5830b4333d83d4ef1d64293cd0652f4e23dcf420
[deliverable/linux.git] / fs / btrfs / ctree.h
1 #ifndef __BTRFS__
2 #define __BTRFS__
3
4 #include <linux/fs.h>
5 #include <linux/buffer_head.h>
6 #include <linux/kobject.h>
7 #include "bit-radix.h"
8
9 struct btrfs_trans_handle;
10 struct btrfs_transaction;
11 extern struct kmem_cache *btrfs_trans_handle_cachep;
12 extern struct kmem_cache *btrfs_transaction_cachep;
13 extern struct kmem_cache *btrfs_bit_radix_cachep;
14 extern struct kmem_cache *btrfs_path_cachep;
15
16 #define BTRFS_MAGIC "_BtRfS_M"
17
18 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
19 #define BTRFS_DEV_TREE_OBJECTID 2ULL
20 #define BTRFS_EXTENT_TREE_OBJECTID 3ULL
21 #define BTRFS_FS_TREE_OBJECTID 4ULL
22 #define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
23 #define BTRFS_FIRST_FREE_OBJECTID 6ULL
24
25 /*
26 * we can actually store much bigger names, but lets not confuse the rest
27 * of linux
28 */
29 #define BTRFS_NAME_LEN 255
30
31 /* 32 bytes in various csum fields */
32 #define BTRFS_CSUM_SIZE 32
33 /* four bytes for CRC32 */
34 #define BTRFS_CRC32_SIZE 4
35
36 /*
37 * the key defines the order in the tree, and so it also defines (optimal)
38 * block layout. objectid corresonds to the inode number. The flags
39 * tells us things about the object, and is a kind of stream selector.
40 * so for a given inode, keys with flags of 1 might refer to the inode
41 * data, flags of 2 may point to file data in the btree and flags == 3
42 * may point to extents.
43 *
44 * offset is the starting byte offset for this key in the stream.
45 *
46 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
47 * in cpu native order. Otherwise they are identical and their sizes
48 * should be the same (ie both packed)
49 */
50 struct btrfs_disk_key {
51 __le64 objectid;
52 __le32 flags;
53 __le64 offset;
54 } __attribute__ ((__packed__));
55
56 struct btrfs_key {
57 u64 objectid;
58 u32 flags;
59 u64 offset;
60 } __attribute__ ((__packed__));
61
62 /*
63 * every tree block (leaf or node) starts with this header.
64 */
65 struct btrfs_header {
66 u8 csum[BTRFS_CSUM_SIZE];
67 u8 fsid[16]; /* FS specific uuid */
68 __le64 blocknr; /* which block this node is supposed to live in */
69 __le64 generation;
70 __le64 owner;
71 __le16 nritems;
72 __le16 flags;
73 u8 level;
74 } __attribute__ ((__packed__));
75
76 #define BTRFS_MAX_LEVEL 8
77 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
78 sizeof(struct btrfs_header)) / \
79 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
80 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
81 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
82 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
83 sizeof(struct btrfs_item) - \
84 sizeof(struct btrfs_file_extent_item))
85
86 struct buffer_head;
87 /*
88 * the super block basically lists the main trees of the FS
89 * it currently lacks any block count etc etc
90 */
91 struct btrfs_super_block {
92 u8 csum[BTRFS_CSUM_SIZE];
93 /* the first 3 fields must match struct btrfs_header */
94 u8 fsid[16]; /* FS specific uuid */
95 __le64 blocknr; /* this block number */
96 __le64 magic;
97 __le32 blocksize;
98 __le64 generation;
99 __le64 root;
100 __le64 total_blocks;
101 __le64 blocks_used;
102 __le64 root_dir_objectid;
103 __le64 last_device_id;
104 /* fields below here vary with the underlying disk */
105 __le64 device_block_start;
106 __le64 device_num_blocks;
107 __le64 device_root;
108 __le64 device_id;
109 } __attribute__ ((__packed__));
110
111 /*
112 * A leaf is full of items. offset and size tell us where to find
113 * the item in the leaf (relative to the start of the data area)
114 */
115 struct btrfs_item {
116 struct btrfs_disk_key key;
117 __le32 offset;
118 __le16 size;
119 } __attribute__ ((__packed__));
120
121 /*
122 * leaves have an item area and a data area:
123 * [item0, item1....itemN] [free space] [dataN...data1, data0]
124 *
125 * The data is separate from the items to get the keys closer together
126 * during searches.
127 */
128 struct btrfs_leaf {
129 struct btrfs_header header;
130 struct btrfs_item items[];
131 } __attribute__ ((__packed__));
132
133 /*
134 * all non-leaf blocks are nodes, they hold only keys and pointers to
135 * other blocks
136 */
137 struct btrfs_key_ptr {
138 struct btrfs_disk_key key;
139 __le64 blockptr;
140 } __attribute__ ((__packed__));
141
142 struct btrfs_node {
143 struct btrfs_header header;
144 struct btrfs_key_ptr ptrs[];
145 } __attribute__ ((__packed__));
146
147 /*
148 * btrfs_paths remember the path taken from the root down to the leaf.
149 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
150 * to any other levels that are present.
151 *
152 * The slots array records the index of the item or block pointer
153 * used while walking the tree.
154 */
155 struct btrfs_path {
156 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
157 int slots[BTRFS_MAX_LEVEL];
158 };
159
160 /*
161 * items in the extent btree are used to record the objectid of the
162 * owner of the block and the number of references
163 */
164 struct btrfs_extent_item {
165 __le32 refs;
166 __le64 owner;
167 } __attribute__ ((__packed__));
168
169 struct btrfs_inode_timespec {
170 __le64 sec;
171 __le32 nsec;
172 } __attribute__ ((__packed__));
173
174 /*
175 * there is no padding here on purpose. If you want to extent the inode,
176 * make a new item type
177 */
178 struct btrfs_inode_item {
179 __le64 generation;
180 __le64 size;
181 __le64 nblocks;
182 __le64 block_group;
183 __le32 nlink;
184 __le32 uid;
185 __le32 gid;
186 __le32 mode;
187 __le32 rdev;
188 __le16 flags;
189 __le16 compat_flags;
190 struct btrfs_inode_timespec atime;
191 struct btrfs_inode_timespec ctime;
192 struct btrfs_inode_timespec mtime;
193 struct btrfs_inode_timespec otime;
194 } __attribute__ ((__packed__));
195
196 struct btrfs_dir_item {
197 struct btrfs_disk_key location;
198 __le16 flags;
199 __le16 name_len;
200 u8 type;
201 } __attribute__ ((__packed__));
202
203 struct btrfs_root_item {
204 struct btrfs_inode_item inode;
205 __le64 root_dirid;
206 __le64 blocknr;
207 __le32 flags;
208 __le64 block_limit;
209 __le64 blocks_used;
210 __le32 refs;
211 } __attribute__ ((__packed__));
212
213 #define BTRFS_FILE_EXTENT_REG 0
214 #define BTRFS_FILE_EXTENT_INLINE 1
215
216 struct btrfs_file_extent_item {
217 __le64 generation;
218 u8 type;
219 /*
220 * disk space consumed by the extent, checksum blocks are included
221 * in these numbers
222 */
223 __le64 disk_blocknr;
224 __le64 disk_num_blocks;
225 /*
226 * the logical offset in file blocks (no csums)
227 * this extent record is for. This allows a file extent to point
228 * into the middle of an existing extent on disk, sharing it
229 * between two snapshots (useful if some bytes in the middle of the
230 * extent have changed
231 */
232 __le64 offset;
233 /*
234 * the logical number of file blocks (no csums included)
235 */
236 __le64 num_blocks;
237 } __attribute__ ((__packed__));
238
239 struct btrfs_csum_item {
240 u8 csum;
241 } __attribute__ ((__packed__));
242
243 struct btrfs_device_item {
244 __le16 pathlen;
245 __le64 device_id;
246 } __attribute__ ((__packed__));
247
248 /* tag for the radix tree of block groups in ram */
249 #define BTRFS_BLOCK_GROUP_DIRTY 0
250 #define BTRFS_BLOCK_GROUP_AVAIL 1
251 #define BTRFS_BLOCK_GROUP_HINTS 8
252 #define BTRFS_BLOCK_GROUP_SIZE (256 * 1024 * 1024)
253 struct btrfs_block_group_item {
254 __le64 used;
255 } __attribute__ ((__packed__));
256
257 struct btrfs_block_group_cache {
258 struct btrfs_key key;
259 struct btrfs_block_group_item item;
260 struct radix_tree_root *radix;
261 u64 first_free;
262 u64 last_alloc;
263 u64 pinned;
264 u64 last_prealloc;
265 int data;
266 int cached;
267 };
268
269 struct crypto_hash;
270 struct btrfs_fs_info {
271 struct btrfs_root *extent_root;
272 struct btrfs_root *tree_root;
273 struct btrfs_root *dev_root;
274 struct radix_tree_root fs_roots_radix;
275 struct radix_tree_root pending_del_radix;
276 struct radix_tree_root pinned_radix;
277 struct radix_tree_root dev_radix;
278 struct radix_tree_root block_group_radix;
279 struct radix_tree_root block_group_data_radix;
280 struct radix_tree_root extent_map_radix;
281
282 u64 extent_tree_insert[BTRFS_MAX_LEVEL * 3];
283 int extent_tree_insert_nr;
284 u64 extent_tree_prealloc[BTRFS_MAX_LEVEL * 3];
285 int extent_tree_prealloc_nr;
286
287 u64 generation;
288 struct btrfs_transaction *running_transaction;
289 struct btrfs_super_block *disk_super;
290 struct buffer_head *sb_buffer;
291 struct super_block *sb;
292 struct inode *btree_inode;
293 struct mutex trans_mutex;
294 struct mutex fs_mutex;
295 struct list_head trans_list;
296 struct crypto_hash *hash_tfm;
297 spinlock_t hash_lock;
298 int do_barriers;
299 struct kobject kobj;
300 };
301
302 /*
303 * in ram representation of the tree. extent_root is used for all allocations
304 * and for the extent tree extent_root root.
305 */
306 struct btrfs_root {
307 struct buffer_head *node;
308 struct buffer_head *commit_root;
309 struct btrfs_root_item root_item;
310 struct btrfs_key root_key;
311 struct btrfs_fs_info *fs_info;
312 struct inode *inode;
313 u64 objectid;
314 u64 last_trans;
315 u32 blocksize;
316 int ref_cows;
317 u32 type;
318 u64 highest_inode;
319 u64 last_inode_alloc;
320 };
321
322 /* the lower bits in the key flags defines the item type */
323 #define BTRFS_KEY_TYPE_MAX 256
324 #define BTRFS_KEY_TYPE_SHIFT 24
325 #define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \
326 BTRFS_KEY_TYPE_SHIFT)
327
328 /*
329 * inode items have the data typically returned from stat and store other
330 * info about object characteristics. There is one for every file and dir in
331 * the FS
332 */
333 #define BTRFS_INODE_ITEM_KEY 1
334
335 /* reserve 2-15 close to the inode for later flexibility */
336
337 /*
338 * dir items are the name -> inode pointers in a directory. There is one
339 * for every name in a directory.
340 */
341 #define BTRFS_DIR_ITEM_KEY 16
342 #define BTRFS_DIR_INDEX_KEY 17
343 /*
344 * extent data is for file data
345 */
346 #define BTRFS_EXTENT_DATA_KEY 18
347 /*
348 * csum items have the checksums for data in the extents
349 */
350 #define BTRFS_CSUM_ITEM_KEY 19
351
352 /* reserve 20-31 for other file stuff */
353
354 /*
355 * root items point to tree roots. There are typically in the root
356 * tree used by the super block to find all the other trees
357 */
358 #define BTRFS_ROOT_ITEM_KEY 32
359 /*
360 * extent items are in the extent map tree. These record which blocks
361 * are used, and how many references there are to each block
362 */
363 #define BTRFS_EXTENT_ITEM_KEY 33
364
365 /*
366 * block groups give us hints into the extent allocation trees. Which
367 * blocks are free etc etc
368 */
369 #define BTRFS_BLOCK_GROUP_ITEM_KEY 34
370
371 /*
372 * dev items list the devices that make up the FS
373 */
374 #define BTRFS_DEV_ITEM_KEY 35
375
376 /*
377 * string items are for debugging. They just store a short string of
378 * data in the FS
379 */
380 #define BTRFS_STRING_ITEM_KEY 253
381
382
383 static inline u64 btrfs_block_group_used(struct btrfs_block_group_item *bi)
384 {
385 return le64_to_cpu(bi->used);
386 }
387
388 static inline void btrfs_set_block_group_used(struct
389 btrfs_block_group_item *bi,
390 u64 val)
391 {
392 bi->used = cpu_to_le64(val);
393 }
394
395 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
396 {
397 return le64_to_cpu(i->generation);
398 }
399
400 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
401 u64 val)
402 {
403 i->generation = cpu_to_le64(val);
404 }
405
406 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
407 {
408 return le64_to_cpu(i->size);
409 }
410
411 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
412 {
413 i->size = cpu_to_le64(val);
414 }
415
416 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
417 {
418 return le64_to_cpu(i->nblocks);
419 }
420
421 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
422 {
423 i->nblocks = cpu_to_le64(val);
424 }
425
426 static inline u64 btrfs_inode_block_group(struct btrfs_inode_item *i)
427 {
428 return le64_to_cpu(i->block_group);
429 }
430
431 static inline void btrfs_set_inode_block_group(struct btrfs_inode_item *i,
432 u64 val)
433 {
434 i->block_group = cpu_to_le64(val);
435 }
436
437 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
438 {
439 return le32_to_cpu(i->nlink);
440 }
441
442 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
443 {
444 i->nlink = cpu_to_le32(val);
445 }
446
447 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
448 {
449 return le32_to_cpu(i->uid);
450 }
451
452 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
453 {
454 i->uid = cpu_to_le32(val);
455 }
456
457 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
458 {
459 return le32_to_cpu(i->gid);
460 }
461
462 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
463 {
464 i->gid = cpu_to_le32(val);
465 }
466
467 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
468 {
469 return le32_to_cpu(i->mode);
470 }
471
472 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
473 {
474 i->mode = cpu_to_le32(val);
475 }
476
477 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
478 {
479 return le32_to_cpu(i->rdev);
480 }
481
482 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
483 {
484 i->rdev = cpu_to_le32(val);
485 }
486
487 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
488 {
489 return le16_to_cpu(i->flags);
490 }
491
492 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
493 {
494 i->flags = cpu_to_le16(val);
495 }
496
497 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
498 {
499 return le16_to_cpu(i->compat_flags);
500 }
501
502 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
503 u16 val)
504 {
505 i->compat_flags = cpu_to_le16(val);
506 }
507
508 static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
509 {
510 return le64_to_cpu(ts->sec);
511 }
512
513 static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
514 u64 val)
515 {
516 ts->sec = cpu_to_le64(val);
517 }
518
519 static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
520 {
521 return le32_to_cpu(ts->nsec);
522 }
523
524 static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
525 u32 val)
526 {
527 ts->nsec = cpu_to_le32(val);
528 }
529
530 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
531 {
532 return le32_to_cpu(ei->refs);
533 }
534
535 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
536 {
537 ei->refs = cpu_to_le32(val);
538 }
539
540 static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
541 {
542 return le64_to_cpu(ei->owner);
543 }
544
545 static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
546 {
547 ei->owner = cpu_to_le64(val);
548 }
549
550 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
551 {
552 return le64_to_cpu(n->ptrs[nr].blockptr);
553 }
554
555
556 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
557 u64 val)
558 {
559 n->ptrs[nr].blockptr = cpu_to_le64(val);
560 }
561
562 static inline u32 btrfs_item_offset(struct btrfs_item *item)
563 {
564 return le32_to_cpu(item->offset);
565 }
566
567 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
568 {
569 item->offset = cpu_to_le32(val);
570 }
571
572 static inline u32 btrfs_item_end(struct btrfs_item *item)
573 {
574 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
575 }
576
577 static inline u16 btrfs_item_size(struct btrfs_item *item)
578 {
579 return le16_to_cpu(item->size);
580 }
581
582 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
583 {
584 item->size = cpu_to_le16(val);
585 }
586
587 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
588 {
589 return le16_to_cpu(d->flags);
590 }
591
592 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
593 {
594 d->flags = cpu_to_le16(val);
595 }
596
597 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
598 {
599 return d->type;
600 }
601
602 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
603 {
604 d->type = val;
605 }
606
607 static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
608 {
609 return le16_to_cpu(d->name_len);
610 }
611
612 static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
613 {
614 d->name_len = cpu_to_le16(val);
615 }
616
617 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
618 struct btrfs_disk_key *disk)
619 {
620 cpu->offset = le64_to_cpu(disk->offset);
621 cpu->flags = le32_to_cpu(disk->flags);
622 cpu->objectid = le64_to_cpu(disk->objectid);
623 }
624
625 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
626 struct btrfs_key *cpu)
627 {
628 disk->offset = cpu_to_le64(cpu->offset);
629 disk->flags = cpu_to_le32(cpu->flags);
630 disk->objectid = cpu_to_le64(cpu->objectid);
631 }
632
633 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
634 {
635 return le64_to_cpu(disk->objectid);
636 }
637
638 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
639 u64 val)
640 {
641 disk->objectid = cpu_to_le64(val);
642 }
643
644 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
645 {
646 return le64_to_cpu(disk->offset);
647 }
648
649 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
650 u64 val)
651 {
652 disk->offset = cpu_to_le64(val);
653 }
654
655 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
656 {
657 return le32_to_cpu(disk->flags);
658 }
659
660 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
661 u32 val)
662 {
663 disk->flags = cpu_to_le32(val);
664 }
665
666 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
667 {
668 return le32_to_cpu(key->flags) >> BTRFS_KEY_TYPE_SHIFT;
669 }
670
671 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key,
672 u32 val)
673 {
674 u32 flags = btrfs_disk_key_flags(key);
675 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
676 val = val << BTRFS_KEY_TYPE_SHIFT;
677 flags = (flags & ~BTRFS_KEY_TYPE_MASK) | val;
678 btrfs_set_disk_key_flags(key, flags);
679 }
680
681 static inline u32 btrfs_key_type(struct btrfs_key *key)
682 {
683 return key->flags >> BTRFS_KEY_TYPE_SHIFT;
684 }
685
686 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 val)
687 {
688 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
689 val = val << BTRFS_KEY_TYPE_SHIFT;
690 key->flags = (key->flags & ~(BTRFS_KEY_TYPE_MASK)) | val;
691 }
692
693 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
694 {
695 return le64_to_cpu(h->blocknr);
696 }
697
698 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
699 {
700 h->blocknr = cpu_to_le64(blocknr);
701 }
702
703 static inline u64 btrfs_header_generation(struct btrfs_header *h)
704 {
705 return le64_to_cpu(h->generation);
706 }
707
708 static inline void btrfs_set_header_generation(struct btrfs_header *h,
709 u64 val)
710 {
711 h->generation = cpu_to_le64(val);
712 }
713
714 static inline u64 btrfs_header_owner(struct btrfs_header *h)
715 {
716 return le64_to_cpu(h->owner);
717 }
718
719 static inline void btrfs_set_header_owner(struct btrfs_header *h,
720 u64 val)
721 {
722 h->owner = cpu_to_le64(val);
723 }
724
725 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
726 {
727 return le16_to_cpu(h->nritems);
728 }
729
730 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
731 {
732 h->nritems = cpu_to_le16(val);
733 }
734
735 static inline u16 btrfs_header_flags(struct btrfs_header *h)
736 {
737 return le16_to_cpu(h->flags);
738 }
739
740 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
741 {
742 h->flags = cpu_to_le16(val);
743 }
744
745 static inline int btrfs_header_level(struct btrfs_header *h)
746 {
747 return h->level;
748 }
749
750 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
751 {
752 BUG_ON(level > BTRFS_MAX_LEVEL);
753 h->level = level;
754 }
755
756 static inline int btrfs_is_leaf(struct btrfs_node *n)
757 {
758 return (btrfs_header_level(&n->header) == 0);
759 }
760
761 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
762 {
763 return le64_to_cpu(item->blocknr);
764 }
765
766 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
767 {
768 item->blocknr = cpu_to_le64(val);
769 }
770
771 static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
772 {
773 return le64_to_cpu(item->root_dirid);
774 }
775
776 static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
777 {
778 item->root_dirid = cpu_to_le64(val);
779 }
780
781 static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
782 {
783 return le32_to_cpu(item->refs);
784 }
785
786 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
787 {
788 item->refs = cpu_to_le32(val);
789 }
790
791 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
792 {
793 return le64_to_cpu(s->blocknr);
794 }
795
796 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
797 {
798 s->blocknr = cpu_to_le64(val);
799 }
800
801 static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
802 {
803 return le64_to_cpu(s->generation);
804 }
805
806 static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
807 u64 val)
808 {
809 s->generation = cpu_to_le64(val);
810 }
811
812 static inline u64 btrfs_super_root(struct btrfs_super_block *s)
813 {
814 return le64_to_cpu(s->root);
815 }
816
817 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
818 {
819 s->root = cpu_to_le64(val);
820 }
821
822 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
823 {
824 return le64_to_cpu(s->total_blocks);
825 }
826
827 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
828 u64 val)
829 {
830 s->total_blocks = cpu_to_le64(val);
831 }
832
833 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
834 {
835 return le64_to_cpu(s->blocks_used);
836 }
837
838 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
839 u64 val)
840 {
841 s->blocks_used = cpu_to_le64(val);
842 }
843
844 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
845 {
846 return le32_to_cpu(s->blocksize);
847 }
848
849 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
850 u32 val)
851 {
852 s->blocksize = cpu_to_le32(val);
853 }
854
855 static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
856 {
857 return le64_to_cpu(s->root_dir_objectid);
858 }
859
860 static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
861 val)
862 {
863 s->root_dir_objectid = cpu_to_le64(val);
864 }
865
866 static inline u64 btrfs_super_last_device_id(struct btrfs_super_block *s)
867 {
868 return le64_to_cpu(s->last_device_id);
869 }
870
871 static inline void btrfs_set_super_last_device_id(struct btrfs_super_block *s,
872 u64 val)
873 {
874 s->last_device_id = cpu_to_le64(val);
875 }
876
877 static inline u64 btrfs_super_device_id(struct btrfs_super_block *s)
878 {
879 return le64_to_cpu(s->device_id);
880 }
881
882 static inline void btrfs_set_super_device_id(struct btrfs_super_block *s,
883 u64 val)
884 {
885 s->device_id = cpu_to_le64(val);
886 }
887
888 static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
889 {
890 return le64_to_cpu(s->device_block_start);
891 }
892
893 static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
894 *s, u64 val)
895 {
896 s->device_block_start = cpu_to_le64(val);
897 }
898
899 static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
900 {
901 return le64_to_cpu(s->device_num_blocks);
902 }
903
904 static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
905 *s, u64 val)
906 {
907 s->device_num_blocks = cpu_to_le64(val);
908 }
909
910 static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
911 {
912 return le64_to_cpu(s->device_root);
913 }
914
915 static inline void btrfs_set_super_device_root(struct btrfs_super_block
916 *s, u64 val)
917 {
918 s->device_root = cpu_to_le64(val);
919 }
920
921
922 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
923 {
924 return (u8 *)l->items;
925 }
926
927 static inline int btrfs_file_extent_type(struct btrfs_file_extent_item *e)
928 {
929 return e->type;
930 }
931 static inline void btrfs_set_file_extent_type(struct btrfs_file_extent_item *e,
932 u8 val)
933 {
934 e->type = val;
935 }
936
937 static inline char *btrfs_file_extent_inline_start(struct
938 btrfs_file_extent_item *e)
939 {
940 return (char *)(&e->disk_blocknr);
941 }
942
943 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
944 {
945 return (unsigned long)(&((struct
946 btrfs_file_extent_item *)NULL)->disk_blocknr) + datasize;
947 }
948
949 static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e)
950 {
951 struct btrfs_file_extent_item *fe = NULL;
952 return btrfs_item_size(e) - (unsigned long)(&fe->disk_blocknr);
953 }
954
955 static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
956 *e)
957 {
958 return le64_to_cpu(e->disk_blocknr);
959 }
960
961 static inline void btrfs_set_file_extent_disk_blocknr(struct
962 btrfs_file_extent_item
963 *e, u64 val)
964 {
965 e->disk_blocknr = cpu_to_le64(val);
966 }
967
968 static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
969 {
970 return le64_to_cpu(e->generation);
971 }
972
973 static inline void btrfs_set_file_extent_generation(struct
974 btrfs_file_extent_item *e,
975 u64 val)
976 {
977 e->generation = cpu_to_le64(val);
978 }
979
980 static inline u64 btrfs_file_extent_disk_num_blocks(struct
981 btrfs_file_extent_item *e)
982 {
983 return le64_to_cpu(e->disk_num_blocks);
984 }
985
986 static inline void btrfs_set_file_extent_disk_num_blocks(struct
987 btrfs_file_extent_item
988 *e, u64 val)
989 {
990 e->disk_num_blocks = cpu_to_le64(val);
991 }
992
993 static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
994 {
995 return le64_to_cpu(e->offset);
996 }
997
998 static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
999 *e, u64 val)
1000 {
1001 e->offset = cpu_to_le64(val);
1002 }
1003
1004 static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
1005 *e)
1006 {
1007 return le64_to_cpu(e->num_blocks);
1008 }
1009
1010 static inline void btrfs_set_file_extent_num_blocks(struct
1011 btrfs_file_extent_item *e,
1012 u64 val)
1013 {
1014 e->num_blocks = cpu_to_le64(val);
1015 }
1016
1017 static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
1018 {
1019 return le16_to_cpu(d->pathlen);
1020 }
1021
1022 static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
1023 u16 val)
1024 {
1025 d->pathlen = cpu_to_le16(val);
1026 }
1027
1028 static inline u64 btrfs_device_id(struct btrfs_device_item *d)
1029 {
1030 return le64_to_cpu(d->device_id);
1031 }
1032
1033 static inline void btrfs_set_device_id(struct btrfs_device_item *d,
1034 u64 val)
1035 {
1036 d->device_id = cpu_to_le64(val);
1037 }
1038
1039 static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
1040 {
1041 return sb->s_fs_info;
1042 }
1043
1044 static inline void btrfs_check_bounds(void *vptr, size_t len,
1045 void *vcontainer, size_t container_len)
1046 {
1047 char *ptr = vptr;
1048 char *container = vcontainer;
1049 WARN_ON(ptr < container);
1050 WARN_ON(ptr + len > container + container_len);
1051 }
1052
1053 static inline void btrfs_memcpy(struct btrfs_root *root,
1054 void *dst_block,
1055 void *dst, const void *src, size_t nr)
1056 {
1057 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1058 memcpy(dst, src, nr);
1059 }
1060
1061 static inline void btrfs_memmove(struct btrfs_root *root,
1062 void *dst_block,
1063 void *dst, void *src, size_t nr)
1064 {
1065 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1066 memmove(dst, src, nr);
1067 }
1068
1069 static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
1070 {
1071 WARN_ON(!atomic_read(&bh->b_count));
1072 mark_buffer_dirty(bh);
1073 }
1074
1075 /* helper function to cast into the data area of the leaf. */
1076 #define btrfs_item_ptr(leaf, slot, type) \
1077 ((type *)(btrfs_leaf_data(leaf) + \
1078 btrfs_item_offset((leaf)->items + (slot))))
1079
1080 /* extent-tree.c */
1081 struct btrfs_block_group_cache *btrfs_find_block_group(struct btrfs_root *root,
1082 struct btrfs_block_group_cache
1083 *hint, u64 search_start,
1084 int data, int owner);
1085 int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
1086 struct btrfs_root *root);
1087 struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
1088 struct btrfs_root *root, u64 hint);
1089 int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
1090 struct btrfs_root *root, u64 owner,
1091 u64 num_blocks, u64 search_start,
1092 u64 search_end, struct btrfs_key *ins, int data);
1093 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1094 struct buffer_head *buf);
1095 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1096 *root, u64 blocknr, u64 num_blocks, int pin);
1097 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1098 btrfs_root *root);
1099 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1100 struct btrfs_root *root,
1101 u64 blocknr, u64 num_blocks);
1102 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
1103 struct btrfs_root *root);
1104 int btrfs_free_block_groups(struct btrfs_fs_info *info);
1105 int btrfs_read_block_groups(struct btrfs_root *root);
1106 /* ctree.c */
1107 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1108 *root, struct btrfs_path *path, u32 data_size);
1109 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1110 struct btrfs_root *root,
1111 struct btrfs_path *path,
1112 u32 new_size);
1113 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1114 *root, struct btrfs_key *key, struct btrfs_path *p, int
1115 ins_len, int cow);
1116 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
1117 struct btrfs_path *btrfs_alloc_path(void);
1118 void btrfs_free_path(struct btrfs_path *p);
1119 void btrfs_init_path(struct btrfs_path *p);
1120 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1121 struct btrfs_path *path);
1122 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1123 *root, struct btrfs_key *key, void *data, u32 data_size);
1124 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1125 *root, struct btrfs_path *path, struct btrfs_key
1126 *cpu_key, u32 data_size);
1127 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
1128 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
1129 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
1130 *root, struct buffer_head *snap);
1131 /* root-item.c */
1132 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1133 struct btrfs_key *key);
1134 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1135 *root, struct btrfs_key *key, struct btrfs_root_item
1136 *item);
1137 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1138 *root, struct btrfs_key *key, struct btrfs_root_item
1139 *item);
1140 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1141 btrfs_root_item *item, struct btrfs_key *key);
1142 /* dir-item.c */
1143 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
1144 *root, const char *name, int name_len, u64 dir,
1145 struct btrfs_key *location, u8 type);
1146 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
1147 struct btrfs_root *root,
1148 struct btrfs_path *path, u64 dir,
1149 const char *name, int name_len,
1150 int mod);
1151 struct btrfs_dir_item *
1152 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1153 struct btrfs_root *root,
1154 struct btrfs_path *path, u64 dir,
1155 u64 objectid, const char *name, int name_len,
1156 int mod);
1157 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
1158 struct btrfs_path *path,
1159 const char *name, int name_len);
1160 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
1161 struct btrfs_root *root,
1162 struct btrfs_path *path,
1163 struct btrfs_dir_item *di);
1164 /* inode-map.c */
1165 int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1166 struct btrfs_root *fs_root,
1167 u64 dirid, u64 *objectid);
1168 int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1169
1170 /* inode-item.c */
1171 int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1172 *root, u64 objectid, struct btrfs_inode_item
1173 *inode_item);
1174 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1175 *root, struct btrfs_path *path,
1176 struct btrfs_key *location, int mod);
1177
1178 /* file-item.c */
1179 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
1180 struct btrfs_root *root,
1181 u64 objectid, u64 pos, u64 offset,
1182 u64 num_blocks);
1183 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path, u64 objectid,
1186 u64 blocknr, int mod);
1187 int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1188 struct btrfs_root *root,
1189 u64 objectid, u64 offset,
1190 char *data, size_t len);
1191 int btrfs_csum_verify_file_block(struct btrfs_root *root,
1192 u64 objectid, u64 offset,
1193 char *data, size_t len);
1194 struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
1195 struct btrfs_root *root,
1196 struct btrfs_path *path,
1197 u64 objectid, u64 offset,
1198 int cow);
1199 /* super.c */
1200 extern struct subsystem btrfs_subsys;
1201
1202 #endif
This page took 0.090471 seconds and 5 git commands to generate.