slots[level] + 1;
5700 c = path->nodes[level];
5701 next:
5702 if (slot >= btrfs_header_nritems(c)) {
5703 int ret;
5704 int orig_lowest;
5705 struct btrfs_key cur_key;
5706 if (level + 1 >= BTRFS_MAX_LEVEL ||
5707 !path->nodes[level + 1])
5708 return 1;
5709
5710 if (path->locks[level + 1]) {
5711 level++;
5712 continue;
5713 }
5714
5715 slot = btrfs_header_nritems(c) - 1;
5716 if (level == 0)
5717 btrfs_item_key_to_cpu(c, &cur_key, slot);
5718 else
5719 btrfs_node_key_to_cpu(c, &cur_key, slot);
5720
5721 orig_lowest = path->lowest_level;
5722 btrfs_release_path(path);
5723 path->lowest_level = level;
5724 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5725 0, 0);
5726 path->lowest_level = orig_lowest;
5727 if (ret < 0)
5728 return ret;
5729
5730 c = path->nodes[level];
5731 slot = path->slots[level];
5732 if (ret == 0)
5733 slot++;
5734 goto next;
5735 }
5736
5737 if (level == 0)
5738 btrfs_item_key_to_cpu(c, key, slot);
5739 else {
5740 u64 gen = btrfs_node_ptr_generation(c, slot);
5741
5742 if (gen < min_trans) {
5743 slot++;
5744 goto next;
5745 }
5746 btrfs_node_key_to_cpu(c, key, slot);
5747 }
5748 return 0;
5749 }
5750 return 1;
5751 }
5752
5753 /*
5754 * search the tree again to find a leaf with greater keys
5755 * returns 0 if it found something or 1 if there are no greater leaves.
5756 * returns < 0 on io errors.
5757 */
5758 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5759 {
5760 return btrfs_next_old_leaf(root, path, 0);
5761 }
5762
5763 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5764 u64 time_seq)
5765 {
5766 int slot;
5767 int level;
5768 struct extent_buffer *c;
5769 struct extent_buffer *next;
5770 struct btrfs_key key;
5771 u32 nritems;
5772 int ret;
5773 int old_spinning = path->leave_spinning;
5774 int next_rw_lock = 0;
5775
5776 nritems = btrfs_header_nritems(path->nodes[0]);
5777 if (nritems == 0)
5778 return 1;
5779
5780 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5781 again:
5782 level = 1;
5783 next = NULL;
5784 next_rw_lock = 0;
5785 btrfs_release_path(path);
5786
5787 path->keep_locks = 1;
5788 path->leave_spinning = 1;
5789
5790 if (time_seq)
5791 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5792 else
5793 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5794 path->keep_locks = 0;
5795
5796 if (ret < 0)
5797 return ret;
5798
5799 nritems = btrfs_header_nritems(path->nodes[0]);
5800 /*
5801 * by releasing the path above we dropped all our locks. A balance
5802 * could have added more items next to the key that used to be
5803 * at the very end of the block. So, check again here and
5804 * advance the path if there are now more items available.
5805 */
5806 if (nritems > 0 && path->slots[0] < nritems - 1) {
5807 if (ret == 0)
5808 path->slots[0]++;
5809 ret = 0;
5810 goto done;
5811 }
5812
5813 while (level < BTRFS_MAX_LEVEL) {
5814 if (!path->nodes[level]) {
5815 ret = 1;
5816 goto done;
5817 }
5818
5819 slot = path->slots[level] + 1;
5820 c = path->nodes[level];
5821 if (slot >= btrfs_header_nritems(c)) {
5822 level++;
5823 if (level == BTRFS_MAX_LEVEL) {
5824 ret = 1;
5825 goto done;
5826 }
5827 continue;
5828 }
5829
5830 if (next) {
5831 btrfs_tree_unlock_rw(next, next_rw_lock);
5832 free_extent_buffer(next);
5833 }
5834
5835 next = c;
5836 next_rw_lock = path->locks[level];
5837 ret = read_block_for_search(NULL, root, path, &next, level,
5838 slot, &key, 0);
5839 if (ret == -EAGAIN)
5840 goto again;
5841
5842 if (ret < 0) {
5843 btrfs_release_path(path);
5844 goto done;
5845 }
5846
5847 if (!path->skip_locking) {
5848 ret = btrfs_try_tree_read_lock(next);
5849 if (!ret && time_seq) {
5850 /*
5851 * If we don't get the lock, we may be racing
5852 * with push_leaf_left, holding that lock while
5853 * itself waiting for the leaf we've currently
5854 * locked. To solve this situation, we give up
5855 * on our lock and cycle.
5856 */
5857 free_extent_buffer(next);
5858 btrfs_release_path(path);
5859 cond_resched();
5860 goto again;
5861 }
5862 if (!ret) {
5863 btrfs_set_path_blocking(path);
5864 btrfs_tree_read_lock(next);
5865 btrfs_clear_path_blocking(path, next,
5866 BTRFS_READ_LOCK);
5867 }
5868 next_rw_lock = BTRFS_READ_LOCK;
5869 }
5870 break;
5871 }
5872 path->slots[level] = slot;
5873 while (1) {
5874 level--;
5875 c = path->nodes[level];
5876 if (path->locks[level])
5877 btrfs_tree_unlock_rw(c, path->locks[level]);
5878
5879 free_extent_buffer(c);
5880 path->nodes[level] = next;
5881 path->slots[level] = 0;
5882 if (!path->skip_locking)
5883 path->locks[level] = next_rw_lock;
5884 if (!level)
5885 break;
5886
5887 ret = read_block_for_search(NULL, root, path, &next, level,
5888 0, &key, 0);
5889 if (ret == -EAGAIN)
5890 goto again;
5891
5892 if (ret < 0) {
5893 btrfs_release_path(path);
5894 goto done;
5895 }
5896
5897 if (!path->skip_locking) {
5898 ret = btrfs_try_tree_read_lock(next);
5899 if (!ret) {
5900 btrfs_set_path_blocking(path);
5901 btrfs_tree_read_lock(next);
5902 btrfs_clear_path_blocking(path, next,
5903 BTRFS_READ_LOCK);
5904 }
5905 next_rw_lock = BTRFS_READ_LOCK;
5906 }
5907 }
5908 ret = 0;
5909 done:
5910 unlock_up(path, 0, 1, 0, NULL);
5911 path->leave_spinning = old_spinning;
5912 if (!old_spinning)
5913 btrfs_set_path_blocking(path);
5914
5915 return ret;
5916 }
5917
5918 /*
5919 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5920 * searching until it gets past min_objectid or finds an item of 'type'
5921 *
5922 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5923 */
5924 int btrfs_previous_item(struct btrfs_root *root,
5925 struct btrfs_path *path, u64 min_objectid,
5926 int type)
5927 {
5928 struct btrfs_key found_key;
5929 struct extent_buffer *leaf;
5930 u32 nritems;
5931 int ret;
5932
5933 while (1) {
5934 if (path->slots[0] == 0) {
5935 btrfs_set_path_blocking(path);
5936 ret = btrfs_prev_leaf(root, path);
5937 if (ret != 0)
5938 return ret;
5939 } else {
5940 path->slots[0]--;
5941 }
5942 leaf = path->nodes[0];
5943 nritems = btrfs_header_nritems(leaf);
5944 if (nritems == 0)
5945 return 1;
5946 if (path->slots[0] == nritems)
5947 path->slots[0]--;
5948
5949 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5950 if (found_key.objectid < min_objectid)
5951 break;
5952 if (found_key.type == type)
5953 return 0;
5954 if (found_key.objectid == min_objectid &&
5955 found_key.type < type)
5956 break;
5957 }
5958 return 1;
5959 }
5960
5961 /*
5962 * search in extent tree to find a previous Metadata/Data extent item with
5963 * min objecitd.
5964 *
5965 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5966 */
5967 int btrfs_previous_extent_item(struct btrfs_root *root,
5968 struct btrfs_path *path, u64 min_objectid)
5969 {
5970 struct btrfs_key found_key;
5971 struct extent_buffer *leaf;
5972 u32 nritems;
5973 int ret;
5974
5975 while (1) {
5976 if (path->slots[0] == 0) {
5977 btrfs_set_path_blocking(path);
5978 ret = btrfs_prev_leaf(root, path);
5979 if (ret != 0)
5980 return ret;
5981 } else {
5982 path->slots[0]--;
5983 }
5984 leaf = path->nodes[0];
5985 nritems = btrfs_header_nritems(leaf);
5986 if (nritems == 0)
5987 return 1;
5988 if (path->slots[0] == nritems)
5989 path->slots[0]--;
5990
5991 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5992 if (found_key.objectid < min_objectid)
5993 break;
5994 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5995 found_key.type == BTRFS_METADATA_ITEM_KEY)
5996 return 0;
5997 if (found_key.objectid == min_objectid &&
5998 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5999 break;
6000 }
6001 return 1;
6002 }
This page took 0.28348 seconds and 5 git commands to generate.