6462c29d2d37fcc8ec779f1d6d3b6817003a68c2
[deliverable/linux.git] / fs / btrfs / delayed-inode.c
1 /*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24
25 #define BTRFS_DELAYED_WRITEBACK 400
26 #define BTRFS_DELAYED_BACKGROUND 100
27
28 static struct kmem_cache *delayed_node_cache;
29
30 int __init btrfs_delayed_inode_init(void)
31 {
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
34 0,
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
40 }
41
42 void btrfs_delayed_inode_exit(void)
43 {
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
46 }
47
48 static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
51 {
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
65 }
66
67 static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
70 {
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
77 }
78
79 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
81 {
82 return root->fs_info->delayed_root;
83 }
84
85 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
86 struct inode *inode)
87 {
88 struct btrfs_delayed_node *node;
89 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90 struct btrfs_root *root = btrfs_inode->root;
91 u64 ino = btrfs_ino(inode);
92 int ret;
93
94 again:
95 node = ACCESS_ONCE(btrfs_inode->delayed_node);
96 if (node) {
97 atomic_inc(&node->refs); /* can be accessed */
98 return node;
99 }
100
101 spin_lock(&root->inode_lock);
102 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
103 if (node) {
104 if (btrfs_inode->delayed_node) {
105 spin_unlock(&root->inode_lock);
106 goto again;
107 }
108 btrfs_inode->delayed_node = node;
109 atomic_inc(&node->refs); /* can be accessed */
110 atomic_inc(&node->refs); /* cached in the inode */
111 spin_unlock(&root->inode_lock);
112 return node;
113 }
114 spin_unlock(&root->inode_lock);
115
116 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
117 if (!node)
118 return ERR_PTR(-ENOMEM);
119 btrfs_init_delayed_node(node, root, ino);
120
121 atomic_inc(&node->refs); /* cached in the btrfs inode */
122 atomic_inc(&node->refs); /* can be accessed */
123
124 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
125 if (ret) {
126 kmem_cache_free(delayed_node_cache, node);
127 return ERR_PTR(ret);
128 }
129
130 spin_lock(&root->inode_lock);
131 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
132 if (ret == -EEXIST) {
133 kmem_cache_free(delayed_node_cache, node);
134 spin_unlock(&root->inode_lock);
135 radix_tree_preload_end();
136 goto again;
137 }
138 btrfs_inode->delayed_node = node;
139 spin_unlock(&root->inode_lock);
140 radix_tree_preload_end();
141
142 return node;
143 }
144
145 /*
146 * Call it when holding delayed_node->mutex
147 *
148 * If mod = 1, add this node into the prepared list.
149 */
150 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
151 struct btrfs_delayed_node *node,
152 int mod)
153 {
154 spin_lock(&root->lock);
155 if (node->in_list) {
156 if (!list_empty(&node->p_list))
157 list_move_tail(&node->p_list, &root->prepare_list);
158 else if (mod)
159 list_add_tail(&node->p_list, &root->prepare_list);
160 } else {
161 list_add_tail(&node->n_list, &root->node_list);
162 list_add_tail(&node->p_list, &root->prepare_list);
163 atomic_inc(&node->refs); /* inserted into list */
164 root->nodes++;
165 node->in_list = 1;
166 }
167 spin_unlock(&root->lock);
168 }
169
170 /* Call it when holding delayed_node->mutex */
171 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
172 struct btrfs_delayed_node *node)
173 {
174 spin_lock(&root->lock);
175 if (node->in_list) {
176 root->nodes--;
177 atomic_dec(&node->refs); /* not in the list */
178 list_del_init(&node->n_list);
179 if (!list_empty(&node->p_list))
180 list_del_init(&node->p_list);
181 node->in_list = 0;
182 }
183 spin_unlock(&root->lock);
184 }
185
186 struct btrfs_delayed_node *btrfs_first_delayed_node(
187 struct btrfs_delayed_root *delayed_root)
188 {
189 struct list_head *p;
190 struct btrfs_delayed_node *node = NULL;
191
192 spin_lock(&delayed_root->lock);
193 if (list_empty(&delayed_root->node_list))
194 goto out;
195
196 p = delayed_root->node_list.next;
197 node = list_entry(p, struct btrfs_delayed_node, n_list);
198 atomic_inc(&node->refs);
199 out:
200 spin_unlock(&delayed_root->lock);
201
202 return node;
203 }
204
205 struct btrfs_delayed_node *btrfs_next_delayed_node(
206 struct btrfs_delayed_node *node)
207 {
208 struct btrfs_delayed_root *delayed_root;
209 struct list_head *p;
210 struct btrfs_delayed_node *next = NULL;
211
212 delayed_root = node->root->fs_info->delayed_root;
213 spin_lock(&delayed_root->lock);
214 if (!node->in_list) { /* not in the list */
215 if (list_empty(&delayed_root->node_list))
216 goto out;
217 p = delayed_root->node_list.next;
218 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
219 goto out;
220 else
221 p = node->n_list.next;
222
223 next = list_entry(p, struct btrfs_delayed_node, n_list);
224 atomic_inc(&next->refs);
225 out:
226 spin_unlock(&delayed_root->lock);
227
228 return next;
229 }
230
231 static void __btrfs_release_delayed_node(
232 struct btrfs_delayed_node *delayed_node,
233 int mod)
234 {
235 struct btrfs_delayed_root *delayed_root;
236
237 if (!delayed_node)
238 return;
239
240 delayed_root = delayed_node->root->fs_info->delayed_root;
241
242 mutex_lock(&delayed_node->mutex);
243 if (delayed_node->count)
244 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
245 else
246 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
247 mutex_unlock(&delayed_node->mutex);
248
249 if (atomic_dec_and_test(&delayed_node->refs)) {
250 struct btrfs_root *root = delayed_node->root;
251 spin_lock(&root->inode_lock);
252 if (atomic_read(&delayed_node->refs) == 0) {
253 radix_tree_delete(&root->delayed_nodes_tree,
254 delayed_node->inode_id);
255 kmem_cache_free(delayed_node_cache, delayed_node);
256 }
257 spin_unlock(&root->inode_lock);
258 }
259 }
260
261 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
262 {
263 __btrfs_release_delayed_node(node, 0);
264 }
265
266 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
267 struct btrfs_delayed_root *delayed_root)
268 {
269 struct list_head *p;
270 struct btrfs_delayed_node *node = NULL;
271
272 spin_lock(&delayed_root->lock);
273 if (list_empty(&delayed_root->prepare_list))
274 goto out;
275
276 p = delayed_root->prepare_list.next;
277 list_del_init(p);
278 node = list_entry(p, struct btrfs_delayed_node, p_list);
279 atomic_inc(&node->refs);
280 out:
281 spin_unlock(&delayed_root->lock);
282
283 return node;
284 }
285
286 static inline void btrfs_release_prepared_delayed_node(
287 struct btrfs_delayed_node *node)
288 {
289 __btrfs_release_delayed_node(node, 1);
290 }
291
292 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
293 {
294 struct btrfs_delayed_item *item;
295 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
296 if (item) {
297 item->data_len = data_len;
298 item->ins_or_del = 0;
299 item->bytes_reserved = 0;
300 item->block_rsv = NULL;
301 item->delayed_node = NULL;
302 atomic_set(&item->refs, 1);
303 }
304 return item;
305 }
306
307 /*
308 * __btrfs_lookup_delayed_item - look up the delayed item by key
309 * @delayed_node: pointer to the delayed node
310 * @key: the key to look up
311 * @prev: used to store the prev item if the right item isn't found
312 * @next: used to store the next item if the right item isn't found
313 *
314 * Note: if we don't find the right item, we will return the prev item and
315 * the next item.
316 */
317 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
318 struct rb_root *root,
319 struct btrfs_key *key,
320 struct btrfs_delayed_item **prev,
321 struct btrfs_delayed_item **next)
322 {
323 struct rb_node *node, *prev_node = NULL;
324 struct btrfs_delayed_item *delayed_item = NULL;
325 int ret = 0;
326
327 node = root->rb_node;
328
329 while (node) {
330 delayed_item = rb_entry(node, struct btrfs_delayed_item,
331 rb_node);
332 prev_node = node;
333 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
334 if (ret < 0)
335 node = node->rb_right;
336 else if (ret > 0)
337 node = node->rb_left;
338 else
339 return delayed_item;
340 }
341
342 if (prev) {
343 if (!prev_node)
344 *prev = NULL;
345 else if (ret < 0)
346 *prev = delayed_item;
347 else if ((node = rb_prev(prev_node)) != NULL) {
348 *prev = rb_entry(node, struct btrfs_delayed_item,
349 rb_node);
350 } else
351 *prev = NULL;
352 }
353
354 if (next) {
355 if (!prev_node)
356 *next = NULL;
357 else if (ret > 0)
358 *next = delayed_item;
359 else if ((node = rb_next(prev_node)) != NULL) {
360 *next = rb_entry(node, struct btrfs_delayed_item,
361 rb_node);
362 } else
363 *next = NULL;
364 }
365 return NULL;
366 }
367
368 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
369 struct btrfs_delayed_node *delayed_node,
370 struct btrfs_key *key)
371 {
372 struct btrfs_delayed_item *item;
373
374 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
375 NULL, NULL);
376 return item;
377 }
378
379 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
380 struct btrfs_delayed_node *delayed_node,
381 struct btrfs_key *key)
382 {
383 struct btrfs_delayed_item *item;
384
385 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
386 NULL, NULL);
387 return item;
388 }
389
390 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
391 struct btrfs_delayed_node *delayed_node,
392 struct btrfs_key *key)
393 {
394 struct btrfs_delayed_item *item, *next;
395
396 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
397 NULL, &next);
398 if (!item)
399 item = next;
400
401 return item;
402 }
403
404 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
405 struct btrfs_delayed_node *delayed_node,
406 struct btrfs_key *key)
407 {
408 struct btrfs_delayed_item *item, *next;
409
410 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
411 NULL, &next);
412 if (!item)
413 item = next;
414
415 return item;
416 }
417
418 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
419 struct btrfs_delayed_item *ins,
420 int action)
421 {
422 struct rb_node **p, *node;
423 struct rb_node *parent_node = NULL;
424 struct rb_root *root;
425 struct btrfs_delayed_item *item;
426 int cmp;
427
428 if (action == BTRFS_DELAYED_INSERTION_ITEM)
429 root = &delayed_node->ins_root;
430 else if (action == BTRFS_DELAYED_DELETION_ITEM)
431 root = &delayed_node->del_root;
432 else
433 BUG();
434 p = &root->rb_node;
435 node = &ins->rb_node;
436
437 while (*p) {
438 parent_node = *p;
439 item = rb_entry(parent_node, struct btrfs_delayed_item,
440 rb_node);
441
442 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
443 if (cmp < 0)
444 p = &(*p)->rb_right;
445 else if (cmp > 0)
446 p = &(*p)->rb_left;
447 else
448 return -EEXIST;
449 }
450
451 rb_link_node(node, parent_node, p);
452 rb_insert_color(node, root);
453 ins->delayed_node = delayed_node;
454 ins->ins_or_del = action;
455
456 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
457 action == BTRFS_DELAYED_INSERTION_ITEM &&
458 ins->key.offset >= delayed_node->index_cnt)
459 delayed_node->index_cnt = ins->key.offset + 1;
460
461 delayed_node->count++;
462 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
463 return 0;
464 }
465
466 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
467 struct btrfs_delayed_item *item)
468 {
469 return __btrfs_add_delayed_item(node, item,
470 BTRFS_DELAYED_INSERTION_ITEM);
471 }
472
473 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
474 struct btrfs_delayed_item *item)
475 {
476 return __btrfs_add_delayed_item(node, item,
477 BTRFS_DELAYED_DELETION_ITEM);
478 }
479
480 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
481 {
482 struct rb_root *root;
483 struct btrfs_delayed_root *delayed_root;
484
485 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
486
487 BUG_ON(!delayed_root);
488 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
489 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
490
491 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
492 root = &delayed_item->delayed_node->ins_root;
493 else
494 root = &delayed_item->delayed_node->del_root;
495
496 rb_erase(&delayed_item->rb_node, root);
497 delayed_item->delayed_node->count--;
498 atomic_dec(&delayed_root->items);
499 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
500 waitqueue_active(&delayed_root->wait))
501 wake_up(&delayed_root->wait);
502 }
503
504 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
505 {
506 if (item) {
507 __btrfs_remove_delayed_item(item);
508 if (atomic_dec_and_test(&item->refs))
509 kfree(item);
510 }
511 }
512
513 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
514 struct btrfs_delayed_node *delayed_node)
515 {
516 struct rb_node *p;
517 struct btrfs_delayed_item *item = NULL;
518
519 p = rb_first(&delayed_node->ins_root);
520 if (p)
521 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
522
523 return item;
524 }
525
526 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
527 struct btrfs_delayed_node *delayed_node)
528 {
529 struct rb_node *p;
530 struct btrfs_delayed_item *item = NULL;
531
532 p = rb_first(&delayed_node->del_root);
533 if (p)
534 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
535
536 return item;
537 }
538
539 struct btrfs_delayed_item *__btrfs_next_delayed_item(
540 struct btrfs_delayed_item *item)
541 {
542 struct rb_node *p;
543 struct btrfs_delayed_item *next = NULL;
544
545 p = rb_next(&item->rb_node);
546 if (p)
547 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
548
549 return next;
550 }
551
552 static inline struct btrfs_delayed_node *btrfs_get_delayed_node(
553 struct inode *inode)
554 {
555 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
556 struct btrfs_delayed_node *delayed_node;
557
558 delayed_node = btrfs_inode->delayed_node;
559 if (delayed_node)
560 atomic_inc(&delayed_node->refs);
561
562 return delayed_node;
563 }
564
565 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
566 u64 root_id)
567 {
568 struct btrfs_key root_key;
569
570 if (root->objectid == root_id)
571 return root;
572
573 root_key.objectid = root_id;
574 root_key.type = BTRFS_ROOT_ITEM_KEY;
575 root_key.offset = (u64)-1;
576 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
577 }
578
579 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
580 struct btrfs_root *root,
581 struct btrfs_delayed_item *item)
582 {
583 struct btrfs_block_rsv *src_rsv;
584 struct btrfs_block_rsv *dst_rsv;
585 u64 num_bytes;
586 int ret;
587
588 if (!trans->bytes_reserved)
589 return 0;
590
591 src_rsv = trans->block_rsv;
592 dst_rsv = &root->fs_info->global_block_rsv;
593
594 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
595 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
596 if (!ret) {
597 item->bytes_reserved = num_bytes;
598 item->block_rsv = dst_rsv;
599 }
600
601 return ret;
602 }
603
604 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
605 struct btrfs_delayed_item *item)
606 {
607 if (!item->bytes_reserved)
608 return;
609
610 btrfs_block_rsv_release(root, item->block_rsv,
611 item->bytes_reserved);
612 }
613
614 static int btrfs_delayed_inode_reserve_metadata(
615 struct btrfs_trans_handle *trans,
616 struct btrfs_root *root,
617 struct btrfs_delayed_node *node)
618 {
619 struct btrfs_block_rsv *src_rsv;
620 struct btrfs_block_rsv *dst_rsv;
621 u64 num_bytes;
622 int ret;
623
624 if (!trans->bytes_reserved)
625 return 0;
626
627 src_rsv = trans->block_rsv;
628 dst_rsv = &root->fs_info->global_block_rsv;
629
630 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
631 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
632 if (!ret)
633 node->bytes_reserved = num_bytes;
634
635 return ret;
636 }
637
638 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
639 struct btrfs_delayed_node *node)
640 {
641 struct btrfs_block_rsv *rsv;
642
643 if (!node->bytes_reserved)
644 return;
645
646 rsv = &root->fs_info->global_block_rsv;
647 btrfs_block_rsv_release(root, rsv,
648 node->bytes_reserved);
649 node->bytes_reserved = 0;
650 }
651
652 /*
653 * This helper will insert some continuous items into the same leaf according
654 * to the free space of the leaf.
655 */
656 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct btrfs_delayed_item *item)
660 {
661 struct btrfs_delayed_item *curr, *next;
662 int free_space;
663 int total_data_size = 0, total_size = 0;
664 struct extent_buffer *leaf;
665 char *data_ptr;
666 struct btrfs_key *keys;
667 u32 *data_size;
668 struct list_head head;
669 int slot;
670 int nitems;
671 int i;
672 int ret = 0;
673
674 BUG_ON(!path->nodes[0]);
675
676 leaf = path->nodes[0];
677 free_space = btrfs_leaf_free_space(root, leaf);
678 INIT_LIST_HEAD(&head);
679
680 next = item;
681 nitems = 0;
682
683 /*
684 * count the number of the continuous items that we can insert in batch
685 */
686 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
687 free_space) {
688 total_data_size += next->data_len;
689 total_size += next->data_len + sizeof(struct btrfs_item);
690 list_add_tail(&next->tree_list, &head);
691 nitems++;
692
693 curr = next;
694 next = __btrfs_next_delayed_item(curr);
695 if (!next)
696 break;
697
698 if (!btrfs_is_continuous_delayed_item(curr, next))
699 break;
700 }
701
702 if (!nitems) {
703 ret = 0;
704 goto out;
705 }
706
707 /*
708 * we need allocate some memory space, but it might cause the task
709 * to sleep, so we set all locked nodes in the path to blocking locks
710 * first.
711 */
712 btrfs_set_path_blocking(path);
713
714 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
715 if (!keys) {
716 ret = -ENOMEM;
717 goto out;
718 }
719
720 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
721 if (!data_size) {
722 ret = -ENOMEM;
723 goto error;
724 }
725
726 /* get keys of all the delayed items */
727 i = 0;
728 list_for_each_entry(next, &head, tree_list) {
729 keys[i] = next->key;
730 data_size[i] = next->data_len;
731 i++;
732 }
733
734 /* reset all the locked nodes in the patch to spinning locks. */
735 btrfs_clear_path_blocking(path, NULL);
736
737 /* insert the keys of the items */
738 ret = setup_items_for_insert(trans, root, path, keys, data_size,
739 total_data_size, total_size, nitems);
740 if (ret)
741 goto error;
742
743 /* insert the dir index items */
744 slot = path->slots[0];
745 list_for_each_entry_safe(curr, next, &head, tree_list) {
746 data_ptr = btrfs_item_ptr(leaf, slot, char);
747 write_extent_buffer(leaf, &curr->data,
748 (unsigned long)data_ptr,
749 curr->data_len);
750 slot++;
751
752 btrfs_delayed_item_release_metadata(root, curr);
753
754 list_del(&curr->tree_list);
755 btrfs_release_delayed_item(curr);
756 }
757
758 error:
759 kfree(data_size);
760 kfree(keys);
761 out:
762 return ret;
763 }
764
765 /*
766 * This helper can just do simple insertion that needn't extend item for new
767 * data, such as directory name index insertion, inode insertion.
768 */
769 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
770 struct btrfs_root *root,
771 struct btrfs_path *path,
772 struct btrfs_delayed_item *delayed_item)
773 {
774 struct extent_buffer *leaf;
775 struct btrfs_item *item;
776 char *ptr;
777 int ret;
778
779 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
780 delayed_item->data_len);
781 if (ret < 0 && ret != -EEXIST)
782 return ret;
783
784 leaf = path->nodes[0];
785
786 item = btrfs_item_nr(leaf, path->slots[0]);
787 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
788
789 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
790 delayed_item->data_len);
791 btrfs_mark_buffer_dirty(leaf);
792
793 btrfs_delayed_item_release_metadata(root, delayed_item);
794 return 0;
795 }
796
797 /*
798 * we insert an item first, then if there are some continuous items, we try
799 * to insert those items into the same leaf.
800 */
801 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
802 struct btrfs_path *path,
803 struct btrfs_root *root,
804 struct btrfs_delayed_node *node)
805 {
806 struct btrfs_delayed_item *curr, *prev;
807 int ret = 0;
808
809 do_again:
810 mutex_lock(&node->mutex);
811 curr = __btrfs_first_delayed_insertion_item(node);
812 if (!curr)
813 goto insert_end;
814
815 ret = btrfs_insert_delayed_item(trans, root, path, curr);
816 if (ret < 0) {
817 btrfs_release_path(path);
818 goto insert_end;
819 }
820
821 prev = curr;
822 curr = __btrfs_next_delayed_item(prev);
823 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
824 /* insert the continuous items into the same leaf */
825 path->slots[0]++;
826 btrfs_batch_insert_items(trans, root, path, curr);
827 }
828 btrfs_release_delayed_item(prev);
829 btrfs_mark_buffer_dirty(path->nodes[0]);
830
831 btrfs_release_path(path);
832 mutex_unlock(&node->mutex);
833 goto do_again;
834
835 insert_end:
836 mutex_unlock(&node->mutex);
837 return ret;
838 }
839
840 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root,
842 struct btrfs_path *path,
843 struct btrfs_delayed_item *item)
844 {
845 struct btrfs_delayed_item *curr, *next;
846 struct extent_buffer *leaf;
847 struct btrfs_key key;
848 struct list_head head;
849 int nitems, i, last_item;
850 int ret = 0;
851
852 BUG_ON(!path->nodes[0]);
853
854 leaf = path->nodes[0];
855
856 i = path->slots[0];
857 last_item = btrfs_header_nritems(leaf) - 1;
858 if (i > last_item)
859 return -ENOENT; /* FIXME: Is errno suitable? */
860
861 next = item;
862 INIT_LIST_HEAD(&head);
863 btrfs_item_key_to_cpu(leaf, &key, i);
864 nitems = 0;
865 /*
866 * count the number of the dir index items that we can delete in batch
867 */
868 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
869 list_add_tail(&next->tree_list, &head);
870 nitems++;
871
872 curr = next;
873 next = __btrfs_next_delayed_item(curr);
874 if (!next)
875 break;
876
877 if (!btrfs_is_continuous_delayed_item(curr, next))
878 break;
879
880 i++;
881 if (i > last_item)
882 break;
883 btrfs_item_key_to_cpu(leaf, &key, i);
884 }
885
886 if (!nitems)
887 return 0;
888
889 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
890 if (ret)
891 goto out;
892
893 list_for_each_entry_safe(curr, next, &head, tree_list) {
894 btrfs_delayed_item_release_metadata(root, curr);
895 list_del(&curr->tree_list);
896 btrfs_release_delayed_item(curr);
897 }
898
899 out:
900 return ret;
901 }
902
903 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
904 struct btrfs_path *path,
905 struct btrfs_root *root,
906 struct btrfs_delayed_node *node)
907 {
908 struct btrfs_delayed_item *curr, *prev;
909 int ret = 0;
910
911 do_again:
912 mutex_lock(&node->mutex);
913 curr = __btrfs_first_delayed_deletion_item(node);
914 if (!curr)
915 goto delete_fail;
916
917 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
918 if (ret < 0)
919 goto delete_fail;
920 else if (ret > 0) {
921 /*
922 * can't find the item which the node points to, so this node
923 * is invalid, just drop it.
924 */
925 prev = curr;
926 curr = __btrfs_next_delayed_item(prev);
927 btrfs_release_delayed_item(prev);
928 ret = 0;
929 btrfs_release_path(path);
930 if (curr)
931 goto do_again;
932 else
933 goto delete_fail;
934 }
935
936 btrfs_batch_delete_items(trans, root, path, curr);
937 btrfs_release_path(path);
938 mutex_unlock(&node->mutex);
939 goto do_again;
940
941 delete_fail:
942 btrfs_release_path(path);
943 mutex_unlock(&node->mutex);
944 return ret;
945 }
946
947 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
948 {
949 struct btrfs_delayed_root *delayed_root;
950
951 if (delayed_node && delayed_node->inode_dirty) {
952 BUG_ON(!delayed_node->root);
953 delayed_node->inode_dirty = 0;
954 delayed_node->count--;
955
956 delayed_root = delayed_node->root->fs_info->delayed_root;
957 atomic_dec(&delayed_root->items);
958 if (atomic_read(&delayed_root->items) <
959 BTRFS_DELAYED_BACKGROUND &&
960 waitqueue_active(&delayed_root->wait))
961 wake_up(&delayed_root->wait);
962 }
963 }
964
965 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
966 struct btrfs_root *root,
967 struct btrfs_path *path,
968 struct btrfs_delayed_node *node)
969 {
970 struct btrfs_key key;
971 struct btrfs_inode_item *inode_item;
972 struct extent_buffer *leaf;
973 int ret;
974
975 mutex_lock(&node->mutex);
976 if (!node->inode_dirty) {
977 mutex_unlock(&node->mutex);
978 return 0;
979 }
980
981 key.objectid = node->inode_id;
982 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
983 key.offset = 0;
984 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
985 if (ret > 0) {
986 btrfs_release_path(path);
987 mutex_unlock(&node->mutex);
988 return -ENOENT;
989 } else if (ret < 0) {
990 mutex_unlock(&node->mutex);
991 return ret;
992 }
993
994 btrfs_unlock_up_safe(path, 1);
995 leaf = path->nodes[0];
996 inode_item = btrfs_item_ptr(leaf, path->slots[0],
997 struct btrfs_inode_item);
998 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
999 sizeof(struct btrfs_inode_item));
1000 btrfs_mark_buffer_dirty(leaf);
1001 btrfs_release_path(path);
1002
1003 btrfs_delayed_inode_release_metadata(root, node);
1004 btrfs_release_delayed_inode(node);
1005 mutex_unlock(&node->mutex);
1006
1007 return 0;
1008 }
1009
1010 /* Called when committing the transaction. */
1011 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1012 struct btrfs_root *root)
1013 {
1014 struct btrfs_delayed_root *delayed_root;
1015 struct btrfs_delayed_node *curr_node, *prev_node;
1016 struct btrfs_path *path;
1017 int ret = 0;
1018
1019 path = btrfs_alloc_path();
1020 if (!path)
1021 return -ENOMEM;
1022 path->leave_spinning = 1;
1023
1024 delayed_root = btrfs_get_delayed_root(root);
1025
1026 curr_node = btrfs_first_delayed_node(delayed_root);
1027 while (curr_node) {
1028 root = curr_node->root;
1029 ret = btrfs_insert_delayed_items(trans, path, root,
1030 curr_node);
1031 if (!ret)
1032 ret = btrfs_delete_delayed_items(trans, path, root,
1033 curr_node);
1034 if (!ret)
1035 ret = btrfs_update_delayed_inode(trans, root, path,
1036 curr_node);
1037 if (ret) {
1038 btrfs_release_delayed_node(curr_node);
1039 break;
1040 }
1041
1042 prev_node = curr_node;
1043 curr_node = btrfs_next_delayed_node(curr_node);
1044 btrfs_release_delayed_node(prev_node);
1045 }
1046
1047 btrfs_free_path(path);
1048 return ret;
1049 }
1050
1051 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1052 struct btrfs_delayed_node *node)
1053 {
1054 struct btrfs_path *path;
1055 int ret;
1056
1057 path = btrfs_alloc_path();
1058 if (!path)
1059 return -ENOMEM;
1060 path->leave_spinning = 1;
1061
1062 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1063 if (!ret)
1064 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1065 if (!ret)
1066 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1067 btrfs_free_path(path);
1068
1069 return ret;
1070 }
1071
1072 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1073 struct inode *inode)
1074 {
1075 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1076 int ret;
1077
1078 if (!delayed_node)
1079 return 0;
1080
1081 mutex_lock(&delayed_node->mutex);
1082 if (!delayed_node->count) {
1083 mutex_unlock(&delayed_node->mutex);
1084 btrfs_release_delayed_node(delayed_node);
1085 return 0;
1086 }
1087 mutex_unlock(&delayed_node->mutex);
1088
1089 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1090 btrfs_release_delayed_node(delayed_node);
1091 return ret;
1092 }
1093
1094 void btrfs_remove_delayed_node(struct inode *inode)
1095 {
1096 struct btrfs_delayed_node *delayed_node;
1097
1098 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1099 if (!delayed_node)
1100 return;
1101
1102 BTRFS_I(inode)->delayed_node = NULL;
1103 btrfs_release_delayed_node(delayed_node);
1104 }
1105
1106 struct btrfs_async_delayed_node {
1107 struct btrfs_root *root;
1108 struct btrfs_delayed_node *delayed_node;
1109 struct btrfs_work work;
1110 };
1111
1112 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1113 {
1114 struct btrfs_async_delayed_node *async_node;
1115 struct btrfs_trans_handle *trans;
1116 struct btrfs_path *path;
1117 struct btrfs_delayed_node *delayed_node = NULL;
1118 struct btrfs_root *root;
1119 unsigned long nr = 0;
1120 int need_requeue = 0;
1121 int ret;
1122
1123 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1124
1125 path = btrfs_alloc_path();
1126 if (!path)
1127 goto out;
1128 path->leave_spinning = 1;
1129
1130 delayed_node = async_node->delayed_node;
1131 root = delayed_node->root;
1132
1133 trans = btrfs_join_transaction(root);
1134 if (IS_ERR(trans))
1135 goto free_path;
1136
1137 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1138 if (!ret)
1139 ret = btrfs_delete_delayed_items(trans, path, root,
1140 delayed_node);
1141
1142 if (!ret)
1143 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1144
1145 /*
1146 * Maybe new delayed items have been inserted, so we need requeue
1147 * the work. Besides that, we must dequeue the empty delayed nodes
1148 * to avoid the race between delayed items balance and the worker.
1149 * The race like this:
1150 * Task1 Worker thread
1151 * count == 0, needn't requeue
1152 * also needn't insert the
1153 * delayed node into prepare
1154 * list again.
1155 * add lots of delayed items
1156 * queue the delayed node
1157 * already in the list,
1158 * and not in the prepare
1159 * list, it means the delayed
1160 * node is being dealt with
1161 * by the worker.
1162 * do delayed items balance
1163 * the delayed node is being
1164 * dealt with by the worker
1165 * now, just wait.
1166 * the worker goto idle.
1167 * Task1 will sleep until the transaction is commited.
1168 */
1169 mutex_lock(&delayed_node->mutex);
1170 if (delayed_node->count)
1171 need_requeue = 1;
1172 else
1173 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1174 delayed_node);
1175 mutex_unlock(&delayed_node->mutex);
1176
1177 nr = trans->blocks_used;
1178
1179 btrfs_end_transaction_dmeta(trans, root);
1180 __btrfs_btree_balance_dirty(root, nr);
1181 free_path:
1182 btrfs_free_path(path);
1183 out:
1184 if (need_requeue)
1185 btrfs_requeue_work(&async_node->work);
1186 else {
1187 btrfs_release_prepared_delayed_node(delayed_node);
1188 kfree(async_node);
1189 }
1190 }
1191
1192 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1193 struct btrfs_root *root, int all)
1194 {
1195 struct btrfs_async_delayed_node *async_node;
1196 struct btrfs_delayed_node *curr;
1197 int count = 0;
1198
1199 again:
1200 curr = btrfs_first_prepared_delayed_node(delayed_root);
1201 if (!curr)
1202 return 0;
1203
1204 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1205 if (!async_node) {
1206 btrfs_release_prepared_delayed_node(curr);
1207 return -ENOMEM;
1208 }
1209
1210 async_node->root = root;
1211 async_node->delayed_node = curr;
1212
1213 async_node->work.func = btrfs_async_run_delayed_node_done;
1214 async_node->work.flags = 0;
1215
1216 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1217 count++;
1218
1219 if (all || count < 4)
1220 goto again;
1221
1222 return 0;
1223 }
1224
1225 void btrfs_balance_delayed_items(struct btrfs_root *root)
1226 {
1227 struct btrfs_delayed_root *delayed_root;
1228
1229 delayed_root = btrfs_get_delayed_root(root);
1230
1231 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1232 return;
1233
1234 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1235 int ret;
1236 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1237 if (ret)
1238 return;
1239
1240 wait_event_interruptible_timeout(
1241 delayed_root->wait,
1242 (atomic_read(&delayed_root->items) <
1243 BTRFS_DELAYED_BACKGROUND),
1244 HZ);
1245 return;
1246 }
1247
1248 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1249 }
1250
1251 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1252 struct btrfs_root *root, const char *name,
1253 int name_len, struct inode *dir,
1254 struct btrfs_disk_key *disk_key, u8 type,
1255 u64 index)
1256 {
1257 struct btrfs_delayed_node *delayed_node;
1258 struct btrfs_delayed_item *delayed_item;
1259 struct btrfs_dir_item *dir_item;
1260 int ret;
1261
1262 delayed_node = btrfs_get_or_create_delayed_node(dir);
1263 if (IS_ERR(delayed_node))
1264 return PTR_ERR(delayed_node);
1265
1266 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1267 if (!delayed_item) {
1268 ret = -ENOMEM;
1269 goto release_node;
1270 }
1271
1272 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1273 /*
1274 * we have reserved enough space when we start a new transaction,
1275 * so reserving metadata failure is impossible
1276 */
1277 BUG_ON(ret);
1278
1279 delayed_item->key.objectid = btrfs_ino(dir);
1280 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1281 delayed_item->key.offset = index;
1282
1283 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1284 dir_item->location = *disk_key;
1285 dir_item->transid = cpu_to_le64(trans->transid);
1286 dir_item->data_len = 0;
1287 dir_item->name_len = cpu_to_le16(name_len);
1288 dir_item->type = type;
1289 memcpy((char *)(dir_item + 1), name, name_len);
1290
1291 mutex_lock(&delayed_node->mutex);
1292 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1293 if (unlikely(ret)) {
1294 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1295 "the insertion tree of the delayed node"
1296 "(root id: %llu, inode id: %llu, errno: %d)\n",
1297 name,
1298 (unsigned long long)delayed_node->root->objectid,
1299 (unsigned long long)delayed_node->inode_id,
1300 ret);
1301 BUG();
1302 }
1303 mutex_unlock(&delayed_node->mutex);
1304
1305 release_node:
1306 btrfs_release_delayed_node(delayed_node);
1307 return ret;
1308 }
1309
1310 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1311 struct btrfs_delayed_node *node,
1312 struct btrfs_key *key)
1313 {
1314 struct btrfs_delayed_item *item;
1315
1316 mutex_lock(&node->mutex);
1317 item = __btrfs_lookup_delayed_insertion_item(node, key);
1318 if (!item) {
1319 mutex_unlock(&node->mutex);
1320 return 1;
1321 }
1322
1323 btrfs_delayed_item_release_metadata(root, item);
1324 btrfs_release_delayed_item(item);
1325 mutex_unlock(&node->mutex);
1326 return 0;
1327 }
1328
1329 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1330 struct btrfs_root *root, struct inode *dir,
1331 u64 index)
1332 {
1333 struct btrfs_delayed_node *node;
1334 struct btrfs_delayed_item *item;
1335 struct btrfs_key item_key;
1336 int ret;
1337
1338 node = btrfs_get_or_create_delayed_node(dir);
1339 if (IS_ERR(node))
1340 return PTR_ERR(node);
1341
1342 item_key.objectid = btrfs_ino(dir);
1343 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1344 item_key.offset = index;
1345
1346 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1347 if (!ret)
1348 goto end;
1349
1350 item = btrfs_alloc_delayed_item(0);
1351 if (!item) {
1352 ret = -ENOMEM;
1353 goto end;
1354 }
1355
1356 item->key = item_key;
1357
1358 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1359 /*
1360 * we have reserved enough space when we start a new transaction,
1361 * so reserving metadata failure is impossible.
1362 */
1363 BUG_ON(ret);
1364
1365 mutex_lock(&node->mutex);
1366 ret = __btrfs_add_delayed_deletion_item(node, item);
1367 if (unlikely(ret)) {
1368 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1369 "into the deletion tree of the delayed node"
1370 "(root id: %llu, inode id: %llu, errno: %d)\n",
1371 (unsigned long long)index,
1372 (unsigned long long)node->root->objectid,
1373 (unsigned long long)node->inode_id,
1374 ret);
1375 BUG();
1376 }
1377 mutex_unlock(&node->mutex);
1378 end:
1379 btrfs_release_delayed_node(node);
1380 return ret;
1381 }
1382
1383 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1384 {
1385 struct btrfs_delayed_node *delayed_node = BTRFS_I(inode)->delayed_node;
1386 int ret = 0;
1387
1388 if (!delayed_node)
1389 return -ENOENT;
1390
1391 /*
1392 * Since we have held i_mutex of this directory, it is impossible that
1393 * a new directory index is added into the delayed node and index_cnt
1394 * is updated now. So we needn't lock the delayed node.
1395 */
1396 if (!delayed_node->index_cnt)
1397 return -EINVAL;
1398
1399 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1400 return ret;
1401 }
1402
1403 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1404 struct list_head *del_list)
1405 {
1406 struct btrfs_delayed_node *delayed_node;
1407 struct btrfs_delayed_item *item;
1408
1409 delayed_node = btrfs_get_delayed_node(inode);
1410 if (!delayed_node)
1411 return;
1412
1413 mutex_lock(&delayed_node->mutex);
1414 item = __btrfs_first_delayed_insertion_item(delayed_node);
1415 while (item) {
1416 atomic_inc(&item->refs);
1417 list_add_tail(&item->readdir_list, ins_list);
1418 item = __btrfs_next_delayed_item(item);
1419 }
1420
1421 item = __btrfs_first_delayed_deletion_item(delayed_node);
1422 while (item) {
1423 atomic_inc(&item->refs);
1424 list_add_tail(&item->readdir_list, del_list);
1425 item = __btrfs_next_delayed_item(item);
1426 }
1427 mutex_unlock(&delayed_node->mutex);
1428 /*
1429 * This delayed node is still cached in the btrfs inode, so refs
1430 * must be > 1 now, and we needn't check it is going to be freed
1431 * or not.
1432 *
1433 * Besides that, this function is used to read dir, we do not
1434 * insert/delete delayed items in this period. So we also needn't
1435 * requeue or dequeue this delayed node.
1436 */
1437 atomic_dec(&delayed_node->refs);
1438 }
1439
1440 void btrfs_put_delayed_items(struct list_head *ins_list,
1441 struct list_head *del_list)
1442 {
1443 struct btrfs_delayed_item *curr, *next;
1444
1445 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1446 list_del(&curr->readdir_list);
1447 if (atomic_dec_and_test(&curr->refs))
1448 kfree(curr);
1449 }
1450
1451 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1452 list_del(&curr->readdir_list);
1453 if (atomic_dec_and_test(&curr->refs))
1454 kfree(curr);
1455 }
1456 }
1457
1458 int btrfs_should_delete_dir_index(struct list_head *del_list,
1459 u64 index)
1460 {
1461 struct btrfs_delayed_item *curr, *next;
1462 int ret;
1463
1464 if (list_empty(del_list))
1465 return 0;
1466
1467 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1468 if (curr->key.offset > index)
1469 break;
1470
1471 list_del(&curr->readdir_list);
1472 ret = (curr->key.offset == index);
1473
1474 if (atomic_dec_and_test(&curr->refs))
1475 kfree(curr);
1476
1477 if (ret)
1478 return 1;
1479 else
1480 continue;
1481 }
1482 return 0;
1483 }
1484
1485 /*
1486 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1487 *
1488 */
1489 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1490 filldir_t filldir,
1491 struct list_head *ins_list)
1492 {
1493 struct btrfs_dir_item *di;
1494 struct btrfs_delayed_item *curr, *next;
1495 struct btrfs_key location;
1496 char *name;
1497 int name_len;
1498 int over = 0;
1499 unsigned char d_type;
1500
1501 if (list_empty(ins_list))
1502 return 0;
1503
1504 /*
1505 * Changing the data of the delayed item is impossible. So
1506 * we needn't lock them. And we have held i_mutex of the
1507 * directory, nobody can delete any directory indexes now.
1508 */
1509 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1510 list_del(&curr->readdir_list);
1511
1512 if (curr->key.offset < filp->f_pos) {
1513 if (atomic_dec_and_test(&curr->refs))
1514 kfree(curr);
1515 continue;
1516 }
1517
1518 filp->f_pos = curr->key.offset;
1519
1520 di = (struct btrfs_dir_item *)curr->data;
1521 name = (char *)(di + 1);
1522 name_len = le16_to_cpu(di->name_len);
1523
1524 d_type = btrfs_filetype_table[di->type];
1525 btrfs_disk_key_to_cpu(&location, &di->location);
1526
1527 over = filldir(dirent, name, name_len, curr->key.offset,
1528 location.objectid, d_type);
1529
1530 if (atomic_dec_and_test(&curr->refs))
1531 kfree(curr);
1532
1533 if (over)
1534 return 1;
1535 }
1536 return 0;
1537 }
1538
1539 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1540 generation, 64);
1541 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1542 sequence, 64);
1543 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1544 transid, 64);
1545 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1546 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1547 nbytes, 64);
1548 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1549 block_group, 64);
1550 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1551 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1552 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1553 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1554 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1555 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1556
1557 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1558 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1559
1560 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1561 struct btrfs_inode_item *inode_item,
1562 struct inode *inode)
1563 {
1564 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1565 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1566 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1567 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1568 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1569 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1570 btrfs_set_stack_inode_generation(inode_item,
1571 BTRFS_I(inode)->generation);
1572 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1573 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1574 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1575 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1576 btrfs_set_stack_inode_block_group(inode_item, 0);
1577
1578 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1579 inode->i_atime.tv_sec);
1580 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1581 inode->i_atime.tv_nsec);
1582
1583 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1584 inode->i_mtime.tv_sec);
1585 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1586 inode->i_mtime.tv_nsec);
1587
1588 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1589 inode->i_ctime.tv_sec);
1590 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1591 inode->i_ctime.tv_nsec);
1592 }
1593
1594 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1595 struct btrfs_root *root, struct inode *inode)
1596 {
1597 struct btrfs_delayed_node *delayed_node;
1598 int ret = 0;
1599
1600 delayed_node = btrfs_get_or_create_delayed_node(inode);
1601 if (IS_ERR(delayed_node))
1602 return PTR_ERR(delayed_node);
1603
1604 mutex_lock(&delayed_node->mutex);
1605 if (delayed_node->inode_dirty) {
1606 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1607 goto release_node;
1608 }
1609
1610 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1611 /*
1612 * we must reserve enough space when we start a new transaction,
1613 * so reserving metadata failure is impossible
1614 */
1615 BUG_ON(ret);
1616
1617 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1618 delayed_node->inode_dirty = 1;
1619 delayed_node->count++;
1620 atomic_inc(&root->fs_info->delayed_root->items);
1621 release_node:
1622 mutex_unlock(&delayed_node->mutex);
1623 btrfs_release_delayed_node(delayed_node);
1624 return ret;
1625 }
1626
1627 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1628 {
1629 struct btrfs_root *root = delayed_node->root;
1630 struct btrfs_delayed_item *curr_item, *prev_item;
1631
1632 mutex_lock(&delayed_node->mutex);
1633 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1634 while (curr_item) {
1635 btrfs_delayed_item_release_metadata(root, curr_item);
1636 prev_item = curr_item;
1637 curr_item = __btrfs_next_delayed_item(prev_item);
1638 btrfs_release_delayed_item(prev_item);
1639 }
1640
1641 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1642 while (curr_item) {
1643 btrfs_delayed_item_release_metadata(root, curr_item);
1644 prev_item = curr_item;
1645 curr_item = __btrfs_next_delayed_item(prev_item);
1646 btrfs_release_delayed_item(prev_item);
1647 }
1648
1649 if (delayed_node->inode_dirty) {
1650 btrfs_delayed_inode_release_metadata(root, delayed_node);
1651 btrfs_release_delayed_inode(delayed_node);
1652 }
1653 mutex_unlock(&delayed_node->mutex);
1654 }
1655
1656 void btrfs_kill_delayed_inode_items(struct inode *inode)
1657 {
1658 struct btrfs_delayed_node *delayed_node;
1659
1660 delayed_node = btrfs_get_delayed_node(inode);
1661 if (!delayed_node)
1662 return;
1663
1664 __btrfs_kill_delayed_node(delayed_node);
1665 btrfs_release_delayed_node(delayed_node);
1666 }
1667
1668 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1669 {
1670 u64 inode_id = 0;
1671 struct btrfs_delayed_node *delayed_nodes[8];
1672 int i, n;
1673
1674 while (1) {
1675 spin_lock(&root->inode_lock);
1676 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1677 (void **)delayed_nodes, inode_id,
1678 ARRAY_SIZE(delayed_nodes));
1679 if (!n) {
1680 spin_unlock(&root->inode_lock);
1681 break;
1682 }
1683
1684 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1685
1686 for (i = 0; i < n; i++)
1687 atomic_inc(&delayed_nodes[i]->refs);
1688 spin_unlock(&root->inode_lock);
1689
1690 for (i = 0; i < n; i++) {
1691 __btrfs_kill_delayed_node(delayed_nodes[i]);
1692 btrfs_release_delayed_node(delayed_nodes[i]);
1693 }
1694 }
1695 }
This page took 0.062683 seconds and 4 git commands to generate.