Btrfs: early support for multiple devices
[deliverable/linux.git] / fs / btrfs / ctree.h
1 #ifndef __BTRFS__
2 #define __BTRFS__
3
4 #include <linux/fs.h>
5 #include <linux/buffer_head.h>
6 #include <linux/kobject.h>
7 #include "bit-radix.h"
8
9 struct btrfs_trans_handle;
10 struct btrfs_transaction;
11 extern struct kmem_cache *btrfs_path_cachep;
12
13 #define BTRFS_MAGIC "_BtRfS_M"
14
15 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
16 #define BTRFS_DEV_TREE_OBJECTID 2ULL
17 #define BTRFS_EXTENT_TREE_OBJECTID 3ULL
18 #define BTRFS_FS_TREE_OBJECTID 4ULL
19 #define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
20 #define BTRFS_FIRST_FREE_OBJECTID 6ULL
21
22 /*
23 * we can actually store much bigger names, but lets not confuse the rest
24 * of linux
25 */
26 #define BTRFS_NAME_LEN 255
27
28 /* 32 bytes in various csum fields */
29 #define BTRFS_CSUM_SIZE 32
30
31 /*
32 * the key defines the order in the tree, and so it also defines (optimal)
33 * block layout. objectid corresonds to the inode number. The flags
34 * tells us things about the object, and is a kind of stream selector.
35 * so for a given inode, keys with flags of 1 might refer to the inode
36 * data, flags of 2 may point to file data in the btree and flags == 3
37 * may point to extents.
38 *
39 * offset is the starting byte offset for this key in the stream.
40 *
41 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
42 * in cpu native order. Otherwise they are identical and their sizes
43 * should be the same (ie both packed)
44 */
45 struct btrfs_disk_key {
46 __le64 objectid;
47 __le64 offset;
48 __le32 flags;
49 } __attribute__ ((__packed__));
50
51 struct btrfs_key {
52 u64 objectid;
53 u64 offset;
54 u32 flags;
55 } __attribute__ ((__packed__));
56
57 /*
58 * every tree block (leaf or node) starts with this header.
59 */
60 struct btrfs_header {
61 u8 csum[BTRFS_CSUM_SIZE];
62 u8 fsid[16]; /* FS specific uuid */
63 __le64 blocknr; /* which block this node is supposed to live in */
64 __le64 generation;
65 __le16 nritems;
66 __le16 flags;
67 u8 level;
68 } __attribute__ ((__packed__));
69
70 #define BTRFS_MAX_LEVEL 8
71 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
72 sizeof(struct btrfs_header)) / \
73 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
74 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
75 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
76
77 struct buffer_head;
78 /*
79 * the super block basically lists the main trees of the FS
80 * it currently lacks any block count etc etc
81 */
82 struct btrfs_super_block {
83 u8 csum[BTRFS_CSUM_SIZE];
84 /* the first 3 fields must match struct btrfs_header */
85 u8 fsid[16]; /* FS specific uuid */
86 __le64 blocknr; /* this block number */
87 __le64 magic;
88 __le32 blocksize;
89 __le64 generation;
90 __le64 root;
91 __le64 total_blocks;
92 __le64 blocks_used;
93 __le64 root_dir_objectid;
94 /* fields below here vary with the underlying disk */
95 __le64 device_block_start;
96 __le64 device_num_blocks;
97 __le64 device_root;
98 } __attribute__ ((__packed__));
99
100 /*
101 * A leaf is full of items. offset and size tell us where to find
102 * the item in the leaf (relative to the start of the data area)
103 */
104 struct btrfs_item {
105 struct btrfs_disk_key key;
106 __le32 offset;
107 __le16 size;
108 } __attribute__ ((__packed__));
109
110 /*
111 * leaves have an item area and a data area:
112 * [item0, item1....itemN] [free space] [dataN...data1, data0]
113 *
114 * The data is separate from the items to get the keys closer together
115 * during searches.
116 */
117 struct btrfs_leaf {
118 struct btrfs_header header;
119 struct btrfs_item items[];
120 } __attribute__ ((__packed__));
121
122 /*
123 * all non-leaf blocks are nodes, they hold only keys and pointers to
124 * other blocks
125 */
126 struct btrfs_key_ptr {
127 struct btrfs_disk_key key;
128 __le64 blockptr;
129 } __attribute__ ((__packed__));
130
131 struct btrfs_node {
132 struct btrfs_header header;
133 struct btrfs_key_ptr ptrs[];
134 } __attribute__ ((__packed__));
135
136 /*
137 * btrfs_paths remember the path taken from the root down to the leaf.
138 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
139 * to any other levels that are present.
140 *
141 * The slots array records the index of the item or block pointer
142 * used while walking the tree.
143 */
144 struct btrfs_path {
145 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
146 int slots[BTRFS_MAX_LEVEL];
147 };
148
149 /*
150 * items in the extent btree are used to record the objectid of the
151 * owner of the block and the number of references
152 */
153 struct btrfs_extent_item {
154 __le32 refs;
155 } __attribute__ ((__packed__));
156
157 struct btrfs_inode_timespec {
158 __le64 sec;
159 __le32 nsec;
160 } __attribute__ ((__packed__));
161
162 /*
163 * there is no padding here on purpose. If you want to extent the inode,
164 * make a new item type
165 */
166 struct btrfs_inode_item {
167 __le64 generation;
168 __le64 size;
169 __le64 nblocks;
170 __le32 nlink;
171 __le32 uid;
172 __le32 gid;
173 __le32 mode;
174 __le32 rdev;
175 __le16 flags;
176 __le16 compat_flags;
177 struct btrfs_inode_timespec atime;
178 struct btrfs_inode_timespec ctime;
179 struct btrfs_inode_timespec mtime;
180 struct btrfs_inode_timespec otime;
181 } __attribute__ ((__packed__));
182
183 /* inline data is just a blob of bytes */
184 struct btrfs_inline_data_item {
185 u8 data;
186 } __attribute__ ((__packed__));
187
188 struct btrfs_dir_item {
189 struct btrfs_disk_key location;
190 __le16 flags;
191 __le16 name_len;
192 u8 type;
193 } __attribute__ ((__packed__));
194
195 struct btrfs_root_item {
196 struct btrfs_inode_item inode;
197 __le64 root_dirid;
198 __le64 blocknr;
199 __le32 flags;
200 __le64 block_limit;
201 __le64 blocks_used;
202 __le32 refs;
203 } __attribute__ ((__packed__));
204
205 struct btrfs_file_extent_item {
206 __le64 generation;
207 /*
208 * disk space consumed by the extent, checksum blocks are included
209 * in these numbers
210 */
211 __le64 disk_blocknr;
212 __le64 disk_num_blocks;
213 /*
214 * the logical offset in file blocks (no csums)
215 * this extent record is for. This allows a file extent to point
216 * into the middle of an existing extent on disk, sharing it
217 * between two snapshots (useful if some bytes in the middle of the
218 * extent have changed
219 */
220 __le64 offset;
221 /*
222 * the logical number of file blocks (no csums included)
223 */
224 __le64 num_blocks;
225 } __attribute__ ((__packed__));
226
227 struct btrfs_csum_item {
228 u8 csum[BTRFS_CSUM_SIZE];
229 } __attribute__ ((__packed__));
230
231 struct btrfs_device_item {
232 __le16 pathlen;
233 } __attribute__ ((__packed__));
234
235 struct crypto_hash;
236 struct btrfs_fs_info {
237 struct btrfs_root *extent_root;
238 struct btrfs_root *tree_root;
239 struct btrfs_root *dev_root;
240 struct btrfs_key current_insert;
241 struct btrfs_key last_insert;
242 struct radix_tree_root fs_roots_radix;
243 struct radix_tree_root pending_del_radix;
244 struct radix_tree_root pinned_radix;
245 u64 generation;
246 struct btrfs_transaction *running_transaction;
247 struct btrfs_super_block *disk_super;
248 struct buffer_head *sb_buffer;
249 struct super_block *sb;
250 struct inode *btree_inode;
251 struct mutex trans_mutex;
252 struct mutex fs_mutex;
253 struct crypto_hash *hash_tfm;
254 spinlock_t hash_lock;
255 struct kobject kobj;
256 };
257
258 /*
259 * in ram representation of the tree. extent_root is used for all allocations
260 * and for the extent tree extent_root root. current_insert is used
261 * only for the extent tree.
262 */
263 struct btrfs_root {
264 struct buffer_head *node;
265 struct buffer_head *commit_root;
266 struct btrfs_root_item root_item;
267 struct btrfs_key root_key;
268 struct btrfs_fs_info *fs_info;
269 struct inode *inode;
270 u64 objectid;
271 u64 last_trans;
272 u32 blocksize;
273 int ref_cows;
274 u32 type;
275 u64 highest_inode;
276 u64 last_inode_alloc;
277 };
278
279 /* the lower bits in the key flags defines the item type */
280 #define BTRFS_KEY_TYPE_MAX 256
281 #define BTRFS_KEY_TYPE_MASK (BTRFS_KEY_TYPE_MAX - 1)
282
283 #define BTRFS_KEY_OVERFLOW_MAX 128
284 #define BTRFS_KEY_OVERFLOW_SHIFT 8
285 #define BTRFS_KEY_OVERFLOW_MASK (0x7FULL << BTRFS_KEY_OVERFLOW_SHIFT)
286
287 /*
288 * inode items have the data typically returned from stat and store other
289 * info about object characteristics. There is one for every file and dir in
290 * the FS
291 */
292 #define BTRFS_INODE_ITEM_KEY 1
293
294 /*
295 * dir items are the name -> inode pointers in a directory. There is one
296 * for every name in a directory.
297 */
298 #define BTRFS_DIR_ITEM_KEY 2
299 #define BTRFS_DIR_INDEX_KEY 3
300 /*
301 * inline data is file data that fits in the btree.
302 */
303 #define BTRFS_INLINE_DATA_KEY 4
304 /*
305 * extent data is for data that can't fit in the btree. It points to
306 * a (hopefully) huge chunk of disk
307 */
308 #define BTRFS_EXTENT_DATA_KEY 5
309 /*
310 * csum items have the checksums for data in the extents
311 */
312 #define BTRFS_CSUM_ITEM_KEY 6
313
314 /*
315 * root items point to tree roots. There are typically in the root
316 * tree used by the super block to find all the other trees
317 */
318 #define BTRFS_ROOT_ITEM_KEY 7
319 /*
320 * extent items are in the extent map tree. These record which blocks
321 * are used, and how many references there are to each block
322 */
323 #define BTRFS_EXTENT_ITEM_KEY 8
324
325 /*
326 * dev items list the devices that make up the FS
327 */
328 #define BTRFS_DEV_ITEM_KEY 9
329
330 /*
331 * string items are for debugging. They just store a short string of
332 * data in the FS
333 */
334 #define BTRFS_STRING_ITEM_KEY 10
335
336 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
337 {
338 return le64_to_cpu(i->generation);
339 }
340
341 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
342 u64 val)
343 {
344 i->generation = cpu_to_le64(val);
345 }
346
347 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
348 {
349 return le64_to_cpu(i->size);
350 }
351
352 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
353 {
354 i->size = cpu_to_le64(val);
355 }
356
357 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
358 {
359 return le64_to_cpu(i->nblocks);
360 }
361
362 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
363 {
364 i->nblocks = cpu_to_le64(val);
365 }
366
367 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
368 {
369 return le32_to_cpu(i->nlink);
370 }
371
372 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
373 {
374 i->nlink = cpu_to_le32(val);
375 }
376
377 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
378 {
379 return le32_to_cpu(i->uid);
380 }
381
382 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
383 {
384 i->uid = cpu_to_le32(val);
385 }
386
387 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
388 {
389 return le32_to_cpu(i->gid);
390 }
391
392 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
393 {
394 i->gid = cpu_to_le32(val);
395 }
396
397 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
398 {
399 return le32_to_cpu(i->mode);
400 }
401
402 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
403 {
404 i->mode = cpu_to_le32(val);
405 }
406
407 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
408 {
409 return le32_to_cpu(i->rdev);
410 }
411
412 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
413 {
414 i->rdev = cpu_to_le32(val);
415 }
416
417 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
418 {
419 return le16_to_cpu(i->flags);
420 }
421
422 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
423 {
424 i->flags = cpu_to_le16(val);
425 }
426
427 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
428 {
429 return le16_to_cpu(i->compat_flags);
430 }
431
432 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
433 u16 val)
434 {
435 i->compat_flags = cpu_to_le16(val);
436 }
437
438 static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
439 {
440 return le64_to_cpu(ts->sec);
441 }
442
443 static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
444 u64 val)
445 {
446 ts->sec = cpu_to_le64(val);
447 }
448
449 static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
450 {
451 return le32_to_cpu(ts->nsec);
452 }
453
454 static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
455 u32 val)
456 {
457 ts->nsec = cpu_to_le32(val);
458 }
459
460 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
461 {
462 return le32_to_cpu(ei->refs);
463 }
464
465 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
466 {
467 ei->refs = cpu_to_le32(val);
468 }
469
470 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
471 {
472 return le64_to_cpu(n->ptrs[nr].blockptr);
473 }
474
475 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
476 u64 val)
477 {
478 n->ptrs[nr].blockptr = cpu_to_le64(val);
479 }
480
481 static inline u32 btrfs_item_offset(struct btrfs_item *item)
482 {
483 return le32_to_cpu(item->offset);
484 }
485
486 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
487 {
488 item->offset = cpu_to_le32(val);
489 }
490
491 static inline u32 btrfs_item_end(struct btrfs_item *item)
492 {
493 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
494 }
495
496 static inline u16 btrfs_item_size(struct btrfs_item *item)
497 {
498 return le16_to_cpu(item->size);
499 }
500
501 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
502 {
503 item->size = cpu_to_le16(val);
504 }
505
506 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
507 {
508 return le16_to_cpu(d->flags);
509 }
510
511 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
512 {
513 d->flags = cpu_to_le16(val);
514 }
515
516 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
517 {
518 return d->type;
519 }
520
521 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
522 {
523 d->type = val;
524 }
525
526 static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
527 {
528 return le16_to_cpu(d->name_len);
529 }
530
531 static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
532 {
533 d->name_len = cpu_to_le16(val);
534 }
535
536 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
537 struct btrfs_disk_key *disk)
538 {
539 cpu->offset = le64_to_cpu(disk->offset);
540 cpu->flags = le32_to_cpu(disk->flags);
541 cpu->objectid = le64_to_cpu(disk->objectid);
542 }
543
544 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
545 struct btrfs_key *cpu)
546 {
547 disk->offset = cpu_to_le64(cpu->offset);
548 disk->flags = cpu_to_le32(cpu->flags);
549 disk->objectid = cpu_to_le64(cpu->objectid);
550 }
551
552 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
553 {
554 return le64_to_cpu(disk->objectid);
555 }
556
557 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
558 u64 val)
559 {
560 disk->objectid = cpu_to_le64(val);
561 }
562
563 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
564 {
565 return le64_to_cpu(disk->offset);
566 }
567
568 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
569 u64 val)
570 {
571 disk->offset = cpu_to_le64(val);
572 }
573
574 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
575 {
576 return le32_to_cpu(disk->flags);
577 }
578
579 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
580 u32 val)
581 {
582 disk->flags = cpu_to_le32(val);
583 }
584
585 static inline u32 btrfs_key_overflow(struct btrfs_key *key)
586 {
587 u32 over = key->flags & BTRFS_KEY_OVERFLOW_MASK;
588 return over >> BTRFS_KEY_OVERFLOW_SHIFT;
589 }
590
591 static inline void btrfs_set_key_overflow(struct btrfs_key *key, u32 over)
592 {
593 BUG_ON(over >= BTRFS_KEY_OVERFLOW_MAX);
594 over = over << BTRFS_KEY_OVERFLOW_SHIFT;
595 key->flags = (key->flags & ~((u64)BTRFS_KEY_OVERFLOW_MASK)) | over;
596 }
597
598 static inline u32 btrfs_key_type(struct btrfs_key *key)
599 {
600 return key->flags & BTRFS_KEY_TYPE_MASK;
601 }
602
603 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
604 {
605 return le32_to_cpu(key->flags) & BTRFS_KEY_TYPE_MASK;
606 }
607
608 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 type)
609 {
610 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
611 key->flags = (key->flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
612 }
613
614 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u32 type)
615 {
616 u32 flags = btrfs_disk_key_flags(key);
617 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
618 flags = (flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
619 btrfs_set_disk_key_flags(key, flags);
620 }
621
622 static inline u32 btrfs_disk_key_overflow(struct btrfs_disk_key *key)
623 {
624 u32 over = le32_to_cpu(key->flags) & BTRFS_KEY_OVERFLOW_MASK;
625 return over >> BTRFS_KEY_OVERFLOW_SHIFT;
626 }
627
628 static inline void btrfs_set_disK_key_overflow(struct btrfs_disk_key *key,
629 u32 over)
630 {
631 u32 flags = btrfs_disk_key_flags(key);
632 BUG_ON(over >= BTRFS_KEY_OVERFLOW_MAX);
633 over = over << BTRFS_KEY_OVERFLOW_SHIFT;
634 flags = (flags & ~((u64)BTRFS_KEY_OVERFLOW_MASK)) | over;
635 btrfs_set_disk_key_flags(key, flags);
636 }
637
638 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
639 {
640 return le64_to_cpu(h->blocknr);
641 }
642
643 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
644 {
645 h->blocknr = cpu_to_le64(blocknr);
646 }
647
648 static inline u64 btrfs_header_generation(struct btrfs_header *h)
649 {
650 return le64_to_cpu(h->generation);
651 }
652
653 static inline void btrfs_set_header_generation(struct btrfs_header *h,
654 u64 val)
655 {
656 h->generation = cpu_to_le64(val);
657 }
658
659 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
660 {
661 return le16_to_cpu(h->nritems);
662 }
663
664 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
665 {
666 h->nritems = cpu_to_le16(val);
667 }
668
669 static inline u16 btrfs_header_flags(struct btrfs_header *h)
670 {
671 return le16_to_cpu(h->flags);
672 }
673
674 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
675 {
676 h->flags = cpu_to_le16(val);
677 }
678
679 static inline int btrfs_header_level(struct btrfs_header *h)
680 {
681 return h->level;
682 }
683
684 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
685 {
686 BUG_ON(level > BTRFS_MAX_LEVEL);
687 h->level = level;
688 }
689
690 static inline int btrfs_is_leaf(struct btrfs_node *n)
691 {
692 return (btrfs_header_level(&n->header) == 0);
693 }
694
695 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
696 {
697 return le64_to_cpu(item->blocknr);
698 }
699
700 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
701 {
702 item->blocknr = cpu_to_le64(val);
703 }
704
705 static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
706 {
707 return le64_to_cpu(item->root_dirid);
708 }
709
710 static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
711 {
712 item->root_dirid = cpu_to_le64(val);
713 }
714
715 static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
716 {
717 return le32_to_cpu(item->refs);
718 }
719
720 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
721 {
722 item->refs = cpu_to_le32(val);
723 }
724
725 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
726 {
727 return le64_to_cpu(s->blocknr);
728 }
729
730 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
731 {
732 s->blocknr = cpu_to_le64(val);
733 }
734
735 static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
736 {
737 return le64_to_cpu(s->generation);
738 }
739
740 static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
741 u64 val)
742 {
743 s->generation = cpu_to_le64(val);
744 }
745
746 static inline u64 btrfs_super_root(struct btrfs_super_block *s)
747 {
748 return le64_to_cpu(s->root);
749 }
750
751 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
752 {
753 s->root = cpu_to_le64(val);
754 }
755
756 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
757 {
758 return le64_to_cpu(s->total_blocks);
759 }
760
761 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
762 u64 val)
763 {
764 s->total_blocks = cpu_to_le64(val);
765 }
766
767 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
768 {
769 return le64_to_cpu(s->blocks_used);
770 }
771
772 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
773 u64 val)
774 {
775 s->blocks_used = cpu_to_le64(val);
776 }
777
778 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
779 {
780 return le32_to_cpu(s->blocksize);
781 }
782
783 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
784 u32 val)
785 {
786 s->blocksize = cpu_to_le32(val);
787 }
788
789 static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
790 {
791 return le64_to_cpu(s->root_dir_objectid);
792 }
793
794 static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
795 val)
796 {
797 s->root_dir_objectid = cpu_to_le64(val);
798 }
799
800 static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
801 {
802 return le64_to_cpu(s->device_block_start);
803 }
804
805 static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
806 *s, u64 val)
807 {
808 s->device_block_start = cpu_to_le64(val);
809 }
810
811 static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
812 {
813 return le64_to_cpu(s->device_num_blocks);
814 }
815
816 static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
817 *s, u64 val)
818 {
819 s->device_num_blocks = cpu_to_le64(val);
820 }
821
822 static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
823 {
824 return le64_to_cpu(s->device_root);
825 }
826
827 static inline void btrfs_set_super_device_root(struct btrfs_super_block
828 *s, u64 val)
829 {
830 s->device_root = cpu_to_le64(val);
831 }
832
833
834 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
835 {
836 return (u8 *)l->items;
837 }
838
839 static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
840 *e)
841 {
842 return le64_to_cpu(e->disk_blocknr);
843 }
844
845 static inline void btrfs_set_file_extent_disk_blocknr(struct
846 btrfs_file_extent_item
847 *e, u64 val)
848 {
849 e->disk_blocknr = cpu_to_le64(val);
850 }
851
852 static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
853 {
854 return le64_to_cpu(e->generation);
855 }
856
857 static inline void btrfs_set_file_extent_generation(struct
858 btrfs_file_extent_item *e,
859 u64 val)
860 {
861 e->generation = cpu_to_le64(val);
862 }
863
864 static inline u64 btrfs_file_extent_disk_num_blocks(struct
865 btrfs_file_extent_item *e)
866 {
867 return le64_to_cpu(e->disk_num_blocks);
868 }
869
870 static inline void btrfs_set_file_extent_disk_num_blocks(struct
871 btrfs_file_extent_item
872 *e, u64 val)
873 {
874 e->disk_num_blocks = cpu_to_le64(val);
875 }
876
877 static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
878 {
879 return le64_to_cpu(e->offset);
880 }
881
882 static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
883 *e, u64 val)
884 {
885 e->offset = cpu_to_le64(val);
886 }
887
888 static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
889 *e)
890 {
891 return le64_to_cpu(e->num_blocks);
892 }
893
894 static inline void btrfs_set_file_extent_num_blocks(struct
895 btrfs_file_extent_item *e,
896 u64 val)
897 {
898 e->num_blocks = cpu_to_le64(val);
899 }
900
901 static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
902 {
903 return le16_to_cpu(d->pathlen);
904 }
905
906 static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
907 u16 val)
908 {
909 d->pathlen = cpu_to_le16(val);
910 }
911
912 static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
913 {
914 return sb->s_fs_info;
915 }
916
917 static inline void btrfs_check_bounds(void *vptr, size_t len,
918 void *vcontainer, size_t container_len)
919 {
920 char *ptr = vptr;
921 char *container = vcontainer;
922 WARN_ON(ptr < container);
923 WARN_ON(ptr + len > container + container_len);
924 }
925
926 static inline void btrfs_memcpy(struct btrfs_root *root,
927 void *dst_block,
928 void *dst, const void *src, size_t nr)
929 {
930 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
931 memcpy(dst, src, nr);
932 }
933
934 static inline void btrfs_memmove(struct btrfs_root *root,
935 void *dst_block,
936 void *dst, void *src, size_t nr)
937 {
938 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
939 memmove(dst, src, nr);
940 }
941
942 static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
943 {
944 WARN_ON(!atomic_read(&bh->b_count));
945 mark_buffer_dirty(bh);
946 }
947
948 /* helper function to cast into the data area of the leaf. */
949 #define btrfs_item_ptr(leaf, slot, type) \
950 ((type *)(btrfs_leaf_data(leaf) + \
951 btrfs_item_offset((leaf)->items + (slot))))
952
953 /* extent-item.c */
954 int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
955 struct btrfs_root *root);
956 struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
957 struct btrfs_root *root);
958 int btrfs_alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root
959 *root, u64 num_blocks, u64 search_start, u64
960 search_end, struct btrfs_key *ins);
961 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
962 struct buffer_head *buf);
963 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
964 *root, u64 blocknr, u64 num_blocks, int pin);
965 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
966 btrfs_root *root);
967 /* ctree.c */
968 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
969 *root, struct btrfs_key *key, struct btrfs_path *p, int
970 ins_len, int cow);
971 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
972 struct btrfs_path *btrfs_alloc_path(void);
973 void btrfs_free_path(struct btrfs_path *p);
974 void btrfs_init_path(struct btrfs_path *p);
975 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
976 struct btrfs_path *path);
977 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
978 *root, struct btrfs_key *key, void *data, u32 data_size);
979 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
980 *root, struct btrfs_path *path, struct btrfs_key
981 *cpu_key, u32 data_size);
982 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
983 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
984 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
985 *root, struct buffer_head *snap);
986 /* root-item.c */
987 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
988 struct btrfs_key *key);
989 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
990 *root, struct btrfs_key *key, struct btrfs_root_item
991 *item);
992 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
993 *root, struct btrfs_key *key, struct btrfs_root_item
994 *item);
995 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
996 btrfs_root_item *item, struct btrfs_key *key);
997 /* dir-item.c */
998 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
999 *root, const char *name, int name_len, u64 dir,
1000 struct btrfs_key *location, u8 type);
1001 int btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
1002 *root, struct btrfs_path *path, u64 dir,
1003 const char *name, int name_len, int mod);
1004 int btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1005 struct btrfs_root *root,
1006 struct btrfs_path *path, u64 dir,
1007 u64 objectid, int mod);
1008 int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path,
1009 const char *name, int name_len);
1010 /* inode-map.c */
1011 int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1012 struct btrfs_root *fs_root,
1013 u64 dirid, u64 *objectid);
1014 int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1015
1016 /* inode-item.c */
1017 int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1018 *root, u64 objectid, struct btrfs_inode_item
1019 *inode_item);
1020 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1021 *root, struct btrfs_path *path,
1022 struct btrfs_key *location, int mod);
1023
1024 /* file-item.c */
1025 int btrfs_alloc_file_extent(struct btrfs_trans_handle *trans,
1026 struct btrfs_root *root,
1027 u64 objectid, u64 offset,
1028 u64 num_blocks, u64 hint_block,
1029 u64 *result);
1030 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1031 struct btrfs_root *root,
1032 struct btrfs_path *path, u64 objectid,
1033 u64 blocknr, int mod);
1034 int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1035 struct btrfs_root *root,
1036 u64 objectid, u64 offset,
1037 char *data, size_t len);
1038 int btrfs_csum_verify_file_block(struct btrfs_root *root,
1039 u64 objectid, u64 offset,
1040 char *data, size_t len);
1041 /* super.c */
1042 extern struct subsystem btrfs_subsys;
1043
1044 #endif
This page took 0.283136 seconds and 6 git commands to generate.