Btrfs: fix use after free when close_ctree frees the orphan_rsv
[deliverable/linux.git] / fs / btrfs / ctree.h
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #ifndef __BTRFS_CTREE__
20 #define __BTRFS_CTREE__
21
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/fs.h>
25 #include <linux/rwsem.h>
26 #include <linux/semaphore.h>
27 #include <linux/completion.h>
28 #include <linux/backing-dev.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/kobject.h>
32 #include <trace/events/btrfs.h>
33 #include <asm/kmap_types.h>
34 #include <linux/pagemap.h>
35 #include <linux/btrfs.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include "extent_io.h"
39 #include "extent_map.h"
40 #include "async-thread.h"
41
42 struct btrfs_trans_handle;
43 struct btrfs_transaction;
44 struct btrfs_pending_snapshot;
45 extern struct kmem_cache *btrfs_trans_handle_cachep;
46 extern struct kmem_cache *btrfs_transaction_cachep;
47 extern struct kmem_cache *btrfs_bit_radix_cachep;
48 extern struct kmem_cache *btrfs_path_cachep;
49 extern struct kmem_cache *btrfs_free_space_cachep;
50 struct btrfs_ordered_sum;
51
52 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
53 #define STATIC noinline
54 #else
55 #define STATIC static noinline
56 #endif
57
58 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
59
60 #define BTRFS_MAX_MIRRORS 3
61
62 #define BTRFS_MAX_LEVEL 8
63
64 #define BTRFS_COMPAT_EXTENT_TREE_V0
65
66 /* holds pointers to all of the tree roots */
67 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
68
69 /* stores information about which extents are in use, and reference counts */
70 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
71
72 /*
73 * chunk tree stores translations from logical -> physical block numbering
74 * the super block points to the chunk tree
75 */
76 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
77
78 /*
79 * stores information about which areas of a given device are in use.
80 * one per device. The tree of tree roots points to the device tree
81 */
82 #define BTRFS_DEV_TREE_OBJECTID 4ULL
83
84 /* one per subvolume, storing files and directories */
85 #define BTRFS_FS_TREE_OBJECTID 5ULL
86
87 /* directory objectid inside the root tree */
88 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
89
90 /* holds checksums of all the data extents */
91 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
92
93 /* holds quota configuration and tracking */
94 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
95
96 /* for storing items that use the BTRFS_UUID_KEY* types */
97 #define BTRFS_UUID_TREE_OBJECTID 9ULL
98
99 /* for storing balance parameters in the root tree */
100 #define BTRFS_BALANCE_OBJECTID -4ULL
101
102 /* orhpan objectid for tracking unlinked/truncated files */
103 #define BTRFS_ORPHAN_OBJECTID -5ULL
104
105 /* does write ahead logging to speed up fsyncs */
106 #define BTRFS_TREE_LOG_OBJECTID -6ULL
107 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
108
109 /* for space balancing */
110 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
111 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
112
113 /*
114 * extent checksums all have this objectid
115 * this allows them to share the logging tree
116 * for fsyncs
117 */
118 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
119
120 /* For storing free space cache */
121 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
122
123 /*
124 * The inode number assigned to the special inode for storing
125 * free ino cache
126 */
127 #define BTRFS_FREE_INO_OBJECTID -12ULL
128
129 /* dummy objectid represents multiple objectids */
130 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
131
132 /*
133 * All files have objectids in this range.
134 */
135 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
136 #define BTRFS_LAST_FREE_OBJECTID -256ULL
137 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
138
139
140 /*
141 * the device items go into the chunk tree. The key is in the form
142 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
143 */
144 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
145
146 #define BTRFS_BTREE_INODE_OBJECTID 1
147
148 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
149
150 #define BTRFS_DEV_REPLACE_DEVID 0ULL
151
152 /*
153 * the max metadata block size. This limit is somewhat artificial,
154 * but the memmove costs go through the roof for larger blocks.
155 */
156 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
157
158 /*
159 * we can actually store much bigger names, but lets not confuse the rest
160 * of linux
161 */
162 #define BTRFS_NAME_LEN 255
163
164 /*
165 * Theoretical limit is larger, but we keep this down to a sane
166 * value. That should limit greatly the possibility of collisions on
167 * inode ref items.
168 */
169 #define BTRFS_LINK_MAX 65535U
170
171 /* 32 bytes in various csum fields */
172 #define BTRFS_CSUM_SIZE 32
173
174 /* csum types */
175 #define BTRFS_CSUM_TYPE_CRC32 0
176
177 static int btrfs_csum_sizes[] = { 4, 0 };
178
179 /* four bytes for CRC32 */
180 #define BTRFS_EMPTY_DIR_SIZE 0
181
182 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
183 #define REQ_GET_READ_MIRRORS (1 << 30)
184
185 #define BTRFS_FT_UNKNOWN 0
186 #define BTRFS_FT_REG_FILE 1
187 #define BTRFS_FT_DIR 2
188 #define BTRFS_FT_CHRDEV 3
189 #define BTRFS_FT_BLKDEV 4
190 #define BTRFS_FT_FIFO 5
191 #define BTRFS_FT_SOCK 6
192 #define BTRFS_FT_SYMLINK 7
193 #define BTRFS_FT_XATTR 8
194 #define BTRFS_FT_MAX 9
195
196 /* ioprio of readahead is set to idle */
197 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
198
199 #define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024)
200
201 #define BTRFS_MAX_EXTENT_SIZE (128 * 1024 * 1024)
202
203 /*
204 * The key defines the order in the tree, and so it also defines (optimal)
205 * block layout.
206 *
207 * objectid corresponds to the inode number.
208 *
209 * type tells us things about the object, and is a kind of stream selector.
210 * so for a given inode, keys with type of 1 might refer to the inode data,
211 * type of 2 may point to file data in the btree and type == 3 may point to
212 * extents.
213 *
214 * offset is the starting byte offset for this key in the stream.
215 *
216 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
217 * in cpu native order. Otherwise they are identical and their sizes
218 * should be the same (ie both packed)
219 */
220 struct btrfs_disk_key {
221 __le64 objectid;
222 u8 type;
223 __le64 offset;
224 } __attribute__ ((__packed__));
225
226 struct btrfs_key {
227 u64 objectid;
228 u8 type;
229 u64 offset;
230 } __attribute__ ((__packed__));
231
232 struct btrfs_mapping_tree {
233 struct extent_map_tree map_tree;
234 };
235
236 struct btrfs_dev_item {
237 /* the internal btrfs device id */
238 __le64 devid;
239
240 /* size of the device */
241 __le64 total_bytes;
242
243 /* bytes used */
244 __le64 bytes_used;
245
246 /* optimal io alignment for this device */
247 __le32 io_align;
248
249 /* optimal io width for this device */
250 __le32 io_width;
251
252 /* minimal io size for this device */
253 __le32 sector_size;
254
255 /* type and info about this device */
256 __le64 type;
257
258 /* expected generation for this device */
259 __le64 generation;
260
261 /*
262 * starting byte of this partition on the device,
263 * to allow for stripe alignment in the future
264 */
265 __le64 start_offset;
266
267 /* grouping information for allocation decisions */
268 __le32 dev_group;
269
270 /* seek speed 0-100 where 100 is fastest */
271 u8 seek_speed;
272
273 /* bandwidth 0-100 where 100 is fastest */
274 u8 bandwidth;
275
276 /* btrfs generated uuid for this device */
277 u8 uuid[BTRFS_UUID_SIZE];
278
279 /* uuid of FS who owns this device */
280 u8 fsid[BTRFS_UUID_SIZE];
281 } __attribute__ ((__packed__));
282
283 struct btrfs_stripe {
284 __le64 devid;
285 __le64 offset;
286 u8 dev_uuid[BTRFS_UUID_SIZE];
287 } __attribute__ ((__packed__));
288
289 struct btrfs_chunk {
290 /* size of this chunk in bytes */
291 __le64 length;
292
293 /* objectid of the root referencing this chunk */
294 __le64 owner;
295
296 __le64 stripe_len;
297 __le64 type;
298
299 /* optimal io alignment for this chunk */
300 __le32 io_align;
301
302 /* optimal io width for this chunk */
303 __le32 io_width;
304
305 /* minimal io size for this chunk */
306 __le32 sector_size;
307
308 /* 2^16 stripes is quite a lot, a second limit is the size of a single
309 * item in the btree
310 */
311 __le16 num_stripes;
312
313 /* sub stripes only matter for raid10 */
314 __le16 sub_stripes;
315 struct btrfs_stripe stripe;
316 /* additional stripes go here */
317 } __attribute__ ((__packed__));
318
319 #define BTRFS_FREE_SPACE_EXTENT 1
320 #define BTRFS_FREE_SPACE_BITMAP 2
321
322 struct btrfs_free_space_entry {
323 __le64 offset;
324 __le64 bytes;
325 u8 type;
326 } __attribute__ ((__packed__));
327
328 struct btrfs_free_space_header {
329 struct btrfs_disk_key location;
330 __le64 generation;
331 __le64 num_entries;
332 __le64 num_bitmaps;
333 } __attribute__ ((__packed__));
334
335 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
336 {
337 BUG_ON(num_stripes == 0);
338 return sizeof(struct btrfs_chunk) +
339 sizeof(struct btrfs_stripe) * (num_stripes - 1);
340 }
341
342 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
343 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
344
345 /*
346 * File system states
347 */
348 #define BTRFS_FS_STATE_ERROR 0
349 #define BTRFS_FS_STATE_REMOUNTING 1
350 #define BTRFS_FS_STATE_TRANS_ABORTED 2
351 #define BTRFS_FS_STATE_DEV_REPLACING 3
352
353 /* Super block flags */
354 /* Errors detected */
355 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
356
357 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
358 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
359
360 #define BTRFS_BACKREF_REV_MAX 256
361 #define BTRFS_BACKREF_REV_SHIFT 56
362 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
363 BTRFS_BACKREF_REV_SHIFT)
364
365 #define BTRFS_OLD_BACKREF_REV 0
366 #define BTRFS_MIXED_BACKREF_REV 1
367
368 /*
369 * every tree block (leaf or node) starts with this header.
370 */
371 struct btrfs_header {
372 /* these first four must match the super block */
373 u8 csum[BTRFS_CSUM_SIZE];
374 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
375 __le64 bytenr; /* which block this node is supposed to live in */
376 __le64 flags;
377
378 /* allowed to be different from the super from here on down */
379 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
380 __le64 generation;
381 __le64 owner;
382 __le32 nritems;
383 u8 level;
384 } __attribute__ ((__packed__));
385
386 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
387 sizeof(struct btrfs_header)) / \
388 sizeof(struct btrfs_key_ptr))
389 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
390 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->nodesize))
391 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \
392 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
393 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
394 sizeof(struct btrfs_item) - \
395 BTRFS_FILE_EXTENT_INLINE_DATA_START)
396 #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
397 sizeof(struct btrfs_item) -\
398 sizeof(struct btrfs_dir_item))
399
400
401 /*
402 * this is a very generous portion of the super block, giving us
403 * room to translate 14 chunks with 3 stripes each.
404 */
405 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
406 #define BTRFS_LABEL_SIZE 256
407
408 /*
409 * just in case we somehow lose the roots and are not able to mount,
410 * we store an array of the roots from previous transactions
411 * in the super.
412 */
413 #define BTRFS_NUM_BACKUP_ROOTS 4
414 struct btrfs_root_backup {
415 __le64 tree_root;
416 __le64 tree_root_gen;
417
418 __le64 chunk_root;
419 __le64 chunk_root_gen;
420
421 __le64 extent_root;
422 __le64 extent_root_gen;
423
424 __le64 fs_root;
425 __le64 fs_root_gen;
426
427 __le64 dev_root;
428 __le64 dev_root_gen;
429
430 __le64 csum_root;
431 __le64 csum_root_gen;
432
433 __le64 total_bytes;
434 __le64 bytes_used;
435 __le64 num_devices;
436 /* future */
437 __le64 unused_64[4];
438
439 u8 tree_root_level;
440 u8 chunk_root_level;
441 u8 extent_root_level;
442 u8 fs_root_level;
443 u8 dev_root_level;
444 u8 csum_root_level;
445 /* future and to align */
446 u8 unused_8[10];
447 } __attribute__ ((__packed__));
448
449 /*
450 * the super block basically lists the main trees of the FS
451 * it currently lacks any block count etc etc
452 */
453 struct btrfs_super_block {
454 u8 csum[BTRFS_CSUM_SIZE];
455 /* the first 4 fields must match struct btrfs_header */
456 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
457 __le64 bytenr; /* this block number */
458 __le64 flags;
459
460 /* allowed to be different from the btrfs_header from here own down */
461 __le64 magic;
462 __le64 generation;
463 __le64 root;
464 __le64 chunk_root;
465 __le64 log_root;
466
467 /* this will help find the new super based on the log root */
468 __le64 log_root_transid;
469 __le64 total_bytes;
470 __le64 bytes_used;
471 __le64 root_dir_objectid;
472 __le64 num_devices;
473 __le32 sectorsize;
474 __le32 nodesize;
475 __le32 __unused_leafsize;
476 __le32 stripesize;
477 __le32 sys_chunk_array_size;
478 __le64 chunk_root_generation;
479 __le64 compat_flags;
480 __le64 compat_ro_flags;
481 __le64 incompat_flags;
482 __le16 csum_type;
483 u8 root_level;
484 u8 chunk_root_level;
485 u8 log_root_level;
486 struct btrfs_dev_item dev_item;
487
488 char label[BTRFS_LABEL_SIZE];
489
490 __le64 cache_generation;
491 __le64 uuid_tree_generation;
492
493 /* future expansion */
494 __le64 reserved[30];
495 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
496 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
497 } __attribute__ ((__packed__));
498
499 /*
500 * Compat flags that we support. If any incompat flags are set other than the
501 * ones specified below then we will fail to mount
502 */
503 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
504 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
505 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
506 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
507 /*
508 * some patches floated around with a second compression method
509 * lets save that incompat here for when they do get in
510 * Note we don't actually support it, we're just reserving the
511 * number
512 */
513 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
514
515 /*
516 * older kernels tried to do bigger metadata blocks, but the
517 * code was pretty buggy. Lets not let them try anymore.
518 */
519 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
520
521 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
522 #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
523 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
524 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
525
526 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
527 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
528 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
529 #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
530 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
531 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
532
533 #define BTRFS_FEATURE_INCOMPAT_SUPP \
534 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
535 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
536 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
537 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
538 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
539 BTRFS_FEATURE_INCOMPAT_RAID56 | \
540 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
541 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
542 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
543
544 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
545 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
546 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
547
548 /*
549 * A leaf is full of items. offset and size tell us where to find
550 * the item in the leaf (relative to the start of the data area)
551 */
552 struct btrfs_item {
553 struct btrfs_disk_key key;
554 __le32 offset;
555 __le32 size;
556 } __attribute__ ((__packed__));
557
558 /*
559 * leaves have an item area and a data area:
560 * [item0, item1....itemN] [free space] [dataN...data1, data0]
561 *
562 * The data is separate from the items to get the keys closer together
563 * during searches.
564 */
565 struct btrfs_leaf {
566 struct btrfs_header header;
567 struct btrfs_item items[];
568 } __attribute__ ((__packed__));
569
570 /*
571 * all non-leaf blocks are nodes, they hold only keys and pointers to
572 * other blocks
573 */
574 struct btrfs_key_ptr {
575 struct btrfs_disk_key key;
576 __le64 blockptr;
577 __le64 generation;
578 } __attribute__ ((__packed__));
579
580 struct btrfs_node {
581 struct btrfs_header header;
582 struct btrfs_key_ptr ptrs[];
583 } __attribute__ ((__packed__));
584
585 /*
586 * btrfs_paths remember the path taken from the root down to the leaf.
587 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
588 * to any other levels that are present.
589 *
590 * The slots array records the index of the item or block pointer
591 * used while walking the tree.
592 */
593 struct btrfs_path {
594 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
595 int slots[BTRFS_MAX_LEVEL];
596 /* if there is real range locking, this locks field will change */
597 int locks[BTRFS_MAX_LEVEL];
598 int reada;
599 /* keep some upper locks as we walk down */
600 int lowest_level;
601
602 /*
603 * set by btrfs_split_item, tells search_slot to keep all locks
604 * and to force calls to keep space in the nodes
605 */
606 unsigned int search_for_split:1;
607 unsigned int keep_locks:1;
608 unsigned int skip_locking:1;
609 unsigned int leave_spinning:1;
610 unsigned int search_commit_root:1;
611 unsigned int need_commit_sem:1;
612 unsigned int skip_release_on_error:1;
613 };
614
615 /*
616 * items in the extent btree are used to record the objectid of the
617 * owner of the block and the number of references
618 */
619
620 struct btrfs_extent_item {
621 __le64 refs;
622 __le64 generation;
623 __le64 flags;
624 } __attribute__ ((__packed__));
625
626 struct btrfs_extent_item_v0 {
627 __le32 refs;
628 } __attribute__ ((__packed__));
629
630 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
631 sizeof(struct btrfs_item))
632
633 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
634 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
635
636 /* following flags only apply to tree blocks */
637
638 /* use full backrefs for extent pointers in the block */
639 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
640
641 /*
642 * this flag is only used internally by scrub and may be changed at any time
643 * it is only declared here to avoid collisions
644 */
645 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
646
647 struct btrfs_tree_block_info {
648 struct btrfs_disk_key key;
649 u8 level;
650 } __attribute__ ((__packed__));
651
652 struct btrfs_extent_data_ref {
653 __le64 root;
654 __le64 objectid;
655 __le64 offset;
656 __le32 count;
657 } __attribute__ ((__packed__));
658
659 struct btrfs_shared_data_ref {
660 __le32 count;
661 } __attribute__ ((__packed__));
662
663 struct btrfs_extent_inline_ref {
664 u8 type;
665 __le64 offset;
666 } __attribute__ ((__packed__));
667
668 /* old style backrefs item */
669 struct btrfs_extent_ref_v0 {
670 __le64 root;
671 __le64 generation;
672 __le64 objectid;
673 __le32 count;
674 } __attribute__ ((__packed__));
675
676
677 /* dev extents record free space on individual devices. The owner
678 * field points back to the chunk allocation mapping tree that allocated
679 * the extent. The chunk tree uuid field is a way to double check the owner
680 */
681 struct btrfs_dev_extent {
682 __le64 chunk_tree;
683 __le64 chunk_objectid;
684 __le64 chunk_offset;
685 __le64 length;
686 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
687 } __attribute__ ((__packed__));
688
689 struct btrfs_inode_ref {
690 __le64 index;
691 __le16 name_len;
692 /* name goes here */
693 } __attribute__ ((__packed__));
694
695 struct btrfs_inode_extref {
696 __le64 parent_objectid;
697 __le64 index;
698 __le16 name_len;
699 __u8 name[0];
700 /* name goes here */
701 } __attribute__ ((__packed__));
702
703 struct btrfs_timespec {
704 __le64 sec;
705 __le32 nsec;
706 } __attribute__ ((__packed__));
707
708 enum btrfs_compression_type {
709 BTRFS_COMPRESS_NONE = 0,
710 BTRFS_COMPRESS_ZLIB = 1,
711 BTRFS_COMPRESS_LZO = 2,
712 BTRFS_COMPRESS_TYPES = 2,
713 BTRFS_COMPRESS_LAST = 3,
714 };
715
716 struct btrfs_inode_item {
717 /* nfs style generation number */
718 __le64 generation;
719 /* transid that last touched this inode */
720 __le64 transid;
721 __le64 size;
722 __le64 nbytes;
723 __le64 block_group;
724 __le32 nlink;
725 __le32 uid;
726 __le32 gid;
727 __le32 mode;
728 __le64 rdev;
729 __le64 flags;
730
731 /* modification sequence number for NFS */
732 __le64 sequence;
733
734 /*
735 * a little future expansion, for more than this we can
736 * just grow the inode item and version it
737 */
738 __le64 reserved[4];
739 struct btrfs_timespec atime;
740 struct btrfs_timespec ctime;
741 struct btrfs_timespec mtime;
742 struct btrfs_timespec otime;
743 } __attribute__ ((__packed__));
744
745 struct btrfs_dir_log_item {
746 __le64 end;
747 } __attribute__ ((__packed__));
748
749 struct btrfs_dir_item {
750 struct btrfs_disk_key location;
751 __le64 transid;
752 __le16 data_len;
753 __le16 name_len;
754 u8 type;
755 } __attribute__ ((__packed__));
756
757 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
758
759 /*
760 * Internal in-memory flag that a subvolume has been marked for deletion but
761 * still visible as a directory
762 */
763 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
764
765 struct btrfs_root_item {
766 struct btrfs_inode_item inode;
767 __le64 generation;
768 __le64 root_dirid;
769 __le64 bytenr;
770 __le64 byte_limit;
771 __le64 bytes_used;
772 __le64 last_snapshot;
773 __le64 flags;
774 __le32 refs;
775 struct btrfs_disk_key drop_progress;
776 u8 drop_level;
777 u8 level;
778
779 /*
780 * The following fields appear after subvol_uuids+subvol_times
781 * were introduced.
782 */
783
784 /*
785 * This generation number is used to test if the new fields are valid
786 * and up to date while reading the root item. Everytime the root item
787 * is written out, the "generation" field is copied into this field. If
788 * anyone ever mounted the fs with an older kernel, we will have
789 * mismatching generation values here and thus must invalidate the
790 * new fields. See btrfs_update_root and btrfs_find_last_root for
791 * details.
792 * the offset of generation_v2 is also used as the start for the memset
793 * when invalidating the fields.
794 */
795 __le64 generation_v2;
796 u8 uuid[BTRFS_UUID_SIZE];
797 u8 parent_uuid[BTRFS_UUID_SIZE];
798 u8 received_uuid[BTRFS_UUID_SIZE];
799 __le64 ctransid; /* updated when an inode changes */
800 __le64 otransid; /* trans when created */
801 __le64 stransid; /* trans when sent. non-zero for received subvol */
802 __le64 rtransid; /* trans when received. non-zero for received subvol */
803 struct btrfs_timespec ctime;
804 struct btrfs_timespec otime;
805 struct btrfs_timespec stime;
806 struct btrfs_timespec rtime;
807 __le64 reserved[8]; /* for future */
808 } __attribute__ ((__packed__));
809
810 /*
811 * this is used for both forward and backward root refs
812 */
813 struct btrfs_root_ref {
814 __le64 dirid;
815 __le64 sequence;
816 __le16 name_len;
817 } __attribute__ ((__packed__));
818
819 struct btrfs_disk_balance_args {
820 /*
821 * profiles to operate on, single is denoted by
822 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
823 */
824 __le64 profiles;
825
826 /* usage filter */
827 __le64 usage;
828
829 /* devid filter */
830 __le64 devid;
831
832 /* devid subset filter [pstart..pend) */
833 __le64 pstart;
834 __le64 pend;
835
836 /* btrfs virtual address space subset filter [vstart..vend) */
837 __le64 vstart;
838 __le64 vend;
839
840 /*
841 * profile to convert to, single is denoted by
842 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
843 */
844 __le64 target;
845
846 /* BTRFS_BALANCE_ARGS_* */
847 __le64 flags;
848
849 /* BTRFS_BALANCE_ARGS_LIMIT value */
850 __le64 limit;
851
852 __le64 unused[7];
853 } __attribute__ ((__packed__));
854
855 /*
856 * store balance parameters to disk so that balance can be properly
857 * resumed after crash or unmount
858 */
859 struct btrfs_balance_item {
860 /* BTRFS_BALANCE_* */
861 __le64 flags;
862
863 struct btrfs_disk_balance_args data;
864 struct btrfs_disk_balance_args meta;
865 struct btrfs_disk_balance_args sys;
866
867 __le64 unused[4];
868 } __attribute__ ((__packed__));
869
870 #define BTRFS_FILE_EXTENT_INLINE 0
871 #define BTRFS_FILE_EXTENT_REG 1
872 #define BTRFS_FILE_EXTENT_PREALLOC 2
873
874 struct btrfs_file_extent_item {
875 /*
876 * transaction id that created this extent
877 */
878 __le64 generation;
879 /*
880 * max number of bytes to hold this extent in ram
881 * when we split a compressed extent we can't know how big
882 * each of the resulting pieces will be. So, this is
883 * an upper limit on the size of the extent in ram instead of
884 * an exact limit.
885 */
886 __le64 ram_bytes;
887
888 /*
889 * 32 bits for the various ways we might encode the data,
890 * including compression and encryption. If any of these
891 * are set to something a given disk format doesn't understand
892 * it is treated like an incompat flag for reading and writing,
893 * but not for stat.
894 */
895 u8 compression;
896 u8 encryption;
897 __le16 other_encoding; /* spare for later use */
898
899 /* are we inline data or a real extent? */
900 u8 type;
901
902 /*
903 * disk space consumed by the extent, checksum blocks are included
904 * in these numbers
905 *
906 * At this offset in the structure, the inline extent data start.
907 */
908 __le64 disk_bytenr;
909 __le64 disk_num_bytes;
910 /*
911 * the logical offset in file blocks (no csums)
912 * this extent record is for. This allows a file extent to point
913 * into the middle of an existing extent on disk, sharing it
914 * between two snapshots (useful if some bytes in the middle of the
915 * extent have changed
916 */
917 __le64 offset;
918 /*
919 * the logical number of file blocks (no csums included). This
920 * always reflects the size uncompressed and without encoding.
921 */
922 __le64 num_bytes;
923
924 } __attribute__ ((__packed__));
925
926 struct btrfs_csum_item {
927 u8 csum;
928 } __attribute__ ((__packed__));
929
930 struct btrfs_dev_stats_item {
931 /*
932 * grow this item struct at the end for future enhancements and keep
933 * the existing values unchanged
934 */
935 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
936 } __attribute__ ((__packed__));
937
938 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
939 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
940 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
941 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
942 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
943 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
944 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
945
946 struct btrfs_dev_replace {
947 u64 replace_state; /* see #define above */
948 u64 time_started; /* seconds since 1-Jan-1970 */
949 u64 time_stopped; /* seconds since 1-Jan-1970 */
950 atomic64_t num_write_errors;
951 atomic64_t num_uncorrectable_read_errors;
952
953 u64 cursor_left;
954 u64 committed_cursor_left;
955 u64 cursor_left_last_write_of_item;
956 u64 cursor_right;
957
958 u64 cont_reading_from_srcdev_mode; /* see #define above */
959
960 int is_valid;
961 int item_needs_writeback;
962 struct btrfs_device *srcdev;
963 struct btrfs_device *tgtdev;
964
965 pid_t lock_owner;
966 atomic_t nesting_level;
967 struct mutex lock_finishing_cancel_unmount;
968 struct mutex lock_management_lock;
969 struct mutex lock;
970
971 struct btrfs_scrub_progress scrub_progress;
972 };
973
974 struct btrfs_dev_replace_item {
975 /*
976 * grow this item struct at the end for future enhancements and keep
977 * the existing values unchanged
978 */
979 __le64 src_devid;
980 __le64 cursor_left;
981 __le64 cursor_right;
982 __le64 cont_reading_from_srcdev_mode;
983
984 __le64 replace_state;
985 __le64 time_started;
986 __le64 time_stopped;
987 __le64 num_write_errors;
988 __le64 num_uncorrectable_read_errors;
989 } __attribute__ ((__packed__));
990
991 /* different types of block groups (and chunks) */
992 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
993 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
994 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
995 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
996 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
997 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
998 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
999 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
1000 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
1001 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
1002 BTRFS_SPACE_INFO_GLOBAL_RSV)
1003
1004 enum btrfs_raid_types {
1005 BTRFS_RAID_RAID10,
1006 BTRFS_RAID_RAID1,
1007 BTRFS_RAID_DUP,
1008 BTRFS_RAID_RAID0,
1009 BTRFS_RAID_SINGLE,
1010 BTRFS_RAID_RAID5,
1011 BTRFS_RAID_RAID6,
1012 BTRFS_NR_RAID_TYPES
1013 };
1014
1015 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
1016 BTRFS_BLOCK_GROUP_SYSTEM | \
1017 BTRFS_BLOCK_GROUP_METADATA)
1018
1019 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
1020 BTRFS_BLOCK_GROUP_RAID1 | \
1021 BTRFS_BLOCK_GROUP_RAID5 | \
1022 BTRFS_BLOCK_GROUP_RAID6 | \
1023 BTRFS_BLOCK_GROUP_DUP | \
1024 BTRFS_BLOCK_GROUP_RAID10)
1025 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
1026 BTRFS_BLOCK_GROUP_RAID6)
1027
1028 /*
1029 * We need a bit for restriper to be able to tell when chunks of type
1030 * SINGLE are available. This "extended" profile format is used in
1031 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1032 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
1033 * to avoid remappings between two formats in future.
1034 */
1035 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
1036
1037 /*
1038 * A fake block group type that is used to communicate global block reserve
1039 * size to userspace via the SPACE_INFO ioctl.
1040 */
1041 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
1042
1043 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1044 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1045
1046 static inline u64 chunk_to_extended(u64 flags)
1047 {
1048 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1049 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1050
1051 return flags;
1052 }
1053 static inline u64 extended_to_chunk(u64 flags)
1054 {
1055 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1056 }
1057
1058 struct btrfs_block_group_item {
1059 __le64 used;
1060 __le64 chunk_objectid;
1061 __le64 flags;
1062 } __attribute__ ((__packed__));
1063
1064 /*
1065 * is subvolume quota turned on?
1066 */
1067 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
1068 /*
1069 * RESCAN is set during the initialization phase
1070 */
1071 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
1072 /*
1073 * Some qgroup entries are known to be out of date,
1074 * either because the configuration has changed in a way that
1075 * makes a rescan necessary, or because the fs has been mounted
1076 * with a non-qgroup-aware version.
1077 * Turning qouta off and on again makes it inconsistent, too.
1078 */
1079 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
1080
1081 #define BTRFS_QGROUP_STATUS_VERSION 1
1082
1083 struct btrfs_qgroup_status_item {
1084 __le64 version;
1085 /*
1086 * the generation is updated during every commit. As older
1087 * versions of btrfs are not aware of qgroups, it will be
1088 * possible to detect inconsistencies by checking the
1089 * generation on mount time
1090 */
1091 __le64 generation;
1092
1093 /* flag definitions see above */
1094 __le64 flags;
1095
1096 /*
1097 * only used during scanning to record the progress
1098 * of the scan. It contains a logical address
1099 */
1100 __le64 rescan;
1101 } __attribute__ ((__packed__));
1102
1103 struct btrfs_qgroup_info_item {
1104 __le64 generation;
1105 __le64 rfer;
1106 __le64 rfer_cmpr;
1107 __le64 excl;
1108 __le64 excl_cmpr;
1109 } __attribute__ ((__packed__));
1110
1111 /* flags definition for qgroup limits */
1112 #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
1113 #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
1114 #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
1115 #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
1116 #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
1117 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
1118
1119 struct btrfs_qgroup_limit_item {
1120 /*
1121 * only updated when any of the other values change
1122 */
1123 __le64 flags;
1124 __le64 max_rfer;
1125 __le64 max_excl;
1126 __le64 rsv_rfer;
1127 __le64 rsv_excl;
1128 } __attribute__ ((__packed__));
1129
1130 /* For raid type sysfs entries */
1131 struct raid_kobject {
1132 int raid_type;
1133 struct kobject kobj;
1134 };
1135
1136 struct btrfs_space_info {
1137 spinlock_t lock;
1138
1139 u64 total_bytes; /* total bytes in the space,
1140 this doesn't take mirrors into account */
1141 u64 bytes_used; /* total bytes used,
1142 this doesn't take mirrors into account */
1143 u64 bytes_pinned; /* total bytes pinned, will be freed when the
1144 transaction finishes */
1145 u64 bytes_reserved; /* total bytes the allocator has reserved for
1146 current allocations */
1147 u64 bytes_may_use; /* number of bytes that may be used for
1148 delalloc/allocations */
1149 u64 bytes_readonly; /* total bytes that are read only */
1150
1151 unsigned int full:1; /* indicates that we cannot allocate any more
1152 chunks for this space */
1153 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
1154
1155 unsigned int flush:1; /* set if we are trying to make space */
1156
1157 unsigned int force_alloc; /* set if we need to force a chunk
1158 alloc for this space */
1159
1160 u64 disk_used; /* total bytes used on disk */
1161 u64 disk_total; /* total bytes on disk, takes mirrors into
1162 account */
1163
1164 u64 flags;
1165
1166 /*
1167 * bytes_pinned is kept in line with what is actually pinned, as in
1168 * we've called update_block_group and dropped the bytes_used counter
1169 * and increased the bytes_pinned counter. However this means that
1170 * bytes_pinned does not reflect the bytes that will be pinned once the
1171 * delayed refs are flushed, so this counter is inc'ed everytime we call
1172 * btrfs_free_extent so it is a realtime count of what will be freed
1173 * once the transaction is committed. It will be zero'ed everytime the
1174 * transaction commits.
1175 */
1176 struct percpu_counter total_bytes_pinned;
1177
1178 struct list_head list;
1179 /* Protected by the spinlock 'lock'. */
1180 struct list_head ro_bgs;
1181
1182 struct rw_semaphore groups_sem;
1183 /* for block groups in our same type */
1184 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1185 wait_queue_head_t wait;
1186
1187 struct kobject kobj;
1188 struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES];
1189 };
1190
1191 #define BTRFS_BLOCK_RSV_GLOBAL 1
1192 #define BTRFS_BLOCK_RSV_DELALLOC 2
1193 #define BTRFS_BLOCK_RSV_TRANS 3
1194 #define BTRFS_BLOCK_RSV_CHUNK 4
1195 #define BTRFS_BLOCK_RSV_DELOPS 5
1196 #define BTRFS_BLOCK_RSV_EMPTY 6
1197 #define BTRFS_BLOCK_RSV_TEMP 7
1198
1199 struct btrfs_block_rsv {
1200 u64 size;
1201 u64 reserved;
1202 struct btrfs_space_info *space_info;
1203 spinlock_t lock;
1204 unsigned short full;
1205 unsigned short type;
1206 unsigned short failfast;
1207 };
1208
1209 /*
1210 * free clusters are used to claim free space in relatively large chunks,
1211 * allowing us to do less seeky writes. They are used for all metadata
1212 * allocations and data allocations in ssd mode.
1213 */
1214 struct btrfs_free_cluster {
1215 spinlock_t lock;
1216 spinlock_t refill_lock;
1217 struct rb_root root;
1218
1219 /* largest extent in this cluster */
1220 u64 max_size;
1221
1222 /* first extent starting offset */
1223 u64 window_start;
1224
1225 struct btrfs_block_group_cache *block_group;
1226 /*
1227 * when a cluster is allocated from a block group, we put the
1228 * cluster onto a list in the block group so that it can
1229 * be freed before the block group is freed.
1230 */
1231 struct list_head block_group_list;
1232 };
1233
1234 enum btrfs_caching_type {
1235 BTRFS_CACHE_NO = 0,
1236 BTRFS_CACHE_STARTED = 1,
1237 BTRFS_CACHE_FAST = 2,
1238 BTRFS_CACHE_FINISHED = 3,
1239 BTRFS_CACHE_ERROR = 4,
1240 };
1241
1242 enum btrfs_disk_cache_state {
1243 BTRFS_DC_WRITTEN = 0,
1244 BTRFS_DC_ERROR = 1,
1245 BTRFS_DC_CLEAR = 2,
1246 BTRFS_DC_SETUP = 3,
1247 };
1248
1249 struct btrfs_caching_control {
1250 struct list_head list;
1251 struct mutex mutex;
1252 wait_queue_head_t wait;
1253 struct btrfs_work work;
1254 struct btrfs_block_group_cache *block_group;
1255 u64 progress;
1256 atomic_t count;
1257 };
1258
1259 struct btrfs_io_ctl {
1260 void *cur, *orig;
1261 struct page *page;
1262 struct page **pages;
1263 struct btrfs_root *root;
1264 struct inode *inode;
1265 unsigned long size;
1266 int index;
1267 int num_pages;
1268 int entries;
1269 int bitmaps;
1270 unsigned check_crcs:1;
1271 };
1272
1273 struct btrfs_block_group_cache {
1274 struct btrfs_key key;
1275 struct btrfs_block_group_item item;
1276 struct btrfs_fs_info *fs_info;
1277 struct inode *inode;
1278 spinlock_t lock;
1279 u64 pinned;
1280 u64 reserved;
1281 u64 delalloc_bytes;
1282 u64 bytes_super;
1283 u64 flags;
1284 u64 sectorsize;
1285 u64 cache_generation;
1286
1287 /*
1288 * It is just used for the delayed data space allocation because
1289 * only the data space allocation and the relative metadata update
1290 * can be done cross the transaction.
1291 */
1292 struct rw_semaphore data_rwsem;
1293
1294 /* for raid56, this is a full stripe, without parity */
1295 unsigned long full_stripe_len;
1296
1297 unsigned int ro:1;
1298 unsigned int iref:1;
1299 unsigned int has_caching_ctl:1;
1300 unsigned int removed:1;
1301
1302 int disk_cache_state;
1303
1304 /* cache tracking stuff */
1305 int cached;
1306 struct btrfs_caching_control *caching_ctl;
1307 u64 last_byte_to_unpin;
1308
1309 struct btrfs_space_info *space_info;
1310
1311 /* free space cache stuff */
1312 struct btrfs_free_space_ctl *free_space_ctl;
1313
1314 /* block group cache stuff */
1315 struct rb_node cache_node;
1316
1317 /* for block groups in the same raid type */
1318 struct list_head list;
1319
1320 /* usage count */
1321 atomic_t count;
1322
1323 /* List of struct btrfs_free_clusters for this block group.
1324 * Today it will only have one thing on it, but that may change
1325 */
1326 struct list_head cluster_list;
1327
1328 /* For delayed block group creation or deletion of empty block groups */
1329 struct list_head bg_list;
1330
1331 /* For read-only block groups */
1332 struct list_head ro_list;
1333
1334 atomic_t trimming;
1335
1336 /* For dirty block groups */
1337 struct list_head dirty_list;
1338 struct list_head io_list;
1339
1340 struct btrfs_io_ctl io_ctl;
1341 };
1342
1343 /* delayed seq elem */
1344 struct seq_list {
1345 struct list_head list;
1346 u64 seq;
1347 };
1348
1349 #define SEQ_LIST_INIT(name) { .list = LIST_HEAD_INIT((name).list), .seq = 0 }
1350
1351 enum btrfs_orphan_cleanup_state {
1352 ORPHAN_CLEANUP_STARTED = 1,
1353 ORPHAN_CLEANUP_DONE = 2,
1354 };
1355
1356 /* used by the raid56 code to lock stripes for read/modify/write */
1357 struct btrfs_stripe_hash {
1358 struct list_head hash_list;
1359 wait_queue_head_t wait;
1360 spinlock_t lock;
1361 };
1362
1363 /* used by the raid56 code to lock stripes for read/modify/write */
1364 struct btrfs_stripe_hash_table {
1365 struct list_head stripe_cache;
1366 spinlock_t cache_lock;
1367 int cache_size;
1368 struct btrfs_stripe_hash table[];
1369 };
1370
1371 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
1372
1373 void btrfs_init_async_reclaim_work(struct work_struct *work);
1374
1375 /* fs_info */
1376 struct reloc_control;
1377 struct btrfs_device;
1378 struct btrfs_fs_devices;
1379 struct btrfs_balance_control;
1380 struct btrfs_delayed_root;
1381 struct btrfs_fs_info {
1382 u8 fsid[BTRFS_FSID_SIZE];
1383 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1384 struct btrfs_root *extent_root;
1385 struct btrfs_root *tree_root;
1386 struct btrfs_root *chunk_root;
1387 struct btrfs_root *dev_root;
1388 struct btrfs_root *fs_root;
1389 struct btrfs_root *csum_root;
1390 struct btrfs_root *quota_root;
1391 struct btrfs_root *uuid_root;
1392
1393 /* the log root tree is a directory of all the other log roots */
1394 struct btrfs_root *log_root_tree;
1395
1396 spinlock_t fs_roots_radix_lock;
1397 struct radix_tree_root fs_roots_radix;
1398
1399 /* block group cache stuff */
1400 spinlock_t block_group_cache_lock;
1401 u64 first_logical_byte;
1402 struct rb_root block_group_cache_tree;
1403
1404 /* keep track of unallocated space */
1405 spinlock_t free_chunk_lock;
1406 u64 free_chunk_space;
1407
1408 struct extent_io_tree freed_extents[2];
1409 struct extent_io_tree *pinned_extents;
1410
1411 /* logical->physical extent mapping */
1412 struct btrfs_mapping_tree mapping_tree;
1413
1414 /*
1415 * block reservation for extent, checksum, root tree and
1416 * delayed dir index item
1417 */
1418 struct btrfs_block_rsv global_block_rsv;
1419 /* block reservation for delay allocation */
1420 struct btrfs_block_rsv delalloc_block_rsv;
1421 /* block reservation for metadata operations */
1422 struct btrfs_block_rsv trans_block_rsv;
1423 /* block reservation for chunk tree */
1424 struct btrfs_block_rsv chunk_block_rsv;
1425 /* block reservation for delayed operations */
1426 struct btrfs_block_rsv delayed_block_rsv;
1427
1428 struct btrfs_block_rsv empty_block_rsv;
1429
1430 u64 generation;
1431 u64 last_trans_committed;
1432 u64 avg_delayed_ref_runtime;
1433
1434 /*
1435 * this is updated to the current trans every time a full commit
1436 * is required instead of the faster short fsync log commits
1437 */
1438 u64 last_trans_log_full_commit;
1439 unsigned long mount_opt;
1440 /*
1441 * Track requests for actions that need to be done during transaction
1442 * commit (like for some mount options).
1443 */
1444 unsigned long pending_changes;
1445 unsigned long compress_type:4;
1446 int commit_interval;
1447 /*
1448 * It is a suggestive number, the read side is safe even it gets a
1449 * wrong number because we will write out the data into a regular
1450 * extent. The write side(mount/remount) is under ->s_umount lock,
1451 * so it is also safe.
1452 */
1453 u64 max_inline;
1454 /*
1455 * Protected by ->chunk_mutex and sb->s_umount.
1456 *
1457 * The reason that we use two lock to protect it is because only
1458 * remount and mount operations can change it and these two operations
1459 * are under sb->s_umount, but the read side (chunk allocation) can not
1460 * acquire sb->s_umount or the deadlock would happen. So we use two
1461 * locks to protect it. On the write side, we must acquire two locks,
1462 * and on the read side, we just need acquire one of them.
1463 */
1464 u64 alloc_start;
1465 struct btrfs_transaction *running_transaction;
1466 wait_queue_head_t transaction_throttle;
1467 wait_queue_head_t transaction_wait;
1468 wait_queue_head_t transaction_blocked_wait;
1469 wait_queue_head_t async_submit_wait;
1470
1471 /*
1472 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1473 * when they are updated.
1474 *
1475 * Because we do not clear the flags for ever, so we needn't use
1476 * the lock on the read side.
1477 *
1478 * We also needn't use the lock when we mount the fs, because
1479 * there is no other task which will update the flag.
1480 */
1481 spinlock_t super_lock;
1482 struct btrfs_super_block *super_copy;
1483 struct btrfs_super_block *super_for_commit;
1484 struct block_device *__bdev;
1485 struct super_block *sb;
1486 struct inode *btree_inode;
1487 struct backing_dev_info bdi;
1488 struct mutex tree_log_mutex;
1489 struct mutex transaction_kthread_mutex;
1490 struct mutex cleaner_mutex;
1491 struct mutex chunk_mutex;
1492 struct mutex volume_mutex;
1493
1494 /*
1495 * this is taken to make sure we don't set block groups ro after
1496 * the free space cache has been allocated on them
1497 */
1498 struct mutex ro_block_group_mutex;
1499
1500 /* this is used during read/modify/write to make sure
1501 * no two ios are trying to mod the same stripe at the same
1502 * time
1503 */
1504 struct btrfs_stripe_hash_table *stripe_hash_table;
1505
1506 /*
1507 * this protects the ordered operations list only while we are
1508 * processing all of the entries on it. This way we make
1509 * sure the commit code doesn't find the list temporarily empty
1510 * because another function happens to be doing non-waiting preflush
1511 * before jumping into the main commit.
1512 */
1513 struct mutex ordered_operations_mutex;
1514
1515 /*
1516 * Same as ordered_operations_mutex except this is for ordered extents
1517 * and not the operations.
1518 */
1519 struct mutex ordered_extent_flush_mutex;
1520
1521 struct rw_semaphore commit_root_sem;
1522
1523 struct rw_semaphore cleanup_work_sem;
1524
1525 struct rw_semaphore subvol_sem;
1526 struct srcu_struct subvol_srcu;
1527
1528 spinlock_t trans_lock;
1529 /*
1530 * the reloc mutex goes with the trans lock, it is taken
1531 * during commit to protect us from the relocation code
1532 */
1533 struct mutex reloc_mutex;
1534
1535 struct list_head trans_list;
1536 struct list_head dead_roots;
1537 struct list_head caching_block_groups;
1538
1539 spinlock_t delayed_iput_lock;
1540 struct list_head delayed_iputs;
1541
1542 /* this protects tree_mod_seq_list */
1543 spinlock_t tree_mod_seq_lock;
1544 atomic64_t tree_mod_seq;
1545 struct list_head tree_mod_seq_list;
1546
1547 /* this protects tree_mod_log */
1548 rwlock_t tree_mod_log_lock;
1549 struct rb_root tree_mod_log;
1550
1551 atomic_t nr_async_submits;
1552 atomic_t async_submit_draining;
1553 atomic_t nr_async_bios;
1554 atomic_t async_delalloc_pages;
1555 atomic_t open_ioctl_trans;
1556
1557 /*
1558 * this is used to protect the following list -- ordered_roots.
1559 */
1560 spinlock_t ordered_root_lock;
1561
1562 /*
1563 * all fs/file tree roots in which there are data=ordered extents
1564 * pending writeback are added into this list.
1565 *
1566 * these can span multiple transactions and basically include
1567 * every dirty data page that isn't from nodatacow
1568 */
1569 struct list_head ordered_roots;
1570
1571 struct mutex delalloc_root_mutex;
1572 spinlock_t delalloc_root_lock;
1573 /* all fs/file tree roots that have delalloc inodes. */
1574 struct list_head delalloc_roots;
1575
1576 /*
1577 * there is a pool of worker threads for checksumming during writes
1578 * and a pool for checksumming after reads. This is because readers
1579 * can run with FS locks held, and the writers may be waiting for
1580 * those locks. We don't want ordering in the pending list to cause
1581 * deadlocks, and so the two are serviced separately.
1582 *
1583 * A third pool does submit_bio to avoid deadlocking with the other
1584 * two
1585 */
1586 struct btrfs_workqueue *workers;
1587 struct btrfs_workqueue *delalloc_workers;
1588 struct btrfs_workqueue *flush_workers;
1589 struct btrfs_workqueue *endio_workers;
1590 struct btrfs_workqueue *endio_meta_workers;
1591 struct btrfs_workqueue *endio_raid56_workers;
1592 struct btrfs_workqueue *endio_repair_workers;
1593 struct btrfs_workqueue *rmw_workers;
1594 struct btrfs_workqueue *endio_meta_write_workers;
1595 struct btrfs_workqueue *endio_write_workers;
1596 struct btrfs_workqueue *endio_freespace_worker;
1597 struct btrfs_workqueue *submit_workers;
1598 struct btrfs_workqueue *caching_workers;
1599 struct btrfs_workqueue *readahead_workers;
1600
1601 /*
1602 * fixup workers take dirty pages that didn't properly go through
1603 * the cow mechanism and make them safe to write. It happens
1604 * for the sys_munmap function call path
1605 */
1606 struct btrfs_workqueue *fixup_workers;
1607 struct btrfs_workqueue *delayed_workers;
1608
1609 /* the extent workers do delayed refs on the extent allocation tree */
1610 struct btrfs_workqueue *extent_workers;
1611 struct task_struct *transaction_kthread;
1612 struct task_struct *cleaner_kthread;
1613 int thread_pool_size;
1614
1615 struct kobject super_kobj;
1616 struct kobject *space_info_kobj;
1617 struct kobject *device_dir_kobj;
1618 struct completion kobj_unregister;
1619 int do_barriers;
1620 int closing;
1621 int log_root_recovering;
1622 int open;
1623
1624 u64 total_pinned;
1625
1626 /* used to keep from writing metadata until there is a nice batch */
1627 struct percpu_counter dirty_metadata_bytes;
1628 struct percpu_counter delalloc_bytes;
1629 s32 dirty_metadata_batch;
1630 s32 delalloc_batch;
1631
1632 struct list_head dirty_cowonly_roots;
1633
1634 struct btrfs_fs_devices *fs_devices;
1635
1636 /*
1637 * the space_info list is almost entirely read only. It only changes
1638 * when we add a new raid type to the FS, and that happens
1639 * very rarely. RCU is used to protect it.
1640 */
1641 struct list_head space_info;
1642
1643 struct btrfs_space_info *data_sinfo;
1644
1645 struct reloc_control *reloc_ctl;
1646
1647 /* data_alloc_cluster is only used in ssd mode */
1648 struct btrfs_free_cluster data_alloc_cluster;
1649
1650 /* all metadata allocations go through this cluster */
1651 struct btrfs_free_cluster meta_alloc_cluster;
1652
1653 /* auto defrag inodes go here */
1654 spinlock_t defrag_inodes_lock;
1655 struct rb_root defrag_inodes;
1656 atomic_t defrag_running;
1657
1658 /* Used to protect avail_{data, metadata, system}_alloc_bits */
1659 seqlock_t profiles_lock;
1660 /*
1661 * these three are in extended format (availability of single
1662 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1663 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1664 */
1665 u64 avail_data_alloc_bits;
1666 u64 avail_metadata_alloc_bits;
1667 u64 avail_system_alloc_bits;
1668
1669 /* restriper state */
1670 spinlock_t balance_lock;
1671 struct mutex balance_mutex;
1672 atomic_t balance_running;
1673 atomic_t balance_pause_req;
1674 atomic_t balance_cancel_req;
1675 struct btrfs_balance_control *balance_ctl;
1676 wait_queue_head_t balance_wait_q;
1677
1678 unsigned data_chunk_allocations;
1679 unsigned metadata_ratio;
1680
1681 void *bdev_holder;
1682
1683 /* private scrub information */
1684 struct mutex scrub_lock;
1685 atomic_t scrubs_running;
1686 atomic_t scrub_pause_req;
1687 atomic_t scrubs_paused;
1688 atomic_t scrub_cancel_req;
1689 wait_queue_head_t scrub_pause_wait;
1690 int scrub_workers_refcnt;
1691 struct btrfs_workqueue *scrub_workers;
1692 struct btrfs_workqueue *scrub_wr_completion_workers;
1693 struct btrfs_workqueue *scrub_nocow_workers;
1694
1695 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1696 u32 check_integrity_print_mask;
1697 #endif
1698 /*
1699 * quota information
1700 */
1701 unsigned int quota_enabled:1;
1702
1703 /*
1704 * quota_enabled only changes state after a commit. This holds the
1705 * next state.
1706 */
1707 unsigned int pending_quota_state:1;
1708
1709 /* is qgroup tracking in a consistent state? */
1710 u64 qgroup_flags;
1711
1712 /* holds configuration and tracking. Protected by qgroup_lock */
1713 struct rb_root qgroup_tree;
1714 struct rb_root qgroup_op_tree;
1715 spinlock_t qgroup_lock;
1716 spinlock_t qgroup_op_lock;
1717 atomic_t qgroup_op_seq;
1718
1719 /*
1720 * used to avoid frequently calling ulist_alloc()/ulist_free()
1721 * when doing qgroup accounting, it must be protected by qgroup_lock.
1722 */
1723 struct ulist *qgroup_ulist;
1724
1725 /* protect user change for quota operations */
1726 struct mutex qgroup_ioctl_lock;
1727
1728 /* list of dirty qgroups to be written at next commit */
1729 struct list_head dirty_qgroups;
1730
1731 /* used by btrfs_qgroup_record_ref for an efficient tree traversal */
1732 u64 qgroup_seq;
1733
1734 /* qgroup rescan items */
1735 struct mutex qgroup_rescan_lock; /* protects the progress item */
1736 struct btrfs_key qgroup_rescan_progress;
1737 struct btrfs_workqueue *qgroup_rescan_workers;
1738 struct completion qgroup_rescan_completion;
1739 struct btrfs_work qgroup_rescan_work;
1740
1741 /* filesystem state */
1742 unsigned long fs_state;
1743
1744 struct btrfs_delayed_root *delayed_root;
1745
1746 /* readahead tree */
1747 spinlock_t reada_lock;
1748 struct radix_tree_root reada_tree;
1749
1750 /* Extent buffer radix tree */
1751 spinlock_t buffer_lock;
1752 struct radix_tree_root buffer_radix;
1753
1754 /* next backup root to be overwritten */
1755 int backup_root_index;
1756
1757 int num_tolerated_disk_barrier_failures;
1758
1759 /* device replace state */
1760 struct btrfs_dev_replace dev_replace;
1761
1762 atomic_t mutually_exclusive_operation_running;
1763
1764 struct percpu_counter bio_counter;
1765 wait_queue_head_t replace_wait;
1766
1767 struct semaphore uuid_tree_rescan_sem;
1768 unsigned int update_uuid_tree_gen:1;
1769
1770 /* Used to reclaim the metadata space in the background. */
1771 struct work_struct async_reclaim_work;
1772
1773 spinlock_t unused_bgs_lock;
1774 struct list_head unused_bgs;
1775 struct mutex unused_bg_unpin_mutex;
1776
1777 /* For btrfs to record security options */
1778 struct security_mnt_opts security_opts;
1779
1780 /*
1781 * Chunks that can't be freed yet (under a trim/discard operation)
1782 * and will be latter freed. Protected by fs_info->chunk_mutex.
1783 */
1784 struct list_head pinned_chunks;
1785 };
1786
1787 struct btrfs_subvolume_writers {
1788 struct percpu_counter counter;
1789 wait_queue_head_t wait;
1790 };
1791
1792 /*
1793 * The state of btrfs root
1794 */
1795 /*
1796 * btrfs_record_root_in_trans is a multi-step process,
1797 * and it can race with the balancing code. But the
1798 * race is very small, and only the first time the root
1799 * is added to each transaction. So IN_TRANS_SETUP
1800 * is used to tell us when more checks are required
1801 */
1802 #define BTRFS_ROOT_IN_TRANS_SETUP 0
1803 #define BTRFS_ROOT_REF_COWS 1
1804 #define BTRFS_ROOT_TRACK_DIRTY 2
1805 #define BTRFS_ROOT_IN_RADIX 3
1806 #define BTRFS_ROOT_DUMMY_ROOT 4
1807 #define BTRFS_ROOT_ORPHAN_ITEM_INSERTED 5
1808 #define BTRFS_ROOT_DEFRAG_RUNNING 6
1809 #define BTRFS_ROOT_FORCE_COW 7
1810 #define BTRFS_ROOT_MULTI_LOG_TASKS 8
1811 #define BTRFS_ROOT_DIRTY 9
1812
1813 /*
1814 * in ram representation of the tree. extent_root is used for all allocations
1815 * and for the extent tree extent_root root.
1816 */
1817 struct btrfs_root {
1818 struct extent_buffer *node;
1819
1820 struct extent_buffer *commit_root;
1821 struct btrfs_root *log_root;
1822 struct btrfs_root *reloc_root;
1823
1824 unsigned long state;
1825 struct btrfs_root_item root_item;
1826 struct btrfs_key root_key;
1827 struct btrfs_fs_info *fs_info;
1828 struct extent_io_tree dirty_log_pages;
1829
1830 struct mutex objectid_mutex;
1831
1832 spinlock_t accounting_lock;
1833 struct btrfs_block_rsv *block_rsv;
1834
1835 /* free ino cache stuff */
1836 struct btrfs_free_space_ctl *free_ino_ctl;
1837 enum btrfs_caching_type ino_cache_state;
1838 spinlock_t ino_cache_lock;
1839 wait_queue_head_t ino_cache_wait;
1840 struct btrfs_free_space_ctl *free_ino_pinned;
1841 u64 ino_cache_progress;
1842 struct inode *ino_cache_inode;
1843
1844 struct mutex log_mutex;
1845 wait_queue_head_t log_writer_wait;
1846 wait_queue_head_t log_commit_wait[2];
1847 struct list_head log_ctxs[2];
1848 atomic_t log_writers;
1849 atomic_t log_commit[2];
1850 atomic_t log_batch;
1851 int log_transid;
1852 /* No matter the commit succeeds or not*/
1853 int log_transid_committed;
1854 /* Just be updated when the commit succeeds. */
1855 int last_log_commit;
1856 pid_t log_start_pid;
1857
1858 u64 objectid;
1859 u64 last_trans;
1860
1861 /* data allocations are done in sectorsize units */
1862 u32 sectorsize;
1863
1864 /* node allocations are done in nodesize units */
1865 u32 nodesize;
1866
1867 u32 stripesize;
1868
1869 u32 type;
1870
1871 u64 highest_objectid;
1872
1873 /* only used with CONFIG_BTRFS_FS_RUN_SANITY_TESTS is enabled */
1874 u64 alloc_bytenr;
1875
1876 u64 defrag_trans_start;
1877 struct btrfs_key defrag_progress;
1878 struct btrfs_key defrag_max;
1879 char *name;
1880
1881 /* the dirty list is only used by non-reference counted roots */
1882 struct list_head dirty_list;
1883
1884 struct list_head root_list;
1885
1886 spinlock_t log_extents_lock[2];
1887 struct list_head logged_list[2];
1888
1889 spinlock_t orphan_lock;
1890 atomic_t orphan_inodes;
1891 struct btrfs_block_rsv *orphan_block_rsv;
1892 int orphan_cleanup_state;
1893
1894 spinlock_t inode_lock;
1895 /* red-black tree that keeps track of in-memory inodes */
1896 struct rb_root inode_tree;
1897
1898 /*
1899 * radix tree that keeps track of delayed nodes of every inode,
1900 * protected by inode_lock
1901 */
1902 struct radix_tree_root delayed_nodes_tree;
1903 /*
1904 * right now this just gets used so that a root has its own devid
1905 * for stat. It may be used for more later
1906 */
1907 dev_t anon_dev;
1908
1909 spinlock_t root_item_lock;
1910 atomic_t refs;
1911
1912 struct mutex delalloc_mutex;
1913 spinlock_t delalloc_lock;
1914 /*
1915 * all of the inodes that have delalloc bytes. It is possible for
1916 * this list to be empty even when there is still dirty data=ordered
1917 * extents waiting to finish IO.
1918 */
1919 struct list_head delalloc_inodes;
1920 struct list_head delalloc_root;
1921 u64 nr_delalloc_inodes;
1922
1923 struct mutex ordered_extent_mutex;
1924 /*
1925 * this is used by the balancing code to wait for all the pending
1926 * ordered extents
1927 */
1928 spinlock_t ordered_extent_lock;
1929
1930 /*
1931 * all of the data=ordered extents pending writeback
1932 * these can span multiple transactions and basically include
1933 * every dirty data page that isn't from nodatacow
1934 */
1935 struct list_head ordered_extents;
1936 struct list_head ordered_root;
1937 u64 nr_ordered_extents;
1938
1939 /*
1940 * Number of currently running SEND ioctls to prevent
1941 * manipulation with the read-only status via SUBVOL_SETFLAGS
1942 */
1943 int send_in_progress;
1944 struct btrfs_subvolume_writers *subv_writers;
1945 atomic_t will_be_snapshoted;
1946 };
1947
1948 struct btrfs_ioctl_defrag_range_args {
1949 /* start of the defrag operation */
1950 __u64 start;
1951
1952 /* number of bytes to defrag, use (u64)-1 to say all */
1953 __u64 len;
1954
1955 /*
1956 * flags for the operation, which can include turning
1957 * on compression for this one defrag
1958 */
1959 __u64 flags;
1960
1961 /*
1962 * any extent bigger than this will be considered
1963 * already defragged. Use 0 to take the kernel default
1964 * Use 1 to say every single extent must be rewritten
1965 */
1966 __u32 extent_thresh;
1967
1968 /*
1969 * which compression method to use if turning on compression
1970 * for this defrag operation. If unspecified, zlib will
1971 * be used
1972 */
1973 __u32 compress_type;
1974
1975 /* spare for later */
1976 __u32 unused[4];
1977 };
1978
1979
1980 /*
1981 * inode items have the data typically returned from stat and store other
1982 * info about object characteristics. There is one for every file and dir in
1983 * the FS
1984 */
1985 #define BTRFS_INODE_ITEM_KEY 1
1986 #define BTRFS_INODE_REF_KEY 12
1987 #define BTRFS_INODE_EXTREF_KEY 13
1988 #define BTRFS_XATTR_ITEM_KEY 24
1989 #define BTRFS_ORPHAN_ITEM_KEY 48
1990 /* reserve 2-15 close to the inode for later flexibility */
1991
1992 /*
1993 * dir items are the name -> inode pointers in a directory. There is one
1994 * for every name in a directory.
1995 */
1996 #define BTRFS_DIR_LOG_ITEM_KEY 60
1997 #define BTRFS_DIR_LOG_INDEX_KEY 72
1998 #define BTRFS_DIR_ITEM_KEY 84
1999 #define BTRFS_DIR_INDEX_KEY 96
2000 /*
2001 * extent data is for file data
2002 */
2003 #define BTRFS_EXTENT_DATA_KEY 108
2004
2005 /*
2006 * extent csums are stored in a separate tree and hold csums for
2007 * an entire extent on disk.
2008 */
2009 #define BTRFS_EXTENT_CSUM_KEY 128
2010
2011 /*
2012 * root items point to tree roots. They are typically in the root
2013 * tree used by the super block to find all the other trees
2014 */
2015 #define BTRFS_ROOT_ITEM_KEY 132
2016
2017 /*
2018 * root backrefs tie subvols and snapshots to the directory entries that
2019 * reference them
2020 */
2021 #define BTRFS_ROOT_BACKREF_KEY 144
2022
2023 /*
2024 * root refs make a fast index for listing all of the snapshots and
2025 * subvolumes referenced by a given root. They point directly to the
2026 * directory item in the root that references the subvol
2027 */
2028 #define BTRFS_ROOT_REF_KEY 156
2029
2030 /*
2031 * extent items are in the extent map tree. These record which blocks
2032 * are used, and how many references there are to each block
2033 */
2034 #define BTRFS_EXTENT_ITEM_KEY 168
2035
2036 /*
2037 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
2038 * the length, so we save the level in key->offset instead of the length.
2039 */
2040 #define BTRFS_METADATA_ITEM_KEY 169
2041
2042 #define BTRFS_TREE_BLOCK_REF_KEY 176
2043
2044 #define BTRFS_EXTENT_DATA_REF_KEY 178
2045
2046 #define BTRFS_EXTENT_REF_V0_KEY 180
2047
2048 #define BTRFS_SHARED_BLOCK_REF_KEY 182
2049
2050 #define BTRFS_SHARED_DATA_REF_KEY 184
2051
2052 /*
2053 * block groups give us hints into the extent allocation trees. Which
2054 * blocks are free etc etc
2055 */
2056 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
2057
2058 #define BTRFS_DEV_EXTENT_KEY 204
2059 #define BTRFS_DEV_ITEM_KEY 216
2060 #define BTRFS_CHUNK_ITEM_KEY 228
2061
2062 /*
2063 * Records the overall state of the qgroups.
2064 * There's only one instance of this key present,
2065 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
2066 */
2067 #define BTRFS_QGROUP_STATUS_KEY 240
2068 /*
2069 * Records the currently used space of the qgroup.
2070 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
2071 */
2072 #define BTRFS_QGROUP_INFO_KEY 242
2073 /*
2074 * Contains the user configured limits for the qgroup.
2075 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
2076 */
2077 #define BTRFS_QGROUP_LIMIT_KEY 244
2078 /*
2079 * Records the child-parent relationship of qgroups. For
2080 * each relation, 2 keys are present:
2081 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
2082 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
2083 */
2084 #define BTRFS_QGROUP_RELATION_KEY 246
2085
2086 #define BTRFS_BALANCE_ITEM_KEY 248
2087
2088 /*
2089 * Persistantly stores the io stats in the device tree.
2090 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
2091 */
2092 #define BTRFS_DEV_STATS_KEY 249
2093
2094 /*
2095 * Persistantly stores the device replace state in the device tree.
2096 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
2097 */
2098 #define BTRFS_DEV_REPLACE_KEY 250
2099
2100 /*
2101 * Stores items that allow to quickly map UUIDs to something else.
2102 * These items are part of the filesystem UUID tree.
2103 * The key is built like this:
2104 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
2105 */
2106 #if BTRFS_UUID_SIZE != 16
2107 #error "UUID items require BTRFS_UUID_SIZE == 16!"
2108 #endif
2109 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
2110 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
2111 * received subvols */
2112
2113 /*
2114 * string items are for debugging. They just store a short string of
2115 * data in the FS
2116 */
2117 #define BTRFS_STRING_ITEM_KEY 253
2118
2119 /*
2120 * Flags for mount options.
2121 *
2122 * Note: don't forget to add new options to btrfs_show_options()
2123 */
2124 #define BTRFS_MOUNT_NODATASUM (1 << 0)
2125 #define BTRFS_MOUNT_NODATACOW (1 << 1)
2126 #define BTRFS_MOUNT_NOBARRIER (1 << 2)
2127 #define BTRFS_MOUNT_SSD (1 << 3)
2128 #define BTRFS_MOUNT_DEGRADED (1 << 4)
2129 #define BTRFS_MOUNT_COMPRESS (1 << 5)
2130 #define BTRFS_MOUNT_NOTREELOG (1 << 6)
2131 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
2132 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
2133 #define BTRFS_MOUNT_NOSSD (1 << 9)
2134 #define BTRFS_MOUNT_DISCARD (1 << 10)
2135 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
2136 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
2137 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
2138 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2139 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
2140 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
2141 #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
2142 #define BTRFS_MOUNT_RECOVERY (1 << 18)
2143 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
2144 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
2145 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2146 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
2147 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
2148
2149 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
2150 #define BTRFS_DEFAULT_MAX_INLINE (8192)
2151
2152 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
2153 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
2154 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
2155 #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
2156 BTRFS_MOUNT_##opt)
2157
2158 #define btrfs_set_and_info(root, opt, fmt, args...) \
2159 { \
2160 if (!btrfs_test_opt(root, opt)) \
2161 btrfs_info(root->fs_info, fmt, ##args); \
2162 btrfs_set_opt(root->fs_info->mount_opt, opt); \
2163 }
2164
2165 #define btrfs_clear_and_info(root, opt, fmt, args...) \
2166 { \
2167 if (btrfs_test_opt(root, opt)) \
2168 btrfs_info(root->fs_info, fmt, ##args); \
2169 btrfs_clear_opt(root->fs_info->mount_opt, opt); \
2170 }
2171
2172 /*
2173 * Requests for changes that need to be done during transaction commit.
2174 *
2175 * Internal mount options that are used for special handling of the real
2176 * mount options (eg. cannot be set during remount and have to be set during
2177 * transaction commit)
2178 */
2179
2180 #define BTRFS_PENDING_SET_INODE_MAP_CACHE (0)
2181 #define BTRFS_PENDING_CLEAR_INODE_MAP_CACHE (1)
2182 #define BTRFS_PENDING_COMMIT (2)
2183
2184 #define btrfs_test_pending(info, opt) \
2185 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2186 #define btrfs_set_pending(info, opt) \
2187 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2188 #define btrfs_clear_pending(info, opt) \
2189 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2190
2191 /*
2192 * Helpers for setting pending mount option changes.
2193 *
2194 * Expects corresponding macros
2195 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
2196 */
2197 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \
2198 do { \
2199 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
2200 btrfs_info((info), fmt, ##args); \
2201 btrfs_set_pending((info), SET_##opt); \
2202 btrfs_clear_pending((info), CLEAR_##opt); \
2203 } \
2204 } while(0)
2205
2206 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
2207 do { \
2208 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
2209 btrfs_info((info), fmt, ##args); \
2210 btrfs_set_pending((info), CLEAR_##opt); \
2211 btrfs_clear_pending((info), SET_##opt); \
2212 } \
2213 } while(0)
2214
2215 /*
2216 * Inode flags
2217 */
2218 #define BTRFS_INODE_NODATASUM (1 << 0)
2219 #define BTRFS_INODE_NODATACOW (1 << 1)
2220 #define BTRFS_INODE_READONLY (1 << 2)
2221 #define BTRFS_INODE_NOCOMPRESS (1 << 3)
2222 #define BTRFS_INODE_PREALLOC (1 << 4)
2223 #define BTRFS_INODE_SYNC (1 << 5)
2224 #define BTRFS_INODE_IMMUTABLE (1 << 6)
2225 #define BTRFS_INODE_APPEND (1 << 7)
2226 #define BTRFS_INODE_NODUMP (1 << 8)
2227 #define BTRFS_INODE_NOATIME (1 << 9)
2228 #define BTRFS_INODE_DIRSYNC (1 << 10)
2229 #define BTRFS_INODE_COMPRESS (1 << 11)
2230
2231 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
2232
2233 struct btrfs_map_token {
2234 struct extent_buffer *eb;
2235 char *kaddr;
2236 unsigned long offset;
2237 };
2238
2239 static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2240 {
2241 token->kaddr = NULL;
2242 }
2243
2244 /* some macros to generate set/get funcs for the struct fields. This
2245 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2246 * one for u8:
2247 */
2248 #define le8_to_cpu(v) (v)
2249 #define cpu_to_le8(v) (v)
2250 #define __le8 u8
2251
2252 #define read_eb_member(eb, ptr, type, member, result) ( \
2253 read_extent_buffer(eb, (char *)(result), \
2254 ((unsigned long)(ptr)) + \
2255 offsetof(type, member), \
2256 sizeof(((type *)0)->member)))
2257
2258 #define write_eb_member(eb, ptr, type, member, result) ( \
2259 write_extent_buffer(eb, (char *)(result), \
2260 ((unsigned long)(ptr)) + \
2261 offsetof(type, member), \
2262 sizeof(((type *)0)->member)))
2263
2264 #define DECLARE_BTRFS_SETGET_BITS(bits) \
2265 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \
2266 unsigned long off, \
2267 struct btrfs_map_token *token); \
2268 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \
2269 unsigned long off, u##bits val, \
2270 struct btrfs_map_token *token); \
2271 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2272 unsigned long off) \
2273 { \
2274 return btrfs_get_token_##bits(eb, ptr, off, NULL); \
2275 } \
2276 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2277 unsigned long off, u##bits val) \
2278 { \
2279 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
2280 }
2281
2282 DECLARE_BTRFS_SETGET_BITS(8)
2283 DECLARE_BTRFS_SETGET_BITS(16)
2284 DECLARE_BTRFS_SETGET_BITS(32)
2285 DECLARE_BTRFS_SETGET_BITS(64)
2286
2287 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
2288 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \
2289 { \
2290 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2291 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
2292 } \
2293 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
2294 u##bits val) \
2295 { \
2296 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2297 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
2298 } \
2299 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2300 struct btrfs_map_token *token) \
2301 { \
2302 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2303 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2304 } \
2305 static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
2306 type *s, u##bits val, \
2307 struct btrfs_map_token *token) \
2308 { \
2309 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2310 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2311 }
2312
2313 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
2314 static inline u##bits btrfs_##name(struct extent_buffer *eb) \
2315 { \
2316 type *p = page_address(eb->pages[0]); \
2317 u##bits res = le##bits##_to_cpu(p->member); \
2318 return res; \
2319 } \
2320 static inline void btrfs_set_##name(struct extent_buffer *eb, \
2321 u##bits val) \
2322 { \
2323 type *p = page_address(eb->pages[0]); \
2324 p->member = cpu_to_le##bits(val); \
2325 }
2326
2327 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
2328 static inline u##bits btrfs_##name(type *s) \
2329 { \
2330 return le##bits##_to_cpu(s->member); \
2331 } \
2332 static inline void btrfs_set_##name(type *s, u##bits val) \
2333 { \
2334 s->member = cpu_to_le##bits(val); \
2335 }
2336
2337 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2338 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2339 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2340 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2341 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2342 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2343 start_offset, 64);
2344 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2345 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2346 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2347 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2348 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2349 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2350
2351 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2352 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2353 total_bytes, 64);
2354 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2355 bytes_used, 64);
2356 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2357 io_align, 32);
2358 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2359 io_width, 32);
2360 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2361 sector_size, 32);
2362 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2363 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2364 dev_group, 32);
2365 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2366 seek_speed, 8);
2367 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2368 bandwidth, 8);
2369 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2370 generation, 64);
2371
2372 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2373 {
2374 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2375 }
2376
2377 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2378 {
2379 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2380 }
2381
2382 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2383 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2384 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2385 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2386 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2387 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2388 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2389 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2390 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2391 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2392 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2393
2394 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2395 {
2396 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2397 }
2398
2399 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2400 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2401 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2402 stripe_len, 64);
2403 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2404 io_align, 32);
2405 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2406 io_width, 32);
2407 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2408 sector_size, 32);
2409 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2410 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2411 num_stripes, 16);
2412 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2413 sub_stripes, 16);
2414 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2415 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2416
2417 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2418 int nr)
2419 {
2420 unsigned long offset = (unsigned long)c;
2421 offset += offsetof(struct btrfs_chunk, stripe);
2422 offset += nr * sizeof(struct btrfs_stripe);
2423 return (struct btrfs_stripe *)offset;
2424 }
2425
2426 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2427 {
2428 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2429 }
2430
2431 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2432 struct btrfs_chunk *c, int nr)
2433 {
2434 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2435 }
2436
2437 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2438 struct btrfs_chunk *c, int nr)
2439 {
2440 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2441 }
2442
2443 /* struct btrfs_block_group_item */
2444 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2445 used, 64);
2446 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2447 used, 64);
2448 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2449 struct btrfs_block_group_item, chunk_objectid, 64);
2450
2451 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2452 struct btrfs_block_group_item, chunk_objectid, 64);
2453 BTRFS_SETGET_FUNCS(disk_block_group_flags,
2454 struct btrfs_block_group_item, flags, 64);
2455 BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2456 struct btrfs_block_group_item, flags, 64);
2457
2458 /* struct btrfs_inode_ref */
2459 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2460 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2461
2462 /* struct btrfs_inode_extref */
2463 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2464 parent_objectid, 64);
2465 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2466 name_len, 16);
2467 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2468
2469 /* struct btrfs_inode_item */
2470 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2471 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2472 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2473 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2474 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2475 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2476 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2477 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2478 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2479 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2480 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2481 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2482 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2483 generation, 64);
2484 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2485 sequence, 64);
2486 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2487 transid, 64);
2488 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2489 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2490 nbytes, 64);
2491 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2492 block_group, 64);
2493 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2494 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2495 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2496 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2497 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2498 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2499 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2500 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2501 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2502 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2503
2504 /* struct btrfs_dev_extent */
2505 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2506 chunk_tree, 64);
2507 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2508 chunk_objectid, 64);
2509 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2510 chunk_offset, 64);
2511 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2512
2513 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2514 {
2515 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2516 return (unsigned long)dev + ptr;
2517 }
2518
2519 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2520 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2521 generation, 64);
2522 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2523
2524 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2525
2526
2527 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2528
2529 static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2530 struct btrfs_tree_block_info *item,
2531 struct btrfs_disk_key *key)
2532 {
2533 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2534 }
2535
2536 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2537 struct btrfs_tree_block_info *item,
2538 struct btrfs_disk_key *key)
2539 {
2540 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2541 }
2542
2543 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2544 root, 64);
2545 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2546 objectid, 64);
2547 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2548 offset, 64);
2549 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2550 count, 32);
2551
2552 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2553 count, 32);
2554
2555 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2556 type, 8);
2557 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2558 offset, 64);
2559
2560 static inline u32 btrfs_extent_inline_ref_size(int type)
2561 {
2562 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2563 type == BTRFS_SHARED_BLOCK_REF_KEY)
2564 return sizeof(struct btrfs_extent_inline_ref);
2565 if (type == BTRFS_SHARED_DATA_REF_KEY)
2566 return sizeof(struct btrfs_shared_data_ref) +
2567 sizeof(struct btrfs_extent_inline_ref);
2568 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2569 return sizeof(struct btrfs_extent_data_ref) +
2570 offsetof(struct btrfs_extent_inline_ref, offset);
2571 BUG();
2572 return 0;
2573 }
2574
2575 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2576 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2577 generation, 64);
2578 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2579 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2580
2581 /* struct btrfs_node */
2582 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2583 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2584 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2585 blockptr, 64);
2586 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2587 generation, 64);
2588
2589 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2590 {
2591 unsigned long ptr;
2592 ptr = offsetof(struct btrfs_node, ptrs) +
2593 sizeof(struct btrfs_key_ptr) * nr;
2594 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2595 }
2596
2597 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2598 int nr, u64 val)
2599 {
2600 unsigned long ptr;
2601 ptr = offsetof(struct btrfs_node, ptrs) +
2602 sizeof(struct btrfs_key_ptr) * nr;
2603 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2604 }
2605
2606 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2607 {
2608 unsigned long ptr;
2609 ptr = offsetof(struct btrfs_node, ptrs) +
2610 sizeof(struct btrfs_key_ptr) * nr;
2611 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2612 }
2613
2614 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2615 int nr, u64 val)
2616 {
2617 unsigned long ptr;
2618 ptr = offsetof(struct btrfs_node, ptrs) +
2619 sizeof(struct btrfs_key_ptr) * nr;
2620 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2621 }
2622
2623 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2624 {
2625 return offsetof(struct btrfs_node, ptrs) +
2626 sizeof(struct btrfs_key_ptr) * nr;
2627 }
2628
2629 void btrfs_node_key(struct extent_buffer *eb,
2630 struct btrfs_disk_key *disk_key, int nr);
2631
2632 static inline void btrfs_set_node_key(struct extent_buffer *eb,
2633 struct btrfs_disk_key *disk_key, int nr)
2634 {
2635 unsigned long ptr;
2636 ptr = btrfs_node_key_ptr_offset(nr);
2637 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2638 struct btrfs_key_ptr, key, disk_key);
2639 }
2640
2641 /* struct btrfs_item */
2642 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2643 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2644 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2645 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2646
2647 static inline unsigned long btrfs_item_nr_offset(int nr)
2648 {
2649 return offsetof(struct btrfs_leaf, items) +
2650 sizeof(struct btrfs_item) * nr;
2651 }
2652
2653 static inline struct btrfs_item *btrfs_item_nr(int nr)
2654 {
2655 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2656 }
2657
2658 static inline u32 btrfs_item_end(struct extent_buffer *eb,
2659 struct btrfs_item *item)
2660 {
2661 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2662 }
2663
2664 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2665 {
2666 return btrfs_item_end(eb, btrfs_item_nr(nr));
2667 }
2668
2669 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2670 {
2671 return btrfs_item_offset(eb, btrfs_item_nr(nr));
2672 }
2673
2674 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2675 {
2676 return btrfs_item_size(eb, btrfs_item_nr(nr));
2677 }
2678
2679 static inline void btrfs_item_key(struct extent_buffer *eb,
2680 struct btrfs_disk_key *disk_key, int nr)
2681 {
2682 struct btrfs_item *item = btrfs_item_nr(nr);
2683 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2684 }
2685
2686 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2687 struct btrfs_disk_key *disk_key, int nr)
2688 {
2689 struct btrfs_item *item = btrfs_item_nr(nr);
2690 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2691 }
2692
2693 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2694
2695 /*
2696 * struct btrfs_root_ref
2697 */
2698 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2699 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2700 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2701
2702 /* struct btrfs_dir_item */
2703 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2704 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2705 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2706 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2707 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2708 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2709 data_len, 16);
2710 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2711 name_len, 16);
2712 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2713 transid, 64);
2714
2715 static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2716 struct btrfs_dir_item *item,
2717 struct btrfs_disk_key *key)
2718 {
2719 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2720 }
2721
2722 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2723 struct btrfs_dir_item *item,
2724 struct btrfs_disk_key *key)
2725 {
2726 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2727 }
2728
2729 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2730 num_entries, 64);
2731 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2732 num_bitmaps, 64);
2733 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2734 generation, 64);
2735
2736 static inline void btrfs_free_space_key(struct extent_buffer *eb,
2737 struct btrfs_free_space_header *h,
2738 struct btrfs_disk_key *key)
2739 {
2740 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2741 }
2742
2743 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2744 struct btrfs_free_space_header *h,
2745 struct btrfs_disk_key *key)
2746 {
2747 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2748 }
2749
2750 /* struct btrfs_disk_key */
2751 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2752 objectid, 64);
2753 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2754 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2755
2756 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2757 struct btrfs_disk_key *disk)
2758 {
2759 cpu->offset = le64_to_cpu(disk->offset);
2760 cpu->type = disk->type;
2761 cpu->objectid = le64_to_cpu(disk->objectid);
2762 }
2763
2764 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2765 struct btrfs_key *cpu)
2766 {
2767 disk->offset = cpu_to_le64(cpu->offset);
2768 disk->type = cpu->type;
2769 disk->objectid = cpu_to_le64(cpu->objectid);
2770 }
2771
2772 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2773 struct btrfs_key *key, int nr)
2774 {
2775 struct btrfs_disk_key disk_key;
2776 btrfs_node_key(eb, &disk_key, nr);
2777 btrfs_disk_key_to_cpu(key, &disk_key);
2778 }
2779
2780 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2781 struct btrfs_key *key, int nr)
2782 {
2783 struct btrfs_disk_key disk_key;
2784 btrfs_item_key(eb, &disk_key, nr);
2785 btrfs_disk_key_to_cpu(key, &disk_key);
2786 }
2787
2788 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2789 struct btrfs_dir_item *item,
2790 struct btrfs_key *key)
2791 {
2792 struct btrfs_disk_key disk_key;
2793 btrfs_dir_item_key(eb, item, &disk_key);
2794 btrfs_disk_key_to_cpu(key, &disk_key);
2795 }
2796
2797
2798 static inline u8 btrfs_key_type(struct btrfs_key *key)
2799 {
2800 return key->type;
2801 }
2802
2803 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2804 {
2805 key->type = val;
2806 }
2807
2808 /* struct btrfs_header */
2809 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2810 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2811 generation, 64);
2812 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2813 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2814 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2815 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2816 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2817 generation, 64);
2818 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2819 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2820 nritems, 32);
2821 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2822
2823 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2824 {
2825 return (btrfs_header_flags(eb) & flag) == flag;
2826 }
2827
2828 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2829 {
2830 u64 flags = btrfs_header_flags(eb);
2831 btrfs_set_header_flags(eb, flags | flag);
2832 return (flags & flag) == flag;
2833 }
2834
2835 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2836 {
2837 u64 flags = btrfs_header_flags(eb);
2838 btrfs_set_header_flags(eb, flags & ~flag);
2839 return (flags & flag) == flag;
2840 }
2841
2842 static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2843 {
2844 u64 flags = btrfs_header_flags(eb);
2845 return flags >> BTRFS_BACKREF_REV_SHIFT;
2846 }
2847
2848 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2849 int rev)
2850 {
2851 u64 flags = btrfs_header_flags(eb);
2852 flags &= ~BTRFS_BACKREF_REV_MASK;
2853 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2854 btrfs_set_header_flags(eb, flags);
2855 }
2856
2857 static inline unsigned long btrfs_header_fsid(void)
2858 {
2859 return offsetof(struct btrfs_header, fsid);
2860 }
2861
2862 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2863 {
2864 return offsetof(struct btrfs_header, chunk_tree_uuid);
2865 }
2866
2867 static inline int btrfs_is_leaf(struct extent_buffer *eb)
2868 {
2869 return btrfs_header_level(eb) == 0;
2870 }
2871
2872 /* struct btrfs_root_item */
2873 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2874 generation, 64);
2875 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2876 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2877 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2878
2879 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2880 generation, 64);
2881 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2882 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2883 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2884 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2885 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2886 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2887 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2888 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2889 last_snapshot, 64);
2890 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2891 generation_v2, 64);
2892 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2893 ctransid, 64);
2894 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2895 otransid, 64);
2896 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2897 stransid, 64);
2898 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2899 rtransid, 64);
2900
2901 static inline bool btrfs_root_readonly(struct btrfs_root *root)
2902 {
2903 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2904 }
2905
2906 static inline bool btrfs_root_dead(struct btrfs_root *root)
2907 {
2908 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2909 }
2910
2911 /* struct btrfs_root_backup */
2912 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2913 tree_root, 64);
2914 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2915 tree_root_gen, 64);
2916 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2917 tree_root_level, 8);
2918
2919 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2920 chunk_root, 64);
2921 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2922 chunk_root_gen, 64);
2923 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2924 chunk_root_level, 8);
2925
2926 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2927 extent_root, 64);
2928 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2929 extent_root_gen, 64);
2930 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2931 extent_root_level, 8);
2932
2933 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2934 fs_root, 64);
2935 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2936 fs_root_gen, 64);
2937 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2938 fs_root_level, 8);
2939
2940 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2941 dev_root, 64);
2942 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2943 dev_root_gen, 64);
2944 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2945 dev_root_level, 8);
2946
2947 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2948 csum_root, 64);
2949 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2950 csum_root_gen, 64);
2951 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2952 csum_root_level, 8);
2953 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2954 total_bytes, 64);
2955 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2956 bytes_used, 64);
2957 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2958 num_devices, 64);
2959
2960 /* struct btrfs_balance_item */
2961 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2962
2963 static inline void btrfs_balance_data(struct extent_buffer *eb,
2964 struct btrfs_balance_item *bi,
2965 struct btrfs_disk_balance_args *ba)
2966 {
2967 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2968 }
2969
2970 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2971 struct btrfs_balance_item *bi,
2972 struct btrfs_disk_balance_args *ba)
2973 {
2974 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2975 }
2976
2977 static inline void btrfs_balance_meta(struct extent_buffer *eb,
2978 struct btrfs_balance_item *bi,
2979 struct btrfs_disk_balance_args *ba)
2980 {
2981 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2982 }
2983
2984 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2985 struct btrfs_balance_item *bi,
2986 struct btrfs_disk_balance_args *ba)
2987 {
2988 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2989 }
2990
2991 static inline void btrfs_balance_sys(struct extent_buffer *eb,
2992 struct btrfs_balance_item *bi,
2993 struct btrfs_disk_balance_args *ba)
2994 {
2995 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2996 }
2997
2998 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2999 struct btrfs_balance_item *bi,
3000 struct btrfs_disk_balance_args *ba)
3001 {
3002 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
3003 }
3004
3005 static inline void
3006 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3007 struct btrfs_disk_balance_args *disk)
3008 {
3009 memset(cpu, 0, sizeof(*cpu));
3010
3011 cpu->profiles = le64_to_cpu(disk->profiles);
3012 cpu->usage = le64_to_cpu(disk->usage);
3013 cpu->devid = le64_to_cpu(disk->devid);
3014 cpu->pstart = le64_to_cpu(disk->pstart);
3015 cpu->pend = le64_to_cpu(disk->pend);
3016 cpu->vstart = le64_to_cpu(disk->vstart);
3017 cpu->vend = le64_to_cpu(disk->vend);
3018 cpu->target = le64_to_cpu(disk->target);
3019 cpu->flags = le64_to_cpu(disk->flags);
3020 cpu->limit = le64_to_cpu(disk->limit);
3021 }
3022
3023 static inline void
3024 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3025 struct btrfs_balance_args *cpu)
3026 {
3027 memset(disk, 0, sizeof(*disk));
3028
3029 disk->profiles = cpu_to_le64(cpu->profiles);
3030 disk->usage = cpu_to_le64(cpu->usage);
3031 disk->devid = cpu_to_le64(cpu->devid);
3032 disk->pstart = cpu_to_le64(cpu->pstart);
3033 disk->pend = cpu_to_le64(cpu->pend);
3034 disk->vstart = cpu_to_le64(cpu->vstart);
3035 disk->vend = cpu_to_le64(cpu->vend);
3036 disk->target = cpu_to_le64(cpu->target);
3037 disk->flags = cpu_to_le64(cpu->flags);
3038 disk->limit = cpu_to_le64(cpu->limit);
3039 }
3040
3041 /* struct btrfs_super_block */
3042 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
3043 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
3044 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
3045 generation, 64);
3046 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
3047 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
3048 struct btrfs_super_block, sys_chunk_array_size, 32);
3049 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
3050 struct btrfs_super_block, chunk_root_generation, 64);
3051 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
3052 root_level, 8);
3053 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
3054 chunk_root, 64);
3055 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
3056 chunk_root_level, 8);
3057 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
3058 log_root, 64);
3059 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
3060 log_root_transid, 64);
3061 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
3062 log_root_level, 8);
3063 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
3064 total_bytes, 64);
3065 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
3066 bytes_used, 64);
3067 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
3068 sectorsize, 32);
3069 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
3070 nodesize, 32);
3071 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
3072 stripesize, 32);
3073 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
3074 root_dir_objectid, 64);
3075 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
3076 num_devices, 64);
3077 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
3078 compat_flags, 64);
3079 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
3080 compat_ro_flags, 64);
3081 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
3082 incompat_flags, 64);
3083 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
3084 csum_type, 16);
3085 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
3086 cache_generation, 64);
3087 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
3088 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
3089 uuid_tree_generation, 64);
3090
3091 static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
3092 {
3093 u16 t = btrfs_super_csum_type(s);
3094 /*
3095 * csum type is validated at mount time
3096 */
3097 return btrfs_csum_sizes[t];
3098 }
3099
3100 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
3101 {
3102 return offsetof(struct btrfs_leaf, items);
3103 }
3104
3105 /* struct btrfs_file_extent_item */
3106 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
3107 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
3108 struct btrfs_file_extent_item, disk_bytenr, 64);
3109 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
3110 struct btrfs_file_extent_item, offset, 64);
3111 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
3112 struct btrfs_file_extent_item, generation, 64);
3113 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
3114 struct btrfs_file_extent_item, num_bytes, 64);
3115 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
3116 struct btrfs_file_extent_item, disk_num_bytes, 64);
3117 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
3118 struct btrfs_file_extent_item, compression, 8);
3119
3120 static inline unsigned long
3121 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
3122 {
3123 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
3124 }
3125
3126 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
3127 {
3128 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
3129 }
3130
3131 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
3132 disk_bytenr, 64);
3133 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
3134 generation, 64);
3135 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
3136 disk_num_bytes, 64);
3137 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
3138 offset, 64);
3139 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
3140 num_bytes, 64);
3141 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
3142 ram_bytes, 64);
3143 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
3144 compression, 8);
3145 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
3146 encryption, 8);
3147 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
3148 other_encoding, 16);
3149
3150 /*
3151 * this returns the number of bytes used by the item on disk, minus the
3152 * size of any extent headers. If a file is compressed on disk, this is
3153 * the compressed size
3154 */
3155 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3156 struct btrfs_item *e)
3157 {
3158 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
3159 }
3160
3161 /* this returns the number of file bytes represented by the inline item.
3162 * If an item is compressed, this is the uncompressed size
3163 */
3164 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3165 int slot,
3166 struct btrfs_file_extent_item *fi)
3167 {
3168 struct btrfs_map_token token;
3169
3170 btrfs_init_map_token(&token);
3171 /*
3172 * return the space used on disk if this item isn't
3173 * compressed or encoded
3174 */
3175 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3176 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3177 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3178 return btrfs_file_extent_inline_item_len(eb,
3179 btrfs_item_nr(slot));
3180 }
3181
3182 /* otherwise use the ram bytes field */
3183 return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3184 }
3185
3186
3187 /* btrfs_dev_stats_item */
3188 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3189 struct btrfs_dev_stats_item *ptr,
3190 int index)
3191 {
3192 u64 val;
3193
3194 read_extent_buffer(eb, &val,
3195 offsetof(struct btrfs_dev_stats_item, values) +
3196 ((unsigned long)ptr) + (index * sizeof(u64)),
3197 sizeof(val));
3198 return val;
3199 }
3200
3201 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3202 struct btrfs_dev_stats_item *ptr,
3203 int index, u64 val)
3204 {
3205 write_extent_buffer(eb, &val,
3206 offsetof(struct btrfs_dev_stats_item, values) +
3207 ((unsigned long)ptr) + (index * sizeof(u64)),
3208 sizeof(val));
3209 }
3210
3211 /* btrfs_qgroup_status_item */
3212 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3213 generation, 64);
3214 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3215 version, 64);
3216 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3217 flags, 64);
3218 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3219 rescan, 64);
3220
3221 /* btrfs_qgroup_info_item */
3222 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3223 generation, 64);
3224 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3225 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3226 rfer_cmpr, 64);
3227 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3228 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3229 excl_cmpr, 64);
3230
3231 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3232 struct btrfs_qgroup_info_item, generation, 64);
3233 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3234 rfer, 64);
3235 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3236 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3237 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3238 excl, 64);
3239 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3240 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3241
3242 /* btrfs_qgroup_limit_item */
3243 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3244 flags, 64);
3245 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3246 max_rfer, 64);
3247 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3248 max_excl, 64);
3249 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3250 rsv_rfer, 64);
3251 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3252 rsv_excl, 64);
3253
3254 /* btrfs_dev_replace_item */
3255 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3256 struct btrfs_dev_replace_item, src_devid, 64);
3257 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3258 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3259 64);
3260 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3261 replace_state, 64);
3262 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3263 time_started, 64);
3264 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3265 time_stopped, 64);
3266 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3267 num_write_errors, 64);
3268 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3269 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3270 64);
3271 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3272 cursor_left, 64);
3273 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3274 cursor_right, 64);
3275
3276 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3277 struct btrfs_dev_replace_item, src_devid, 64);
3278 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3279 struct btrfs_dev_replace_item,
3280 cont_reading_from_srcdev_mode, 64);
3281 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3282 struct btrfs_dev_replace_item, replace_state, 64);
3283 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3284 struct btrfs_dev_replace_item, time_started, 64);
3285 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3286 struct btrfs_dev_replace_item, time_stopped, 64);
3287 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3288 struct btrfs_dev_replace_item, num_write_errors, 64);
3289 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3290 struct btrfs_dev_replace_item,
3291 num_uncorrectable_read_errors, 64);
3292 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3293 struct btrfs_dev_replace_item, cursor_left, 64);
3294 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3295 struct btrfs_dev_replace_item, cursor_right, 64);
3296
3297 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3298 {
3299 return sb->s_fs_info;
3300 }
3301
3302 /* helper function to cast into the data area of the leaf. */
3303 #define btrfs_item_ptr(leaf, slot, type) \
3304 ((type *)(btrfs_leaf_data(leaf) + \
3305 btrfs_item_offset_nr(leaf, slot)))
3306
3307 #define btrfs_item_ptr_offset(leaf, slot) \
3308 ((unsigned long)(btrfs_leaf_data(leaf) + \
3309 btrfs_item_offset_nr(leaf, slot)))
3310
3311 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3312 {
3313 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3314 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3315 }
3316
3317 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3318 {
3319 return mapping_gfp_mask(mapping) & ~__GFP_FS;
3320 }
3321
3322 /* extent-tree.c */
3323
3324 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes);
3325
3326 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3327 unsigned num_items)
3328 {
3329 return (root->nodesize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3330 2 * num_items;
3331 }
3332
3333 /*
3334 * Doing a truncate won't result in new nodes or leaves, just what we need for
3335 * COW.
3336 */
3337 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3338 unsigned num_items)
3339 {
3340 return root->nodesize * BTRFS_MAX_LEVEL * num_items;
3341 }
3342
3343 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3344 struct btrfs_root *root);
3345 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3346 struct btrfs_root *root);
3347 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3348 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3349 struct btrfs_root *root, unsigned long count);
3350 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
3351 unsigned long count, int wait);
3352 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len);
3353 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3354 struct btrfs_root *root, u64 bytenr,
3355 u64 offset, int metadata, u64 *refs, u64 *flags);
3356 int btrfs_pin_extent(struct btrfs_root *root,
3357 u64 bytenr, u64 num, int reserved);
3358 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3359 u64 bytenr, u64 num_bytes);
3360 int btrfs_exclude_logged_extents(struct btrfs_root *root,
3361 struct extent_buffer *eb);
3362 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3363 struct btrfs_root *root,
3364 u64 objectid, u64 offset, u64 bytenr);
3365 struct btrfs_block_group_cache *btrfs_lookup_block_group(
3366 struct btrfs_fs_info *info,
3367 u64 bytenr);
3368 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3369 int get_block_group_index(struct btrfs_block_group_cache *cache);
3370 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
3371 struct btrfs_root *root, u64 parent,
3372 u64 root_objectid,
3373 struct btrfs_disk_key *key, int level,
3374 u64 hint, u64 empty_size);
3375 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3376 struct btrfs_root *root,
3377 struct extent_buffer *buf,
3378 u64 parent, int last_ref);
3379 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3380 struct btrfs_root *root,
3381 u64 root_objectid, u64 owner,
3382 u64 offset, struct btrfs_key *ins);
3383 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3384 struct btrfs_root *root,
3385 u64 root_objectid, u64 owner, u64 offset,
3386 struct btrfs_key *ins);
3387 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3388 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3389 struct btrfs_key *ins, int is_data, int delalloc);
3390 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3391 struct extent_buffer *buf, int full_backref);
3392 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3393 struct extent_buffer *buf, int full_backref);
3394 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3395 struct btrfs_root *root,
3396 u64 bytenr, u64 num_bytes, u64 flags,
3397 int level, int is_data);
3398 int btrfs_free_extent(struct btrfs_trans_handle *trans,
3399 struct btrfs_root *root,
3400 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3401 u64 owner, u64 offset, int no_quota);
3402
3403 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len,
3404 int delalloc);
3405 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3406 u64 start, u64 len);
3407 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3408 struct btrfs_root *root);
3409 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3410 struct btrfs_root *root);
3411 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3412 struct btrfs_root *root,
3413 u64 bytenr, u64 num_bytes, u64 parent,
3414 u64 root_objectid, u64 owner, u64 offset, int no_quota);
3415
3416 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3417 struct btrfs_root *root);
3418 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3419 struct btrfs_root *root);
3420 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3421 struct btrfs_root *root);
3422 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3423 int btrfs_free_block_groups(struct btrfs_fs_info *info);
3424 int btrfs_read_block_groups(struct btrfs_root *root);
3425 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3426 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3427 struct btrfs_root *root, u64 bytes_used,
3428 u64 type, u64 chunk_objectid, u64 chunk_offset,
3429 u64 size);
3430 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3431 struct btrfs_root *root, u64 group_start,
3432 struct extent_map *em);
3433 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
3434 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3435 struct btrfs_root *root);
3436 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3437 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3438
3439 enum btrfs_reserve_flush_enum {
3440 /* If we are in the transaction, we can't flush anything.*/
3441 BTRFS_RESERVE_NO_FLUSH,
3442 /*
3443 * Flushing delalloc may cause deadlock somewhere, in this
3444 * case, use FLUSH LIMIT
3445 */
3446 BTRFS_RESERVE_FLUSH_LIMIT,
3447 BTRFS_RESERVE_FLUSH_ALL,
3448 };
3449
3450 int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
3451 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
3452 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3453 struct btrfs_root *root);
3454 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3455 struct inode *inode);
3456 void btrfs_orphan_release_metadata(struct inode *inode);
3457 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3458 struct btrfs_block_rsv *rsv,
3459 int nitems,
3460 u64 *qgroup_reserved, bool use_global_rsv);
3461 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3462 struct btrfs_block_rsv *rsv,
3463 u64 qgroup_reserved);
3464 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3465 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3466 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
3467 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
3468 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3469 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3470 unsigned short type);
3471 void btrfs_free_block_rsv(struct btrfs_root *root,
3472 struct btrfs_block_rsv *rsv);
3473 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv);
3474 int btrfs_block_rsv_add(struct btrfs_root *root,
3475 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3476 enum btrfs_reserve_flush_enum flush);
3477 int btrfs_block_rsv_check(struct btrfs_root *root,
3478 struct btrfs_block_rsv *block_rsv, int min_factor);
3479 int btrfs_block_rsv_refill(struct btrfs_root *root,
3480 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3481 enum btrfs_reserve_flush_enum flush);
3482 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3483 struct btrfs_block_rsv *dst_rsv,
3484 u64 num_bytes);
3485 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3486 struct btrfs_block_rsv *dest, u64 num_bytes,
3487 int min_factor);
3488 void btrfs_block_rsv_release(struct btrfs_root *root,
3489 struct btrfs_block_rsv *block_rsv,
3490 u64 num_bytes);
3491 int btrfs_set_block_group_ro(struct btrfs_root *root,
3492 struct btrfs_block_group_cache *cache);
3493 void btrfs_set_block_group_rw(struct btrfs_root *root,
3494 struct btrfs_block_group_cache *cache);
3495 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3496 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3497 int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3498 u64 start, u64 end);
3499 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
3500 u64 num_bytes, u64 *actual_bytes);
3501 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3502 struct btrfs_root *root, u64 type);
3503 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3504
3505 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3506 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3507 struct btrfs_fs_info *fs_info);
3508 int __get_raid_index(u64 flags);
3509 int btrfs_start_write_no_snapshoting(struct btrfs_root *root);
3510 void btrfs_end_write_no_snapshoting(struct btrfs_root *root);
3511 /* ctree.c */
3512 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3513 int level, int *slot);
3514 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3515 int btrfs_previous_item(struct btrfs_root *root,
3516 struct btrfs_path *path, u64 min_objectid,
3517 int type);
3518 int btrfs_previous_extent_item(struct btrfs_root *root,
3519 struct btrfs_path *path, u64 min_objectid);
3520 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3521 struct btrfs_path *path,
3522 struct btrfs_key *new_key);
3523 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3524 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3525 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3526 struct btrfs_key *key, int lowest_level,
3527 u64 min_trans);
3528 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3529 struct btrfs_path *path,
3530 u64 min_trans);
3531 enum btrfs_compare_tree_result {
3532 BTRFS_COMPARE_TREE_NEW,
3533 BTRFS_COMPARE_TREE_DELETED,
3534 BTRFS_COMPARE_TREE_CHANGED,
3535 BTRFS_COMPARE_TREE_SAME,
3536 };
3537 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3538 struct btrfs_root *right_root,
3539 struct btrfs_path *left_path,
3540 struct btrfs_path *right_path,
3541 struct btrfs_key *key,
3542 enum btrfs_compare_tree_result result,
3543 void *ctx);
3544 int btrfs_compare_trees(struct btrfs_root *left_root,
3545 struct btrfs_root *right_root,
3546 btrfs_changed_cb_t cb, void *ctx);
3547 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3548 struct btrfs_root *root, struct extent_buffer *buf,
3549 struct extent_buffer *parent, int parent_slot,
3550 struct extent_buffer **cow_ret);
3551 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3552 struct btrfs_root *root,
3553 struct extent_buffer *buf,
3554 struct extent_buffer **cow_ret, u64 new_root_objectid);
3555 int btrfs_block_can_be_shared(struct btrfs_root *root,
3556 struct extent_buffer *buf);
3557 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3558 u32 data_size);
3559 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3560 u32 new_size, int from_end);
3561 int btrfs_split_item(struct btrfs_trans_handle *trans,
3562 struct btrfs_root *root,
3563 struct btrfs_path *path,
3564 struct btrfs_key *new_key,
3565 unsigned long split_offset);
3566 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3567 struct btrfs_root *root,
3568 struct btrfs_path *path,
3569 struct btrfs_key *new_key);
3570 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3571 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3572 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3573 *root, struct btrfs_key *key, struct btrfs_path *p, int
3574 ins_len, int cow);
3575 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3576 struct btrfs_path *p, u64 time_seq);
3577 int btrfs_search_slot_for_read(struct btrfs_root *root,
3578 struct btrfs_key *key, struct btrfs_path *p,
3579 int find_higher, int return_any);
3580 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3581 struct btrfs_root *root, struct extent_buffer *parent,
3582 int start_slot, u64 *last_ret,
3583 struct btrfs_key *progress);
3584 void btrfs_release_path(struct btrfs_path *p);
3585 struct btrfs_path *btrfs_alloc_path(void);
3586 void btrfs_free_path(struct btrfs_path *p);
3587 void btrfs_set_path_blocking(struct btrfs_path *p);
3588 void btrfs_clear_path_blocking(struct btrfs_path *p,
3589 struct extent_buffer *held, int held_rw);
3590 void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3591
3592 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3593 struct btrfs_path *path, int slot, int nr);
3594 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3595 struct btrfs_root *root,
3596 struct btrfs_path *path)
3597 {
3598 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3599 }
3600
3601 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3602 struct btrfs_key *cpu_key, u32 *data_size,
3603 u32 total_data, u32 total_size, int nr);
3604 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3605 *root, struct btrfs_key *key, void *data, u32 data_size);
3606 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3607 struct btrfs_root *root,
3608 struct btrfs_path *path,
3609 struct btrfs_key *cpu_key, u32 *data_size, int nr);
3610
3611 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3612 struct btrfs_root *root,
3613 struct btrfs_path *path,
3614 struct btrfs_key *key,
3615 u32 data_size)
3616 {
3617 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
3618 }
3619
3620 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3621 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3622 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3623 u64 time_seq);
3624 static inline int btrfs_next_old_item(struct btrfs_root *root,
3625 struct btrfs_path *p, u64 time_seq)
3626 {
3627 ++p->slots[0];
3628 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3629 return btrfs_next_old_leaf(root, p, time_seq);
3630 return 0;
3631 }
3632 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3633 {
3634 return btrfs_next_old_item(root, p, 0);
3635 }
3636 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3637 int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3638 struct btrfs_block_rsv *block_rsv,
3639 int update_ref, int for_reloc);
3640 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3641 struct btrfs_root *root,
3642 struct extent_buffer *node,
3643 struct extent_buffer *parent);
3644 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3645 {
3646 /*
3647 * Get synced with close_ctree()
3648 */
3649 smp_mb();
3650 return fs_info->closing;
3651 }
3652
3653 /*
3654 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3655 * anything except sleeping. This function is used to check the status of
3656 * the fs.
3657 */
3658 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3659 {
3660 return (root->fs_info->sb->s_flags & MS_RDONLY ||
3661 btrfs_fs_closing(root->fs_info));
3662 }
3663
3664 static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3665 {
3666 kfree(fs_info->balance_ctl);
3667 kfree(fs_info->delayed_root);
3668 kfree(fs_info->extent_root);
3669 kfree(fs_info->tree_root);
3670 kfree(fs_info->chunk_root);
3671 kfree(fs_info->dev_root);
3672 kfree(fs_info->csum_root);
3673 kfree(fs_info->quota_root);
3674 kfree(fs_info->uuid_root);
3675 kfree(fs_info->super_copy);
3676 kfree(fs_info->super_for_commit);
3677 security_free_mnt_opts(&fs_info->security_opts);
3678 kfree(fs_info);
3679 }
3680
3681 /* tree mod log functions from ctree.c */
3682 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3683 struct seq_list *elem);
3684 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3685 struct seq_list *elem);
3686 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3687
3688 /* root-item.c */
3689 int btrfs_find_root_ref(struct btrfs_root *tree_root,
3690 struct btrfs_path *path,
3691 u64 root_id, u64 ref_id);
3692 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3693 struct btrfs_root *tree_root,
3694 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3695 const char *name, int name_len);
3696 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3697 struct btrfs_root *tree_root,
3698 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3699 const char *name, int name_len);
3700 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3701 struct btrfs_key *key);
3702 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3703 *root, struct btrfs_key *key, struct btrfs_root_item
3704 *item);
3705 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3706 struct btrfs_root *root,
3707 struct btrfs_key *key,
3708 struct btrfs_root_item *item);
3709 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3710 struct btrfs_path *path, struct btrfs_root_item *root_item,
3711 struct btrfs_key *root_key);
3712 int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3713 void btrfs_set_root_node(struct btrfs_root_item *item,
3714 struct extent_buffer *node);
3715 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3716 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3717 struct btrfs_root *root);
3718
3719 /* uuid-tree.c */
3720 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3721 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3722 u64 subid);
3723 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3724 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3725 u64 subid);
3726 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3727 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3728 u64));
3729
3730 /* dir-item.c */
3731 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3732 const char *name, int name_len);
3733 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3734 struct btrfs_root *root, const char *name,
3735 int name_len, struct inode *dir,
3736 struct btrfs_key *location, u8 type, u64 index);
3737 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3738 struct btrfs_root *root,
3739 struct btrfs_path *path, u64 dir,
3740 const char *name, int name_len,
3741 int mod);
3742 struct btrfs_dir_item *
3743 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3744 struct btrfs_root *root,
3745 struct btrfs_path *path, u64 dir,
3746 u64 objectid, const char *name, int name_len,
3747 int mod);
3748 struct btrfs_dir_item *
3749 btrfs_search_dir_index_item(struct btrfs_root *root,
3750 struct btrfs_path *path, u64 dirid,
3751 const char *name, int name_len);
3752 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3753 struct btrfs_root *root,
3754 struct btrfs_path *path,
3755 struct btrfs_dir_item *di);
3756 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3757 struct btrfs_root *root,
3758 struct btrfs_path *path, u64 objectid,
3759 const char *name, u16 name_len,
3760 const void *data, u16 data_len);
3761 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3762 struct btrfs_root *root,
3763 struct btrfs_path *path, u64 dir,
3764 const char *name, u16 name_len,
3765 int mod);
3766 int verify_dir_item(struct btrfs_root *root,
3767 struct extent_buffer *leaf,
3768 struct btrfs_dir_item *dir_item);
3769 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
3770 struct btrfs_path *path,
3771 const char *name,
3772 int name_len);
3773
3774 /* orphan.c */
3775 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3776 struct btrfs_root *root, u64 offset);
3777 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3778 struct btrfs_root *root, u64 offset);
3779 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3780
3781 /* inode-item.c */
3782 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3783 struct btrfs_root *root,
3784 const char *name, int name_len,
3785 u64 inode_objectid, u64 ref_objectid, u64 index);
3786 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3787 struct btrfs_root *root,
3788 const char *name, int name_len,
3789 u64 inode_objectid, u64 ref_objectid, u64 *index);
3790 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3791 struct btrfs_root *root,
3792 struct btrfs_path *path, u64 objectid);
3793 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3794 *root, struct btrfs_path *path,
3795 struct btrfs_key *location, int mod);
3796
3797 struct btrfs_inode_extref *
3798 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3799 struct btrfs_root *root,
3800 struct btrfs_path *path,
3801 const char *name, int name_len,
3802 u64 inode_objectid, u64 ref_objectid, int ins_len,
3803 int cow);
3804
3805 int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3806 u64 ref_objectid, const char *name,
3807 int name_len,
3808 struct btrfs_inode_extref **extref_ret);
3809
3810 /* file-item.c */
3811 struct btrfs_dio_private;
3812 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3813 struct btrfs_root *root, u64 bytenr, u64 len);
3814 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3815 struct bio *bio, u32 *dst);
3816 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3817 struct bio *bio, u64 logical_offset);
3818 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3819 struct btrfs_root *root,
3820 u64 objectid, u64 pos,
3821 u64 disk_offset, u64 disk_num_bytes,
3822 u64 num_bytes, u64 offset, u64 ram_bytes,
3823 u8 compression, u8 encryption, u16 other_encoding);
3824 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3825 struct btrfs_root *root,
3826 struct btrfs_path *path, u64 objectid,
3827 u64 bytenr, int mod);
3828 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3829 struct btrfs_root *root,
3830 struct btrfs_ordered_sum *sums);
3831 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
3832 struct bio *bio, u64 file_start, int contig);
3833 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3834 struct list_head *list, int search_commit);
3835 void btrfs_extent_item_to_extent_map(struct inode *inode,
3836 const struct btrfs_path *path,
3837 struct btrfs_file_extent_item *fi,
3838 const bool new_inline,
3839 struct extent_map *em);
3840
3841 /* inode.c */
3842 struct btrfs_delalloc_work {
3843 struct inode *inode;
3844 int wait;
3845 int delay_iput;
3846 struct completion completion;
3847 struct list_head list;
3848 struct btrfs_work work;
3849 };
3850
3851 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3852 int wait, int delay_iput);
3853 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3854
3855 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
3856 size_t pg_offset, u64 start, u64 len,
3857 int create);
3858 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3859 u64 *orig_start, u64 *orig_block_len,
3860 u64 *ram_bytes);
3861
3862 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
3863 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
3864 #define ClearPageChecked ClearPageFsMisc
3865 #define SetPageChecked SetPageFsMisc
3866 #define PageChecked PageFsMisc
3867 #endif
3868
3869 /* This forces readahead on a given range of bytes in an inode */
3870 static inline void btrfs_force_ra(struct address_space *mapping,
3871 struct file_ra_state *ra, struct file *file,
3872 pgoff_t offset, unsigned long req_size)
3873 {
3874 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3875 }
3876
3877 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3878 int btrfs_set_inode_index(struct inode *dir, u64 *index);
3879 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3880 struct btrfs_root *root,
3881 struct inode *dir, struct inode *inode,
3882 const char *name, int name_len);
3883 int btrfs_add_link(struct btrfs_trans_handle *trans,
3884 struct inode *parent_inode, struct inode *inode,
3885 const char *name, int name_len, int add_backref, u64 index);
3886 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3887 struct btrfs_root *root,
3888 struct inode *dir, u64 objectid,
3889 const char *name, int name_len);
3890 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3891 int front);
3892 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3893 struct btrfs_root *root,
3894 struct inode *inode, u64 new_size,
3895 u32 min_type);
3896
3897 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3898 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
3899 int nr);
3900 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3901 struct extent_state **cached_state);
3902 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3903 struct btrfs_root *new_root,
3904 struct btrfs_root *parent_root,
3905 u64 new_dirid);
3906 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
3907 size_t size, struct bio *bio,
3908 unsigned long bio_flags);
3909 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
3910 int btrfs_readpage(struct file *file, struct page *page);
3911 void btrfs_evict_inode(struct inode *inode);
3912 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3913 struct inode *btrfs_alloc_inode(struct super_block *sb);
3914 void btrfs_destroy_inode(struct inode *inode);
3915 int btrfs_drop_inode(struct inode *inode);
3916 int btrfs_init_cachep(void);
3917 void btrfs_destroy_cachep(void);
3918 long btrfs_ioctl_trans_end(struct file *file);
3919 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3920 struct btrfs_root *root, int *was_new);
3921 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3922 size_t pg_offset, u64 start, u64 end,
3923 int create);
3924 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3925 struct btrfs_root *root,
3926 struct inode *inode);
3927 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3928 struct btrfs_root *root, struct inode *inode);
3929 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
3930 int btrfs_orphan_cleanup(struct btrfs_root *root);
3931 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3932 struct btrfs_root *root);
3933 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3934 void btrfs_invalidate_inodes(struct btrfs_root *root);
3935 void btrfs_add_delayed_iput(struct inode *inode);
3936 void btrfs_run_delayed_iputs(struct btrfs_root *root);
3937 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3938 u64 start, u64 num_bytes, u64 min_size,
3939 loff_t actual_len, u64 *alloc_hint);
3940 int btrfs_prealloc_file_range_trans(struct inode *inode,
3941 struct btrfs_trans_handle *trans, int mode,
3942 u64 start, u64 num_bytes, u64 min_size,
3943 loff_t actual_len, u64 *alloc_hint);
3944 int btrfs_inode_check_errors(struct inode *inode);
3945 extern const struct dentry_operations btrfs_dentry_operations;
3946 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3947 void btrfs_test_inode_set_ops(struct inode *inode);
3948 #endif
3949
3950 /* ioctl.c */
3951 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3952 void btrfs_update_iflags(struct inode *inode);
3953 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3954 int btrfs_is_empty_uuid(u8 *uuid);
3955 int btrfs_defrag_file(struct inode *inode, struct file *file,
3956 struct btrfs_ioctl_defrag_range_args *range,
3957 u64 newer_than, unsigned long max_pages);
3958 void btrfs_get_block_group_info(struct list_head *groups_list,
3959 struct btrfs_ioctl_space_info *space);
3960 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3961 struct btrfs_ioctl_balance_args *bargs);
3962
3963
3964 /* file.c */
3965 int btrfs_auto_defrag_init(void);
3966 void btrfs_auto_defrag_exit(void);
3967 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3968 struct inode *inode);
3969 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3970 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3971 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3972 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3973 int skip_pinned);
3974 extern const struct file_operations btrfs_file_operations;
3975 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3976 struct btrfs_root *root, struct inode *inode,
3977 struct btrfs_path *path, u64 start, u64 end,
3978 u64 *drop_end, int drop_cache,
3979 int replace_extent,
3980 u32 extent_item_size,
3981 int *key_inserted);
3982 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3983 struct btrfs_root *root, struct inode *inode, u64 start,
3984 u64 end, int drop_cache);
3985 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3986 struct inode *inode, u64 start, u64 end);
3987 int btrfs_release_file(struct inode *inode, struct file *file);
3988 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
3989 struct page **pages, size_t num_pages,
3990 loff_t pos, size_t write_bytes,
3991 struct extent_state **cached);
3992 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3993
3994 /* tree-defrag.c */
3995 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3996 struct btrfs_root *root);
3997
3998 /* sysfs.c */
3999 int btrfs_init_sysfs(void);
4000 void btrfs_exit_sysfs(void);
4001 int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info);
4002 void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info);
4003
4004 /* xattr.c */
4005 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
4006
4007 /* super.c */
4008 int btrfs_parse_options(struct btrfs_root *root, char *options);
4009 int btrfs_sync_fs(struct super_block *sb, int wait);
4010
4011 #ifdef CONFIG_PRINTK
4012 __printf(2, 3)
4013 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
4014 #else
4015 static inline __printf(2, 3)
4016 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
4017 {
4018 }
4019 #endif
4020
4021 #define btrfs_emerg(fs_info, fmt, args...) \
4022 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
4023 #define btrfs_alert(fs_info, fmt, args...) \
4024 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
4025 #define btrfs_crit(fs_info, fmt, args...) \
4026 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
4027 #define btrfs_err(fs_info, fmt, args...) \
4028 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
4029 #define btrfs_warn(fs_info, fmt, args...) \
4030 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
4031 #define btrfs_notice(fs_info, fmt, args...) \
4032 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
4033 #define btrfs_info(fs_info, fmt, args...) \
4034 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
4035
4036 #ifdef DEBUG
4037 #define btrfs_debug(fs_info, fmt, args...) \
4038 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
4039 #else
4040 #define btrfs_debug(fs_info, fmt, args...) \
4041 no_printk(KERN_DEBUG fmt, ##args)
4042 #endif
4043
4044 #ifdef CONFIG_BTRFS_ASSERT
4045
4046 static inline void assfail(char *expr, char *file, int line)
4047 {
4048 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
4049 expr, file, line);
4050 BUG();
4051 }
4052
4053 #define ASSERT(expr) \
4054 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
4055 #else
4056 #define ASSERT(expr) ((void)0)
4057 #endif
4058
4059 #define btrfs_assert()
4060 __printf(5, 6)
4061 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
4062 unsigned int line, int errno, const char *fmt, ...);
4063
4064
4065 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
4066 struct btrfs_root *root, const char *function,
4067 unsigned int line, int errno);
4068
4069 #define btrfs_set_fs_incompat(__fs_info, opt) \
4070 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4071
4072 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
4073 u64 flag)
4074 {
4075 struct btrfs_super_block *disk_super;
4076 u64 features;
4077
4078 disk_super = fs_info->super_copy;
4079 features = btrfs_super_incompat_flags(disk_super);
4080 if (!(features & flag)) {
4081 spin_lock(&fs_info->super_lock);
4082 features = btrfs_super_incompat_flags(disk_super);
4083 if (!(features & flag)) {
4084 features |= flag;
4085 btrfs_set_super_incompat_flags(disk_super, features);
4086 btrfs_info(fs_info, "setting %llu feature flag",
4087 flag);
4088 }
4089 spin_unlock(&fs_info->super_lock);
4090 }
4091 }
4092
4093 #define btrfs_fs_incompat(fs_info, opt) \
4094 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4095
4096 static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
4097 {
4098 struct btrfs_super_block *disk_super;
4099 disk_super = fs_info->super_copy;
4100 return !!(btrfs_super_incompat_flags(disk_super) & flag);
4101 }
4102
4103 /*
4104 * Call btrfs_abort_transaction as early as possible when an error condition is
4105 * detected, that way the exact line number is reported.
4106 */
4107
4108 #define btrfs_abort_transaction(trans, root, errno) \
4109 do { \
4110 __btrfs_abort_transaction(trans, root, __func__, \
4111 __LINE__, errno); \
4112 } while (0)
4113
4114 #define btrfs_std_error(fs_info, errno) \
4115 do { \
4116 if ((errno)) \
4117 __btrfs_std_error((fs_info), __func__, \
4118 __LINE__, (errno), NULL); \
4119 } while (0)
4120
4121 #define btrfs_error(fs_info, errno, fmt, args...) \
4122 do { \
4123 __btrfs_std_error((fs_info), __func__, __LINE__, \
4124 (errno), fmt, ##args); \
4125 } while (0)
4126
4127 __printf(5, 6)
4128 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
4129 unsigned int line, int errno, const char *fmt, ...);
4130
4131 /*
4132 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
4133 * will panic(). Otherwise we BUG() here.
4134 */
4135 #define btrfs_panic(fs_info, errno, fmt, args...) \
4136 do { \
4137 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
4138 BUG(); \
4139 } while (0)
4140
4141 /* acl.c */
4142 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
4143 struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
4144 int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
4145 int btrfs_init_acl(struct btrfs_trans_handle *trans,
4146 struct inode *inode, struct inode *dir);
4147 #else
4148 #define btrfs_get_acl NULL
4149 #define btrfs_set_acl NULL
4150 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
4151 struct inode *inode, struct inode *dir)
4152 {
4153 return 0;
4154 }
4155 #endif
4156
4157 /* relocation.c */
4158 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
4159 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4160 struct btrfs_root *root);
4161 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4162 struct btrfs_root *root);
4163 int btrfs_recover_relocation(struct btrfs_root *root);
4164 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
4165 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4166 struct btrfs_root *root, struct extent_buffer *buf,
4167 struct extent_buffer *cow);
4168 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4169 struct btrfs_pending_snapshot *pending,
4170 u64 *bytes_to_reserve);
4171 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4172 struct btrfs_pending_snapshot *pending);
4173
4174 /* scrub.c */
4175 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4176 u64 end, struct btrfs_scrub_progress *progress,
4177 int readonly, int is_dev_replace);
4178 void btrfs_scrub_pause(struct btrfs_root *root);
4179 void btrfs_scrub_continue(struct btrfs_root *root);
4180 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4181 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4182 struct btrfs_device *dev);
4183 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4184 struct btrfs_scrub_progress *progress);
4185
4186 /* dev-replace.c */
4187 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4188 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4189 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
4190
4191 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4192 {
4193 btrfs_bio_counter_sub(fs_info, 1);
4194 }
4195
4196 /* reada.c */
4197 struct reada_control {
4198 struct btrfs_root *root; /* tree to prefetch */
4199 struct btrfs_key key_start;
4200 struct btrfs_key key_end; /* exclusive */
4201 atomic_t elems;
4202 struct kref refcnt;
4203 wait_queue_head_t wait;
4204 };
4205 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4206 struct btrfs_key *start, struct btrfs_key *end);
4207 int btrfs_reada_wait(void *handle);
4208 void btrfs_reada_detach(void *handle);
4209 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
4210 u64 start, int err);
4211
4212 static inline int is_fstree(u64 rootid)
4213 {
4214 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4215 (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
4216 return 1;
4217 return 0;
4218 }
4219
4220 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4221 {
4222 return signal_pending(current);
4223 }
4224
4225 /* Sanity test specific functions */
4226 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4227 void btrfs_test_destroy_inode(struct inode *inode);
4228 #endif
4229
4230 static inline int btrfs_test_is_dummy_root(struct btrfs_root *root)
4231 {
4232 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4233 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
4234 return 1;
4235 #endif
4236 return 0;
4237 }
4238
4239 #endif
This page took 0.142442 seconds and 6 git commands to generate.