Merge remote-tracking branches 'asoc/fix/ak4671', 'asoc/fix/control', 'asoc/fix/da732...
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47 struct btrfs_path *path;
48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 return path;
50 }
51
52 /*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 }
68 }
69
70 /*
71 * reset all the locked nodes in the patch to spinning locks.
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
77 */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 struct extent_buffer *held, int held_rw)
80 {
81 int i;
82
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
90 btrfs_set_path_blocking(p);
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
100 }
101
102 if (held)
103 btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
108 {
109 if (!p)
110 return;
111 btrfs_release_path(p);
112 kmem_cache_free(btrfs_path_cachep, p);
113 }
114
115 /*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123 int i;
124
125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 p->slots[i] = 0;
127 if (!p->nodes[i])
128 continue;
129 if (p->locks[i]) {
130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 p->locks[i] = 0;
132 }
133 free_extent_buffer(p->nodes[i]);
134 p->nodes[i] = NULL;
135 }
136 }
137
138 /*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150 struct extent_buffer *eb;
151
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
158 * it was cow'ed but we may not get the new root node yet so do
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
169 return eb;
170 }
171
172 /* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178 struct extent_buffer *eb;
179
180 while (1) {
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
183 if (eb == root->node)
184 break;
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189 }
190
191 /* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208 }
209
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
217 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
218 return;
219
220 spin_lock(&root->fs_info->trans_lock);
221 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
222 /* Want the extent tree to be the last on the list */
223 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
224 list_move_tail(&root->dirty_list,
225 &root->fs_info->dirty_cowonly_roots);
226 else
227 list_move(&root->dirty_list,
228 &root->fs_info->dirty_cowonly_roots);
229 }
230 spin_unlock(&root->fs_info->trans_lock);
231 }
232
233 /*
234 * used by snapshot creation to make a copy of a root for a tree with
235 * a given objectid. The buffer with the new root node is returned in
236 * cow_ret, and this func returns zero on success or a negative error code.
237 */
238 int btrfs_copy_root(struct btrfs_trans_handle *trans,
239 struct btrfs_root *root,
240 struct extent_buffer *buf,
241 struct extent_buffer **cow_ret, u64 new_root_objectid)
242 {
243 struct extent_buffer *cow;
244 int ret = 0;
245 int level;
246 struct btrfs_disk_key disk_key;
247
248 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
249 trans->transid != root->fs_info->running_transaction->transid);
250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251 trans->transid != root->last_trans);
252
253 level = btrfs_header_level(buf);
254 if (level == 0)
255 btrfs_item_key(buf, &disk_key, 0);
256 else
257 btrfs_node_key(buf, &disk_key, 0);
258
259 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
260 &disk_key, level, buf->start, 0);
261 if (IS_ERR(cow))
262 return PTR_ERR(cow);
263
264 copy_extent_buffer(cow, buf, 0, 0, cow->len);
265 btrfs_set_header_bytenr(cow, cow->start);
266 btrfs_set_header_generation(cow, trans->transid);
267 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
268 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
269 BTRFS_HEADER_FLAG_RELOC);
270 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
271 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
272 else
273 btrfs_set_header_owner(cow, new_root_objectid);
274
275 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
276 BTRFS_FSID_SIZE);
277
278 WARN_ON(btrfs_header_generation(buf) > trans->transid);
279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280 ret = btrfs_inc_ref(trans, root, cow, 1);
281 else
282 ret = btrfs_inc_ref(trans, root, cow, 0);
283
284 if (ret)
285 return ret;
286
287 btrfs_mark_buffer_dirty(cow);
288 *cow_ret = cow;
289 return 0;
290 }
291
292 enum mod_log_op {
293 MOD_LOG_KEY_REPLACE,
294 MOD_LOG_KEY_ADD,
295 MOD_LOG_KEY_REMOVE,
296 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298 MOD_LOG_MOVE_KEYS,
299 MOD_LOG_ROOT_REPLACE,
300 };
301
302 struct tree_mod_move {
303 int dst_slot;
304 int nr_items;
305 };
306
307 struct tree_mod_root {
308 u64 logical;
309 u8 level;
310 };
311
312 struct tree_mod_elem {
313 struct rb_node node;
314 u64 index; /* shifted logical */
315 u64 seq;
316 enum mod_log_op op;
317
318 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319 int slot;
320
321 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322 u64 generation;
323
324 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
325 struct btrfs_disk_key key;
326 u64 blockptr;
327
328 /* this is used for op == MOD_LOG_MOVE_KEYS */
329 struct tree_mod_move move;
330
331 /* this is used for op == MOD_LOG_ROOT_REPLACE */
332 struct tree_mod_root old_root;
333 };
334
335 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
336 {
337 read_lock(&fs_info->tree_mod_log_lock);
338 }
339
340 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
341 {
342 read_unlock(&fs_info->tree_mod_log_lock);
343 }
344
345 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
346 {
347 write_lock(&fs_info->tree_mod_log_lock);
348 }
349
350 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
351 {
352 write_unlock(&fs_info->tree_mod_log_lock);
353 }
354
355 /*
356 * Pull a new tree mod seq number for our operation.
357 */
358 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
359 {
360 return atomic64_inc_return(&fs_info->tree_mod_seq);
361 }
362
363 /*
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
370 */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
373 {
374 tree_mod_log_write_lock(fs_info);
375 spin_lock(&fs_info->tree_mod_seq_lock);
376 if (!elem->seq) {
377 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
378 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
379 }
380 spin_unlock(&fs_info->tree_mod_seq_lock);
381 tree_mod_log_write_unlock(fs_info);
382
383 return elem->seq;
384 }
385
386 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
387 struct seq_list *elem)
388 {
389 struct rb_root *tm_root;
390 struct rb_node *node;
391 struct rb_node *next;
392 struct seq_list *cur_elem;
393 struct tree_mod_elem *tm;
394 u64 min_seq = (u64)-1;
395 u64 seq_putting = elem->seq;
396
397 if (!seq_putting)
398 return;
399
400 spin_lock(&fs_info->tree_mod_seq_lock);
401 list_del(&elem->list);
402 elem->seq = 0;
403
404 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
405 if (cur_elem->seq < min_seq) {
406 if (seq_putting > cur_elem->seq) {
407 /*
408 * blocker with lower sequence number exists, we
409 * cannot remove anything from the log
410 */
411 spin_unlock(&fs_info->tree_mod_seq_lock);
412 return;
413 }
414 min_seq = cur_elem->seq;
415 }
416 }
417 spin_unlock(&fs_info->tree_mod_seq_lock);
418
419 /*
420 * anything that's lower than the lowest existing (read: blocked)
421 * sequence number can be removed from the tree.
422 */
423 tree_mod_log_write_lock(fs_info);
424 tm_root = &fs_info->tree_mod_log;
425 for (node = rb_first(tm_root); node; node = next) {
426 next = rb_next(node);
427 tm = container_of(node, struct tree_mod_elem, node);
428 if (tm->seq > min_seq)
429 continue;
430 rb_erase(node, tm_root);
431 kfree(tm);
432 }
433 tree_mod_log_write_unlock(fs_info);
434 }
435
436 /*
437 * key order of the log:
438 * index -> sequence
439 *
440 * the index is the shifted logical of the *new* root node for root replace
441 * operations, or the shifted logical of the affected block for all other
442 * operations.
443 *
444 * Note: must be called with write lock (tree_mod_log_write_lock).
445 */
446 static noinline int
447 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
448 {
449 struct rb_root *tm_root;
450 struct rb_node **new;
451 struct rb_node *parent = NULL;
452 struct tree_mod_elem *cur;
453
454 BUG_ON(!tm);
455
456 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
457
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
461 cur = container_of(*new, struct tree_mod_elem, node);
462 parent = *new;
463 if (cur->index < tm->index)
464 new = &((*new)->rb_left);
465 else if (cur->index > tm->index)
466 new = &((*new)->rb_right);
467 else if (cur->seq < tm->seq)
468 new = &((*new)->rb_left);
469 else if (cur->seq > tm->seq)
470 new = &((*new)->rb_right);
471 else
472 return -EEXIST;
473 }
474
475 rb_link_node(&tm->node, parent, new);
476 rb_insert_color(&tm->node, tm_root);
477 return 0;
478 }
479
480 /*
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
485 */
486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 struct extent_buffer *eb) {
488 smp_mb();
489 if (list_empty(&(fs_info)->tree_mod_seq_list))
490 return 1;
491 if (eb && btrfs_header_level(eb) == 0)
492 return 1;
493
494 tree_mod_log_write_lock(fs_info);
495 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 tree_mod_log_write_unlock(fs_info);
497 return 1;
498 }
499
500 return 0;
501 }
502
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 struct extent_buffer *eb)
506 {
507 smp_mb();
508 if (list_empty(&(fs_info)->tree_mod_seq_list))
509 return 0;
510 if (eb && btrfs_header_level(eb) == 0)
511 return 0;
512
513 return 1;
514 }
515
516 static struct tree_mod_elem *
517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
519 {
520 struct tree_mod_elem *tm;
521
522 tm = kzalloc(sizeof(*tm), flags);
523 if (!tm)
524 return NULL;
525
526 tm->index = eb->start >> PAGE_CACHE_SHIFT;
527 if (op != MOD_LOG_KEY_ADD) {
528 btrfs_node_key(eb, &tm->key, slot);
529 tm->blockptr = btrfs_node_blockptr(eb, slot);
530 }
531 tm->op = op;
532 tm->slot = slot;
533 tm->generation = btrfs_node_ptr_generation(eb, slot);
534 RB_CLEAR_NODE(&tm->node);
535
536 return tm;
537 }
538
539 static noinline int
540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb, int slot,
542 enum mod_log_op op, gfp_t flags)
543 {
544 struct tree_mod_elem *tm;
545 int ret;
546
547 if (!tree_mod_need_log(fs_info, eb))
548 return 0;
549
550 tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 if (!tm)
552 return -ENOMEM;
553
554 if (tree_mod_dont_log(fs_info, eb)) {
555 kfree(tm);
556 return 0;
557 }
558
559 ret = __tree_mod_log_insert(fs_info, tm);
560 tree_mod_log_write_unlock(fs_info);
561 if (ret)
562 kfree(tm);
563
564 return ret;
565 }
566
567 static noinline int
568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int dst_slot, int src_slot,
570 int nr_items, gfp_t flags)
571 {
572 struct tree_mod_elem *tm = NULL;
573 struct tree_mod_elem **tm_list = NULL;
574 int ret = 0;
575 int i;
576 int locked = 0;
577
578 if (!tree_mod_need_log(fs_info, eb))
579 return 0;
580
581 tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
582 if (!tm_list)
583 return -ENOMEM;
584
585 tm = kzalloc(sizeof(*tm), flags);
586 if (!tm) {
587 ret = -ENOMEM;
588 goto free_tms;
589 }
590
591 tm->index = eb->start >> PAGE_CACHE_SHIFT;
592 tm->slot = src_slot;
593 tm->move.dst_slot = dst_slot;
594 tm->move.nr_items = nr_items;
595 tm->op = MOD_LOG_MOVE_KEYS;
596
597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
600 if (!tm_list[i]) {
601 ret = -ENOMEM;
602 goto free_tms;
603 }
604 }
605
606 if (tree_mod_dont_log(fs_info, eb))
607 goto free_tms;
608 locked = 1;
609
610 /*
611 * When we override something during the move, we log these removals.
612 * This can only happen when we move towards the beginning of the
613 * buffer, i.e. dst_slot < src_slot.
614 */
615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617 if (ret)
618 goto free_tms;
619 }
620
621 ret = __tree_mod_log_insert(fs_info, tm);
622 if (ret)
623 goto free_tms;
624 tree_mod_log_write_unlock(fs_info);
625 kfree(tm_list);
626
627 return 0;
628 free_tms:
629 for (i = 0; i < nr_items; i++) {
630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632 kfree(tm_list[i]);
633 }
634 if (locked)
635 tree_mod_log_write_unlock(fs_info);
636 kfree(tm_list);
637 kfree(tm);
638
639 return ret;
640 }
641
642 static inline int
643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 struct tree_mod_elem **tm_list,
645 int nritems)
646 {
647 int i, j;
648 int ret;
649
650 for (i = nritems - 1; i >= 0; i--) {
651 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652 if (ret) {
653 for (j = nritems - 1; j > i; j--)
654 rb_erase(&tm_list[j]->node,
655 &fs_info->tree_mod_log);
656 return ret;
657 }
658 }
659
660 return 0;
661 }
662
663 static noinline int
664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 struct extent_buffer *old_root,
666 struct extent_buffer *new_root, gfp_t flags,
667 int log_removal)
668 {
669 struct tree_mod_elem *tm = NULL;
670 struct tree_mod_elem **tm_list = NULL;
671 int nritems = 0;
672 int ret = 0;
673 int i;
674
675 if (!tree_mod_need_log(fs_info, NULL))
676 return 0;
677
678 if (log_removal && btrfs_header_level(old_root) > 0) {
679 nritems = btrfs_header_nritems(old_root);
680 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
681 flags);
682 if (!tm_list) {
683 ret = -ENOMEM;
684 goto free_tms;
685 }
686 for (i = 0; i < nritems; i++) {
687 tm_list[i] = alloc_tree_mod_elem(old_root, i,
688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
689 if (!tm_list[i]) {
690 ret = -ENOMEM;
691 goto free_tms;
692 }
693 }
694 }
695
696 tm = kzalloc(sizeof(*tm), flags);
697 if (!tm) {
698 ret = -ENOMEM;
699 goto free_tms;
700 }
701
702 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
703 tm->old_root.logical = old_root->start;
704 tm->old_root.level = btrfs_header_level(old_root);
705 tm->generation = btrfs_header_generation(old_root);
706 tm->op = MOD_LOG_ROOT_REPLACE;
707
708 if (tree_mod_dont_log(fs_info, NULL))
709 goto free_tms;
710
711 if (tm_list)
712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713 if (!ret)
714 ret = __tree_mod_log_insert(fs_info, tm);
715
716 tree_mod_log_write_unlock(fs_info);
717 if (ret)
718 goto free_tms;
719 kfree(tm_list);
720
721 return ret;
722
723 free_tms:
724 if (tm_list) {
725 for (i = 0; i < nritems; i++)
726 kfree(tm_list[i]);
727 kfree(tm_list);
728 }
729 kfree(tm);
730
731 return ret;
732 }
733
734 static struct tree_mod_elem *
735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 int smallest)
737 {
738 struct rb_root *tm_root;
739 struct rb_node *node;
740 struct tree_mod_elem *cur = NULL;
741 struct tree_mod_elem *found = NULL;
742 u64 index = start >> PAGE_CACHE_SHIFT;
743
744 tree_mod_log_read_lock(fs_info);
745 tm_root = &fs_info->tree_mod_log;
746 node = tm_root->rb_node;
747 while (node) {
748 cur = container_of(node, struct tree_mod_elem, node);
749 if (cur->index < index) {
750 node = node->rb_left;
751 } else if (cur->index > index) {
752 node = node->rb_right;
753 } else if (cur->seq < min_seq) {
754 node = node->rb_left;
755 } else if (!smallest) {
756 /* we want the node with the highest seq */
757 if (found)
758 BUG_ON(found->seq > cur->seq);
759 found = cur;
760 node = node->rb_left;
761 } else if (cur->seq > min_seq) {
762 /* we want the node with the smallest seq */
763 if (found)
764 BUG_ON(found->seq < cur->seq);
765 found = cur;
766 node = node->rb_right;
767 } else {
768 found = cur;
769 break;
770 }
771 }
772 tree_mod_log_read_unlock(fs_info);
773
774 return found;
775 }
776
777 /*
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
781 */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 u64 min_seq)
785 {
786 return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788
789 /*
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
793 */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797 return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 struct extent_buffer *src, unsigned long dst_offset,
803 unsigned long src_offset, int nr_items)
804 {
805 int ret = 0;
806 struct tree_mod_elem **tm_list = NULL;
807 struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 int i;
809 int locked = 0;
810
811 if (!tree_mod_need_log(fs_info, NULL))
812 return 0;
813
814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 return 0;
816
817 tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
818 GFP_NOFS);
819 if (!tm_list)
820 return -ENOMEM;
821
822 tm_list_add = tm_list;
823 tm_list_rem = tm_list + nr_items;
824 for (i = 0; i < nr_items; i++) {
825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 if (!tm_list_rem[i]) {
828 ret = -ENOMEM;
829 goto free_tms;
830 }
831
832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 MOD_LOG_KEY_ADD, GFP_NOFS);
834 if (!tm_list_add[i]) {
835 ret = -ENOMEM;
836 goto free_tms;
837 }
838 }
839
840 if (tree_mod_dont_log(fs_info, NULL))
841 goto free_tms;
842 locked = 1;
843
844 for (i = 0; i < nr_items; i++) {
845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 if (ret)
847 goto free_tms;
848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 if (ret)
850 goto free_tms;
851 }
852
853 tree_mod_log_write_unlock(fs_info);
854 kfree(tm_list);
855
856 return 0;
857
858 free_tms:
859 for (i = 0; i < nr_items * 2; i++) {
860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 kfree(tm_list[i]);
863 }
864 if (locked)
865 tree_mod_log_write_unlock(fs_info);
866 kfree(tm_list);
867
868 return ret;
869 }
870
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 int dst_offset, int src_offset, int nr_items)
874 {
875 int ret;
876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 nr_items, GFP_NOFS);
878 BUG_ON(ret < 0);
879 }
880
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 struct extent_buffer *eb, int slot, int atomic)
884 {
885 int ret;
886
887 ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 MOD_LOG_KEY_REPLACE,
889 atomic ? GFP_ATOMIC : GFP_NOFS);
890 BUG_ON(ret < 0);
891 }
892
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896 struct tree_mod_elem **tm_list = NULL;
897 int nritems = 0;
898 int i;
899 int ret = 0;
900
901 if (btrfs_header_level(eb) == 0)
902 return 0;
903
904 if (!tree_mod_need_log(fs_info, NULL))
905 return 0;
906
907 nritems = btrfs_header_nritems(eb);
908 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
909 GFP_NOFS);
910 if (!tm_list)
911 return -ENOMEM;
912
913 for (i = 0; i < nritems; i++) {
914 tm_list[i] = alloc_tree_mod_elem(eb, i,
915 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
916 if (!tm_list[i]) {
917 ret = -ENOMEM;
918 goto free_tms;
919 }
920 }
921
922 if (tree_mod_dont_log(fs_info, eb))
923 goto free_tms;
924
925 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
926 tree_mod_log_write_unlock(fs_info);
927 if (ret)
928 goto free_tms;
929 kfree(tm_list);
930
931 return 0;
932
933 free_tms:
934 for (i = 0; i < nritems; i++)
935 kfree(tm_list[i]);
936 kfree(tm_list);
937
938 return ret;
939 }
940
941 static noinline void
942 tree_mod_log_set_root_pointer(struct btrfs_root *root,
943 struct extent_buffer *new_root_node,
944 int log_removal)
945 {
946 int ret;
947 ret = tree_mod_log_insert_root(root->fs_info, root->node,
948 new_root_node, GFP_NOFS, log_removal);
949 BUG_ON(ret < 0);
950 }
951
952 /*
953 * check if the tree block can be shared by multiple trees
954 */
955 int btrfs_block_can_be_shared(struct btrfs_root *root,
956 struct extent_buffer *buf)
957 {
958 /*
959 * Tree blocks not in refernece counted trees and tree roots
960 * are never shared. If a block was allocated after the last
961 * snapshot and the block was not allocated by tree relocation,
962 * we know the block is not shared.
963 */
964 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
965 buf != root->node && buf != root->commit_root &&
966 (btrfs_header_generation(buf) <=
967 btrfs_root_last_snapshot(&root->root_item) ||
968 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
969 return 1;
970 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
971 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
972 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
973 return 1;
974 #endif
975 return 0;
976 }
977
978 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
979 struct btrfs_root *root,
980 struct extent_buffer *buf,
981 struct extent_buffer *cow,
982 int *last_ref)
983 {
984 u64 refs;
985 u64 owner;
986 u64 flags;
987 u64 new_flags = 0;
988 int ret;
989
990 /*
991 * Backrefs update rules:
992 *
993 * Always use full backrefs for extent pointers in tree block
994 * allocated by tree relocation.
995 *
996 * If a shared tree block is no longer referenced by its owner
997 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
998 * use full backrefs for extent pointers in tree block.
999 *
1000 * If a tree block is been relocating
1001 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1002 * use full backrefs for extent pointers in tree block.
1003 * The reason for this is some operations (such as drop tree)
1004 * are only allowed for blocks use full backrefs.
1005 */
1006
1007 if (btrfs_block_can_be_shared(root, buf)) {
1008 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1009 btrfs_header_level(buf), 1,
1010 &refs, &flags);
1011 if (ret)
1012 return ret;
1013 if (refs == 0) {
1014 ret = -EROFS;
1015 btrfs_std_error(root->fs_info, ret);
1016 return ret;
1017 }
1018 } else {
1019 refs = 1;
1020 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1021 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1022 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1023 else
1024 flags = 0;
1025 }
1026
1027 owner = btrfs_header_owner(buf);
1028 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1029 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1030
1031 if (refs > 1) {
1032 if ((owner == root->root_key.objectid ||
1033 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1034 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1035 ret = btrfs_inc_ref(trans, root, buf, 1);
1036 BUG_ON(ret); /* -ENOMEM */
1037
1038 if (root->root_key.objectid ==
1039 BTRFS_TREE_RELOC_OBJECTID) {
1040 ret = btrfs_dec_ref(trans, root, buf, 0);
1041 BUG_ON(ret); /* -ENOMEM */
1042 ret = btrfs_inc_ref(trans, root, cow, 1);
1043 BUG_ON(ret); /* -ENOMEM */
1044 }
1045 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1046 } else {
1047
1048 if (root->root_key.objectid ==
1049 BTRFS_TREE_RELOC_OBJECTID)
1050 ret = btrfs_inc_ref(trans, root, cow, 1);
1051 else
1052 ret = btrfs_inc_ref(trans, root, cow, 0);
1053 BUG_ON(ret); /* -ENOMEM */
1054 }
1055 if (new_flags != 0) {
1056 int level = btrfs_header_level(buf);
1057
1058 ret = btrfs_set_disk_extent_flags(trans, root,
1059 buf->start,
1060 buf->len,
1061 new_flags, level, 0);
1062 if (ret)
1063 return ret;
1064 }
1065 } else {
1066 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1067 if (root->root_key.objectid ==
1068 BTRFS_TREE_RELOC_OBJECTID)
1069 ret = btrfs_inc_ref(trans, root, cow, 1);
1070 else
1071 ret = btrfs_inc_ref(trans, root, cow, 0);
1072 BUG_ON(ret); /* -ENOMEM */
1073 ret = btrfs_dec_ref(trans, root, buf, 1);
1074 BUG_ON(ret); /* -ENOMEM */
1075 }
1076 clean_tree_block(trans, root, buf);
1077 *last_ref = 1;
1078 }
1079 return 0;
1080 }
1081
1082 /*
1083 * does the dirty work in cow of a single block. The parent block (if
1084 * supplied) is updated to point to the new cow copy. The new buffer is marked
1085 * dirty and returned locked. If you modify the block it needs to be marked
1086 * dirty again.
1087 *
1088 * search_start -- an allocation hint for the new block
1089 *
1090 * empty_size -- a hint that you plan on doing more cow. This is the size in
1091 * bytes the allocator should try to find free next to the block it returns.
1092 * This is just a hint and may be ignored by the allocator.
1093 */
1094 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1095 struct btrfs_root *root,
1096 struct extent_buffer *buf,
1097 struct extent_buffer *parent, int parent_slot,
1098 struct extent_buffer **cow_ret,
1099 u64 search_start, u64 empty_size)
1100 {
1101 struct btrfs_disk_key disk_key;
1102 struct extent_buffer *cow;
1103 int level, ret;
1104 int last_ref = 0;
1105 int unlock_orig = 0;
1106 u64 parent_start;
1107
1108 if (*cow_ret == buf)
1109 unlock_orig = 1;
1110
1111 btrfs_assert_tree_locked(buf);
1112
1113 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1114 trans->transid != root->fs_info->running_transaction->transid);
1115 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116 trans->transid != root->last_trans);
1117
1118 level = btrfs_header_level(buf);
1119
1120 if (level == 0)
1121 btrfs_item_key(buf, &disk_key, 0);
1122 else
1123 btrfs_node_key(buf, &disk_key, 0);
1124
1125 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1126 if (parent)
1127 parent_start = parent->start;
1128 else
1129 parent_start = 0;
1130 } else
1131 parent_start = 0;
1132
1133 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1134 root->root_key.objectid, &disk_key, level,
1135 search_start, empty_size);
1136 if (IS_ERR(cow))
1137 return PTR_ERR(cow);
1138
1139 /* cow is set to blocking by btrfs_init_new_buffer */
1140
1141 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1142 btrfs_set_header_bytenr(cow, cow->start);
1143 btrfs_set_header_generation(cow, trans->transid);
1144 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1145 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1146 BTRFS_HEADER_FLAG_RELOC);
1147 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1148 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1149 else
1150 btrfs_set_header_owner(cow, root->root_key.objectid);
1151
1152 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1153 BTRFS_FSID_SIZE);
1154
1155 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1156 if (ret) {
1157 btrfs_abort_transaction(trans, root, ret);
1158 return ret;
1159 }
1160
1161 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1162 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1163 if (ret)
1164 return ret;
1165 }
1166
1167 if (buf == root->node) {
1168 WARN_ON(parent && parent != buf);
1169 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1170 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1171 parent_start = buf->start;
1172 else
1173 parent_start = 0;
1174
1175 extent_buffer_get(cow);
1176 tree_mod_log_set_root_pointer(root, cow, 1);
1177 rcu_assign_pointer(root->node, cow);
1178
1179 btrfs_free_tree_block(trans, root, buf, parent_start,
1180 last_ref);
1181 free_extent_buffer(buf);
1182 add_root_to_dirty_list(root);
1183 } else {
1184 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1185 parent_start = parent->start;
1186 else
1187 parent_start = 0;
1188
1189 WARN_ON(trans->transid != btrfs_header_generation(parent));
1190 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1191 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1192 btrfs_set_node_blockptr(parent, parent_slot,
1193 cow->start);
1194 btrfs_set_node_ptr_generation(parent, parent_slot,
1195 trans->transid);
1196 btrfs_mark_buffer_dirty(parent);
1197 if (last_ref) {
1198 ret = tree_mod_log_free_eb(root->fs_info, buf);
1199 if (ret) {
1200 btrfs_abort_transaction(trans, root, ret);
1201 return ret;
1202 }
1203 }
1204 btrfs_free_tree_block(trans, root, buf, parent_start,
1205 last_ref);
1206 }
1207 if (unlock_orig)
1208 btrfs_tree_unlock(buf);
1209 free_extent_buffer_stale(buf);
1210 btrfs_mark_buffer_dirty(cow);
1211 *cow_ret = cow;
1212 return 0;
1213 }
1214
1215 /*
1216 * returns the logical address of the oldest predecessor of the given root.
1217 * entries older than time_seq are ignored.
1218 */
1219 static struct tree_mod_elem *
1220 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1221 struct extent_buffer *eb_root, u64 time_seq)
1222 {
1223 struct tree_mod_elem *tm;
1224 struct tree_mod_elem *found = NULL;
1225 u64 root_logical = eb_root->start;
1226 int looped = 0;
1227
1228 if (!time_seq)
1229 return NULL;
1230
1231 /*
1232 * the very last operation that's logged for a root is the replacement
1233 * operation (if it is replaced at all). this has the index of the *new*
1234 * root, making it the very first operation that's logged for this root.
1235 */
1236 while (1) {
1237 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1238 time_seq);
1239 if (!looped && !tm)
1240 return NULL;
1241 /*
1242 * if there are no tree operation for the oldest root, we simply
1243 * return it. this should only happen if that (old) root is at
1244 * level 0.
1245 */
1246 if (!tm)
1247 break;
1248
1249 /*
1250 * if there's an operation that's not a root replacement, we
1251 * found the oldest version of our root. normally, we'll find a
1252 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1253 */
1254 if (tm->op != MOD_LOG_ROOT_REPLACE)
1255 break;
1256
1257 found = tm;
1258 root_logical = tm->old_root.logical;
1259 looped = 1;
1260 }
1261
1262 /* if there's no old root to return, return what we found instead */
1263 if (!found)
1264 found = tm;
1265
1266 return found;
1267 }
1268
1269 /*
1270 * tm is a pointer to the first operation to rewind within eb. then, all
1271 * previous operations will be rewinded (until we reach something older than
1272 * time_seq).
1273 */
1274 static void
1275 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1276 u64 time_seq, struct tree_mod_elem *first_tm)
1277 {
1278 u32 n;
1279 struct rb_node *next;
1280 struct tree_mod_elem *tm = first_tm;
1281 unsigned long o_dst;
1282 unsigned long o_src;
1283 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1284
1285 n = btrfs_header_nritems(eb);
1286 tree_mod_log_read_lock(fs_info);
1287 while (tm && tm->seq >= time_seq) {
1288 /*
1289 * all the operations are recorded with the operator used for
1290 * the modification. as we're going backwards, we do the
1291 * opposite of each operation here.
1292 */
1293 switch (tm->op) {
1294 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1295 BUG_ON(tm->slot < n);
1296 /* Fallthrough */
1297 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1298 case MOD_LOG_KEY_REMOVE:
1299 btrfs_set_node_key(eb, &tm->key, tm->slot);
1300 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301 btrfs_set_node_ptr_generation(eb, tm->slot,
1302 tm->generation);
1303 n++;
1304 break;
1305 case MOD_LOG_KEY_REPLACE:
1306 BUG_ON(tm->slot >= n);
1307 btrfs_set_node_key(eb, &tm->key, tm->slot);
1308 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1309 btrfs_set_node_ptr_generation(eb, tm->slot,
1310 tm->generation);
1311 break;
1312 case MOD_LOG_KEY_ADD:
1313 /* if a move operation is needed it's in the log */
1314 n--;
1315 break;
1316 case MOD_LOG_MOVE_KEYS:
1317 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1318 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1319 memmove_extent_buffer(eb, o_dst, o_src,
1320 tm->move.nr_items * p_size);
1321 break;
1322 case MOD_LOG_ROOT_REPLACE:
1323 /*
1324 * this operation is special. for roots, this must be
1325 * handled explicitly before rewinding.
1326 * for non-roots, this operation may exist if the node
1327 * was a root: root A -> child B; then A gets empty and
1328 * B is promoted to the new root. in the mod log, we'll
1329 * have a root-replace operation for B, a tree block
1330 * that is no root. we simply ignore that operation.
1331 */
1332 break;
1333 }
1334 next = rb_next(&tm->node);
1335 if (!next)
1336 break;
1337 tm = container_of(next, struct tree_mod_elem, node);
1338 if (tm->index != first_tm->index)
1339 break;
1340 }
1341 tree_mod_log_read_unlock(fs_info);
1342 btrfs_set_header_nritems(eb, n);
1343 }
1344
1345 /*
1346 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1347 * is returned. If rewind operations happen, a fresh buffer is returned. The
1348 * returned buffer is always read-locked. If the returned buffer is not the
1349 * input buffer, the lock on the input buffer is released and the input buffer
1350 * is freed (its refcount is decremented).
1351 */
1352 static struct extent_buffer *
1353 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1354 struct extent_buffer *eb, u64 time_seq)
1355 {
1356 struct extent_buffer *eb_rewin;
1357 struct tree_mod_elem *tm;
1358
1359 if (!time_seq)
1360 return eb;
1361
1362 if (btrfs_header_level(eb) == 0)
1363 return eb;
1364
1365 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1366 if (!tm)
1367 return eb;
1368
1369 btrfs_set_path_blocking(path);
1370 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1371
1372 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1373 BUG_ON(tm->slot != 0);
1374 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1375 if (!eb_rewin) {
1376 btrfs_tree_read_unlock_blocking(eb);
1377 free_extent_buffer(eb);
1378 return NULL;
1379 }
1380 btrfs_set_header_bytenr(eb_rewin, eb->start);
1381 btrfs_set_header_backref_rev(eb_rewin,
1382 btrfs_header_backref_rev(eb));
1383 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1384 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1385 } else {
1386 eb_rewin = btrfs_clone_extent_buffer(eb);
1387 if (!eb_rewin) {
1388 btrfs_tree_read_unlock_blocking(eb);
1389 free_extent_buffer(eb);
1390 return NULL;
1391 }
1392 }
1393
1394 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1395 btrfs_tree_read_unlock_blocking(eb);
1396 free_extent_buffer(eb);
1397
1398 extent_buffer_get(eb_rewin);
1399 btrfs_tree_read_lock(eb_rewin);
1400 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1401 WARN_ON(btrfs_header_nritems(eb_rewin) >
1402 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1403
1404 return eb_rewin;
1405 }
1406
1407 /*
1408 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1409 * value. If there are no changes, the current root->root_node is returned. If
1410 * anything changed in between, there's a fresh buffer allocated on which the
1411 * rewind operations are done. In any case, the returned buffer is read locked.
1412 * Returns NULL on error (with no locks held).
1413 */
1414 static inline struct extent_buffer *
1415 get_old_root(struct btrfs_root *root, u64 time_seq)
1416 {
1417 struct tree_mod_elem *tm;
1418 struct extent_buffer *eb = NULL;
1419 struct extent_buffer *eb_root;
1420 struct extent_buffer *old;
1421 struct tree_mod_root *old_root = NULL;
1422 u64 old_generation = 0;
1423 u64 logical;
1424
1425 eb_root = btrfs_read_lock_root_node(root);
1426 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1427 if (!tm)
1428 return eb_root;
1429
1430 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1431 old_root = &tm->old_root;
1432 old_generation = tm->generation;
1433 logical = old_root->logical;
1434 } else {
1435 logical = eb_root->start;
1436 }
1437
1438 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1439 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1440 btrfs_tree_read_unlock(eb_root);
1441 free_extent_buffer(eb_root);
1442 old = read_tree_block(root, logical, 0);
1443 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1444 free_extent_buffer(old);
1445 btrfs_warn(root->fs_info,
1446 "failed to read tree block %llu from get_old_root", logical);
1447 } else {
1448 eb = btrfs_clone_extent_buffer(old);
1449 free_extent_buffer(old);
1450 }
1451 } else if (old_root) {
1452 btrfs_tree_read_unlock(eb_root);
1453 free_extent_buffer(eb_root);
1454 eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1455 } else {
1456 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1457 eb = btrfs_clone_extent_buffer(eb_root);
1458 btrfs_tree_read_unlock_blocking(eb_root);
1459 free_extent_buffer(eb_root);
1460 }
1461
1462 if (!eb)
1463 return NULL;
1464 extent_buffer_get(eb);
1465 btrfs_tree_read_lock(eb);
1466 if (old_root) {
1467 btrfs_set_header_bytenr(eb, eb->start);
1468 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1469 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1470 btrfs_set_header_level(eb, old_root->level);
1471 btrfs_set_header_generation(eb, old_generation);
1472 }
1473 if (tm)
1474 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1475 else
1476 WARN_ON(btrfs_header_level(eb) != 0);
1477 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1478
1479 return eb;
1480 }
1481
1482 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1483 {
1484 struct tree_mod_elem *tm;
1485 int level;
1486 struct extent_buffer *eb_root = btrfs_root_node(root);
1487
1488 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1489 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1490 level = tm->old_root.level;
1491 } else {
1492 level = btrfs_header_level(eb_root);
1493 }
1494 free_extent_buffer(eb_root);
1495
1496 return level;
1497 }
1498
1499 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1500 struct btrfs_root *root,
1501 struct extent_buffer *buf)
1502 {
1503 if (btrfs_test_is_dummy_root(root))
1504 return 0;
1505
1506 /* ensure we can see the force_cow */
1507 smp_rmb();
1508
1509 /*
1510 * We do not need to cow a block if
1511 * 1) this block is not created or changed in this transaction;
1512 * 2) this block does not belong to TREE_RELOC tree;
1513 * 3) the root is not forced COW.
1514 *
1515 * What is forced COW:
1516 * when we create snapshot during commiting the transaction,
1517 * after we've finished coping src root, we must COW the shared
1518 * block to ensure the metadata consistency.
1519 */
1520 if (btrfs_header_generation(buf) == trans->transid &&
1521 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1522 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1523 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1524 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1525 return 0;
1526 return 1;
1527 }
1528
1529 /*
1530 * cows a single block, see __btrfs_cow_block for the real work.
1531 * This version of it has extra checks so that a block isn't cow'd more than
1532 * once per transaction, as long as it hasn't been written yet
1533 */
1534 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1535 struct btrfs_root *root, struct extent_buffer *buf,
1536 struct extent_buffer *parent, int parent_slot,
1537 struct extent_buffer **cow_ret)
1538 {
1539 u64 search_start;
1540 int ret;
1541
1542 if (trans->transaction != root->fs_info->running_transaction)
1543 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1544 trans->transid,
1545 root->fs_info->running_transaction->transid);
1546
1547 if (trans->transid != root->fs_info->generation)
1548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549 trans->transid, root->fs_info->generation);
1550
1551 if (!should_cow_block(trans, root, buf)) {
1552 *cow_ret = buf;
1553 return 0;
1554 }
1555
1556 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1557
1558 if (parent)
1559 btrfs_set_lock_blocking(parent);
1560 btrfs_set_lock_blocking(buf);
1561
1562 ret = __btrfs_cow_block(trans, root, buf, parent,
1563 parent_slot, cow_ret, search_start, 0);
1564
1565 trace_btrfs_cow_block(root, buf, *cow_ret);
1566
1567 return ret;
1568 }
1569
1570 /*
1571 * helper function for defrag to decide if two blocks pointed to by a
1572 * node are actually close by
1573 */
1574 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1575 {
1576 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1577 return 1;
1578 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1579 return 1;
1580 return 0;
1581 }
1582
1583 /*
1584 * compare two keys in a memcmp fashion
1585 */
1586 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1587 {
1588 struct btrfs_key k1;
1589
1590 btrfs_disk_key_to_cpu(&k1, disk);
1591
1592 return btrfs_comp_cpu_keys(&k1, k2);
1593 }
1594
1595 /*
1596 * same as comp_keys only with two btrfs_key's
1597 */
1598 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1599 {
1600 if (k1->objectid > k2->objectid)
1601 return 1;
1602 if (k1->objectid < k2->objectid)
1603 return -1;
1604 if (k1->type > k2->type)
1605 return 1;
1606 if (k1->type < k2->type)
1607 return -1;
1608 if (k1->offset > k2->offset)
1609 return 1;
1610 if (k1->offset < k2->offset)
1611 return -1;
1612 return 0;
1613 }
1614
1615 /*
1616 * this is used by the defrag code to go through all the
1617 * leaves pointed to by a node and reallocate them so that
1618 * disk order is close to key order
1619 */
1620 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1621 struct btrfs_root *root, struct extent_buffer *parent,
1622 int start_slot, u64 *last_ret,
1623 struct btrfs_key *progress)
1624 {
1625 struct extent_buffer *cur;
1626 u64 blocknr;
1627 u64 gen;
1628 u64 search_start = *last_ret;
1629 u64 last_block = 0;
1630 u64 other;
1631 u32 parent_nritems;
1632 int end_slot;
1633 int i;
1634 int err = 0;
1635 int parent_level;
1636 int uptodate;
1637 u32 blocksize;
1638 int progress_passed = 0;
1639 struct btrfs_disk_key disk_key;
1640
1641 parent_level = btrfs_header_level(parent);
1642
1643 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1644 WARN_ON(trans->transid != root->fs_info->generation);
1645
1646 parent_nritems = btrfs_header_nritems(parent);
1647 blocksize = root->nodesize;
1648 end_slot = parent_nritems - 1;
1649
1650 if (parent_nritems <= 1)
1651 return 0;
1652
1653 btrfs_set_lock_blocking(parent);
1654
1655 for (i = start_slot; i <= end_slot; i++) {
1656 int close = 1;
1657
1658 btrfs_node_key(parent, &disk_key, i);
1659 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1660 continue;
1661
1662 progress_passed = 1;
1663 blocknr = btrfs_node_blockptr(parent, i);
1664 gen = btrfs_node_ptr_generation(parent, i);
1665 if (last_block == 0)
1666 last_block = blocknr;
1667
1668 if (i > 0) {
1669 other = btrfs_node_blockptr(parent, i - 1);
1670 close = close_blocks(blocknr, other, blocksize);
1671 }
1672 if (!close && i < end_slot) {
1673 other = btrfs_node_blockptr(parent, i + 1);
1674 close = close_blocks(blocknr, other, blocksize);
1675 }
1676 if (close) {
1677 last_block = blocknr;
1678 continue;
1679 }
1680
1681 cur = btrfs_find_tree_block(root, blocknr);
1682 if (cur)
1683 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1684 else
1685 uptodate = 0;
1686 if (!cur || !uptodate) {
1687 if (!cur) {
1688 cur = read_tree_block(root, blocknr, gen);
1689 if (!cur || !extent_buffer_uptodate(cur)) {
1690 free_extent_buffer(cur);
1691 return -EIO;
1692 }
1693 } else if (!uptodate) {
1694 err = btrfs_read_buffer(cur, gen);
1695 if (err) {
1696 free_extent_buffer(cur);
1697 return err;
1698 }
1699 }
1700 }
1701 if (search_start == 0)
1702 search_start = last_block;
1703
1704 btrfs_tree_lock(cur);
1705 btrfs_set_lock_blocking(cur);
1706 err = __btrfs_cow_block(trans, root, cur, parent, i,
1707 &cur, search_start,
1708 min(16 * blocksize,
1709 (end_slot - i) * blocksize));
1710 if (err) {
1711 btrfs_tree_unlock(cur);
1712 free_extent_buffer(cur);
1713 break;
1714 }
1715 search_start = cur->start;
1716 last_block = cur->start;
1717 *last_ret = search_start;
1718 btrfs_tree_unlock(cur);
1719 free_extent_buffer(cur);
1720 }
1721 return err;
1722 }
1723
1724 /*
1725 * The leaf data grows from end-to-front in the node.
1726 * this returns the address of the start of the last item,
1727 * which is the stop of the leaf data stack
1728 */
1729 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1730 struct extent_buffer *leaf)
1731 {
1732 u32 nr = btrfs_header_nritems(leaf);
1733 if (nr == 0)
1734 return BTRFS_LEAF_DATA_SIZE(root);
1735 return btrfs_item_offset_nr(leaf, nr - 1);
1736 }
1737
1738
1739 /*
1740 * search for key in the extent_buffer. The items start at offset p,
1741 * and they are item_size apart. There are 'max' items in p.
1742 *
1743 * the slot in the array is returned via slot, and it points to
1744 * the place where you would insert key if it is not found in
1745 * the array.
1746 *
1747 * slot may point to max if the key is bigger than all of the keys
1748 */
1749 static noinline int generic_bin_search(struct extent_buffer *eb,
1750 unsigned long p,
1751 int item_size, struct btrfs_key *key,
1752 int max, int *slot)
1753 {
1754 int low = 0;
1755 int high = max;
1756 int mid;
1757 int ret;
1758 struct btrfs_disk_key *tmp = NULL;
1759 struct btrfs_disk_key unaligned;
1760 unsigned long offset;
1761 char *kaddr = NULL;
1762 unsigned long map_start = 0;
1763 unsigned long map_len = 0;
1764 int err;
1765
1766 while (low < high) {
1767 mid = (low + high) / 2;
1768 offset = p + mid * item_size;
1769
1770 if (!kaddr || offset < map_start ||
1771 (offset + sizeof(struct btrfs_disk_key)) >
1772 map_start + map_len) {
1773
1774 err = map_private_extent_buffer(eb, offset,
1775 sizeof(struct btrfs_disk_key),
1776 &kaddr, &map_start, &map_len);
1777
1778 if (!err) {
1779 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1780 map_start);
1781 } else {
1782 read_extent_buffer(eb, &unaligned,
1783 offset, sizeof(unaligned));
1784 tmp = &unaligned;
1785 }
1786
1787 } else {
1788 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1789 map_start);
1790 }
1791 ret = comp_keys(tmp, key);
1792
1793 if (ret < 0)
1794 low = mid + 1;
1795 else if (ret > 0)
1796 high = mid;
1797 else {
1798 *slot = mid;
1799 return 0;
1800 }
1801 }
1802 *slot = low;
1803 return 1;
1804 }
1805
1806 /*
1807 * simple bin_search frontend that does the right thing for
1808 * leaves vs nodes
1809 */
1810 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1811 int level, int *slot)
1812 {
1813 if (level == 0)
1814 return generic_bin_search(eb,
1815 offsetof(struct btrfs_leaf, items),
1816 sizeof(struct btrfs_item),
1817 key, btrfs_header_nritems(eb),
1818 slot);
1819 else
1820 return generic_bin_search(eb,
1821 offsetof(struct btrfs_node, ptrs),
1822 sizeof(struct btrfs_key_ptr),
1823 key, btrfs_header_nritems(eb),
1824 slot);
1825 }
1826
1827 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1828 int level, int *slot)
1829 {
1830 return bin_search(eb, key, level, slot);
1831 }
1832
1833 static void root_add_used(struct btrfs_root *root, u32 size)
1834 {
1835 spin_lock(&root->accounting_lock);
1836 btrfs_set_root_used(&root->root_item,
1837 btrfs_root_used(&root->root_item) + size);
1838 spin_unlock(&root->accounting_lock);
1839 }
1840
1841 static void root_sub_used(struct btrfs_root *root, u32 size)
1842 {
1843 spin_lock(&root->accounting_lock);
1844 btrfs_set_root_used(&root->root_item,
1845 btrfs_root_used(&root->root_item) - size);
1846 spin_unlock(&root->accounting_lock);
1847 }
1848
1849 /* given a node and slot number, this reads the blocks it points to. The
1850 * extent buffer is returned with a reference taken (but unlocked).
1851 * NULL is returned on error.
1852 */
1853 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1854 struct extent_buffer *parent, int slot)
1855 {
1856 int level = btrfs_header_level(parent);
1857 struct extent_buffer *eb;
1858
1859 if (slot < 0)
1860 return NULL;
1861 if (slot >= btrfs_header_nritems(parent))
1862 return NULL;
1863
1864 BUG_ON(level == 0);
1865
1866 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1867 btrfs_node_ptr_generation(parent, slot));
1868 if (eb && !extent_buffer_uptodate(eb)) {
1869 free_extent_buffer(eb);
1870 eb = NULL;
1871 }
1872
1873 return eb;
1874 }
1875
1876 /*
1877 * node level balancing, used to make sure nodes are in proper order for
1878 * item deletion. We balance from the top down, so we have to make sure
1879 * that a deletion won't leave an node completely empty later on.
1880 */
1881 static noinline int balance_level(struct btrfs_trans_handle *trans,
1882 struct btrfs_root *root,
1883 struct btrfs_path *path, int level)
1884 {
1885 struct extent_buffer *right = NULL;
1886 struct extent_buffer *mid;
1887 struct extent_buffer *left = NULL;
1888 struct extent_buffer *parent = NULL;
1889 int ret = 0;
1890 int wret;
1891 int pslot;
1892 int orig_slot = path->slots[level];
1893 u64 orig_ptr;
1894
1895 if (level == 0)
1896 return 0;
1897
1898 mid = path->nodes[level];
1899
1900 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1901 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1902 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1903
1904 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1905
1906 if (level < BTRFS_MAX_LEVEL - 1) {
1907 parent = path->nodes[level + 1];
1908 pslot = path->slots[level + 1];
1909 }
1910
1911 /*
1912 * deal with the case where there is only one pointer in the root
1913 * by promoting the node below to a root
1914 */
1915 if (!parent) {
1916 struct extent_buffer *child;
1917
1918 if (btrfs_header_nritems(mid) != 1)
1919 return 0;
1920
1921 /* promote the child to a root */
1922 child = read_node_slot(root, mid, 0);
1923 if (!child) {
1924 ret = -EROFS;
1925 btrfs_std_error(root->fs_info, ret);
1926 goto enospc;
1927 }
1928
1929 btrfs_tree_lock(child);
1930 btrfs_set_lock_blocking(child);
1931 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1932 if (ret) {
1933 btrfs_tree_unlock(child);
1934 free_extent_buffer(child);
1935 goto enospc;
1936 }
1937
1938 tree_mod_log_set_root_pointer(root, child, 1);
1939 rcu_assign_pointer(root->node, child);
1940
1941 add_root_to_dirty_list(root);
1942 btrfs_tree_unlock(child);
1943
1944 path->locks[level] = 0;
1945 path->nodes[level] = NULL;
1946 clean_tree_block(trans, root, mid);
1947 btrfs_tree_unlock(mid);
1948 /* once for the path */
1949 free_extent_buffer(mid);
1950
1951 root_sub_used(root, mid->len);
1952 btrfs_free_tree_block(trans, root, mid, 0, 1);
1953 /* once for the root ptr */
1954 free_extent_buffer_stale(mid);
1955 return 0;
1956 }
1957 if (btrfs_header_nritems(mid) >
1958 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1959 return 0;
1960
1961 left = read_node_slot(root, parent, pslot - 1);
1962 if (left) {
1963 btrfs_tree_lock(left);
1964 btrfs_set_lock_blocking(left);
1965 wret = btrfs_cow_block(trans, root, left,
1966 parent, pslot - 1, &left);
1967 if (wret) {
1968 ret = wret;
1969 goto enospc;
1970 }
1971 }
1972 right = read_node_slot(root, parent, pslot + 1);
1973 if (right) {
1974 btrfs_tree_lock(right);
1975 btrfs_set_lock_blocking(right);
1976 wret = btrfs_cow_block(trans, root, right,
1977 parent, pslot + 1, &right);
1978 if (wret) {
1979 ret = wret;
1980 goto enospc;
1981 }
1982 }
1983
1984 /* first, try to make some room in the middle buffer */
1985 if (left) {
1986 orig_slot += btrfs_header_nritems(left);
1987 wret = push_node_left(trans, root, left, mid, 1);
1988 if (wret < 0)
1989 ret = wret;
1990 }
1991
1992 /*
1993 * then try to empty the right most buffer into the middle
1994 */
1995 if (right) {
1996 wret = push_node_left(trans, root, mid, right, 1);
1997 if (wret < 0 && wret != -ENOSPC)
1998 ret = wret;
1999 if (btrfs_header_nritems(right) == 0) {
2000 clean_tree_block(trans, root, right);
2001 btrfs_tree_unlock(right);
2002 del_ptr(root, path, level + 1, pslot + 1);
2003 root_sub_used(root, right->len);
2004 btrfs_free_tree_block(trans, root, right, 0, 1);
2005 free_extent_buffer_stale(right);
2006 right = NULL;
2007 } else {
2008 struct btrfs_disk_key right_key;
2009 btrfs_node_key(right, &right_key, 0);
2010 tree_mod_log_set_node_key(root->fs_info, parent,
2011 pslot + 1, 0);
2012 btrfs_set_node_key(parent, &right_key, pslot + 1);
2013 btrfs_mark_buffer_dirty(parent);
2014 }
2015 }
2016 if (btrfs_header_nritems(mid) == 1) {
2017 /*
2018 * we're not allowed to leave a node with one item in the
2019 * tree during a delete. A deletion from lower in the tree
2020 * could try to delete the only pointer in this node.
2021 * So, pull some keys from the left.
2022 * There has to be a left pointer at this point because
2023 * otherwise we would have pulled some pointers from the
2024 * right
2025 */
2026 if (!left) {
2027 ret = -EROFS;
2028 btrfs_std_error(root->fs_info, ret);
2029 goto enospc;
2030 }
2031 wret = balance_node_right(trans, root, mid, left);
2032 if (wret < 0) {
2033 ret = wret;
2034 goto enospc;
2035 }
2036 if (wret == 1) {
2037 wret = push_node_left(trans, root, left, mid, 1);
2038 if (wret < 0)
2039 ret = wret;
2040 }
2041 BUG_ON(wret == 1);
2042 }
2043 if (btrfs_header_nritems(mid) == 0) {
2044 clean_tree_block(trans, root, mid);
2045 btrfs_tree_unlock(mid);
2046 del_ptr(root, path, level + 1, pslot);
2047 root_sub_used(root, mid->len);
2048 btrfs_free_tree_block(trans, root, mid, 0, 1);
2049 free_extent_buffer_stale(mid);
2050 mid = NULL;
2051 } else {
2052 /* update the parent key to reflect our changes */
2053 struct btrfs_disk_key mid_key;
2054 btrfs_node_key(mid, &mid_key, 0);
2055 tree_mod_log_set_node_key(root->fs_info, parent,
2056 pslot, 0);
2057 btrfs_set_node_key(parent, &mid_key, pslot);
2058 btrfs_mark_buffer_dirty(parent);
2059 }
2060
2061 /* update the path */
2062 if (left) {
2063 if (btrfs_header_nritems(left) > orig_slot) {
2064 extent_buffer_get(left);
2065 /* left was locked after cow */
2066 path->nodes[level] = left;
2067 path->slots[level + 1] -= 1;
2068 path->slots[level] = orig_slot;
2069 if (mid) {
2070 btrfs_tree_unlock(mid);
2071 free_extent_buffer(mid);
2072 }
2073 } else {
2074 orig_slot -= btrfs_header_nritems(left);
2075 path->slots[level] = orig_slot;
2076 }
2077 }
2078 /* double check we haven't messed things up */
2079 if (orig_ptr !=
2080 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2081 BUG();
2082 enospc:
2083 if (right) {
2084 btrfs_tree_unlock(right);
2085 free_extent_buffer(right);
2086 }
2087 if (left) {
2088 if (path->nodes[level] != left)
2089 btrfs_tree_unlock(left);
2090 free_extent_buffer(left);
2091 }
2092 return ret;
2093 }
2094
2095 /* Node balancing for insertion. Here we only split or push nodes around
2096 * when they are completely full. This is also done top down, so we
2097 * have to be pessimistic.
2098 */
2099 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_path *path, int level)
2102 {
2103 struct extent_buffer *right = NULL;
2104 struct extent_buffer *mid;
2105 struct extent_buffer *left = NULL;
2106 struct extent_buffer *parent = NULL;
2107 int ret = 0;
2108 int wret;
2109 int pslot;
2110 int orig_slot = path->slots[level];
2111
2112 if (level == 0)
2113 return 1;
2114
2115 mid = path->nodes[level];
2116 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2117
2118 if (level < BTRFS_MAX_LEVEL - 1) {
2119 parent = path->nodes[level + 1];
2120 pslot = path->slots[level + 1];
2121 }
2122
2123 if (!parent)
2124 return 1;
2125
2126 left = read_node_slot(root, parent, pslot - 1);
2127
2128 /* first, try to make some room in the middle buffer */
2129 if (left) {
2130 u32 left_nr;
2131
2132 btrfs_tree_lock(left);
2133 btrfs_set_lock_blocking(left);
2134
2135 left_nr = btrfs_header_nritems(left);
2136 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2137 wret = 1;
2138 } else {
2139 ret = btrfs_cow_block(trans, root, left, parent,
2140 pslot - 1, &left);
2141 if (ret)
2142 wret = 1;
2143 else {
2144 wret = push_node_left(trans, root,
2145 left, mid, 0);
2146 }
2147 }
2148 if (wret < 0)
2149 ret = wret;
2150 if (wret == 0) {
2151 struct btrfs_disk_key disk_key;
2152 orig_slot += left_nr;
2153 btrfs_node_key(mid, &disk_key, 0);
2154 tree_mod_log_set_node_key(root->fs_info, parent,
2155 pslot, 0);
2156 btrfs_set_node_key(parent, &disk_key, pslot);
2157 btrfs_mark_buffer_dirty(parent);
2158 if (btrfs_header_nritems(left) > orig_slot) {
2159 path->nodes[level] = left;
2160 path->slots[level + 1] -= 1;
2161 path->slots[level] = orig_slot;
2162 btrfs_tree_unlock(mid);
2163 free_extent_buffer(mid);
2164 } else {
2165 orig_slot -=
2166 btrfs_header_nritems(left);
2167 path->slots[level] = orig_slot;
2168 btrfs_tree_unlock(left);
2169 free_extent_buffer(left);
2170 }
2171 return 0;
2172 }
2173 btrfs_tree_unlock(left);
2174 free_extent_buffer(left);
2175 }
2176 right = read_node_slot(root, parent, pslot + 1);
2177
2178 /*
2179 * then try to empty the right most buffer into the middle
2180 */
2181 if (right) {
2182 u32 right_nr;
2183
2184 btrfs_tree_lock(right);
2185 btrfs_set_lock_blocking(right);
2186
2187 right_nr = btrfs_header_nritems(right);
2188 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2189 wret = 1;
2190 } else {
2191 ret = btrfs_cow_block(trans, root, right,
2192 parent, pslot + 1,
2193 &right);
2194 if (ret)
2195 wret = 1;
2196 else {
2197 wret = balance_node_right(trans, root,
2198 right, mid);
2199 }
2200 }
2201 if (wret < 0)
2202 ret = wret;
2203 if (wret == 0) {
2204 struct btrfs_disk_key disk_key;
2205
2206 btrfs_node_key(right, &disk_key, 0);
2207 tree_mod_log_set_node_key(root->fs_info, parent,
2208 pslot + 1, 0);
2209 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2210 btrfs_mark_buffer_dirty(parent);
2211
2212 if (btrfs_header_nritems(mid) <= orig_slot) {
2213 path->nodes[level] = right;
2214 path->slots[level + 1] += 1;
2215 path->slots[level] = orig_slot -
2216 btrfs_header_nritems(mid);
2217 btrfs_tree_unlock(mid);
2218 free_extent_buffer(mid);
2219 } else {
2220 btrfs_tree_unlock(right);
2221 free_extent_buffer(right);
2222 }
2223 return 0;
2224 }
2225 btrfs_tree_unlock(right);
2226 free_extent_buffer(right);
2227 }
2228 return 1;
2229 }
2230
2231 /*
2232 * readahead one full node of leaves, finding things that are close
2233 * to the block in 'slot', and triggering ra on them.
2234 */
2235 static void reada_for_search(struct btrfs_root *root,
2236 struct btrfs_path *path,
2237 int level, int slot, u64 objectid)
2238 {
2239 struct extent_buffer *node;
2240 struct btrfs_disk_key disk_key;
2241 u32 nritems;
2242 u64 search;
2243 u64 target;
2244 u64 nread = 0;
2245 u64 gen;
2246 int direction = path->reada;
2247 struct extent_buffer *eb;
2248 u32 nr;
2249 u32 blocksize;
2250 u32 nscan = 0;
2251
2252 if (level != 1)
2253 return;
2254
2255 if (!path->nodes[level])
2256 return;
2257
2258 node = path->nodes[level];
2259
2260 search = btrfs_node_blockptr(node, slot);
2261 blocksize = root->nodesize;
2262 eb = btrfs_find_tree_block(root, search);
2263 if (eb) {
2264 free_extent_buffer(eb);
2265 return;
2266 }
2267
2268 target = search;
2269
2270 nritems = btrfs_header_nritems(node);
2271 nr = slot;
2272
2273 while (1) {
2274 if (direction < 0) {
2275 if (nr == 0)
2276 break;
2277 nr--;
2278 } else if (direction > 0) {
2279 nr++;
2280 if (nr >= nritems)
2281 break;
2282 }
2283 if (path->reada < 0 && objectid) {
2284 btrfs_node_key(node, &disk_key, nr);
2285 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2286 break;
2287 }
2288 search = btrfs_node_blockptr(node, nr);
2289 if ((search <= target && target - search <= 65536) ||
2290 (search > target && search - target <= 65536)) {
2291 gen = btrfs_node_ptr_generation(node, nr);
2292 readahead_tree_block(root, search);
2293 nread += blocksize;
2294 }
2295 nscan++;
2296 if ((nread > 65536 || nscan > 32))
2297 break;
2298 }
2299 }
2300
2301 static noinline void reada_for_balance(struct btrfs_root *root,
2302 struct btrfs_path *path, int level)
2303 {
2304 int slot;
2305 int nritems;
2306 struct extent_buffer *parent;
2307 struct extent_buffer *eb;
2308 u64 gen;
2309 u64 block1 = 0;
2310 u64 block2 = 0;
2311
2312 parent = path->nodes[level + 1];
2313 if (!parent)
2314 return;
2315
2316 nritems = btrfs_header_nritems(parent);
2317 slot = path->slots[level + 1];
2318
2319 if (slot > 0) {
2320 block1 = btrfs_node_blockptr(parent, slot - 1);
2321 gen = btrfs_node_ptr_generation(parent, slot - 1);
2322 eb = btrfs_find_tree_block(root, block1);
2323 /*
2324 * if we get -eagain from btrfs_buffer_uptodate, we
2325 * don't want to return eagain here. That will loop
2326 * forever
2327 */
2328 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2329 block1 = 0;
2330 free_extent_buffer(eb);
2331 }
2332 if (slot + 1 < nritems) {
2333 block2 = btrfs_node_blockptr(parent, slot + 1);
2334 gen = btrfs_node_ptr_generation(parent, slot + 1);
2335 eb = btrfs_find_tree_block(root, block2);
2336 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2337 block2 = 0;
2338 free_extent_buffer(eb);
2339 }
2340
2341 if (block1)
2342 readahead_tree_block(root, block1);
2343 if (block2)
2344 readahead_tree_block(root, block2);
2345 }
2346
2347
2348 /*
2349 * when we walk down the tree, it is usually safe to unlock the higher layers
2350 * in the tree. The exceptions are when our path goes through slot 0, because
2351 * operations on the tree might require changing key pointers higher up in the
2352 * tree.
2353 *
2354 * callers might also have set path->keep_locks, which tells this code to keep
2355 * the lock if the path points to the last slot in the block. This is part of
2356 * walking through the tree, and selecting the next slot in the higher block.
2357 *
2358 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2359 * if lowest_unlock is 1, level 0 won't be unlocked
2360 */
2361 static noinline void unlock_up(struct btrfs_path *path, int level,
2362 int lowest_unlock, int min_write_lock_level,
2363 int *write_lock_level)
2364 {
2365 int i;
2366 int skip_level = level;
2367 int no_skips = 0;
2368 struct extent_buffer *t;
2369
2370 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2371 if (!path->nodes[i])
2372 break;
2373 if (!path->locks[i])
2374 break;
2375 if (!no_skips && path->slots[i] == 0) {
2376 skip_level = i + 1;
2377 continue;
2378 }
2379 if (!no_skips && path->keep_locks) {
2380 u32 nritems;
2381 t = path->nodes[i];
2382 nritems = btrfs_header_nritems(t);
2383 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2384 skip_level = i + 1;
2385 continue;
2386 }
2387 }
2388 if (skip_level < i && i >= lowest_unlock)
2389 no_skips = 1;
2390
2391 t = path->nodes[i];
2392 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2393 btrfs_tree_unlock_rw(t, path->locks[i]);
2394 path->locks[i] = 0;
2395 if (write_lock_level &&
2396 i > min_write_lock_level &&
2397 i <= *write_lock_level) {
2398 *write_lock_level = i - 1;
2399 }
2400 }
2401 }
2402 }
2403
2404 /*
2405 * This releases any locks held in the path starting at level and
2406 * going all the way up to the root.
2407 *
2408 * btrfs_search_slot will keep the lock held on higher nodes in a few
2409 * corner cases, such as COW of the block at slot zero in the node. This
2410 * ignores those rules, and it should only be called when there are no
2411 * more updates to be done higher up in the tree.
2412 */
2413 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2414 {
2415 int i;
2416
2417 if (path->keep_locks)
2418 return;
2419
2420 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2421 if (!path->nodes[i])
2422 continue;
2423 if (!path->locks[i])
2424 continue;
2425 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2426 path->locks[i] = 0;
2427 }
2428 }
2429
2430 /*
2431 * helper function for btrfs_search_slot. The goal is to find a block
2432 * in cache without setting the path to blocking. If we find the block
2433 * we return zero and the path is unchanged.
2434 *
2435 * If we can't find the block, we set the path blocking and do some
2436 * reada. -EAGAIN is returned and the search must be repeated.
2437 */
2438 static int
2439 read_block_for_search(struct btrfs_trans_handle *trans,
2440 struct btrfs_root *root, struct btrfs_path *p,
2441 struct extent_buffer **eb_ret, int level, int slot,
2442 struct btrfs_key *key, u64 time_seq)
2443 {
2444 u64 blocknr;
2445 u64 gen;
2446 struct extent_buffer *b = *eb_ret;
2447 struct extent_buffer *tmp;
2448 int ret;
2449
2450 blocknr = btrfs_node_blockptr(b, slot);
2451 gen = btrfs_node_ptr_generation(b, slot);
2452
2453 tmp = btrfs_find_tree_block(root, blocknr);
2454 if (tmp) {
2455 /* first we do an atomic uptodate check */
2456 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2457 *eb_ret = tmp;
2458 return 0;
2459 }
2460
2461 /* the pages were up to date, but we failed
2462 * the generation number check. Do a full
2463 * read for the generation number that is correct.
2464 * We must do this without dropping locks so
2465 * we can trust our generation number
2466 */
2467 btrfs_set_path_blocking(p);
2468
2469 /* now we're allowed to do a blocking uptodate check */
2470 ret = btrfs_read_buffer(tmp, gen);
2471 if (!ret) {
2472 *eb_ret = tmp;
2473 return 0;
2474 }
2475 free_extent_buffer(tmp);
2476 btrfs_release_path(p);
2477 return -EIO;
2478 }
2479
2480 /*
2481 * reduce lock contention at high levels
2482 * of the btree by dropping locks before
2483 * we read. Don't release the lock on the current
2484 * level because we need to walk this node to figure
2485 * out which blocks to read.
2486 */
2487 btrfs_unlock_up_safe(p, level + 1);
2488 btrfs_set_path_blocking(p);
2489
2490 free_extent_buffer(tmp);
2491 if (p->reada)
2492 reada_for_search(root, p, level, slot, key->objectid);
2493
2494 btrfs_release_path(p);
2495
2496 ret = -EAGAIN;
2497 tmp = read_tree_block(root, blocknr, 0);
2498 if (tmp) {
2499 /*
2500 * If the read above didn't mark this buffer up to date,
2501 * it will never end up being up to date. Set ret to EIO now
2502 * and give up so that our caller doesn't loop forever
2503 * on our EAGAINs.
2504 */
2505 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2506 ret = -EIO;
2507 free_extent_buffer(tmp);
2508 }
2509 return ret;
2510 }
2511
2512 /*
2513 * helper function for btrfs_search_slot. This does all of the checks
2514 * for node-level blocks and does any balancing required based on
2515 * the ins_len.
2516 *
2517 * If no extra work was required, zero is returned. If we had to
2518 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2519 * start over
2520 */
2521 static int
2522 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2523 struct btrfs_root *root, struct btrfs_path *p,
2524 struct extent_buffer *b, int level, int ins_len,
2525 int *write_lock_level)
2526 {
2527 int ret;
2528 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2529 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2530 int sret;
2531
2532 if (*write_lock_level < level + 1) {
2533 *write_lock_level = level + 1;
2534 btrfs_release_path(p);
2535 goto again;
2536 }
2537
2538 btrfs_set_path_blocking(p);
2539 reada_for_balance(root, p, level);
2540 sret = split_node(trans, root, p, level);
2541 btrfs_clear_path_blocking(p, NULL, 0);
2542
2543 BUG_ON(sret > 0);
2544 if (sret) {
2545 ret = sret;
2546 goto done;
2547 }
2548 b = p->nodes[level];
2549 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2550 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2551 int sret;
2552
2553 if (*write_lock_level < level + 1) {
2554 *write_lock_level = level + 1;
2555 btrfs_release_path(p);
2556 goto again;
2557 }
2558
2559 btrfs_set_path_blocking(p);
2560 reada_for_balance(root, p, level);
2561 sret = balance_level(trans, root, p, level);
2562 btrfs_clear_path_blocking(p, NULL, 0);
2563
2564 if (sret) {
2565 ret = sret;
2566 goto done;
2567 }
2568 b = p->nodes[level];
2569 if (!b) {
2570 btrfs_release_path(p);
2571 goto again;
2572 }
2573 BUG_ON(btrfs_header_nritems(b) == 1);
2574 }
2575 return 0;
2576
2577 again:
2578 ret = -EAGAIN;
2579 done:
2580 return ret;
2581 }
2582
2583 static void key_search_validate(struct extent_buffer *b,
2584 struct btrfs_key *key,
2585 int level)
2586 {
2587 #ifdef CONFIG_BTRFS_ASSERT
2588 struct btrfs_disk_key disk_key;
2589
2590 btrfs_cpu_key_to_disk(&disk_key, key);
2591
2592 if (level == 0)
2593 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2594 offsetof(struct btrfs_leaf, items[0].key),
2595 sizeof(disk_key)));
2596 else
2597 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2598 offsetof(struct btrfs_node, ptrs[0].key),
2599 sizeof(disk_key)));
2600 #endif
2601 }
2602
2603 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2604 int level, int *prev_cmp, int *slot)
2605 {
2606 if (*prev_cmp != 0) {
2607 *prev_cmp = bin_search(b, key, level, slot);
2608 return *prev_cmp;
2609 }
2610
2611 key_search_validate(b, key, level);
2612 *slot = 0;
2613
2614 return 0;
2615 }
2616
2617 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2618 u64 iobjectid, u64 ioff, u8 key_type,
2619 struct btrfs_key *found_key)
2620 {
2621 int ret;
2622 struct btrfs_key key;
2623 struct extent_buffer *eb;
2624
2625 ASSERT(path);
2626 ASSERT(found_key);
2627
2628 key.type = key_type;
2629 key.objectid = iobjectid;
2630 key.offset = ioff;
2631
2632 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2633 if (ret < 0)
2634 return ret;
2635
2636 eb = path->nodes[0];
2637 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2638 ret = btrfs_next_leaf(fs_root, path);
2639 if (ret)
2640 return ret;
2641 eb = path->nodes[0];
2642 }
2643
2644 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2645 if (found_key->type != key.type ||
2646 found_key->objectid != key.objectid)
2647 return 1;
2648
2649 return 0;
2650 }
2651
2652 /*
2653 * look for key in the tree. path is filled in with nodes along the way
2654 * if key is found, we return zero and you can find the item in the leaf
2655 * level of the path (level 0)
2656 *
2657 * If the key isn't found, the path points to the slot where it should
2658 * be inserted, and 1 is returned. If there are other errors during the
2659 * search a negative error number is returned.
2660 *
2661 * if ins_len > 0, nodes and leaves will be split as we walk down the
2662 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2663 * possible)
2664 */
2665 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2666 *root, struct btrfs_key *key, struct btrfs_path *p, int
2667 ins_len, int cow)
2668 {
2669 struct extent_buffer *b;
2670 int slot;
2671 int ret;
2672 int err;
2673 int level;
2674 int lowest_unlock = 1;
2675 int root_lock;
2676 /* everything at write_lock_level or lower must be write locked */
2677 int write_lock_level = 0;
2678 u8 lowest_level = 0;
2679 int min_write_lock_level;
2680 int prev_cmp;
2681
2682 lowest_level = p->lowest_level;
2683 WARN_ON(lowest_level && ins_len > 0);
2684 WARN_ON(p->nodes[0] != NULL);
2685 BUG_ON(!cow && ins_len);
2686
2687 if (ins_len < 0) {
2688 lowest_unlock = 2;
2689
2690 /* when we are removing items, we might have to go up to level
2691 * two as we update tree pointers Make sure we keep write
2692 * for those levels as well
2693 */
2694 write_lock_level = 2;
2695 } else if (ins_len > 0) {
2696 /*
2697 * for inserting items, make sure we have a write lock on
2698 * level 1 so we can update keys
2699 */
2700 write_lock_level = 1;
2701 }
2702
2703 if (!cow)
2704 write_lock_level = -1;
2705
2706 if (cow && (p->keep_locks || p->lowest_level))
2707 write_lock_level = BTRFS_MAX_LEVEL;
2708
2709 min_write_lock_level = write_lock_level;
2710
2711 again:
2712 prev_cmp = -1;
2713 /*
2714 * we try very hard to do read locks on the root
2715 */
2716 root_lock = BTRFS_READ_LOCK;
2717 level = 0;
2718 if (p->search_commit_root) {
2719 /*
2720 * the commit roots are read only
2721 * so we always do read locks
2722 */
2723 if (p->need_commit_sem)
2724 down_read(&root->fs_info->commit_root_sem);
2725 b = root->commit_root;
2726 extent_buffer_get(b);
2727 level = btrfs_header_level(b);
2728 if (p->need_commit_sem)
2729 up_read(&root->fs_info->commit_root_sem);
2730 if (!p->skip_locking)
2731 btrfs_tree_read_lock(b);
2732 } else {
2733 if (p->skip_locking) {
2734 b = btrfs_root_node(root);
2735 level = btrfs_header_level(b);
2736 } else {
2737 /* we don't know the level of the root node
2738 * until we actually have it read locked
2739 */
2740 b = btrfs_read_lock_root_node(root);
2741 level = btrfs_header_level(b);
2742 if (level <= write_lock_level) {
2743 /* whoops, must trade for write lock */
2744 btrfs_tree_read_unlock(b);
2745 free_extent_buffer(b);
2746 b = btrfs_lock_root_node(root);
2747 root_lock = BTRFS_WRITE_LOCK;
2748
2749 /* the level might have changed, check again */
2750 level = btrfs_header_level(b);
2751 }
2752 }
2753 }
2754 p->nodes[level] = b;
2755 if (!p->skip_locking)
2756 p->locks[level] = root_lock;
2757
2758 while (b) {
2759 level = btrfs_header_level(b);
2760
2761 /*
2762 * setup the path here so we can release it under lock
2763 * contention with the cow code
2764 */
2765 if (cow) {
2766 /*
2767 * if we don't really need to cow this block
2768 * then we don't want to set the path blocking,
2769 * so we test it here
2770 */
2771 if (!should_cow_block(trans, root, b))
2772 goto cow_done;
2773
2774 /*
2775 * must have write locks on this node and the
2776 * parent
2777 */
2778 if (level > write_lock_level ||
2779 (level + 1 > write_lock_level &&
2780 level + 1 < BTRFS_MAX_LEVEL &&
2781 p->nodes[level + 1])) {
2782 write_lock_level = level + 1;
2783 btrfs_release_path(p);
2784 goto again;
2785 }
2786
2787 btrfs_set_path_blocking(p);
2788 err = btrfs_cow_block(trans, root, b,
2789 p->nodes[level + 1],
2790 p->slots[level + 1], &b);
2791 if (err) {
2792 ret = err;
2793 goto done;
2794 }
2795 }
2796 cow_done:
2797 p->nodes[level] = b;
2798 btrfs_clear_path_blocking(p, NULL, 0);
2799
2800 /*
2801 * we have a lock on b and as long as we aren't changing
2802 * the tree, there is no way to for the items in b to change.
2803 * It is safe to drop the lock on our parent before we
2804 * go through the expensive btree search on b.
2805 *
2806 * If we're inserting or deleting (ins_len != 0), then we might
2807 * be changing slot zero, which may require changing the parent.
2808 * So, we can't drop the lock until after we know which slot
2809 * we're operating on.
2810 */
2811 if (!ins_len && !p->keep_locks) {
2812 int u = level + 1;
2813
2814 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2815 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2816 p->locks[u] = 0;
2817 }
2818 }
2819
2820 ret = key_search(b, key, level, &prev_cmp, &slot);
2821
2822 if (level != 0) {
2823 int dec = 0;
2824 if (ret && slot > 0) {
2825 dec = 1;
2826 slot -= 1;
2827 }
2828 p->slots[level] = slot;
2829 err = setup_nodes_for_search(trans, root, p, b, level,
2830 ins_len, &write_lock_level);
2831 if (err == -EAGAIN)
2832 goto again;
2833 if (err) {
2834 ret = err;
2835 goto done;
2836 }
2837 b = p->nodes[level];
2838 slot = p->slots[level];
2839
2840 /*
2841 * slot 0 is special, if we change the key
2842 * we have to update the parent pointer
2843 * which means we must have a write lock
2844 * on the parent
2845 */
2846 if (slot == 0 && ins_len &&
2847 write_lock_level < level + 1) {
2848 write_lock_level = level + 1;
2849 btrfs_release_path(p);
2850 goto again;
2851 }
2852
2853 unlock_up(p, level, lowest_unlock,
2854 min_write_lock_level, &write_lock_level);
2855
2856 if (level == lowest_level) {
2857 if (dec)
2858 p->slots[level]++;
2859 goto done;
2860 }
2861
2862 err = read_block_for_search(trans, root, p,
2863 &b, level, slot, key, 0);
2864 if (err == -EAGAIN)
2865 goto again;
2866 if (err) {
2867 ret = err;
2868 goto done;
2869 }
2870
2871 if (!p->skip_locking) {
2872 level = btrfs_header_level(b);
2873 if (level <= write_lock_level) {
2874 err = btrfs_try_tree_write_lock(b);
2875 if (!err) {
2876 btrfs_set_path_blocking(p);
2877 btrfs_tree_lock(b);
2878 btrfs_clear_path_blocking(p, b,
2879 BTRFS_WRITE_LOCK);
2880 }
2881 p->locks[level] = BTRFS_WRITE_LOCK;
2882 } else {
2883 err = btrfs_tree_read_lock_atomic(b);
2884 if (!err) {
2885 btrfs_set_path_blocking(p);
2886 btrfs_tree_read_lock(b);
2887 btrfs_clear_path_blocking(p, b,
2888 BTRFS_READ_LOCK);
2889 }
2890 p->locks[level] = BTRFS_READ_LOCK;
2891 }
2892 p->nodes[level] = b;
2893 }
2894 } else {
2895 p->slots[level] = slot;
2896 if (ins_len > 0 &&
2897 btrfs_leaf_free_space(root, b) < ins_len) {
2898 if (write_lock_level < 1) {
2899 write_lock_level = 1;
2900 btrfs_release_path(p);
2901 goto again;
2902 }
2903
2904 btrfs_set_path_blocking(p);
2905 err = split_leaf(trans, root, key,
2906 p, ins_len, ret == 0);
2907 btrfs_clear_path_blocking(p, NULL, 0);
2908
2909 BUG_ON(err > 0);
2910 if (err) {
2911 ret = err;
2912 goto done;
2913 }
2914 }
2915 if (!p->search_for_split)
2916 unlock_up(p, level, lowest_unlock,
2917 min_write_lock_level, &write_lock_level);
2918 goto done;
2919 }
2920 }
2921 ret = 1;
2922 done:
2923 /*
2924 * we don't really know what they plan on doing with the path
2925 * from here on, so for now just mark it as blocking
2926 */
2927 if (!p->leave_spinning)
2928 btrfs_set_path_blocking(p);
2929 if (ret < 0 && !p->skip_release_on_error)
2930 btrfs_release_path(p);
2931 return ret;
2932 }
2933
2934 /*
2935 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2936 * current state of the tree together with the operations recorded in the tree
2937 * modification log to search for the key in a previous version of this tree, as
2938 * denoted by the time_seq parameter.
2939 *
2940 * Naturally, there is no support for insert, delete or cow operations.
2941 *
2942 * The resulting path and return value will be set up as if we called
2943 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2944 */
2945 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2946 struct btrfs_path *p, u64 time_seq)
2947 {
2948 struct extent_buffer *b;
2949 int slot;
2950 int ret;
2951 int err;
2952 int level;
2953 int lowest_unlock = 1;
2954 u8 lowest_level = 0;
2955 int prev_cmp = -1;
2956
2957 lowest_level = p->lowest_level;
2958 WARN_ON(p->nodes[0] != NULL);
2959
2960 if (p->search_commit_root) {
2961 BUG_ON(time_seq);
2962 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2963 }
2964
2965 again:
2966 b = get_old_root(root, time_seq);
2967 level = btrfs_header_level(b);
2968 p->locks[level] = BTRFS_READ_LOCK;
2969
2970 while (b) {
2971 level = btrfs_header_level(b);
2972 p->nodes[level] = b;
2973 btrfs_clear_path_blocking(p, NULL, 0);
2974
2975 /*
2976 * we have a lock on b and as long as we aren't changing
2977 * the tree, there is no way to for the items in b to change.
2978 * It is safe to drop the lock on our parent before we
2979 * go through the expensive btree search on b.
2980 */
2981 btrfs_unlock_up_safe(p, level + 1);
2982
2983 /*
2984 * Since we can unwind eb's we want to do a real search every
2985 * time.
2986 */
2987 prev_cmp = -1;
2988 ret = key_search(b, key, level, &prev_cmp, &slot);
2989
2990 if (level != 0) {
2991 int dec = 0;
2992 if (ret && slot > 0) {
2993 dec = 1;
2994 slot -= 1;
2995 }
2996 p->slots[level] = slot;
2997 unlock_up(p, level, lowest_unlock, 0, NULL);
2998
2999 if (level == lowest_level) {
3000 if (dec)
3001 p->slots[level]++;
3002 goto done;
3003 }
3004
3005 err = read_block_for_search(NULL, root, p, &b, level,
3006 slot, key, time_seq);
3007 if (err == -EAGAIN)
3008 goto again;
3009 if (err) {
3010 ret = err;
3011 goto done;
3012 }
3013
3014 level = btrfs_header_level(b);
3015 err = btrfs_tree_read_lock_atomic(b);
3016 if (!err) {
3017 btrfs_set_path_blocking(p);
3018 btrfs_tree_read_lock(b);
3019 btrfs_clear_path_blocking(p, b,
3020 BTRFS_READ_LOCK);
3021 }
3022 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3023 if (!b) {
3024 ret = -ENOMEM;
3025 goto done;
3026 }
3027 p->locks[level] = BTRFS_READ_LOCK;
3028 p->nodes[level] = b;
3029 } else {
3030 p->slots[level] = slot;
3031 unlock_up(p, level, lowest_unlock, 0, NULL);
3032 goto done;
3033 }
3034 }
3035 ret = 1;
3036 done:
3037 if (!p->leave_spinning)
3038 btrfs_set_path_blocking(p);
3039 if (ret < 0)
3040 btrfs_release_path(p);
3041
3042 return ret;
3043 }
3044
3045 /*
3046 * helper to use instead of search slot if no exact match is needed but
3047 * instead the next or previous item should be returned.
3048 * When find_higher is true, the next higher item is returned, the next lower
3049 * otherwise.
3050 * When return_any and find_higher are both true, and no higher item is found,
3051 * return the next lower instead.
3052 * When return_any is true and find_higher is false, and no lower item is found,
3053 * return the next higher instead.
3054 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3055 * < 0 on error
3056 */
3057 int btrfs_search_slot_for_read(struct btrfs_root *root,
3058 struct btrfs_key *key, struct btrfs_path *p,
3059 int find_higher, int return_any)
3060 {
3061 int ret;
3062 struct extent_buffer *leaf;
3063
3064 again:
3065 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3066 if (ret <= 0)
3067 return ret;
3068 /*
3069 * a return value of 1 means the path is at the position where the
3070 * item should be inserted. Normally this is the next bigger item,
3071 * but in case the previous item is the last in a leaf, path points
3072 * to the first free slot in the previous leaf, i.e. at an invalid
3073 * item.
3074 */
3075 leaf = p->nodes[0];
3076
3077 if (find_higher) {
3078 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3079 ret = btrfs_next_leaf(root, p);
3080 if (ret <= 0)
3081 return ret;
3082 if (!return_any)
3083 return 1;
3084 /*
3085 * no higher item found, return the next
3086 * lower instead
3087 */
3088 return_any = 0;
3089 find_higher = 0;
3090 btrfs_release_path(p);
3091 goto again;
3092 }
3093 } else {
3094 if (p->slots[0] == 0) {
3095 ret = btrfs_prev_leaf(root, p);
3096 if (ret < 0)
3097 return ret;
3098 if (!ret) {
3099 leaf = p->nodes[0];
3100 if (p->slots[0] == btrfs_header_nritems(leaf))
3101 p->slots[0]--;
3102 return 0;
3103 }
3104 if (!return_any)
3105 return 1;
3106 /*
3107 * no lower item found, return the next
3108 * higher instead
3109 */
3110 return_any = 0;
3111 find_higher = 1;
3112 btrfs_release_path(p);
3113 goto again;
3114 } else {
3115 --p->slots[0];
3116 }
3117 }
3118 return 0;
3119 }
3120
3121 /*
3122 * adjust the pointers going up the tree, starting at level
3123 * making sure the right key of each node is points to 'key'.
3124 * This is used after shifting pointers to the left, so it stops
3125 * fixing up pointers when a given leaf/node is not in slot 0 of the
3126 * higher levels
3127 *
3128 */
3129 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3130 struct btrfs_disk_key *key, int level)
3131 {
3132 int i;
3133 struct extent_buffer *t;
3134
3135 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3136 int tslot = path->slots[i];
3137 if (!path->nodes[i])
3138 break;
3139 t = path->nodes[i];
3140 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3141 btrfs_set_node_key(t, key, tslot);
3142 btrfs_mark_buffer_dirty(path->nodes[i]);
3143 if (tslot != 0)
3144 break;
3145 }
3146 }
3147
3148 /*
3149 * update item key.
3150 *
3151 * This function isn't completely safe. It's the caller's responsibility
3152 * that the new key won't break the order
3153 */
3154 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3155 struct btrfs_key *new_key)
3156 {
3157 struct btrfs_disk_key disk_key;
3158 struct extent_buffer *eb;
3159 int slot;
3160
3161 eb = path->nodes[0];
3162 slot = path->slots[0];
3163 if (slot > 0) {
3164 btrfs_item_key(eb, &disk_key, slot - 1);
3165 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3166 }
3167 if (slot < btrfs_header_nritems(eb) - 1) {
3168 btrfs_item_key(eb, &disk_key, slot + 1);
3169 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3170 }
3171
3172 btrfs_cpu_key_to_disk(&disk_key, new_key);
3173 btrfs_set_item_key(eb, &disk_key, slot);
3174 btrfs_mark_buffer_dirty(eb);
3175 if (slot == 0)
3176 fixup_low_keys(root, path, &disk_key, 1);
3177 }
3178
3179 /*
3180 * try to push data from one node into the next node left in the
3181 * tree.
3182 *
3183 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3184 * error, and > 0 if there was no room in the left hand block.
3185 */
3186 static int push_node_left(struct btrfs_trans_handle *trans,
3187 struct btrfs_root *root, struct extent_buffer *dst,
3188 struct extent_buffer *src, int empty)
3189 {
3190 int push_items = 0;
3191 int src_nritems;
3192 int dst_nritems;
3193 int ret = 0;
3194
3195 src_nritems = btrfs_header_nritems(src);
3196 dst_nritems = btrfs_header_nritems(dst);
3197 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3198 WARN_ON(btrfs_header_generation(src) != trans->transid);
3199 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3200
3201 if (!empty && src_nritems <= 8)
3202 return 1;
3203
3204 if (push_items <= 0)
3205 return 1;
3206
3207 if (empty) {
3208 push_items = min(src_nritems, push_items);
3209 if (push_items < src_nritems) {
3210 /* leave at least 8 pointers in the node if
3211 * we aren't going to empty it
3212 */
3213 if (src_nritems - push_items < 8) {
3214 if (push_items <= 8)
3215 return 1;
3216 push_items -= 8;
3217 }
3218 }
3219 } else
3220 push_items = min(src_nritems - 8, push_items);
3221
3222 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3223 push_items);
3224 if (ret) {
3225 btrfs_abort_transaction(trans, root, ret);
3226 return ret;
3227 }
3228 copy_extent_buffer(dst, src,
3229 btrfs_node_key_ptr_offset(dst_nritems),
3230 btrfs_node_key_ptr_offset(0),
3231 push_items * sizeof(struct btrfs_key_ptr));
3232
3233 if (push_items < src_nritems) {
3234 /*
3235 * don't call tree_mod_log_eb_move here, key removal was already
3236 * fully logged by tree_mod_log_eb_copy above.
3237 */
3238 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3239 btrfs_node_key_ptr_offset(push_items),
3240 (src_nritems - push_items) *
3241 sizeof(struct btrfs_key_ptr));
3242 }
3243 btrfs_set_header_nritems(src, src_nritems - push_items);
3244 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3245 btrfs_mark_buffer_dirty(src);
3246 btrfs_mark_buffer_dirty(dst);
3247
3248 return ret;
3249 }
3250
3251 /*
3252 * try to push data from one node into the next node right in the
3253 * tree.
3254 *
3255 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3256 * error, and > 0 if there was no room in the right hand block.
3257 *
3258 * this will only push up to 1/2 the contents of the left node over
3259 */
3260 static int balance_node_right(struct btrfs_trans_handle *trans,
3261 struct btrfs_root *root,
3262 struct extent_buffer *dst,
3263 struct extent_buffer *src)
3264 {
3265 int push_items = 0;
3266 int max_push;
3267 int src_nritems;
3268 int dst_nritems;
3269 int ret = 0;
3270
3271 WARN_ON(btrfs_header_generation(src) != trans->transid);
3272 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3273
3274 src_nritems = btrfs_header_nritems(src);
3275 dst_nritems = btrfs_header_nritems(dst);
3276 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3277 if (push_items <= 0)
3278 return 1;
3279
3280 if (src_nritems < 4)
3281 return 1;
3282
3283 max_push = src_nritems / 2 + 1;
3284 /* don't try to empty the node */
3285 if (max_push >= src_nritems)
3286 return 1;
3287
3288 if (max_push < push_items)
3289 push_items = max_push;
3290
3291 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3292 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3293 btrfs_node_key_ptr_offset(0),
3294 (dst_nritems) *
3295 sizeof(struct btrfs_key_ptr));
3296
3297 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3298 src_nritems - push_items, push_items);
3299 if (ret) {
3300 btrfs_abort_transaction(trans, root, ret);
3301 return ret;
3302 }
3303 copy_extent_buffer(dst, src,
3304 btrfs_node_key_ptr_offset(0),
3305 btrfs_node_key_ptr_offset(src_nritems - push_items),
3306 push_items * sizeof(struct btrfs_key_ptr));
3307
3308 btrfs_set_header_nritems(src, src_nritems - push_items);
3309 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3310
3311 btrfs_mark_buffer_dirty(src);
3312 btrfs_mark_buffer_dirty(dst);
3313
3314 return ret;
3315 }
3316
3317 /*
3318 * helper function to insert a new root level in the tree.
3319 * A new node is allocated, and a single item is inserted to
3320 * point to the existing root
3321 *
3322 * returns zero on success or < 0 on failure.
3323 */
3324 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3325 struct btrfs_root *root,
3326 struct btrfs_path *path, int level)
3327 {
3328 u64 lower_gen;
3329 struct extent_buffer *lower;
3330 struct extent_buffer *c;
3331 struct extent_buffer *old;
3332 struct btrfs_disk_key lower_key;
3333
3334 BUG_ON(path->nodes[level]);
3335 BUG_ON(path->nodes[level-1] != root->node);
3336
3337 lower = path->nodes[level-1];
3338 if (level == 1)
3339 btrfs_item_key(lower, &lower_key, 0);
3340 else
3341 btrfs_node_key(lower, &lower_key, 0);
3342
3343 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3344 &lower_key, level, root->node->start, 0);
3345 if (IS_ERR(c))
3346 return PTR_ERR(c);
3347
3348 root_add_used(root, root->nodesize);
3349
3350 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3351 btrfs_set_header_nritems(c, 1);
3352 btrfs_set_header_level(c, level);
3353 btrfs_set_header_bytenr(c, c->start);
3354 btrfs_set_header_generation(c, trans->transid);
3355 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3356 btrfs_set_header_owner(c, root->root_key.objectid);
3357
3358 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3359 BTRFS_FSID_SIZE);
3360
3361 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3362 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3363
3364 btrfs_set_node_key(c, &lower_key, 0);
3365 btrfs_set_node_blockptr(c, 0, lower->start);
3366 lower_gen = btrfs_header_generation(lower);
3367 WARN_ON(lower_gen != trans->transid);
3368
3369 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3370
3371 btrfs_mark_buffer_dirty(c);
3372
3373 old = root->node;
3374 tree_mod_log_set_root_pointer(root, c, 0);
3375 rcu_assign_pointer(root->node, c);
3376
3377 /* the super has an extra ref to root->node */
3378 free_extent_buffer(old);
3379
3380 add_root_to_dirty_list(root);
3381 extent_buffer_get(c);
3382 path->nodes[level] = c;
3383 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3384 path->slots[level] = 0;
3385 return 0;
3386 }
3387
3388 /*
3389 * worker function to insert a single pointer in a node.
3390 * the node should have enough room for the pointer already
3391 *
3392 * slot and level indicate where you want the key to go, and
3393 * blocknr is the block the key points to.
3394 */
3395 static void insert_ptr(struct btrfs_trans_handle *trans,
3396 struct btrfs_root *root, struct btrfs_path *path,
3397 struct btrfs_disk_key *key, u64 bytenr,
3398 int slot, int level)
3399 {
3400 struct extent_buffer *lower;
3401 int nritems;
3402 int ret;
3403
3404 BUG_ON(!path->nodes[level]);
3405 btrfs_assert_tree_locked(path->nodes[level]);
3406 lower = path->nodes[level];
3407 nritems = btrfs_header_nritems(lower);
3408 BUG_ON(slot > nritems);
3409 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3410 if (slot != nritems) {
3411 if (level)
3412 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3413 slot, nritems - slot);
3414 memmove_extent_buffer(lower,
3415 btrfs_node_key_ptr_offset(slot + 1),
3416 btrfs_node_key_ptr_offset(slot),
3417 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3418 }
3419 if (level) {
3420 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3421 MOD_LOG_KEY_ADD, GFP_NOFS);
3422 BUG_ON(ret < 0);
3423 }
3424 btrfs_set_node_key(lower, key, slot);
3425 btrfs_set_node_blockptr(lower, slot, bytenr);
3426 WARN_ON(trans->transid == 0);
3427 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3428 btrfs_set_header_nritems(lower, nritems + 1);
3429 btrfs_mark_buffer_dirty(lower);
3430 }
3431
3432 /*
3433 * split the node at the specified level in path in two.
3434 * The path is corrected to point to the appropriate node after the split
3435 *
3436 * Before splitting this tries to make some room in the node by pushing
3437 * left and right, if either one works, it returns right away.
3438 *
3439 * returns 0 on success and < 0 on failure
3440 */
3441 static noinline int split_node(struct btrfs_trans_handle *trans,
3442 struct btrfs_root *root,
3443 struct btrfs_path *path, int level)
3444 {
3445 struct extent_buffer *c;
3446 struct extent_buffer *split;
3447 struct btrfs_disk_key disk_key;
3448 int mid;
3449 int ret;
3450 u32 c_nritems;
3451
3452 c = path->nodes[level];
3453 WARN_ON(btrfs_header_generation(c) != trans->transid);
3454 if (c == root->node) {
3455 /*
3456 * trying to split the root, lets make a new one
3457 *
3458 * tree mod log: We don't log_removal old root in
3459 * insert_new_root, because that root buffer will be kept as a
3460 * normal node. We are going to log removal of half of the
3461 * elements below with tree_mod_log_eb_copy. We're holding a
3462 * tree lock on the buffer, which is why we cannot race with
3463 * other tree_mod_log users.
3464 */
3465 ret = insert_new_root(trans, root, path, level + 1);
3466 if (ret)
3467 return ret;
3468 } else {
3469 ret = push_nodes_for_insert(trans, root, path, level);
3470 c = path->nodes[level];
3471 if (!ret && btrfs_header_nritems(c) <
3472 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3473 return 0;
3474 if (ret < 0)
3475 return ret;
3476 }
3477
3478 c_nritems = btrfs_header_nritems(c);
3479 mid = (c_nritems + 1) / 2;
3480 btrfs_node_key(c, &disk_key, mid);
3481
3482 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3483 &disk_key, level, c->start, 0);
3484 if (IS_ERR(split))
3485 return PTR_ERR(split);
3486
3487 root_add_used(root, root->nodesize);
3488
3489 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3490 btrfs_set_header_level(split, btrfs_header_level(c));
3491 btrfs_set_header_bytenr(split, split->start);
3492 btrfs_set_header_generation(split, trans->transid);
3493 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3494 btrfs_set_header_owner(split, root->root_key.objectid);
3495 write_extent_buffer(split, root->fs_info->fsid,
3496 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3497 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3498 btrfs_header_chunk_tree_uuid(split),
3499 BTRFS_UUID_SIZE);
3500
3501 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3502 mid, c_nritems - mid);
3503 if (ret) {
3504 btrfs_abort_transaction(trans, root, ret);
3505 return ret;
3506 }
3507 copy_extent_buffer(split, c,
3508 btrfs_node_key_ptr_offset(0),
3509 btrfs_node_key_ptr_offset(mid),
3510 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3511 btrfs_set_header_nritems(split, c_nritems - mid);
3512 btrfs_set_header_nritems(c, mid);
3513 ret = 0;
3514
3515 btrfs_mark_buffer_dirty(c);
3516 btrfs_mark_buffer_dirty(split);
3517
3518 insert_ptr(trans, root, path, &disk_key, split->start,
3519 path->slots[level + 1] + 1, level + 1);
3520
3521 if (path->slots[level] >= mid) {
3522 path->slots[level] -= mid;
3523 btrfs_tree_unlock(c);
3524 free_extent_buffer(c);
3525 path->nodes[level] = split;
3526 path->slots[level + 1] += 1;
3527 } else {
3528 btrfs_tree_unlock(split);
3529 free_extent_buffer(split);
3530 }
3531 return ret;
3532 }
3533
3534 /*
3535 * how many bytes are required to store the items in a leaf. start
3536 * and nr indicate which items in the leaf to check. This totals up the
3537 * space used both by the item structs and the item data
3538 */
3539 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3540 {
3541 struct btrfs_item *start_item;
3542 struct btrfs_item *end_item;
3543 struct btrfs_map_token token;
3544 int data_len;
3545 int nritems = btrfs_header_nritems(l);
3546 int end = min(nritems, start + nr) - 1;
3547
3548 if (!nr)
3549 return 0;
3550 btrfs_init_map_token(&token);
3551 start_item = btrfs_item_nr(start);
3552 end_item = btrfs_item_nr(end);
3553 data_len = btrfs_token_item_offset(l, start_item, &token) +
3554 btrfs_token_item_size(l, start_item, &token);
3555 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3556 data_len += sizeof(struct btrfs_item) * nr;
3557 WARN_ON(data_len < 0);
3558 return data_len;
3559 }
3560
3561 /*
3562 * The space between the end of the leaf items and
3563 * the start of the leaf data. IOW, how much room
3564 * the leaf has left for both items and data
3565 */
3566 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3567 struct extent_buffer *leaf)
3568 {
3569 int nritems = btrfs_header_nritems(leaf);
3570 int ret;
3571 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3572 if (ret < 0) {
3573 btrfs_crit(root->fs_info,
3574 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3575 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3576 leaf_space_used(leaf, 0, nritems), nritems);
3577 }
3578 return ret;
3579 }
3580
3581 /*
3582 * min slot controls the lowest index we're willing to push to the
3583 * right. We'll push up to and including min_slot, but no lower
3584 */
3585 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3586 struct btrfs_root *root,
3587 struct btrfs_path *path,
3588 int data_size, int empty,
3589 struct extent_buffer *right,
3590 int free_space, u32 left_nritems,
3591 u32 min_slot)
3592 {
3593 struct extent_buffer *left = path->nodes[0];
3594 struct extent_buffer *upper = path->nodes[1];
3595 struct btrfs_map_token token;
3596 struct btrfs_disk_key disk_key;
3597 int slot;
3598 u32 i;
3599 int push_space = 0;
3600 int push_items = 0;
3601 struct btrfs_item *item;
3602 u32 nr;
3603 u32 right_nritems;
3604 u32 data_end;
3605 u32 this_item_size;
3606
3607 btrfs_init_map_token(&token);
3608
3609 if (empty)
3610 nr = 0;
3611 else
3612 nr = max_t(u32, 1, min_slot);
3613
3614 if (path->slots[0] >= left_nritems)
3615 push_space += data_size;
3616
3617 slot = path->slots[1];
3618 i = left_nritems - 1;
3619 while (i >= nr) {
3620 item = btrfs_item_nr(i);
3621
3622 if (!empty && push_items > 0) {
3623 if (path->slots[0] > i)
3624 break;
3625 if (path->slots[0] == i) {
3626 int space = btrfs_leaf_free_space(root, left);
3627 if (space + push_space * 2 > free_space)
3628 break;
3629 }
3630 }
3631
3632 if (path->slots[0] == i)
3633 push_space += data_size;
3634
3635 this_item_size = btrfs_item_size(left, item);
3636 if (this_item_size + sizeof(*item) + push_space > free_space)
3637 break;
3638
3639 push_items++;
3640 push_space += this_item_size + sizeof(*item);
3641 if (i == 0)
3642 break;
3643 i--;
3644 }
3645
3646 if (push_items == 0)
3647 goto out_unlock;
3648
3649 WARN_ON(!empty && push_items == left_nritems);
3650
3651 /* push left to right */
3652 right_nritems = btrfs_header_nritems(right);
3653
3654 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3655 push_space -= leaf_data_end(root, left);
3656
3657 /* make room in the right data area */
3658 data_end = leaf_data_end(root, right);
3659 memmove_extent_buffer(right,
3660 btrfs_leaf_data(right) + data_end - push_space,
3661 btrfs_leaf_data(right) + data_end,
3662 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3663
3664 /* copy from the left data area */
3665 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3666 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3667 btrfs_leaf_data(left) + leaf_data_end(root, left),
3668 push_space);
3669
3670 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3671 btrfs_item_nr_offset(0),
3672 right_nritems * sizeof(struct btrfs_item));
3673
3674 /* copy the items from left to right */
3675 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3676 btrfs_item_nr_offset(left_nritems - push_items),
3677 push_items * sizeof(struct btrfs_item));
3678
3679 /* update the item pointers */
3680 right_nritems += push_items;
3681 btrfs_set_header_nritems(right, right_nritems);
3682 push_space = BTRFS_LEAF_DATA_SIZE(root);
3683 for (i = 0; i < right_nritems; i++) {
3684 item = btrfs_item_nr(i);
3685 push_space -= btrfs_token_item_size(right, item, &token);
3686 btrfs_set_token_item_offset(right, item, push_space, &token);
3687 }
3688
3689 left_nritems -= push_items;
3690 btrfs_set_header_nritems(left, left_nritems);
3691
3692 if (left_nritems)
3693 btrfs_mark_buffer_dirty(left);
3694 else
3695 clean_tree_block(trans, root, left);
3696
3697 btrfs_mark_buffer_dirty(right);
3698
3699 btrfs_item_key(right, &disk_key, 0);
3700 btrfs_set_node_key(upper, &disk_key, slot + 1);
3701 btrfs_mark_buffer_dirty(upper);
3702
3703 /* then fixup the leaf pointer in the path */
3704 if (path->slots[0] >= left_nritems) {
3705 path->slots[0] -= left_nritems;
3706 if (btrfs_header_nritems(path->nodes[0]) == 0)
3707 clean_tree_block(trans, root, path->nodes[0]);
3708 btrfs_tree_unlock(path->nodes[0]);
3709 free_extent_buffer(path->nodes[0]);
3710 path->nodes[0] = right;
3711 path->slots[1] += 1;
3712 } else {
3713 btrfs_tree_unlock(right);
3714 free_extent_buffer(right);
3715 }
3716 return 0;
3717
3718 out_unlock:
3719 btrfs_tree_unlock(right);
3720 free_extent_buffer(right);
3721 return 1;
3722 }
3723
3724 /*
3725 * push some data in the path leaf to the right, trying to free up at
3726 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3727 *
3728 * returns 1 if the push failed because the other node didn't have enough
3729 * room, 0 if everything worked out and < 0 if there were major errors.
3730 *
3731 * this will push starting from min_slot to the end of the leaf. It won't
3732 * push any slot lower than min_slot
3733 */
3734 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3735 *root, struct btrfs_path *path,
3736 int min_data_size, int data_size,
3737 int empty, u32 min_slot)
3738 {
3739 struct extent_buffer *left = path->nodes[0];
3740 struct extent_buffer *right;
3741 struct extent_buffer *upper;
3742 int slot;
3743 int free_space;
3744 u32 left_nritems;
3745 int ret;
3746
3747 if (!path->nodes[1])
3748 return 1;
3749
3750 slot = path->slots[1];
3751 upper = path->nodes[1];
3752 if (slot >= btrfs_header_nritems(upper) - 1)
3753 return 1;
3754
3755 btrfs_assert_tree_locked(path->nodes[1]);
3756
3757 right = read_node_slot(root, upper, slot + 1);
3758 if (right == NULL)
3759 return 1;
3760
3761 btrfs_tree_lock(right);
3762 btrfs_set_lock_blocking(right);
3763
3764 free_space = btrfs_leaf_free_space(root, right);
3765 if (free_space < data_size)
3766 goto out_unlock;
3767
3768 /* cow and double check */
3769 ret = btrfs_cow_block(trans, root, right, upper,
3770 slot + 1, &right);
3771 if (ret)
3772 goto out_unlock;
3773
3774 free_space = btrfs_leaf_free_space(root, right);
3775 if (free_space < data_size)
3776 goto out_unlock;
3777
3778 left_nritems = btrfs_header_nritems(left);
3779 if (left_nritems == 0)
3780 goto out_unlock;
3781
3782 if (path->slots[0] == left_nritems && !empty) {
3783 /* Key greater than all keys in the leaf, right neighbor has
3784 * enough room for it and we're not emptying our leaf to delete
3785 * it, therefore use right neighbor to insert the new item and
3786 * no need to touch/dirty our left leaft. */
3787 btrfs_tree_unlock(left);
3788 free_extent_buffer(left);
3789 path->nodes[0] = right;
3790 path->slots[0] = 0;
3791 path->slots[1]++;
3792 return 0;
3793 }
3794
3795 return __push_leaf_right(trans, root, path, min_data_size, empty,
3796 right, free_space, left_nritems, min_slot);
3797 out_unlock:
3798 btrfs_tree_unlock(right);
3799 free_extent_buffer(right);
3800 return 1;
3801 }
3802
3803 /*
3804 * push some data in the path leaf to the left, trying to free up at
3805 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3806 *
3807 * max_slot can put a limit on how far into the leaf we'll push items. The
3808 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3809 * items
3810 */
3811 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3812 struct btrfs_root *root,
3813 struct btrfs_path *path, int data_size,
3814 int empty, struct extent_buffer *left,
3815 int free_space, u32 right_nritems,
3816 u32 max_slot)
3817 {
3818 struct btrfs_disk_key disk_key;
3819 struct extent_buffer *right = path->nodes[0];
3820 int i;
3821 int push_space = 0;
3822 int push_items = 0;
3823 struct btrfs_item *item;
3824 u32 old_left_nritems;
3825 u32 nr;
3826 int ret = 0;
3827 u32 this_item_size;
3828 u32 old_left_item_size;
3829 struct btrfs_map_token token;
3830
3831 btrfs_init_map_token(&token);
3832
3833 if (empty)
3834 nr = min(right_nritems, max_slot);
3835 else
3836 nr = min(right_nritems - 1, max_slot);
3837
3838 for (i = 0; i < nr; i++) {
3839 item = btrfs_item_nr(i);
3840
3841 if (!empty && push_items > 0) {
3842 if (path->slots[0] < i)
3843 break;
3844 if (path->slots[0] == i) {
3845 int space = btrfs_leaf_free_space(root, right);
3846 if (space + push_space * 2 > free_space)
3847 break;
3848 }
3849 }
3850
3851 if (path->slots[0] == i)
3852 push_space += data_size;
3853
3854 this_item_size = btrfs_item_size(right, item);
3855 if (this_item_size + sizeof(*item) + push_space > free_space)
3856 break;
3857
3858 push_items++;
3859 push_space += this_item_size + sizeof(*item);
3860 }
3861
3862 if (push_items == 0) {
3863 ret = 1;
3864 goto out;
3865 }
3866 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3867
3868 /* push data from right to left */
3869 copy_extent_buffer(left, right,
3870 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3871 btrfs_item_nr_offset(0),
3872 push_items * sizeof(struct btrfs_item));
3873
3874 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3875 btrfs_item_offset_nr(right, push_items - 1);
3876
3877 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3878 leaf_data_end(root, left) - push_space,
3879 btrfs_leaf_data(right) +
3880 btrfs_item_offset_nr(right, push_items - 1),
3881 push_space);
3882 old_left_nritems = btrfs_header_nritems(left);
3883 BUG_ON(old_left_nritems <= 0);
3884
3885 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3886 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3887 u32 ioff;
3888
3889 item = btrfs_item_nr(i);
3890
3891 ioff = btrfs_token_item_offset(left, item, &token);
3892 btrfs_set_token_item_offset(left, item,
3893 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3894 &token);
3895 }
3896 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3897
3898 /* fixup right node */
3899 if (push_items > right_nritems)
3900 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3901 right_nritems);
3902
3903 if (push_items < right_nritems) {
3904 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3905 leaf_data_end(root, right);
3906 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3907 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3908 btrfs_leaf_data(right) +
3909 leaf_data_end(root, right), push_space);
3910
3911 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3912 btrfs_item_nr_offset(push_items),
3913 (btrfs_header_nritems(right) - push_items) *
3914 sizeof(struct btrfs_item));
3915 }
3916 right_nritems -= push_items;
3917 btrfs_set_header_nritems(right, right_nritems);
3918 push_space = BTRFS_LEAF_DATA_SIZE(root);
3919 for (i = 0; i < right_nritems; i++) {
3920 item = btrfs_item_nr(i);
3921
3922 push_space = push_space - btrfs_token_item_size(right,
3923 item, &token);
3924 btrfs_set_token_item_offset(right, item, push_space, &token);
3925 }
3926
3927 btrfs_mark_buffer_dirty(left);
3928 if (right_nritems)
3929 btrfs_mark_buffer_dirty(right);
3930 else
3931 clean_tree_block(trans, root, right);
3932
3933 btrfs_item_key(right, &disk_key, 0);
3934 fixup_low_keys(root, path, &disk_key, 1);
3935
3936 /* then fixup the leaf pointer in the path */
3937 if (path->slots[0] < push_items) {
3938 path->slots[0] += old_left_nritems;
3939 btrfs_tree_unlock(path->nodes[0]);
3940 free_extent_buffer(path->nodes[0]);
3941 path->nodes[0] = left;
3942 path->slots[1] -= 1;
3943 } else {
3944 btrfs_tree_unlock(left);
3945 free_extent_buffer(left);
3946 path->slots[0] -= push_items;
3947 }
3948 BUG_ON(path->slots[0] < 0);
3949 return ret;
3950 out:
3951 btrfs_tree_unlock(left);
3952 free_extent_buffer(left);
3953 return ret;
3954 }
3955
3956 /*
3957 * push some data in the path leaf to the left, trying to free up at
3958 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3959 *
3960 * max_slot can put a limit on how far into the leaf we'll push items. The
3961 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3962 * items
3963 */
3964 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3965 *root, struct btrfs_path *path, int min_data_size,
3966 int data_size, int empty, u32 max_slot)
3967 {
3968 struct extent_buffer *right = path->nodes[0];
3969 struct extent_buffer *left;
3970 int slot;
3971 int free_space;
3972 u32 right_nritems;
3973 int ret = 0;
3974
3975 slot = path->slots[1];
3976 if (slot == 0)
3977 return 1;
3978 if (!path->nodes[1])
3979 return 1;
3980
3981 right_nritems = btrfs_header_nritems(right);
3982 if (right_nritems == 0)
3983 return 1;
3984
3985 btrfs_assert_tree_locked(path->nodes[1]);
3986
3987 left = read_node_slot(root, path->nodes[1], slot - 1);
3988 if (left == NULL)
3989 return 1;
3990
3991 btrfs_tree_lock(left);
3992 btrfs_set_lock_blocking(left);
3993
3994 free_space = btrfs_leaf_free_space(root, left);
3995 if (free_space < data_size) {
3996 ret = 1;
3997 goto out;
3998 }
3999
4000 /* cow and double check */
4001 ret = btrfs_cow_block(trans, root, left,
4002 path->nodes[1], slot - 1, &left);
4003 if (ret) {
4004 /* we hit -ENOSPC, but it isn't fatal here */
4005 if (ret == -ENOSPC)
4006 ret = 1;
4007 goto out;
4008 }
4009
4010 free_space = btrfs_leaf_free_space(root, left);
4011 if (free_space < data_size) {
4012 ret = 1;
4013 goto out;
4014 }
4015
4016 return __push_leaf_left(trans, root, path, min_data_size,
4017 empty, left, free_space, right_nritems,
4018 max_slot);
4019 out:
4020 btrfs_tree_unlock(left);
4021 free_extent_buffer(left);
4022 return ret;
4023 }
4024
4025 /*
4026 * split the path's leaf in two, making sure there is at least data_size
4027 * available for the resulting leaf level of the path.
4028 */
4029 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4030 struct btrfs_root *root,
4031 struct btrfs_path *path,
4032 struct extent_buffer *l,
4033 struct extent_buffer *right,
4034 int slot, int mid, int nritems)
4035 {
4036 int data_copy_size;
4037 int rt_data_off;
4038 int i;
4039 struct btrfs_disk_key disk_key;
4040 struct btrfs_map_token token;
4041
4042 btrfs_init_map_token(&token);
4043
4044 nritems = nritems - mid;
4045 btrfs_set_header_nritems(right, nritems);
4046 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4047
4048 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4049 btrfs_item_nr_offset(mid),
4050 nritems * sizeof(struct btrfs_item));
4051
4052 copy_extent_buffer(right, l,
4053 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4054 data_copy_size, btrfs_leaf_data(l) +
4055 leaf_data_end(root, l), data_copy_size);
4056
4057 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4058 btrfs_item_end_nr(l, mid);
4059
4060 for (i = 0; i < nritems; i++) {
4061 struct btrfs_item *item = btrfs_item_nr(i);
4062 u32 ioff;
4063
4064 ioff = btrfs_token_item_offset(right, item, &token);
4065 btrfs_set_token_item_offset(right, item,
4066 ioff + rt_data_off, &token);
4067 }
4068
4069 btrfs_set_header_nritems(l, mid);
4070 btrfs_item_key(right, &disk_key, 0);
4071 insert_ptr(trans, root, path, &disk_key, right->start,
4072 path->slots[1] + 1, 1);
4073
4074 btrfs_mark_buffer_dirty(right);
4075 btrfs_mark_buffer_dirty(l);
4076 BUG_ON(path->slots[0] != slot);
4077
4078 if (mid <= slot) {
4079 btrfs_tree_unlock(path->nodes[0]);
4080 free_extent_buffer(path->nodes[0]);
4081 path->nodes[0] = right;
4082 path->slots[0] -= mid;
4083 path->slots[1] += 1;
4084 } else {
4085 btrfs_tree_unlock(right);
4086 free_extent_buffer(right);
4087 }
4088
4089 BUG_ON(path->slots[0] < 0);
4090 }
4091
4092 /*
4093 * double splits happen when we need to insert a big item in the middle
4094 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4095 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4096 * A B C
4097 *
4098 * We avoid this by trying to push the items on either side of our target
4099 * into the adjacent leaves. If all goes well we can avoid the double split
4100 * completely.
4101 */
4102 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4103 struct btrfs_root *root,
4104 struct btrfs_path *path,
4105 int data_size)
4106 {
4107 int ret;
4108 int progress = 0;
4109 int slot;
4110 u32 nritems;
4111 int space_needed = data_size;
4112
4113 slot = path->slots[0];
4114 if (slot < btrfs_header_nritems(path->nodes[0]))
4115 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4116
4117 /*
4118 * try to push all the items after our slot into the
4119 * right leaf
4120 */
4121 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4122 if (ret < 0)
4123 return ret;
4124
4125 if (ret == 0)
4126 progress++;
4127
4128 nritems = btrfs_header_nritems(path->nodes[0]);
4129 /*
4130 * our goal is to get our slot at the start or end of a leaf. If
4131 * we've done so we're done
4132 */
4133 if (path->slots[0] == 0 || path->slots[0] == nritems)
4134 return 0;
4135
4136 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4137 return 0;
4138
4139 /* try to push all the items before our slot into the next leaf */
4140 slot = path->slots[0];
4141 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4142 if (ret < 0)
4143 return ret;
4144
4145 if (ret == 0)
4146 progress++;
4147
4148 if (progress)
4149 return 0;
4150 return 1;
4151 }
4152
4153 /*
4154 * split the path's leaf in two, making sure there is at least data_size
4155 * available for the resulting leaf level of the path.
4156 *
4157 * returns 0 if all went well and < 0 on failure.
4158 */
4159 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4160 struct btrfs_root *root,
4161 struct btrfs_key *ins_key,
4162 struct btrfs_path *path, int data_size,
4163 int extend)
4164 {
4165 struct btrfs_disk_key disk_key;
4166 struct extent_buffer *l;
4167 u32 nritems;
4168 int mid;
4169 int slot;
4170 struct extent_buffer *right;
4171 int ret = 0;
4172 int wret;
4173 int split;
4174 int num_doubles = 0;
4175 int tried_avoid_double = 0;
4176
4177 l = path->nodes[0];
4178 slot = path->slots[0];
4179 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4180 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4181 return -EOVERFLOW;
4182
4183 /* first try to make some room by pushing left and right */
4184 if (data_size && path->nodes[1]) {
4185 int space_needed = data_size;
4186
4187 if (slot < btrfs_header_nritems(l))
4188 space_needed -= btrfs_leaf_free_space(root, l);
4189
4190 wret = push_leaf_right(trans, root, path, space_needed,
4191 space_needed, 0, 0);
4192 if (wret < 0)
4193 return wret;
4194 if (wret) {
4195 wret = push_leaf_left(trans, root, path, space_needed,
4196 space_needed, 0, (u32)-1);
4197 if (wret < 0)
4198 return wret;
4199 }
4200 l = path->nodes[0];
4201
4202 /* did the pushes work? */
4203 if (btrfs_leaf_free_space(root, l) >= data_size)
4204 return 0;
4205 }
4206
4207 if (!path->nodes[1]) {
4208 ret = insert_new_root(trans, root, path, 1);
4209 if (ret)
4210 return ret;
4211 }
4212 again:
4213 split = 1;
4214 l = path->nodes[0];
4215 slot = path->slots[0];
4216 nritems = btrfs_header_nritems(l);
4217 mid = (nritems + 1) / 2;
4218
4219 if (mid <= slot) {
4220 if (nritems == 1 ||
4221 leaf_space_used(l, mid, nritems - mid) + data_size >
4222 BTRFS_LEAF_DATA_SIZE(root)) {
4223 if (slot >= nritems) {
4224 split = 0;
4225 } else {
4226 mid = slot;
4227 if (mid != nritems &&
4228 leaf_space_used(l, mid, nritems - mid) +
4229 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4230 if (data_size && !tried_avoid_double)
4231 goto push_for_double;
4232 split = 2;
4233 }
4234 }
4235 }
4236 } else {
4237 if (leaf_space_used(l, 0, mid) + data_size >
4238 BTRFS_LEAF_DATA_SIZE(root)) {
4239 if (!extend && data_size && slot == 0) {
4240 split = 0;
4241 } else if ((extend || !data_size) && slot == 0) {
4242 mid = 1;
4243 } else {
4244 mid = slot;
4245 if (mid != nritems &&
4246 leaf_space_used(l, mid, nritems - mid) +
4247 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4248 if (data_size && !tried_avoid_double)
4249 goto push_for_double;
4250 split = 2;
4251 }
4252 }
4253 }
4254 }
4255
4256 if (split == 0)
4257 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4258 else
4259 btrfs_item_key(l, &disk_key, mid);
4260
4261 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4262 &disk_key, 0, l->start, 0);
4263 if (IS_ERR(right))
4264 return PTR_ERR(right);
4265
4266 root_add_used(root, root->nodesize);
4267
4268 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4269 btrfs_set_header_bytenr(right, right->start);
4270 btrfs_set_header_generation(right, trans->transid);
4271 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4272 btrfs_set_header_owner(right, root->root_key.objectid);
4273 btrfs_set_header_level(right, 0);
4274 write_extent_buffer(right, root->fs_info->fsid,
4275 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4276
4277 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4278 btrfs_header_chunk_tree_uuid(right),
4279 BTRFS_UUID_SIZE);
4280
4281 if (split == 0) {
4282 if (mid <= slot) {
4283 btrfs_set_header_nritems(right, 0);
4284 insert_ptr(trans, root, path, &disk_key, right->start,
4285 path->slots[1] + 1, 1);
4286 btrfs_tree_unlock(path->nodes[0]);
4287 free_extent_buffer(path->nodes[0]);
4288 path->nodes[0] = right;
4289 path->slots[0] = 0;
4290 path->slots[1] += 1;
4291 } else {
4292 btrfs_set_header_nritems(right, 0);
4293 insert_ptr(trans, root, path, &disk_key, right->start,
4294 path->slots[1], 1);
4295 btrfs_tree_unlock(path->nodes[0]);
4296 free_extent_buffer(path->nodes[0]);
4297 path->nodes[0] = right;
4298 path->slots[0] = 0;
4299 if (path->slots[1] == 0)
4300 fixup_low_keys(root, path, &disk_key, 1);
4301 }
4302 btrfs_mark_buffer_dirty(right);
4303 return ret;
4304 }
4305
4306 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4307
4308 if (split == 2) {
4309 BUG_ON(num_doubles != 0);
4310 num_doubles++;
4311 goto again;
4312 }
4313
4314 return 0;
4315
4316 push_for_double:
4317 push_for_double_split(trans, root, path, data_size);
4318 tried_avoid_double = 1;
4319 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4320 return 0;
4321 goto again;
4322 }
4323
4324 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4325 struct btrfs_root *root,
4326 struct btrfs_path *path, int ins_len)
4327 {
4328 struct btrfs_key key;
4329 struct extent_buffer *leaf;
4330 struct btrfs_file_extent_item *fi;
4331 u64 extent_len = 0;
4332 u32 item_size;
4333 int ret;
4334
4335 leaf = path->nodes[0];
4336 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4337
4338 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4339 key.type != BTRFS_EXTENT_CSUM_KEY);
4340
4341 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4342 return 0;
4343
4344 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4345 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4346 fi = btrfs_item_ptr(leaf, path->slots[0],
4347 struct btrfs_file_extent_item);
4348 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4349 }
4350 btrfs_release_path(path);
4351
4352 path->keep_locks = 1;
4353 path->search_for_split = 1;
4354 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4355 path->search_for_split = 0;
4356 if (ret > 0)
4357 ret = -EAGAIN;
4358 if (ret < 0)
4359 goto err;
4360
4361 ret = -EAGAIN;
4362 leaf = path->nodes[0];
4363 /* if our item isn't there, return now */
4364 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4365 goto err;
4366
4367 /* the leaf has changed, it now has room. return now */
4368 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4369 goto err;
4370
4371 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4372 fi = btrfs_item_ptr(leaf, path->slots[0],
4373 struct btrfs_file_extent_item);
4374 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4375 goto err;
4376 }
4377
4378 btrfs_set_path_blocking(path);
4379 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4380 if (ret)
4381 goto err;
4382
4383 path->keep_locks = 0;
4384 btrfs_unlock_up_safe(path, 1);
4385 return 0;
4386 err:
4387 path->keep_locks = 0;
4388 return ret;
4389 }
4390
4391 static noinline int split_item(struct btrfs_trans_handle *trans,
4392 struct btrfs_root *root,
4393 struct btrfs_path *path,
4394 struct btrfs_key *new_key,
4395 unsigned long split_offset)
4396 {
4397 struct extent_buffer *leaf;
4398 struct btrfs_item *item;
4399 struct btrfs_item *new_item;
4400 int slot;
4401 char *buf;
4402 u32 nritems;
4403 u32 item_size;
4404 u32 orig_offset;
4405 struct btrfs_disk_key disk_key;
4406
4407 leaf = path->nodes[0];
4408 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4409
4410 btrfs_set_path_blocking(path);
4411
4412 item = btrfs_item_nr(path->slots[0]);
4413 orig_offset = btrfs_item_offset(leaf, item);
4414 item_size = btrfs_item_size(leaf, item);
4415
4416 buf = kmalloc(item_size, GFP_NOFS);
4417 if (!buf)
4418 return -ENOMEM;
4419
4420 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4421 path->slots[0]), item_size);
4422
4423 slot = path->slots[0] + 1;
4424 nritems = btrfs_header_nritems(leaf);
4425 if (slot != nritems) {
4426 /* shift the items */
4427 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4428 btrfs_item_nr_offset(slot),
4429 (nritems - slot) * sizeof(struct btrfs_item));
4430 }
4431
4432 btrfs_cpu_key_to_disk(&disk_key, new_key);
4433 btrfs_set_item_key(leaf, &disk_key, slot);
4434
4435 new_item = btrfs_item_nr(slot);
4436
4437 btrfs_set_item_offset(leaf, new_item, orig_offset);
4438 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4439
4440 btrfs_set_item_offset(leaf, item,
4441 orig_offset + item_size - split_offset);
4442 btrfs_set_item_size(leaf, item, split_offset);
4443
4444 btrfs_set_header_nritems(leaf, nritems + 1);
4445
4446 /* write the data for the start of the original item */
4447 write_extent_buffer(leaf, buf,
4448 btrfs_item_ptr_offset(leaf, path->slots[0]),
4449 split_offset);
4450
4451 /* write the data for the new item */
4452 write_extent_buffer(leaf, buf + split_offset,
4453 btrfs_item_ptr_offset(leaf, slot),
4454 item_size - split_offset);
4455 btrfs_mark_buffer_dirty(leaf);
4456
4457 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4458 kfree(buf);
4459 return 0;
4460 }
4461
4462 /*
4463 * This function splits a single item into two items,
4464 * giving 'new_key' to the new item and splitting the
4465 * old one at split_offset (from the start of the item).
4466 *
4467 * The path may be released by this operation. After
4468 * the split, the path is pointing to the old item. The
4469 * new item is going to be in the same node as the old one.
4470 *
4471 * Note, the item being split must be smaller enough to live alone on
4472 * a tree block with room for one extra struct btrfs_item
4473 *
4474 * This allows us to split the item in place, keeping a lock on the
4475 * leaf the entire time.
4476 */
4477 int btrfs_split_item(struct btrfs_trans_handle *trans,
4478 struct btrfs_root *root,
4479 struct btrfs_path *path,
4480 struct btrfs_key *new_key,
4481 unsigned long split_offset)
4482 {
4483 int ret;
4484 ret = setup_leaf_for_split(trans, root, path,
4485 sizeof(struct btrfs_item));
4486 if (ret)
4487 return ret;
4488
4489 ret = split_item(trans, root, path, new_key, split_offset);
4490 return ret;
4491 }
4492
4493 /*
4494 * This function duplicate a item, giving 'new_key' to the new item.
4495 * It guarantees both items live in the same tree leaf and the new item
4496 * is contiguous with the original item.
4497 *
4498 * This allows us to split file extent in place, keeping a lock on the
4499 * leaf the entire time.
4500 */
4501 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4502 struct btrfs_root *root,
4503 struct btrfs_path *path,
4504 struct btrfs_key *new_key)
4505 {
4506 struct extent_buffer *leaf;
4507 int ret;
4508 u32 item_size;
4509
4510 leaf = path->nodes[0];
4511 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4512 ret = setup_leaf_for_split(trans, root, path,
4513 item_size + sizeof(struct btrfs_item));
4514 if (ret)
4515 return ret;
4516
4517 path->slots[0]++;
4518 setup_items_for_insert(root, path, new_key, &item_size,
4519 item_size, item_size +
4520 sizeof(struct btrfs_item), 1);
4521 leaf = path->nodes[0];
4522 memcpy_extent_buffer(leaf,
4523 btrfs_item_ptr_offset(leaf, path->slots[0]),
4524 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4525 item_size);
4526 return 0;
4527 }
4528
4529 /*
4530 * make the item pointed to by the path smaller. new_size indicates
4531 * how small to make it, and from_end tells us if we just chop bytes
4532 * off the end of the item or if we shift the item to chop bytes off
4533 * the front.
4534 */
4535 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4536 u32 new_size, int from_end)
4537 {
4538 int slot;
4539 struct extent_buffer *leaf;
4540 struct btrfs_item *item;
4541 u32 nritems;
4542 unsigned int data_end;
4543 unsigned int old_data_start;
4544 unsigned int old_size;
4545 unsigned int size_diff;
4546 int i;
4547 struct btrfs_map_token token;
4548
4549 btrfs_init_map_token(&token);
4550
4551 leaf = path->nodes[0];
4552 slot = path->slots[0];
4553
4554 old_size = btrfs_item_size_nr(leaf, slot);
4555 if (old_size == new_size)
4556 return;
4557
4558 nritems = btrfs_header_nritems(leaf);
4559 data_end = leaf_data_end(root, leaf);
4560
4561 old_data_start = btrfs_item_offset_nr(leaf, slot);
4562
4563 size_diff = old_size - new_size;
4564
4565 BUG_ON(slot < 0);
4566 BUG_ON(slot >= nritems);
4567
4568 /*
4569 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4570 */
4571 /* first correct the data pointers */
4572 for (i = slot; i < nritems; i++) {
4573 u32 ioff;
4574 item = btrfs_item_nr(i);
4575
4576 ioff = btrfs_token_item_offset(leaf, item, &token);
4577 btrfs_set_token_item_offset(leaf, item,
4578 ioff + size_diff, &token);
4579 }
4580
4581 /* shift the data */
4582 if (from_end) {
4583 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4584 data_end + size_diff, btrfs_leaf_data(leaf) +
4585 data_end, old_data_start + new_size - data_end);
4586 } else {
4587 struct btrfs_disk_key disk_key;
4588 u64 offset;
4589
4590 btrfs_item_key(leaf, &disk_key, slot);
4591
4592 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4593 unsigned long ptr;
4594 struct btrfs_file_extent_item *fi;
4595
4596 fi = btrfs_item_ptr(leaf, slot,
4597 struct btrfs_file_extent_item);
4598 fi = (struct btrfs_file_extent_item *)(
4599 (unsigned long)fi - size_diff);
4600
4601 if (btrfs_file_extent_type(leaf, fi) ==
4602 BTRFS_FILE_EXTENT_INLINE) {
4603 ptr = btrfs_item_ptr_offset(leaf, slot);
4604 memmove_extent_buffer(leaf, ptr,
4605 (unsigned long)fi,
4606 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4607 }
4608 }
4609
4610 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4611 data_end + size_diff, btrfs_leaf_data(leaf) +
4612 data_end, old_data_start - data_end);
4613
4614 offset = btrfs_disk_key_offset(&disk_key);
4615 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4616 btrfs_set_item_key(leaf, &disk_key, slot);
4617 if (slot == 0)
4618 fixup_low_keys(root, path, &disk_key, 1);
4619 }
4620
4621 item = btrfs_item_nr(slot);
4622 btrfs_set_item_size(leaf, item, new_size);
4623 btrfs_mark_buffer_dirty(leaf);
4624
4625 if (btrfs_leaf_free_space(root, leaf) < 0) {
4626 btrfs_print_leaf(root, leaf);
4627 BUG();
4628 }
4629 }
4630
4631 /*
4632 * make the item pointed to by the path bigger, data_size is the added size.
4633 */
4634 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4635 u32 data_size)
4636 {
4637 int slot;
4638 struct extent_buffer *leaf;
4639 struct btrfs_item *item;
4640 u32 nritems;
4641 unsigned int data_end;
4642 unsigned int old_data;
4643 unsigned int old_size;
4644 int i;
4645 struct btrfs_map_token token;
4646
4647 btrfs_init_map_token(&token);
4648
4649 leaf = path->nodes[0];
4650
4651 nritems = btrfs_header_nritems(leaf);
4652 data_end = leaf_data_end(root, leaf);
4653
4654 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4655 btrfs_print_leaf(root, leaf);
4656 BUG();
4657 }
4658 slot = path->slots[0];
4659 old_data = btrfs_item_end_nr(leaf, slot);
4660
4661 BUG_ON(slot < 0);
4662 if (slot >= nritems) {
4663 btrfs_print_leaf(root, leaf);
4664 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4665 slot, nritems);
4666 BUG_ON(1);
4667 }
4668
4669 /*
4670 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4671 */
4672 /* first correct the data pointers */
4673 for (i = slot; i < nritems; i++) {
4674 u32 ioff;
4675 item = btrfs_item_nr(i);
4676
4677 ioff = btrfs_token_item_offset(leaf, item, &token);
4678 btrfs_set_token_item_offset(leaf, item,
4679 ioff - data_size, &token);
4680 }
4681
4682 /* shift the data */
4683 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4684 data_end - data_size, btrfs_leaf_data(leaf) +
4685 data_end, old_data - data_end);
4686
4687 data_end = old_data;
4688 old_size = btrfs_item_size_nr(leaf, slot);
4689 item = btrfs_item_nr(slot);
4690 btrfs_set_item_size(leaf, item, old_size + data_size);
4691 btrfs_mark_buffer_dirty(leaf);
4692
4693 if (btrfs_leaf_free_space(root, leaf) < 0) {
4694 btrfs_print_leaf(root, leaf);
4695 BUG();
4696 }
4697 }
4698
4699 /*
4700 * this is a helper for btrfs_insert_empty_items, the main goal here is
4701 * to save stack depth by doing the bulk of the work in a function
4702 * that doesn't call btrfs_search_slot
4703 */
4704 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4705 struct btrfs_key *cpu_key, u32 *data_size,
4706 u32 total_data, u32 total_size, int nr)
4707 {
4708 struct btrfs_item *item;
4709 int i;
4710 u32 nritems;
4711 unsigned int data_end;
4712 struct btrfs_disk_key disk_key;
4713 struct extent_buffer *leaf;
4714 int slot;
4715 struct btrfs_map_token token;
4716
4717 if (path->slots[0] == 0) {
4718 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4719 fixup_low_keys(root, path, &disk_key, 1);
4720 }
4721 btrfs_unlock_up_safe(path, 1);
4722
4723 btrfs_init_map_token(&token);
4724
4725 leaf = path->nodes[0];
4726 slot = path->slots[0];
4727
4728 nritems = btrfs_header_nritems(leaf);
4729 data_end = leaf_data_end(root, leaf);
4730
4731 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4732 btrfs_print_leaf(root, leaf);
4733 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4734 total_size, btrfs_leaf_free_space(root, leaf));
4735 BUG();
4736 }
4737
4738 if (slot != nritems) {
4739 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4740
4741 if (old_data < data_end) {
4742 btrfs_print_leaf(root, leaf);
4743 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4744 slot, old_data, data_end);
4745 BUG_ON(1);
4746 }
4747 /*
4748 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4749 */
4750 /* first correct the data pointers */
4751 for (i = slot; i < nritems; i++) {
4752 u32 ioff;
4753
4754 item = btrfs_item_nr( i);
4755 ioff = btrfs_token_item_offset(leaf, item, &token);
4756 btrfs_set_token_item_offset(leaf, item,
4757 ioff - total_data, &token);
4758 }
4759 /* shift the items */
4760 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4761 btrfs_item_nr_offset(slot),
4762 (nritems - slot) * sizeof(struct btrfs_item));
4763
4764 /* shift the data */
4765 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4766 data_end - total_data, btrfs_leaf_data(leaf) +
4767 data_end, old_data - data_end);
4768 data_end = old_data;
4769 }
4770
4771 /* setup the item for the new data */
4772 for (i = 0; i < nr; i++) {
4773 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4774 btrfs_set_item_key(leaf, &disk_key, slot + i);
4775 item = btrfs_item_nr(slot + i);
4776 btrfs_set_token_item_offset(leaf, item,
4777 data_end - data_size[i], &token);
4778 data_end -= data_size[i];
4779 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4780 }
4781
4782 btrfs_set_header_nritems(leaf, nritems + nr);
4783 btrfs_mark_buffer_dirty(leaf);
4784
4785 if (btrfs_leaf_free_space(root, leaf) < 0) {
4786 btrfs_print_leaf(root, leaf);
4787 BUG();
4788 }
4789 }
4790
4791 /*
4792 * Given a key and some data, insert items into the tree.
4793 * This does all the path init required, making room in the tree if needed.
4794 */
4795 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4796 struct btrfs_root *root,
4797 struct btrfs_path *path,
4798 struct btrfs_key *cpu_key, u32 *data_size,
4799 int nr)
4800 {
4801 int ret = 0;
4802 int slot;
4803 int i;
4804 u32 total_size = 0;
4805 u32 total_data = 0;
4806
4807 for (i = 0; i < nr; i++)
4808 total_data += data_size[i];
4809
4810 total_size = total_data + (nr * sizeof(struct btrfs_item));
4811 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4812 if (ret == 0)
4813 return -EEXIST;
4814 if (ret < 0)
4815 return ret;
4816
4817 slot = path->slots[0];
4818 BUG_ON(slot < 0);
4819
4820 setup_items_for_insert(root, path, cpu_key, data_size,
4821 total_data, total_size, nr);
4822 return 0;
4823 }
4824
4825 /*
4826 * Given a key and some data, insert an item into the tree.
4827 * This does all the path init required, making room in the tree if needed.
4828 */
4829 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4830 *root, struct btrfs_key *cpu_key, void *data, u32
4831 data_size)
4832 {
4833 int ret = 0;
4834 struct btrfs_path *path;
4835 struct extent_buffer *leaf;
4836 unsigned long ptr;
4837
4838 path = btrfs_alloc_path();
4839 if (!path)
4840 return -ENOMEM;
4841 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4842 if (!ret) {
4843 leaf = path->nodes[0];
4844 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4845 write_extent_buffer(leaf, data, ptr, data_size);
4846 btrfs_mark_buffer_dirty(leaf);
4847 }
4848 btrfs_free_path(path);
4849 return ret;
4850 }
4851
4852 /*
4853 * delete the pointer from a given node.
4854 *
4855 * the tree should have been previously balanced so the deletion does not
4856 * empty a node.
4857 */
4858 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4859 int level, int slot)
4860 {
4861 struct extent_buffer *parent = path->nodes[level];
4862 u32 nritems;
4863 int ret;
4864
4865 nritems = btrfs_header_nritems(parent);
4866 if (slot != nritems - 1) {
4867 if (level)
4868 tree_mod_log_eb_move(root->fs_info, parent, slot,
4869 slot + 1, nritems - slot - 1);
4870 memmove_extent_buffer(parent,
4871 btrfs_node_key_ptr_offset(slot),
4872 btrfs_node_key_ptr_offset(slot + 1),
4873 sizeof(struct btrfs_key_ptr) *
4874 (nritems - slot - 1));
4875 } else if (level) {
4876 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4877 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4878 BUG_ON(ret < 0);
4879 }
4880
4881 nritems--;
4882 btrfs_set_header_nritems(parent, nritems);
4883 if (nritems == 0 && parent == root->node) {
4884 BUG_ON(btrfs_header_level(root->node) != 1);
4885 /* just turn the root into a leaf and break */
4886 btrfs_set_header_level(root->node, 0);
4887 } else if (slot == 0) {
4888 struct btrfs_disk_key disk_key;
4889
4890 btrfs_node_key(parent, &disk_key, 0);
4891 fixup_low_keys(root, path, &disk_key, level + 1);
4892 }
4893 btrfs_mark_buffer_dirty(parent);
4894 }
4895
4896 /*
4897 * a helper function to delete the leaf pointed to by path->slots[1] and
4898 * path->nodes[1].
4899 *
4900 * This deletes the pointer in path->nodes[1] and frees the leaf
4901 * block extent. zero is returned if it all worked out, < 0 otherwise.
4902 *
4903 * The path must have already been setup for deleting the leaf, including
4904 * all the proper balancing. path->nodes[1] must be locked.
4905 */
4906 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4907 struct btrfs_root *root,
4908 struct btrfs_path *path,
4909 struct extent_buffer *leaf)
4910 {
4911 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4912 del_ptr(root, path, 1, path->slots[1]);
4913
4914 /*
4915 * btrfs_free_extent is expensive, we want to make sure we
4916 * aren't holding any locks when we call it
4917 */
4918 btrfs_unlock_up_safe(path, 0);
4919
4920 root_sub_used(root, leaf->len);
4921
4922 extent_buffer_get(leaf);
4923 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4924 free_extent_buffer_stale(leaf);
4925 }
4926 /*
4927 * delete the item at the leaf level in path. If that empties
4928 * the leaf, remove it from the tree
4929 */
4930 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4931 struct btrfs_path *path, int slot, int nr)
4932 {
4933 struct extent_buffer *leaf;
4934 struct btrfs_item *item;
4935 int last_off;
4936 int dsize = 0;
4937 int ret = 0;
4938 int wret;
4939 int i;
4940 u32 nritems;
4941 struct btrfs_map_token token;
4942
4943 btrfs_init_map_token(&token);
4944
4945 leaf = path->nodes[0];
4946 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4947
4948 for (i = 0; i < nr; i++)
4949 dsize += btrfs_item_size_nr(leaf, slot + i);
4950
4951 nritems = btrfs_header_nritems(leaf);
4952
4953 if (slot + nr != nritems) {
4954 int data_end = leaf_data_end(root, leaf);
4955
4956 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4957 data_end + dsize,
4958 btrfs_leaf_data(leaf) + data_end,
4959 last_off - data_end);
4960
4961 for (i = slot + nr; i < nritems; i++) {
4962 u32 ioff;
4963
4964 item = btrfs_item_nr(i);
4965 ioff = btrfs_token_item_offset(leaf, item, &token);
4966 btrfs_set_token_item_offset(leaf, item,
4967 ioff + dsize, &token);
4968 }
4969
4970 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4971 btrfs_item_nr_offset(slot + nr),
4972 sizeof(struct btrfs_item) *
4973 (nritems - slot - nr));
4974 }
4975 btrfs_set_header_nritems(leaf, nritems - nr);
4976 nritems -= nr;
4977
4978 /* delete the leaf if we've emptied it */
4979 if (nritems == 0) {
4980 if (leaf == root->node) {
4981 btrfs_set_header_level(leaf, 0);
4982 } else {
4983 btrfs_set_path_blocking(path);
4984 clean_tree_block(trans, root, leaf);
4985 btrfs_del_leaf(trans, root, path, leaf);
4986 }
4987 } else {
4988 int used = leaf_space_used(leaf, 0, nritems);
4989 if (slot == 0) {
4990 struct btrfs_disk_key disk_key;
4991
4992 btrfs_item_key(leaf, &disk_key, 0);
4993 fixup_low_keys(root, path, &disk_key, 1);
4994 }
4995
4996 /* delete the leaf if it is mostly empty */
4997 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4998 /* push_leaf_left fixes the path.
4999 * make sure the path still points to our leaf
5000 * for possible call to del_ptr below
5001 */
5002 slot = path->slots[1];
5003 extent_buffer_get(leaf);
5004
5005 btrfs_set_path_blocking(path);
5006 wret = push_leaf_left(trans, root, path, 1, 1,
5007 1, (u32)-1);
5008 if (wret < 0 && wret != -ENOSPC)
5009 ret = wret;
5010
5011 if (path->nodes[0] == leaf &&
5012 btrfs_header_nritems(leaf)) {
5013 wret = push_leaf_right(trans, root, path, 1,
5014 1, 1, 0);
5015 if (wret < 0 && wret != -ENOSPC)
5016 ret = wret;
5017 }
5018
5019 if (btrfs_header_nritems(leaf) == 0) {
5020 path->slots[1] = slot;
5021 btrfs_del_leaf(trans, root, path, leaf);
5022 free_extent_buffer(leaf);
5023 ret = 0;
5024 } else {
5025 /* if we're still in the path, make sure
5026 * we're dirty. Otherwise, one of the
5027 * push_leaf functions must have already
5028 * dirtied this buffer
5029 */
5030 if (path->nodes[0] == leaf)
5031 btrfs_mark_buffer_dirty(leaf);
5032 free_extent_buffer(leaf);
5033 }
5034 } else {
5035 btrfs_mark_buffer_dirty(leaf);
5036 }
5037 }
5038 return ret;
5039 }
5040
5041 /*
5042 * search the tree again to find a leaf with lesser keys
5043 * returns 0 if it found something or 1 if there are no lesser leaves.
5044 * returns < 0 on io errors.
5045 *
5046 * This may release the path, and so you may lose any locks held at the
5047 * time you call it.
5048 */
5049 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5050 {
5051 struct btrfs_key key;
5052 struct btrfs_disk_key found_key;
5053 int ret;
5054
5055 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5056
5057 if (key.offset > 0) {
5058 key.offset--;
5059 } else if (key.type > 0) {
5060 key.type--;
5061 key.offset = (u64)-1;
5062 } else if (key.objectid > 0) {
5063 key.objectid--;
5064 key.type = (u8)-1;
5065 key.offset = (u64)-1;
5066 } else {
5067 return 1;
5068 }
5069
5070 btrfs_release_path(path);
5071 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5072 if (ret < 0)
5073 return ret;
5074 btrfs_item_key(path->nodes[0], &found_key, 0);
5075 ret = comp_keys(&found_key, &key);
5076 /*
5077 * We might have had an item with the previous key in the tree right
5078 * before we released our path. And after we released our path, that
5079 * item might have been pushed to the first slot (0) of the leaf we
5080 * were holding due to a tree balance. Alternatively, an item with the
5081 * previous key can exist as the only element of a leaf (big fat item).
5082 * Therefore account for these 2 cases, so that our callers (like
5083 * btrfs_previous_item) don't miss an existing item with a key matching
5084 * the previous key we computed above.
5085 */
5086 if (ret <= 0)
5087 return 0;
5088 return 1;
5089 }
5090
5091 /*
5092 * A helper function to walk down the tree starting at min_key, and looking
5093 * for nodes or leaves that are have a minimum transaction id.
5094 * This is used by the btree defrag code, and tree logging
5095 *
5096 * This does not cow, but it does stuff the starting key it finds back
5097 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5098 * key and get a writable path.
5099 *
5100 * This does lock as it descends, and path->keep_locks should be set
5101 * to 1 by the caller.
5102 *
5103 * This honors path->lowest_level to prevent descent past a given level
5104 * of the tree.
5105 *
5106 * min_trans indicates the oldest transaction that you are interested
5107 * in walking through. Any nodes or leaves older than min_trans are
5108 * skipped over (without reading them).
5109 *
5110 * returns zero if something useful was found, < 0 on error and 1 if there
5111 * was nothing in the tree that matched the search criteria.
5112 */
5113 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5114 struct btrfs_path *path,
5115 u64 min_trans)
5116 {
5117 struct extent_buffer *cur;
5118 struct btrfs_key found_key;
5119 int slot;
5120 int sret;
5121 u32 nritems;
5122 int level;
5123 int ret = 1;
5124 int keep_locks = path->keep_locks;
5125
5126 path->keep_locks = 1;
5127 again:
5128 cur = btrfs_read_lock_root_node(root);
5129 level = btrfs_header_level(cur);
5130 WARN_ON(path->nodes[level]);
5131 path->nodes[level] = cur;
5132 path->locks[level] = BTRFS_READ_LOCK;
5133
5134 if (btrfs_header_generation(cur) < min_trans) {
5135 ret = 1;
5136 goto out;
5137 }
5138 while (1) {
5139 nritems = btrfs_header_nritems(cur);
5140 level = btrfs_header_level(cur);
5141 sret = bin_search(cur, min_key, level, &slot);
5142
5143 /* at the lowest level, we're done, setup the path and exit */
5144 if (level == path->lowest_level) {
5145 if (slot >= nritems)
5146 goto find_next_key;
5147 ret = 0;
5148 path->slots[level] = slot;
5149 btrfs_item_key_to_cpu(cur, &found_key, slot);
5150 goto out;
5151 }
5152 if (sret && slot > 0)
5153 slot--;
5154 /*
5155 * check this node pointer against the min_trans parameters.
5156 * If it is too old, old, skip to the next one.
5157 */
5158 while (slot < nritems) {
5159 u64 gen;
5160
5161 gen = btrfs_node_ptr_generation(cur, slot);
5162 if (gen < min_trans) {
5163 slot++;
5164 continue;
5165 }
5166 break;
5167 }
5168 find_next_key:
5169 /*
5170 * we didn't find a candidate key in this node, walk forward
5171 * and find another one
5172 */
5173 if (slot >= nritems) {
5174 path->slots[level] = slot;
5175 btrfs_set_path_blocking(path);
5176 sret = btrfs_find_next_key(root, path, min_key, level,
5177 min_trans);
5178 if (sret == 0) {
5179 btrfs_release_path(path);
5180 goto again;
5181 } else {
5182 goto out;
5183 }
5184 }
5185 /* save our key for returning back */
5186 btrfs_node_key_to_cpu(cur, &found_key, slot);
5187 path->slots[level] = slot;
5188 if (level == path->lowest_level) {
5189 ret = 0;
5190 goto out;
5191 }
5192 btrfs_set_path_blocking(path);
5193 cur = read_node_slot(root, cur, slot);
5194 BUG_ON(!cur); /* -ENOMEM */
5195
5196 btrfs_tree_read_lock(cur);
5197
5198 path->locks[level - 1] = BTRFS_READ_LOCK;
5199 path->nodes[level - 1] = cur;
5200 unlock_up(path, level, 1, 0, NULL);
5201 btrfs_clear_path_blocking(path, NULL, 0);
5202 }
5203 out:
5204 path->keep_locks = keep_locks;
5205 if (ret == 0) {
5206 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5207 btrfs_set_path_blocking(path);
5208 memcpy(min_key, &found_key, sizeof(found_key));
5209 }
5210 return ret;
5211 }
5212
5213 static void tree_move_down(struct btrfs_root *root,
5214 struct btrfs_path *path,
5215 int *level, int root_level)
5216 {
5217 BUG_ON(*level == 0);
5218 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5219 path->slots[*level]);
5220 path->slots[*level - 1] = 0;
5221 (*level)--;
5222 }
5223
5224 static int tree_move_next_or_upnext(struct btrfs_root *root,
5225 struct btrfs_path *path,
5226 int *level, int root_level)
5227 {
5228 int ret = 0;
5229 int nritems;
5230 nritems = btrfs_header_nritems(path->nodes[*level]);
5231
5232 path->slots[*level]++;
5233
5234 while (path->slots[*level] >= nritems) {
5235 if (*level == root_level)
5236 return -1;
5237
5238 /* move upnext */
5239 path->slots[*level] = 0;
5240 free_extent_buffer(path->nodes[*level]);
5241 path->nodes[*level] = NULL;
5242 (*level)++;
5243 path->slots[*level]++;
5244
5245 nritems = btrfs_header_nritems(path->nodes[*level]);
5246 ret = 1;
5247 }
5248 return ret;
5249 }
5250
5251 /*
5252 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5253 * or down.
5254 */
5255 static int tree_advance(struct btrfs_root *root,
5256 struct btrfs_path *path,
5257 int *level, int root_level,
5258 int allow_down,
5259 struct btrfs_key *key)
5260 {
5261 int ret;
5262
5263 if (*level == 0 || !allow_down) {
5264 ret = tree_move_next_or_upnext(root, path, level, root_level);
5265 } else {
5266 tree_move_down(root, path, level, root_level);
5267 ret = 0;
5268 }
5269 if (ret >= 0) {
5270 if (*level == 0)
5271 btrfs_item_key_to_cpu(path->nodes[*level], key,
5272 path->slots[*level]);
5273 else
5274 btrfs_node_key_to_cpu(path->nodes[*level], key,
5275 path->slots[*level]);
5276 }
5277 return ret;
5278 }
5279
5280 static int tree_compare_item(struct btrfs_root *left_root,
5281 struct btrfs_path *left_path,
5282 struct btrfs_path *right_path,
5283 char *tmp_buf)
5284 {
5285 int cmp;
5286 int len1, len2;
5287 unsigned long off1, off2;
5288
5289 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5290 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5291 if (len1 != len2)
5292 return 1;
5293
5294 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5295 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5296 right_path->slots[0]);
5297
5298 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5299
5300 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5301 if (cmp)
5302 return 1;
5303 return 0;
5304 }
5305
5306 #define ADVANCE 1
5307 #define ADVANCE_ONLY_NEXT -1
5308
5309 /*
5310 * This function compares two trees and calls the provided callback for
5311 * every changed/new/deleted item it finds.
5312 * If shared tree blocks are encountered, whole subtrees are skipped, making
5313 * the compare pretty fast on snapshotted subvolumes.
5314 *
5315 * This currently works on commit roots only. As commit roots are read only,
5316 * we don't do any locking. The commit roots are protected with transactions.
5317 * Transactions are ended and rejoined when a commit is tried in between.
5318 *
5319 * This function checks for modifications done to the trees while comparing.
5320 * If it detects a change, it aborts immediately.
5321 */
5322 int btrfs_compare_trees(struct btrfs_root *left_root,
5323 struct btrfs_root *right_root,
5324 btrfs_changed_cb_t changed_cb, void *ctx)
5325 {
5326 int ret;
5327 int cmp;
5328 struct btrfs_path *left_path = NULL;
5329 struct btrfs_path *right_path = NULL;
5330 struct btrfs_key left_key;
5331 struct btrfs_key right_key;
5332 char *tmp_buf = NULL;
5333 int left_root_level;
5334 int right_root_level;
5335 int left_level;
5336 int right_level;
5337 int left_end_reached;
5338 int right_end_reached;
5339 int advance_left;
5340 int advance_right;
5341 u64 left_blockptr;
5342 u64 right_blockptr;
5343 u64 left_gen;
5344 u64 right_gen;
5345
5346 left_path = btrfs_alloc_path();
5347 if (!left_path) {
5348 ret = -ENOMEM;
5349 goto out;
5350 }
5351 right_path = btrfs_alloc_path();
5352 if (!right_path) {
5353 ret = -ENOMEM;
5354 goto out;
5355 }
5356
5357 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5358 if (!tmp_buf) {
5359 ret = -ENOMEM;
5360 goto out;
5361 }
5362
5363 left_path->search_commit_root = 1;
5364 left_path->skip_locking = 1;
5365 right_path->search_commit_root = 1;
5366 right_path->skip_locking = 1;
5367
5368 /*
5369 * Strategy: Go to the first items of both trees. Then do
5370 *
5371 * If both trees are at level 0
5372 * Compare keys of current items
5373 * If left < right treat left item as new, advance left tree
5374 * and repeat
5375 * If left > right treat right item as deleted, advance right tree
5376 * and repeat
5377 * If left == right do deep compare of items, treat as changed if
5378 * needed, advance both trees and repeat
5379 * If both trees are at the same level but not at level 0
5380 * Compare keys of current nodes/leafs
5381 * If left < right advance left tree and repeat
5382 * If left > right advance right tree and repeat
5383 * If left == right compare blockptrs of the next nodes/leafs
5384 * If they match advance both trees but stay at the same level
5385 * and repeat
5386 * If they don't match advance both trees while allowing to go
5387 * deeper and repeat
5388 * If tree levels are different
5389 * Advance the tree that needs it and repeat
5390 *
5391 * Advancing a tree means:
5392 * If we are at level 0, try to go to the next slot. If that's not
5393 * possible, go one level up and repeat. Stop when we found a level
5394 * where we could go to the next slot. We may at this point be on a
5395 * node or a leaf.
5396 *
5397 * If we are not at level 0 and not on shared tree blocks, go one
5398 * level deeper.
5399 *
5400 * If we are not at level 0 and on shared tree blocks, go one slot to
5401 * the right if possible or go up and right.
5402 */
5403
5404 down_read(&left_root->fs_info->commit_root_sem);
5405 left_level = btrfs_header_level(left_root->commit_root);
5406 left_root_level = left_level;
5407 left_path->nodes[left_level] = left_root->commit_root;
5408 extent_buffer_get(left_path->nodes[left_level]);
5409
5410 right_level = btrfs_header_level(right_root->commit_root);
5411 right_root_level = right_level;
5412 right_path->nodes[right_level] = right_root->commit_root;
5413 extent_buffer_get(right_path->nodes[right_level]);
5414 up_read(&left_root->fs_info->commit_root_sem);
5415
5416 if (left_level == 0)
5417 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5418 &left_key, left_path->slots[left_level]);
5419 else
5420 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5421 &left_key, left_path->slots[left_level]);
5422 if (right_level == 0)
5423 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5424 &right_key, right_path->slots[right_level]);
5425 else
5426 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5427 &right_key, right_path->slots[right_level]);
5428
5429 left_end_reached = right_end_reached = 0;
5430 advance_left = advance_right = 0;
5431
5432 while (1) {
5433 if (advance_left && !left_end_reached) {
5434 ret = tree_advance(left_root, left_path, &left_level,
5435 left_root_level,
5436 advance_left != ADVANCE_ONLY_NEXT,
5437 &left_key);
5438 if (ret < 0)
5439 left_end_reached = ADVANCE;
5440 advance_left = 0;
5441 }
5442 if (advance_right && !right_end_reached) {
5443 ret = tree_advance(right_root, right_path, &right_level,
5444 right_root_level,
5445 advance_right != ADVANCE_ONLY_NEXT,
5446 &right_key);
5447 if (ret < 0)
5448 right_end_reached = ADVANCE;
5449 advance_right = 0;
5450 }
5451
5452 if (left_end_reached && right_end_reached) {
5453 ret = 0;
5454 goto out;
5455 } else if (left_end_reached) {
5456 if (right_level == 0) {
5457 ret = changed_cb(left_root, right_root,
5458 left_path, right_path,
5459 &right_key,
5460 BTRFS_COMPARE_TREE_DELETED,
5461 ctx);
5462 if (ret < 0)
5463 goto out;
5464 }
5465 advance_right = ADVANCE;
5466 continue;
5467 } else if (right_end_reached) {
5468 if (left_level == 0) {
5469 ret = changed_cb(left_root, right_root,
5470 left_path, right_path,
5471 &left_key,
5472 BTRFS_COMPARE_TREE_NEW,
5473 ctx);
5474 if (ret < 0)
5475 goto out;
5476 }
5477 advance_left = ADVANCE;
5478 continue;
5479 }
5480
5481 if (left_level == 0 && right_level == 0) {
5482 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5483 if (cmp < 0) {
5484 ret = changed_cb(left_root, right_root,
5485 left_path, right_path,
5486 &left_key,
5487 BTRFS_COMPARE_TREE_NEW,
5488 ctx);
5489 if (ret < 0)
5490 goto out;
5491 advance_left = ADVANCE;
5492 } else if (cmp > 0) {
5493 ret = changed_cb(left_root, right_root,
5494 left_path, right_path,
5495 &right_key,
5496 BTRFS_COMPARE_TREE_DELETED,
5497 ctx);
5498 if (ret < 0)
5499 goto out;
5500 advance_right = ADVANCE;
5501 } else {
5502 enum btrfs_compare_tree_result result;
5503
5504 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5505 ret = tree_compare_item(left_root, left_path,
5506 right_path, tmp_buf);
5507 if (ret)
5508 result = BTRFS_COMPARE_TREE_CHANGED;
5509 else
5510 result = BTRFS_COMPARE_TREE_SAME;
5511 ret = changed_cb(left_root, right_root,
5512 left_path, right_path,
5513 &left_key, result, ctx);
5514 if (ret < 0)
5515 goto out;
5516 advance_left = ADVANCE;
5517 advance_right = ADVANCE;
5518 }
5519 } else if (left_level == right_level) {
5520 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5521 if (cmp < 0) {
5522 advance_left = ADVANCE;
5523 } else if (cmp > 0) {
5524 advance_right = ADVANCE;
5525 } else {
5526 left_blockptr = btrfs_node_blockptr(
5527 left_path->nodes[left_level],
5528 left_path->slots[left_level]);
5529 right_blockptr = btrfs_node_blockptr(
5530 right_path->nodes[right_level],
5531 right_path->slots[right_level]);
5532 left_gen = btrfs_node_ptr_generation(
5533 left_path->nodes[left_level],
5534 left_path->slots[left_level]);
5535 right_gen = btrfs_node_ptr_generation(
5536 right_path->nodes[right_level],
5537 right_path->slots[right_level]);
5538 if (left_blockptr == right_blockptr &&
5539 left_gen == right_gen) {
5540 /*
5541 * As we're on a shared block, don't
5542 * allow to go deeper.
5543 */
5544 advance_left = ADVANCE_ONLY_NEXT;
5545 advance_right = ADVANCE_ONLY_NEXT;
5546 } else {
5547 advance_left = ADVANCE;
5548 advance_right = ADVANCE;
5549 }
5550 }
5551 } else if (left_level < right_level) {
5552 advance_right = ADVANCE;
5553 } else {
5554 advance_left = ADVANCE;
5555 }
5556 }
5557
5558 out:
5559 btrfs_free_path(left_path);
5560 btrfs_free_path(right_path);
5561 kfree(tmp_buf);
5562 return ret;
5563 }
5564
5565 /*
5566 * this is similar to btrfs_next_leaf, but does not try to preserve
5567 * and fixup the path. It looks for and returns the next key in the
5568 * tree based on the current path and the min_trans parameters.
5569 *
5570 * 0 is returned if another key is found, < 0 if there are any errors
5571 * and 1 is returned if there are no higher keys in the tree
5572 *
5573 * path->keep_locks should be set to 1 on the search made before
5574 * calling this function.
5575 */
5576 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5577 struct btrfs_key *key, int level, u64 min_trans)
5578 {
5579 int slot;
5580 struct extent_buffer *c;
5581
5582 WARN_ON(!path->keep_locks);
5583 while (level < BTRFS_MAX_LEVEL) {
5584 if (!path->nodes[level])
5585 return 1;
5586
5587 slot = path->slots[level] + 1;
5588 c = path->nodes[level];
5589 next:
5590 if (slot >= btrfs_header_nritems(c)) {
5591 int ret;
5592 int orig_lowest;
5593 struct btrfs_key cur_key;
5594 if (level + 1 >= BTRFS_MAX_LEVEL ||
5595 !path->nodes[level + 1])
5596 return 1;
5597
5598 if (path->locks[level + 1]) {
5599 level++;
5600 continue;
5601 }
5602
5603 slot = btrfs_header_nritems(c) - 1;
5604 if (level == 0)
5605 btrfs_item_key_to_cpu(c, &cur_key, slot);
5606 else
5607 btrfs_node_key_to_cpu(c, &cur_key, slot);
5608
5609 orig_lowest = path->lowest_level;
5610 btrfs_release_path(path);
5611 path->lowest_level = level;
5612 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5613 0, 0);
5614 path->lowest_level = orig_lowest;
5615 if (ret < 0)
5616 return ret;
5617
5618 c = path->nodes[level];
5619 slot = path->slots[level];
5620 if (ret == 0)
5621 slot++;
5622 goto next;
5623 }
5624
5625 if (level == 0)
5626 btrfs_item_key_to_cpu(c, key, slot);
5627 else {
5628 u64 gen = btrfs_node_ptr_generation(c, slot);
5629
5630 if (gen < min_trans) {
5631 slot++;
5632 goto next;
5633 }
5634 btrfs_node_key_to_cpu(c, key, slot);
5635 }
5636 return 0;
5637 }
5638 return 1;
5639 }
5640
5641 /*
5642 * search the tree again to find a leaf with greater keys
5643 * returns 0 if it found something or 1 if there are no greater leaves.
5644 * returns < 0 on io errors.
5645 */
5646 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5647 {
5648 return btrfs_next_old_leaf(root, path, 0);
5649 }
5650
5651 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5652 u64 time_seq)
5653 {
5654 int slot;
5655 int level;
5656 struct extent_buffer *c;
5657 struct extent_buffer *next;
5658 struct btrfs_key key;
5659 u32 nritems;
5660 int ret;
5661 int old_spinning = path->leave_spinning;
5662 int next_rw_lock = 0;
5663
5664 nritems = btrfs_header_nritems(path->nodes[0]);
5665 if (nritems == 0)
5666 return 1;
5667
5668 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5669 again:
5670 level = 1;
5671 next = NULL;
5672 next_rw_lock = 0;
5673 btrfs_release_path(path);
5674
5675 path->keep_locks = 1;
5676 path->leave_spinning = 1;
5677
5678 if (time_seq)
5679 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5680 else
5681 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5682 path->keep_locks = 0;
5683
5684 if (ret < 0)
5685 return ret;
5686
5687 nritems = btrfs_header_nritems(path->nodes[0]);
5688 /*
5689 * by releasing the path above we dropped all our locks. A balance
5690 * could have added more items next to the key that used to be
5691 * at the very end of the block. So, check again here and
5692 * advance the path if there are now more items available.
5693 */
5694 if (nritems > 0 && path->slots[0] < nritems - 1) {
5695 if (ret == 0)
5696 path->slots[0]++;
5697 ret = 0;
5698 goto done;
5699 }
5700 /*
5701 * So the above check misses one case:
5702 * - after releasing the path above, someone has removed the item that
5703 * used to be at the very end of the block, and balance between leafs
5704 * gets another one with bigger key.offset to replace it.
5705 *
5706 * This one should be returned as well, or we can get leaf corruption
5707 * later(esp. in __btrfs_drop_extents()).
5708 *
5709 * And a bit more explanation about this check,
5710 * with ret > 0, the key isn't found, the path points to the slot
5711 * where it should be inserted, so the path->slots[0] item must be the
5712 * bigger one.
5713 */
5714 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5715 ret = 0;
5716 goto done;
5717 }
5718
5719 while (level < BTRFS_MAX_LEVEL) {
5720 if (!path->nodes[level]) {
5721 ret = 1;
5722 goto done;
5723 }
5724
5725 slot = path->slots[level] + 1;
5726 c = path->nodes[level];
5727 if (slot >= btrfs_header_nritems(c)) {
5728 level++;
5729 if (level == BTRFS_MAX_LEVEL) {
5730 ret = 1;
5731 goto done;
5732 }
5733 continue;
5734 }
5735
5736 if (next) {
5737 btrfs_tree_unlock_rw(next, next_rw_lock);
5738 free_extent_buffer(next);
5739 }
5740
5741 next = c;
5742 next_rw_lock = path->locks[level];
5743 ret = read_block_for_search(NULL, root, path, &next, level,
5744 slot, &key, 0);
5745 if (ret == -EAGAIN)
5746 goto again;
5747
5748 if (ret < 0) {
5749 btrfs_release_path(path);
5750 goto done;
5751 }
5752
5753 if (!path->skip_locking) {
5754 ret = btrfs_try_tree_read_lock(next);
5755 if (!ret && time_seq) {
5756 /*
5757 * If we don't get the lock, we may be racing
5758 * with push_leaf_left, holding that lock while
5759 * itself waiting for the leaf we've currently
5760 * locked. To solve this situation, we give up
5761 * on our lock and cycle.
5762 */
5763 free_extent_buffer(next);
5764 btrfs_release_path(path);
5765 cond_resched();
5766 goto again;
5767 }
5768 if (!ret) {
5769 btrfs_set_path_blocking(path);
5770 btrfs_tree_read_lock(next);
5771 btrfs_clear_path_blocking(path, next,
5772 BTRFS_READ_LOCK);
5773 }
5774 next_rw_lock = BTRFS_READ_LOCK;
5775 }
5776 break;
5777 }
5778 path->slots[level] = slot;
5779 while (1) {
5780 level--;
5781 c = path->nodes[level];
5782 if (path->locks[level])
5783 btrfs_tree_unlock_rw(c, path->locks[level]);
5784
5785 free_extent_buffer(c);
5786 path->nodes[level] = next;
5787 path->slots[level] = 0;
5788 if (!path->skip_locking)
5789 path->locks[level] = next_rw_lock;
5790 if (!level)
5791 break;
5792
5793 ret = read_block_for_search(NULL, root, path, &next, level,
5794 0, &key, 0);
5795 if (ret == -EAGAIN)
5796 goto again;
5797
5798 if (ret < 0) {
5799 btrfs_release_path(path);
5800 goto done;
5801 }
5802
5803 if (!path->skip_locking) {
5804 ret = btrfs_try_tree_read_lock(next);
5805 if (!ret) {
5806 btrfs_set_path_blocking(path);
5807 btrfs_tree_read_lock(next);
5808 btrfs_clear_path_blocking(path, next,
5809 BTRFS_READ_LOCK);
5810 }
5811 next_rw_lock = BTRFS_READ_LOCK;
5812 }
5813 }
5814 ret = 0;
5815 done:
5816 unlock_up(path, 0, 1, 0, NULL);
5817 path->leave_spinning = old_spinning;
5818 if (!old_spinning)
5819 btrfs_set_path_blocking(path);
5820
5821 return ret;
5822 }
5823
5824 /*
5825 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5826 * searching until it gets past min_objectid or finds an item of 'type'
5827 *
5828 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5829 */
5830 int btrfs_previous_item(struct btrfs_root *root,
5831 struct btrfs_path *path, u64 min_objectid,
5832 int type)
5833 {
5834 struct btrfs_key found_key;
5835 struct extent_buffer *leaf;
5836 u32 nritems;
5837 int ret;
5838
5839 while (1) {
5840 if (path->slots[0] == 0) {
5841 btrfs_set_path_blocking(path);
5842 ret = btrfs_prev_leaf(root, path);
5843 if (ret != 0)
5844 return ret;
5845 } else {
5846 path->slots[0]--;
5847 }
5848 leaf = path->nodes[0];
5849 nritems = btrfs_header_nritems(leaf);
5850 if (nritems == 0)
5851 return 1;
5852 if (path->slots[0] == nritems)
5853 path->slots[0]--;
5854
5855 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5856 if (found_key.objectid < min_objectid)
5857 break;
5858 if (found_key.type == type)
5859 return 0;
5860 if (found_key.objectid == min_objectid &&
5861 found_key.type < type)
5862 break;
5863 }
5864 return 1;
5865 }
5866
5867 /*
5868 * search in extent tree to find a previous Metadata/Data extent item with
5869 * min objecitd.
5870 *
5871 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5872 */
5873 int btrfs_previous_extent_item(struct btrfs_root *root,
5874 struct btrfs_path *path, u64 min_objectid)
5875 {
5876 struct btrfs_key found_key;
5877 struct extent_buffer *leaf;
5878 u32 nritems;
5879 int ret;
5880
5881 while (1) {
5882 if (path->slots[0] == 0) {
5883 btrfs_set_path_blocking(path);
5884 ret = btrfs_prev_leaf(root, path);
5885 if (ret != 0)
5886 return ret;
5887 } else {
5888 path->slots[0]--;
5889 }
5890 leaf = path->nodes[0];
5891 nritems = btrfs_header_nritems(leaf);
5892 if (nritems == 0)
5893 return 1;
5894 if (path->slots[0] == nritems)
5895 path->slots[0]--;
5896
5897 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5898 if (found_key.objectid < min_objectid)
5899 break;
5900 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5901 found_key.type == BTRFS_METADATA_ITEM_KEY)
5902 return 0;
5903 if (found_key.objectid == min_objectid &&
5904 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5905 break;
5906 }
5907 return 1;
5908 }
This page took 0.147293 seconds and 6 git commands to generate.