net/xfrm/xfrm_output.c: move EXPORT_SYMBOL
[deliverable/linux.git] / fs / btrfs / ctree.h
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #ifndef __BTRFS_CTREE__
20 #define __BTRFS_CTREE__
21
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/fs.h>
25 #include <linux/rwsem.h>
26 #include <linux/semaphore.h>
27 #include <linux/completion.h>
28 #include <linux/backing-dev.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/kobject.h>
32 #include <trace/events/btrfs.h>
33 #include <asm/kmap_types.h>
34 #include <linux/pagemap.h>
35 #include <linux/btrfs.h>
36 #include "extent_io.h"
37 #include "extent_map.h"
38 #include "async-thread.h"
39
40 struct btrfs_trans_handle;
41 struct btrfs_transaction;
42 struct btrfs_pending_snapshot;
43 extern struct kmem_cache *btrfs_trans_handle_cachep;
44 extern struct kmem_cache *btrfs_transaction_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 struct btrfs_ordered_sum;
49
50 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
51 #define STATIC noinline
52 #else
53 #define STATIC static noinline
54 #endif
55
56 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
57
58 #define BTRFS_MAX_MIRRORS 3
59
60 #define BTRFS_MAX_LEVEL 8
61
62 #define BTRFS_COMPAT_EXTENT_TREE_V0
63
64 /*
65 * files bigger than this get some pre-flushing when they are added
66 * to the ordered operations list. That way we limit the total
67 * work done by the commit
68 */
69 #define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024)
70
71 /* holds pointers to all of the tree roots */
72 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
73
74 /* stores information about which extents are in use, and reference counts */
75 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
76
77 /*
78 * chunk tree stores translations from logical -> physical block numbering
79 * the super block points to the chunk tree
80 */
81 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
82
83 /*
84 * stores information about which areas of a given device are in use.
85 * one per device. The tree of tree roots points to the device tree
86 */
87 #define BTRFS_DEV_TREE_OBJECTID 4ULL
88
89 /* one per subvolume, storing files and directories */
90 #define BTRFS_FS_TREE_OBJECTID 5ULL
91
92 /* directory objectid inside the root tree */
93 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
94
95 /* holds checksums of all the data extents */
96 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
97
98 /* holds quota configuration and tracking */
99 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
100
101 /* for storing items that use the BTRFS_UUID_KEY* types */
102 #define BTRFS_UUID_TREE_OBJECTID 9ULL
103
104 /* for storing balance parameters in the root tree */
105 #define BTRFS_BALANCE_OBJECTID -4ULL
106
107 /* orhpan objectid for tracking unlinked/truncated files */
108 #define BTRFS_ORPHAN_OBJECTID -5ULL
109
110 /* does write ahead logging to speed up fsyncs */
111 #define BTRFS_TREE_LOG_OBJECTID -6ULL
112 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
113
114 /* for space balancing */
115 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
116 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
117
118 /*
119 * extent checksums all have this objectid
120 * this allows them to share the logging tree
121 * for fsyncs
122 */
123 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
124
125 /* For storing free space cache */
126 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
127
128 /*
129 * The inode number assigned to the special inode for storing
130 * free ino cache
131 */
132 #define BTRFS_FREE_INO_OBJECTID -12ULL
133
134 /* dummy objectid represents multiple objectids */
135 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
136
137 /*
138 * All files have objectids in this range.
139 */
140 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
141 #define BTRFS_LAST_FREE_OBJECTID -256ULL
142 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
143
144
145 /*
146 * the device items go into the chunk tree. The key is in the form
147 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
148 */
149 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
150
151 #define BTRFS_BTREE_INODE_OBJECTID 1
152
153 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
154
155 #define BTRFS_DEV_REPLACE_DEVID 0ULL
156
157 /*
158 * the max metadata block size. This limit is somewhat artificial,
159 * but the memmove costs go through the roof for larger blocks.
160 */
161 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
162
163 /*
164 * we can actually store much bigger names, but lets not confuse the rest
165 * of linux
166 */
167 #define BTRFS_NAME_LEN 255
168
169 /*
170 * Theoretical limit is larger, but we keep this down to a sane
171 * value. That should limit greatly the possibility of collisions on
172 * inode ref items.
173 */
174 #define BTRFS_LINK_MAX 65535U
175
176 /* 32 bytes in various csum fields */
177 #define BTRFS_CSUM_SIZE 32
178
179 /* csum types */
180 #define BTRFS_CSUM_TYPE_CRC32 0
181
182 static int btrfs_csum_sizes[] = { 4, 0 };
183
184 /* four bytes for CRC32 */
185 #define BTRFS_EMPTY_DIR_SIZE 0
186
187 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
188 #define REQ_GET_READ_MIRRORS (1 << 30)
189
190 #define BTRFS_FT_UNKNOWN 0
191 #define BTRFS_FT_REG_FILE 1
192 #define BTRFS_FT_DIR 2
193 #define BTRFS_FT_CHRDEV 3
194 #define BTRFS_FT_BLKDEV 4
195 #define BTRFS_FT_FIFO 5
196 #define BTRFS_FT_SOCK 6
197 #define BTRFS_FT_SYMLINK 7
198 #define BTRFS_FT_XATTR 8
199 #define BTRFS_FT_MAX 9
200
201 /* ioprio of readahead is set to idle */
202 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
203
204 #define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024)
205
206 /*
207 * The key defines the order in the tree, and so it also defines (optimal)
208 * block layout.
209 *
210 * objectid corresponds to the inode number.
211 *
212 * type tells us things about the object, and is a kind of stream selector.
213 * so for a given inode, keys with type of 1 might refer to the inode data,
214 * type of 2 may point to file data in the btree and type == 3 may point to
215 * extents.
216 *
217 * offset is the starting byte offset for this key in the stream.
218 *
219 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
220 * in cpu native order. Otherwise they are identical and their sizes
221 * should be the same (ie both packed)
222 */
223 struct btrfs_disk_key {
224 __le64 objectid;
225 u8 type;
226 __le64 offset;
227 } __attribute__ ((__packed__));
228
229 struct btrfs_key {
230 u64 objectid;
231 u8 type;
232 u64 offset;
233 } __attribute__ ((__packed__));
234
235 struct btrfs_mapping_tree {
236 struct extent_map_tree map_tree;
237 };
238
239 struct btrfs_dev_item {
240 /* the internal btrfs device id */
241 __le64 devid;
242
243 /* size of the device */
244 __le64 total_bytes;
245
246 /* bytes used */
247 __le64 bytes_used;
248
249 /* optimal io alignment for this device */
250 __le32 io_align;
251
252 /* optimal io width for this device */
253 __le32 io_width;
254
255 /* minimal io size for this device */
256 __le32 sector_size;
257
258 /* type and info about this device */
259 __le64 type;
260
261 /* expected generation for this device */
262 __le64 generation;
263
264 /*
265 * starting byte of this partition on the device,
266 * to allow for stripe alignment in the future
267 */
268 __le64 start_offset;
269
270 /* grouping information for allocation decisions */
271 __le32 dev_group;
272
273 /* seek speed 0-100 where 100 is fastest */
274 u8 seek_speed;
275
276 /* bandwidth 0-100 where 100 is fastest */
277 u8 bandwidth;
278
279 /* btrfs generated uuid for this device */
280 u8 uuid[BTRFS_UUID_SIZE];
281
282 /* uuid of FS who owns this device */
283 u8 fsid[BTRFS_UUID_SIZE];
284 } __attribute__ ((__packed__));
285
286 struct btrfs_stripe {
287 __le64 devid;
288 __le64 offset;
289 u8 dev_uuid[BTRFS_UUID_SIZE];
290 } __attribute__ ((__packed__));
291
292 struct btrfs_chunk {
293 /* size of this chunk in bytes */
294 __le64 length;
295
296 /* objectid of the root referencing this chunk */
297 __le64 owner;
298
299 __le64 stripe_len;
300 __le64 type;
301
302 /* optimal io alignment for this chunk */
303 __le32 io_align;
304
305 /* optimal io width for this chunk */
306 __le32 io_width;
307
308 /* minimal io size for this chunk */
309 __le32 sector_size;
310
311 /* 2^16 stripes is quite a lot, a second limit is the size of a single
312 * item in the btree
313 */
314 __le16 num_stripes;
315
316 /* sub stripes only matter for raid10 */
317 __le16 sub_stripes;
318 struct btrfs_stripe stripe;
319 /* additional stripes go here */
320 } __attribute__ ((__packed__));
321
322 #define BTRFS_FREE_SPACE_EXTENT 1
323 #define BTRFS_FREE_SPACE_BITMAP 2
324
325 struct btrfs_free_space_entry {
326 __le64 offset;
327 __le64 bytes;
328 u8 type;
329 } __attribute__ ((__packed__));
330
331 struct btrfs_free_space_header {
332 struct btrfs_disk_key location;
333 __le64 generation;
334 __le64 num_entries;
335 __le64 num_bitmaps;
336 } __attribute__ ((__packed__));
337
338 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
339 {
340 BUG_ON(num_stripes == 0);
341 return sizeof(struct btrfs_chunk) +
342 sizeof(struct btrfs_stripe) * (num_stripes - 1);
343 }
344
345 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
346 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
347
348 /*
349 * File system states
350 */
351 #define BTRFS_FS_STATE_ERROR 0
352 #define BTRFS_FS_STATE_REMOUNTING 1
353 #define BTRFS_FS_STATE_TRANS_ABORTED 2
354 #define BTRFS_FS_STATE_DEV_REPLACING 3
355
356 /* Super block flags */
357 /* Errors detected */
358 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
359
360 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
361 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
362
363 #define BTRFS_BACKREF_REV_MAX 256
364 #define BTRFS_BACKREF_REV_SHIFT 56
365 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
366 BTRFS_BACKREF_REV_SHIFT)
367
368 #define BTRFS_OLD_BACKREF_REV 0
369 #define BTRFS_MIXED_BACKREF_REV 1
370
371 /*
372 * every tree block (leaf or node) starts with this header.
373 */
374 struct btrfs_header {
375 /* these first four must match the super block */
376 u8 csum[BTRFS_CSUM_SIZE];
377 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
378 __le64 bytenr; /* which block this node is supposed to live in */
379 __le64 flags;
380
381 /* allowed to be different from the super from here on down */
382 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
383 __le64 generation;
384 __le64 owner;
385 __le32 nritems;
386 u8 level;
387 } __attribute__ ((__packed__));
388
389 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
390 sizeof(struct btrfs_header)) / \
391 sizeof(struct btrfs_key_ptr))
392 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
393 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize))
394 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
395 sizeof(struct btrfs_item) - \
396 sizeof(struct btrfs_file_extent_item))
397 #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
398 sizeof(struct btrfs_item) -\
399 sizeof(struct btrfs_dir_item))
400
401
402 /*
403 * this is a very generous portion of the super block, giving us
404 * room to translate 14 chunks with 3 stripes each.
405 */
406 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
407 #define BTRFS_LABEL_SIZE 256
408
409 /*
410 * just in case we somehow lose the roots and are not able to mount,
411 * we store an array of the roots from previous transactions
412 * in the super.
413 */
414 #define BTRFS_NUM_BACKUP_ROOTS 4
415 struct btrfs_root_backup {
416 __le64 tree_root;
417 __le64 tree_root_gen;
418
419 __le64 chunk_root;
420 __le64 chunk_root_gen;
421
422 __le64 extent_root;
423 __le64 extent_root_gen;
424
425 __le64 fs_root;
426 __le64 fs_root_gen;
427
428 __le64 dev_root;
429 __le64 dev_root_gen;
430
431 __le64 csum_root;
432 __le64 csum_root_gen;
433
434 __le64 total_bytes;
435 __le64 bytes_used;
436 __le64 num_devices;
437 /* future */
438 __le64 unused_64[4];
439
440 u8 tree_root_level;
441 u8 chunk_root_level;
442 u8 extent_root_level;
443 u8 fs_root_level;
444 u8 dev_root_level;
445 u8 csum_root_level;
446 /* future and to align */
447 u8 unused_8[10];
448 } __attribute__ ((__packed__));
449
450 /*
451 * the super block basically lists the main trees of the FS
452 * it currently lacks any block count etc etc
453 */
454 struct btrfs_super_block {
455 u8 csum[BTRFS_CSUM_SIZE];
456 /* the first 4 fields must match struct btrfs_header */
457 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
458 __le64 bytenr; /* this block number */
459 __le64 flags;
460
461 /* allowed to be different from the btrfs_header from here own down */
462 __le64 magic;
463 __le64 generation;
464 __le64 root;
465 __le64 chunk_root;
466 __le64 log_root;
467
468 /* this will help find the new super based on the log root */
469 __le64 log_root_transid;
470 __le64 total_bytes;
471 __le64 bytes_used;
472 __le64 root_dir_objectid;
473 __le64 num_devices;
474 __le32 sectorsize;
475 __le32 nodesize;
476 __le32 leafsize;
477 __le32 stripesize;
478 __le32 sys_chunk_array_size;
479 __le64 chunk_root_generation;
480 __le64 compat_flags;
481 __le64 compat_ro_flags;
482 __le64 incompat_flags;
483 __le16 csum_type;
484 u8 root_level;
485 u8 chunk_root_level;
486 u8 log_root_level;
487 struct btrfs_dev_item dev_item;
488
489 char label[BTRFS_LABEL_SIZE];
490
491 __le64 cache_generation;
492 __le64 uuid_tree_generation;
493
494 /* future expansion */
495 __le64 reserved[30];
496 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
497 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
498 } __attribute__ ((__packed__));
499
500 /*
501 * Compat flags that we support. If any incompat flags are set other than the
502 * ones specified below then we will fail to mount
503 */
504 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
505 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
506 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
507 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
508 /*
509 * some patches floated around with a second compression method
510 * lets save that incompat here for when they do get in
511 * Note we don't actually support it, we're just reserving the
512 * number
513 */
514 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
515
516 /*
517 * older kernels tried to do bigger metadata blocks, but the
518 * code was pretty buggy. Lets not let them try anymore.
519 */
520 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
521
522 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
523 #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
524 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
525 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
526
527 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
528 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
529 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
530 #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
531 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
532 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
533
534 #define BTRFS_FEATURE_INCOMPAT_SUPP \
535 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
536 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
537 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
538 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
539 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
540 BTRFS_FEATURE_INCOMPAT_RAID56 | \
541 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
542 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
543 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
544
545 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
546 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
547 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
548
549 /*
550 * A leaf is full of items. offset and size tell us where to find
551 * the item in the leaf (relative to the start of the data area)
552 */
553 struct btrfs_item {
554 struct btrfs_disk_key key;
555 __le32 offset;
556 __le32 size;
557 } __attribute__ ((__packed__));
558
559 /*
560 * leaves have an item area and a data area:
561 * [item0, item1....itemN] [free space] [dataN...data1, data0]
562 *
563 * The data is separate from the items to get the keys closer together
564 * during searches.
565 */
566 struct btrfs_leaf {
567 struct btrfs_header header;
568 struct btrfs_item items[];
569 } __attribute__ ((__packed__));
570
571 /*
572 * all non-leaf blocks are nodes, they hold only keys and pointers to
573 * other blocks
574 */
575 struct btrfs_key_ptr {
576 struct btrfs_disk_key key;
577 __le64 blockptr;
578 __le64 generation;
579 } __attribute__ ((__packed__));
580
581 struct btrfs_node {
582 struct btrfs_header header;
583 struct btrfs_key_ptr ptrs[];
584 } __attribute__ ((__packed__));
585
586 /*
587 * btrfs_paths remember the path taken from the root down to the leaf.
588 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
589 * to any other levels that are present.
590 *
591 * The slots array records the index of the item or block pointer
592 * used while walking the tree.
593 */
594 struct btrfs_path {
595 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
596 int slots[BTRFS_MAX_LEVEL];
597 /* if there is real range locking, this locks field will change */
598 int locks[BTRFS_MAX_LEVEL];
599 int reada;
600 /* keep some upper locks as we walk down */
601 int lowest_level;
602
603 /*
604 * set by btrfs_split_item, tells search_slot to keep all locks
605 * and to force calls to keep space in the nodes
606 */
607 unsigned int search_for_split:1;
608 unsigned int keep_locks:1;
609 unsigned int skip_locking:1;
610 unsigned int leave_spinning:1;
611 unsigned int search_commit_root:1;
612 unsigned int need_commit_sem:1;
613 };
614
615 /*
616 * items in the extent btree are used to record the objectid of the
617 * owner of the block and the number of references
618 */
619
620 struct btrfs_extent_item {
621 __le64 refs;
622 __le64 generation;
623 __le64 flags;
624 } __attribute__ ((__packed__));
625
626 struct btrfs_extent_item_v0 {
627 __le32 refs;
628 } __attribute__ ((__packed__));
629
630 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
631 sizeof(struct btrfs_item))
632
633 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
634 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
635
636 /* following flags only apply to tree blocks */
637
638 /* use full backrefs for extent pointers in the block */
639 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
640
641 /*
642 * this flag is only used internally by scrub and may be changed at any time
643 * it is only declared here to avoid collisions
644 */
645 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
646
647 struct btrfs_tree_block_info {
648 struct btrfs_disk_key key;
649 u8 level;
650 } __attribute__ ((__packed__));
651
652 struct btrfs_extent_data_ref {
653 __le64 root;
654 __le64 objectid;
655 __le64 offset;
656 __le32 count;
657 } __attribute__ ((__packed__));
658
659 struct btrfs_shared_data_ref {
660 __le32 count;
661 } __attribute__ ((__packed__));
662
663 struct btrfs_extent_inline_ref {
664 u8 type;
665 __le64 offset;
666 } __attribute__ ((__packed__));
667
668 /* old style backrefs item */
669 struct btrfs_extent_ref_v0 {
670 __le64 root;
671 __le64 generation;
672 __le64 objectid;
673 __le32 count;
674 } __attribute__ ((__packed__));
675
676
677 /* dev extents record free space on individual devices. The owner
678 * field points back to the chunk allocation mapping tree that allocated
679 * the extent. The chunk tree uuid field is a way to double check the owner
680 */
681 struct btrfs_dev_extent {
682 __le64 chunk_tree;
683 __le64 chunk_objectid;
684 __le64 chunk_offset;
685 __le64 length;
686 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
687 } __attribute__ ((__packed__));
688
689 struct btrfs_inode_ref {
690 __le64 index;
691 __le16 name_len;
692 /* name goes here */
693 } __attribute__ ((__packed__));
694
695 struct btrfs_inode_extref {
696 __le64 parent_objectid;
697 __le64 index;
698 __le16 name_len;
699 __u8 name[0];
700 /* name goes here */
701 } __attribute__ ((__packed__));
702
703 struct btrfs_timespec {
704 __le64 sec;
705 __le32 nsec;
706 } __attribute__ ((__packed__));
707
708 enum btrfs_compression_type {
709 BTRFS_COMPRESS_NONE = 0,
710 BTRFS_COMPRESS_ZLIB = 1,
711 BTRFS_COMPRESS_LZO = 2,
712 BTRFS_COMPRESS_TYPES = 2,
713 BTRFS_COMPRESS_LAST = 3,
714 };
715
716 struct btrfs_inode_item {
717 /* nfs style generation number */
718 __le64 generation;
719 /* transid that last touched this inode */
720 __le64 transid;
721 __le64 size;
722 __le64 nbytes;
723 __le64 block_group;
724 __le32 nlink;
725 __le32 uid;
726 __le32 gid;
727 __le32 mode;
728 __le64 rdev;
729 __le64 flags;
730
731 /* modification sequence number for NFS */
732 __le64 sequence;
733
734 /*
735 * a little future expansion, for more than this we can
736 * just grow the inode item and version it
737 */
738 __le64 reserved[4];
739 struct btrfs_timespec atime;
740 struct btrfs_timespec ctime;
741 struct btrfs_timespec mtime;
742 struct btrfs_timespec otime;
743 } __attribute__ ((__packed__));
744
745 struct btrfs_dir_log_item {
746 __le64 end;
747 } __attribute__ ((__packed__));
748
749 struct btrfs_dir_item {
750 struct btrfs_disk_key location;
751 __le64 transid;
752 __le16 data_len;
753 __le16 name_len;
754 u8 type;
755 } __attribute__ ((__packed__));
756
757 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
758
759 struct btrfs_root_item {
760 struct btrfs_inode_item inode;
761 __le64 generation;
762 __le64 root_dirid;
763 __le64 bytenr;
764 __le64 byte_limit;
765 __le64 bytes_used;
766 __le64 last_snapshot;
767 __le64 flags;
768 __le32 refs;
769 struct btrfs_disk_key drop_progress;
770 u8 drop_level;
771 u8 level;
772
773 /*
774 * The following fields appear after subvol_uuids+subvol_times
775 * were introduced.
776 */
777
778 /*
779 * This generation number is used to test if the new fields are valid
780 * and up to date while reading the root item. Everytime the root item
781 * is written out, the "generation" field is copied into this field. If
782 * anyone ever mounted the fs with an older kernel, we will have
783 * mismatching generation values here and thus must invalidate the
784 * new fields. See btrfs_update_root and btrfs_find_last_root for
785 * details.
786 * the offset of generation_v2 is also used as the start for the memset
787 * when invalidating the fields.
788 */
789 __le64 generation_v2;
790 u8 uuid[BTRFS_UUID_SIZE];
791 u8 parent_uuid[BTRFS_UUID_SIZE];
792 u8 received_uuid[BTRFS_UUID_SIZE];
793 __le64 ctransid; /* updated when an inode changes */
794 __le64 otransid; /* trans when created */
795 __le64 stransid; /* trans when sent. non-zero for received subvol */
796 __le64 rtransid; /* trans when received. non-zero for received subvol */
797 struct btrfs_timespec ctime;
798 struct btrfs_timespec otime;
799 struct btrfs_timespec stime;
800 struct btrfs_timespec rtime;
801 __le64 reserved[8]; /* for future */
802 } __attribute__ ((__packed__));
803
804 /*
805 * this is used for both forward and backward root refs
806 */
807 struct btrfs_root_ref {
808 __le64 dirid;
809 __le64 sequence;
810 __le16 name_len;
811 } __attribute__ ((__packed__));
812
813 struct btrfs_disk_balance_args {
814 /*
815 * profiles to operate on, single is denoted by
816 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
817 */
818 __le64 profiles;
819
820 /* usage filter */
821 __le64 usage;
822
823 /* devid filter */
824 __le64 devid;
825
826 /* devid subset filter [pstart..pend) */
827 __le64 pstart;
828 __le64 pend;
829
830 /* btrfs virtual address space subset filter [vstart..vend) */
831 __le64 vstart;
832 __le64 vend;
833
834 /*
835 * profile to convert to, single is denoted by
836 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
837 */
838 __le64 target;
839
840 /* BTRFS_BALANCE_ARGS_* */
841 __le64 flags;
842
843 __le64 unused[8];
844 } __attribute__ ((__packed__));
845
846 /*
847 * store balance parameters to disk so that balance can be properly
848 * resumed after crash or unmount
849 */
850 struct btrfs_balance_item {
851 /* BTRFS_BALANCE_* */
852 __le64 flags;
853
854 struct btrfs_disk_balance_args data;
855 struct btrfs_disk_balance_args meta;
856 struct btrfs_disk_balance_args sys;
857
858 __le64 unused[4];
859 } __attribute__ ((__packed__));
860
861 #define BTRFS_FILE_EXTENT_INLINE 0
862 #define BTRFS_FILE_EXTENT_REG 1
863 #define BTRFS_FILE_EXTENT_PREALLOC 2
864
865 struct btrfs_file_extent_item {
866 /*
867 * transaction id that created this extent
868 */
869 __le64 generation;
870 /*
871 * max number of bytes to hold this extent in ram
872 * when we split a compressed extent we can't know how big
873 * each of the resulting pieces will be. So, this is
874 * an upper limit on the size of the extent in ram instead of
875 * an exact limit.
876 */
877 __le64 ram_bytes;
878
879 /*
880 * 32 bits for the various ways we might encode the data,
881 * including compression and encryption. If any of these
882 * are set to something a given disk format doesn't understand
883 * it is treated like an incompat flag for reading and writing,
884 * but not for stat.
885 */
886 u8 compression;
887 u8 encryption;
888 __le16 other_encoding; /* spare for later use */
889
890 /* are we inline data or a real extent? */
891 u8 type;
892
893 /*
894 * disk space consumed by the extent, checksum blocks are included
895 * in these numbers
896 */
897 __le64 disk_bytenr;
898 __le64 disk_num_bytes;
899 /*
900 * the logical offset in file blocks (no csums)
901 * this extent record is for. This allows a file extent to point
902 * into the middle of an existing extent on disk, sharing it
903 * between two snapshots (useful if some bytes in the middle of the
904 * extent have changed
905 */
906 __le64 offset;
907 /*
908 * the logical number of file blocks (no csums included). This
909 * always reflects the size uncompressed and without encoding.
910 */
911 __le64 num_bytes;
912
913 } __attribute__ ((__packed__));
914
915 struct btrfs_csum_item {
916 u8 csum;
917 } __attribute__ ((__packed__));
918
919 struct btrfs_dev_stats_item {
920 /*
921 * grow this item struct at the end for future enhancements and keep
922 * the existing values unchanged
923 */
924 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
925 } __attribute__ ((__packed__));
926
927 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
928 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
929 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
930 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
931 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
932 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
933 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
934
935 struct btrfs_dev_replace {
936 u64 replace_state; /* see #define above */
937 u64 time_started; /* seconds since 1-Jan-1970 */
938 u64 time_stopped; /* seconds since 1-Jan-1970 */
939 atomic64_t num_write_errors;
940 atomic64_t num_uncorrectable_read_errors;
941
942 u64 cursor_left;
943 u64 committed_cursor_left;
944 u64 cursor_left_last_write_of_item;
945 u64 cursor_right;
946
947 u64 cont_reading_from_srcdev_mode; /* see #define above */
948
949 int is_valid;
950 int item_needs_writeback;
951 struct btrfs_device *srcdev;
952 struct btrfs_device *tgtdev;
953
954 pid_t lock_owner;
955 atomic_t nesting_level;
956 struct mutex lock_finishing_cancel_unmount;
957 struct mutex lock_management_lock;
958 struct mutex lock;
959
960 struct btrfs_scrub_progress scrub_progress;
961 };
962
963 struct btrfs_dev_replace_item {
964 /*
965 * grow this item struct at the end for future enhancements and keep
966 * the existing values unchanged
967 */
968 __le64 src_devid;
969 __le64 cursor_left;
970 __le64 cursor_right;
971 __le64 cont_reading_from_srcdev_mode;
972
973 __le64 replace_state;
974 __le64 time_started;
975 __le64 time_stopped;
976 __le64 num_write_errors;
977 __le64 num_uncorrectable_read_errors;
978 } __attribute__ ((__packed__));
979
980 /* different types of block groups (and chunks) */
981 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
982 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
983 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
984 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
985 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
986 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
987 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
988 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
989 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
990 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
991 BTRFS_SPACE_INFO_GLOBAL_RSV)
992
993 enum btrfs_raid_types {
994 BTRFS_RAID_RAID10,
995 BTRFS_RAID_RAID1,
996 BTRFS_RAID_DUP,
997 BTRFS_RAID_RAID0,
998 BTRFS_RAID_SINGLE,
999 BTRFS_RAID_RAID5,
1000 BTRFS_RAID_RAID6,
1001 BTRFS_NR_RAID_TYPES
1002 };
1003
1004 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
1005 BTRFS_BLOCK_GROUP_SYSTEM | \
1006 BTRFS_BLOCK_GROUP_METADATA)
1007
1008 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
1009 BTRFS_BLOCK_GROUP_RAID1 | \
1010 BTRFS_BLOCK_GROUP_RAID5 | \
1011 BTRFS_BLOCK_GROUP_RAID6 | \
1012 BTRFS_BLOCK_GROUP_DUP | \
1013 BTRFS_BLOCK_GROUP_RAID10)
1014 /*
1015 * We need a bit for restriper to be able to tell when chunks of type
1016 * SINGLE are available. This "extended" profile format is used in
1017 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1018 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
1019 * to avoid remappings between two formats in future.
1020 */
1021 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
1022
1023 /*
1024 * A fake block group type that is used to communicate global block reserve
1025 * size to userspace via the SPACE_INFO ioctl.
1026 */
1027 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
1028
1029 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1030 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1031
1032 static inline u64 chunk_to_extended(u64 flags)
1033 {
1034 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1035 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1036
1037 return flags;
1038 }
1039 static inline u64 extended_to_chunk(u64 flags)
1040 {
1041 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1042 }
1043
1044 struct btrfs_block_group_item {
1045 __le64 used;
1046 __le64 chunk_objectid;
1047 __le64 flags;
1048 } __attribute__ ((__packed__));
1049
1050 /*
1051 * is subvolume quota turned on?
1052 */
1053 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
1054 /*
1055 * RESCAN is set during the initialization phase
1056 */
1057 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
1058 /*
1059 * Some qgroup entries are known to be out of date,
1060 * either because the configuration has changed in a way that
1061 * makes a rescan necessary, or because the fs has been mounted
1062 * with a non-qgroup-aware version.
1063 * Turning qouta off and on again makes it inconsistent, too.
1064 */
1065 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
1066
1067 #define BTRFS_QGROUP_STATUS_VERSION 1
1068
1069 struct btrfs_qgroup_status_item {
1070 __le64 version;
1071 /*
1072 * the generation is updated during every commit. As older
1073 * versions of btrfs are not aware of qgroups, it will be
1074 * possible to detect inconsistencies by checking the
1075 * generation on mount time
1076 */
1077 __le64 generation;
1078
1079 /* flag definitions see above */
1080 __le64 flags;
1081
1082 /*
1083 * only used during scanning to record the progress
1084 * of the scan. It contains a logical address
1085 */
1086 __le64 rescan;
1087 } __attribute__ ((__packed__));
1088
1089 struct btrfs_qgroup_info_item {
1090 __le64 generation;
1091 __le64 rfer;
1092 __le64 rfer_cmpr;
1093 __le64 excl;
1094 __le64 excl_cmpr;
1095 } __attribute__ ((__packed__));
1096
1097 /* flags definition for qgroup limits */
1098 #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
1099 #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
1100 #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
1101 #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
1102 #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
1103 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
1104
1105 struct btrfs_qgroup_limit_item {
1106 /*
1107 * only updated when any of the other values change
1108 */
1109 __le64 flags;
1110 __le64 max_rfer;
1111 __le64 max_excl;
1112 __le64 rsv_rfer;
1113 __le64 rsv_excl;
1114 } __attribute__ ((__packed__));
1115
1116 struct btrfs_space_info {
1117 spinlock_t lock;
1118
1119 u64 total_bytes; /* total bytes in the space,
1120 this doesn't take mirrors into account */
1121 u64 bytes_used; /* total bytes used,
1122 this doesn't take mirrors into account */
1123 u64 bytes_pinned; /* total bytes pinned, will be freed when the
1124 transaction finishes */
1125 u64 bytes_reserved; /* total bytes the allocator has reserved for
1126 current allocations */
1127 u64 bytes_may_use; /* number of bytes that may be used for
1128 delalloc/allocations */
1129 u64 bytes_readonly; /* total bytes that are read only */
1130
1131 unsigned int full:1; /* indicates that we cannot allocate any more
1132 chunks for this space */
1133 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
1134
1135 unsigned int flush:1; /* set if we are trying to make space */
1136
1137 unsigned int force_alloc; /* set if we need to force a chunk
1138 alloc for this space */
1139
1140 u64 disk_used; /* total bytes used on disk */
1141 u64 disk_total; /* total bytes on disk, takes mirrors into
1142 account */
1143
1144 u64 flags;
1145
1146 /*
1147 * bytes_pinned is kept in line with what is actually pinned, as in
1148 * we've called update_block_group and dropped the bytes_used counter
1149 * and increased the bytes_pinned counter. However this means that
1150 * bytes_pinned does not reflect the bytes that will be pinned once the
1151 * delayed refs are flushed, so this counter is inc'ed everytime we call
1152 * btrfs_free_extent so it is a realtime count of what will be freed
1153 * once the transaction is committed. It will be zero'ed everytime the
1154 * transaction commits.
1155 */
1156 struct percpu_counter total_bytes_pinned;
1157
1158 struct list_head list;
1159
1160 struct rw_semaphore groups_sem;
1161 /* for block groups in our same type */
1162 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1163 wait_queue_head_t wait;
1164
1165 struct kobject kobj;
1166 struct kobject block_group_kobjs[BTRFS_NR_RAID_TYPES];
1167 };
1168
1169 #define BTRFS_BLOCK_RSV_GLOBAL 1
1170 #define BTRFS_BLOCK_RSV_DELALLOC 2
1171 #define BTRFS_BLOCK_RSV_TRANS 3
1172 #define BTRFS_BLOCK_RSV_CHUNK 4
1173 #define BTRFS_BLOCK_RSV_DELOPS 5
1174 #define BTRFS_BLOCK_RSV_EMPTY 6
1175 #define BTRFS_BLOCK_RSV_TEMP 7
1176
1177 struct btrfs_block_rsv {
1178 u64 size;
1179 u64 reserved;
1180 struct btrfs_space_info *space_info;
1181 spinlock_t lock;
1182 unsigned short full;
1183 unsigned short type;
1184 unsigned short failfast;
1185 };
1186
1187 /*
1188 * free clusters are used to claim free space in relatively large chunks,
1189 * allowing us to do less seeky writes. They are used for all metadata
1190 * allocations and data allocations in ssd mode.
1191 */
1192 struct btrfs_free_cluster {
1193 spinlock_t lock;
1194 spinlock_t refill_lock;
1195 struct rb_root root;
1196
1197 /* largest extent in this cluster */
1198 u64 max_size;
1199
1200 /* first extent starting offset */
1201 u64 window_start;
1202
1203 struct btrfs_block_group_cache *block_group;
1204 /*
1205 * when a cluster is allocated from a block group, we put the
1206 * cluster onto a list in the block group so that it can
1207 * be freed before the block group is freed.
1208 */
1209 struct list_head block_group_list;
1210 };
1211
1212 enum btrfs_caching_type {
1213 BTRFS_CACHE_NO = 0,
1214 BTRFS_CACHE_STARTED = 1,
1215 BTRFS_CACHE_FAST = 2,
1216 BTRFS_CACHE_FINISHED = 3,
1217 BTRFS_CACHE_ERROR = 4,
1218 };
1219
1220 enum btrfs_disk_cache_state {
1221 BTRFS_DC_WRITTEN = 0,
1222 BTRFS_DC_ERROR = 1,
1223 BTRFS_DC_CLEAR = 2,
1224 BTRFS_DC_SETUP = 3,
1225 BTRFS_DC_NEED_WRITE = 4,
1226 };
1227
1228 struct btrfs_caching_control {
1229 struct list_head list;
1230 struct mutex mutex;
1231 wait_queue_head_t wait;
1232 struct btrfs_work work;
1233 struct btrfs_block_group_cache *block_group;
1234 u64 progress;
1235 atomic_t count;
1236 };
1237
1238 struct btrfs_block_group_cache {
1239 struct btrfs_key key;
1240 struct btrfs_block_group_item item;
1241 struct btrfs_fs_info *fs_info;
1242 struct inode *inode;
1243 spinlock_t lock;
1244 u64 pinned;
1245 u64 reserved;
1246 u64 bytes_super;
1247 u64 flags;
1248 u64 sectorsize;
1249 u64 cache_generation;
1250
1251 /* for raid56, this is a full stripe, without parity */
1252 unsigned long full_stripe_len;
1253
1254 unsigned int ro:1;
1255 unsigned int dirty:1;
1256 unsigned int iref:1;
1257
1258 int disk_cache_state;
1259
1260 /* cache tracking stuff */
1261 int cached;
1262 struct btrfs_caching_control *caching_ctl;
1263 u64 last_byte_to_unpin;
1264
1265 struct btrfs_space_info *space_info;
1266
1267 /* free space cache stuff */
1268 struct btrfs_free_space_ctl *free_space_ctl;
1269
1270 /* block group cache stuff */
1271 struct rb_node cache_node;
1272
1273 /* for block groups in the same raid type */
1274 struct list_head list;
1275
1276 /* usage count */
1277 atomic_t count;
1278
1279 /* List of struct btrfs_free_clusters for this block group.
1280 * Today it will only have one thing on it, but that may change
1281 */
1282 struct list_head cluster_list;
1283
1284 /* For delayed block group creation */
1285 struct list_head new_bg_list;
1286 };
1287
1288 /* delayed seq elem */
1289 struct seq_list {
1290 struct list_head list;
1291 u64 seq;
1292 };
1293
1294 enum btrfs_orphan_cleanup_state {
1295 ORPHAN_CLEANUP_STARTED = 1,
1296 ORPHAN_CLEANUP_DONE = 2,
1297 };
1298
1299 /* used by the raid56 code to lock stripes for read/modify/write */
1300 struct btrfs_stripe_hash {
1301 struct list_head hash_list;
1302 wait_queue_head_t wait;
1303 spinlock_t lock;
1304 };
1305
1306 /* used by the raid56 code to lock stripes for read/modify/write */
1307 struct btrfs_stripe_hash_table {
1308 struct list_head stripe_cache;
1309 spinlock_t cache_lock;
1310 int cache_size;
1311 struct btrfs_stripe_hash table[];
1312 };
1313
1314 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
1315
1316 /* fs_info */
1317 struct reloc_control;
1318 struct btrfs_device;
1319 struct btrfs_fs_devices;
1320 struct btrfs_balance_control;
1321 struct btrfs_delayed_root;
1322 struct btrfs_fs_info {
1323 u8 fsid[BTRFS_FSID_SIZE];
1324 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1325 struct btrfs_root *extent_root;
1326 struct btrfs_root *tree_root;
1327 struct btrfs_root *chunk_root;
1328 struct btrfs_root *dev_root;
1329 struct btrfs_root *fs_root;
1330 struct btrfs_root *csum_root;
1331 struct btrfs_root *quota_root;
1332 struct btrfs_root *uuid_root;
1333
1334 /* the log root tree is a directory of all the other log roots */
1335 struct btrfs_root *log_root_tree;
1336
1337 spinlock_t fs_roots_radix_lock;
1338 struct radix_tree_root fs_roots_radix;
1339
1340 /* block group cache stuff */
1341 spinlock_t block_group_cache_lock;
1342 u64 first_logical_byte;
1343 struct rb_root block_group_cache_tree;
1344
1345 /* keep track of unallocated space */
1346 spinlock_t free_chunk_lock;
1347 u64 free_chunk_space;
1348
1349 struct extent_io_tree freed_extents[2];
1350 struct extent_io_tree *pinned_extents;
1351
1352 /* logical->physical extent mapping */
1353 struct btrfs_mapping_tree mapping_tree;
1354
1355 /*
1356 * block reservation for extent, checksum, root tree and
1357 * delayed dir index item
1358 */
1359 struct btrfs_block_rsv global_block_rsv;
1360 /* block reservation for delay allocation */
1361 struct btrfs_block_rsv delalloc_block_rsv;
1362 /* block reservation for metadata operations */
1363 struct btrfs_block_rsv trans_block_rsv;
1364 /* block reservation for chunk tree */
1365 struct btrfs_block_rsv chunk_block_rsv;
1366 /* block reservation for delayed operations */
1367 struct btrfs_block_rsv delayed_block_rsv;
1368
1369 struct btrfs_block_rsv empty_block_rsv;
1370
1371 u64 generation;
1372 u64 last_trans_committed;
1373 u64 avg_delayed_ref_runtime;
1374
1375 /*
1376 * this is updated to the current trans every time a full commit
1377 * is required instead of the faster short fsync log commits
1378 */
1379 u64 last_trans_log_full_commit;
1380 unsigned long mount_opt;
1381 unsigned long compress_type:4;
1382 int commit_interval;
1383 /*
1384 * It is a suggestive number, the read side is safe even it gets a
1385 * wrong number because we will write out the data into a regular
1386 * extent. The write side(mount/remount) is under ->s_umount lock,
1387 * so it is also safe.
1388 */
1389 u64 max_inline;
1390 /*
1391 * Protected by ->chunk_mutex and sb->s_umount.
1392 *
1393 * The reason that we use two lock to protect it is because only
1394 * remount and mount operations can change it and these two operations
1395 * are under sb->s_umount, but the read side (chunk allocation) can not
1396 * acquire sb->s_umount or the deadlock would happen. So we use two
1397 * locks to protect it. On the write side, we must acquire two locks,
1398 * and on the read side, we just need acquire one of them.
1399 */
1400 u64 alloc_start;
1401 struct btrfs_transaction *running_transaction;
1402 wait_queue_head_t transaction_throttle;
1403 wait_queue_head_t transaction_wait;
1404 wait_queue_head_t transaction_blocked_wait;
1405 wait_queue_head_t async_submit_wait;
1406
1407 /*
1408 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1409 * when they are updated.
1410 *
1411 * Because we do not clear the flags for ever, so we needn't use
1412 * the lock on the read side.
1413 *
1414 * We also needn't use the lock when we mount the fs, because
1415 * there is no other task which will update the flag.
1416 */
1417 spinlock_t super_lock;
1418 struct btrfs_super_block *super_copy;
1419 struct btrfs_super_block *super_for_commit;
1420 struct block_device *__bdev;
1421 struct super_block *sb;
1422 struct inode *btree_inode;
1423 struct backing_dev_info bdi;
1424 struct mutex tree_log_mutex;
1425 struct mutex transaction_kthread_mutex;
1426 struct mutex cleaner_mutex;
1427 struct mutex chunk_mutex;
1428 struct mutex volume_mutex;
1429
1430 /* this is used during read/modify/write to make sure
1431 * no two ios are trying to mod the same stripe at the same
1432 * time
1433 */
1434 struct btrfs_stripe_hash_table *stripe_hash_table;
1435
1436 /*
1437 * this protects the ordered operations list only while we are
1438 * processing all of the entries on it. This way we make
1439 * sure the commit code doesn't find the list temporarily empty
1440 * because another function happens to be doing non-waiting preflush
1441 * before jumping into the main commit.
1442 */
1443 struct mutex ordered_operations_mutex;
1444
1445 /*
1446 * Same as ordered_operations_mutex except this is for ordered extents
1447 * and not the operations.
1448 */
1449 struct mutex ordered_extent_flush_mutex;
1450
1451 struct rw_semaphore commit_root_sem;
1452
1453 struct rw_semaphore cleanup_work_sem;
1454
1455 struct rw_semaphore subvol_sem;
1456 struct srcu_struct subvol_srcu;
1457
1458 spinlock_t trans_lock;
1459 /*
1460 * the reloc mutex goes with the trans lock, it is taken
1461 * during commit to protect us from the relocation code
1462 */
1463 struct mutex reloc_mutex;
1464
1465 struct list_head trans_list;
1466 struct list_head dead_roots;
1467 struct list_head caching_block_groups;
1468
1469 spinlock_t delayed_iput_lock;
1470 struct list_head delayed_iputs;
1471
1472 /* this protects tree_mod_seq_list */
1473 spinlock_t tree_mod_seq_lock;
1474 atomic64_t tree_mod_seq;
1475 struct list_head tree_mod_seq_list;
1476
1477 /* this protects tree_mod_log */
1478 rwlock_t tree_mod_log_lock;
1479 struct rb_root tree_mod_log;
1480
1481 atomic_t nr_async_submits;
1482 atomic_t async_submit_draining;
1483 atomic_t nr_async_bios;
1484 atomic_t async_delalloc_pages;
1485 atomic_t open_ioctl_trans;
1486
1487 /*
1488 * this is used to protect the following list -- ordered_roots.
1489 */
1490 spinlock_t ordered_root_lock;
1491
1492 /*
1493 * all fs/file tree roots in which there are data=ordered extents
1494 * pending writeback are added into this list.
1495 *
1496 * these can span multiple transactions and basically include
1497 * every dirty data page that isn't from nodatacow
1498 */
1499 struct list_head ordered_roots;
1500
1501 struct mutex delalloc_root_mutex;
1502 spinlock_t delalloc_root_lock;
1503 /* all fs/file tree roots that have delalloc inodes. */
1504 struct list_head delalloc_roots;
1505
1506 /*
1507 * there is a pool of worker threads for checksumming during writes
1508 * and a pool for checksumming after reads. This is because readers
1509 * can run with FS locks held, and the writers may be waiting for
1510 * those locks. We don't want ordering in the pending list to cause
1511 * deadlocks, and so the two are serviced separately.
1512 *
1513 * A third pool does submit_bio to avoid deadlocking with the other
1514 * two
1515 */
1516 struct btrfs_workqueue *workers;
1517 struct btrfs_workqueue *delalloc_workers;
1518 struct btrfs_workqueue *flush_workers;
1519 struct btrfs_workqueue *endio_workers;
1520 struct btrfs_workqueue *endio_meta_workers;
1521 struct btrfs_workqueue *endio_raid56_workers;
1522 struct btrfs_workqueue *rmw_workers;
1523 struct btrfs_workqueue *endio_meta_write_workers;
1524 struct btrfs_workqueue *endio_write_workers;
1525 struct btrfs_workqueue *endio_freespace_worker;
1526 struct btrfs_workqueue *submit_workers;
1527 struct btrfs_workqueue *caching_workers;
1528 struct btrfs_workqueue *readahead_workers;
1529
1530 /*
1531 * fixup workers take dirty pages that didn't properly go through
1532 * the cow mechanism and make them safe to write. It happens
1533 * for the sys_munmap function call path
1534 */
1535 struct btrfs_workqueue *fixup_workers;
1536 struct btrfs_workqueue *delayed_workers;
1537 struct task_struct *transaction_kthread;
1538 struct task_struct *cleaner_kthread;
1539 int thread_pool_size;
1540
1541 struct kobject super_kobj;
1542 struct kobject *space_info_kobj;
1543 struct kobject *device_dir_kobj;
1544 struct completion kobj_unregister;
1545 int do_barriers;
1546 int closing;
1547 int log_root_recovering;
1548
1549 u64 total_pinned;
1550
1551 /* used to keep from writing metadata until there is a nice batch */
1552 struct percpu_counter dirty_metadata_bytes;
1553 struct percpu_counter delalloc_bytes;
1554 s32 dirty_metadata_batch;
1555 s32 delalloc_batch;
1556
1557 struct list_head dirty_cowonly_roots;
1558
1559 struct btrfs_fs_devices *fs_devices;
1560
1561 /*
1562 * the space_info list is almost entirely read only. It only changes
1563 * when we add a new raid type to the FS, and that happens
1564 * very rarely. RCU is used to protect it.
1565 */
1566 struct list_head space_info;
1567
1568 struct btrfs_space_info *data_sinfo;
1569
1570 struct reloc_control *reloc_ctl;
1571
1572 /* data_alloc_cluster is only used in ssd mode */
1573 struct btrfs_free_cluster data_alloc_cluster;
1574
1575 /* all metadata allocations go through this cluster */
1576 struct btrfs_free_cluster meta_alloc_cluster;
1577
1578 /* auto defrag inodes go here */
1579 spinlock_t defrag_inodes_lock;
1580 struct rb_root defrag_inodes;
1581 atomic_t defrag_running;
1582
1583 /* Used to protect avail_{data, metadata, system}_alloc_bits */
1584 seqlock_t profiles_lock;
1585 /*
1586 * these three are in extended format (availability of single
1587 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1588 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1589 */
1590 u64 avail_data_alloc_bits;
1591 u64 avail_metadata_alloc_bits;
1592 u64 avail_system_alloc_bits;
1593
1594 /* restriper state */
1595 spinlock_t balance_lock;
1596 struct mutex balance_mutex;
1597 atomic_t balance_running;
1598 atomic_t balance_pause_req;
1599 atomic_t balance_cancel_req;
1600 struct btrfs_balance_control *balance_ctl;
1601 wait_queue_head_t balance_wait_q;
1602
1603 unsigned data_chunk_allocations;
1604 unsigned metadata_ratio;
1605
1606 void *bdev_holder;
1607
1608 /* private scrub information */
1609 struct mutex scrub_lock;
1610 atomic_t scrubs_running;
1611 atomic_t scrub_pause_req;
1612 atomic_t scrubs_paused;
1613 atomic_t scrub_cancel_req;
1614 wait_queue_head_t scrub_pause_wait;
1615 int scrub_workers_refcnt;
1616 struct btrfs_workqueue *scrub_workers;
1617 struct btrfs_workqueue *scrub_wr_completion_workers;
1618 struct btrfs_workqueue *scrub_nocow_workers;
1619
1620 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1621 u32 check_integrity_print_mask;
1622 #endif
1623 /*
1624 * quota information
1625 */
1626 unsigned int quota_enabled:1;
1627
1628 /*
1629 * quota_enabled only changes state after a commit. This holds the
1630 * next state.
1631 */
1632 unsigned int pending_quota_state:1;
1633
1634 /* is qgroup tracking in a consistent state? */
1635 u64 qgroup_flags;
1636
1637 /* holds configuration and tracking. Protected by qgroup_lock */
1638 struct rb_root qgroup_tree;
1639 spinlock_t qgroup_lock;
1640
1641 /*
1642 * used to avoid frequently calling ulist_alloc()/ulist_free()
1643 * when doing qgroup accounting, it must be protected by qgroup_lock.
1644 */
1645 struct ulist *qgroup_ulist;
1646
1647 /* protect user change for quota operations */
1648 struct mutex qgroup_ioctl_lock;
1649
1650 /* list of dirty qgroups to be written at next commit */
1651 struct list_head dirty_qgroups;
1652
1653 /* used by btrfs_qgroup_record_ref for an efficient tree traversal */
1654 u64 qgroup_seq;
1655
1656 /* qgroup rescan items */
1657 struct mutex qgroup_rescan_lock; /* protects the progress item */
1658 struct btrfs_key qgroup_rescan_progress;
1659 struct btrfs_workqueue *qgroup_rescan_workers;
1660 struct completion qgroup_rescan_completion;
1661 struct btrfs_work qgroup_rescan_work;
1662
1663 /* filesystem state */
1664 unsigned long fs_state;
1665
1666 struct btrfs_delayed_root *delayed_root;
1667
1668 /* readahead tree */
1669 spinlock_t reada_lock;
1670 struct radix_tree_root reada_tree;
1671
1672 /* Extent buffer radix tree */
1673 spinlock_t buffer_lock;
1674 struct radix_tree_root buffer_radix;
1675
1676 /* next backup root to be overwritten */
1677 int backup_root_index;
1678
1679 int num_tolerated_disk_barrier_failures;
1680
1681 /* device replace state */
1682 struct btrfs_dev_replace dev_replace;
1683
1684 atomic_t mutually_exclusive_operation_running;
1685
1686 struct percpu_counter bio_counter;
1687 wait_queue_head_t replace_wait;
1688
1689 struct semaphore uuid_tree_rescan_sem;
1690 unsigned int update_uuid_tree_gen:1;
1691 };
1692
1693 struct btrfs_subvolume_writers {
1694 struct percpu_counter counter;
1695 wait_queue_head_t wait;
1696 };
1697
1698 /*
1699 * in ram representation of the tree. extent_root is used for all allocations
1700 * and for the extent tree extent_root root.
1701 */
1702 struct btrfs_root {
1703 struct extent_buffer *node;
1704
1705 struct extent_buffer *commit_root;
1706 struct btrfs_root *log_root;
1707 struct btrfs_root *reloc_root;
1708
1709 struct btrfs_root_item root_item;
1710 struct btrfs_key root_key;
1711 struct btrfs_fs_info *fs_info;
1712 struct extent_io_tree dirty_log_pages;
1713
1714 struct kobject root_kobj;
1715 struct completion kobj_unregister;
1716 struct mutex objectid_mutex;
1717
1718 spinlock_t accounting_lock;
1719 struct btrfs_block_rsv *block_rsv;
1720
1721 /* free ino cache stuff */
1722 struct btrfs_free_space_ctl *free_ino_ctl;
1723 enum btrfs_caching_type cached;
1724 spinlock_t cache_lock;
1725 wait_queue_head_t cache_wait;
1726 struct btrfs_free_space_ctl *free_ino_pinned;
1727 u64 cache_progress;
1728 struct inode *cache_inode;
1729
1730 struct mutex log_mutex;
1731 wait_queue_head_t log_writer_wait;
1732 wait_queue_head_t log_commit_wait[2];
1733 struct list_head log_ctxs[2];
1734 atomic_t log_writers;
1735 atomic_t log_commit[2];
1736 atomic_t log_batch;
1737 int log_transid;
1738 /* No matter the commit succeeds or not*/
1739 int log_transid_committed;
1740 /* Just be updated when the commit succeeds. */
1741 int last_log_commit;
1742 pid_t log_start_pid;
1743 bool log_multiple_pids;
1744
1745 u64 objectid;
1746 u64 last_trans;
1747
1748 /* data allocations are done in sectorsize units */
1749 u32 sectorsize;
1750
1751 /* node allocations are done in nodesize units */
1752 u32 nodesize;
1753
1754 /* leaf allocations are done in leafsize units */
1755 u32 leafsize;
1756
1757 u32 stripesize;
1758
1759 u32 type;
1760
1761 u64 highest_objectid;
1762
1763 /* btrfs_record_root_in_trans is a multi-step process,
1764 * and it can race with the balancing code. But the
1765 * race is very small, and only the first time the root
1766 * is added to each transaction. So in_trans_setup
1767 * is used to tell us when more checks are required
1768 */
1769 unsigned long in_trans_setup;
1770 int ref_cows;
1771 int track_dirty;
1772 int in_radix;
1773 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1774 int dummy_root;
1775 #endif
1776 u64 defrag_trans_start;
1777 struct btrfs_key defrag_progress;
1778 struct btrfs_key defrag_max;
1779 int defrag_running;
1780 char *name;
1781
1782 /* the dirty list is only used by non-reference counted roots */
1783 struct list_head dirty_list;
1784
1785 struct list_head root_list;
1786
1787 spinlock_t log_extents_lock[2];
1788 struct list_head logged_list[2];
1789
1790 spinlock_t orphan_lock;
1791 atomic_t orphan_inodes;
1792 struct btrfs_block_rsv *orphan_block_rsv;
1793 int orphan_item_inserted;
1794 int orphan_cleanup_state;
1795
1796 spinlock_t inode_lock;
1797 /* red-black tree that keeps track of in-memory inodes */
1798 struct rb_root inode_tree;
1799
1800 /*
1801 * radix tree that keeps track of delayed nodes of every inode,
1802 * protected by inode_lock
1803 */
1804 struct radix_tree_root delayed_nodes_tree;
1805 /*
1806 * right now this just gets used so that a root has its own devid
1807 * for stat. It may be used for more later
1808 */
1809 dev_t anon_dev;
1810
1811 int force_cow;
1812
1813 spinlock_t root_item_lock;
1814 atomic_t refs;
1815
1816 struct mutex delalloc_mutex;
1817 spinlock_t delalloc_lock;
1818 /*
1819 * all of the inodes that have delalloc bytes. It is possible for
1820 * this list to be empty even when there is still dirty data=ordered
1821 * extents waiting to finish IO.
1822 */
1823 struct list_head delalloc_inodes;
1824 struct list_head delalloc_root;
1825 u64 nr_delalloc_inodes;
1826
1827 struct mutex ordered_extent_mutex;
1828 /*
1829 * this is used by the balancing code to wait for all the pending
1830 * ordered extents
1831 */
1832 spinlock_t ordered_extent_lock;
1833
1834 /*
1835 * all of the data=ordered extents pending writeback
1836 * these can span multiple transactions and basically include
1837 * every dirty data page that isn't from nodatacow
1838 */
1839 struct list_head ordered_extents;
1840 struct list_head ordered_root;
1841 u64 nr_ordered_extents;
1842
1843 /*
1844 * Number of currently running SEND ioctls to prevent
1845 * manipulation with the read-only status via SUBVOL_SETFLAGS
1846 */
1847 int send_in_progress;
1848 struct btrfs_subvolume_writers *subv_writers;
1849 atomic_t will_be_snapshoted;
1850 };
1851
1852 struct btrfs_ioctl_defrag_range_args {
1853 /* start of the defrag operation */
1854 __u64 start;
1855
1856 /* number of bytes to defrag, use (u64)-1 to say all */
1857 __u64 len;
1858
1859 /*
1860 * flags for the operation, which can include turning
1861 * on compression for this one defrag
1862 */
1863 __u64 flags;
1864
1865 /*
1866 * any extent bigger than this will be considered
1867 * already defragged. Use 0 to take the kernel default
1868 * Use 1 to say every single extent must be rewritten
1869 */
1870 __u32 extent_thresh;
1871
1872 /*
1873 * which compression method to use if turning on compression
1874 * for this defrag operation. If unspecified, zlib will
1875 * be used
1876 */
1877 __u32 compress_type;
1878
1879 /* spare for later */
1880 __u32 unused[4];
1881 };
1882
1883
1884 /*
1885 * inode items have the data typically returned from stat and store other
1886 * info about object characteristics. There is one for every file and dir in
1887 * the FS
1888 */
1889 #define BTRFS_INODE_ITEM_KEY 1
1890 #define BTRFS_INODE_REF_KEY 12
1891 #define BTRFS_INODE_EXTREF_KEY 13
1892 #define BTRFS_XATTR_ITEM_KEY 24
1893 #define BTRFS_ORPHAN_ITEM_KEY 48
1894 /* reserve 2-15 close to the inode for later flexibility */
1895
1896 /*
1897 * dir items are the name -> inode pointers in a directory. There is one
1898 * for every name in a directory.
1899 */
1900 #define BTRFS_DIR_LOG_ITEM_KEY 60
1901 #define BTRFS_DIR_LOG_INDEX_KEY 72
1902 #define BTRFS_DIR_ITEM_KEY 84
1903 #define BTRFS_DIR_INDEX_KEY 96
1904 /*
1905 * extent data is for file data
1906 */
1907 #define BTRFS_EXTENT_DATA_KEY 108
1908
1909 /*
1910 * extent csums are stored in a separate tree and hold csums for
1911 * an entire extent on disk.
1912 */
1913 #define BTRFS_EXTENT_CSUM_KEY 128
1914
1915 /*
1916 * root items point to tree roots. They are typically in the root
1917 * tree used by the super block to find all the other trees
1918 */
1919 #define BTRFS_ROOT_ITEM_KEY 132
1920
1921 /*
1922 * root backrefs tie subvols and snapshots to the directory entries that
1923 * reference them
1924 */
1925 #define BTRFS_ROOT_BACKREF_KEY 144
1926
1927 /*
1928 * root refs make a fast index for listing all of the snapshots and
1929 * subvolumes referenced by a given root. They point directly to the
1930 * directory item in the root that references the subvol
1931 */
1932 #define BTRFS_ROOT_REF_KEY 156
1933
1934 /*
1935 * extent items are in the extent map tree. These record which blocks
1936 * are used, and how many references there are to each block
1937 */
1938 #define BTRFS_EXTENT_ITEM_KEY 168
1939
1940 /*
1941 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
1942 * the length, so we save the level in key->offset instead of the length.
1943 */
1944 #define BTRFS_METADATA_ITEM_KEY 169
1945
1946 #define BTRFS_TREE_BLOCK_REF_KEY 176
1947
1948 #define BTRFS_EXTENT_DATA_REF_KEY 178
1949
1950 #define BTRFS_EXTENT_REF_V0_KEY 180
1951
1952 #define BTRFS_SHARED_BLOCK_REF_KEY 182
1953
1954 #define BTRFS_SHARED_DATA_REF_KEY 184
1955
1956 /*
1957 * block groups give us hints into the extent allocation trees. Which
1958 * blocks are free etc etc
1959 */
1960 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
1961
1962 #define BTRFS_DEV_EXTENT_KEY 204
1963 #define BTRFS_DEV_ITEM_KEY 216
1964 #define BTRFS_CHUNK_ITEM_KEY 228
1965
1966 /*
1967 * Records the overall state of the qgroups.
1968 * There's only one instance of this key present,
1969 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
1970 */
1971 #define BTRFS_QGROUP_STATUS_KEY 240
1972 /*
1973 * Records the currently used space of the qgroup.
1974 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
1975 */
1976 #define BTRFS_QGROUP_INFO_KEY 242
1977 /*
1978 * Contains the user configured limits for the qgroup.
1979 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
1980 */
1981 #define BTRFS_QGROUP_LIMIT_KEY 244
1982 /*
1983 * Records the child-parent relationship of qgroups. For
1984 * each relation, 2 keys are present:
1985 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
1986 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
1987 */
1988 #define BTRFS_QGROUP_RELATION_KEY 246
1989
1990 #define BTRFS_BALANCE_ITEM_KEY 248
1991
1992 /*
1993 * Persistantly stores the io stats in the device tree.
1994 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
1995 */
1996 #define BTRFS_DEV_STATS_KEY 249
1997
1998 /*
1999 * Persistantly stores the device replace state in the device tree.
2000 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
2001 */
2002 #define BTRFS_DEV_REPLACE_KEY 250
2003
2004 /*
2005 * Stores items that allow to quickly map UUIDs to something else.
2006 * These items are part of the filesystem UUID tree.
2007 * The key is built like this:
2008 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
2009 */
2010 #if BTRFS_UUID_SIZE != 16
2011 #error "UUID items require BTRFS_UUID_SIZE == 16!"
2012 #endif
2013 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
2014 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
2015 * received subvols */
2016
2017 /*
2018 * string items are for debugging. They just store a short string of
2019 * data in the FS
2020 */
2021 #define BTRFS_STRING_ITEM_KEY 253
2022
2023 /*
2024 * Flags for mount options.
2025 *
2026 * Note: don't forget to add new options to btrfs_show_options()
2027 */
2028 #define BTRFS_MOUNT_NODATASUM (1 << 0)
2029 #define BTRFS_MOUNT_NODATACOW (1 << 1)
2030 #define BTRFS_MOUNT_NOBARRIER (1 << 2)
2031 #define BTRFS_MOUNT_SSD (1 << 3)
2032 #define BTRFS_MOUNT_DEGRADED (1 << 4)
2033 #define BTRFS_MOUNT_COMPRESS (1 << 5)
2034 #define BTRFS_MOUNT_NOTREELOG (1 << 6)
2035 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
2036 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
2037 #define BTRFS_MOUNT_NOSSD (1 << 9)
2038 #define BTRFS_MOUNT_DISCARD (1 << 10)
2039 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
2040 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
2041 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
2042 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2043 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
2044 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
2045 #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
2046 #define BTRFS_MOUNT_RECOVERY (1 << 18)
2047 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
2048 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
2049 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2050 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
2051 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
2052 #define BTRFS_MOUNT_CHANGE_INODE_CACHE (1 << 24)
2053
2054 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
2055
2056 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
2057 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
2058 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
2059 #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
2060 BTRFS_MOUNT_##opt)
2061 /*
2062 * Inode flags
2063 */
2064 #define BTRFS_INODE_NODATASUM (1 << 0)
2065 #define BTRFS_INODE_NODATACOW (1 << 1)
2066 #define BTRFS_INODE_READONLY (1 << 2)
2067 #define BTRFS_INODE_NOCOMPRESS (1 << 3)
2068 #define BTRFS_INODE_PREALLOC (1 << 4)
2069 #define BTRFS_INODE_SYNC (1 << 5)
2070 #define BTRFS_INODE_IMMUTABLE (1 << 6)
2071 #define BTRFS_INODE_APPEND (1 << 7)
2072 #define BTRFS_INODE_NODUMP (1 << 8)
2073 #define BTRFS_INODE_NOATIME (1 << 9)
2074 #define BTRFS_INODE_DIRSYNC (1 << 10)
2075 #define BTRFS_INODE_COMPRESS (1 << 11)
2076
2077 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
2078
2079 struct btrfs_map_token {
2080 struct extent_buffer *eb;
2081 char *kaddr;
2082 unsigned long offset;
2083 };
2084
2085 static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2086 {
2087 token->kaddr = NULL;
2088 }
2089
2090 /* some macros to generate set/get funcs for the struct fields. This
2091 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2092 * one for u8:
2093 */
2094 #define le8_to_cpu(v) (v)
2095 #define cpu_to_le8(v) (v)
2096 #define __le8 u8
2097
2098 #define read_eb_member(eb, ptr, type, member, result) ( \
2099 read_extent_buffer(eb, (char *)(result), \
2100 ((unsigned long)(ptr)) + \
2101 offsetof(type, member), \
2102 sizeof(((type *)0)->member)))
2103
2104 #define write_eb_member(eb, ptr, type, member, result) ( \
2105 write_extent_buffer(eb, (char *)(result), \
2106 ((unsigned long)(ptr)) + \
2107 offsetof(type, member), \
2108 sizeof(((type *)0)->member)))
2109
2110 #define DECLARE_BTRFS_SETGET_BITS(bits) \
2111 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \
2112 unsigned long off, \
2113 struct btrfs_map_token *token); \
2114 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \
2115 unsigned long off, u##bits val, \
2116 struct btrfs_map_token *token); \
2117 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2118 unsigned long off) \
2119 { \
2120 return btrfs_get_token_##bits(eb, ptr, off, NULL); \
2121 } \
2122 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2123 unsigned long off, u##bits val) \
2124 { \
2125 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
2126 }
2127
2128 DECLARE_BTRFS_SETGET_BITS(8)
2129 DECLARE_BTRFS_SETGET_BITS(16)
2130 DECLARE_BTRFS_SETGET_BITS(32)
2131 DECLARE_BTRFS_SETGET_BITS(64)
2132
2133 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
2134 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \
2135 { \
2136 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2137 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
2138 } \
2139 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
2140 u##bits val) \
2141 { \
2142 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2143 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
2144 } \
2145 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2146 struct btrfs_map_token *token) \
2147 { \
2148 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2149 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2150 } \
2151 static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
2152 type *s, u##bits val, \
2153 struct btrfs_map_token *token) \
2154 { \
2155 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2156 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2157 }
2158
2159 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
2160 static inline u##bits btrfs_##name(struct extent_buffer *eb) \
2161 { \
2162 type *p = page_address(eb->pages[0]); \
2163 u##bits res = le##bits##_to_cpu(p->member); \
2164 return res; \
2165 } \
2166 static inline void btrfs_set_##name(struct extent_buffer *eb, \
2167 u##bits val) \
2168 { \
2169 type *p = page_address(eb->pages[0]); \
2170 p->member = cpu_to_le##bits(val); \
2171 }
2172
2173 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
2174 static inline u##bits btrfs_##name(type *s) \
2175 { \
2176 return le##bits##_to_cpu(s->member); \
2177 } \
2178 static inline void btrfs_set_##name(type *s, u##bits val) \
2179 { \
2180 s->member = cpu_to_le##bits(val); \
2181 }
2182
2183 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2184 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2185 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2186 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2187 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2188 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2189 start_offset, 64);
2190 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2191 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2192 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2193 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2194 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2195 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2196
2197 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2198 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2199 total_bytes, 64);
2200 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2201 bytes_used, 64);
2202 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2203 io_align, 32);
2204 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2205 io_width, 32);
2206 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2207 sector_size, 32);
2208 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2209 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2210 dev_group, 32);
2211 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2212 seek_speed, 8);
2213 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2214 bandwidth, 8);
2215 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2216 generation, 64);
2217
2218 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2219 {
2220 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2221 }
2222
2223 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2224 {
2225 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2226 }
2227
2228 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2229 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2230 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2231 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2232 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2233 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2234 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2235 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2236 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2237 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2238 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2239
2240 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2241 {
2242 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2243 }
2244
2245 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2246 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2247 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2248 stripe_len, 64);
2249 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2250 io_align, 32);
2251 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2252 io_width, 32);
2253 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2254 sector_size, 32);
2255 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2256 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2257 num_stripes, 16);
2258 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2259 sub_stripes, 16);
2260 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2261 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2262
2263 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2264 int nr)
2265 {
2266 unsigned long offset = (unsigned long)c;
2267 offset += offsetof(struct btrfs_chunk, stripe);
2268 offset += nr * sizeof(struct btrfs_stripe);
2269 return (struct btrfs_stripe *)offset;
2270 }
2271
2272 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2273 {
2274 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2275 }
2276
2277 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2278 struct btrfs_chunk *c, int nr)
2279 {
2280 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2281 }
2282
2283 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2284 struct btrfs_chunk *c, int nr)
2285 {
2286 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2287 }
2288
2289 /* struct btrfs_block_group_item */
2290 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2291 used, 64);
2292 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2293 used, 64);
2294 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2295 struct btrfs_block_group_item, chunk_objectid, 64);
2296
2297 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2298 struct btrfs_block_group_item, chunk_objectid, 64);
2299 BTRFS_SETGET_FUNCS(disk_block_group_flags,
2300 struct btrfs_block_group_item, flags, 64);
2301 BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2302 struct btrfs_block_group_item, flags, 64);
2303
2304 /* struct btrfs_inode_ref */
2305 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2306 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2307
2308 /* struct btrfs_inode_extref */
2309 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2310 parent_objectid, 64);
2311 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2312 name_len, 16);
2313 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2314
2315 /* struct btrfs_inode_item */
2316 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2317 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2318 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2319 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2320 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2321 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2322 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2323 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2324 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2325 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2326 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2327 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2328 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2329 generation, 64);
2330 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2331 sequence, 64);
2332 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2333 transid, 64);
2334 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2335 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2336 nbytes, 64);
2337 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2338 block_group, 64);
2339 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2340 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2341 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2342 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2343 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2344 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2345
2346 static inline struct btrfs_timespec *
2347 btrfs_inode_atime(struct btrfs_inode_item *inode_item)
2348 {
2349 unsigned long ptr = (unsigned long)inode_item;
2350 ptr += offsetof(struct btrfs_inode_item, atime);
2351 return (struct btrfs_timespec *)ptr;
2352 }
2353
2354 static inline struct btrfs_timespec *
2355 btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
2356 {
2357 unsigned long ptr = (unsigned long)inode_item;
2358 ptr += offsetof(struct btrfs_inode_item, mtime);
2359 return (struct btrfs_timespec *)ptr;
2360 }
2361
2362 static inline struct btrfs_timespec *
2363 btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
2364 {
2365 unsigned long ptr = (unsigned long)inode_item;
2366 ptr += offsetof(struct btrfs_inode_item, ctime);
2367 return (struct btrfs_timespec *)ptr;
2368 }
2369
2370 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2371 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2372 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2373 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2374
2375 /* struct btrfs_dev_extent */
2376 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2377 chunk_tree, 64);
2378 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2379 chunk_objectid, 64);
2380 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2381 chunk_offset, 64);
2382 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2383
2384 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2385 {
2386 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2387 return (unsigned long)dev + ptr;
2388 }
2389
2390 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2391 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2392 generation, 64);
2393 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2394
2395 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2396
2397
2398 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2399
2400 static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2401 struct btrfs_tree_block_info *item,
2402 struct btrfs_disk_key *key)
2403 {
2404 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2405 }
2406
2407 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2408 struct btrfs_tree_block_info *item,
2409 struct btrfs_disk_key *key)
2410 {
2411 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2412 }
2413
2414 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2415 root, 64);
2416 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2417 objectid, 64);
2418 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2419 offset, 64);
2420 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2421 count, 32);
2422
2423 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2424 count, 32);
2425
2426 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2427 type, 8);
2428 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2429 offset, 64);
2430
2431 static inline u32 btrfs_extent_inline_ref_size(int type)
2432 {
2433 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2434 type == BTRFS_SHARED_BLOCK_REF_KEY)
2435 return sizeof(struct btrfs_extent_inline_ref);
2436 if (type == BTRFS_SHARED_DATA_REF_KEY)
2437 return sizeof(struct btrfs_shared_data_ref) +
2438 sizeof(struct btrfs_extent_inline_ref);
2439 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2440 return sizeof(struct btrfs_extent_data_ref) +
2441 offsetof(struct btrfs_extent_inline_ref, offset);
2442 BUG();
2443 return 0;
2444 }
2445
2446 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2447 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2448 generation, 64);
2449 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2450 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2451
2452 /* struct btrfs_node */
2453 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2454 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2455 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2456 blockptr, 64);
2457 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2458 generation, 64);
2459
2460 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2461 {
2462 unsigned long ptr;
2463 ptr = offsetof(struct btrfs_node, ptrs) +
2464 sizeof(struct btrfs_key_ptr) * nr;
2465 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2466 }
2467
2468 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2469 int nr, u64 val)
2470 {
2471 unsigned long ptr;
2472 ptr = offsetof(struct btrfs_node, ptrs) +
2473 sizeof(struct btrfs_key_ptr) * nr;
2474 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2475 }
2476
2477 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2478 {
2479 unsigned long ptr;
2480 ptr = offsetof(struct btrfs_node, ptrs) +
2481 sizeof(struct btrfs_key_ptr) * nr;
2482 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2483 }
2484
2485 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2486 int nr, u64 val)
2487 {
2488 unsigned long ptr;
2489 ptr = offsetof(struct btrfs_node, ptrs) +
2490 sizeof(struct btrfs_key_ptr) * nr;
2491 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2492 }
2493
2494 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2495 {
2496 return offsetof(struct btrfs_node, ptrs) +
2497 sizeof(struct btrfs_key_ptr) * nr;
2498 }
2499
2500 void btrfs_node_key(struct extent_buffer *eb,
2501 struct btrfs_disk_key *disk_key, int nr);
2502
2503 static inline void btrfs_set_node_key(struct extent_buffer *eb,
2504 struct btrfs_disk_key *disk_key, int nr)
2505 {
2506 unsigned long ptr;
2507 ptr = btrfs_node_key_ptr_offset(nr);
2508 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2509 struct btrfs_key_ptr, key, disk_key);
2510 }
2511
2512 /* struct btrfs_item */
2513 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2514 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2515 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2516 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2517
2518 static inline unsigned long btrfs_item_nr_offset(int nr)
2519 {
2520 return offsetof(struct btrfs_leaf, items) +
2521 sizeof(struct btrfs_item) * nr;
2522 }
2523
2524 static inline struct btrfs_item *btrfs_item_nr(int nr)
2525 {
2526 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2527 }
2528
2529 static inline u32 btrfs_item_end(struct extent_buffer *eb,
2530 struct btrfs_item *item)
2531 {
2532 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2533 }
2534
2535 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2536 {
2537 return btrfs_item_end(eb, btrfs_item_nr(nr));
2538 }
2539
2540 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2541 {
2542 return btrfs_item_offset(eb, btrfs_item_nr(nr));
2543 }
2544
2545 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2546 {
2547 return btrfs_item_size(eb, btrfs_item_nr(nr));
2548 }
2549
2550 static inline void btrfs_item_key(struct extent_buffer *eb,
2551 struct btrfs_disk_key *disk_key, int nr)
2552 {
2553 struct btrfs_item *item = btrfs_item_nr(nr);
2554 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2555 }
2556
2557 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2558 struct btrfs_disk_key *disk_key, int nr)
2559 {
2560 struct btrfs_item *item = btrfs_item_nr(nr);
2561 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2562 }
2563
2564 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2565
2566 /*
2567 * struct btrfs_root_ref
2568 */
2569 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2570 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2571 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2572
2573 /* struct btrfs_dir_item */
2574 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2575 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2576 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2577 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2578 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2579 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2580 data_len, 16);
2581 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2582 name_len, 16);
2583 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2584 transid, 64);
2585
2586 static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2587 struct btrfs_dir_item *item,
2588 struct btrfs_disk_key *key)
2589 {
2590 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2591 }
2592
2593 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2594 struct btrfs_dir_item *item,
2595 struct btrfs_disk_key *key)
2596 {
2597 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2598 }
2599
2600 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2601 num_entries, 64);
2602 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2603 num_bitmaps, 64);
2604 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2605 generation, 64);
2606
2607 static inline void btrfs_free_space_key(struct extent_buffer *eb,
2608 struct btrfs_free_space_header *h,
2609 struct btrfs_disk_key *key)
2610 {
2611 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2612 }
2613
2614 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2615 struct btrfs_free_space_header *h,
2616 struct btrfs_disk_key *key)
2617 {
2618 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2619 }
2620
2621 /* struct btrfs_disk_key */
2622 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2623 objectid, 64);
2624 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2625 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2626
2627 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2628 struct btrfs_disk_key *disk)
2629 {
2630 cpu->offset = le64_to_cpu(disk->offset);
2631 cpu->type = disk->type;
2632 cpu->objectid = le64_to_cpu(disk->objectid);
2633 }
2634
2635 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2636 struct btrfs_key *cpu)
2637 {
2638 disk->offset = cpu_to_le64(cpu->offset);
2639 disk->type = cpu->type;
2640 disk->objectid = cpu_to_le64(cpu->objectid);
2641 }
2642
2643 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2644 struct btrfs_key *key, int nr)
2645 {
2646 struct btrfs_disk_key disk_key;
2647 btrfs_node_key(eb, &disk_key, nr);
2648 btrfs_disk_key_to_cpu(key, &disk_key);
2649 }
2650
2651 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2652 struct btrfs_key *key, int nr)
2653 {
2654 struct btrfs_disk_key disk_key;
2655 btrfs_item_key(eb, &disk_key, nr);
2656 btrfs_disk_key_to_cpu(key, &disk_key);
2657 }
2658
2659 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2660 struct btrfs_dir_item *item,
2661 struct btrfs_key *key)
2662 {
2663 struct btrfs_disk_key disk_key;
2664 btrfs_dir_item_key(eb, item, &disk_key);
2665 btrfs_disk_key_to_cpu(key, &disk_key);
2666 }
2667
2668
2669 static inline u8 btrfs_key_type(struct btrfs_key *key)
2670 {
2671 return key->type;
2672 }
2673
2674 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2675 {
2676 key->type = val;
2677 }
2678
2679 /* struct btrfs_header */
2680 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2681 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2682 generation, 64);
2683 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2684 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2685 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2686 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2687 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2688 generation, 64);
2689 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2690 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2691 nritems, 32);
2692 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2693
2694 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2695 {
2696 return (btrfs_header_flags(eb) & flag) == flag;
2697 }
2698
2699 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2700 {
2701 u64 flags = btrfs_header_flags(eb);
2702 btrfs_set_header_flags(eb, flags | flag);
2703 return (flags & flag) == flag;
2704 }
2705
2706 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2707 {
2708 u64 flags = btrfs_header_flags(eb);
2709 btrfs_set_header_flags(eb, flags & ~flag);
2710 return (flags & flag) == flag;
2711 }
2712
2713 static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2714 {
2715 u64 flags = btrfs_header_flags(eb);
2716 return flags >> BTRFS_BACKREF_REV_SHIFT;
2717 }
2718
2719 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2720 int rev)
2721 {
2722 u64 flags = btrfs_header_flags(eb);
2723 flags &= ~BTRFS_BACKREF_REV_MASK;
2724 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2725 btrfs_set_header_flags(eb, flags);
2726 }
2727
2728 static inline unsigned long btrfs_header_fsid(void)
2729 {
2730 return offsetof(struct btrfs_header, fsid);
2731 }
2732
2733 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2734 {
2735 return offsetof(struct btrfs_header, chunk_tree_uuid);
2736 }
2737
2738 static inline int btrfs_is_leaf(struct extent_buffer *eb)
2739 {
2740 return btrfs_header_level(eb) == 0;
2741 }
2742
2743 /* struct btrfs_root_item */
2744 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2745 generation, 64);
2746 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2747 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2748 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2749
2750 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2751 generation, 64);
2752 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2753 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2754 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2755 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2756 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2757 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2758 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2759 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2760 last_snapshot, 64);
2761 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2762 generation_v2, 64);
2763 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2764 ctransid, 64);
2765 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2766 otransid, 64);
2767 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2768 stransid, 64);
2769 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2770 rtransid, 64);
2771
2772 static inline bool btrfs_root_readonly(struct btrfs_root *root)
2773 {
2774 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2775 }
2776
2777 /* struct btrfs_root_backup */
2778 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2779 tree_root, 64);
2780 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2781 tree_root_gen, 64);
2782 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2783 tree_root_level, 8);
2784
2785 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2786 chunk_root, 64);
2787 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2788 chunk_root_gen, 64);
2789 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2790 chunk_root_level, 8);
2791
2792 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2793 extent_root, 64);
2794 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2795 extent_root_gen, 64);
2796 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2797 extent_root_level, 8);
2798
2799 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2800 fs_root, 64);
2801 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2802 fs_root_gen, 64);
2803 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2804 fs_root_level, 8);
2805
2806 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2807 dev_root, 64);
2808 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2809 dev_root_gen, 64);
2810 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2811 dev_root_level, 8);
2812
2813 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2814 csum_root, 64);
2815 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2816 csum_root_gen, 64);
2817 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2818 csum_root_level, 8);
2819 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2820 total_bytes, 64);
2821 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2822 bytes_used, 64);
2823 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2824 num_devices, 64);
2825
2826 /* struct btrfs_balance_item */
2827 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2828
2829 static inline void btrfs_balance_data(struct extent_buffer *eb,
2830 struct btrfs_balance_item *bi,
2831 struct btrfs_disk_balance_args *ba)
2832 {
2833 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2834 }
2835
2836 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2837 struct btrfs_balance_item *bi,
2838 struct btrfs_disk_balance_args *ba)
2839 {
2840 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2841 }
2842
2843 static inline void btrfs_balance_meta(struct extent_buffer *eb,
2844 struct btrfs_balance_item *bi,
2845 struct btrfs_disk_balance_args *ba)
2846 {
2847 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2848 }
2849
2850 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2851 struct btrfs_balance_item *bi,
2852 struct btrfs_disk_balance_args *ba)
2853 {
2854 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2855 }
2856
2857 static inline void btrfs_balance_sys(struct extent_buffer *eb,
2858 struct btrfs_balance_item *bi,
2859 struct btrfs_disk_balance_args *ba)
2860 {
2861 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2862 }
2863
2864 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2865 struct btrfs_balance_item *bi,
2866 struct btrfs_disk_balance_args *ba)
2867 {
2868 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2869 }
2870
2871 static inline void
2872 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2873 struct btrfs_disk_balance_args *disk)
2874 {
2875 memset(cpu, 0, sizeof(*cpu));
2876
2877 cpu->profiles = le64_to_cpu(disk->profiles);
2878 cpu->usage = le64_to_cpu(disk->usage);
2879 cpu->devid = le64_to_cpu(disk->devid);
2880 cpu->pstart = le64_to_cpu(disk->pstart);
2881 cpu->pend = le64_to_cpu(disk->pend);
2882 cpu->vstart = le64_to_cpu(disk->vstart);
2883 cpu->vend = le64_to_cpu(disk->vend);
2884 cpu->target = le64_to_cpu(disk->target);
2885 cpu->flags = le64_to_cpu(disk->flags);
2886 }
2887
2888 static inline void
2889 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2890 struct btrfs_balance_args *cpu)
2891 {
2892 memset(disk, 0, sizeof(*disk));
2893
2894 disk->profiles = cpu_to_le64(cpu->profiles);
2895 disk->usage = cpu_to_le64(cpu->usage);
2896 disk->devid = cpu_to_le64(cpu->devid);
2897 disk->pstart = cpu_to_le64(cpu->pstart);
2898 disk->pend = cpu_to_le64(cpu->pend);
2899 disk->vstart = cpu_to_le64(cpu->vstart);
2900 disk->vend = cpu_to_le64(cpu->vend);
2901 disk->target = cpu_to_le64(cpu->target);
2902 disk->flags = cpu_to_le64(cpu->flags);
2903 }
2904
2905 /* struct btrfs_super_block */
2906 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2907 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2908 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2909 generation, 64);
2910 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2911 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2912 struct btrfs_super_block, sys_chunk_array_size, 32);
2913 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2914 struct btrfs_super_block, chunk_root_generation, 64);
2915 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2916 root_level, 8);
2917 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2918 chunk_root, 64);
2919 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2920 chunk_root_level, 8);
2921 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2922 log_root, 64);
2923 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2924 log_root_transid, 64);
2925 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2926 log_root_level, 8);
2927 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2928 total_bytes, 64);
2929 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2930 bytes_used, 64);
2931 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2932 sectorsize, 32);
2933 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2934 nodesize, 32);
2935 BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block,
2936 leafsize, 32);
2937 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2938 stripesize, 32);
2939 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2940 root_dir_objectid, 64);
2941 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2942 num_devices, 64);
2943 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2944 compat_flags, 64);
2945 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2946 compat_ro_flags, 64);
2947 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2948 incompat_flags, 64);
2949 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2950 csum_type, 16);
2951 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2952 cache_generation, 64);
2953 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2954 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2955 uuid_tree_generation, 64);
2956
2957 static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
2958 {
2959 u16 t = btrfs_super_csum_type(s);
2960 /*
2961 * csum type is validated at mount time
2962 */
2963 return btrfs_csum_sizes[t];
2964 }
2965
2966 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
2967 {
2968 return offsetof(struct btrfs_leaf, items);
2969 }
2970
2971 /* struct btrfs_file_extent_item */
2972 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2973 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2974 struct btrfs_file_extent_item, disk_bytenr, 64);
2975 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2976 struct btrfs_file_extent_item, offset, 64);
2977 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2978 struct btrfs_file_extent_item, generation, 64);
2979 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2980 struct btrfs_file_extent_item, num_bytes, 64);
2981 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2982 struct btrfs_file_extent_item, disk_num_bytes, 64);
2983 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2984 struct btrfs_file_extent_item, compression, 8);
2985
2986 static inline unsigned long
2987 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
2988 {
2989 unsigned long offset = (unsigned long)e;
2990 offset += offsetof(struct btrfs_file_extent_item, disk_bytenr);
2991 return offset;
2992 }
2993
2994 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2995 {
2996 return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize;
2997 }
2998
2999 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
3000 disk_bytenr, 64);
3001 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
3002 generation, 64);
3003 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
3004 disk_num_bytes, 64);
3005 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
3006 offset, 64);
3007 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
3008 num_bytes, 64);
3009 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
3010 ram_bytes, 64);
3011 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
3012 compression, 8);
3013 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
3014 encryption, 8);
3015 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
3016 other_encoding, 16);
3017
3018 /*
3019 * this returns the number of bytes used by the item on disk, minus the
3020 * size of any extent headers. If a file is compressed on disk, this is
3021 * the compressed size
3022 */
3023 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3024 struct btrfs_item *e)
3025 {
3026 unsigned long offset;
3027 offset = offsetof(struct btrfs_file_extent_item, disk_bytenr);
3028 return btrfs_item_size(eb, e) - offset;
3029 }
3030
3031 /* this returns the number of file bytes represented by the inline item.
3032 * If an item is compressed, this is the uncompressed size
3033 */
3034 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3035 int slot,
3036 struct btrfs_file_extent_item *fi)
3037 {
3038 struct btrfs_map_token token;
3039
3040 btrfs_init_map_token(&token);
3041 /*
3042 * return the space used on disk if this item isn't
3043 * compressed or encoded
3044 */
3045 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3046 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3047 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3048 return btrfs_file_extent_inline_item_len(eb,
3049 btrfs_item_nr(slot));
3050 }
3051
3052 /* otherwise use the ram bytes field */
3053 return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3054 }
3055
3056
3057 /* btrfs_dev_stats_item */
3058 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3059 struct btrfs_dev_stats_item *ptr,
3060 int index)
3061 {
3062 u64 val;
3063
3064 read_extent_buffer(eb, &val,
3065 offsetof(struct btrfs_dev_stats_item, values) +
3066 ((unsigned long)ptr) + (index * sizeof(u64)),
3067 sizeof(val));
3068 return val;
3069 }
3070
3071 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3072 struct btrfs_dev_stats_item *ptr,
3073 int index, u64 val)
3074 {
3075 write_extent_buffer(eb, &val,
3076 offsetof(struct btrfs_dev_stats_item, values) +
3077 ((unsigned long)ptr) + (index * sizeof(u64)),
3078 sizeof(val));
3079 }
3080
3081 /* btrfs_qgroup_status_item */
3082 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3083 generation, 64);
3084 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3085 version, 64);
3086 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3087 flags, 64);
3088 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3089 rescan, 64);
3090
3091 /* btrfs_qgroup_info_item */
3092 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3093 generation, 64);
3094 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3095 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3096 rfer_cmpr, 64);
3097 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3098 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3099 excl_cmpr, 64);
3100
3101 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3102 struct btrfs_qgroup_info_item, generation, 64);
3103 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3104 rfer, 64);
3105 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3106 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3107 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3108 excl, 64);
3109 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3110 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3111
3112 /* btrfs_qgroup_limit_item */
3113 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3114 flags, 64);
3115 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3116 max_rfer, 64);
3117 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3118 max_excl, 64);
3119 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3120 rsv_rfer, 64);
3121 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3122 rsv_excl, 64);
3123
3124 /* btrfs_dev_replace_item */
3125 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3126 struct btrfs_dev_replace_item, src_devid, 64);
3127 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3128 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3129 64);
3130 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3131 replace_state, 64);
3132 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3133 time_started, 64);
3134 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3135 time_stopped, 64);
3136 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3137 num_write_errors, 64);
3138 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3139 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3140 64);
3141 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3142 cursor_left, 64);
3143 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3144 cursor_right, 64);
3145
3146 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3147 struct btrfs_dev_replace_item, src_devid, 64);
3148 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3149 struct btrfs_dev_replace_item,
3150 cont_reading_from_srcdev_mode, 64);
3151 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3152 struct btrfs_dev_replace_item, replace_state, 64);
3153 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3154 struct btrfs_dev_replace_item, time_started, 64);
3155 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3156 struct btrfs_dev_replace_item, time_stopped, 64);
3157 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3158 struct btrfs_dev_replace_item, num_write_errors, 64);
3159 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3160 struct btrfs_dev_replace_item,
3161 num_uncorrectable_read_errors, 64);
3162 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3163 struct btrfs_dev_replace_item, cursor_left, 64);
3164 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3165 struct btrfs_dev_replace_item, cursor_right, 64);
3166
3167 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3168 {
3169 return sb->s_fs_info;
3170 }
3171
3172 static inline u32 btrfs_level_size(struct btrfs_root *root, int level)
3173 {
3174 if (level == 0)
3175 return root->leafsize;
3176 return root->nodesize;
3177 }
3178
3179 /* helper function to cast into the data area of the leaf. */
3180 #define btrfs_item_ptr(leaf, slot, type) \
3181 ((type *)(btrfs_leaf_data(leaf) + \
3182 btrfs_item_offset_nr(leaf, slot)))
3183
3184 #define btrfs_item_ptr_offset(leaf, slot) \
3185 ((unsigned long)(btrfs_leaf_data(leaf) + \
3186 btrfs_item_offset_nr(leaf, slot)))
3187
3188 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3189 {
3190 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3191 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3192 }
3193
3194 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3195 {
3196 return mapping_gfp_mask(mapping) & ~__GFP_FS;
3197 }
3198
3199 /* extent-tree.c */
3200 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3201 unsigned num_items)
3202 {
3203 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3204 2 * num_items;
3205 }
3206
3207 /*
3208 * Doing a truncate won't result in new nodes or leaves, just what we need for
3209 * COW.
3210 */
3211 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3212 unsigned num_items)
3213 {
3214 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3215 num_items;
3216 }
3217
3218 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3219 struct btrfs_root *root);
3220 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3221 struct btrfs_root *root);
3222 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3223 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3224 struct btrfs_root *root, unsigned long count);
3225 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
3226 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3227 struct btrfs_root *root, u64 bytenr,
3228 u64 offset, int metadata, u64 *refs, u64 *flags);
3229 int btrfs_pin_extent(struct btrfs_root *root,
3230 u64 bytenr, u64 num, int reserved);
3231 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3232 u64 bytenr, u64 num_bytes);
3233 int btrfs_exclude_logged_extents(struct btrfs_root *root,
3234 struct extent_buffer *eb);
3235 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3236 struct btrfs_root *root,
3237 u64 objectid, u64 offset, u64 bytenr);
3238 struct btrfs_block_group_cache *btrfs_lookup_block_group(
3239 struct btrfs_fs_info *info,
3240 u64 bytenr);
3241 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3242 int get_block_group_index(struct btrfs_block_group_cache *cache);
3243 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
3244 struct btrfs_root *root, u32 blocksize,
3245 u64 parent, u64 root_objectid,
3246 struct btrfs_disk_key *key, int level,
3247 u64 hint, u64 empty_size);
3248 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3249 struct btrfs_root *root,
3250 struct extent_buffer *buf,
3251 u64 parent, int last_ref);
3252 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3253 struct btrfs_root *root,
3254 u64 root_objectid, u64 owner,
3255 u64 offset, struct btrfs_key *ins);
3256 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3257 struct btrfs_root *root,
3258 u64 root_objectid, u64 owner, u64 offset,
3259 struct btrfs_key *ins);
3260 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3261 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3262 struct btrfs_key *ins, int is_data);
3263 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3264 struct extent_buffer *buf, int full_backref, int for_cow);
3265 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3266 struct extent_buffer *buf, int full_backref, int for_cow);
3267 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3268 struct btrfs_root *root,
3269 u64 bytenr, u64 num_bytes, u64 flags,
3270 int level, int is_data);
3271 int btrfs_free_extent(struct btrfs_trans_handle *trans,
3272 struct btrfs_root *root,
3273 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3274 u64 owner, u64 offset, int for_cow);
3275
3276 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len);
3277 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3278 u64 start, u64 len);
3279 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3280 struct btrfs_root *root);
3281 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3282 struct btrfs_root *root);
3283 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3284 struct btrfs_root *root,
3285 u64 bytenr, u64 num_bytes, u64 parent,
3286 u64 root_objectid, u64 owner, u64 offset, int for_cow);
3287
3288 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3289 struct btrfs_root *root);
3290 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3291 int btrfs_free_block_groups(struct btrfs_fs_info *info);
3292 int btrfs_read_block_groups(struct btrfs_root *root);
3293 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3294 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3295 struct btrfs_root *root, u64 bytes_used,
3296 u64 type, u64 chunk_objectid, u64 chunk_offset,
3297 u64 size);
3298 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3299 struct btrfs_root *root, u64 group_start);
3300 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3301 struct btrfs_root *root);
3302 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3303 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3304
3305 enum btrfs_reserve_flush_enum {
3306 /* If we are in the transaction, we can't flush anything.*/
3307 BTRFS_RESERVE_NO_FLUSH,
3308 /*
3309 * Flushing delalloc may cause deadlock somewhere, in this
3310 * case, use FLUSH LIMIT
3311 */
3312 BTRFS_RESERVE_FLUSH_LIMIT,
3313 BTRFS_RESERVE_FLUSH_ALL,
3314 };
3315
3316 int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
3317 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
3318 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3319 struct btrfs_root *root);
3320 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3321 struct inode *inode);
3322 void btrfs_orphan_release_metadata(struct inode *inode);
3323 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3324 struct btrfs_block_rsv *rsv,
3325 int nitems,
3326 u64 *qgroup_reserved, bool use_global_rsv);
3327 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3328 struct btrfs_block_rsv *rsv,
3329 u64 qgroup_reserved);
3330 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3331 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3332 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
3333 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
3334 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3335 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3336 unsigned short type);
3337 void btrfs_free_block_rsv(struct btrfs_root *root,
3338 struct btrfs_block_rsv *rsv);
3339 int btrfs_block_rsv_add(struct btrfs_root *root,
3340 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3341 enum btrfs_reserve_flush_enum flush);
3342 int btrfs_block_rsv_check(struct btrfs_root *root,
3343 struct btrfs_block_rsv *block_rsv, int min_factor);
3344 int btrfs_block_rsv_refill(struct btrfs_root *root,
3345 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3346 enum btrfs_reserve_flush_enum flush);
3347 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3348 struct btrfs_block_rsv *dst_rsv,
3349 u64 num_bytes);
3350 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3351 struct btrfs_block_rsv *dest, u64 num_bytes,
3352 int min_factor);
3353 void btrfs_block_rsv_release(struct btrfs_root *root,
3354 struct btrfs_block_rsv *block_rsv,
3355 u64 num_bytes);
3356 int btrfs_set_block_group_ro(struct btrfs_root *root,
3357 struct btrfs_block_group_cache *cache);
3358 void btrfs_set_block_group_rw(struct btrfs_root *root,
3359 struct btrfs_block_group_cache *cache);
3360 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3361 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3362 int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3363 u64 start, u64 end);
3364 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
3365 u64 num_bytes, u64 *actual_bytes);
3366 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3367 struct btrfs_root *root, u64 type);
3368 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3369
3370 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3371 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3372 struct btrfs_fs_info *fs_info);
3373 int __get_raid_index(u64 flags);
3374
3375 int btrfs_start_nocow_write(struct btrfs_root *root);
3376 void btrfs_end_nocow_write(struct btrfs_root *root);
3377 /* ctree.c */
3378 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3379 int level, int *slot);
3380 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3381 int btrfs_previous_item(struct btrfs_root *root,
3382 struct btrfs_path *path, u64 min_objectid,
3383 int type);
3384 int btrfs_previous_extent_item(struct btrfs_root *root,
3385 struct btrfs_path *path, u64 min_objectid);
3386 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3387 struct btrfs_key *new_key);
3388 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3389 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3390 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3391 struct btrfs_key *key, int lowest_level,
3392 u64 min_trans);
3393 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3394 struct btrfs_path *path,
3395 u64 min_trans);
3396 enum btrfs_compare_tree_result {
3397 BTRFS_COMPARE_TREE_NEW,
3398 BTRFS_COMPARE_TREE_DELETED,
3399 BTRFS_COMPARE_TREE_CHANGED,
3400 BTRFS_COMPARE_TREE_SAME,
3401 };
3402 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3403 struct btrfs_root *right_root,
3404 struct btrfs_path *left_path,
3405 struct btrfs_path *right_path,
3406 struct btrfs_key *key,
3407 enum btrfs_compare_tree_result result,
3408 void *ctx);
3409 int btrfs_compare_trees(struct btrfs_root *left_root,
3410 struct btrfs_root *right_root,
3411 btrfs_changed_cb_t cb, void *ctx);
3412 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3413 struct btrfs_root *root, struct extent_buffer *buf,
3414 struct extent_buffer *parent, int parent_slot,
3415 struct extent_buffer **cow_ret);
3416 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3417 struct btrfs_root *root,
3418 struct extent_buffer *buf,
3419 struct extent_buffer **cow_ret, u64 new_root_objectid);
3420 int btrfs_block_can_be_shared(struct btrfs_root *root,
3421 struct extent_buffer *buf);
3422 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3423 u32 data_size);
3424 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3425 u32 new_size, int from_end);
3426 int btrfs_split_item(struct btrfs_trans_handle *trans,
3427 struct btrfs_root *root,
3428 struct btrfs_path *path,
3429 struct btrfs_key *new_key,
3430 unsigned long split_offset);
3431 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3432 struct btrfs_root *root,
3433 struct btrfs_path *path,
3434 struct btrfs_key *new_key);
3435 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3436 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3437 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3438 *root, struct btrfs_key *key, struct btrfs_path *p, int
3439 ins_len, int cow);
3440 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3441 struct btrfs_path *p, u64 time_seq);
3442 int btrfs_search_slot_for_read(struct btrfs_root *root,
3443 struct btrfs_key *key, struct btrfs_path *p,
3444 int find_higher, int return_any);
3445 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3446 struct btrfs_root *root, struct extent_buffer *parent,
3447 int start_slot, u64 *last_ret,
3448 struct btrfs_key *progress);
3449 void btrfs_release_path(struct btrfs_path *p);
3450 struct btrfs_path *btrfs_alloc_path(void);
3451 void btrfs_free_path(struct btrfs_path *p);
3452 void btrfs_set_path_blocking(struct btrfs_path *p);
3453 void btrfs_clear_path_blocking(struct btrfs_path *p,
3454 struct extent_buffer *held, int held_rw);
3455 void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3456
3457 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3458 struct btrfs_path *path, int slot, int nr);
3459 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3460 struct btrfs_root *root,
3461 struct btrfs_path *path)
3462 {
3463 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3464 }
3465
3466 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3467 struct btrfs_key *cpu_key, u32 *data_size,
3468 u32 total_data, u32 total_size, int nr);
3469 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3470 *root, struct btrfs_key *key, void *data, u32 data_size);
3471 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3472 struct btrfs_root *root,
3473 struct btrfs_path *path,
3474 struct btrfs_key *cpu_key, u32 *data_size, int nr);
3475
3476 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3477 struct btrfs_root *root,
3478 struct btrfs_path *path,
3479 struct btrfs_key *key,
3480 u32 data_size)
3481 {
3482 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
3483 }
3484
3485 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3486 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3487 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3488 u64 time_seq);
3489 static inline int btrfs_next_old_item(struct btrfs_root *root,
3490 struct btrfs_path *p, u64 time_seq)
3491 {
3492 ++p->slots[0];
3493 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3494 return btrfs_next_old_leaf(root, p, time_seq);
3495 return 0;
3496 }
3497 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3498 {
3499 return btrfs_next_old_item(root, p, 0);
3500 }
3501 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3502 int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3503 struct btrfs_block_rsv *block_rsv,
3504 int update_ref, int for_reloc);
3505 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3506 struct btrfs_root *root,
3507 struct extent_buffer *node,
3508 struct extent_buffer *parent);
3509 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3510 {
3511 /*
3512 * Get synced with close_ctree()
3513 */
3514 smp_mb();
3515 return fs_info->closing;
3516 }
3517
3518 /*
3519 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3520 * anything except sleeping. This function is used to check the status of
3521 * the fs.
3522 */
3523 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3524 {
3525 return (root->fs_info->sb->s_flags & MS_RDONLY ||
3526 btrfs_fs_closing(root->fs_info));
3527 }
3528
3529 static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3530 {
3531 kfree(fs_info->balance_ctl);
3532 kfree(fs_info->delayed_root);
3533 kfree(fs_info->extent_root);
3534 kfree(fs_info->tree_root);
3535 kfree(fs_info->chunk_root);
3536 kfree(fs_info->dev_root);
3537 kfree(fs_info->csum_root);
3538 kfree(fs_info->quota_root);
3539 kfree(fs_info->uuid_root);
3540 kfree(fs_info->super_copy);
3541 kfree(fs_info->super_for_commit);
3542 kfree(fs_info);
3543 }
3544
3545 /* tree mod log functions from ctree.c */
3546 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3547 struct seq_list *elem);
3548 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3549 struct seq_list *elem);
3550 u64 btrfs_tree_mod_seq_prev(u64 seq);
3551 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3552
3553 /* root-item.c */
3554 int btrfs_find_root_ref(struct btrfs_root *tree_root,
3555 struct btrfs_path *path,
3556 u64 root_id, u64 ref_id);
3557 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3558 struct btrfs_root *tree_root,
3559 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3560 const char *name, int name_len);
3561 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3562 struct btrfs_root *tree_root,
3563 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3564 const char *name, int name_len);
3565 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3566 struct btrfs_key *key);
3567 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3568 *root, struct btrfs_key *key, struct btrfs_root_item
3569 *item);
3570 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3571 struct btrfs_root *root,
3572 struct btrfs_key *key,
3573 struct btrfs_root_item *item);
3574 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3575 struct btrfs_path *path, struct btrfs_root_item *root_item,
3576 struct btrfs_key *root_key);
3577 int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3578 void btrfs_set_root_node(struct btrfs_root_item *item,
3579 struct extent_buffer *node);
3580 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3581 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3582 struct btrfs_root *root);
3583
3584 /* uuid-tree.c */
3585 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3586 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3587 u64 subid);
3588 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3589 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3590 u64 subid);
3591 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3592 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3593 u64));
3594
3595 /* dir-item.c */
3596 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3597 const char *name, int name_len);
3598 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3599 struct btrfs_root *root, const char *name,
3600 int name_len, struct inode *dir,
3601 struct btrfs_key *location, u8 type, u64 index);
3602 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3603 struct btrfs_root *root,
3604 struct btrfs_path *path, u64 dir,
3605 const char *name, int name_len,
3606 int mod);
3607 struct btrfs_dir_item *
3608 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3609 struct btrfs_root *root,
3610 struct btrfs_path *path, u64 dir,
3611 u64 objectid, const char *name, int name_len,
3612 int mod);
3613 struct btrfs_dir_item *
3614 btrfs_search_dir_index_item(struct btrfs_root *root,
3615 struct btrfs_path *path, u64 dirid,
3616 const char *name, int name_len);
3617 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3618 struct btrfs_root *root,
3619 struct btrfs_path *path,
3620 struct btrfs_dir_item *di);
3621 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3622 struct btrfs_root *root,
3623 struct btrfs_path *path, u64 objectid,
3624 const char *name, u16 name_len,
3625 const void *data, u16 data_len);
3626 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3627 struct btrfs_root *root,
3628 struct btrfs_path *path, u64 dir,
3629 const char *name, u16 name_len,
3630 int mod);
3631 int verify_dir_item(struct btrfs_root *root,
3632 struct extent_buffer *leaf,
3633 struct btrfs_dir_item *dir_item);
3634
3635 /* orphan.c */
3636 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3637 struct btrfs_root *root, u64 offset);
3638 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3639 struct btrfs_root *root, u64 offset);
3640 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3641
3642 /* inode-item.c */
3643 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3644 struct btrfs_root *root,
3645 const char *name, int name_len,
3646 u64 inode_objectid, u64 ref_objectid, u64 index);
3647 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3648 struct btrfs_root *root,
3649 const char *name, int name_len,
3650 u64 inode_objectid, u64 ref_objectid, u64 *index);
3651 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3652 struct btrfs_root *root,
3653 struct btrfs_path *path, u64 objectid);
3654 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3655 *root, struct btrfs_path *path,
3656 struct btrfs_key *location, int mod);
3657
3658 struct btrfs_inode_extref *
3659 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3660 struct btrfs_root *root,
3661 struct btrfs_path *path,
3662 const char *name, int name_len,
3663 u64 inode_objectid, u64 ref_objectid, int ins_len,
3664 int cow);
3665
3666 int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3667 u64 ref_objectid, const char *name,
3668 int name_len,
3669 struct btrfs_inode_extref **extref_ret);
3670
3671 /* file-item.c */
3672 struct btrfs_dio_private;
3673 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3674 struct btrfs_root *root, u64 bytenr, u64 len);
3675 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3676 struct bio *bio, u32 *dst);
3677 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3678 struct btrfs_dio_private *dip, struct bio *bio,
3679 u64 logical_offset);
3680 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3681 struct btrfs_root *root,
3682 u64 objectid, u64 pos,
3683 u64 disk_offset, u64 disk_num_bytes,
3684 u64 num_bytes, u64 offset, u64 ram_bytes,
3685 u8 compression, u8 encryption, u16 other_encoding);
3686 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3687 struct btrfs_root *root,
3688 struct btrfs_path *path, u64 objectid,
3689 u64 bytenr, int mod);
3690 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3691 struct btrfs_root *root,
3692 struct btrfs_ordered_sum *sums);
3693 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
3694 struct bio *bio, u64 file_start, int contig);
3695 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3696 struct list_head *list, int search_commit);
3697 /* inode.c */
3698 struct btrfs_delalloc_work {
3699 struct inode *inode;
3700 int wait;
3701 int delay_iput;
3702 struct completion completion;
3703 struct list_head list;
3704 struct btrfs_work work;
3705 };
3706
3707 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3708 int wait, int delay_iput);
3709 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3710
3711 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
3712 size_t pg_offset, u64 start, u64 len,
3713 int create);
3714 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3715 u64 *orig_start, u64 *orig_block_len,
3716 u64 *ram_bytes);
3717
3718 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
3719 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
3720 #define ClearPageChecked ClearPageFsMisc
3721 #define SetPageChecked SetPageFsMisc
3722 #define PageChecked PageFsMisc
3723 #endif
3724
3725 /* This forces readahead on a given range of bytes in an inode */
3726 static inline void btrfs_force_ra(struct address_space *mapping,
3727 struct file_ra_state *ra, struct file *file,
3728 pgoff_t offset, unsigned long req_size)
3729 {
3730 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3731 }
3732
3733 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3734 int btrfs_set_inode_index(struct inode *dir, u64 *index);
3735 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3736 struct btrfs_root *root,
3737 struct inode *dir, struct inode *inode,
3738 const char *name, int name_len);
3739 int btrfs_add_link(struct btrfs_trans_handle *trans,
3740 struct inode *parent_inode, struct inode *inode,
3741 const char *name, int name_len, int add_backref, u64 index);
3742 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3743 struct btrfs_root *root,
3744 struct inode *dir, u64 objectid,
3745 const char *name, int name_len);
3746 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3747 int front);
3748 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3749 struct btrfs_root *root,
3750 struct inode *inode, u64 new_size,
3751 u32 min_type);
3752
3753 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3754 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
3755 int nr);
3756 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3757 struct extent_state **cached_state);
3758 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3759 struct btrfs_root *new_root,
3760 struct btrfs_root *parent_root,
3761 u64 new_dirid);
3762 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
3763 size_t size, struct bio *bio,
3764 unsigned long bio_flags);
3765 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
3766 int btrfs_readpage(struct file *file, struct page *page);
3767 void btrfs_evict_inode(struct inode *inode);
3768 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3769 struct inode *btrfs_alloc_inode(struct super_block *sb);
3770 void btrfs_destroy_inode(struct inode *inode);
3771 int btrfs_drop_inode(struct inode *inode);
3772 int btrfs_init_cachep(void);
3773 void btrfs_destroy_cachep(void);
3774 long btrfs_ioctl_trans_end(struct file *file);
3775 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3776 struct btrfs_root *root, int *was_new);
3777 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3778 size_t pg_offset, u64 start, u64 end,
3779 int create);
3780 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3781 struct btrfs_root *root,
3782 struct inode *inode);
3783 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3784 struct btrfs_root *root, struct inode *inode);
3785 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
3786 int btrfs_orphan_cleanup(struct btrfs_root *root);
3787 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3788 struct btrfs_root *root);
3789 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3790 void btrfs_invalidate_inodes(struct btrfs_root *root);
3791 void btrfs_add_delayed_iput(struct inode *inode);
3792 void btrfs_run_delayed_iputs(struct btrfs_root *root);
3793 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3794 u64 start, u64 num_bytes, u64 min_size,
3795 loff_t actual_len, u64 *alloc_hint);
3796 int btrfs_prealloc_file_range_trans(struct inode *inode,
3797 struct btrfs_trans_handle *trans, int mode,
3798 u64 start, u64 num_bytes, u64 min_size,
3799 loff_t actual_len, u64 *alloc_hint);
3800 extern const struct dentry_operations btrfs_dentry_operations;
3801
3802 /* ioctl.c */
3803 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3804 void btrfs_update_iflags(struct inode *inode);
3805 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3806 int btrfs_is_empty_uuid(u8 *uuid);
3807 int btrfs_defrag_file(struct inode *inode, struct file *file,
3808 struct btrfs_ioctl_defrag_range_args *range,
3809 u64 newer_than, unsigned long max_pages);
3810 void btrfs_get_block_group_info(struct list_head *groups_list,
3811 struct btrfs_ioctl_space_info *space);
3812 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3813 struct btrfs_ioctl_balance_args *bargs);
3814
3815
3816 /* file.c */
3817 int btrfs_auto_defrag_init(void);
3818 void btrfs_auto_defrag_exit(void);
3819 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3820 struct inode *inode);
3821 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3822 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3823 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3824 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3825 int skip_pinned);
3826 extern const struct file_operations btrfs_file_operations;
3827 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3828 struct btrfs_root *root, struct inode *inode,
3829 struct btrfs_path *path, u64 start, u64 end,
3830 u64 *drop_end, int drop_cache,
3831 int replace_extent,
3832 u32 extent_item_size,
3833 int *key_inserted);
3834 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3835 struct btrfs_root *root, struct inode *inode, u64 start,
3836 u64 end, int drop_cache);
3837 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3838 struct inode *inode, u64 start, u64 end);
3839 int btrfs_release_file(struct inode *inode, struct file *file);
3840 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
3841 struct page **pages, size_t num_pages,
3842 loff_t pos, size_t write_bytes,
3843 struct extent_state **cached);
3844
3845 /* tree-defrag.c */
3846 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3847 struct btrfs_root *root);
3848
3849 /* sysfs.c */
3850 int btrfs_init_sysfs(void);
3851 void btrfs_exit_sysfs(void);
3852 int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info);
3853 void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info);
3854
3855 /* xattr.c */
3856 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
3857
3858 /* super.c */
3859 int btrfs_parse_options(struct btrfs_root *root, char *options);
3860 int btrfs_sync_fs(struct super_block *sb, int wait);
3861
3862 #ifdef CONFIG_PRINTK
3863 __printf(2, 3)
3864 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3865 #else
3866 static inline __printf(2, 3)
3867 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3868 {
3869 }
3870 #endif
3871
3872 #define btrfs_emerg(fs_info, fmt, args...) \
3873 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3874 #define btrfs_alert(fs_info, fmt, args...) \
3875 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3876 #define btrfs_crit(fs_info, fmt, args...) \
3877 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3878 #define btrfs_err(fs_info, fmt, args...) \
3879 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3880 #define btrfs_warn(fs_info, fmt, args...) \
3881 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3882 #define btrfs_notice(fs_info, fmt, args...) \
3883 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3884 #define btrfs_info(fs_info, fmt, args...) \
3885 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3886
3887 #ifdef DEBUG
3888 #define btrfs_debug(fs_info, fmt, args...) \
3889 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3890 #else
3891 #define btrfs_debug(fs_info, fmt, args...) \
3892 no_printk(KERN_DEBUG fmt, ##args)
3893 #endif
3894
3895 #ifdef CONFIG_BTRFS_ASSERT
3896
3897 static inline void assfail(char *expr, char *file, int line)
3898 {
3899 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
3900 expr, file, line);
3901 BUG();
3902 }
3903
3904 #define ASSERT(expr) \
3905 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
3906 #else
3907 #define ASSERT(expr) ((void)0)
3908 #endif
3909
3910 #define btrfs_assert()
3911 __printf(5, 6)
3912 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
3913 unsigned int line, int errno, const char *fmt, ...);
3914
3915
3916 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3917 struct btrfs_root *root, const char *function,
3918 unsigned int line, int errno);
3919
3920 #define btrfs_set_fs_incompat(__fs_info, opt) \
3921 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3922
3923 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3924 u64 flag)
3925 {
3926 struct btrfs_super_block *disk_super;
3927 u64 features;
3928
3929 disk_super = fs_info->super_copy;
3930 features = btrfs_super_incompat_flags(disk_super);
3931 if (!(features & flag)) {
3932 spin_lock(&fs_info->super_lock);
3933 features = btrfs_super_incompat_flags(disk_super);
3934 if (!(features & flag)) {
3935 features |= flag;
3936 btrfs_set_super_incompat_flags(disk_super, features);
3937 btrfs_info(fs_info, "setting %llu feature flag",
3938 flag);
3939 }
3940 spin_unlock(&fs_info->super_lock);
3941 }
3942 }
3943
3944 #define btrfs_fs_incompat(fs_info, opt) \
3945 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3946
3947 static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3948 {
3949 struct btrfs_super_block *disk_super;
3950 disk_super = fs_info->super_copy;
3951 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3952 }
3953
3954 /*
3955 * Call btrfs_abort_transaction as early as possible when an error condition is
3956 * detected, that way the exact line number is reported.
3957 */
3958
3959 #define btrfs_abort_transaction(trans, root, errno) \
3960 do { \
3961 __btrfs_abort_transaction(trans, root, __func__, \
3962 __LINE__, errno); \
3963 } while (0)
3964
3965 #define btrfs_std_error(fs_info, errno) \
3966 do { \
3967 if ((errno)) \
3968 __btrfs_std_error((fs_info), __func__, \
3969 __LINE__, (errno), NULL); \
3970 } while (0)
3971
3972 #define btrfs_error(fs_info, errno, fmt, args...) \
3973 do { \
3974 __btrfs_std_error((fs_info), __func__, __LINE__, \
3975 (errno), fmt, ##args); \
3976 } while (0)
3977
3978 __printf(5, 6)
3979 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3980 unsigned int line, int errno, const char *fmt, ...);
3981
3982 /*
3983 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3984 * will panic(). Otherwise we BUG() here.
3985 */
3986 #define btrfs_panic(fs_info, errno, fmt, args...) \
3987 do { \
3988 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3989 BUG(); \
3990 } while (0)
3991
3992 /* acl.c */
3993 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3994 struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
3995 int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
3996 int btrfs_init_acl(struct btrfs_trans_handle *trans,
3997 struct inode *inode, struct inode *dir);
3998 #else
3999 #define btrfs_get_acl NULL
4000 #define btrfs_set_acl NULL
4001 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
4002 struct inode *inode, struct inode *dir)
4003 {
4004 return 0;
4005 }
4006 #endif
4007
4008 /* relocation.c */
4009 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
4010 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4011 struct btrfs_root *root);
4012 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4013 struct btrfs_root *root);
4014 int btrfs_recover_relocation(struct btrfs_root *root);
4015 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
4016 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4017 struct btrfs_root *root, struct extent_buffer *buf,
4018 struct extent_buffer *cow);
4019 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4020 struct btrfs_pending_snapshot *pending,
4021 u64 *bytes_to_reserve);
4022 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4023 struct btrfs_pending_snapshot *pending);
4024
4025 /* scrub.c */
4026 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4027 u64 end, struct btrfs_scrub_progress *progress,
4028 int readonly, int is_dev_replace);
4029 void btrfs_scrub_pause(struct btrfs_root *root);
4030 void btrfs_scrub_continue(struct btrfs_root *root);
4031 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4032 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4033 struct btrfs_device *dev);
4034 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4035 struct btrfs_scrub_progress *progress);
4036
4037 /* dev-replace.c */
4038 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4039 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4040 void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info);
4041
4042 /* reada.c */
4043 struct reada_control {
4044 struct btrfs_root *root; /* tree to prefetch */
4045 struct btrfs_key key_start;
4046 struct btrfs_key key_end; /* exclusive */
4047 atomic_t elems;
4048 struct kref refcnt;
4049 wait_queue_head_t wait;
4050 };
4051 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4052 struct btrfs_key *start, struct btrfs_key *end);
4053 int btrfs_reada_wait(void *handle);
4054 void btrfs_reada_detach(void *handle);
4055 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
4056 u64 start, int err);
4057
4058 /* qgroup.c */
4059 struct qgroup_update {
4060 struct list_head list;
4061 struct btrfs_delayed_ref_node *node;
4062 struct btrfs_delayed_extent_op *extent_op;
4063 };
4064
4065 int btrfs_quota_enable(struct btrfs_trans_handle *trans,
4066 struct btrfs_fs_info *fs_info);
4067 int btrfs_quota_disable(struct btrfs_trans_handle *trans,
4068 struct btrfs_fs_info *fs_info);
4069 int btrfs_qgroup_rescan(struct btrfs_fs_info *fs_info);
4070 void btrfs_qgroup_rescan_resume(struct btrfs_fs_info *fs_info);
4071 int btrfs_qgroup_wait_for_completion(struct btrfs_fs_info *fs_info);
4072 int btrfs_add_qgroup_relation(struct btrfs_trans_handle *trans,
4073 struct btrfs_fs_info *fs_info, u64 src, u64 dst);
4074 int btrfs_del_qgroup_relation(struct btrfs_trans_handle *trans,
4075 struct btrfs_fs_info *fs_info, u64 src, u64 dst);
4076 int btrfs_create_qgroup(struct btrfs_trans_handle *trans,
4077 struct btrfs_fs_info *fs_info, u64 qgroupid,
4078 char *name);
4079 int btrfs_remove_qgroup(struct btrfs_trans_handle *trans,
4080 struct btrfs_fs_info *fs_info, u64 qgroupid);
4081 int btrfs_limit_qgroup(struct btrfs_trans_handle *trans,
4082 struct btrfs_fs_info *fs_info, u64 qgroupid,
4083 struct btrfs_qgroup_limit *limit);
4084 int btrfs_read_qgroup_config(struct btrfs_fs_info *fs_info);
4085 void btrfs_free_qgroup_config(struct btrfs_fs_info *fs_info);
4086 struct btrfs_delayed_extent_op;
4087 int btrfs_qgroup_record_ref(struct btrfs_trans_handle *trans,
4088 struct btrfs_delayed_ref_node *node,
4089 struct btrfs_delayed_extent_op *extent_op);
4090 int btrfs_qgroup_account_ref(struct btrfs_trans_handle *trans,
4091 struct btrfs_fs_info *fs_info,
4092 struct btrfs_delayed_ref_node *node,
4093 struct btrfs_delayed_extent_op *extent_op);
4094 int btrfs_run_qgroups(struct btrfs_trans_handle *trans,
4095 struct btrfs_fs_info *fs_info);
4096 int btrfs_qgroup_inherit(struct btrfs_trans_handle *trans,
4097 struct btrfs_fs_info *fs_info, u64 srcid, u64 objectid,
4098 struct btrfs_qgroup_inherit *inherit);
4099 int btrfs_qgroup_reserve(struct btrfs_root *root, u64 num_bytes);
4100 void btrfs_qgroup_free(struct btrfs_root *root, u64 num_bytes);
4101
4102 void assert_qgroups_uptodate(struct btrfs_trans_handle *trans);
4103
4104 static inline int is_fstree(u64 rootid)
4105 {
4106 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4107 (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
4108 return 1;
4109 return 0;
4110 }
4111
4112 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4113 {
4114 return signal_pending(current);
4115 }
4116
4117 /* Sanity test specific functions */
4118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4119 void btrfs_test_destroy_inode(struct inode *inode);
4120 #endif
4121
4122 #endif
This page took 0.130879 seconds and 5 git commands to generate.