572e21eb644cff4616e57781e7d49f238aba249e
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
81 struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
90 };
91
92 /*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
97 struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
113 };
114
115 /*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
125 *
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
129 *
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
133 *
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
137 */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 # error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = 0, .name_stem = "tree" },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164 int i, j;
165
166 /* initialize lockdep class names */
167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 snprintf(ks->names[j], sizeof(ks->names[j]),
172 "btrfs-%s-%02d", ks->name_stem, j);
173 }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 int level)
178 {
179 struct btrfs_lockdep_keyset *ks;
180
181 BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 if (ks->id == objectid)
186 break;
187
188 lockdep_set_class_and_name(&eb->lock,
189 &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
197 */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199 struct page *page, size_t pg_offset, u64 start, u64 len,
200 int create)
201 {
202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 struct extent_map *em;
204 int ret;
205
206 read_lock(&em_tree->lock);
207 em = lookup_extent_mapping(em_tree, start, len);
208 if (em) {
209 em->bdev =
210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 read_unlock(&em_tree->lock);
212 goto out;
213 }
214 read_unlock(&em_tree->lock);
215
216 em = alloc_extent_map();
217 if (!em) {
218 em = ERR_PTR(-ENOMEM);
219 goto out;
220 }
221 em->start = 0;
222 em->len = (u64)-1;
223 em->block_len = (u64)-1;
224 em->block_start = 0;
225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227 write_lock(&em_tree->lock);
228 ret = add_extent_mapping(em_tree, em, 0);
229 if (ret == -EEXIST) {
230 free_extent_map(em);
231 em = lookup_extent_mapping(em_tree, start, len);
232 if (!em)
233 em = ERR_PTR(-EIO);
234 } else if (ret) {
235 free_extent_map(em);
236 em = ERR_PTR(ret);
237 }
238 write_unlock(&em_tree->lock);
239
240 out:
241 return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246 return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 put_unaligned_le32(~crc, result);
252 }
253
254 /*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260 {
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353 out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357 }
358
359 /*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365 struct btrfs_super_block *disk_sb =
366 (struct btrfs_super_block *)raw_disk_sb;
367 u16 csum_type = btrfs_super_csum_type(disk_sb);
368 int ret = 0;
369
370 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371 u32 crc = ~(u32)0;
372 const int csum_size = sizeof(crc);
373 char result[csum_size];
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checkum.
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
384 if (memcmp(raw_disk_sb, result, csum_size))
385 ret = 1;
386
387 if (ret && btrfs_super_generation(disk_sb) < 10) {
388 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389 ret = 0;
390 }
391 }
392
393 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395 csum_type);
396 ret = 1;
397 }
398
399 return ret;
400 }
401
402 /*
403 * helper to read a given tree block, doing retries as required when
404 * the checksums don't match and we have alternate mirrors to try.
405 */
406 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407 struct extent_buffer *eb,
408 u64 start, u64 parent_transid)
409 {
410 struct extent_io_tree *io_tree;
411 int failed = 0;
412 int ret;
413 int num_copies = 0;
414 int mirror_num = 0;
415 int failed_mirror = 0;
416
417 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419 while (1) {
420 ret = read_extent_buffer_pages(io_tree, eb, start,
421 WAIT_COMPLETE,
422 btree_get_extent, mirror_num);
423 if (!ret) {
424 if (!verify_parent_transid(io_tree, eb,
425 parent_transid, 0))
426 break;
427 else
428 ret = -EIO;
429 }
430
431 /*
432 * This buffer's crc is fine, but its contents are corrupted, so
433 * there is no reason to read the other copies, they won't be
434 * any less wrong.
435 */
436 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437 break;
438
439 num_copies = btrfs_num_copies(root->fs_info,
440 eb->start, eb->len);
441 if (num_copies == 1)
442 break;
443
444 if (!failed_mirror) {
445 failed = 1;
446 failed_mirror = eb->read_mirror;
447 }
448
449 mirror_num++;
450 if (mirror_num == failed_mirror)
451 mirror_num++;
452
453 if (mirror_num > num_copies)
454 break;
455 }
456
457 if (failed && !ret && failed_mirror)
458 repair_eb_io_failure(root, eb, failed_mirror);
459
460 return ret;
461 }
462
463 /*
464 * checksum a dirty tree block before IO. This has extra checks to make sure
465 * we only fill in the checksum field in the first page of a multi-page block
466 */
467
468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469 {
470 struct extent_io_tree *tree;
471 u64 start = page_offset(page);
472 u64 found_start;
473 struct extent_buffer *eb;
474
475 tree = &BTRFS_I(page->mapping->host)->io_tree;
476
477 eb = (struct extent_buffer *)page->private;
478 if (page != eb->pages[0])
479 return 0;
480 found_start = btrfs_header_bytenr(eb);
481 if (found_start != start) {
482 WARN_ON(1);
483 return 0;
484 }
485 if (!PageUptodate(page)) {
486 WARN_ON(1);
487 return 0;
488 }
489 csum_tree_block(root, eb, 0);
490 return 0;
491 }
492
493 static int check_tree_block_fsid(struct btrfs_root *root,
494 struct extent_buffer *eb)
495 {
496 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497 u8 fsid[BTRFS_UUID_SIZE];
498 int ret = 1;
499
500 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501 BTRFS_FSID_SIZE);
502 while (fs_devices) {
503 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504 ret = 0;
505 break;
506 }
507 fs_devices = fs_devices->seed;
508 }
509 return ret;
510 }
511
512 #define CORRUPT(reason, eb, root, slot) \
513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514 "root=%llu, slot=%d\n", reason, \
515 (unsigned long long)btrfs_header_bytenr(eb), \
516 (unsigned long long)root->objectid, slot)
517
518 static noinline int check_leaf(struct btrfs_root *root,
519 struct extent_buffer *leaf)
520 {
521 struct btrfs_key key;
522 struct btrfs_key leaf_key;
523 u32 nritems = btrfs_header_nritems(leaf);
524 int slot;
525
526 if (nritems == 0)
527 return 0;
528
529 /* Check the 0 item */
530 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("invalid item offset size pair", leaf, root, 0);
533 return -EIO;
534 }
535
536 /*
537 * Check to make sure each items keys are in the correct order and their
538 * offsets make sense. We only have to loop through nritems-1 because
539 * we check the current slot against the next slot, which verifies the
540 * next slot's offset+size makes sense and that the current's slot
541 * offset is correct.
542 */
543 for (slot = 0; slot < nritems - 1; slot++) {
544 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546
547 /* Make sure the keys are in the right order */
548 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549 CORRUPT("bad key order", leaf, root, slot);
550 return -EIO;
551 }
552
553 /*
554 * Make sure the offset and ends are right, remember that the
555 * item data starts at the end of the leaf and grows towards the
556 * front.
557 */
558 if (btrfs_item_offset_nr(leaf, slot) !=
559 btrfs_item_end_nr(leaf, slot + 1)) {
560 CORRUPT("slot offset bad", leaf, root, slot);
561 return -EIO;
562 }
563
564 /*
565 * Check to make sure that we don't point outside of the leaf,
566 * just incase all the items are consistent to eachother, but
567 * all point outside of the leaf.
568 */
569 if (btrfs_item_end_nr(leaf, slot) >
570 BTRFS_LEAF_DATA_SIZE(root)) {
571 CORRUPT("slot end outside of leaf", leaf, root, slot);
572 return -EIO;
573 }
574 }
575
576 return 0;
577 }
578
579 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
580 u64 phy_offset, struct page *page,
581 u64 start, u64 end, int mirror)
582 {
583 struct extent_io_tree *tree;
584 u64 found_start;
585 int found_level;
586 struct extent_buffer *eb;
587 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
588 int ret = 0;
589 int reads_done;
590
591 if (!page->private)
592 goto out;
593
594 tree = &BTRFS_I(page->mapping->host)->io_tree;
595 eb = (struct extent_buffer *)page->private;
596
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
600 extent_buffer_get(eb);
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
603 if (!reads_done)
604 goto err;
605
606 eb->read_mirror = mirror;
607 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
608 ret = -EIO;
609 goto err;
610 }
611
612 found_start = btrfs_header_bytenr(eb);
613 if (found_start != eb->start) {
614 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
615 "%llu %llu\n",
616 (unsigned long long)found_start,
617 (unsigned long long)eb->start);
618 ret = -EIO;
619 goto err;
620 }
621 if (check_tree_block_fsid(root, eb)) {
622 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
623 (unsigned long long)eb->start);
624 ret = -EIO;
625 goto err;
626 }
627 found_level = btrfs_header_level(eb);
628 if (found_level >= BTRFS_MAX_LEVEL) {
629 btrfs_info(root->fs_info, "bad tree block level %d\n",
630 (int)btrfs_header_level(eb));
631 ret = -EIO;
632 goto err;
633 }
634
635 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
636 eb, found_level);
637
638 ret = csum_tree_block(root, eb, 1);
639 if (ret) {
640 ret = -EIO;
641 goto err;
642 }
643
644 /*
645 * If this is a leaf block and it is corrupt, set the corrupt bit so
646 * that we don't try and read the other copies of this block, just
647 * return -EIO.
648 */
649 if (found_level == 0 && check_leaf(root, eb)) {
650 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
651 ret = -EIO;
652 }
653
654 if (!ret)
655 set_extent_buffer_uptodate(eb);
656 err:
657 if (reads_done &&
658 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
659 btree_readahead_hook(root, eb, eb->start, ret);
660
661 if (ret) {
662 /*
663 * our io error hook is going to dec the io pages
664 * again, we have to make sure it has something
665 * to decrement
666 */
667 atomic_inc(&eb->io_pages);
668 clear_extent_buffer_uptodate(eb);
669 }
670 free_extent_buffer(eb);
671 out:
672 return ret;
673 }
674
675 static int btree_io_failed_hook(struct page *page, int failed_mirror)
676 {
677 struct extent_buffer *eb;
678 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
679
680 eb = (struct extent_buffer *)page->private;
681 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
682 eb->read_mirror = failed_mirror;
683 atomic_dec(&eb->io_pages);
684 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
685 btree_readahead_hook(root, eb, eb->start, -EIO);
686 return -EIO; /* we fixed nothing */
687 }
688
689 static void end_workqueue_bio(struct bio *bio, int err)
690 {
691 struct end_io_wq *end_io_wq = bio->bi_private;
692 struct btrfs_fs_info *fs_info;
693
694 fs_info = end_io_wq->info;
695 end_io_wq->error = err;
696 end_io_wq->work.func = end_workqueue_fn;
697 end_io_wq->work.flags = 0;
698
699 if (bio->bi_rw & REQ_WRITE) {
700 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
701 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
702 &end_io_wq->work);
703 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
704 btrfs_queue_worker(&fs_info->endio_freespace_worker,
705 &end_io_wq->work);
706 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
707 btrfs_queue_worker(&fs_info->endio_raid56_workers,
708 &end_io_wq->work);
709 else
710 btrfs_queue_worker(&fs_info->endio_write_workers,
711 &end_io_wq->work);
712 } else {
713 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
714 btrfs_queue_worker(&fs_info->endio_raid56_workers,
715 &end_io_wq->work);
716 else if (end_io_wq->metadata)
717 btrfs_queue_worker(&fs_info->endio_meta_workers,
718 &end_io_wq->work);
719 else
720 btrfs_queue_worker(&fs_info->endio_workers,
721 &end_io_wq->work);
722 }
723 }
724
725 /*
726 * For the metadata arg you want
727 *
728 * 0 - if data
729 * 1 - if normal metadta
730 * 2 - if writing to the free space cache area
731 * 3 - raid parity work
732 */
733 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
734 int metadata)
735 {
736 struct end_io_wq *end_io_wq;
737 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
738 if (!end_io_wq)
739 return -ENOMEM;
740
741 end_io_wq->private = bio->bi_private;
742 end_io_wq->end_io = bio->bi_end_io;
743 end_io_wq->info = info;
744 end_io_wq->error = 0;
745 end_io_wq->bio = bio;
746 end_io_wq->metadata = metadata;
747
748 bio->bi_private = end_io_wq;
749 bio->bi_end_io = end_workqueue_bio;
750 return 0;
751 }
752
753 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
754 {
755 unsigned long limit = min_t(unsigned long,
756 info->workers.max_workers,
757 info->fs_devices->open_devices);
758 return 256 * limit;
759 }
760
761 static void run_one_async_start(struct btrfs_work *work)
762 {
763 struct async_submit_bio *async;
764 int ret;
765
766 async = container_of(work, struct async_submit_bio, work);
767 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
768 async->mirror_num, async->bio_flags,
769 async->bio_offset);
770 if (ret)
771 async->error = ret;
772 }
773
774 static void run_one_async_done(struct btrfs_work *work)
775 {
776 struct btrfs_fs_info *fs_info;
777 struct async_submit_bio *async;
778 int limit;
779
780 async = container_of(work, struct async_submit_bio, work);
781 fs_info = BTRFS_I(async->inode)->root->fs_info;
782
783 limit = btrfs_async_submit_limit(fs_info);
784 limit = limit * 2 / 3;
785
786 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
787 waitqueue_active(&fs_info->async_submit_wait))
788 wake_up(&fs_info->async_submit_wait);
789
790 /* If an error occured we just want to clean up the bio and move on */
791 if (async->error) {
792 bio_endio(async->bio, async->error);
793 return;
794 }
795
796 async->submit_bio_done(async->inode, async->rw, async->bio,
797 async->mirror_num, async->bio_flags,
798 async->bio_offset);
799 }
800
801 static void run_one_async_free(struct btrfs_work *work)
802 {
803 struct async_submit_bio *async;
804
805 async = container_of(work, struct async_submit_bio, work);
806 kfree(async);
807 }
808
809 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
810 int rw, struct bio *bio, int mirror_num,
811 unsigned long bio_flags,
812 u64 bio_offset,
813 extent_submit_bio_hook_t *submit_bio_start,
814 extent_submit_bio_hook_t *submit_bio_done)
815 {
816 struct async_submit_bio *async;
817
818 async = kmalloc(sizeof(*async), GFP_NOFS);
819 if (!async)
820 return -ENOMEM;
821
822 async->inode = inode;
823 async->rw = rw;
824 async->bio = bio;
825 async->mirror_num = mirror_num;
826 async->submit_bio_start = submit_bio_start;
827 async->submit_bio_done = submit_bio_done;
828
829 async->work.func = run_one_async_start;
830 async->work.ordered_func = run_one_async_done;
831 async->work.ordered_free = run_one_async_free;
832
833 async->work.flags = 0;
834 async->bio_flags = bio_flags;
835 async->bio_offset = bio_offset;
836
837 async->error = 0;
838
839 atomic_inc(&fs_info->nr_async_submits);
840
841 if (rw & REQ_SYNC)
842 btrfs_set_work_high_prio(&async->work);
843
844 btrfs_queue_worker(&fs_info->workers, &async->work);
845
846 while (atomic_read(&fs_info->async_submit_draining) &&
847 atomic_read(&fs_info->nr_async_submits)) {
848 wait_event(fs_info->async_submit_wait,
849 (atomic_read(&fs_info->nr_async_submits) == 0));
850 }
851
852 return 0;
853 }
854
855 static int btree_csum_one_bio(struct bio *bio)
856 {
857 struct bio_vec *bvec = bio->bi_io_vec;
858 int bio_index = 0;
859 struct btrfs_root *root;
860 int ret = 0;
861
862 WARN_ON(bio->bi_vcnt <= 0);
863 while (bio_index < bio->bi_vcnt) {
864 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
865 ret = csum_dirty_buffer(root, bvec->bv_page);
866 if (ret)
867 break;
868 bio_index++;
869 bvec++;
870 }
871 return ret;
872 }
873
874 static int __btree_submit_bio_start(struct inode *inode, int rw,
875 struct bio *bio, int mirror_num,
876 unsigned long bio_flags,
877 u64 bio_offset)
878 {
879 /*
880 * when we're called for a write, we're already in the async
881 * submission context. Just jump into btrfs_map_bio
882 */
883 return btree_csum_one_bio(bio);
884 }
885
886 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
887 int mirror_num, unsigned long bio_flags,
888 u64 bio_offset)
889 {
890 int ret;
891
892 /*
893 * when we're called for a write, we're already in the async
894 * submission context. Just jump into btrfs_map_bio
895 */
896 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
897 if (ret)
898 bio_endio(bio, ret);
899 return ret;
900 }
901
902 static int check_async_write(struct inode *inode, unsigned long bio_flags)
903 {
904 if (bio_flags & EXTENT_BIO_TREE_LOG)
905 return 0;
906 #ifdef CONFIG_X86
907 if (cpu_has_xmm4_2)
908 return 0;
909 #endif
910 return 1;
911 }
912
913 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
914 int mirror_num, unsigned long bio_flags,
915 u64 bio_offset)
916 {
917 int async = check_async_write(inode, bio_flags);
918 int ret;
919
920 if (!(rw & REQ_WRITE)) {
921 /*
922 * called for a read, do the setup so that checksum validation
923 * can happen in the async kernel threads
924 */
925 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
926 bio, 1);
927 if (ret)
928 goto out_w_error;
929 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
930 mirror_num, 0);
931 } else if (!async) {
932 ret = btree_csum_one_bio(bio);
933 if (ret)
934 goto out_w_error;
935 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
936 mirror_num, 0);
937 } else {
938 /*
939 * kthread helpers are used to submit writes so that
940 * checksumming can happen in parallel across all CPUs
941 */
942 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
943 inode, rw, bio, mirror_num, 0,
944 bio_offset,
945 __btree_submit_bio_start,
946 __btree_submit_bio_done);
947 }
948
949 if (ret) {
950 out_w_error:
951 bio_endio(bio, ret);
952 }
953 return ret;
954 }
955
956 #ifdef CONFIG_MIGRATION
957 static int btree_migratepage(struct address_space *mapping,
958 struct page *newpage, struct page *page,
959 enum migrate_mode mode)
960 {
961 /*
962 * we can't safely write a btree page from here,
963 * we haven't done the locking hook
964 */
965 if (PageDirty(page))
966 return -EAGAIN;
967 /*
968 * Buffers may be managed in a filesystem specific way.
969 * We must have no buffers or drop them.
970 */
971 if (page_has_private(page) &&
972 !try_to_release_page(page, GFP_KERNEL))
973 return -EAGAIN;
974 return migrate_page(mapping, newpage, page, mode);
975 }
976 #endif
977
978
979 static int btree_writepages(struct address_space *mapping,
980 struct writeback_control *wbc)
981 {
982 struct extent_io_tree *tree;
983 struct btrfs_fs_info *fs_info;
984 int ret;
985
986 tree = &BTRFS_I(mapping->host)->io_tree;
987 if (wbc->sync_mode == WB_SYNC_NONE) {
988
989 if (wbc->for_kupdate)
990 return 0;
991
992 fs_info = BTRFS_I(mapping->host)->root->fs_info;
993 /* this is a bit racy, but that's ok */
994 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
995 BTRFS_DIRTY_METADATA_THRESH);
996 if (ret < 0)
997 return 0;
998 }
999 return btree_write_cache_pages(mapping, wbc);
1000 }
1001
1002 static int btree_readpage(struct file *file, struct page *page)
1003 {
1004 struct extent_io_tree *tree;
1005 tree = &BTRFS_I(page->mapping->host)->io_tree;
1006 return extent_read_full_page(tree, page, btree_get_extent, 0);
1007 }
1008
1009 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1010 {
1011 if (PageWriteback(page) || PageDirty(page))
1012 return 0;
1013
1014 return try_release_extent_buffer(page);
1015 }
1016
1017 static void btree_invalidatepage(struct page *page, unsigned int offset,
1018 unsigned int length)
1019 {
1020 struct extent_io_tree *tree;
1021 tree = &BTRFS_I(page->mapping->host)->io_tree;
1022 extent_invalidatepage(tree, page, offset);
1023 btree_releasepage(page, GFP_NOFS);
1024 if (PagePrivate(page)) {
1025 printk(KERN_WARNING "btrfs warning page private not zero "
1026 "on page %llu\n", (unsigned long long)page_offset(page));
1027 ClearPagePrivate(page);
1028 set_page_private(page, 0);
1029 page_cache_release(page);
1030 }
1031 }
1032
1033 static int btree_set_page_dirty(struct page *page)
1034 {
1035 #ifdef DEBUG
1036 struct extent_buffer *eb;
1037
1038 BUG_ON(!PagePrivate(page));
1039 eb = (struct extent_buffer *)page->private;
1040 BUG_ON(!eb);
1041 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1042 BUG_ON(!atomic_read(&eb->refs));
1043 btrfs_assert_tree_locked(eb);
1044 #endif
1045 return __set_page_dirty_nobuffers(page);
1046 }
1047
1048 static const struct address_space_operations btree_aops = {
1049 .readpage = btree_readpage,
1050 .writepages = btree_writepages,
1051 .releasepage = btree_releasepage,
1052 .invalidatepage = btree_invalidatepage,
1053 #ifdef CONFIG_MIGRATION
1054 .migratepage = btree_migratepage,
1055 #endif
1056 .set_page_dirty = btree_set_page_dirty,
1057 };
1058
1059 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1060 u64 parent_transid)
1061 {
1062 struct extent_buffer *buf = NULL;
1063 struct inode *btree_inode = root->fs_info->btree_inode;
1064 int ret = 0;
1065
1066 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1067 if (!buf)
1068 return 0;
1069 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1070 buf, 0, WAIT_NONE, btree_get_extent, 0);
1071 free_extent_buffer(buf);
1072 return ret;
1073 }
1074
1075 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1076 int mirror_num, struct extent_buffer **eb)
1077 {
1078 struct extent_buffer *buf = NULL;
1079 struct inode *btree_inode = root->fs_info->btree_inode;
1080 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1081 int ret;
1082
1083 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1084 if (!buf)
1085 return 0;
1086
1087 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1088
1089 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1090 btree_get_extent, mirror_num);
1091 if (ret) {
1092 free_extent_buffer(buf);
1093 return ret;
1094 }
1095
1096 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1097 free_extent_buffer(buf);
1098 return -EIO;
1099 } else if (extent_buffer_uptodate(buf)) {
1100 *eb = buf;
1101 } else {
1102 free_extent_buffer(buf);
1103 }
1104 return 0;
1105 }
1106
1107 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1108 u64 bytenr, u32 blocksize)
1109 {
1110 struct inode *btree_inode = root->fs_info->btree_inode;
1111 struct extent_buffer *eb;
1112 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1113 bytenr, blocksize);
1114 return eb;
1115 }
1116
1117 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1118 u64 bytenr, u32 blocksize)
1119 {
1120 struct inode *btree_inode = root->fs_info->btree_inode;
1121 struct extent_buffer *eb;
1122
1123 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1124 bytenr, blocksize);
1125 return eb;
1126 }
1127
1128
1129 int btrfs_write_tree_block(struct extent_buffer *buf)
1130 {
1131 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1132 buf->start + buf->len - 1);
1133 }
1134
1135 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1136 {
1137 return filemap_fdatawait_range(buf->pages[0]->mapping,
1138 buf->start, buf->start + buf->len - 1);
1139 }
1140
1141 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1142 u32 blocksize, u64 parent_transid)
1143 {
1144 struct extent_buffer *buf = NULL;
1145 int ret;
1146
1147 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1148 if (!buf)
1149 return NULL;
1150
1151 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1152 if (ret) {
1153 free_extent_buffer(buf);
1154 return NULL;
1155 }
1156 return buf;
1157
1158 }
1159
1160 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1161 struct extent_buffer *buf)
1162 {
1163 struct btrfs_fs_info *fs_info = root->fs_info;
1164
1165 if (btrfs_header_generation(buf) ==
1166 fs_info->running_transaction->transid) {
1167 btrfs_assert_tree_locked(buf);
1168
1169 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1170 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1171 -buf->len,
1172 fs_info->dirty_metadata_batch);
1173 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1174 btrfs_set_lock_blocking(buf);
1175 clear_extent_buffer_dirty(buf);
1176 }
1177 }
1178 }
1179
1180 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1181 u32 stripesize, struct btrfs_root *root,
1182 struct btrfs_fs_info *fs_info,
1183 u64 objectid)
1184 {
1185 root->node = NULL;
1186 root->commit_root = NULL;
1187 root->sectorsize = sectorsize;
1188 root->nodesize = nodesize;
1189 root->leafsize = leafsize;
1190 root->stripesize = stripesize;
1191 root->ref_cows = 0;
1192 root->track_dirty = 0;
1193 root->in_radix = 0;
1194 root->orphan_item_inserted = 0;
1195 root->orphan_cleanup_state = 0;
1196
1197 root->objectid = objectid;
1198 root->last_trans = 0;
1199 root->highest_objectid = 0;
1200 root->nr_delalloc_inodes = 0;
1201 root->nr_ordered_extents = 0;
1202 root->name = NULL;
1203 root->inode_tree = RB_ROOT;
1204 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1205 root->block_rsv = NULL;
1206 root->orphan_block_rsv = NULL;
1207
1208 INIT_LIST_HEAD(&root->dirty_list);
1209 INIT_LIST_HEAD(&root->root_list);
1210 INIT_LIST_HEAD(&root->delalloc_inodes);
1211 INIT_LIST_HEAD(&root->delalloc_root);
1212 INIT_LIST_HEAD(&root->ordered_extents);
1213 INIT_LIST_HEAD(&root->ordered_root);
1214 INIT_LIST_HEAD(&root->logged_list[0]);
1215 INIT_LIST_HEAD(&root->logged_list[1]);
1216 spin_lock_init(&root->orphan_lock);
1217 spin_lock_init(&root->inode_lock);
1218 spin_lock_init(&root->delalloc_lock);
1219 spin_lock_init(&root->ordered_extent_lock);
1220 spin_lock_init(&root->accounting_lock);
1221 spin_lock_init(&root->log_extents_lock[0]);
1222 spin_lock_init(&root->log_extents_lock[1]);
1223 mutex_init(&root->objectid_mutex);
1224 mutex_init(&root->log_mutex);
1225 init_waitqueue_head(&root->log_writer_wait);
1226 init_waitqueue_head(&root->log_commit_wait[0]);
1227 init_waitqueue_head(&root->log_commit_wait[1]);
1228 atomic_set(&root->log_commit[0], 0);
1229 atomic_set(&root->log_commit[1], 0);
1230 atomic_set(&root->log_writers, 0);
1231 atomic_set(&root->log_batch, 0);
1232 atomic_set(&root->orphan_inodes, 0);
1233 atomic_set(&root->refs, 1);
1234 root->log_transid = 0;
1235 root->last_log_commit = 0;
1236 extent_io_tree_init(&root->dirty_log_pages,
1237 fs_info->btree_inode->i_mapping);
1238
1239 memset(&root->root_key, 0, sizeof(root->root_key));
1240 memset(&root->root_item, 0, sizeof(root->root_item));
1241 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1242 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1243 root->defrag_trans_start = fs_info->generation;
1244 init_completion(&root->kobj_unregister);
1245 root->defrag_running = 0;
1246 root->root_key.objectid = objectid;
1247 root->anon_dev = 0;
1248
1249 spin_lock_init(&root->root_item_lock);
1250 }
1251
1252 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1253 {
1254 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1255 if (root)
1256 root->fs_info = fs_info;
1257 return root;
1258 }
1259
1260 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1261 struct btrfs_fs_info *fs_info,
1262 u64 objectid)
1263 {
1264 struct extent_buffer *leaf;
1265 struct btrfs_root *tree_root = fs_info->tree_root;
1266 struct btrfs_root *root;
1267 struct btrfs_key key;
1268 int ret = 0;
1269 u64 bytenr;
1270 uuid_le uuid;
1271
1272 root = btrfs_alloc_root(fs_info);
1273 if (!root)
1274 return ERR_PTR(-ENOMEM);
1275
1276 __setup_root(tree_root->nodesize, tree_root->leafsize,
1277 tree_root->sectorsize, tree_root->stripesize,
1278 root, fs_info, objectid);
1279 root->root_key.objectid = objectid;
1280 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1281 root->root_key.offset = 0;
1282
1283 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1284 0, objectid, NULL, 0, 0, 0);
1285 if (IS_ERR(leaf)) {
1286 ret = PTR_ERR(leaf);
1287 leaf = NULL;
1288 goto fail;
1289 }
1290
1291 bytenr = leaf->start;
1292 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1293 btrfs_set_header_bytenr(leaf, leaf->start);
1294 btrfs_set_header_generation(leaf, trans->transid);
1295 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1296 btrfs_set_header_owner(leaf, objectid);
1297 root->node = leaf;
1298
1299 write_extent_buffer(leaf, fs_info->fsid,
1300 (unsigned long)btrfs_header_fsid(leaf),
1301 BTRFS_FSID_SIZE);
1302 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1303 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1304 BTRFS_UUID_SIZE);
1305 btrfs_mark_buffer_dirty(leaf);
1306
1307 root->commit_root = btrfs_root_node(root);
1308 root->track_dirty = 1;
1309
1310
1311 root->root_item.flags = 0;
1312 root->root_item.byte_limit = 0;
1313 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1314 btrfs_set_root_generation(&root->root_item, trans->transid);
1315 btrfs_set_root_level(&root->root_item, 0);
1316 btrfs_set_root_refs(&root->root_item, 1);
1317 btrfs_set_root_used(&root->root_item, leaf->len);
1318 btrfs_set_root_last_snapshot(&root->root_item, 0);
1319 btrfs_set_root_dirid(&root->root_item, 0);
1320 uuid_le_gen(&uuid);
1321 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1322 root->root_item.drop_level = 0;
1323
1324 key.objectid = objectid;
1325 key.type = BTRFS_ROOT_ITEM_KEY;
1326 key.offset = 0;
1327 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1328 if (ret)
1329 goto fail;
1330
1331 btrfs_tree_unlock(leaf);
1332
1333 return root;
1334
1335 fail:
1336 if (leaf) {
1337 btrfs_tree_unlock(leaf);
1338 free_extent_buffer(leaf);
1339 }
1340 kfree(root);
1341
1342 return ERR_PTR(ret);
1343 }
1344
1345 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1346 struct btrfs_fs_info *fs_info)
1347 {
1348 struct btrfs_root *root;
1349 struct btrfs_root *tree_root = fs_info->tree_root;
1350 struct extent_buffer *leaf;
1351
1352 root = btrfs_alloc_root(fs_info);
1353 if (!root)
1354 return ERR_PTR(-ENOMEM);
1355
1356 __setup_root(tree_root->nodesize, tree_root->leafsize,
1357 tree_root->sectorsize, tree_root->stripesize,
1358 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1359
1360 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1361 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1362 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1363 /*
1364 * log trees do not get reference counted because they go away
1365 * before a real commit is actually done. They do store pointers
1366 * to file data extents, and those reference counts still get
1367 * updated (along with back refs to the log tree).
1368 */
1369 root->ref_cows = 0;
1370
1371 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1372 BTRFS_TREE_LOG_OBJECTID, NULL,
1373 0, 0, 0);
1374 if (IS_ERR(leaf)) {
1375 kfree(root);
1376 return ERR_CAST(leaf);
1377 }
1378
1379 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1380 btrfs_set_header_bytenr(leaf, leaf->start);
1381 btrfs_set_header_generation(leaf, trans->transid);
1382 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1383 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1384 root->node = leaf;
1385
1386 write_extent_buffer(root->node, root->fs_info->fsid,
1387 (unsigned long)btrfs_header_fsid(root->node),
1388 BTRFS_FSID_SIZE);
1389 btrfs_mark_buffer_dirty(root->node);
1390 btrfs_tree_unlock(root->node);
1391 return root;
1392 }
1393
1394 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1395 struct btrfs_fs_info *fs_info)
1396 {
1397 struct btrfs_root *log_root;
1398
1399 log_root = alloc_log_tree(trans, fs_info);
1400 if (IS_ERR(log_root))
1401 return PTR_ERR(log_root);
1402 WARN_ON(fs_info->log_root_tree);
1403 fs_info->log_root_tree = log_root;
1404 return 0;
1405 }
1406
1407 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1408 struct btrfs_root *root)
1409 {
1410 struct btrfs_root *log_root;
1411 struct btrfs_inode_item *inode_item;
1412
1413 log_root = alloc_log_tree(trans, root->fs_info);
1414 if (IS_ERR(log_root))
1415 return PTR_ERR(log_root);
1416
1417 log_root->last_trans = trans->transid;
1418 log_root->root_key.offset = root->root_key.objectid;
1419
1420 inode_item = &log_root->root_item.inode;
1421 btrfs_set_stack_inode_generation(inode_item, 1);
1422 btrfs_set_stack_inode_size(inode_item, 3);
1423 btrfs_set_stack_inode_nlink(inode_item, 1);
1424 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1425 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1426
1427 btrfs_set_root_node(&log_root->root_item, log_root->node);
1428
1429 WARN_ON(root->log_root);
1430 root->log_root = log_root;
1431 root->log_transid = 0;
1432 root->last_log_commit = 0;
1433 return 0;
1434 }
1435
1436 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1437 struct btrfs_key *key)
1438 {
1439 struct btrfs_root *root;
1440 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1441 struct btrfs_path *path;
1442 u64 generation;
1443 u32 blocksize;
1444 int ret;
1445
1446 path = btrfs_alloc_path();
1447 if (!path)
1448 return ERR_PTR(-ENOMEM);
1449
1450 root = btrfs_alloc_root(fs_info);
1451 if (!root) {
1452 ret = -ENOMEM;
1453 goto alloc_fail;
1454 }
1455
1456 __setup_root(tree_root->nodesize, tree_root->leafsize,
1457 tree_root->sectorsize, tree_root->stripesize,
1458 root, fs_info, key->objectid);
1459
1460 ret = btrfs_find_root(tree_root, key, path,
1461 &root->root_item, &root->root_key);
1462 if (ret) {
1463 if (ret > 0)
1464 ret = -ENOENT;
1465 goto find_fail;
1466 }
1467
1468 generation = btrfs_root_generation(&root->root_item);
1469 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1470 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1471 blocksize, generation);
1472 if (!root->node) {
1473 ret = -ENOMEM;
1474 goto find_fail;
1475 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1476 ret = -EIO;
1477 goto read_fail;
1478 }
1479 root->commit_root = btrfs_root_node(root);
1480 out:
1481 btrfs_free_path(path);
1482 return root;
1483
1484 read_fail:
1485 free_extent_buffer(root->node);
1486 find_fail:
1487 kfree(root);
1488 alloc_fail:
1489 root = ERR_PTR(ret);
1490 goto out;
1491 }
1492
1493 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1494 struct btrfs_key *location)
1495 {
1496 struct btrfs_root *root;
1497
1498 root = btrfs_read_tree_root(tree_root, location);
1499 if (IS_ERR(root))
1500 return root;
1501
1502 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1503 root->ref_cows = 1;
1504 btrfs_check_and_init_root_item(&root->root_item);
1505 }
1506
1507 return root;
1508 }
1509
1510 int btrfs_init_fs_root(struct btrfs_root *root)
1511 {
1512 int ret;
1513
1514 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1515 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1516 GFP_NOFS);
1517 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1518 ret = -ENOMEM;
1519 goto fail;
1520 }
1521
1522 btrfs_init_free_ino_ctl(root);
1523 mutex_init(&root->fs_commit_mutex);
1524 spin_lock_init(&root->cache_lock);
1525 init_waitqueue_head(&root->cache_wait);
1526
1527 ret = get_anon_bdev(&root->anon_dev);
1528 if (ret)
1529 goto fail;
1530 return 0;
1531 fail:
1532 kfree(root->free_ino_ctl);
1533 kfree(root->free_ino_pinned);
1534 return ret;
1535 }
1536
1537 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1538 u64 root_id)
1539 {
1540 struct btrfs_root *root;
1541
1542 spin_lock(&fs_info->fs_roots_radix_lock);
1543 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1544 (unsigned long)root_id);
1545 spin_unlock(&fs_info->fs_roots_radix_lock);
1546 return root;
1547 }
1548
1549 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1550 struct btrfs_root *root)
1551 {
1552 int ret;
1553
1554 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1555 if (ret)
1556 return ret;
1557
1558 spin_lock(&fs_info->fs_roots_radix_lock);
1559 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1560 (unsigned long)root->root_key.objectid,
1561 root);
1562 if (ret == 0)
1563 root->in_radix = 1;
1564 spin_unlock(&fs_info->fs_roots_radix_lock);
1565 radix_tree_preload_end();
1566
1567 return ret;
1568 }
1569
1570 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1571 struct btrfs_key *location)
1572 {
1573 struct btrfs_root *root;
1574 int ret;
1575
1576 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1577 return fs_info->tree_root;
1578 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579 return fs_info->extent_root;
1580 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581 return fs_info->chunk_root;
1582 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1583 return fs_info->dev_root;
1584 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1585 return fs_info->csum_root;
1586 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587 return fs_info->quota_root ? fs_info->quota_root :
1588 ERR_PTR(-ENOENT);
1589 again:
1590 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1591 if (root)
1592 return root;
1593
1594 root = btrfs_read_fs_root(fs_info->tree_root, location);
1595 if (IS_ERR(root))
1596 return root;
1597
1598 if (btrfs_root_refs(&root->root_item) == 0) {
1599 ret = -ENOENT;
1600 goto fail;
1601 }
1602
1603 ret = btrfs_init_fs_root(root);
1604 if (ret)
1605 goto fail;
1606
1607 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1608 if (ret < 0)
1609 goto fail;
1610 if (ret == 0)
1611 root->orphan_item_inserted = 1;
1612
1613 ret = btrfs_insert_fs_root(fs_info, root);
1614 if (ret) {
1615 if (ret == -EEXIST) {
1616 free_fs_root(root);
1617 goto again;
1618 }
1619 goto fail;
1620 }
1621 return root;
1622 fail:
1623 free_fs_root(root);
1624 return ERR_PTR(ret);
1625 }
1626
1627 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1628 {
1629 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1630 int ret = 0;
1631 struct btrfs_device *device;
1632 struct backing_dev_info *bdi;
1633
1634 rcu_read_lock();
1635 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1636 if (!device->bdev)
1637 continue;
1638 bdi = blk_get_backing_dev_info(device->bdev);
1639 if (bdi && bdi_congested(bdi, bdi_bits)) {
1640 ret = 1;
1641 break;
1642 }
1643 }
1644 rcu_read_unlock();
1645 return ret;
1646 }
1647
1648 /*
1649 * If this fails, caller must call bdi_destroy() to get rid of the
1650 * bdi again.
1651 */
1652 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1653 {
1654 int err;
1655
1656 bdi->capabilities = BDI_CAP_MAP_COPY;
1657 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1658 if (err)
1659 return err;
1660
1661 bdi->ra_pages = default_backing_dev_info.ra_pages;
1662 bdi->congested_fn = btrfs_congested_fn;
1663 bdi->congested_data = info;
1664 return 0;
1665 }
1666
1667 /*
1668 * called by the kthread helper functions to finally call the bio end_io
1669 * functions. This is where read checksum verification actually happens
1670 */
1671 static void end_workqueue_fn(struct btrfs_work *work)
1672 {
1673 struct bio *bio;
1674 struct end_io_wq *end_io_wq;
1675 struct btrfs_fs_info *fs_info;
1676 int error;
1677
1678 end_io_wq = container_of(work, struct end_io_wq, work);
1679 bio = end_io_wq->bio;
1680 fs_info = end_io_wq->info;
1681
1682 error = end_io_wq->error;
1683 bio->bi_private = end_io_wq->private;
1684 bio->bi_end_io = end_io_wq->end_io;
1685 kfree(end_io_wq);
1686 bio_endio(bio, error);
1687 }
1688
1689 static int cleaner_kthread(void *arg)
1690 {
1691 struct btrfs_root *root = arg;
1692 int again;
1693
1694 do {
1695 again = 0;
1696
1697 /* Make the cleaner go to sleep early. */
1698 if (btrfs_need_cleaner_sleep(root))
1699 goto sleep;
1700
1701 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1702 goto sleep;
1703
1704 /*
1705 * Avoid the problem that we change the status of the fs
1706 * during the above check and trylock.
1707 */
1708 if (btrfs_need_cleaner_sleep(root)) {
1709 mutex_unlock(&root->fs_info->cleaner_mutex);
1710 goto sleep;
1711 }
1712
1713 btrfs_run_delayed_iputs(root);
1714 again = btrfs_clean_one_deleted_snapshot(root);
1715 mutex_unlock(&root->fs_info->cleaner_mutex);
1716
1717 /*
1718 * The defragger has dealt with the R/O remount and umount,
1719 * needn't do anything special here.
1720 */
1721 btrfs_run_defrag_inodes(root->fs_info);
1722 sleep:
1723 if (!try_to_freeze() && !again) {
1724 set_current_state(TASK_INTERRUPTIBLE);
1725 if (!kthread_should_stop())
1726 schedule();
1727 __set_current_state(TASK_RUNNING);
1728 }
1729 } while (!kthread_should_stop());
1730 return 0;
1731 }
1732
1733 static int transaction_kthread(void *arg)
1734 {
1735 struct btrfs_root *root = arg;
1736 struct btrfs_trans_handle *trans;
1737 struct btrfs_transaction *cur;
1738 u64 transid;
1739 unsigned long now;
1740 unsigned long delay;
1741 bool cannot_commit;
1742
1743 do {
1744 cannot_commit = false;
1745 delay = HZ * root->fs_info->commit_interval;
1746 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1747
1748 spin_lock(&root->fs_info->trans_lock);
1749 cur = root->fs_info->running_transaction;
1750 if (!cur) {
1751 spin_unlock(&root->fs_info->trans_lock);
1752 goto sleep;
1753 }
1754
1755 now = get_seconds();
1756 if (cur->state < TRANS_STATE_BLOCKED &&
1757 (now < cur->start_time ||
1758 now - cur->start_time < root->fs_info->commit_interval)) {
1759 spin_unlock(&root->fs_info->trans_lock);
1760 delay = HZ * 5;
1761 goto sleep;
1762 }
1763 transid = cur->transid;
1764 spin_unlock(&root->fs_info->trans_lock);
1765
1766 /* If the file system is aborted, this will always fail. */
1767 trans = btrfs_attach_transaction(root);
1768 if (IS_ERR(trans)) {
1769 if (PTR_ERR(trans) != -ENOENT)
1770 cannot_commit = true;
1771 goto sleep;
1772 }
1773 if (transid == trans->transid) {
1774 btrfs_commit_transaction(trans, root);
1775 } else {
1776 btrfs_end_transaction(trans, root);
1777 }
1778 sleep:
1779 wake_up_process(root->fs_info->cleaner_kthread);
1780 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1781
1782 if (!try_to_freeze()) {
1783 set_current_state(TASK_INTERRUPTIBLE);
1784 if (!kthread_should_stop() &&
1785 (!btrfs_transaction_blocked(root->fs_info) ||
1786 cannot_commit))
1787 schedule_timeout(delay);
1788 __set_current_state(TASK_RUNNING);
1789 }
1790 } while (!kthread_should_stop());
1791 return 0;
1792 }
1793
1794 /*
1795 * this will find the highest generation in the array of
1796 * root backups. The index of the highest array is returned,
1797 * or -1 if we can't find anything.
1798 *
1799 * We check to make sure the array is valid by comparing the
1800 * generation of the latest root in the array with the generation
1801 * in the super block. If they don't match we pitch it.
1802 */
1803 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804 {
1805 u64 cur;
1806 int newest_index = -1;
1807 struct btrfs_root_backup *root_backup;
1808 int i;
1809
1810 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811 root_backup = info->super_copy->super_roots + i;
1812 cur = btrfs_backup_tree_root_gen(root_backup);
1813 if (cur == newest_gen)
1814 newest_index = i;
1815 }
1816
1817 /* check to see if we actually wrapped around */
1818 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819 root_backup = info->super_copy->super_roots;
1820 cur = btrfs_backup_tree_root_gen(root_backup);
1821 if (cur == newest_gen)
1822 newest_index = 0;
1823 }
1824 return newest_index;
1825 }
1826
1827
1828 /*
1829 * find the oldest backup so we know where to store new entries
1830 * in the backup array. This will set the backup_root_index
1831 * field in the fs_info struct
1832 */
1833 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834 u64 newest_gen)
1835 {
1836 int newest_index = -1;
1837
1838 newest_index = find_newest_super_backup(info, newest_gen);
1839 /* if there was garbage in there, just move along */
1840 if (newest_index == -1) {
1841 info->backup_root_index = 0;
1842 } else {
1843 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844 }
1845 }
1846
1847 /*
1848 * copy all the root pointers into the super backup array.
1849 * this will bump the backup pointer by one when it is
1850 * done
1851 */
1852 static void backup_super_roots(struct btrfs_fs_info *info)
1853 {
1854 int next_backup;
1855 struct btrfs_root_backup *root_backup;
1856 int last_backup;
1857
1858 next_backup = info->backup_root_index;
1859 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860 BTRFS_NUM_BACKUP_ROOTS;
1861
1862 /*
1863 * just overwrite the last backup if we're at the same generation
1864 * this happens only at umount
1865 */
1866 root_backup = info->super_for_commit->super_roots + last_backup;
1867 if (btrfs_backup_tree_root_gen(root_backup) ==
1868 btrfs_header_generation(info->tree_root->node))
1869 next_backup = last_backup;
1870
1871 root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873 /*
1874 * make sure all of our padding and empty slots get zero filled
1875 * regardless of which ones we use today
1876 */
1877 memset(root_backup, 0, sizeof(*root_backup));
1878
1879 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882 btrfs_set_backup_tree_root_gen(root_backup,
1883 btrfs_header_generation(info->tree_root->node));
1884
1885 btrfs_set_backup_tree_root_level(root_backup,
1886 btrfs_header_level(info->tree_root->node));
1887
1888 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889 btrfs_set_backup_chunk_root_gen(root_backup,
1890 btrfs_header_generation(info->chunk_root->node));
1891 btrfs_set_backup_chunk_root_level(root_backup,
1892 btrfs_header_level(info->chunk_root->node));
1893
1894 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895 btrfs_set_backup_extent_root_gen(root_backup,
1896 btrfs_header_generation(info->extent_root->node));
1897 btrfs_set_backup_extent_root_level(root_backup,
1898 btrfs_header_level(info->extent_root->node));
1899
1900 /*
1901 * we might commit during log recovery, which happens before we set
1902 * the fs_root. Make sure it is valid before we fill it in.
1903 */
1904 if (info->fs_root && info->fs_root->node) {
1905 btrfs_set_backup_fs_root(root_backup,
1906 info->fs_root->node->start);
1907 btrfs_set_backup_fs_root_gen(root_backup,
1908 btrfs_header_generation(info->fs_root->node));
1909 btrfs_set_backup_fs_root_level(root_backup,
1910 btrfs_header_level(info->fs_root->node));
1911 }
1912
1913 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914 btrfs_set_backup_dev_root_gen(root_backup,
1915 btrfs_header_generation(info->dev_root->node));
1916 btrfs_set_backup_dev_root_level(root_backup,
1917 btrfs_header_level(info->dev_root->node));
1918
1919 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920 btrfs_set_backup_csum_root_gen(root_backup,
1921 btrfs_header_generation(info->csum_root->node));
1922 btrfs_set_backup_csum_root_level(root_backup,
1923 btrfs_header_level(info->csum_root->node));
1924
1925 btrfs_set_backup_total_bytes(root_backup,
1926 btrfs_super_total_bytes(info->super_copy));
1927 btrfs_set_backup_bytes_used(root_backup,
1928 btrfs_super_bytes_used(info->super_copy));
1929 btrfs_set_backup_num_devices(root_backup,
1930 btrfs_super_num_devices(info->super_copy));
1931
1932 /*
1933 * if we don't copy this out to the super_copy, it won't get remembered
1934 * for the next commit
1935 */
1936 memcpy(&info->super_copy->super_roots,
1937 &info->super_for_commit->super_roots,
1938 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939 }
1940
1941 /*
1942 * this copies info out of the root backup array and back into
1943 * the in-memory super block. It is meant to help iterate through
1944 * the array, so you send it the number of backups you've already
1945 * tried and the last backup index you used.
1946 *
1947 * this returns -1 when it has tried all the backups
1948 */
1949 static noinline int next_root_backup(struct btrfs_fs_info *info,
1950 struct btrfs_super_block *super,
1951 int *num_backups_tried, int *backup_index)
1952 {
1953 struct btrfs_root_backup *root_backup;
1954 int newest = *backup_index;
1955
1956 if (*num_backups_tried == 0) {
1957 u64 gen = btrfs_super_generation(super);
1958
1959 newest = find_newest_super_backup(info, gen);
1960 if (newest == -1)
1961 return -1;
1962
1963 *backup_index = newest;
1964 *num_backups_tried = 1;
1965 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966 /* we've tried all the backups, all done */
1967 return -1;
1968 } else {
1969 /* jump to the next oldest backup */
1970 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971 BTRFS_NUM_BACKUP_ROOTS;
1972 *backup_index = newest;
1973 *num_backups_tried += 1;
1974 }
1975 root_backup = super->super_roots + newest;
1976
1977 btrfs_set_super_generation(super,
1978 btrfs_backup_tree_root_gen(root_backup));
1979 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980 btrfs_set_super_root_level(super,
1981 btrfs_backup_tree_root_level(root_backup));
1982 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984 /*
1985 * fixme: the total bytes and num_devices need to match or we should
1986 * need a fsck
1987 */
1988 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990 return 0;
1991 }
1992
1993 /* helper to cleanup workers */
1994 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995 {
1996 btrfs_stop_workers(&fs_info->generic_worker);
1997 btrfs_stop_workers(&fs_info->fixup_workers);
1998 btrfs_stop_workers(&fs_info->delalloc_workers);
1999 btrfs_stop_workers(&fs_info->workers);
2000 btrfs_stop_workers(&fs_info->endio_workers);
2001 btrfs_stop_workers(&fs_info->endio_meta_workers);
2002 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2003 btrfs_stop_workers(&fs_info->rmw_workers);
2004 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2005 btrfs_stop_workers(&fs_info->endio_write_workers);
2006 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2007 btrfs_stop_workers(&fs_info->submit_workers);
2008 btrfs_stop_workers(&fs_info->delayed_workers);
2009 btrfs_stop_workers(&fs_info->caching_workers);
2010 btrfs_stop_workers(&fs_info->readahead_workers);
2011 btrfs_stop_workers(&fs_info->flush_workers);
2012 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2013 }
2014
2015 /* helper to cleanup tree roots */
2016 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2017 {
2018 free_extent_buffer(info->tree_root->node);
2019 free_extent_buffer(info->tree_root->commit_root);
2020 info->tree_root->node = NULL;
2021 info->tree_root->commit_root = NULL;
2022
2023 if (info->dev_root) {
2024 free_extent_buffer(info->dev_root->node);
2025 free_extent_buffer(info->dev_root->commit_root);
2026 info->dev_root->node = NULL;
2027 info->dev_root->commit_root = NULL;
2028 }
2029 if (info->extent_root) {
2030 free_extent_buffer(info->extent_root->node);
2031 free_extent_buffer(info->extent_root->commit_root);
2032 info->extent_root->node = NULL;
2033 info->extent_root->commit_root = NULL;
2034 }
2035 if (info->csum_root) {
2036 free_extent_buffer(info->csum_root->node);
2037 free_extent_buffer(info->csum_root->commit_root);
2038 info->csum_root->node = NULL;
2039 info->csum_root->commit_root = NULL;
2040 }
2041 if (info->quota_root) {
2042 free_extent_buffer(info->quota_root->node);
2043 free_extent_buffer(info->quota_root->commit_root);
2044 info->quota_root->node = NULL;
2045 info->quota_root->commit_root = NULL;
2046 }
2047 if (chunk_root) {
2048 free_extent_buffer(info->chunk_root->node);
2049 free_extent_buffer(info->chunk_root->commit_root);
2050 info->chunk_root->node = NULL;
2051 info->chunk_root->commit_root = NULL;
2052 }
2053 }
2054
2055 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2056 {
2057 int ret;
2058 struct btrfs_root *gang[8];
2059 int i;
2060
2061 while (!list_empty(&fs_info->dead_roots)) {
2062 gang[0] = list_entry(fs_info->dead_roots.next,
2063 struct btrfs_root, root_list);
2064 list_del(&gang[0]->root_list);
2065
2066 if (gang[0]->in_radix) {
2067 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2068 } else {
2069 free_extent_buffer(gang[0]->node);
2070 free_extent_buffer(gang[0]->commit_root);
2071 btrfs_put_fs_root(gang[0]);
2072 }
2073 }
2074
2075 while (1) {
2076 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2077 (void **)gang, 0,
2078 ARRAY_SIZE(gang));
2079 if (!ret)
2080 break;
2081 for (i = 0; i < ret; i++)
2082 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2083 }
2084 }
2085
2086 int open_ctree(struct super_block *sb,
2087 struct btrfs_fs_devices *fs_devices,
2088 char *options)
2089 {
2090 u32 sectorsize;
2091 u32 nodesize;
2092 u32 leafsize;
2093 u32 blocksize;
2094 u32 stripesize;
2095 u64 generation;
2096 u64 features;
2097 struct btrfs_key location;
2098 struct buffer_head *bh;
2099 struct btrfs_super_block *disk_super;
2100 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2101 struct btrfs_root *tree_root;
2102 struct btrfs_root *extent_root;
2103 struct btrfs_root *csum_root;
2104 struct btrfs_root *chunk_root;
2105 struct btrfs_root *dev_root;
2106 struct btrfs_root *quota_root;
2107 struct btrfs_root *log_tree_root;
2108 int ret;
2109 int err = -EINVAL;
2110 int num_backups_tried = 0;
2111 int backup_index = 0;
2112
2113 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2114 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2115 if (!tree_root || !chunk_root) {
2116 err = -ENOMEM;
2117 goto fail;
2118 }
2119
2120 ret = init_srcu_struct(&fs_info->subvol_srcu);
2121 if (ret) {
2122 err = ret;
2123 goto fail;
2124 }
2125
2126 ret = setup_bdi(fs_info, &fs_info->bdi);
2127 if (ret) {
2128 err = ret;
2129 goto fail_srcu;
2130 }
2131
2132 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2133 if (ret) {
2134 err = ret;
2135 goto fail_bdi;
2136 }
2137 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2138 (1 + ilog2(nr_cpu_ids));
2139
2140 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2141 if (ret) {
2142 err = ret;
2143 goto fail_dirty_metadata_bytes;
2144 }
2145
2146 fs_info->btree_inode = new_inode(sb);
2147 if (!fs_info->btree_inode) {
2148 err = -ENOMEM;
2149 goto fail_delalloc_bytes;
2150 }
2151
2152 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2153
2154 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2155 INIT_LIST_HEAD(&fs_info->trans_list);
2156 INIT_LIST_HEAD(&fs_info->dead_roots);
2157 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2158 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2159 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2160 spin_lock_init(&fs_info->delalloc_root_lock);
2161 spin_lock_init(&fs_info->trans_lock);
2162 spin_lock_init(&fs_info->fs_roots_radix_lock);
2163 spin_lock_init(&fs_info->delayed_iput_lock);
2164 spin_lock_init(&fs_info->defrag_inodes_lock);
2165 spin_lock_init(&fs_info->free_chunk_lock);
2166 spin_lock_init(&fs_info->tree_mod_seq_lock);
2167 spin_lock_init(&fs_info->super_lock);
2168 rwlock_init(&fs_info->tree_mod_log_lock);
2169 mutex_init(&fs_info->reloc_mutex);
2170 seqlock_init(&fs_info->profiles_lock);
2171
2172 init_completion(&fs_info->kobj_unregister);
2173 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2174 INIT_LIST_HEAD(&fs_info->space_info);
2175 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2176 btrfs_mapping_init(&fs_info->mapping_tree);
2177 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2178 BTRFS_BLOCK_RSV_GLOBAL);
2179 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2180 BTRFS_BLOCK_RSV_DELALLOC);
2181 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2182 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2183 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2184 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2185 BTRFS_BLOCK_RSV_DELOPS);
2186 atomic_set(&fs_info->nr_async_submits, 0);
2187 atomic_set(&fs_info->async_delalloc_pages, 0);
2188 atomic_set(&fs_info->async_submit_draining, 0);
2189 atomic_set(&fs_info->nr_async_bios, 0);
2190 atomic_set(&fs_info->defrag_running, 0);
2191 atomic64_set(&fs_info->tree_mod_seq, 0);
2192 fs_info->sb = sb;
2193 fs_info->max_inline = 8192 * 1024;
2194 fs_info->metadata_ratio = 0;
2195 fs_info->defrag_inodes = RB_ROOT;
2196 fs_info->free_chunk_space = 0;
2197 fs_info->tree_mod_log = RB_ROOT;
2198 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2199
2200 /* readahead state */
2201 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2202 spin_lock_init(&fs_info->reada_lock);
2203
2204 fs_info->thread_pool_size = min_t(unsigned long,
2205 num_online_cpus() + 2, 8);
2206
2207 INIT_LIST_HEAD(&fs_info->ordered_roots);
2208 spin_lock_init(&fs_info->ordered_root_lock);
2209 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2210 GFP_NOFS);
2211 if (!fs_info->delayed_root) {
2212 err = -ENOMEM;
2213 goto fail_iput;
2214 }
2215 btrfs_init_delayed_root(fs_info->delayed_root);
2216
2217 mutex_init(&fs_info->scrub_lock);
2218 atomic_set(&fs_info->scrubs_running, 0);
2219 atomic_set(&fs_info->scrub_pause_req, 0);
2220 atomic_set(&fs_info->scrubs_paused, 0);
2221 atomic_set(&fs_info->scrub_cancel_req, 0);
2222 init_waitqueue_head(&fs_info->scrub_pause_wait);
2223 init_rwsem(&fs_info->scrub_super_lock);
2224 fs_info->scrub_workers_refcnt = 0;
2225 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2226 fs_info->check_integrity_print_mask = 0;
2227 #endif
2228
2229 spin_lock_init(&fs_info->balance_lock);
2230 mutex_init(&fs_info->balance_mutex);
2231 atomic_set(&fs_info->balance_running, 0);
2232 atomic_set(&fs_info->balance_pause_req, 0);
2233 atomic_set(&fs_info->balance_cancel_req, 0);
2234 fs_info->balance_ctl = NULL;
2235 init_waitqueue_head(&fs_info->balance_wait_q);
2236
2237 sb->s_blocksize = 4096;
2238 sb->s_blocksize_bits = blksize_bits(4096);
2239 sb->s_bdi = &fs_info->bdi;
2240
2241 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2242 set_nlink(fs_info->btree_inode, 1);
2243 /*
2244 * we set the i_size on the btree inode to the max possible int.
2245 * the real end of the address space is determined by all of
2246 * the devices in the system
2247 */
2248 fs_info->btree_inode->i_size = OFFSET_MAX;
2249 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2250 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2251
2252 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2253 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2254 fs_info->btree_inode->i_mapping);
2255 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2256 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2257
2258 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2259
2260 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2261 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2262 sizeof(struct btrfs_key));
2263 set_bit(BTRFS_INODE_DUMMY,
2264 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2265 insert_inode_hash(fs_info->btree_inode);
2266
2267 spin_lock_init(&fs_info->block_group_cache_lock);
2268 fs_info->block_group_cache_tree = RB_ROOT;
2269 fs_info->first_logical_byte = (u64)-1;
2270
2271 extent_io_tree_init(&fs_info->freed_extents[0],
2272 fs_info->btree_inode->i_mapping);
2273 extent_io_tree_init(&fs_info->freed_extents[1],
2274 fs_info->btree_inode->i_mapping);
2275 fs_info->pinned_extents = &fs_info->freed_extents[0];
2276 fs_info->do_barriers = 1;
2277
2278
2279 mutex_init(&fs_info->ordered_operations_mutex);
2280 mutex_init(&fs_info->tree_log_mutex);
2281 mutex_init(&fs_info->chunk_mutex);
2282 mutex_init(&fs_info->transaction_kthread_mutex);
2283 mutex_init(&fs_info->cleaner_mutex);
2284 mutex_init(&fs_info->volume_mutex);
2285 init_rwsem(&fs_info->extent_commit_sem);
2286 init_rwsem(&fs_info->cleanup_work_sem);
2287 init_rwsem(&fs_info->subvol_sem);
2288 fs_info->dev_replace.lock_owner = 0;
2289 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2290 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2291 mutex_init(&fs_info->dev_replace.lock_management_lock);
2292 mutex_init(&fs_info->dev_replace.lock);
2293
2294 spin_lock_init(&fs_info->qgroup_lock);
2295 mutex_init(&fs_info->qgroup_ioctl_lock);
2296 fs_info->qgroup_tree = RB_ROOT;
2297 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2298 fs_info->qgroup_seq = 1;
2299 fs_info->quota_enabled = 0;
2300 fs_info->pending_quota_state = 0;
2301 fs_info->qgroup_ulist = NULL;
2302 mutex_init(&fs_info->qgroup_rescan_lock);
2303
2304 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2305 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2306
2307 init_waitqueue_head(&fs_info->transaction_throttle);
2308 init_waitqueue_head(&fs_info->transaction_wait);
2309 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2310 init_waitqueue_head(&fs_info->async_submit_wait);
2311
2312 ret = btrfs_alloc_stripe_hash_table(fs_info);
2313 if (ret) {
2314 err = ret;
2315 goto fail_alloc;
2316 }
2317
2318 __setup_root(4096, 4096, 4096, 4096, tree_root,
2319 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2320
2321 invalidate_bdev(fs_devices->latest_bdev);
2322
2323 /*
2324 * Read super block and check the signature bytes only
2325 */
2326 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2327 if (!bh) {
2328 err = -EINVAL;
2329 goto fail_alloc;
2330 }
2331
2332 /*
2333 * We want to check superblock checksum, the type is stored inside.
2334 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2335 */
2336 if (btrfs_check_super_csum(bh->b_data)) {
2337 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2338 err = -EINVAL;
2339 goto fail_alloc;
2340 }
2341
2342 /*
2343 * super_copy is zeroed at allocation time and we never touch the
2344 * following bytes up to INFO_SIZE, the checksum is calculated from
2345 * the whole block of INFO_SIZE
2346 */
2347 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2348 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2349 sizeof(*fs_info->super_for_commit));
2350 brelse(bh);
2351
2352 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2353
2354 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2355 if (ret) {
2356 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2357 err = -EINVAL;
2358 goto fail_alloc;
2359 }
2360
2361 disk_super = fs_info->super_copy;
2362 if (!btrfs_super_root(disk_super))
2363 goto fail_alloc;
2364
2365 /* check FS state, whether FS is broken. */
2366 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2367 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2368
2369 /*
2370 * run through our array of backup supers and setup
2371 * our ring pointer to the oldest one
2372 */
2373 generation = btrfs_super_generation(disk_super);
2374 find_oldest_super_backup(fs_info, generation);
2375
2376 /*
2377 * In the long term, we'll store the compression type in the super
2378 * block, and it'll be used for per file compression control.
2379 */
2380 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2381
2382 ret = btrfs_parse_options(tree_root, options);
2383 if (ret) {
2384 err = ret;
2385 goto fail_alloc;
2386 }
2387
2388 features = btrfs_super_incompat_flags(disk_super) &
2389 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2390 if (features) {
2391 printk(KERN_ERR "BTRFS: couldn't mount because of "
2392 "unsupported optional features (%Lx).\n",
2393 (unsigned long long)features);
2394 err = -EINVAL;
2395 goto fail_alloc;
2396 }
2397
2398 if (btrfs_super_leafsize(disk_super) !=
2399 btrfs_super_nodesize(disk_super)) {
2400 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2401 "blocksizes don't match. node %d leaf %d\n",
2402 btrfs_super_nodesize(disk_super),
2403 btrfs_super_leafsize(disk_super));
2404 err = -EINVAL;
2405 goto fail_alloc;
2406 }
2407 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2408 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2409 "blocksize (%d) was too large\n",
2410 btrfs_super_leafsize(disk_super));
2411 err = -EINVAL;
2412 goto fail_alloc;
2413 }
2414
2415 features = btrfs_super_incompat_flags(disk_super);
2416 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2417 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2418 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2419
2420 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2421 printk(KERN_ERR "btrfs: has skinny extents\n");
2422
2423 /*
2424 * flag our filesystem as having big metadata blocks if
2425 * they are bigger than the page size
2426 */
2427 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2428 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2429 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2430 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2431 }
2432
2433 nodesize = btrfs_super_nodesize(disk_super);
2434 leafsize = btrfs_super_leafsize(disk_super);
2435 sectorsize = btrfs_super_sectorsize(disk_super);
2436 stripesize = btrfs_super_stripesize(disk_super);
2437 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2438 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2439
2440 /*
2441 * mixed block groups end up with duplicate but slightly offset
2442 * extent buffers for the same range. It leads to corruptions
2443 */
2444 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2445 (sectorsize != leafsize)) {
2446 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2447 "are not allowed for mixed block groups on %s\n",
2448 sb->s_id);
2449 goto fail_alloc;
2450 }
2451
2452 /*
2453 * Needn't use the lock because there is no other task which will
2454 * update the flag.
2455 */
2456 btrfs_set_super_incompat_flags(disk_super, features);
2457
2458 features = btrfs_super_compat_ro_flags(disk_super) &
2459 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2460 if (!(sb->s_flags & MS_RDONLY) && features) {
2461 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2462 "unsupported option features (%Lx).\n",
2463 (unsigned long long)features);
2464 err = -EINVAL;
2465 goto fail_alloc;
2466 }
2467
2468 btrfs_init_workers(&fs_info->generic_worker,
2469 "genwork", 1, NULL);
2470
2471 btrfs_init_workers(&fs_info->workers, "worker",
2472 fs_info->thread_pool_size,
2473 &fs_info->generic_worker);
2474
2475 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2476 fs_info->thread_pool_size,
2477 &fs_info->generic_worker);
2478
2479 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2480 fs_info->thread_pool_size,
2481 &fs_info->generic_worker);
2482
2483 btrfs_init_workers(&fs_info->submit_workers, "submit",
2484 min_t(u64, fs_devices->num_devices,
2485 fs_info->thread_pool_size),
2486 &fs_info->generic_worker);
2487
2488 btrfs_init_workers(&fs_info->caching_workers, "cache",
2489 2, &fs_info->generic_worker);
2490
2491 /* a higher idle thresh on the submit workers makes it much more
2492 * likely that bios will be send down in a sane order to the
2493 * devices
2494 */
2495 fs_info->submit_workers.idle_thresh = 64;
2496
2497 fs_info->workers.idle_thresh = 16;
2498 fs_info->workers.ordered = 1;
2499
2500 fs_info->delalloc_workers.idle_thresh = 2;
2501 fs_info->delalloc_workers.ordered = 1;
2502
2503 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2504 &fs_info->generic_worker);
2505 btrfs_init_workers(&fs_info->endio_workers, "endio",
2506 fs_info->thread_pool_size,
2507 &fs_info->generic_worker);
2508 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2509 fs_info->thread_pool_size,
2510 &fs_info->generic_worker);
2511 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2512 "endio-meta-write", fs_info->thread_pool_size,
2513 &fs_info->generic_worker);
2514 btrfs_init_workers(&fs_info->endio_raid56_workers,
2515 "endio-raid56", fs_info->thread_pool_size,
2516 &fs_info->generic_worker);
2517 btrfs_init_workers(&fs_info->rmw_workers,
2518 "rmw", fs_info->thread_pool_size,
2519 &fs_info->generic_worker);
2520 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2521 fs_info->thread_pool_size,
2522 &fs_info->generic_worker);
2523 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2524 1, &fs_info->generic_worker);
2525 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2526 fs_info->thread_pool_size,
2527 &fs_info->generic_worker);
2528 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2529 fs_info->thread_pool_size,
2530 &fs_info->generic_worker);
2531 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2532 &fs_info->generic_worker);
2533
2534 /*
2535 * endios are largely parallel and should have a very
2536 * low idle thresh
2537 */
2538 fs_info->endio_workers.idle_thresh = 4;
2539 fs_info->endio_meta_workers.idle_thresh = 4;
2540 fs_info->endio_raid56_workers.idle_thresh = 4;
2541 fs_info->rmw_workers.idle_thresh = 2;
2542
2543 fs_info->endio_write_workers.idle_thresh = 2;
2544 fs_info->endio_meta_write_workers.idle_thresh = 2;
2545 fs_info->readahead_workers.idle_thresh = 2;
2546
2547 /*
2548 * btrfs_start_workers can really only fail because of ENOMEM so just
2549 * return -ENOMEM if any of these fail.
2550 */
2551 ret = btrfs_start_workers(&fs_info->workers);
2552 ret |= btrfs_start_workers(&fs_info->generic_worker);
2553 ret |= btrfs_start_workers(&fs_info->submit_workers);
2554 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2555 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2556 ret |= btrfs_start_workers(&fs_info->endio_workers);
2557 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2558 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2559 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2560 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2561 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2562 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2563 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2564 ret |= btrfs_start_workers(&fs_info->caching_workers);
2565 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2566 ret |= btrfs_start_workers(&fs_info->flush_workers);
2567 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2568 if (ret) {
2569 err = -ENOMEM;
2570 goto fail_sb_buffer;
2571 }
2572
2573 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2574 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2575 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2576
2577 tree_root->nodesize = nodesize;
2578 tree_root->leafsize = leafsize;
2579 tree_root->sectorsize = sectorsize;
2580 tree_root->stripesize = stripesize;
2581
2582 sb->s_blocksize = sectorsize;
2583 sb->s_blocksize_bits = blksize_bits(sectorsize);
2584
2585 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2586 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2587 goto fail_sb_buffer;
2588 }
2589
2590 if (sectorsize != PAGE_SIZE) {
2591 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2592 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2593 goto fail_sb_buffer;
2594 }
2595
2596 mutex_lock(&fs_info->chunk_mutex);
2597 ret = btrfs_read_sys_array(tree_root);
2598 mutex_unlock(&fs_info->chunk_mutex);
2599 if (ret) {
2600 printk(KERN_WARNING "btrfs: failed to read the system "
2601 "array on %s\n", sb->s_id);
2602 goto fail_sb_buffer;
2603 }
2604
2605 blocksize = btrfs_level_size(tree_root,
2606 btrfs_super_chunk_root_level(disk_super));
2607 generation = btrfs_super_chunk_root_generation(disk_super);
2608
2609 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2610 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2611
2612 chunk_root->node = read_tree_block(chunk_root,
2613 btrfs_super_chunk_root(disk_super),
2614 blocksize, generation);
2615 if (!chunk_root->node ||
2616 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2617 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2618 sb->s_id);
2619 goto fail_tree_roots;
2620 }
2621 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2622 chunk_root->commit_root = btrfs_root_node(chunk_root);
2623
2624 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2625 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2626 BTRFS_UUID_SIZE);
2627
2628 ret = btrfs_read_chunk_tree(chunk_root);
2629 if (ret) {
2630 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2631 sb->s_id);
2632 goto fail_tree_roots;
2633 }
2634
2635 /*
2636 * keep the device that is marked to be the target device for the
2637 * dev_replace procedure
2638 */
2639 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2640
2641 if (!fs_devices->latest_bdev) {
2642 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2643 sb->s_id);
2644 goto fail_tree_roots;
2645 }
2646
2647 retry_root_backup:
2648 blocksize = btrfs_level_size(tree_root,
2649 btrfs_super_root_level(disk_super));
2650 generation = btrfs_super_generation(disk_super);
2651
2652 tree_root->node = read_tree_block(tree_root,
2653 btrfs_super_root(disk_super),
2654 blocksize, generation);
2655 if (!tree_root->node ||
2656 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2657 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2658 sb->s_id);
2659
2660 goto recovery_tree_root;
2661 }
2662
2663 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2664 tree_root->commit_root = btrfs_root_node(tree_root);
2665
2666 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2667 location.type = BTRFS_ROOT_ITEM_KEY;
2668 location.offset = 0;
2669
2670 extent_root = btrfs_read_tree_root(tree_root, &location);
2671 if (IS_ERR(extent_root)) {
2672 ret = PTR_ERR(extent_root);
2673 goto recovery_tree_root;
2674 }
2675 extent_root->track_dirty = 1;
2676 fs_info->extent_root = extent_root;
2677
2678 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2679 dev_root = btrfs_read_tree_root(tree_root, &location);
2680 if (IS_ERR(dev_root)) {
2681 ret = PTR_ERR(dev_root);
2682 goto recovery_tree_root;
2683 }
2684 dev_root->track_dirty = 1;
2685 fs_info->dev_root = dev_root;
2686 btrfs_init_devices_late(fs_info);
2687
2688 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2689 csum_root = btrfs_read_tree_root(tree_root, &location);
2690 if (IS_ERR(csum_root)) {
2691 ret = PTR_ERR(csum_root);
2692 goto recovery_tree_root;
2693 }
2694 csum_root->track_dirty = 1;
2695 fs_info->csum_root = csum_root;
2696
2697 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2698 quota_root = btrfs_read_tree_root(tree_root, &location);
2699 if (!IS_ERR(quota_root)) {
2700 quota_root->track_dirty = 1;
2701 fs_info->quota_enabled = 1;
2702 fs_info->pending_quota_state = 1;
2703 fs_info->quota_root = quota_root;
2704 }
2705
2706 fs_info->generation = generation;
2707 fs_info->last_trans_committed = generation;
2708
2709 ret = btrfs_recover_balance(fs_info);
2710 if (ret) {
2711 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2712 goto fail_block_groups;
2713 }
2714
2715 ret = btrfs_init_dev_stats(fs_info);
2716 if (ret) {
2717 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2718 ret);
2719 goto fail_block_groups;
2720 }
2721
2722 ret = btrfs_init_dev_replace(fs_info);
2723 if (ret) {
2724 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2725 goto fail_block_groups;
2726 }
2727
2728 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2729
2730 ret = btrfs_init_space_info(fs_info);
2731 if (ret) {
2732 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2733 goto fail_block_groups;
2734 }
2735
2736 ret = btrfs_read_block_groups(extent_root);
2737 if (ret) {
2738 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2739 goto fail_block_groups;
2740 }
2741 fs_info->num_tolerated_disk_barrier_failures =
2742 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2743 if (fs_info->fs_devices->missing_devices >
2744 fs_info->num_tolerated_disk_barrier_failures &&
2745 !(sb->s_flags & MS_RDONLY)) {
2746 printk(KERN_WARNING
2747 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2748 goto fail_block_groups;
2749 }
2750
2751 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2752 "btrfs-cleaner");
2753 if (IS_ERR(fs_info->cleaner_kthread))
2754 goto fail_block_groups;
2755
2756 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2757 tree_root,
2758 "btrfs-transaction");
2759 if (IS_ERR(fs_info->transaction_kthread))
2760 goto fail_cleaner;
2761
2762 if (!btrfs_test_opt(tree_root, SSD) &&
2763 !btrfs_test_opt(tree_root, NOSSD) &&
2764 !fs_info->fs_devices->rotating) {
2765 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2766 "mode\n");
2767 btrfs_set_opt(fs_info->mount_opt, SSD);
2768 }
2769
2770 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2771 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2772 ret = btrfsic_mount(tree_root, fs_devices,
2773 btrfs_test_opt(tree_root,
2774 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2775 1 : 0,
2776 fs_info->check_integrity_print_mask);
2777 if (ret)
2778 printk(KERN_WARNING "btrfs: failed to initialize"
2779 " integrity check module %s\n", sb->s_id);
2780 }
2781 #endif
2782 ret = btrfs_read_qgroup_config(fs_info);
2783 if (ret)
2784 goto fail_trans_kthread;
2785
2786 /* do not make disk changes in broken FS */
2787 if (btrfs_super_log_root(disk_super) != 0) {
2788 u64 bytenr = btrfs_super_log_root(disk_super);
2789
2790 if (fs_devices->rw_devices == 0) {
2791 printk(KERN_WARNING "Btrfs log replay required "
2792 "on RO media\n");
2793 err = -EIO;
2794 goto fail_qgroup;
2795 }
2796 blocksize =
2797 btrfs_level_size(tree_root,
2798 btrfs_super_log_root_level(disk_super));
2799
2800 log_tree_root = btrfs_alloc_root(fs_info);
2801 if (!log_tree_root) {
2802 err = -ENOMEM;
2803 goto fail_qgroup;
2804 }
2805
2806 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2807 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2808
2809 log_tree_root->node = read_tree_block(tree_root, bytenr,
2810 blocksize,
2811 generation + 1);
2812 if (!log_tree_root->node ||
2813 !extent_buffer_uptodate(log_tree_root->node)) {
2814 printk(KERN_ERR "btrfs: failed to read log tree\n");
2815 free_extent_buffer(log_tree_root->node);
2816 kfree(log_tree_root);
2817 goto fail_trans_kthread;
2818 }
2819 /* returns with log_tree_root freed on success */
2820 ret = btrfs_recover_log_trees(log_tree_root);
2821 if (ret) {
2822 btrfs_error(tree_root->fs_info, ret,
2823 "Failed to recover log tree");
2824 free_extent_buffer(log_tree_root->node);
2825 kfree(log_tree_root);
2826 goto fail_trans_kthread;
2827 }
2828
2829 if (sb->s_flags & MS_RDONLY) {
2830 ret = btrfs_commit_super(tree_root);
2831 if (ret)
2832 goto fail_trans_kthread;
2833 }
2834 }
2835
2836 ret = btrfs_find_orphan_roots(tree_root);
2837 if (ret)
2838 goto fail_trans_kthread;
2839
2840 if (!(sb->s_flags & MS_RDONLY)) {
2841 ret = btrfs_cleanup_fs_roots(fs_info);
2842 if (ret)
2843 goto fail_trans_kthread;
2844
2845 ret = btrfs_recover_relocation(tree_root);
2846 if (ret < 0) {
2847 printk(KERN_WARNING
2848 "btrfs: failed to recover relocation\n");
2849 err = -EINVAL;
2850 goto fail_qgroup;
2851 }
2852 }
2853
2854 location.objectid = BTRFS_FS_TREE_OBJECTID;
2855 location.type = BTRFS_ROOT_ITEM_KEY;
2856 location.offset = 0;
2857
2858 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2859 if (IS_ERR(fs_info->fs_root)) {
2860 err = PTR_ERR(fs_info->fs_root);
2861 goto fail_qgroup;
2862 }
2863
2864 if (sb->s_flags & MS_RDONLY)
2865 return 0;
2866
2867 down_read(&fs_info->cleanup_work_sem);
2868 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2869 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2870 up_read(&fs_info->cleanup_work_sem);
2871 close_ctree(tree_root);
2872 return ret;
2873 }
2874 up_read(&fs_info->cleanup_work_sem);
2875
2876 ret = btrfs_resume_balance_async(fs_info);
2877 if (ret) {
2878 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2879 close_ctree(tree_root);
2880 return ret;
2881 }
2882
2883 ret = btrfs_resume_dev_replace_async(fs_info);
2884 if (ret) {
2885 pr_warn("btrfs: failed to resume dev_replace\n");
2886 close_ctree(tree_root);
2887 return ret;
2888 }
2889
2890 btrfs_qgroup_rescan_resume(fs_info);
2891
2892 return 0;
2893
2894 fail_qgroup:
2895 btrfs_free_qgroup_config(fs_info);
2896 fail_trans_kthread:
2897 kthread_stop(fs_info->transaction_kthread);
2898 btrfs_cleanup_transaction(fs_info->tree_root);
2899 del_fs_roots(fs_info);
2900 fail_cleaner:
2901 kthread_stop(fs_info->cleaner_kthread);
2902
2903 /*
2904 * make sure we're done with the btree inode before we stop our
2905 * kthreads
2906 */
2907 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2908
2909 fail_block_groups:
2910 btrfs_put_block_group_cache(fs_info);
2911 btrfs_free_block_groups(fs_info);
2912
2913 fail_tree_roots:
2914 free_root_pointers(fs_info, 1);
2915 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2916
2917 fail_sb_buffer:
2918 btrfs_stop_all_workers(fs_info);
2919 fail_alloc:
2920 fail_iput:
2921 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2922
2923 iput(fs_info->btree_inode);
2924 fail_delalloc_bytes:
2925 percpu_counter_destroy(&fs_info->delalloc_bytes);
2926 fail_dirty_metadata_bytes:
2927 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2928 fail_bdi:
2929 bdi_destroy(&fs_info->bdi);
2930 fail_srcu:
2931 cleanup_srcu_struct(&fs_info->subvol_srcu);
2932 fail:
2933 btrfs_free_stripe_hash_table(fs_info);
2934 btrfs_close_devices(fs_info->fs_devices);
2935 return err;
2936
2937 recovery_tree_root:
2938 if (!btrfs_test_opt(tree_root, RECOVERY))
2939 goto fail_tree_roots;
2940
2941 free_root_pointers(fs_info, 0);
2942
2943 /* don't use the log in recovery mode, it won't be valid */
2944 btrfs_set_super_log_root(disk_super, 0);
2945
2946 /* we can't trust the free space cache either */
2947 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2948
2949 ret = next_root_backup(fs_info, fs_info->super_copy,
2950 &num_backups_tried, &backup_index);
2951 if (ret == -1)
2952 goto fail_block_groups;
2953 goto retry_root_backup;
2954 }
2955
2956 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2957 {
2958 if (uptodate) {
2959 set_buffer_uptodate(bh);
2960 } else {
2961 struct btrfs_device *device = (struct btrfs_device *)
2962 bh->b_private;
2963
2964 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2965 "I/O error on %s\n",
2966 rcu_str_deref(device->name));
2967 /* note, we dont' set_buffer_write_io_error because we have
2968 * our own ways of dealing with the IO errors
2969 */
2970 clear_buffer_uptodate(bh);
2971 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2972 }
2973 unlock_buffer(bh);
2974 put_bh(bh);
2975 }
2976
2977 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2978 {
2979 struct buffer_head *bh;
2980 struct buffer_head *latest = NULL;
2981 struct btrfs_super_block *super;
2982 int i;
2983 u64 transid = 0;
2984 u64 bytenr;
2985
2986 /* we would like to check all the supers, but that would make
2987 * a btrfs mount succeed after a mkfs from a different FS.
2988 * So, we need to add a special mount option to scan for
2989 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2990 */
2991 for (i = 0; i < 1; i++) {
2992 bytenr = btrfs_sb_offset(i);
2993 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2994 i_size_read(bdev->bd_inode))
2995 break;
2996 bh = __bread(bdev, bytenr / 4096,
2997 BTRFS_SUPER_INFO_SIZE);
2998 if (!bh)
2999 continue;
3000
3001 super = (struct btrfs_super_block *)bh->b_data;
3002 if (btrfs_super_bytenr(super) != bytenr ||
3003 btrfs_super_magic(super) != BTRFS_MAGIC) {
3004 brelse(bh);
3005 continue;
3006 }
3007
3008 if (!latest || btrfs_super_generation(super) > transid) {
3009 brelse(latest);
3010 latest = bh;
3011 transid = btrfs_super_generation(super);
3012 } else {
3013 brelse(bh);
3014 }
3015 }
3016 return latest;
3017 }
3018
3019 /*
3020 * this should be called twice, once with wait == 0 and
3021 * once with wait == 1. When wait == 0 is done, all the buffer heads
3022 * we write are pinned.
3023 *
3024 * They are released when wait == 1 is done.
3025 * max_mirrors must be the same for both runs, and it indicates how
3026 * many supers on this one device should be written.
3027 *
3028 * max_mirrors == 0 means to write them all.
3029 */
3030 static int write_dev_supers(struct btrfs_device *device,
3031 struct btrfs_super_block *sb,
3032 int do_barriers, int wait, int max_mirrors)
3033 {
3034 struct buffer_head *bh;
3035 int i;
3036 int ret;
3037 int errors = 0;
3038 u32 crc;
3039 u64 bytenr;
3040
3041 if (max_mirrors == 0)
3042 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3043
3044 for (i = 0; i < max_mirrors; i++) {
3045 bytenr = btrfs_sb_offset(i);
3046 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3047 break;
3048
3049 if (wait) {
3050 bh = __find_get_block(device->bdev, bytenr / 4096,
3051 BTRFS_SUPER_INFO_SIZE);
3052 if (!bh) {
3053 errors++;
3054 continue;
3055 }
3056 wait_on_buffer(bh);
3057 if (!buffer_uptodate(bh))
3058 errors++;
3059
3060 /* drop our reference */
3061 brelse(bh);
3062
3063 /* drop the reference from the wait == 0 run */
3064 brelse(bh);
3065 continue;
3066 } else {
3067 btrfs_set_super_bytenr(sb, bytenr);
3068
3069 crc = ~(u32)0;
3070 crc = btrfs_csum_data((char *)sb +
3071 BTRFS_CSUM_SIZE, crc,
3072 BTRFS_SUPER_INFO_SIZE -
3073 BTRFS_CSUM_SIZE);
3074 btrfs_csum_final(crc, sb->csum);
3075
3076 /*
3077 * one reference for us, and we leave it for the
3078 * caller
3079 */
3080 bh = __getblk(device->bdev, bytenr / 4096,
3081 BTRFS_SUPER_INFO_SIZE);
3082 if (!bh) {
3083 printk(KERN_ERR "btrfs: couldn't get super "
3084 "buffer head for bytenr %Lu\n", bytenr);
3085 errors++;
3086 continue;
3087 }
3088
3089 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3090
3091 /* one reference for submit_bh */
3092 get_bh(bh);
3093
3094 set_buffer_uptodate(bh);
3095 lock_buffer(bh);
3096 bh->b_end_io = btrfs_end_buffer_write_sync;
3097 bh->b_private = device;
3098 }
3099
3100 /*
3101 * we fua the first super. The others we allow
3102 * to go down lazy.
3103 */
3104 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3105 if (ret)
3106 errors++;
3107 }
3108 return errors < i ? 0 : -1;
3109 }
3110
3111 /*
3112 * endio for the write_dev_flush, this will wake anyone waiting
3113 * for the barrier when it is done
3114 */
3115 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3116 {
3117 if (err) {
3118 if (err == -EOPNOTSUPP)
3119 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3120 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3121 }
3122 if (bio->bi_private)
3123 complete(bio->bi_private);
3124 bio_put(bio);
3125 }
3126
3127 /*
3128 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3129 * sent down. With wait == 1, it waits for the previous flush.
3130 *
3131 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3132 * capable
3133 */
3134 static int write_dev_flush(struct btrfs_device *device, int wait)
3135 {
3136 struct bio *bio;
3137 int ret = 0;
3138
3139 if (device->nobarriers)
3140 return 0;
3141
3142 if (wait) {
3143 bio = device->flush_bio;
3144 if (!bio)
3145 return 0;
3146
3147 wait_for_completion(&device->flush_wait);
3148
3149 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3150 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3151 rcu_str_deref(device->name));
3152 device->nobarriers = 1;
3153 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3154 ret = -EIO;
3155 btrfs_dev_stat_inc_and_print(device,
3156 BTRFS_DEV_STAT_FLUSH_ERRS);
3157 }
3158
3159 /* drop the reference from the wait == 0 run */
3160 bio_put(bio);
3161 device->flush_bio = NULL;
3162
3163 return ret;
3164 }
3165
3166 /*
3167 * one reference for us, and we leave it for the
3168 * caller
3169 */
3170 device->flush_bio = NULL;
3171 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3172 if (!bio)
3173 return -ENOMEM;
3174
3175 bio->bi_end_io = btrfs_end_empty_barrier;
3176 bio->bi_bdev = device->bdev;
3177 init_completion(&device->flush_wait);
3178 bio->bi_private = &device->flush_wait;
3179 device->flush_bio = bio;
3180
3181 bio_get(bio);
3182 btrfsic_submit_bio(WRITE_FLUSH, bio);
3183
3184 return 0;
3185 }
3186
3187 /*
3188 * send an empty flush down to each device in parallel,
3189 * then wait for them
3190 */
3191 static int barrier_all_devices(struct btrfs_fs_info *info)
3192 {
3193 struct list_head *head;
3194 struct btrfs_device *dev;
3195 int errors_send = 0;
3196 int errors_wait = 0;
3197 int ret;
3198
3199 /* send down all the barriers */
3200 head = &info->fs_devices->devices;
3201 list_for_each_entry_rcu(dev, head, dev_list) {
3202 if (!dev->bdev) {
3203 errors_send++;
3204 continue;
3205 }
3206 if (!dev->in_fs_metadata || !dev->writeable)
3207 continue;
3208
3209 ret = write_dev_flush(dev, 0);
3210 if (ret)
3211 errors_send++;
3212 }
3213
3214 /* wait for all the barriers */
3215 list_for_each_entry_rcu(dev, head, dev_list) {
3216 if (!dev->bdev) {
3217 errors_wait++;
3218 continue;
3219 }
3220 if (!dev->in_fs_metadata || !dev->writeable)
3221 continue;
3222
3223 ret = write_dev_flush(dev, 1);
3224 if (ret)
3225 errors_wait++;
3226 }
3227 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3228 errors_wait > info->num_tolerated_disk_barrier_failures)
3229 return -EIO;
3230 return 0;
3231 }
3232
3233 int btrfs_calc_num_tolerated_disk_barrier_failures(
3234 struct btrfs_fs_info *fs_info)
3235 {
3236 struct btrfs_ioctl_space_info space;
3237 struct btrfs_space_info *sinfo;
3238 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3239 BTRFS_BLOCK_GROUP_SYSTEM,
3240 BTRFS_BLOCK_GROUP_METADATA,
3241 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3242 int num_types = 4;
3243 int i;
3244 int c;
3245 int num_tolerated_disk_barrier_failures =
3246 (int)fs_info->fs_devices->num_devices;
3247
3248 for (i = 0; i < num_types; i++) {
3249 struct btrfs_space_info *tmp;
3250
3251 sinfo = NULL;
3252 rcu_read_lock();
3253 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3254 if (tmp->flags == types[i]) {
3255 sinfo = tmp;
3256 break;
3257 }
3258 }
3259 rcu_read_unlock();
3260
3261 if (!sinfo)
3262 continue;
3263
3264 down_read(&sinfo->groups_sem);
3265 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3266 if (!list_empty(&sinfo->block_groups[c])) {
3267 u64 flags;
3268
3269 btrfs_get_block_group_info(
3270 &sinfo->block_groups[c], &space);
3271 if (space.total_bytes == 0 ||
3272 space.used_bytes == 0)
3273 continue;
3274 flags = space.flags;
3275 /*
3276 * return
3277 * 0: if dup, single or RAID0 is configured for
3278 * any of metadata, system or data, else
3279 * 1: if RAID5 is configured, or if RAID1 or
3280 * RAID10 is configured and only two mirrors
3281 * are used, else
3282 * 2: if RAID6 is configured, else
3283 * num_mirrors - 1: if RAID1 or RAID10 is
3284 * configured and more than
3285 * 2 mirrors are used.
3286 */
3287 if (num_tolerated_disk_barrier_failures > 0 &&
3288 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3289 BTRFS_BLOCK_GROUP_RAID0)) ||
3290 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3291 == 0)))
3292 num_tolerated_disk_barrier_failures = 0;
3293 else if (num_tolerated_disk_barrier_failures > 1) {
3294 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3295 BTRFS_BLOCK_GROUP_RAID5 |
3296 BTRFS_BLOCK_GROUP_RAID10)) {
3297 num_tolerated_disk_barrier_failures = 1;
3298 } else if (flags &
3299 BTRFS_BLOCK_GROUP_RAID6) {
3300 num_tolerated_disk_barrier_failures = 2;
3301 }
3302 }
3303 }
3304 }
3305 up_read(&sinfo->groups_sem);
3306 }
3307
3308 return num_tolerated_disk_barrier_failures;
3309 }
3310
3311 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3312 {
3313 struct list_head *head;
3314 struct btrfs_device *dev;
3315 struct btrfs_super_block *sb;
3316 struct btrfs_dev_item *dev_item;
3317 int ret;
3318 int do_barriers;
3319 int max_errors;
3320 int total_errors = 0;
3321 u64 flags;
3322
3323 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3324 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3325 backup_super_roots(root->fs_info);
3326
3327 sb = root->fs_info->super_for_commit;
3328 dev_item = &sb->dev_item;
3329
3330 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3331 head = &root->fs_info->fs_devices->devices;
3332
3333 if (do_barriers) {
3334 ret = barrier_all_devices(root->fs_info);
3335 if (ret) {
3336 mutex_unlock(
3337 &root->fs_info->fs_devices->device_list_mutex);
3338 btrfs_error(root->fs_info, ret,
3339 "errors while submitting device barriers.");
3340 return ret;
3341 }
3342 }
3343
3344 list_for_each_entry_rcu(dev, head, dev_list) {
3345 if (!dev->bdev) {
3346 total_errors++;
3347 continue;
3348 }
3349 if (!dev->in_fs_metadata || !dev->writeable)
3350 continue;
3351
3352 btrfs_set_stack_device_generation(dev_item, 0);
3353 btrfs_set_stack_device_type(dev_item, dev->type);
3354 btrfs_set_stack_device_id(dev_item, dev->devid);
3355 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3356 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3357 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3358 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3359 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3360 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3361 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3362
3363 flags = btrfs_super_flags(sb);
3364 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3365
3366 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3367 if (ret)
3368 total_errors++;
3369 }
3370 if (total_errors > max_errors) {
3371 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3372 total_errors);
3373
3374 /* This shouldn't happen. FUA is masked off if unsupported */
3375 BUG();
3376 }
3377
3378 total_errors = 0;
3379 list_for_each_entry_rcu(dev, head, dev_list) {
3380 if (!dev->bdev)
3381 continue;
3382 if (!dev->in_fs_metadata || !dev->writeable)
3383 continue;
3384
3385 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3386 if (ret)
3387 total_errors++;
3388 }
3389 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3390 if (total_errors > max_errors) {
3391 btrfs_error(root->fs_info, -EIO,
3392 "%d errors while writing supers", total_errors);
3393 return -EIO;
3394 }
3395 return 0;
3396 }
3397
3398 int write_ctree_super(struct btrfs_trans_handle *trans,
3399 struct btrfs_root *root, int max_mirrors)
3400 {
3401 int ret;
3402
3403 ret = write_all_supers(root, max_mirrors);
3404 return ret;
3405 }
3406
3407 /* Drop a fs root from the radix tree and free it. */
3408 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3409 struct btrfs_root *root)
3410 {
3411 spin_lock(&fs_info->fs_roots_radix_lock);
3412 radix_tree_delete(&fs_info->fs_roots_radix,
3413 (unsigned long)root->root_key.objectid);
3414 spin_unlock(&fs_info->fs_roots_radix_lock);
3415
3416 if (btrfs_root_refs(&root->root_item) == 0)
3417 synchronize_srcu(&fs_info->subvol_srcu);
3418
3419 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3420 btrfs_free_log(NULL, root);
3421 btrfs_free_log_root_tree(NULL, fs_info);
3422 }
3423
3424 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3425 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3426 free_fs_root(root);
3427 }
3428
3429 static void free_fs_root(struct btrfs_root *root)
3430 {
3431 iput(root->cache_inode);
3432 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3433 if (root->anon_dev)
3434 free_anon_bdev(root->anon_dev);
3435 free_extent_buffer(root->node);
3436 free_extent_buffer(root->commit_root);
3437 kfree(root->free_ino_ctl);
3438 kfree(root->free_ino_pinned);
3439 kfree(root->name);
3440 btrfs_put_fs_root(root);
3441 }
3442
3443 void btrfs_free_fs_root(struct btrfs_root *root)
3444 {
3445 free_fs_root(root);
3446 }
3447
3448 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3449 {
3450 u64 root_objectid = 0;
3451 struct btrfs_root *gang[8];
3452 int i;
3453 int ret;
3454
3455 while (1) {
3456 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3457 (void **)gang, root_objectid,
3458 ARRAY_SIZE(gang));
3459 if (!ret)
3460 break;
3461
3462 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3463 for (i = 0; i < ret; i++) {
3464 int err;
3465
3466 root_objectid = gang[i]->root_key.objectid;
3467 err = btrfs_orphan_cleanup(gang[i]);
3468 if (err)
3469 return err;
3470 }
3471 root_objectid++;
3472 }
3473 return 0;
3474 }
3475
3476 int btrfs_commit_super(struct btrfs_root *root)
3477 {
3478 struct btrfs_trans_handle *trans;
3479 int ret;
3480
3481 mutex_lock(&root->fs_info->cleaner_mutex);
3482 btrfs_run_delayed_iputs(root);
3483 mutex_unlock(&root->fs_info->cleaner_mutex);
3484 wake_up_process(root->fs_info->cleaner_kthread);
3485
3486 /* wait until ongoing cleanup work done */
3487 down_write(&root->fs_info->cleanup_work_sem);
3488 up_write(&root->fs_info->cleanup_work_sem);
3489
3490 trans = btrfs_join_transaction(root);
3491 if (IS_ERR(trans))
3492 return PTR_ERR(trans);
3493 ret = btrfs_commit_transaction(trans, root);
3494 if (ret)
3495 return ret;
3496 /* run commit again to drop the original snapshot */
3497 trans = btrfs_join_transaction(root);
3498 if (IS_ERR(trans))
3499 return PTR_ERR(trans);
3500 ret = btrfs_commit_transaction(trans, root);
3501 if (ret)
3502 return ret;
3503 ret = btrfs_write_and_wait_transaction(NULL, root);
3504 if (ret) {
3505 btrfs_error(root->fs_info, ret,
3506 "Failed to sync btree inode to disk.");
3507 return ret;
3508 }
3509
3510 ret = write_ctree_super(NULL, root, 0);
3511 return ret;
3512 }
3513
3514 int close_ctree(struct btrfs_root *root)
3515 {
3516 struct btrfs_fs_info *fs_info = root->fs_info;
3517 int ret;
3518
3519 fs_info->closing = 1;
3520 smp_mb();
3521
3522 /* pause restriper - we want to resume on mount */
3523 btrfs_pause_balance(fs_info);
3524
3525 btrfs_dev_replace_suspend_for_unmount(fs_info);
3526
3527 btrfs_scrub_cancel(fs_info);
3528
3529 /* wait for any defraggers to finish */
3530 wait_event(fs_info->transaction_wait,
3531 (atomic_read(&fs_info->defrag_running) == 0));
3532
3533 /* clear out the rbtree of defraggable inodes */
3534 btrfs_cleanup_defrag_inodes(fs_info);
3535
3536 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3537 ret = btrfs_commit_super(root);
3538 if (ret)
3539 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3540 }
3541
3542 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3543 btrfs_error_commit_super(root);
3544
3545 btrfs_put_block_group_cache(fs_info);
3546
3547 kthread_stop(fs_info->transaction_kthread);
3548 kthread_stop(fs_info->cleaner_kthread);
3549
3550 fs_info->closing = 2;
3551 smp_mb();
3552
3553 btrfs_free_qgroup_config(root->fs_info);
3554
3555 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3556 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3557 percpu_counter_sum(&fs_info->delalloc_bytes));
3558 }
3559
3560 btrfs_free_block_groups(fs_info);
3561
3562 btrfs_stop_all_workers(fs_info);
3563
3564 del_fs_roots(fs_info);
3565
3566 free_root_pointers(fs_info, 1);
3567
3568 iput(fs_info->btree_inode);
3569
3570 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3571 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3572 btrfsic_unmount(root, fs_info->fs_devices);
3573 #endif
3574
3575 btrfs_close_devices(fs_info->fs_devices);
3576 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3577
3578 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3579 percpu_counter_destroy(&fs_info->delalloc_bytes);
3580 bdi_destroy(&fs_info->bdi);
3581 cleanup_srcu_struct(&fs_info->subvol_srcu);
3582
3583 btrfs_free_stripe_hash_table(fs_info);
3584
3585 return 0;
3586 }
3587
3588 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3589 int atomic)
3590 {
3591 int ret;
3592 struct inode *btree_inode = buf->pages[0]->mapping->host;
3593
3594 ret = extent_buffer_uptodate(buf);
3595 if (!ret)
3596 return ret;
3597
3598 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3599 parent_transid, atomic);
3600 if (ret == -EAGAIN)
3601 return ret;
3602 return !ret;
3603 }
3604
3605 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3606 {
3607 return set_extent_buffer_uptodate(buf);
3608 }
3609
3610 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3611 {
3612 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3613 u64 transid = btrfs_header_generation(buf);
3614 int was_dirty;
3615
3616 btrfs_assert_tree_locked(buf);
3617 if (transid != root->fs_info->generation)
3618 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3619 "found %llu running %llu\n",
3620 (unsigned long long)buf->start,
3621 (unsigned long long)transid,
3622 (unsigned long long)root->fs_info->generation);
3623 was_dirty = set_extent_buffer_dirty(buf);
3624 if (!was_dirty)
3625 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3626 buf->len,
3627 root->fs_info->dirty_metadata_batch);
3628 }
3629
3630 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3631 int flush_delayed)
3632 {
3633 /*
3634 * looks as though older kernels can get into trouble with
3635 * this code, they end up stuck in balance_dirty_pages forever
3636 */
3637 int ret;
3638
3639 if (current->flags & PF_MEMALLOC)
3640 return;
3641
3642 if (flush_delayed)
3643 btrfs_balance_delayed_items(root);
3644
3645 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3646 BTRFS_DIRTY_METADATA_THRESH);
3647 if (ret > 0) {
3648 balance_dirty_pages_ratelimited(
3649 root->fs_info->btree_inode->i_mapping);
3650 }
3651 return;
3652 }
3653
3654 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3655 {
3656 __btrfs_btree_balance_dirty(root, 1);
3657 }
3658
3659 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3660 {
3661 __btrfs_btree_balance_dirty(root, 0);
3662 }
3663
3664 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3665 {
3666 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3667 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3668 }
3669
3670 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3671 int read_only)
3672 {
3673 /*
3674 * Placeholder for checks
3675 */
3676 return 0;
3677 }
3678
3679 static void btrfs_error_commit_super(struct btrfs_root *root)
3680 {
3681 mutex_lock(&root->fs_info->cleaner_mutex);
3682 btrfs_run_delayed_iputs(root);
3683 mutex_unlock(&root->fs_info->cleaner_mutex);
3684
3685 down_write(&root->fs_info->cleanup_work_sem);
3686 up_write(&root->fs_info->cleanup_work_sem);
3687
3688 /* cleanup FS via transaction */
3689 btrfs_cleanup_transaction(root);
3690 }
3691
3692 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3693 struct btrfs_root *root)
3694 {
3695 struct btrfs_inode *btrfs_inode;
3696 struct list_head splice;
3697
3698 INIT_LIST_HEAD(&splice);
3699
3700 mutex_lock(&root->fs_info->ordered_operations_mutex);
3701 spin_lock(&root->fs_info->ordered_root_lock);
3702
3703 list_splice_init(&t->ordered_operations, &splice);
3704 while (!list_empty(&splice)) {
3705 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3706 ordered_operations);
3707
3708 list_del_init(&btrfs_inode->ordered_operations);
3709 spin_unlock(&root->fs_info->ordered_root_lock);
3710
3711 btrfs_invalidate_inodes(btrfs_inode->root);
3712
3713 spin_lock(&root->fs_info->ordered_root_lock);
3714 }
3715
3716 spin_unlock(&root->fs_info->ordered_root_lock);
3717 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3718 }
3719
3720 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3721 {
3722 struct btrfs_ordered_extent *ordered;
3723
3724 spin_lock(&root->ordered_extent_lock);
3725 /*
3726 * This will just short circuit the ordered completion stuff which will
3727 * make sure the ordered extent gets properly cleaned up.
3728 */
3729 list_for_each_entry(ordered, &root->ordered_extents,
3730 root_extent_list)
3731 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3732 spin_unlock(&root->ordered_extent_lock);
3733 }
3734
3735 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3736 {
3737 struct btrfs_root *root;
3738 struct list_head splice;
3739
3740 INIT_LIST_HEAD(&splice);
3741
3742 spin_lock(&fs_info->ordered_root_lock);
3743 list_splice_init(&fs_info->ordered_roots, &splice);
3744 while (!list_empty(&splice)) {
3745 root = list_first_entry(&splice, struct btrfs_root,
3746 ordered_root);
3747 list_del_init(&root->ordered_root);
3748
3749 btrfs_destroy_ordered_extents(root);
3750
3751 cond_resched_lock(&fs_info->ordered_root_lock);
3752 }
3753 spin_unlock(&fs_info->ordered_root_lock);
3754 }
3755
3756 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3757 struct btrfs_root *root)
3758 {
3759 struct rb_node *node;
3760 struct btrfs_delayed_ref_root *delayed_refs;
3761 struct btrfs_delayed_ref_node *ref;
3762 int ret = 0;
3763
3764 delayed_refs = &trans->delayed_refs;
3765
3766 spin_lock(&delayed_refs->lock);
3767 if (delayed_refs->num_entries == 0) {
3768 spin_unlock(&delayed_refs->lock);
3769 printk(KERN_INFO "delayed_refs has NO entry\n");
3770 return ret;
3771 }
3772
3773 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3774 struct btrfs_delayed_ref_head *head = NULL;
3775 bool pin_bytes = false;
3776
3777 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3778 atomic_set(&ref->refs, 1);
3779 if (btrfs_delayed_ref_is_head(ref)) {
3780
3781 head = btrfs_delayed_node_to_head(ref);
3782 if (!mutex_trylock(&head->mutex)) {
3783 atomic_inc(&ref->refs);
3784 spin_unlock(&delayed_refs->lock);
3785
3786 /* Need to wait for the delayed ref to run */
3787 mutex_lock(&head->mutex);
3788 mutex_unlock(&head->mutex);
3789 btrfs_put_delayed_ref(ref);
3790
3791 spin_lock(&delayed_refs->lock);
3792 continue;
3793 }
3794
3795 if (head->must_insert_reserved)
3796 pin_bytes = true;
3797 btrfs_free_delayed_extent_op(head->extent_op);
3798 delayed_refs->num_heads--;
3799 if (list_empty(&head->cluster))
3800 delayed_refs->num_heads_ready--;
3801 list_del_init(&head->cluster);
3802 }
3803
3804 ref->in_tree = 0;
3805 rb_erase(&ref->rb_node, &delayed_refs->root);
3806 delayed_refs->num_entries--;
3807 spin_unlock(&delayed_refs->lock);
3808 if (head) {
3809 if (pin_bytes)
3810 btrfs_pin_extent(root, ref->bytenr,
3811 ref->num_bytes, 1);
3812 mutex_unlock(&head->mutex);
3813 }
3814 btrfs_put_delayed_ref(ref);
3815
3816 cond_resched();
3817 spin_lock(&delayed_refs->lock);
3818 }
3819
3820 spin_unlock(&delayed_refs->lock);
3821
3822 return ret;
3823 }
3824
3825 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3826 {
3827 struct btrfs_pending_snapshot *snapshot;
3828 struct list_head splice;
3829
3830 INIT_LIST_HEAD(&splice);
3831
3832 list_splice_init(&t->pending_snapshots, &splice);
3833
3834 while (!list_empty(&splice)) {
3835 snapshot = list_entry(splice.next,
3836 struct btrfs_pending_snapshot,
3837 list);
3838 snapshot->error = -ECANCELED;
3839 list_del_init(&snapshot->list);
3840 }
3841 }
3842
3843 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3844 {
3845 struct btrfs_inode *btrfs_inode;
3846 struct list_head splice;
3847
3848 INIT_LIST_HEAD(&splice);
3849
3850 spin_lock(&root->delalloc_lock);
3851 list_splice_init(&root->delalloc_inodes, &splice);
3852
3853 while (!list_empty(&splice)) {
3854 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3855 delalloc_inodes);
3856
3857 list_del_init(&btrfs_inode->delalloc_inodes);
3858 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3859 &btrfs_inode->runtime_flags);
3860 spin_unlock(&root->delalloc_lock);
3861
3862 btrfs_invalidate_inodes(btrfs_inode->root);
3863
3864 spin_lock(&root->delalloc_lock);
3865 }
3866
3867 spin_unlock(&root->delalloc_lock);
3868 }
3869
3870 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3871 {
3872 struct btrfs_root *root;
3873 struct list_head splice;
3874
3875 INIT_LIST_HEAD(&splice);
3876
3877 spin_lock(&fs_info->delalloc_root_lock);
3878 list_splice_init(&fs_info->delalloc_roots, &splice);
3879 while (!list_empty(&splice)) {
3880 root = list_first_entry(&splice, struct btrfs_root,
3881 delalloc_root);
3882 list_del_init(&root->delalloc_root);
3883 root = btrfs_grab_fs_root(root);
3884 BUG_ON(!root);
3885 spin_unlock(&fs_info->delalloc_root_lock);
3886
3887 btrfs_destroy_delalloc_inodes(root);
3888 btrfs_put_fs_root(root);
3889
3890 spin_lock(&fs_info->delalloc_root_lock);
3891 }
3892 spin_unlock(&fs_info->delalloc_root_lock);
3893 }
3894
3895 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3896 struct extent_io_tree *dirty_pages,
3897 int mark)
3898 {
3899 int ret;
3900 struct extent_buffer *eb;
3901 u64 start = 0;
3902 u64 end;
3903
3904 while (1) {
3905 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3906 mark, NULL);
3907 if (ret)
3908 break;
3909
3910 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3911 while (start <= end) {
3912 eb = btrfs_find_tree_block(root, start,
3913 root->leafsize);
3914 start += root->leafsize;
3915 if (!eb)
3916 continue;
3917 wait_on_extent_buffer_writeback(eb);
3918
3919 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3920 &eb->bflags))
3921 clear_extent_buffer_dirty(eb);
3922 free_extent_buffer_stale(eb);
3923 }
3924 }
3925
3926 return ret;
3927 }
3928
3929 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3930 struct extent_io_tree *pinned_extents)
3931 {
3932 struct extent_io_tree *unpin;
3933 u64 start;
3934 u64 end;
3935 int ret;
3936 bool loop = true;
3937
3938 unpin = pinned_extents;
3939 again:
3940 while (1) {
3941 ret = find_first_extent_bit(unpin, 0, &start, &end,
3942 EXTENT_DIRTY, NULL);
3943 if (ret)
3944 break;
3945
3946 /* opt_discard */
3947 if (btrfs_test_opt(root, DISCARD))
3948 ret = btrfs_error_discard_extent(root, start,
3949 end + 1 - start,
3950 NULL);
3951
3952 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3953 btrfs_error_unpin_extent_range(root, start, end);
3954 cond_resched();
3955 }
3956
3957 if (loop) {
3958 if (unpin == &root->fs_info->freed_extents[0])
3959 unpin = &root->fs_info->freed_extents[1];
3960 else
3961 unpin = &root->fs_info->freed_extents[0];
3962 loop = false;
3963 goto again;
3964 }
3965
3966 return 0;
3967 }
3968
3969 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3970 struct btrfs_root *root)
3971 {
3972 btrfs_destroy_delayed_refs(cur_trans, root);
3973 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3974 cur_trans->dirty_pages.dirty_bytes);
3975
3976 cur_trans->state = TRANS_STATE_COMMIT_START;
3977 wake_up(&root->fs_info->transaction_blocked_wait);
3978
3979 btrfs_evict_pending_snapshots(cur_trans);
3980
3981 cur_trans->state = TRANS_STATE_UNBLOCKED;
3982 wake_up(&root->fs_info->transaction_wait);
3983
3984 btrfs_destroy_delayed_inodes(root);
3985 btrfs_assert_delayed_root_empty(root);
3986
3987 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3988 EXTENT_DIRTY);
3989 btrfs_destroy_pinned_extent(root,
3990 root->fs_info->pinned_extents);
3991
3992 cur_trans->state =TRANS_STATE_COMPLETED;
3993 wake_up(&cur_trans->commit_wait);
3994
3995 /*
3996 memset(cur_trans, 0, sizeof(*cur_trans));
3997 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3998 */
3999 }
4000
4001 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4002 {
4003 struct btrfs_transaction *t;
4004 LIST_HEAD(list);
4005
4006 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4007
4008 spin_lock(&root->fs_info->trans_lock);
4009 list_splice_init(&root->fs_info->trans_list, &list);
4010 root->fs_info->running_transaction = NULL;
4011 spin_unlock(&root->fs_info->trans_lock);
4012
4013 while (!list_empty(&list)) {
4014 t = list_entry(list.next, struct btrfs_transaction, list);
4015
4016 btrfs_destroy_ordered_operations(t, root);
4017
4018 btrfs_destroy_all_ordered_extents(root->fs_info);
4019
4020 btrfs_destroy_delayed_refs(t, root);
4021
4022 /*
4023 * FIXME: cleanup wait for commit
4024 * We needn't acquire the lock here, because we are during
4025 * the umount, there is no other task which will change it.
4026 */
4027 t->state = TRANS_STATE_COMMIT_START;
4028 smp_mb();
4029 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4030 wake_up(&root->fs_info->transaction_blocked_wait);
4031
4032 btrfs_evict_pending_snapshots(t);
4033
4034 t->state = TRANS_STATE_UNBLOCKED;
4035 smp_mb();
4036 if (waitqueue_active(&root->fs_info->transaction_wait))
4037 wake_up(&root->fs_info->transaction_wait);
4038
4039 btrfs_destroy_delayed_inodes(root);
4040 btrfs_assert_delayed_root_empty(root);
4041
4042 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4043
4044 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4045 EXTENT_DIRTY);
4046
4047 btrfs_destroy_pinned_extent(root,
4048 root->fs_info->pinned_extents);
4049
4050 t->state = TRANS_STATE_COMPLETED;
4051 smp_mb();
4052 if (waitqueue_active(&t->commit_wait))
4053 wake_up(&t->commit_wait);
4054
4055 atomic_set(&t->use_count, 0);
4056 list_del_init(&t->list);
4057 memset(t, 0, sizeof(*t));
4058 kmem_cache_free(btrfs_transaction_cachep, t);
4059 }
4060
4061 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4062
4063 return 0;
4064 }
4065
4066 static struct extent_io_ops btree_extent_io_ops = {
4067 .readpage_end_io_hook = btree_readpage_end_io_hook,
4068 .readpage_io_failed_hook = btree_io_failed_hook,
4069 .submit_bio_hook = btree_submit_bio_hook,
4070 /* note we're sharing with inode.c for the merge bio hook */
4071 .merge_bio_hook = btrfs_merge_bio_hook,
4072 };
This page took 0.212752 seconds and 4 git commands to generate.