Btrfs: tweak the inode-map and free extent search starts on cold mount
[deliverable/linux.git] / fs / btrfs / ctree.h
1 #ifndef __BTRFS__
2 #define __BTRFS__
3
4 #include <linux/fs.h>
5 #include <linux/buffer_head.h>
6 #include "bit-radix.h"
7
8 struct btrfs_trans_handle;
9 struct btrfs_transaction;
10 extern struct kmem_cache *btrfs_path_cachep;
11
12 #define BTRFS_MAGIC "_BtRfS_M"
13
14 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
15 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
16 #define BTRFS_INODE_MAP_OBJECTID 3ULL
17 #define BTRFS_FS_TREE_OBJECTID 4ULL
18 #define BTRFS_FIRST_FREE_OBJECTID 5ULL
19
20 /*
21 * we can actually store much bigger names, but lets not confuse the rest
22 * of linux
23 */
24 #define BTRFS_NAME_LEN 255
25
26 /* 32 bytes in various csum fields */
27 #define BTRFS_CSUM_SIZE 32
28
29 /*
30 * the key defines the order in the tree, and so it also defines (optimal)
31 * block layout. objectid corresonds to the inode number. The flags
32 * tells us things about the object, and is a kind of stream selector.
33 * so for a given inode, keys with flags of 1 might refer to the inode
34 * data, flags of 2 may point to file data in the btree and flags == 3
35 * may point to extents.
36 *
37 * offset is the starting byte offset for this key in the stream.
38 *
39 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
40 * in cpu native order. Otherwise they are identical and their sizes
41 * should be the same (ie both packed)
42 */
43 struct btrfs_disk_key {
44 __le64 objectid;
45 __le64 offset;
46 __le32 flags;
47 } __attribute__ ((__packed__));
48
49 struct btrfs_key {
50 u64 objectid;
51 u64 offset;
52 u32 flags;
53 } __attribute__ ((__packed__));
54
55 /*
56 * every tree block (leaf or node) starts with this header.
57 */
58 struct btrfs_header {
59 u8 csum[BTRFS_CSUM_SIZE];
60 u8 fsid[16]; /* FS specific uuid */
61 __le64 blocknr; /* which block this node is supposed to live in */
62 __le64 generation;
63 __le64 parentid; /* objectid of the tree root */
64 __le32 ham;
65 __le16 nritems;
66 __le16 flags;
67 u8 level;
68 } __attribute__ ((__packed__));
69
70 #define BTRFS_MAX_LEVEL 8
71 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
72 sizeof(struct btrfs_header)) / \
73 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
74 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
75 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
76
77 struct buffer_head;
78 /*
79 * the super block basically lists the main trees of the FS
80 * it currently lacks any block count etc etc
81 */
82 struct btrfs_super_block {
83 u8 csum[BTRFS_CSUM_SIZE];
84 /* the first 3 fields must match struct btrfs_header */
85 u8 fsid[16]; /* FS specific uuid */
86 __le64 blocknr; /* this block number */
87 __le64 magic;
88 __le32 blocksize;
89 __le64 generation;
90 __le64 root;
91 __le64 total_blocks;
92 __le64 blocks_used;
93 __le64 root_dir_objectid;
94 } __attribute__ ((__packed__));
95
96 /*
97 * A leaf is full of items. offset and size tell us where to find
98 * the item in the leaf (relative to the start of the data area)
99 */
100 struct btrfs_item {
101 struct btrfs_disk_key key;
102 __le32 offset;
103 __le16 size;
104 } __attribute__ ((__packed__));
105
106 /*
107 * leaves have an item area and a data area:
108 * [item0, item1....itemN] [free space] [dataN...data1, data0]
109 *
110 * The data is separate from the items to get the keys closer together
111 * during searches.
112 */
113 struct btrfs_leaf {
114 struct btrfs_header header;
115 struct btrfs_item items[];
116 } __attribute__ ((__packed__));
117
118 /*
119 * all non-leaf blocks are nodes, they hold only keys and pointers to
120 * other blocks
121 */
122 struct btrfs_key_ptr {
123 struct btrfs_disk_key key;
124 __le64 blockptr;
125 } __attribute__ ((__packed__));
126
127 struct btrfs_node {
128 struct btrfs_header header;
129 struct btrfs_key_ptr ptrs[];
130 } __attribute__ ((__packed__));
131
132 /*
133 * btrfs_paths remember the path taken from the root down to the leaf.
134 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
135 * to any other levels that are present.
136 *
137 * The slots array records the index of the item or block pointer
138 * used while walking the tree.
139 */
140 struct btrfs_path {
141 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
142 int slots[BTRFS_MAX_LEVEL];
143 };
144
145 /*
146 * items in the extent btree are used to record the objectid of the
147 * owner of the block and the number of references
148 */
149 struct btrfs_extent_item {
150 __le32 refs;
151 __le64 owner;
152 } __attribute__ ((__packed__));
153
154 struct btrfs_inode_timespec {
155 __le64 sec;
156 __le32 nsec;
157 } __attribute__ ((__packed__));
158
159 /*
160 * there is no padding here on purpose. If you want to extent the inode,
161 * make a new item type
162 */
163 struct btrfs_inode_item {
164 __le64 generation;
165 __le64 size;
166 __le64 nblocks;
167 __le32 nlink;
168 __le32 uid;
169 __le32 gid;
170 __le32 mode;
171 __le32 rdev;
172 __le16 flags;
173 __le16 compat_flags;
174 struct btrfs_inode_timespec atime;
175 struct btrfs_inode_timespec ctime;
176 struct btrfs_inode_timespec mtime;
177 struct btrfs_inode_timespec otime;
178 } __attribute__ ((__packed__));
179
180 /* inline data is just a blob of bytes */
181 struct btrfs_inline_data_item {
182 u8 data;
183 } __attribute__ ((__packed__));
184
185 struct btrfs_dir_item {
186 __le64 objectid;
187 __le16 flags;
188 __le16 name_len;
189 u8 type;
190 } __attribute__ ((__packed__));
191
192 struct btrfs_root_item {
193 __le64 blocknr;
194 __le32 flags;
195 __le64 block_limit;
196 __le64 blocks_used;
197 __le32 refs;
198 } __attribute__ ((__packed__));
199
200 struct btrfs_file_extent_item {
201 __le64 generation;
202 /*
203 * disk space consumed by the extent, checksum blocks are included
204 * in these numbers
205 */
206 __le64 disk_blocknr;
207 __le64 disk_num_blocks;
208 /*
209 * the logical offset in file blocks (no csums)
210 * this extent record is for. This allows a file extent to point
211 * into the middle of an existing extent on disk, sharing it
212 * between two snapshots (useful if some bytes in the middle of the
213 * extent have changed
214 */
215 __le64 offset;
216 /*
217 * the logical number of file blocks (no csums included)
218 */
219 __le64 num_blocks;
220 } __attribute__ ((__packed__));
221
222 struct btrfs_csum_item {
223 u8 csum[BTRFS_CSUM_SIZE];
224 } __attribute__ ((__packed__));
225
226 struct btrfs_inode_map_item {
227 struct btrfs_disk_key key;
228 } __attribute__ ((__packed__));
229
230 struct crypto_hash;
231 struct btrfs_fs_info {
232 struct btrfs_root *fs_root;
233 struct btrfs_root *extent_root;
234 struct btrfs_root *tree_root;
235 struct btrfs_root *inode_root;
236 struct btrfs_key current_insert;
237 struct btrfs_key last_insert;
238 struct radix_tree_root pending_del_radix;
239 struct radix_tree_root pinned_radix;
240 u64 last_inode_alloc;
241 u64 generation;
242 struct btrfs_transaction *running_transaction;
243 struct btrfs_super_block *disk_super;
244 struct buffer_head *sb_buffer;
245 struct super_block *sb;
246 struct inode *btree_inode;
247 struct mutex trans_mutex;
248 struct mutex fs_mutex;
249 struct crypto_hash *hash_tfm;
250 spinlock_t hash_lock;
251 };
252
253 /*
254 * in ram representation of the tree. extent_root is used for all allocations
255 * and for the extent tree extent_root root. current_insert is used
256 * only for the extent tree.
257 */
258 struct btrfs_root {
259 struct buffer_head *node;
260 struct buffer_head *commit_root;
261 struct btrfs_root_item root_item;
262 struct btrfs_key root_key;
263 struct btrfs_fs_info *fs_info;
264 u32 blocksize;
265 int ref_cows;
266 u32 type;
267 };
268
269 /* the lower bits in the key flags defines the item type */
270 #define BTRFS_KEY_TYPE_MAX 256
271 #define BTRFS_KEY_TYPE_MASK (BTRFS_KEY_TYPE_MAX - 1)
272
273 /*
274 * inode items have the data typically returned from stat and store other
275 * info about object characteristics. There is one for every file and dir in
276 * the FS
277 */
278 #define BTRFS_INODE_ITEM_KEY 1
279
280 /*
281 * dir items are the name -> inode pointers in a directory. There is one
282 * for every name in a directory.
283 */
284 #define BTRFS_DIR_ITEM_KEY 2
285 /*
286 * inline data is file data that fits in the btree.
287 */
288 #define BTRFS_INLINE_DATA_KEY 3
289 /*
290 * extent data is for data that can't fit in the btree. It points to
291 * a (hopefully) huge chunk of disk
292 */
293 #define BTRFS_EXTENT_DATA_KEY 4
294 /*
295 * csum items have the checksums for data in the extents
296 */
297 #define BTRFS_CSUM_ITEM_KEY 5
298
299 /*
300 * root items point to tree roots. There are typically in the root
301 * tree used by the super block to find all the other trees
302 */
303 #define BTRFS_ROOT_ITEM_KEY 6
304 /*
305 * extent items are in the extent map tree. These record which blocks
306 * are used, and how many references there are to each block
307 */
308 #define BTRFS_EXTENT_ITEM_KEY 7
309
310 /*
311 * the inode map records which inode numbers are in use and where
312 * they actually live on disk
313 */
314 #define BTRFS_INODE_MAP_ITEM_KEY 8
315 /*
316 * string items are for debugging. They just store a short string of
317 * data in the FS
318 */
319 #define BTRFS_STRING_ITEM_KEY 9
320
321 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
322 {
323 return le64_to_cpu(i->generation);
324 }
325
326 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
327 u64 val)
328 {
329 i->generation = cpu_to_le64(val);
330 }
331
332 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
333 {
334 return le64_to_cpu(i->size);
335 }
336
337 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
338 {
339 i->size = cpu_to_le64(val);
340 }
341
342 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
343 {
344 return le64_to_cpu(i->nblocks);
345 }
346
347 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
348 {
349 i->nblocks = cpu_to_le64(val);
350 }
351
352 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
353 {
354 return le32_to_cpu(i->nlink);
355 }
356
357 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
358 {
359 i->nlink = cpu_to_le32(val);
360 }
361
362 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
363 {
364 return le32_to_cpu(i->uid);
365 }
366
367 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
368 {
369 i->uid = cpu_to_le32(val);
370 }
371
372 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
373 {
374 return le32_to_cpu(i->gid);
375 }
376
377 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
378 {
379 i->gid = cpu_to_le32(val);
380 }
381
382 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
383 {
384 return le32_to_cpu(i->mode);
385 }
386
387 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
388 {
389 i->mode = cpu_to_le32(val);
390 }
391
392 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
393 {
394 return le32_to_cpu(i->rdev);
395 }
396
397 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
398 {
399 i->rdev = cpu_to_le32(val);
400 }
401
402 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
403 {
404 return le16_to_cpu(i->flags);
405 }
406
407 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
408 {
409 i->flags = cpu_to_le16(val);
410 }
411
412 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
413 {
414 return le16_to_cpu(i->compat_flags);
415 }
416
417 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
418 u16 val)
419 {
420 i->compat_flags = cpu_to_le16(val);
421 }
422
423 static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
424 {
425 return le64_to_cpu(ts->sec);
426 }
427
428 static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
429 u64 val)
430 {
431 ts->sec = cpu_to_le64(val);
432 }
433
434 static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
435 {
436 return le32_to_cpu(ts->nsec);
437 }
438
439 static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
440 u32 val)
441 {
442 ts->nsec = cpu_to_le32(val);
443 }
444
445 static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
446 {
447 return le64_to_cpu(ei->owner);
448 }
449
450 static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
451 {
452 ei->owner = cpu_to_le64(val);
453 }
454
455 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
456 {
457 return le32_to_cpu(ei->refs);
458 }
459
460 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
461 {
462 ei->refs = cpu_to_le32(val);
463 }
464
465 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
466 {
467 return le64_to_cpu(n->ptrs[nr].blockptr);
468 }
469
470 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
471 u64 val)
472 {
473 n->ptrs[nr].blockptr = cpu_to_le64(val);
474 }
475
476 static inline u32 btrfs_item_offset(struct btrfs_item *item)
477 {
478 return le32_to_cpu(item->offset);
479 }
480
481 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
482 {
483 item->offset = cpu_to_le32(val);
484 }
485
486 static inline u32 btrfs_item_end(struct btrfs_item *item)
487 {
488 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
489 }
490
491 static inline u16 btrfs_item_size(struct btrfs_item *item)
492 {
493 return le16_to_cpu(item->size);
494 }
495
496 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
497 {
498 item->size = cpu_to_le16(val);
499 }
500
501 static inline u64 btrfs_dir_objectid(struct btrfs_dir_item *d)
502 {
503 return le64_to_cpu(d->objectid);
504 }
505
506 static inline void btrfs_set_dir_objectid(struct btrfs_dir_item *d, u64 val)
507 {
508 d->objectid = cpu_to_le64(val);
509 }
510
511 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
512 {
513 return le16_to_cpu(d->flags);
514 }
515
516 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
517 {
518 d->flags = cpu_to_le16(val);
519 }
520
521 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
522 {
523 return d->type;
524 }
525
526 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
527 {
528 d->type = val;
529 }
530
531 static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
532 {
533 return le16_to_cpu(d->name_len);
534 }
535
536 static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
537 {
538 d->name_len = cpu_to_le16(val);
539 }
540
541 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
542 struct btrfs_disk_key *disk)
543 {
544 cpu->offset = le64_to_cpu(disk->offset);
545 cpu->flags = le32_to_cpu(disk->flags);
546 cpu->objectid = le64_to_cpu(disk->objectid);
547 }
548
549 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
550 struct btrfs_key *cpu)
551 {
552 disk->offset = cpu_to_le64(cpu->offset);
553 disk->flags = cpu_to_le32(cpu->flags);
554 disk->objectid = cpu_to_le64(cpu->objectid);
555 }
556
557 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
558 {
559 return le64_to_cpu(disk->objectid);
560 }
561
562 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
563 u64 val)
564 {
565 disk->objectid = cpu_to_le64(val);
566 }
567
568 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
569 {
570 return le64_to_cpu(disk->offset);
571 }
572
573 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
574 u64 val)
575 {
576 disk->offset = cpu_to_le64(val);
577 }
578
579 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
580 {
581 return le32_to_cpu(disk->flags);
582 }
583
584 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
585 u32 val)
586 {
587 disk->flags = cpu_to_le32(val);
588 }
589
590 static inline u32 btrfs_key_type(struct btrfs_key *key)
591 {
592 return key->flags & BTRFS_KEY_TYPE_MASK;
593 }
594
595 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
596 {
597 return le32_to_cpu(key->flags) & BTRFS_KEY_TYPE_MASK;
598 }
599
600 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 type)
601 {
602 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
603 key->flags = (key->flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
604 }
605
606 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u32 type)
607 {
608 u32 flags = btrfs_disk_key_flags(key);
609 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
610 flags = (flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
611 btrfs_set_disk_key_flags(key, flags);
612 }
613
614 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
615 {
616 return le64_to_cpu(h->blocknr);
617 }
618
619 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
620 {
621 h->blocknr = cpu_to_le64(blocknr);
622 }
623
624 static inline u64 btrfs_header_generation(struct btrfs_header *h)
625 {
626 return le64_to_cpu(h->generation);
627 }
628
629 static inline void btrfs_set_header_generation(struct btrfs_header *h,
630 u64 val)
631 {
632 h->generation = cpu_to_le64(val);
633 }
634
635 static inline u64 btrfs_header_parentid(struct btrfs_header *h)
636 {
637 return le64_to_cpu(h->parentid);
638 }
639
640 static inline void btrfs_set_header_parentid(struct btrfs_header *h,
641 u64 parentid)
642 {
643 h->parentid = cpu_to_le64(parentid);
644 }
645
646 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
647 {
648 return le16_to_cpu(h->nritems);
649 }
650
651 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
652 {
653 h->nritems = cpu_to_le16(val);
654 }
655
656 static inline u16 btrfs_header_flags(struct btrfs_header *h)
657 {
658 return le16_to_cpu(h->flags);
659 }
660
661 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
662 {
663 h->flags = cpu_to_le16(val);
664 }
665
666 static inline int btrfs_header_level(struct btrfs_header *h)
667 {
668 return h->level;
669 }
670
671 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
672 {
673 BUG_ON(level > BTRFS_MAX_LEVEL);
674 h->level = level;
675 }
676
677 static inline int btrfs_is_leaf(struct btrfs_node *n)
678 {
679 return (btrfs_header_level(&n->header) == 0);
680 }
681
682 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
683 {
684 return le64_to_cpu(item->blocknr);
685 }
686
687 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
688 {
689 item->blocknr = cpu_to_le64(val);
690 }
691
692 static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
693 {
694 return le32_to_cpu(item->refs);
695 }
696
697 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
698 {
699 item->refs = cpu_to_le32(val);
700 }
701
702 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
703 {
704 return le64_to_cpu(s->blocknr);
705 }
706
707 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
708 {
709 s->blocknr = cpu_to_le64(val);
710 }
711
712 static inline u64 btrfs_super_root(struct btrfs_super_block *s)
713 {
714 return le64_to_cpu(s->root);
715 }
716
717 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
718 {
719 s->root = cpu_to_le64(val);
720 }
721
722 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
723 {
724 return le64_to_cpu(s->total_blocks);
725 }
726
727 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
728 u64 val)
729 {
730 s->total_blocks = cpu_to_le64(val);
731 }
732
733 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
734 {
735 return le64_to_cpu(s->blocks_used);
736 }
737
738 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
739 u64 val)
740 {
741 s->blocks_used = cpu_to_le64(val);
742 }
743
744 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
745 {
746 return le32_to_cpu(s->blocksize);
747 }
748
749 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
750 u32 val)
751 {
752 s->blocksize = cpu_to_le32(val);
753 }
754
755 static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
756 {
757 return le64_to_cpu(s->root_dir_objectid);
758 }
759
760 static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
761 val)
762 {
763 s->root_dir_objectid = cpu_to_le64(val);
764 }
765
766 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
767 {
768 return (u8 *)l->items;
769 }
770
771 static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
772 *e)
773 {
774 return le64_to_cpu(e->disk_blocknr);
775 }
776
777 static inline void btrfs_set_file_extent_disk_blocknr(struct
778 btrfs_file_extent_item
779 *e, u64 val)
780 {
781 e->disk_blocknr = cpu_to_le64(val);
782 }
783
784 static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
785 {
786 return le64_to_cpu(e->generation);
787 }
788
789 static inline void btrfs_set_file_extent_generation(struct
790 btrfs_file_extent_item *e,
791 u64 val)
792 {
793 e->generation = cpu_to_le64(val);
794 }
795
796 static inline u64 btrfs_file_extent_disk_num_blocks(struct
797 btrfs_file_extent_item *e)
798 {
799 return le64_to_cpu(e->disk_num_blocks);
800 }
801
802 static inline void btrfs_set_file_extent_disk_num_blocks(struct
803 btrfs_file_extent_item
804 *e, u64 val)
805 {
806 e->disk_num_blocks = cpu_to_le64(val);
807 }
808
809 static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
810 {
811 return le64_to_cpu(e->offset);
812 }
813
814 static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
815 *e, u64 val)
816 {
817 e->offset = cpu_to_le64(val);
818 }
819
820 static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
821 *e)
822 {
823 return le64_to_cpu(e->num_blocks);
824 }
825
826 static inline void btrfs_set_file_extent_num_blocks(struct
827 btrfs_file_extent_item *e,
828 u64 val)
829 {
830 e->num_blocks = cpu_to_le64(val);
831 }
832
833 static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
834 {
835 return sb->s_fs_info;
836 }
837
838 static inline void btrfs_check_bounds(void *vptr, size_t len,
839 void *vcontainer, size_t container_len)
840 {
841 char *ptr = vptr;
842 char *container = vcontainer;
843 WARN_ON(ptr < container);
844 WARN_ON(ptr + len > container + container_len);
845 }
846
847 static inline void btrfs_memcpy(struct btrfs_root *root,
848 void *dst_block,
849 void *dst, const void *src, size_t nr)
850 {
851 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
852 memcpy(dst, src, nr);
853 }
854
855 static inline void btrfs_memmove(struct btrfs_root *root,
856 void *dst_block,
857 void *dst, void *src, size_t nr)
858 {
859 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
860 memmove(dst, src, nr);
861 }
862
863 static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
864 {
865 WARN_ON(!atomic_read(&bh->b_count));
866 mark_buffer_dirty(bh);
867 }
868
869 /* helper function to cast into the data area of the leaf. */
870 #define btrfs_item_ptr(leaf, slot, type) \
871 ((type *)(btrfs_leaf_data(leaf) + \
872 btrfs_item_offset((leaf)->items + (slot))))
873
874 /* extent-item.c */
875 struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
876 struct btrfs_root *root);
877 int btrfs_alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root
878 *root, u64 num_blocks, u64 search_start, u64
879 search_end, u64 owner, struct btrfs_key *ins);
880 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
881 struct buffer_head *buf);
882 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
883 *root, u64 blocknr, u64 num_blocks, int pin);
884 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
885 btrfs_root *root);
886 /* ctree.c */
887 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
888 *root, struct btrfs_key *key, struct btrfs_path *p, int
889 ins_len, int cow);
890 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
891 struct btrfs_path *btrfs_alloc_path(void);
892 void btrfs_free_path(struct btrfs_path *p);
893 void btrfs_init_path(struct btrfs_path *p);
894 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
895 struct btrfs_path *path);
896 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
897 *root, struct btrfs_key *key, void *data, u32 data_size);
898 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
899 *root, struct btrfs_path *path, struct btrfs_key
900 *cpu_key, u32 data_size);
901 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
902 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
903 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
904 *root, struct buffer_head *snap);
905 /* root-item.c */
906 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
907 struct btrfs_key *key);
908 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
909 *root, struct btrfs_key *key, struct btrfs_root_item
910 *item);
911 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
912 *root, struct btrfs_key *key, struct btrfs_root_item
913 *item);
914 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
915 btrfs_root_item *item, struct btrfs_key *key);
916 /* dir-item.c */
917 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
918 *root, const char *name, int name_len, u64 dir, u64
919 objectid, u8 type);
920 int btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
921 *root, struct btrfs_path *path, u64 dir,
922 const char *name, int name_len, int mod);
923 int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path,
924 const char *name, int name_len);
925 /* inode-map.c */
926 int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
927 struct btrfs_root *fs_root,
928 u64 dirid, u64 *objectid);
929 int btrfs_insert_inode_map(struct btrfs_trans_handle *trans,
930 struct btrfs_root *root,
931 u64 objectid, struct btrfs_key *location);
932 int btrfs_lookup_inode_map(struct btrfs_trans_handle *trans,
933 struct btrfs_root *root, struct btrfs_path *path,
934 u64 objectid, int mod);
935 /* inode-item.c */
936 int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
937 *root, u64 objectid, struct btrfs_inode_item
938 *inode_item);
939 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
940 *root, struct btrfs_path *path, u64 objectid, int mod);
941
942 /* file-item.c */
943 int btrfs_alloc_file_extent(struct btrfs_trans_handle *trans,
944 struct btrfs_root *root,
945 u64 objectid, u64 offset,
946 u64 num_blocks, u64 hint_block,
947 u64 *result);
948 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
949 struct btrfs_root *root,
950 struct btrfs_path *path, u64 objectid,
951 u64 blocknr, int mod);
952 int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
953 struct btrfs_root *root,
954 u64 objectid, u64 offset,
955 char *data, size_t len);
956 int btrfs_csum_verify_file_block(struct btrfs_root *root,
957 u64 objectid, u64 offset,
958 char *data, size_t len);
959 #endif
This page took 0.707107 seconds and 6 git commands to generate.