Merge branch 'cleanups-for-4.1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79 struct btrfs_end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 enum btrfs_wq_endio_type metadata;
86 struct list_head list;
87 struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
115 struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
121 int rw;
122 int mirror_num;
123 unsigned long bio_flags;
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
129 struct btrfs_work work;
130 int error;
131 };
132
133 /*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
143 *
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
147 *
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
151 *
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
155 */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 # error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
178 { .id = 0, .name_stem = "tree" },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197 {
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 struct page *page, size_t pg_offset, u64 start, u64 len,
219 int create)
220 {
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
225 read_lock(&em_tree->lock);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 read_unlock(&em_tree->lock);
231 goto out;
232 }
233 read_unlock(&em_tree->lock);
234
235 em = alloc_extent_map();
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
241 em->len = (u64)-1;
242 em->block_len = (u64)-1;
243 em->block_start = 0;
244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246 write_lock(&em_tree->lock);
247 ret = add_extent_mapping(em_tree, em, 0);
248 if (ret == -EEXIST) {
249 free_extent_map(em);
250 em = lookup_extent_mapping(em_tree, start, len);
251 if (!em)
252 em = ERR_PTR(-EIO);
253 } else if (ret) {
254 free_extent_map(em);
255 em = ERR_PTR(ret);
256 }
257 write_unlock(&em_tree->lock);
258
259 out:
260 return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 put_unaligned_le32(~crc, result);
271 }
272
273 /*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
277 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
278 int verify)
279 {
280 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
281 char *result = NULL;
282 unsigned long len;
283 unsigned long cur_len;
284 unsigned long offset = BTRFS_CSUM_SIZE;
285 char *kaddr;
286 unsigned long map_start;
287 unsigned long map_len;
288 int err;
289 u32 crc = ~(u32)0;
290 unsigned long inline_result;
291
292 len = buf->len - offset;
293 while (len > 0) {
294 err = map_private_extent_buffer(buf, offset, 32,
295 &kaddr, &map_start, &map_len);
296 if (err)
297 return 1;
298 cur_len = min(len, map_len - (offset - map_start));
299 crc = btrfs_csum_data(kaddr + offset - map_start,
300 crc, cur_len);
301 len -= cur_len;
302 offset += cur_len;
303 }
304 if (csum_size > sizeof(inline_result)) {
305 result = kzalloc(csum_size, GFP_NOFS);
306 if (!result)
307 return 1;
308 } else {
309 result = (char *)&inline_result;
310 }
311
312 btrfs_csum_final(crc, result);
313
314 if (verify) {
315 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
316 u32 val;
317 u32 found = 0;
318 memcpy(&found, result, csum_size);
319
320 read_extent_buffer(buf, &val, 0, csum_size);
321 printk_ratelimited(KERN_WARNING
322 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
323 "level %d\n",
324 root->fs_info->sb->s_id, buf->start,
325 val, found, btrfs_header_level(buf));
326 if (result != (char *)&inline_result)
327 kfree(result);
328 return 1;
329 }
330 } else {
331 write_extent_buffer(buf, result, 0, csum_size);
332 }
333 if (result != (char *)&inline_result)
334 kfree(result);
335 return 0;
336 }
337
338 /*
339 * we can't consider a given block up to date unless the transid of the
340 * block matches the transid in the parent node's pointer. This is how we
341 * detect blocks that either didn't get written at all or got written
342 * in the wrong place.
343 */
344 static int verify_parent_transid(struct extent_io_tree *io_tree,
345 struct extent_buffer *eb, u64 parent_transid,
346 int atomic)
347 {
348 struct extent_state *cached_state = NULL;
349 int ret;
350 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
351
352 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
353 return 0;
354
355 if (atomic)
356 return -EAGAIN;
357
358 if (need_lock) {
359 btrfs_tree_read_lock(eb);
360 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
361 }
362
363 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
364 0, &cached_state);
365 if (extent_buffer_uptodate(eb) &&
366 btrfs_header_generation(eb) == parent_transid) {
367 ret = 0;
368 goto out;
369 }
370 printk_ratelimited(KERN_ERR
371 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
372 eb->fs_info->sb->s_id, eb->start,
373 parent_transid, btrfs_header_generation(eb));
374 ret = 1;
375
376 /*
377 * Things reading via commit roots that don't have normal protection,
378 * like send, can have a really old block in cache that may point at a
379 * block that has been free'd and re-allocated. So don't clear uptodate
380 * if we find an eb that is under IO (dirty/writeback) because we could
381 * end up reading in the stale data and then writing it back out and
382 * making everybody very sad.
383 */
384 if (!extent_buffer_under_io(eb))
385 clear_extent_buffer_uptodate(eb);
386 out:
387 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
388 &cached_state, GFP_NOFS);
389 if (need_lock)
390 btrfs_tree_read_unlock_blocking(eb);
391 return ret;
392 }
393
394 /*
395 * Return 0 if the superblock checksum type matches the checksum value of that
396 * algorithm. Pass the raw disk superblock data.
397 */
398 static int btrfs_check_super_csum(char *raw_disk_sb)
399 {
400 struct btrfs_super_block *disk_sb =
401 (struct btrfs_super_block *)raw_disk_sb;
402 u16 csum_type = btrfs_super_csum_type(disk_sb);
403 int ret = 0;
404
405 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
406 u32 crc = ~(u32)0;
407 const int csum_size = sizeof(crc);
408 char result[csum_size];
409
410 /*
411 * The super_block structure does not span the whole
412 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
413 * is filled with zeros and is included in the checkum.
414 */
415 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
416 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
417 btrfs_csum_final(crc, result);
418
419 if (memcmp(raw_disk_sb, result, csum_size))
420 ret = 1;
421
422 if (ret && btrfs_super_generation(disk_sb) < 10) {
423 printk(KERN_WARNING
424 "BTRFS: super block crcs don't match, older mkfs detected\n");
425 ret = 0;
426 }
427 }
428
429 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
430 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
431 csum_type);
432 ret = 1;
433 }
434
435 return ret;
436 }
437
438 /*
439 * helper to read a given tree block, doing retries as required when
440 * the checksums don't match and we have alternate mirrors to try.
441 */
442 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
443 struct extent_buffer *eb,
444 u64 start, u64 parent_transid)
445 {
446 struct extent_io_tree *io_tree;
447 int failed = 0;
448 int ret;
449 int num_copies = 0;
450 int mirror_num = 0;
451 int failed_mirror = 0;
452
453 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
454 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
455 while (1) {
456 ret = read_extent_buffer_pages(io_tree, eb, start,
457 WAIT_COMPLETE,
458 btree_get_extent, mirror_num);
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
461 parent_transid, 0))
462 break;
463 else
464 ret = -EIO;
465 }
466
467 /*
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
470 * any less wrong.
471 */
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473 break;
474
475 num_copies = btrfs_num_copies(root->fs_info,
476 eb->start, eb->len);
477 if (num_copies == 1)
478 break;
479
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
483 }
484
485 mirror_num++;
486 if (mirror_num == failed_mirror)
487 mirror_num++;
488
489 if (mirror_num > num_copies)
490 break;
491 }
492
493 if (failed && !ret && failed_mirror)
494 repair_eb_io_failure(root, eb, failed_mirror);
495
496 return ret;
497 }
498
499 /*
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
502 */
503
504 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
505 {
506 u64 start = page_offset(page);
507 u64 found_start;
508 struct extent_buffer *eb;
509
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
512 return 0;
513 found_start = btrfs_header_bytenr(eb);
514 if (WARN_ON(found_start != start || !PageUptodate(page)))
515 return 0;
516 csum_tree_block(root, eb, 0);
517 return 0;
518 }
519
520 static int check_tree_block_fsid(struct btrfs_root *root,
521 struct extent_buffer *eb)
522 {
523 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
524 u8 fsid[BTRFS_UUID_SIZE];
525 int ret = 1;
526
527 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
528 while (fs_devices) {
529 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
530 ret = 0;
531 break;
532 }
533 fs_devices = fs_devices->seed;
534 }
535 return ret;
536 }
537
538 #define CORRUPT(reason, eb, root, slot) \
539 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
540 "root=%llu, slot=%d", reason, \
541 btrfs_header_bytenr(eb), root->objectid, slot)
542
543 static noinline int check_leaf(struct btrfs_root *root,
544 struct extent_buffer *leaf)
545 {
546 struct btrfs_key key;
547 struct btrfs_key leaf_key;
548 u32 nritems = btrfs_header_nritems(leaf);
549 int slot;
550
551 if (nritems == 0)
552 return 0;
553
554 /* Check the 0 item */
555 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
556 BTRFS_LEAF_DATA_SIZE(root)) {
557 CORRUPT("invalid item offset size pair", leaf, root, 0);
558 return -EIO;
559 }
560
561 /*
562 * Check to make sure each items keys are in the correct order and their
563 * offsets make sense. We only have to loop through nritems-1 because
564 * we check the current slot against the next slot, which verifies the
565 * next slot's offset+size makes sense and that the current's slot
566 * offset is correct.
567 */
568 for (slot = 0; slot < nritems - 1; slot++) {
569 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
570 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
571
572 /* Make sure the keys are in the right order */
573 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
574 CORRUPT("bad key order", leaf, root, slot);
575 return -EIO;
576 }
577
578 /*
579 * Make sure the offset and ends are right, remember that the
580 * item data starts at the end of the leaf and grows towards the
581 * front.
582 */
583 if (btrfs_item_offset_nr(leaf, slot) !=
584 btrfs_item_end_nr(leaf, slot + 1)) {
585 CORRUPT("slot offset bad", leaf, root, slot);
586 return -EIO;
587 }
588
589 /*
590 * Check to make sure that we don't point outside of the leaf,
591 * just incase all the items are consistent to eachother, but
592 * all point outside of the leaf.
593 */
594 if (btrfs_item_end_nr(leaf, slot) >
595 BTRFS_LEAF_DATA_SIZE(root)) {
596 CORRUPT("slot end outside of leaf", leaf, root, slot);
597 return -EIO;
598 }
599 }
600
601 return 0;
602 }
603
604 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
605 u64 phy_offset, struct page *page,
606 u64 start, u64 end, int mirror)
607 {
608 u64 found_start;
609 int found_level;
610 struct extent_buffer *eb;
611 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
612 int ret = 0;
613 int reads_done;
614
615 if (!page->private)
616 goto out;
617
618 eb = (struct extent_buffer *)page->private;
619
620 /* the pending IO might have been the only thing that kept this buffer
621 * in memory. Make sure we have a ref for all this other checks
622 */
623 extent_buffer_get(eb);
624
625 reads_done = atomic_dec_and_test(&eb->io_pages);
626 if (!reads_done)
627 goto err;
628
629 eb->read_mirror = mirror;
630 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
631 ret = -EIO;
632 goto err;
633 }
634
635 found_start = btrfs_header_bytenr(eb);
636 if (found_start != eb->start) {
637 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
638 "%llu %llu\n",
639 eb->fs_info->sb->s_id, found_start, eb->start);
640 ret = -EIO;
641 goto err;
642 }
643 if (check_tree_block_fsid(root, eb)) {
644 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
645 eb->fs_info->sb->s_id, eb->start);
646 ret = -EIO;
647 goto err;
648 }
649 found_level = btrfs_header_level(eb);
650 if (found_level >= BTRFS_MAX_LEVEL) {
651 btrfs_err(root->fs_info, "bad tree block level %d",
652 (int)btrfs_header_level(eb));
653 ret = -EIO;
654 goto err;
655 }
656
657 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
658 eb, found_level);
659
660 ret = csum_tree_block(root, eb, 1);
661 if (ret) {
662 ret = -EIO;
663 goto err;
664 }
665
666 /*
667 * If this is a leaf block and it is corrupt, set the corrupt bit so
668 * that we don't try and read the other copies of this block, just
669 * return -EIO.
670 */
671 if (found_level == 0 && check_leaf(root, eb)) {
672 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
673 ret = -EIO;
674 }
675
676 if (!ret)
677 set_extent_buffer_uptodate(eb);
678 err:
679 if (reads_done &&
680 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
681 btree_readahead_hook(root, eb, eb->start, ret);
682
683 if (ret) {
684 /*
685 * our io error hook is going to dec the io pages
686 * again, we have to make sure it has something
687 * to decrement
688 */
689 atomic_inc(&eb->io_pages);
690 clear_extent_buffer_uptodate(eb);
691 }
692 free_extent_buffer(eb);
693 out:
694 return ret;
695 }
696
697 static int btree_io_failed_hook(struct page *page, int failed_mirror)
698 {
699 struct extent_buffer *eb;
700 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
701
702 eb = (struct extent_buffer *)page->private;
703 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
704 eb->read_mirror = failed_mirror;
705 atomic_dec(&eb->io_pages);
706 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
707 btree_readahead_hook(root, eb, eb->start, -EIO);
708 return -EIO; /* we fixed nothing */
709 }
710
711 static void end_workqueue_bio(struct bio *bio, int err)
712 {
713 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
714 struct btrfs_fs_info *fs_info;
715 struct btrfs_workqueue *wq;
716 btrfs_work_func_t func;
717
718 fs_info = end_io_wq->info;
719 end_io_wq->error = err;
720
721 if (bio->bi_rw & REQ_WRITE) {
722 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
723 wq = fs_info->endio_meta_write_workers;
724 func = btrfs_endio_meta_write_helper;
725 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
726 wq = fs_info->endio_freespace_worker;
727 func = btrfs_freespace_write_helper;
728 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
729 wq = fs_info->endio_raid56_workers;
730 func = btrfs_endio_raid56_helper;
731 } else {
732 wq = fs_info->endio_write_workers;
733 func = btrfs_endio_write_helper;
734 }
735 } else {
736 if (unlikely(end_io_wq->metadata ==
737 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
738 wq = fs_info->endio_repair_workers;
739 func = btrfs_endio_repair_helper;
740 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
741 wq = fs_info->endio_raid56_workers;
742 func = btrfs_endio_raid56_helper;
743 } else if (end_io_wq->metadata) {
744 wq = fs_info->endio_meta_workers;
745 func = btrfs_endio_meta_helper;
746 } else {
747 wq = fs_info->endio_workers;
748 func = btrfs_endio_helper;
749 }
750 }
751
752 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
753 btrfs_queue_work(wq, &end_io_wq->work);
754 }
755
756 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
757 enum btrfs_wq_endio_type metadata)
758 {
759 struct btrfs_end_io_wq *end_io_wq;
760
761 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
762 if (!end_io_wq)
763 return -ENOMEM;
764
765 end_io_wq->private = bio->bi_private;
766 end_io_wq->end_io = bio->bi_end_io;
767 end_io_wq->info = info;
768 end_io_wq->error = 0;
769 end_io_wq->bio = bio;
770 end_io_wq->metadata = metadata;
771
772 bio->bi_private = end_io_wq;
773 bio->bi_end_io = end_workqueue_bio;
774 return 0;
775 }
776
777 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
778 {
779 unsigned long limit = min_t(unsigned long,
780 info->thread_pool_size,
781 info->fs_devices->open_devices);
782 return 256 * limit;
783 }
784
785 static void run_one_async_start(struct btrfs_work *work)
786 {
787 struct async_submit_bio *async;
788 int ret;
789
790 async = container_of(work, struct async_submit_bio, work);
791 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
792 async->mirror_num, async->bio_flags,
793 async->bio_offset);
794 if (ret)
795 async->error = ret;
796 }
797
798 static void run_one_async_done(struct btrfs_work *work)
799 {
800 struct btrfs_fs_info *fs_info;
801 struct async_submit_bio *async;
802 int limit;
803
804 async = container_of(work, struct async_submit_bio, work);
805 fs_info = BTRFS_I(async->inode)->root->fs_info;
806
807 limit = btrfs_async_submit_limit(fs_info);
808 limit = limit * 2 / 3;
809
810 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
811 waitqueue_active(&fs_info->async_submit_wait))
812 wake_up(&fs_info->async_submit_wait);
813
814 /* If an error occured we just want to clean up the bio and move on */
815 if (async->error) {
816 bio_endio(async->bio, async->error);
817 return;
818 }
819
820 async->submit_bio_done(async->inode, async->rw, async->bio,
821 async->mirror_num, async->bio_flags,
822 async->bio_offset);
823 }
824
825 static void run_one_async_free(struct btrfs_work *work)
826 {
827 struct async_submit_bio *async;
828
829 async = container_of(work, struct async_submit_bio, work);
830 kfree(async);
831 }
832
833 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
834 int rw, struct bio *bio, int mirror_num,
835 unsigned long bio_flags,
836 u64 bio_offset,
837 extent_submit_bio_hook_t *submit_bio_start,
838 extent_submit_bio_hook_t *submit_bio_done)
839 {
840 struct async_submit_bio *async;
841
842 async = kmalloc(sizeof(*async), GFP_NOFS);
843 if (!async)
844 return -ENOMEM;
845
846 async->inode = inode;
847 async->rw = rw;
848 async->bio = bio;
849 async->mirror_num = mirror_num;
850 async->submit_bio_start = submit_bio_start;
851 async->submit_bio_done = submit_bio_done;
852
853 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
854 run_one_async_done, run_one_async_free);
855
856 async->bio_flags = bio_flags;
857 async->bio_offset = bio_offset;
858
859 async->error = 0;
860
861 atomic_inc(&fs_info->nr_async_submits);
862
863 if (rw & REQ_SYNC)
864 btrfs_set_work_high_priority(&async->work);
865
866 btrfs_queue_work(fs_info->workers, &async->work);
867
868 while (atomic_read(&fs_info->async_submit_draining) &&
869 atomic_read(&fs_info->nr_async_submits)) {
870 wait_event(fs_info->async_submit_wait,
871 (atomic_read(&fs_info->nr_async_submits) == 0));
872 }
873
874 return 0;
875 }
876
877 static int btree_csum_one_bio(struct bio *bio)
878 {
879 struct bio_vec *bvec;
880 struct btrfs_root *root;
881 int i, ret = 0;
882
883 bio_for_each_segment_all(bvec, bio, i) {
884 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
885 ret = csum_dirty_buffer(root, bvec->bv_page);
886 if (ret)
887 break;
888 }
889
890 return ret;
891 }
892
893 static int __btree_submit_bio_start(struct inode *inode, int rw,
894 struct bio *bio, int mirror_num,
895 unsigned long bio_flags,
896 u64 bio_offset)
897 {
898 /*
899 * when we're called for a write, we're already in the async
900 * submission context. Just jump into btrfs_map_bio
901 */
902 return btree_csum_one_bio(bio);
903 }
904
905 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
906 int mirror_num, unsigned long bio_flags,
907 u64 bio_offset)
908 {
909 int ret;
910
911 /*
912 * when we're called for a write, we're already in the async
913 * submission context. Just jump into btrfs_map_bio
914 */
915 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
916 if (ret)
917 bio_endio(bio, ret);
918 return ret;
919 }
920
921 static int check_async_write(struct inode *inode, unsigned long bio_flags)
922 {
923 if (bio_flags & EXTENT_BIO_TREE_LOG)
924 return 0;
925 #ifdef CONFIG_X86
926 if (cpu_has_xmm4_2)
927 return 0;
928 #endif
929 return 1;
930 }
931
932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
933 int mirror_num, unsigned long bio_flags,
934 u64 bio_offset)
935 {
936 int async = check_async_write(inode, bio_flags);
937 int ret;
938
939 if (!(rw & REQ_WRITE)) {
940 /*
941 * called for a read, do the setup so that checksum validation
942 * can happen in the async kernel threads
943 */
944 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
945 bio, BTRFS_WQ_ENDIO_METADATA);
946 if (ret)
947 goto out_w_error;
948 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949 mirror_num, 0);
950 } else if (!async) {
951 ret = btree_csum_one_bio(bio);
952 if (ret)
953 goto out_w_error;
954 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955 mirror_num, 0);
956 } else {
957 /*
958 * kthread helpers are used to submit writes so that
959 * checksumming can happen in parallel across all CPUs
960 */
961 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962 inode, rw, bio, mirror_num, 0,
963 bio_offset,
964 __btree_submit_bio_start,
965 __btree_submit_bio_done);
966 }
967
968 if (ret) {
969 out_w_error:
970 bio_endio(bio, ret);
971 }
972 return ret;
973 }
974
975 #ifdef CONFIG_MIGRATION
976 static int btree_migratepage(struct address_space *mapping,
977 struct page *newpage, struct page *page,
978 enum migrate_mode mode)
979 {
980 /*
981 * we can't safely write a btree page from here,
982 * we haven't done the locking hook
983 */
984 if (PageDirty(page))
985 return -EAGAIN;
986 /*
987 * Buffers may be managed in a filesystem specific way.
988 * We must have no buffers or drop them.
989 */
990 if (page_has_private(page) &&
991 !try_to_release_page(page, GFP_KERNEL))
992 return -EAGAIN;
993 return migrate_page(mapping, newpage, page, mode);
994 }
995 #endif
996
997
998 static int btree_writepages(struct address_space *mapping,
999 struct writeback_control *wbc)
1000 {
1001 struct btrfs_fs_info *fs_info;
1002 int ret;
1003
1004 if (wbc->sync_mode == WB_SYNC_NONE) {
1005
1006 if (wbc->for_kupdate)
1007 return 0;
1008
1009 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1010 /* this is a bit racy, but that's ok */
1011 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1012 BTRFS_DIRTY_METADATA_THRESH);
1013 if (ret < 0)
1014 return 0;
1015 }
1016 return btree_write_cache_pages(mapping, wbc);
1017 }
1018
1019 static int btree_readpage(struct file *file, struct page *page)
1020 {
1021 struct extent_io_tree *tree;
1022 tree = &BTRFS_I(page->mapping->host)->io_tree;
1023 return extent_read_full_page(tree, page, btree_get_extent, 0);
1024 }
1025
1026 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1027 {
1028 if (PageWriteback(page) || PageDirty(page))
1029 return 0;
1030
1031 return try_release_extent_buffer(page);
1032 }
1033
1034 static void btree_invalidatepage(struct page *page, unsigned int offset,
1035 unsigned int length)
1036 {
1037 struct extent_io_tree *tree;
1038 tree = &BTRFS_I(page->mapping->host)->io_tree;
1039 extent_invalidatepage(tree, page, offset);
1040 btree_releasepage(page, GFP_NOFS);
1041 if (PagePrivate(page)) {
1042 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1043 "page private not zero on page %llu",
1044 (unsigned long long)page_offset(page));
1045 ClearPagePrivate(page);
1046 set_page_private(page, 0);
1047 page_cache_release(page);
1048 }
1049 }
1050
1051 static int btree_set_page_dirty(struct page *page)
1052 {
1053 #ifdef DEBUG
1054 struct extent_buffer *eb;
1055
1056 BUG_ON(!PagePrivate(page));
1057 eb = (struct extent_buffer *)page->private;
1058 BUG_ON(!eb);
1059 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1060 BUG_ON(!atomic_read(&eb->refs));
1061 btrfs_assert_tree_locked(eb);
1062 #endif
1063 return __set_page_dirty_nobuffers(page);
1064 }
1065
1066 static const struct address_space_operations btree_aops = {
1067 .readpage = btree_readpage,
1068 .writepages = btree_writepages,
1069 .releasepage = btree_releasepage,
1070 .invalidatepage = btree_invalidatepage,
1071 #ifdef CONFIG_MIGRATION
1072 .migratepage = btree_migratepage,
1073 #endif
1074 .set_page_dirty = btree_set_page_dirty,
1075 };
1076
1077 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1078 {
1079 struct extent_buffer *buf = NULL;
1080 struct inode *btree_inode = root->fs_info->btree_inode;
1081
1082 buf = btrfs_find_create_tree_block(root, bytenr);
1083 if (!buf)
1084 return;
1085 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1086 buf, 0, WAIT_NONE, btree_get_extent, 0);
1087 free_extent_buffer(buf);
1088 }
1089
1090 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1091 int mirror_num, struct extent_buffer **eb)
1092 {
1093 struct extent_buffer *buf = NULL;
1094 struct inode *btree_inode = root->fs_info->btree_inode;
1095 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1096 int ret;
1097
1098 buf = btrfs_find_create_tree_block(root, bytenr);
1099 if (!buf)
1100 return 0;
1101
1102 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1103
1104 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1105 btree_get_extent, mirror_num);
1106 if (ret) {
1107 free_extent_buffer(buf);
1108 return ret;
1109 }
1110
1111 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1112 free_extent_buffer(buf);
1113 return -EIO;
1114 } else if (extent_buffer_uptodate(buf)) {
1115 *eb = buf;
1116 } else {
1117 free_extent_buffer(buf);
1118 }
1119 return 0;
1120 }
1121
1122 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1123 u64 bytenr)
1124 {
1125 return find_extent_buffer(root->fs_info, bytenr);
1126 }
1127
1128 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1129 u64 bytenr)
1130 {
1131 if (btrfs_test_is_dummy_root(root))
1132 return alloc_test_extent_buffer(root->fs_info, bytenr);
1133 return alloc_extent_buffer(root->fs_info, bytenr);
1134 }
1135
1136
1137 int btrfs_write_tree_block(struct extent_buffer *buf)
1138 {
1139 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1140 buf->start + buf->len - 1);
1141 }
1142
1143 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1144 {
1145 return filemap_fdatawait_range(buf->pages[0]->mapping,
1146 buf->start, buf->start + buf->len - 1);
1147 }
1148
1149 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1150 u64 parent_transid)
1151 {
1152 struct extent_buffer *buf = NULL;
1153 int ret;
1154
1155 buf = btrfs_find_create_tree_block(root, bytenr);
1156 if (!buf)
1157 return NULL;
1158
1159 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1160 if (ret) {
1161 free_extent_buffer(buf);
1162 return NULL;
1163 }
1164 return buf;
1165
1166 }
1167
1168 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1169 struct extent_buffer *buf)
1170 {
1171 struct btrfs_fs_info *fs_info = root->fs_info;
1172
1173 if (btrfs_header_generation(buf) ==
1174 fs_info->running_transaction->transid) {
1175 btrfs_assert_tree_locked(buf);
1176
1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1179 -buf->len,
1180 fs_info->dirty_metadata_batch);
1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1182 btrfs_set_lock_blocking(buf);
1183 clear_extent_buffer_dirty(buf);
1184 }
1185 }
1186 }
1187
1188 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1189 {
1190 struct btrfs_subvolume_writers *writers;
1191 int ret;
1192
1193 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1194 if (!writers)
1195 return ERR_PTR(-ENOMEM);
1196
1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1198 if (ret < 0) {
1199 kfree(writers);
1200 return ERR_PTR(ret);
1201 }
1202
1203 init_waitqueue_head(&writers->wait);
1204 return writers;
1205 }
1206
1207 static void
1208 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1209 {
1210 percpu_counter_destroy(&writers->counter);
1211 kfree(writers);
1212 }
1213
1214 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1216 u64 objectid)
1217 {
1218 root->node = NULL;
1219 root->commit_root = NULL;
1220 root->sectorsize = sectorsize;
1221 root->nodesize = nodesize;
1222 root->stripesize = stripesize;
1223 root->state = 0;
1224 root->orphan_cleanup_state = 0;
1225
1226 root->objectid = objectid;
1227 root->last_trans = 0;
1228 root->highest_objectid = 0;
1229 root->nr_delalloc_inodes = 0;
1230 root->nr_ordered_extents = 0;
1231 root->name = NULL;
1232 root->inode_tree = RB_ROOT;
1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1234 root->block_rsv = NULL;
1235 root->orphan_block_rsv = NULL;
1236
1237 INIT_LIST_HEAD(&root->dirty_list);
1238 INIT_LIST_HEAD(&root->root_list);
1239 INIT_LIST_HEAD(&root->delalloc_inodes);
1240 INIT_LIST_HEAD(&root->delalloc_root);
1241 INIT_LIST_HEAD(&root->ordered_extents);
1242 INIT_LIST_HEAD(&root->ordered_root);
1243 INIT_LIST_HEAD(&root->logged_list[0]);
1244 INIT_LIST_HEAD(&root->logged_list[1]);
1245 spin_lock_init(&root->orphan_lock);
1246 spin_lock_init(&root->inode_lock);
1247 spin_lock_init(&root->delalloc_lock);
1248 spin_lock_init(&root->ordered_extent_lock);
1249 spin_lock_init(&root->accounting_lock);
1250 spin_lock_init(&root->log_extents_lock[0]);
1251 spin_lock_init(&root->log_extents_lock[1]);
1252 mutex_init(&root->objectid_mutex);
1253 mutex_init(&root->log_mutex);
1254 mutex_init(&root->ordered_extent_mutex);
1255 mutex_init(&root->delalloc_mutex);
1256 init_waitqueue_head(&root->log_writer_wait);
1257 init_waitqueue_head(&root->log_commit_wait[0]);
1258 init_waitqueue_head(&root->log_commit_wait[1]);
1259 INIT_LIST_HEAD(&root->log_ctxs[0]);
1260 INIT_LIST_HEAD(&root->log_ctxs[1]);
1261 atomic_set(&root->log_commit[0], 0);
1262 atomic_set(&root->log_commit[1], 0);
1263 atomic_set(&root->log_writers, 0);
1264 atomic_set(&root->log_batch, 0);
1265 atomic_set(&root->orphan_inodes, 0);
1266 atomic_set(&root->refs, 1);
1267 atomic_set(&root->will_be_snapshoted, 0);
1268 root->log_transid = 0;
1269 root->log_transid_committed = -1;
1270 root->last_log_commit = 0;
1271 if (fs_info)
1272 extent_io_tree_init(&root->dirty_log_pages,
1273 fs_info->btree_inode->i_mapping);
1274
1275 memset(&root->root_key, 0, sizeof(root->root_key));
1276 memset(&root->root_item, 0, sizeof(root->root_item));
1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1278 if (fs_info)
1279 root->defrag_trans_start = fs_info->generation;
1280 else
1281 root->defrag_trans_start = 0;
1282 root->root_key.objectid = objectid;
1283 root->anon_dev = 0;
1284
1285 spin_lock_init(&root->root_item_lock);
1286 }
1287
1288 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1289 {
1290 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1291 if (root)
1292 root->fs_info = fs_info;
1293 return root;
1294 }
1295
1296 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1297 /* Should only be used by the testing infrastructure */
1298 struct btrfs_root *btrfs_alloc_dummy_root(void)
1299 {
1300 struct btrfs_root *root;
1301
1302 root = btrfs_alloc_root(NULL);
1303 if (!root)
1304 return ERR_PTR(-ENOMEM);
1305 __setup_root(4096, 4096, 4096, root, NULL, 1);
1306 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1307 root->alloc_bytenr = 0;
1308
1309 return root;
1310 }
1311 #endif
1312
1313 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1314 struct btrfs_fs_info *fs_info,
1315 u64 objectid)
1316 {
1317 struct extent_buffer *leaf;
1318 struct btrfs_root *tree_root = fs_info->tree_root;
1319 struct btrfs_root *root;
1320 struct btrfs_key key;
1321 int ret = 0;
1322 uuid_le uuid;
1323
1324 root = btrfs_alloc_root(fs_info);
1325 if (!root)
1326 return ERR_PTR(-ENOMEM);
1327
1328 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1329 tree_root->stripesize, root, fs_info, objectid);
1330 root->root_key.objectid = objectid;
1331 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1332 root->root_key.offset = 0;
1333
1334 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1335 if (IS_ERR(leaf)) {
1336 ret = PTR_ERR(leaf);
1337 leaf = NULL;
1338 goto fail;
1339 }
1340
1341 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1342 btrfs_set_header_bytenr(leaf, leaf->start);
1343 btrfs_set_header_generation(leaf, trans->transid);
1344 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1345 btrfs_set_header_owner(leaf, objectid);
1346 root->node = leaf;
1347
1348 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1349 BTRFS_FSID_SIZE);
1350 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1351 btrfs_header_chunk_tree_uuid(leaf),
1352 BTRFS_UUID_SIZE);
1353 btrfs_mark_buffer_dirty(leaf);
1354
1355 root->commit_root = btrfs_root_node(root);
1356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1357
1358 root->root_item.flags = 0;
1359 root->root_item.byte_limit = 0;
1360 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1361 btrfs_set_root_generation(&root->root_item, trans->transid);
1362 btrfs_set_root_level(&root->root_item, 0);
1363 btrfs_set_root_refs(&root->root_item, 1);
1364 btrfs_set_root_used(&root->root_item, leaf->len);
1365 btrfs_set_root_last_snapshot(&root->root_item, 0);
1366 btrfs_set_root_dirid(&root->root_item, 0);
1367 uuid_le_gen(&uuid);
1368 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1369 root->root_item.drop_level = 0;
1370
1371 key.objectid = objectid;
1372 key.type = BTRFS_ROOT_ITEM_KEY;
1373 key.offset = 0;
1374 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1375 if (ret)
1376 goto fail;
1377
1378 btrfs_tree_unlock(leaf);
1379
1380 return root;
1381
1382 fail:
1383 if (leaf) {
1384 btrfs_tree_unlock(leaf);
1385 free_extent_buffer(root->commit_root);
1386 free_extent_buffer(leaf);
1387 }
1388 kfree(root);
1389
1390 return ERR_PTR(ret);
1391 }
1392
1393 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_fs_info *fs_info)
1395 {
1396 struct btrfs_root *root;
1397 struct btrfs_root *tree_root = fs_info->tree_root;
1398 struct extent_buffer *leaf;
1399
1400 root = btrfs_alloc_root(fs_info);
1401 if (!root)
1402 return ERR_PTR(-ENOMEM);
1403
1404 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1405 tree_root->stripesize, root, fs_info,
1406 BTRFS_TREE_LOG_OBJECTID);
1407
1408 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1409 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1410 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1411
1412 /*
1413 * DON'T set REF_COWS for log trees
1414 *
1415 * log trees do not get reference counted because they go away
1416 * before a real commit is actually done. They do store pointers
1417 * to file data extents, and those reference counts still get
1418 * updated (along with back refs to the log tree).
1419 */
1420
1421 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1422 NULL, 0, 0, 0);
1423 if (IS_ERR(leaf)) {
1424 kfree(root);
1425 return ERR_CAST(leaf);
1426 }
1427
1428 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1429 btrfs_set_header_bytenr(leaf, leaf->start);
1430 btrfs_set_header_generation(leaf, trans->transid);
1431 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1432 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1433 root->node = leaf;
1434
1435 write_extent_buffer(root->node, root->fs_info->fsid,
1436 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1437 btrfs_mark_buffer_dirty(root->node);
1438 btrfs_tree_unlock(root->node);
1439 return root;
1440 }
1441
1442 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1443 struct btrfs_fs_info *fs_info)
1444 {
1445 struct btrfs_root *log_root;
1446
1447 log_root = alloc_log_tree(trans, fs_info);
1448 if (IS_ERR(log_root))
1449 return PTR_ERR(log_root);
1450 WARN_ON(fs_info->log_root_tree);
1451 fs_info->log_root_tree = log_root;
1452 return 0;
1453 }
1454
1455 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1456 struct btrfs_root *root)
1457 {
1458 struct btrfs_root *log_root;
1459 struct btrfs_inode_item *inode_item;
1460
1461 log_root = alloc_log_tree(trans, root->fs_info);
1462 if (IS_ERR(log_root))
1463 return PTR_ERR(log_root);
1464
1465 log_root->last_trans = trans->transid;
1466 log_root->root_key.offset = root->root_key.objectid;
1467
1468 inode_item = &log_root->root_item.inode;
1469 btrfs_set_stack_inode_generation(inode_item, 1);
1470 btrfs_set_stack_inode_size(inode_item, 3);
1471 btrfs_set_stack_inode_nlink(inode_item, 1);
1472 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1473 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1474
1475 btrfs_set_root_node(&log_root->root_item, log_root->node);
1476
1477 WARN_ON(root->log_root);
1478 root->log_root = log_root;
1479 root->log_transid = 0;
1480 root->log_transid_committed = -1;
1481 root->last_log_commit = 0;
1482 return 0;
1483 }
1484
1485 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1486 struct btrfs_key *key)
1487 {
1488 struct btrfs_root *root;
1489 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1490 struct btrfs_path *path;
1491 u64 generation;
1492 int ret;
1493
1494 path = btrfs_alloc_path();
1495 if (!path)
1496 return ERR_PTR(-ENOMEM);
1497
1498 root = btrfs_alloc_root(fs_info);
1499 if (!root) {
1500 ret = -ENOMEM;
1501 goto alloc_fail;
1502 }
1503
1504 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1505 tree_root->stripesize, root, fs_info, key->objectid);
1506
1507 ret = btrfs_find_root(tree_root, key, path,
1508 &root->root_item, &root->root_key);
1509 if (ret) {
1510 if (ret > 0)
1511 ret = -ENOENT;
1512 goto find_fail;
1513 }
1514
1515 generation = btrfs_root_generation(&root->root_item);
1516 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1517 generation);
1518 if (!root->node) {
1519 ret = -ENOMEM;
1520 goto find_fail;
1521 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1522 ret = -EIO;
1523 goto read_fail;
1524 }
1525 root->commit_root = btrfs_root_node(root);
1526 out:
1527 btrfs_free_path(path);
1528 return root;
1529
1530 read_fail:
1531 free_extent_buffer(root->node);
1532 find_fail:
1533 kfree(root);
1534 alloc_fail:
1535 root = ERR_PTR(ret);
1536 goto out;
1537 }
1538
1539 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1540 struct btrfs_key *location)
1541 {
1542 struct btrfs_root *root;
1543
1544 root = btrfs_read_tree_root(tree_root, location);
1545 if (IS_ERR(root))
1546 return root;
1547
1548 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1549 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1550 btrfs_check_and_init_root_item(&root->root_item);
1551 }
1552
1553 return root;
1554 }
1555
1556 int btrfs_init_fs_root(struct btrfs_root *root)
1557 {
1558 int ret;
1559 struct btrfs_subvolume_writers *writers;
1560
1561 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1562 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1563 GFP_NOFS);
1564 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1565 ret = -ENOMEM;
1566 goto fail;
1567 }
1568
1569 writers = btrfs_alloc_subvolume_writers();
1570 if (IS_ERR(writers)) {
1571 ret = PTR_ERR(writers);
1572 goto fail;
1573 }
1574 root->subv_writers = writers;
1575
1576 btrfs_init_free_ino_ctl(root);
1577 spin_lock_init(&root->ino_cache_lock);
1578 init_waitqueue_head(&root->ino_cache_wait);
1579
1580 ret = get_anon_bdev(&root->anon_dev);
1581 if (ret)
1582 goto free_writers;
1583 return 0;
1584
1585 free_writers:
1586 btrfs_free_subvolume_writers(root->subv_writers);
1587 fail:
1588 kfree(root->free_ino_ctl);
1589 kfree(root->free_ino_pinned);
1590 return ret;
1591 }
1592
1593 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1594 u64 root_id)
1595 {
1596 struct btrfs_root *root;
1597
1598 spin_lock(&fs_info->fs_roots_radix_lock);
1599 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1600 (unsigned long)root_id);
1601 spin_unlock(&fs_info->fs_roots_radix_lock);
1602 return root;
1603 }
1604
1605 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1606 struct btrfs_root *root)
1607 {
1608 int ret;
1609
1610 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1611 if (ret)
1612 return ret;
1613
1614 spin_lock(&fs_info->fs_roots_radix_lock);
1615 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1616 (unsigned long)root->root_key.objectid,
1617 root);
1618 if (ret == 0)
1619 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1620 spin_unlock(&fs_info->fs_roots_radix_lock);
1621 radix_tree_preload_end();
1622
1623 return ret;
1624 }
1625
1626 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1627 struct btrfs_key *location,
1628 bool check_ref)
1629 {
1630 struct btrfs_root *root;
1631 struct btrfs_path *path;
1632 struct btrfs_key key;
1633 int ret;
1634
1635 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1636 return fs_info->tree_root;
1637 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1638 return fs_info->extent_root;
1639 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1640 return fs_info->chunk_root;
1641 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1642 return fs_info->dev_root;
1643 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1644 return fs_info->csum_root;
1645 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1646 return fs_info->quota_root ? fs_info->quota_root :
1647 ERR_PTR(-ENOENT);
1648 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1649 return fs_info->uuid_root ? fs_info->uuid_root :
1650 ERR_PTR(-ENOENT);
1651 again:
1652 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1653 if (root) {
1654 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1655 return ERR_PTR(-ENOENT);
1656 return root;
1657 }
1658
1659 root = btrfs_read_fs_root(fs_info->tree_root, location);
1660 if (IS_ERR(root))
1661 return root;
1662
1663 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1664 ret = -ENOENT;
1665 goto fail;
1666 }
1667
1668 ret = btrfs_init_fs_root(root);
1669 if (ret)
1670 goto fail;
1671
1672 path = btrfs_alloc_path();
1673 if (!path) {
1674 ret = -ENOMEM;
1675 goto fail;
1676 }
1677 key.objectid = BTRFS_ORPHAN_OBJECTID;
1678 key.type = BTRFS_ORPHAN_ITEM_KEY;
1679 key.offset = location->objectid;
1680
1681 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1682 btrfs_free_path(path);
1683 if (ret < 0)
1684 goto fail;
1685 if (ret == 0)
1686 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1687
1688 ret = btrfs_insert_fs_root(fs_info, root);
1689 if (ret) {
1690 if (ret == -EEXIST) {
1691 free_fs_root(root);
1692 goto again;
1693 }
1694 goto fail;
1695 }
1696 return root;
1697 fail:
1698 free_fs_root(root);
1699 return ERR_PTR(ret);
1700 }
1701
1702 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1703 {
1704 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1705 int ret = 0;
1706 struct btrfs_device *device;
1707 struct backing_dev_info *bdi;
1708
1709 rcu_read_lock();
1710 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1711 if (!device->bdev)
1712 continue;
1713 bdi = blk_get_backing_dev_info(device->bdev);
1714 if (bdi_congested(bdi, bdi_bits)) {
1715 ret = 1;
1716 break;
1717 }
1718 }
1719 rcu_read_unlock();
1720 return ret;
1721 }
1722
1723 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1724 {
1725 int err;
1726
1727 err = bdi_setup_and_register(bdi, "btrfs");
1728 if (err)
1729 return err;
1730
1731 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1732 bdi->congested_fn = btrfs_congested_fn;
1733 bdi->congested_data = info;
1734 return 0;
1735 }
1736
1737 /*
1738 * called by the kthread helper functions to finally call the bio end_io
1739 * functions. This is where read checksum verification actually happens
1740 */
1741 static void end_workqueue_fn(struct btrfs_work *work)
1742 {
1743 struct bio *bio;
1744 struct btrfs_end_io_wq *end_io_wq;
1745 int error;
1746
1747 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1748 bio = end_io_wq->bio;
1749
1750 error = end_io_wq->error;
1751 bio->bi_private = end_io_wq->private;
1752 bio->bi_end_io = end_io_wq->end_io;
1753 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1754 bio_endio_nodec(bio, error);
1755 }
1756
1757 static int cleaner_kthread(void *arg)
1758 {
1759 struct btrfs_root *root = arg;
1760 int again;
1761
1762 do {
1763 again = 0;
1764
1765 /* Make the cleaner go to sleep early. */
1766 if (btrfs_need_cleaner_sleep(root))
1767 goto sleep;
1768
1769 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1770 goto sleep;
1771
1772 /*
1773 * Avoid the problem that we change the status of the fs
1774 * during the above check and trylock.
1775 */
1776 if (btrfs_need_cleaner_sleep(root)) {
1777 mutex_unlock(&root->fs_info->cleaner_mutex);
1778 goto sleep;
1779 }
1780
1781 btrfs_run_delayed_iputs(root);
1782 btrfs_delete_unused_bgs(root->fs_info);
1783 again = btrfs_clean_one_deleted_snapshot(root);
1784 mutex_unlock(&root->fs_info->cleaner_mutex);
1785
1786 /*
1787 * The defragger has dealt with the R/O remount and umount,
1788 * needn't do anything special here.
1789 */
1790 btrfs_run_defrag_inodes(root->fs_info);
1791 sleep:
1792 if (!try_to_freeze() && !again) {
1793 set_current_state(TASK_INTERRUPTIBLE);
1794 if (!kthread_should_stop())
1795 schedule();
1796 __set_current_state(TASK_RUNNING);
1797 }
1798 } while (!kthread_should_stop());
1799 return 0;
1800 }
1801
1802 static int transaction_kthread(void *arg)
1803 {
1804 struct btrfs_root *root = arg;
1805 struct btrfs_trans_handle *trans;
1806 struct btrfs_transaction *cur;
1807 u64 transid;
1808 unsigned long now;
1809 unsigned long delay;
1810 bool cannot_commit;
1811
1812 do {
1813 cannot_commit = false;
1814 delay = HZ * root->fs_info->commit_interval;
1815 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1816
1817 spin_lock(&root->fs_info->trans_lock);
1818 cur = root->fs_info->running_transaction;
1819 if (!cur) {
1820 spin_unlock(&root->fs_info->trans_lock);
1821 goto sleep;
1822 }
1823
1824 now = get_seconds();
1825 if (cur->state < TRANS_STATE_BLOCKED &&
1826 (now < cur->start_time ||
1827 now - cur->start_time < root->fs_info->commit_interval)) {
1828 spin_unlock(&root->fs_info->trans_lock);
1829 delay = HZ * 5;
1830 goto sleep;
1831 }
1832 transid = cur->transid;
1833 spin_unlock(&root->fs_info->trans_lock);
1834
1835 /* If the file system is aborted, this will always fail. */
1836 trans = btrfs_attach_transaction(root);
1837 if (IS_ERR(trans)) {
1838 if (PTR_ERR(trans) != -ENOENT)
1839 cannot_commit = true;
1840 goto sleep;
1841 }
1842 if (transid == trans->transid) {
1843 btrfs_commit_transaction(trans, root);
1844 } else {
1845 btrfs_end_transaction(trans, root);
1846 }
1847 sleep:
1848 wake_up_process(root->fs_info->cleaner_kthread);
1849 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1850
1851 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1852 &root->fs_info->fs_state)))
1853 btrfs_cleanup_transaction(root);
1854 if (!try_to_freeze()) {
1855 set_current_state(TASK_INTERRUPTIBLE);
1856 if (!kthread_should_stop() &&
1857 (!btrfs_transaction_blocked(root->fs_info) ||
1858 cannot_commit))
1859 schedule_timeout(delay);
1860 __set_current_state(TASK_RUNNING);
1861 }
1862 } while (!kthread_should_stop());
1863 return 0;
1864 }
1865
1866 /*
1867 * this will find the highest generation in the array of
1868 * root backups. The index of the highest array is returned,
1869 * or -1 if we can't find anything.
1870 *
1871 * We check to make sure the array is valid by comparing the
1872 * generation of the latest root in the array with the generation
1873 * in the super block. If they don't match we pitch it.
1874 */
1875 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1876 {
1877 u64 cur;
1878 int newest_index = -1;
1879 struct btrfs_root_backup *root_backup;
1880 int i;
1881
1882 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1883 root_backup = info->super_copy->super_roots + i;
1884 cur = btrfs_backup_tree_root_gen(root_backup);
1885 if (cur == newest_gen)
1886 newest_index = i;
1887 }
1888
1889 /* check to see if we actually wrapped around */
1890 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1891 root_backup = info->super_copy->super_roots;
1892 cur = btrfs_backup_tree_root_gen(root_backup);
1893 if (cur == newest_gen)
1894 newest_index = 0;
1895 }
1896 return newest_index;
1897 }
1898
1899
1900 /*
1901 * find the oldest backup so we know where to store new entries
1902 * in the backup array. This will set the backup_root_index
1903 * field in the fs_info struct
1904 */
1905 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1906 u64 newest_gen)
1907 {
1908 int newest_index = -1;
1909
1910 newest_index = find_newest_super_backup(info, newest_gen);
1911 /* if there was garbage in there, just move along */
1912 if (newest_index == -1) {
1913 info->backup_root_index = 0;
1914 } else {
1915 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1916 }
1917 }
1918
1919 /*
1920 * copy all the root pointers into the super backup array.
1921 * this will bump the backup pointer by one when it is
1922 * done
1923 */
1924 static void backup_super_roots(struct btrfs_fs_info *info)
1925 {
1926 int next_backup;
1927 struct btrfs_root_backup *root_backup;
1928 int last_backup;
1929
1930 next_backup = info->backup_root_index;
1931 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1932 BTRFS_NUM_BACKUP_ROOTS;
1933
1934 /*
1935 * just overwrite the last backup if we're at the same generation
1936 * this happens only at umount
1937 */
1938 root_backup = info->super_for_commit->super_roots + last_backup;
1939 if (btrfs_backup_tree_root_gen(root_backup) ==
1940 btrfs_header_generation(info->tree_root->node))
1941 next_backup = last_backup;
1942
1943 root_backup = info->super_for_commit->super_roots + next_backup;
1944
1945 /*
1946 * make sure all of our padding and empty slots get zero filled
1947 * regardless of which ones we use today
1948 */
1949 memset(root_backup, 0, sizeof(*root_backup));
1950
1951 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1952
1953 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1954 btrfs_set_backup_tree_root_gen(root_backup,
1955 btrfs_header_generation(info->tree_root->node));
1956
1957 btrfs_set_backup_tree_root_level(root_backup,
1958 btrfs_header_level(info->tree_root->node));
1959
1960 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1961 btrfs_set_backup_chunk_root_gen(root_backup,
1962 btrfs_header_generation(info->chunk_root->node));
1963 btrfs_set_backup_chunk_root_level(root_backup,
1964 btrfs_header_level(info->chunk_root->node));
1965
1966 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1967 btrfs_set_backup_extent_root_gen(root_backup,
1968 btrfs_header_generation(info->extent_root->node));
1969 btrfs_set_backup_extent_root_level(root_backup,
1970 btrfs_header_level(info->extent_root->node));
1971
1972 /*
1973 * we might commit during log recovery, which happens before we set
1974 * the fs_root. Make sure it is valid before we fill it in.
1975 */
1976 if (info->fs_root && info->fs_root->node) {
1977 btrfs_set_backup_fs_root(root_backup,
1978 info->fs_root->node->start);
1979 btrfs_set_backup_fs_root_gen(root_backup,
1980 btrfs_header_generation(info->fs_root->node));
1981 btrfs_set_backup_fs_root_level(root_backup,
1982 btrfs_header_level(info->fs_root->node));
1983 }
1984
1985 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1986 btrfs_set_backup_dev_root_gen(root_backup,
1987 btrfs_header_generation(info->dev_root->node));
1988 btrfs_set_backup_dev_root_level(root_backup,
1989 btrfs_header_level(info->dev_root->node));
1990
1991 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1992 btrfs_set_backup_csum_root_gen(root_backup,
1993 btrfs_header_generation(info->csum_root->node));
1994 btrfs_set_backup_csum_root_level(root_backup,
1995 btrfs_header_level(info->csum_root->node));
1996
1997 btrfs_set_backup_total_bytes(root_backup,
1998 btrfs_super_total_bytes(info->super_copy));
1999 btrfs_set_backup_bytes_used(root_backup,
2000 btrfs_super_bytes_used(info->super_copy));
2001 btrfs_set_backup_num_devices(root_backup,
2002 btrfs_super_num_devices(info->super_copy));
2003
2004 /*
2005 * if we don't copy this out to the super_copy, it won't get remembered
2006 * for the next commit
2007 */
2008 memcpy(&info->super_copy->super_roots,
2009 &info->super_for_commit->super_roots,
2010 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2011 }
2012
2013 /*
2014 * this copies info out of the root backup array and back into
2015 * the in-memory super block. It is meant to help iterate through
2016 * the array, so you send it the number of backups you've already
2017 * tried and the last backup index you used.
2018 *
2019 * this returns -1 when it has tried all the backups
2020 */
2021 static noinline int next_root_backup(struct btrfs_fs_info *info,
2022 struct btrfs_super_block *super,
2023 int *num_backups_tried, int *backup_index)
2024 {
2025 struct btrfs_root_backup *root_backup;
2026 int newest = *backup_index;
2027
2028 if (*num_backups_tried == 0) {
2029 u64 gen = btrfs_super_generation(super);
2030
2031 newest = find_newest_super_backup(info, gen);
2032 if (newest == -1)
2033 return -1;
2034
2035 *backup_index = newest;
2036 *num_backups_tried = 1;
2037 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2038 /* we've tried all the backups, all done */
2039 return -1;
2040 } else {
2041 /* jump to the next oldest backup */
2042 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2043 BTRFS_NUM_BACKUP_ROOTS;
2044 *backup_index = newest;
2045 *num_backups_tried += 1;
2046 }
2047 root_backup = super->super_roots + newest;
2048
2049 btrfs_set_super_generation(super,
2050 btrfs_backup_tree_root_gen(root_backup));
2051 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2052 btrfs_set_super_root_level(super,
2053 btrfs_backup_tree_root_level(root_backup));
2054 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2055
2056 /*
2057 * fixme: the total bytes and num_devices need to match or we should
2058 * need a fsck
2059 */
2060 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2061 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2062 return 0;
2063 }
2064
2065 /* helper to cleanup workers */
2066 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2067 {
2068 btrfs_destroy_workqueue(fs_info->fixup_workers);
2069 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2070 btrfs_destroy_workqueue(fs_info->workers);
2071 btrfs_destroy_workqueue(fs_info->endio_workers);
2072 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2073 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2074 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2075 btrfs_destroy_workqueue(fs_info->rmw_workers);
2076 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2077 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2078 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2079 btrfs_destroy_workqueue(fs_info->submit_workers);
2080 btrfs_destroy_workqueue(fs_info->delayed_workers);
2081 btrfs_destroy_workqueue(fs_info->caching_workers);
2082 btrfs_destroy_workqueue(fs_info->readahead_workers);
2083 btrfs_destroy_workqueue(fs_info->flush_workers);
2084 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2085 btrfs_destroy_workqueue(fs_info->extent_workers);
2086 }
2087
2088 static void free_root_extent_buffers(struct btrfs_root *root)
2089 {
2090 if (root) {
2091 free_extent_buffer(root->node);
2092 free_extent_buffer(root->commit_root);
2093 root->node = NULL;
2094 root->commit_root = NULL;
2095 }
2096 }
2097
2098 /* helper to cleanup tree roots */
2099 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2100 {
2101 free_root_extent_buffers(info->tree_root);
2102
2103 free_root_extent_buffers(info->dev_root);
2104 free_root_extent_buffers(info->extent_root);
2105 free_root_extent_buffers(info->csum_root);
2106 free_root_extent_buffers(info->quota_root);
2107 free_root_extent_buffers(info->uuid_root);
2108 if (chunk_root)
2109 free_root_extent_buffers(info->chunk_root);
2110 }
2111
2112 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2113 {
2114 int ret;
2115 struct btrfs_root *gang[8];
2116 int i;
2117
2118 while (!list_empty(&fs_info->dead_roots)) {
2119 gang[0] = list_entry(fs_info->dead_roots.next,
2120 struct btrfs_root, root_list);
2121 list_del(&gang[0]->root_list);
2122
2123 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2124 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2125 } else {
2126 free_extent_buffer(gang[0]->node);
2127 free_extent_buffer(gang[0]->commit_root);
2128 btrfs_put_fs_root(gang[0]);
2129 }
2130 }
2131
2132 while (1) {
2133 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2134 (void **)gang, 0,
2135 ARRAY_SIZE(gang));
2136 if (!ret)
2137 break;
2138 for (i = 0; i < ret; i++)
2139 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2140 }
2141
2142 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2143 btrfs_free_log_root_tree(NULL, fs_info);
2144 btrfs_destroy_pinned_extent(fs_info->tree_root,
2145 fs_info->pinned_extents);
2146 }
2147 }
2148
2149 int open_ctree(struct super_block *sb,
2150 struct btrfs_fs_devices *fs_devices,
2151 char *options)
2152 {
2153 u32 sectorsize;
2154 u32 nodesize;
2155 u32 stripesize;
2156 u64 generation;
2157 u64 features;
2158 struct btrfs_key location;
2159 struct buffer_head *bh;
2160 struct btrfs_super_block *disk_super;
2161 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2162 struct btrfs_root *tree_root;
2163 struct btrfs_root *extent_root;
2164 struct btrfs_root *csum_root;
2165 struct btrfs_root *chunk_root;
2166 struct btrfs_root *dev_root;
2167 struct btrfs_root *quota_root;
2168 struct btrfs_root *uuid_root;
2169 struct btrfs_root *log_tree_root;
2170 int ret;
2171 int err = -EINVAL;
2172 int num_backups_tried = 0;
2173 int backup_index = 0;
2174 int max_active;
2175 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2176 bool create_uuid_tree;
2177 bool check_uuid_tree;
2178
2179 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2180 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2181 if (!tree_root || !chunk_root) {
2182 err = -ENOMEM;
2183 goto fail;
2184 }
2185
2186 ret = init_srcu_struct(&fs_info->subvol_srcu);
2187 if (ret) {
2188 err = ret;
2189 goto fail;
2190 }
2191
2192 ret = setup_bdi(fs_info, &fs_info->bdi);
2193 if (ret) {
2194 err = ret;
2195 goto fail_srcu;
2196 }
2197
2198 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2199 if (ret) {
2200 err = ret;
2201 goto fail_bdi;
2202 }
2203 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2204 (1 + ilog2(nr_cpu_ids));
2205
2206 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2207 if (ret) {
2208 err = ret;
2209 goto fail_dirty_metadata_bytes;
2210 }
2211
2212 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2213 if (ret) {
2214 err = ret;
2215 goto fail_delalloc_bytes;
2216 }
2217
2218 fs_info->btree_inode = new_inode(sb);
2219 if (!fs_info->btree_inode) {
2220 err = -ENOMEM;
2221 goto fail_bio_counter;
2222 }
2223
2224 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2225
2226 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2227 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2228 INIT_LIST_HEAD(&fs_info->trans_list);
2229 INIT_LIST_HEAD(&fs_info->dead_roots);
2230 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2231 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2232 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2233 spin_lock_init(&fs_info->delalloc_root_lock);
2234 spin_lock_init(&fs_info->trans_lock);
2235 spin_lock_init(&fs_info->fs_roots_radix_lock);
2236 spin_lock_init(&fs_info->delayed_iput_lock);
2237 spin_lock_init(&fs_info->defrag_inodes_lock);
2238 spin_lock_init(&fs_info->free_chunk_lock);
2239 spin_lock_init(&fs_info->tree_mod_seq_lock);
2240 spin_lock_init(&fs_info->super_lock);
2241 spin_lock_init(&fs_info->qgroup_op_lock);
2242 spin_lock_init(&fs_info->buffer_lock);
2243 spin_lock_init(&fs_info->unused_bgs_lock);
2244 mutex_init(&fs_info->unused_bg_unpin_mutex);
2245 rwlock_init(&fs_info->tree_mod_log_lock);
2246 mutex_init(&fs_info->reloc_mutex);
2247 mutex_init(&fs_info->delalloc_root_mutex);
2248 seqlock_init(&fs_info->profiles_lock);
2249
2250 init_completion(&fs_info->kobj_unregister);
2251 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2252 INIT_LIST_HEAD(&fs_info->space_info);
2253 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2254 INIT_LIST_HEAD(&fs_info->unused_bgs);
2255 btrfs_mapping_init(&fs_info->mapping_tree);
2256 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2257 BTRFS_BLOCK_RSV_GLOBAL);
2258 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2259 BTRFS_BLOCK_RSV_DELALLOC);
2260 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2261 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2262 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2263 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2264 BTRFS_BLOCK_RSV_DELOPS);
2265 atomic_set(&fs_info->nr_async_submits, 0);
2266 atomic_set(&fs_info->async_delalloc_pages, 0);
2267 atomic_set(&fs_info->async_submit_draining, 0);
2268 atomic_set(&fs_info->nr_async_bios, 0);
2269 atomic_set(&fs_info->defrag_running, 0);
2270 atomic_set(&fs_info->qgroup_op_seq, 0);
2271 atomic64_set(&fs_info->tree_mod_seq, 0);
2272 fs_info->sb = sb;
2273 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2274 fs_info->metadata_ratio = 0;
2275 fs_info->defrag_inodes = RB_ROOT;
2276 fs_info->free_chunk_space = 0;
2277 fs_info->tree_mod_log = RB_ROOT;
2278 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2279 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2280 /* readahead state */
2281 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2282 spin_lock_init(&fs_info->reada_lock);
2283
2284 fs_info->thread_pool_size = min_t(unsigned long,
2285 num_online_cpus() + 2, 8);
2286
2287 INIT_LIST_HEAD(&fs_info->ordered_roots);
2288 spin_lock_init(&fs_info->ordered_root_lock);
2289 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2290 GFP_NOFS);
2291 if (!fs_info->delayed_root) {
2292 err = -ENOMEM;
2293 goto fail_iput;
2294 }
2295 btrfs_init_delayed_root(fs_info->delayed_root);
2296
2297 mutex_init(&fs_info->scrub_lock);
2298 atomic_set(&fs_info->scrubs_running, 0);
2299 atomic_set(&fs_info->scrub_pause_req, 0);
2300 atomic_set(&fs_info->scrubs_paused, 0);
2301 atomic_set(&fs_info->scrub_cancel_req, 0);
2302 init_waitqueue_head(&fs_info->replace_wait);
2303 init_waitqueue_head(&fs_info->scrub_pause_wait);
2304 fs_info->scrub_workers_refcnt = 0;
2305 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2306 fs_info->check_integrity_print_mask = 0;
2307 #endif
2308
2309 spin_lock_init(&fs_info->balance_lock);
2310 mutex_init(&fs_info->balance_mutex);
2311 atomic_set(&fs_info->balance_running, 0);
2312 atomic_set(&fs_info->balance_pause_req, 0);
2313 atomic_set(&fs_info->balance_cancel_req, 0);
2314 fs_info->balance_ctl = NULL;
2315 init_waitqueue_head(&fs_info->balance_wait_q);
2316 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2317
2318 sb->s_blocksize = 4096;
2319 sb->s_blocksize_bits = blksize_bits(4096);
2320 sb->s_bdi = &fs_info->bdi;
2321
2322 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2323 set_nlink(fs_info->btree_inode, 1);
2324 /*
2325 * we set the i_size on the btree inode to the max possible int.
2326 * the real end of the address space is determined by all of
2327 * the devices in the system
2328 */
2329 fs_info->btree_inode->i_size = OFFSET_MAX;
2330 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2331
2332 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2333 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2334 fs_info->btree_inode->i_mapping);
2335 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2336 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2337
2338 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2339
2340 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2341 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2342 sizeof(struct btrfs_key));
2343 set_bit(BTRFS_INODE_DUMMY,
2344 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2345 btrfs_insert_inode_hash(fs_info->btree_inode);
2346
2347 spin_lock_init(&fs_info->block_group_cache_lock);
2348 fs_info->block_group_cache_tree = RB_ROOT;
2349 fs_info->first_logical_byte = (u64)-1;
2350
2351 extent_io_tree_init(&fs_info->freed_extents[0],
2352 fs_info->btree_inode->i_mapping);
2353 extent_io_tree_init(&fs_info->freed_extents[1],
2354 fs_info->btree_inode->i_mapping);
2355 fs_info->pinned_extents = &fs_info->freed_extents[0];
2356 fs_info->do_barriers = 1;
2357
2358
2359 mutex_init(&fs_info->ordered_operations_mutex);
2360 mutex_init(&fs_info->ordered_extent_flush_mutex);
2361 mutex_init(&fs_info->tree_log_mutex);
2362 mutex_init(&fs_info->chunk_mutex);
2363 mutex_init(&fs_info->transaction_kthread_mutex);
2364 mutex_init(&fs_info->cleaner_mutex);
2365 mutex_init(&fs_info->volume_mutex);
2366 init_rwsem(&fs_info->commit_root_sem);
2367 init_rwsem(&fs_info->cleanup_work_sem);
2368 init_rwsem(&fs_info->subvol_sem);
2369 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2370 fs_info->dev_replace.lock_owner = 0;
2371 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2372 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2373 mutex_init(&fs_info->dev_replace.lock_management_lock);
2374 mutex_init(&fs_info->dev_replace.lock);
2375
2376 spin_lock_init(&fs_info->qgroup_lock);
2377 mutex_init(&fs_info->qgroup_ioctl_lock);
2378 fs_info->qgroup_tree = RB_ROOT;
2379 fs_info->qgroup_op_tree = RB_ROOT;
2380 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2381 fs_info->qgroup_seq = 1;
2382 fs_info->quota_enabled = 0;
2383 fs_info->pending_quota_state = 0;
2384 fs_info->qgroup_ulist = NULL;
2385 mutex_init(&fs_info->qgroup_rescan_lock);
2386
2387 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2388 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2389
2390 init_waitqueue_head(&fs_info->transaction_throttle);
2391 init_waitqueue_head(&fs_info->transaction_wait);
2392 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2393 init_waitqueue_head(&fs_info->async_submit_wait);
2394
2395 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2396
2397 ret = btrfs_alloc_stripe_hash_table(fs_info);
2398 if (ret) {
2399 err = ret;
2400 goto fail_alloc;
2401 }
2402
2403 __setup_root(4096, 4096, 4096, tree_root,
2404 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2405
2406 invalidate_bdev(fs_devices->latest_bdev);
2407
2408 /*
2409 * Read super block and check the signature bytes only
2410 */
2411 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2412 if (!bh) {
2413 err = -EINVAL;
2414 goto fail_alloc;
2415 }
2416
2417 /*
2418 * We want to check superblock checksum, the type is stored inside.
2419 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2420 */
2421 if (btrfs_check_super_csum(bh->b_data)) {
2422 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2423 err = -EINVAL;
2424 goto fail_alloc;
2425 }
2426
2427 /*
2428 * super_copy is zeroed at allocation time and we never touch the
2429 * following bytes up to INFO_SIZE, the checksum is calculated from
2430 * the whole block of INFO_SIZE
2431 */
2432 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2433 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2434 sizeof(*fs_info->super_for_commit));
2435 brelse(bh);
2436
2437 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2438
2439 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2440 if (ret) {
2441 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2442 err = -EINVAL;
2443 goto fail_alloc;
2444 }
2445
2446 disk_super = fs_info->super_copy;
2447 if (!btrfs_super_root(disk_super))
2448 goto fail_alloc;
2449
2450 /* check FS state, whether FS is broken. */
2451 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2452 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2453
2454 /*
2455 * run through our array of backup supers and setup
2456 * our ring pointer to the oldest one
2457 */
2458 generation = btrfs_super_generation(disk_super);
2459 find_oldest_super_backup(fs_info, generation);
2460
2461 /*
2462 * In the long term, we'll store the compression type in the super
2463 * block, and it'll be used for per file compression control.
2464 */
2465 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2466
2467 ret = btrfs_parse_options(tree_root, options);
2468 if (ret) {
2469 err = ret;
2470 goto fail_alloc;
2471 }
2472
2473 features = btrfs_super_incompat_flags(disk_super) &
2474 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2475 if (features) {
2476 printk(KERN_ERR "BTRFS: couldn't mount because of "
2477 "unsupported optional features (%Lx).\n",
2478 features);
2479 err = -EINVAL;
2480 goto fail_alloc;
2481 }
2482
2483 /*
2484 * Leafsize and nodesize were always equal, this is only a sanity check.
2485 */
2486 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2487 btrfs_super_nodesize(disk_super)) {
2488 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2489 "blocksizes don't match. node %d leaf %d\n",
2490 btrfs_super_nodesize(disk_super),
2491 le32_to_cpu(disk_super->__unused_leafsize));
2492 err = -EINVAL;
2493 goto fail_alloc;
2494 }
2495 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2496 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2497 "blocksize (%d) was too large\n",
2498 btrfs_super_nodesize(disk_super));
2499 err = -EINVAL;
2500 goto fail_alloc;
2501 }
2502
2503 features = btrfs_super_incompat_flags(disk_super);
2504 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2505 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2506 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2507
2508 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2509 printk(KERN_INFO "BTRFS: has skinny extents\n");
2510
2511 /*
2512 * flag our filesystem as having big metadata blocks if
2513 * they are bigger than the page size
2514 */
2515 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2516 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2517 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2518 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2519 }
2520
2521 nodesize = btrfs_super_nodesize(disk_super);
2522 sectorsize = btrfs_super_sectorsize(disk_super);
2523 stripesize = btrfs_super_stripesize(disk_super);
2524 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2525 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2526
2527 /*
2528 * mixed block groups end up with duplicate but slightly offset
2529 * extent buffers for the same range. It leads to corruptions
2530 */
2531 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2532 (sectorsize != nodesize)) {
2533 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2534 "are not allowed for mixed block groups on %s\n",
2535 sb->s_id);
2536 goto fail_alloc;
2537 }
2538
2539 /*
2540 * Needn't use the lock because there is no other task which will
2541 * update the flag.
2542 */
2543 btrfs_set_super_incompat_flags(disk_super, features);
2544
2545 features = btrfs_super_compat_ro_flags(disk_super) &
2546 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2547 if (!(sb->s_flags & MS_RDONLY) && features) {
2548 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2549 "unsupported option features (%Lx).\n",
2550 features);
2551 err = -EINVAL;
2552 goto fail_alloc;
2553 }
2554
2555 max_active = fs_info->thread_pool_size;
2556
2557 fs_info->workers =
2558 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2559 max_active, 16);
2560
2561 fs_info->delalloc_workers =
2562 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2563
2564 fs_info->flush_workers =
2565 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2566
2567 fs_info->caching_workers =
2568 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2569
2570 /*
2571 * a higher idle thresh on the submit workers makes it much more
2572 * likely that bios will be send down in a sane order to the
2573 * devices
2574 */
2575 fs_info->submit_workers =
2576 btrfs_alloc_workqueue("submit", flags,
2577 min_t(u64, fs_devices->num_devices,
2578 max_active), 64);
2579
2580 fs_info->fixup_workers =
2581 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2582
2583 /*
2584 * endios are largely parallel and should have a very
2585 * low idle thresh
2586 */
2587 fs_info->endio_workers =
2588 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2589 fs_info->endio_meta_workers =
2590 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2591 fs_info->endio_meta_write_workers =
2592 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2593 fs_info->endio_raid56_workers =
2594 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2595 fs_info->endio_repair_workers =
2596 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2597 fs_info->rmw_workers =
2598 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2599 fs_info->endio_write_workers =
2600 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2601 fs_info->endio_freespace_worker =
2602 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2603 fs_info->delayed_workers =
2604 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2605 fs_info->readahead_workers =
2606 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2607 fs_info->qgroup_rescan_workers =
2608 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2609 fs_info->extent_workers =
2610 btrfs_alloc_workqueue("extent-refs", flags,
2611 min_t(u64, fs_devices->num_devices,
2612 max_active), 8);
2613
2614 if (!(fs_info->workers && fs_info->delalloc_workers &&
2615 fs_info->submit_workers && fs_info->flush_workers &&
2616 fs_info->endio_workers && fs_info->endio_meta_workers &&
2617 fs_info->endio_meta_write_workers &&
2618 fs_info->endio_repair_workers &&
2619 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2620 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2621 fs_info->caching_workers && fs_info->readahead_workers &&
2622 fs_info->fixup_workers && fs_info->delayed_workers &&
2623 fs_info->extent_workers &&
2624 fs_info->qgroup_rescan_workers)) {
2625 err = -ENOMEM;
2626 goto fail_sb_buffer;
2627 }
2628
2629 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2630 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2631 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2632
2633 tree_root->nodesize = nodesize;
2634 tree_root->sectorsize = sectorsize;
2635 tree_root->stripesize = stripesize;
2636
2637 sb->s_blocksize = sectorsize;
2638 sb->s_blocksize_bits = blksize_bits(sectorsize);
2639
2640 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2641 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2642 goto fail_sb_buffer;
2643 }
2644
2645 if (sectorsize != PAGE_SIZE) {
2646 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2647 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2648 goto fail_sb_buffer;
2649 }
2650
2651 mutex_lock(&fs_info->chunk_mutex);
2652 ret = btrfs_read_sys_array(tree_root);
2653 mutex_unlock(&fs_info->chunk_mutex);
2654 if (ret) {
2655 printk(KERN_ERR "BTRFS: failed to read the system "
2656 "array on %s\n", sb->s_id);
2657 goto fail_sb_buffer;
2658 }
2659
2660 generation = btrfs_super_chunk_root_generation(disk_super);
2661
2662 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2663 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2664
2665 chunk_root->node = read_tree_block(chunk_root,
2666 btrfs_super_chunk_root(disk_super),
2667 generation);
2668 if (!chunk_root->node ||
2669 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2670 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2671 sb->s_id);
2672 goto fail_tree_roots;
2673 }
2674 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2675 chunk_root->commit_root = btrfs_root_node(chunk_root);
2676
2677 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2678 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2679
2680 ret = btrfs_read_chunk_tree(chunk_root);
2681 if (ret) {
2682 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2683 sb->s_id);
2684 goto fail_tree_roots;
2685 }
2686
2687 /*
2688 * keep the device that is marked to be the target device for the
2689 * dev_replace procedure
2690 */
2691 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2692
2693 if (!fs_devices->latest_bdev) {
2694 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2695 sb->s_id);
2696 goto fail_tree_roots;
2697 }
2698
2699 retry_root_backup:
2700 generation = btrfs_super_generation(disk_super);
2701
2702 tree_root->node = read_tree_block(tree_root,
2703 btrfs_super_root(disk_super),
2704 generation);
2705 if (!tree_root->node ||
2706 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2707 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2708 sb->s_id);
2709
2710 goto recovery_tree_root;
2711 }
2712
2713 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2714 tree_root->commit_root = btrfs_root_node(tree_root);
2715 btrfs_set_root_refs(&tree_root->root_item, 1);
2716
2717 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2718 location.type = BTRFS_ROOT_ITEM_KEY;
2719 location.offset = 0;
2720
2721 extent_root = btrfs_read_tree_root(tree_root, &location);
2722 if (IS_ERR(extent_root)) {
2723 ret = PTR_ERR(extent_root);
2724 goto recovery_tree_root;
2725 }
2726 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2727 fs_info->extent_root = extent_root;
2728
2729 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2730 dev_root = btrfs_read_tree_root(tree_root, &location);
2731 if (IS_ERR(dev_root)) {
2732 ret = PTR_ERR(dev_root);
2733 goto recovery_tree_root;
2734 }
2735 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2736 fs_info->dev_root = dev_root;
2737 btrfs_init_devices_late(fs_info);
2738
2739 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2740 csum_root = btrfs_read_tree_root(tree_root, &location);
2741 if (IS_ERR(csum_root)) {
2742 ret = PTR_ERR(csum_root);
2743 goto recovery_tree_root;
2744 }
2745 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2746 fs_info->csum_root = csum_root;
2747
2748 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2749 quota_root = btrfs_read_tree_root(tree_root, &location);
2750 if (!IS_ERR(quota_root)) {
2751 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2752 fs_info->quota_enabled = 1;
2753 fs_info->pending_quota_state = 1;
2754 fs_info->quota_root = quota_root;
2755 }
2756
2757 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2758 uuid_root = btrfs_read_tree_root(tree_root, &location);
2759 if (IS_ERR(uuid_root)) {
2760 ret = PTR_ERR(uuid_root);
2761 if (ret != -ENOENT)
2762 goto recovery_tree_root;
2763 create_uuid_tree = true;
2764 check_uuid_tree = false;
2765 } else {
2766 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2767 fs_info->uuid_root = uuid_root;
2768 create_uuid_tree = false;
2769 check_uuid_tree =
2770 generation != btrfs_super_uuid_tree_generation(disk_super);
2771 }
2772
2773 fs_info->generation = generation;
2774 fs_info->last_trans_committed = generation;
2775
2776 ret = btrfs_recover_balance(fs_info);
2777 if (ret) {
2778 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2779 goto fail_block_groups;
2780 }
2781
2782 ret = btrfs_init_dev_stats(fs_info);
2783 if (ret) {
2784 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2785 ret);
2786 goto fail_block_groups;
2787 }
2788
2789 ret = btrfs_init_dev_replace(fs_info);
2790 if (ret) {
2791 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2792 goto fail_block_groups;
2793 }
2794
2795 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2796
2797 ret = btrfs_sysfs_add_one(fs_info);
2798 if (ret) {
2799 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2800 goto fail_block_groups;
2801 }
2802
2803 ret = btrfs_init_space_info(fs_info);
2804 if (ret) {
2805 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2806 goto fail_sysfs;
2807 }
2808
2809 ret = btrfs_read_block_groups(extent_root);
2810 if (ret) {
2811 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2812 goto fail_sysfs;
2813 }
2814 fs_info->num_tolerated_disk_barrier_failures =
2815 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2816 if (fs_info->fs_devices->missing_devices >
2817 fs_info->num_tolerated_disk_barrier_failures &&
2818 !(sb->s_flags & MS_RDONLY)) {
2819 printk(KERN_WARNING "BTRFS: "
2820 "too many missing devices, writeable mount is not allowed\n");
2821 goto fail_sysfs;
2822 }
2823
2824 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2825 "btrfs-cleaner");
2826 if (IS_ERR(fs_info->cleaner_kthread))
2827 goto fail_sysfs;
2828
2829 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2830 tree_root,
2831 "btrfs-transaction");
2832 if (IS_ERR(fs_info->transaction_kthread))
2833 goto fail_cleaner;
2834
2835 if (!btrfs_test_opt(tree_root, SSD) &&
2836 !btrfs_test_opt(tree_root, NOSSD) &&
2837 !fs_info->fs_devices->rotating) {
2838 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2839 "mode\n");
2840 btrfs_set_opt(fs_info->mount_opt, SSD);
2841 }
2842
2843 /*
2844 * Mount does not set all options immediatelly, we can do it now and do
2845 * not have to wait for transaction commit
2846 */
2847 btrfs_apply_pending_changes(fs_info);
2848
2849 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2850 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2851 ret = btrfsic_mount(tree_root, fs_devices,
2852 btrfs_test_opt(tree_root,
2853 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2854 1 : 0,
2855 fs_info->check_integrity_print_mask);
2856 if (ret)
2857 printk(KERN_WARNING "BTRFS: failed to initialize"
2858 " integrity check module %s\n", sb->s_id);
2859 }
2860 #endif
2861 ret = btrfs_read_qgroup_config(fs_info);
2862 if (ret)
2863 goto fail_trans_kthread;
2864
2865 /* do not make disk changes in broken FS */
2866 if (btrfs_super_log_root(disk_super) != 0) {
2867 u64 bytenr = btrfs_super_log_root(disk_super);
2868
2869 if (fs_devices->rw_devices == 0) {
2870 printk(KERN_WARNING "BTRFS: log replay required "
2871 "on RO media\n");
2872 err = -EIO;
2873 goto fail_qgroup;
2874 }
2875
2876 log_tree_root = btrfs_alloc_root(fs_info);
2877 if (!log_tree_root) {
2878 err = -ENOMEM;
2879 goto fail_qgroup;
2880 }
2881
2882 __setup_root(nodesize, sectorsize, stripesize,
2883 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2884
2885 log_tree_root->node = read_tree_block(tree_root, bytenr,
2886 generation + 1);
2887 if (!log_tree_root->node ||
2888 !extent_buffer_uptodate(log_tree_root->node)) {
2889 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2890 free_extent_buffer(log_tree_root->node);
2891 kfree(log_tree_root);
2892 goto fail_qgroup;
2893 }
2894 /* returns with log_tree_root freed on success */
2895 ret = btrfs_recover_log_trees(log_tree_root);
2896 if (ret) {
2897 btrfs_error(tree_root->fs_info, ret,
2898 "Failed to recover log tree");
2899 free_extent_buffer(log_tree_root->node);
2900 kfree(log_tree_root);
2901 goto fail_qgroup;
2902 }
2903
2904 if (sb->s_flags & MS_RDONLY) {
2905 ret = btrfs_commit_super(tree_root);
2906 if (ret)
2907 goto fail_qgroup;
2908 }
2909 }
2910
2911 ret = btrfs_find_orphan_roots(tree_root);
2912 if (ret)
2913 goto fail_qgroup;
2914
2915 if (!(sb->s_flags & MS_RDONLY)) {
2916 ret = btrfs_cleanup_fs_roots(fs_info);
2917 if (ret)
2918 goto fail_qgroup;
2919
2920 mutex_lock(&fs_info->cleaner_mutex);
2921 ret = btrfs_recover_relocation(tree_root);
2922 mutex_unlock(&fs_info->cleaner_mutex);
2923 if (ret < 0) {
2924 printk(KERN_WARNING
2925 "BTRFS: failed to recover relocation\n");
2926 err = -EINVAL;
2927 goto fail_qgroup;
2928 }
2929 }
2930
2931 location.objectid = BTRFS_FS_TREE_OBJECTID;
2932 location.type = BTRFS_ROOT_ITEM_KEY;
2933 location.offset = 0;
2934
2935 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2936 if (IS_ERR(fs_info->fs_root)) {
2937 err = PTR_ERR(fs_info->fs_root);
2938 goto fail_qgroup;
2939 }
2940
2941 if (sb->s_flags & MS_RDONLY)
2942 return 0;
2943
2944 down_read(&fs_info->cleanup_work_sem);
2945 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2946 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2947 up_read(&fs_info->cleanup_work_sem);
2948 close_ctree(tree_root);
2949 return ret;
2950 }
2951 up_read(&fs_info->cleanup_work_sem);
2952
2953 ret = btrfs_resume_balance_async(fs_info);
2954 if (ret) {
2955 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2956 close_ctree(tree_root);
2957 return ret;
2958 }
2959
2960 ret = btrfs_resume_dev_replace_async(fs_info);
2961 if (ret) {
2962 pr_warn("BTRFS: failed to resume dev_replace\n");
2963 close_ctree(tree_root);
2964 return ret;
2965 }
2966
2967 btrfs_qgroup_rescan_resume(fs_info);
2968
2969 if (create_uuid_tree) {
2970 pr_info("BTRFS: creating UUID tree\n");
2971 ret = btrfs_create_uuid_tree(fs_info);
2972 if (ret) {
2973 pr_warn("BTRFS: failed to create the UUID tree %d\n",
2974 ret);
2975 close_ctree(tree_root);
2976 return ret;
2977 }
2978 } else if (check_uuid_tree ||
2979 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2980 pr_info("BTRFS: checking UUID tree\n");
2981 ret = btrfs_check_uuid_tree(fs_info);
2982 if (ret) {
2983 pr_warn("BTRFS: failed to check the UUID tree %d\n",
2984 ret);
2985 close_ctree(tree_root);
2986 return ret;
2987 }
2988 } else {
2989 fs_info->update_uuid_tree_gen = 1;
2990 }
2991
2992 fs_info->open = 1;
2993
2994 return 0;
2995
2996 fail_qgroup:
2997 btrfs_free_qgroup_config(fs_info);
2998 fail_trans_kthread:
2999 kthread_stop(fs_info->transaction_kthread);
3000 btrfs_cleanup_transaction(fs_info->tree_root);
3001 btrfs_free_fs_roots(fs_info);
3002 fail_cleaner:
3003 kthread_stop(fs_info->cleaner_kthread);
3004
3005 /*
3006 * make sure we're done with the btree inode before we stop our
3007 * kthreads
3008 */
3009 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3010
3011 fail_sysfs:
3012 btrfs_sysfs_remove_one(fs_info);
3013
3014 fail_block_groups:
3015 btrfs_put_block_group_cache(fs_info);
3016 btrfs_free_block_groups(fs_info);
3017
3018 fail_tree_roots:
3019 free_root_pointers(fs_info, 1);
3020 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3021
3022 fail_sb_buffer:
3023 btrfs_stop_all_workers(fs_info);
3024 fail_alloc:
3025 fail_iput:
3026 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3027
3028 iput(fs_info->btree_inode);
3029 fail_bio_counter:
3030 percpu_counter_destroy(&fs_info->bio_counter);
3031 fail_delalloc_bytes:
3032 percpu_counter_destroy(&fs_info->delalloc_bytes);
3033 fail_dirty_metadata_bytes:
3034 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3035 fail_bdi:
3036 bdi_destroy(&fs_info->bdi);
3037 fail_srcu:
3038 cleanup_srcu_struct(&fs_info->subvol_srcu);
3039 fail:
3040 btrfs_free_stripe_hash_table(fs_info);
3041 btrfs_close_devices(fs_info->fs_devices);
3042 return err;
3043
3044 recovery_tree_root:
3045 if (!btrfs_test_opt(tree_root, RECOVERY))
3046 goto fail_tree_roots;
3047
3048 free_root_pointers(fs_info, 0);
3049
3050 /* don't use the log in recovery mode, it won't be valid */
3051 btrfs_set_super_log_root(disk_super, 0);
3052
3053 /* we can't trust the free space cache either */
3054 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3055
3056 ret = next_root_backup(fs_info, fs_info->super_copy,
3057 &num_backups_tried, &backup_index);
3058 if (ret == -1)
3059 goto fail_block_groups;
3060 goto retry_root_backup;
3061 }
3062
3063 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3064 {
3065 if (uptodate) {
3066 set_buffer_uptodate(bh);
3067 } else {
3068 struct btrfs_device *device = (struct btrfs_device *)
3069 bh->b_private;
3070
3071 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3072 "I/O error on %s\n",
3073 rcu_str_deref(device->name));
3074 /* note, we dont' set_buffer_write_io_error because we have
3075 * our own ways of dealing with the IO errors
3076 */
3077 clear_buffer_uptodate(bh);
3078 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3079 }
3080 unlock_buffer(bh);
3081 put_bh(bh);
3082 }
3083
3084 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3085 {
3086 struct buffer_head *bh;
3087 struct buffer_head *latest = NULL;
3088 struct btrfs_super_block *super;
3089 int i;
3090 u64 transid = 0;
3091 u64 bytenr;
3092
3093 /* we would like to check all the supers, but that would make
3094 * a btrfs mount succeed after a mkfs from a different FS.
3095 * So, we need to add a special mount option to scan for
3096 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3097 */
3098 for (i = 0; i < 1; i++) {
3099 bytenr = btrfs_sb_offset(i);
3100 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3101 i_size_read(bdev->bd_inode))
3102 break;
3103 bh = __bread(bdev, bytenr / 4096,
3104 BTRFS_SUPER_INFO_SIZE);
3105 if (!bh)
3106 continue;
3107
3108 super = (struct btrfs_super_block *)bh->b_data;
3109 if (btrfs_super_bytenr(super) != bytenr ||
3110 btrfs_super_magic(super) != BTRFS_MAGIC) {
3111 brelse(bh);
3112 continue;
3113 }
3114
3115 if (!latest || btrfs_super_generation(super) > transid) {
3116 brelse(latest);
3117 latest = bh;
3118 transid = btrfs_super_generation(super);
3119 } else {
3120 brelse(bh);
3121 }
3122 }
3123 return latest;
3124 }
3125
3126 /*
3127 * this should be called twice, once with wait == 0 and
3128 * once with wait == 1. When wait == 0 is done, all the buffer heads
3129 * we write are pinned.
3130 *
3131 * They are released when wait == 1 is done.
3132 * max_mirrors must be the same for both runs, and it indicates how
3133 * many supers on this one device should be written.
3134 *
3135 * max_mirrors == 0 means to write them all.
3136 */
3137 static int write_dev_supers(struct btrfs_device *device,
3138 struct btrfs_super_block *sb,
3139 int do_barriers, int wait, int max_mirrors)
3140 {
3141 struct buffer_head *bh;
3142 int i;
3143 int ret;
3144 int errors = 0;
3145 u32 crc;
3146 u64 bytenr;
3147
3148 if (max_mirrors == 0)
3149 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3150
3151 for (i = 0; i < max_mirrors; i++) {
3152 bytenr = btrfs_sb_offset(i);
3153 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3154 device->commit_total_bytes)
3155 break;
3156
3157 if (wait) {
3158 bh = __find_get_block(device->bdev, bytenr / 4096,
3159 BTRFS_SUPER_INFO_SIZE);
3160 if (!bh) {
3161 errors++;
3162 continue;
3163 }
3164 wait_on_buffer(bh);
3165 if (!buffer_uptodate(bh))
3166 errors++;
3167
3168 /* drop our reference */
3169 brelse(bh);
3170
3171 /* drop the reference from the wait == 0 run */
3172 brelse(bh);
3173 continue;
3174 } else {
3175 btrfs_set_super_bytenr(sb, bytenr);
3176
3177 crc = ~(u32)0;
3178 crc = btrfs_csum_data((char *)sb +
3179 BTRFS_CSUM_SIZE, crc,
3180 BTRFS_SUPER_INFO_SIZE -
3181 BTRFS_CSUM_SIZE);
3182 btrfs_csum_final(crc, sb->csum);
3183
3184 /*
3185 * one reference for us, and we leave it for the
3186 * caller
3187 */
3188 bh = __getblk(device->bdev, bytenr / 4096,
3189 BTRFS_SUPER_INFO_SIZE);
3190 if (!bh) {
3191 printk(KERN_ERR "BTRFS: couldn't get super "
3192 "buffer head for bytenr %Lu\n", bytenr);
3193 errors++;
3194 continue;
3195 }
3196
3197 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3198
3199 /* one reference for submit_bh */
3200 get_bh(bh);
3201
3202 set_buffer_uptodate(bh);
3203 lock_buffer(bh);
3204 bh->b_end_io = btrfs_end_buffer_write_sync;
3205 bh->b_private = device;
3206 }
3207
3208 /*
3209 * we fua the first super. The others we allow
3210 * to go down lazy.
3211 */
3212 if (i == 0)
3213 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3214 else
3215 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3216 if (ret)
3217 errors++;
3218 }
3219 return errors < i ? 0 : -1;
3220 }
3221
3222 /*
3223 * endio for the write_dev_flush, this will wake anyone waiting
3224 * for the barrier when it is done
3225 */
3226 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3227 {
3228 if (err) {
3229 if (err == -EOPNOTSUPP)
3230 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3231 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3232 }
3233 if (bio->bi_private)
3234 complete(bio->bi_private);
3235 bio_put(bio);
3236 }
3237
3238 /*
3239 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3240 * sent down. With wait == 1, it waits for the previous flush.
3241 *
3242 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3243 * capable
3244 */
3245 static int write_dev_flush(struct btrfs_device *device, int wait)
3246 {
3247 struct bio *bio;
3248 int ret = 0;
3249
3250 if (device->nobarriers)
3251 return 0;
3252
3253 if (wait) {
3254 bio = device->flush_bio;
3255 if (!bio)
3256 return 0;
3257
3258 wait_for_completion(&device->flush_wait);
3259
3260 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3261 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3262 rcu_str_deref(device->name));
3263 device->nobarriers = 1;
3264 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3265 ret = -EIO;
3266 btrfs_dev_stat_inc_and_print(device,
3267 BTRFS_DEV_STAT_FLUSH_ERRS);
3268 }
3269
3270 /* drop the reference from the wait == 0 run */
3271 bio_put(bio);
3272 device->flush_bio = NULL;
3273
3274 return ret;
3275 }
3276
3277 /*
3278 * one reference for us, and we leave it for the
3279 * caller
3280 */
3281 device->flush_bio = NULL;
3282 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3283 if (!bio)
3284 return -ENOMEM;
3285
3286 bio->bi_end_io = btrfs_end_empty_barrier;
3287 bio->bi_bdev = device->bdev;
3288 init_completion(&device->flush_wait);
3289 bio->bi_private = &device->flush_wait;
3290 device->flush_bio = bio;
3291
3292 bio_get(bio);
3293 btrfsic_submit_bio(WRITE_FLUSH, bio);
3294
3295 return 0;
3296 }
3297
3298 /*
3299 * send an empty flush down to each device in parallel,
3300 * then wait for them
3301 */
3302 static int barrier_all_devices(struct btrfs_fs_info *info)
3303 {
3304 struct list_head *head;
3305 struct btrfs_device *dev;
3306 int errors_send = 0;
3307 int errors_wait = 0;
3308 int ret;
3309
3310 /* send down all the barriers */
3311 head = &info->fs_devices->devices;
3312 list_for_each_entry_rcu(dev, head, dev_list) {
3313 if (dev->missing)
3314 continue;
3315 if (!dev->bdev) {
3316 errors_send++;
3317 continue;
3318 }
3319 if (!dev->in_fs_metadata || !dev->writeable)
3320 continue;
3321
3322 ret = write_dev_flush(dev, 0);
3323 if (ret)
3324 errors_send++;
3325 }
3326
3327 /* wait for all the barriers */
3328 list_for_each_entry_rcu(dev, head, dev_list) {
3329 if (dev->missing)
3330 continue;
3331 if (!dev->bdev) {
3332 errors_wait++;
3333 continue;
3334 }
3335 if (!dev->in_fs_metadata || !dev->writeable)
3336 continue;
3337
3338 ret = write_dev_flush(dev, 1);
3339 if (ret)
3340 errors_wait++;
3341 }
3342 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3343 errors_wait > info->num_tolerated_disk_barrier_failures)
3344 return -EIO;
3345 return 0;
3346 }
3347
3348 int btrfs_calc_num_tolerated_disk_barrier_failures(
3349 struct btrfs_fs_info *fs_info)
3350 {
3351 struct btrfs_ioctl_space_info space;
3352 struct btrfs_space_info *sinfo;
3353 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3354 BTRFS_BLOCK_GROUP_SYSTEM,
3355 BTRFS_BLOCK_GROUP_METADATA,
3356 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3357 int num_types = 4;
3358 int i;
3359 int c;
3360 int num_tolerated_disk_barrier_failures =
3361 (int)fs_info->fs_devices->num_devices;
3362
3363 for (i = 0; i < num_types; i++) {
3364 struct btrfs_space_info *tmp;
3365
3366 sinfo = NULL;
3367 rcu_read_lock();
3368 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3369 if (tmp->flags == types[i]) {
3370 sinfo = tmp;
3371 break;
3372 }
3373 }
3374 rcu_read_unlock();
3375
3376 if (!sinfo)
3377 continue;
3378
3379 down_read(&sinfo->groups_sem);
3380 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3381 if (!list_empty(&sinfo->block_groups[c])) {
3382 u64 flags;
3383
3384 btrfs_get_block_group_info(
3385 &sinfo->block_groups[c], &space);
3386 if (space.total_bytes == 0 ||
3387 space.used_bytes == 0)
3388 continue;
3389 flags = space.flags;
3390 /*
3391 * return
3392 * 0: if dup, single or RAID0 is configured for
3393 * any of metadata, system or data, else
3394 * 1: if RAID5 is configured, or if RAID1 or
3395 * RAID10 is configured and only two mirrors
3396 * are used, else
3397 * 2: if RAID6 is configured, else
3398 * num_mirrors - 1: if RAID1 or RAID10 is
3399 * configured and more than
3400 * 2 mirrors are used.
3401 */
3402 if (num_tolerated_disk_barrier_failures > 0 &&
3403 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3404 BTRFS_BLOCK_GROUP_RAID0)) ||
3405 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3406 == 0)))
3407 num_tolerated_disk_barrier_failures = 0;
3408 else if (num_tolerated_disk_barrier_failures > 1) {
3409 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3410 BTRFS_BLOCK_GROUP_RAID5 |
3411 BTRFS_BLOCK_GROUP_RAID10)) {
3412 num_tolerated_disk_barrier_failures = 1;
3413 } else if (flags &
3414 BTRFS_BLOCK_GROUP_RAID6) {
3415 num_tolerated_disk_barrier_failures = 2;
3416 }
3417 }
3418 }
3419 }
3420 up_read(&sinfo->groups_sem);
3421 }
3422
3423 return num_tolerated_disk_barrier_failures;
3424 }
3425
3426 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3427 {
3428 struct list_head *head;
3429 struct btrfs_device *dev;
3430 struct btrfs_super_block *sb;
3431 struct btrfs_dev_item *dev_item;
3432 int ret;
3433 int do_barriers;
3434 int max_errors;
3435 int total_errors = 0;
3436 u64 flags;
3437
3438 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3439 backup_super_roots(root->fs_info);
3440
3441 sb = root->fs_info->super_for_commit;
3442 dev_item = &sb->dev_item;
3443
3444 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3445 head = &root->fs_info->fs_devices->devices;
3446 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3447
3448 if (do_barriers) {
3449 ret = barrier_all_devices(root->fs_info);
3450 if (ret) {
3451 mutex_unlock(
3452 &root->fs_info->fs_devices->device_list_mutex);
3453 btrfs_error(root->fs_info, ret,
3454 "errors while submitting device barriers.");
3455 return ret;
3456 }
3457 }
3458
3459 list_for_each_entry_rcu(dev, head, dev_list) {
3460 if (!dev->bdev) {
3461 total_errors++;
3462 continue;
3463 }
3464 if (!dev->in_fs_metadata || !dev->writeable)
3465 continue;
3466
3467 btrfs_set_stack_device_generation(dev_item, 0);
3468 btrfs_set_stack_device_type(dev_item, dev->type);
3469 btrfs_set_stack_device_id(dev_item, dev->devid);
3470 btrfs_set_stack_device_total_bytes(dev_item,
3471 dev->commit_total_bytes);
3472 btrfs_set_stack_device_bytes_used(dev_item,
3473 dev->commit_bytes_used);
3474 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3475 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3476 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3477 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3478 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3479
3480 flags = btrfs_super_flags(sb);
3481 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3482
3483 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3484 if (ret)
3485 total_errors++;
3486 }
3487 if (total_errors > max_errors) {
3488 btrfs_err(root->fs_info, "%d errors while writing supers",
3489 total_errors);
3490 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3491
3492 /* FUA is masked off if unsupported and can't be the reason */
3493 btrfs_error(root->fs_info, -EIO,
3494 "%d errors while writing supers", total_errors);
3495 return -EIO;
3496 }
3497
3498 total_errors = 0;
3499 list_for_each_entry_rcu(dev, head, dev_list) {
3500 if (!dev->bdev)
3501 continue;
3502 if (!dev->in_fs_metadata || !dev->writeable)
3503 continue;
3504
3505 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3506 if (ret)
3507 total_errors++;
3508 }
3509 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3510 if (total_errors > max_errors) {
3511 btrfs_error(root->fs_info, -EIO,
3512 "%d errors while writing supers", total_errors);
3513 return -EIO;
3514 }
3515 return 0;
3516 }
3517
3518 int write_ctree_super(struct btrfs_trans_handle *trans,
3519 struct btrfs_root *root, int max_mirrors)
3520 {
3521 return write_all_supers(root, max_mirrors);
3522 }
3523
3524 /* Drop a fs root from the radix tree and free it. */
3525 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3526 struct btrfs_root *root)
3527 {
3528 spin_lock(&fs_info->fs_roots_radix_lock);
3529 radix_tree_delete(&fs_info->fs_roots_radix,
3530 (unsigned long)root->root_key.objectid);
3531 spin_unlock(&fs_info->fs_roots_radix_lock);
3532
3533 if (btrfs_root_refs(&root->root_item) == 0)
3534 synchronize_srcu(&fs_info->subvol_srcu);
3535
3536 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3537 btrfs_free_log(NULL, root);
3538
3539 if (root->free_ino_pinned)
3540 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3541 if (root->free_ino_ctl)
3542 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3543 free_fs_root(root);
3544 }
3545
3546 static void free_fs_root(struct btrfs_root *root)
3547 {
3548 iput(root->ino_cache_inode);
3549 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3550 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3551 root->orphan_block_rsv = NULL;
3552 if (root->anon_dev)
3553 free_anon_bdev(root->anon_dev);
3554 if (root->subv_writers)
3555 btrfs_free_subvolume_writers(root->subv_writers);
3556 free_extent_buffer(root->node);
3557 free_extent_buffer(root->commit_root);
3558 kfree(root->free_ino_ctl);
3559 kfree(root->free_ino_pinned);
3560 kfree(root->name);
3561 btrfs_put_fs_root(root);
3562 }
3563
3564 void btrfs_free_fs_root(struct btrfs_root *root)
3565 {
3566 free_fs_root(root);
3567 }
3568
3569 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3570 {
3571 u64 root_objectid = 0;
3572 struct btrfs_root *gang[8];
3573 int i = 0;
3574 int err = 0;
3575 unsigned int ret = 0;
3576 int index;
3577
3578 while (1) {
3579 index = srcu_read_lock(&fs_info->subvol_srcu);
3580 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3581 (void **)gang, root_objectid,
3582 ARRAY_SIZE(gang));
3583 if (!ret) {
3584 srcu_read_unlock(&fs_info->subvol_srcu, index);
3585 break;
3586 }
3587 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3588
3589 for (i = 0; i < ret; i++) {
3590 /* Avoid to grab roots in dead_roots */
3591 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3592 gang[i] = NULL;
3593 continue;
3594 }
3595 /* grab all the search result for later use */
3596 gang[i] = btrfs_grab_fs_root(gang[i]);
3597 }
3598 srcu_read_unlock(&fs_info->subvol_srcu, index);
3599
3600 for (i = 0; i < ret; i++) {
3601 if (!gang[i])
3602 continue;
3603 root_objectid = gang[i]->root_key.objectid;
3604 err = btrfs_orphan_cleanup(gang[i]);
3605 if (err)
3606 break;
3607 btrfs_put_fs_root(gang[i]);
3608 }
3609 root_objectid++;
3610 }
3611
3612 /* release the uncleaned roots due to error */
3613 for (; i < ret; i++) {
3614 if (gang[i])
3615 btrfs_put_fs_root(gang[i]);
3616 }
3617 return err;
3618 }
3619
3620 int btrfs_commit_super(struct btrfs_root *root)
3621 {
3622 struct btrfs_trans_handle *trans;
3623
3624 mutex_lock(&root->fs_info->cleaner_mutex);
3625 btrfs_run_delayed_iputs(root);
3626 mutex_unlock(&root->fs_info->cleaner_mutex);
3627 wake_up_process(root->fs_info->cleaner_kthread);
3628
3629 /* wait until ongoing cleanup work done */
3630 down_write(&root->fs_info->cleanup_work_sem);
3631 up_write(&root->fs_info->cleanup_work_sem);
3632
3633 trans = btrfs_join_transaction(root);
3634 if (IS_ERR(trans))
3635 return PTR_ERR(trans);
3636 return btrfs_commit_transaction(trans, root);
3637 }
3638
3639 void close_ctree(struct btrfs_root *root)
3640 {
3641 struct btrfs_fs_info *fs_info = root->fs_info;
3642 int ret;
3643
3644 fs_info->closing = 1;
3645 smp_mb();
3646
3647 /* wait for the uuid_scan task to finish */
3648 down(&fs_info->uuid_tree_rescan_sem);
3649 /* avoid complains from lockdep et al., set sem back to initial state */
3650 up(&fs_info->uuid_tree_rescan_sem);
3651
3652 /* pause restriper - we want to resume on mount */
3653 btrfs_pause_balance(fs_info);
3654
3655 btrfs_dev_replace_suspend_for_unmount(fs_info);
3656
3657 btrfs_scrub_cancel(fs_info);
3658
3659 /* wait for any defraggers to finish */
3660 wait_event(fs_info->transaction_wait,
3661 (atomic_read(&fs_info->defrag_running) == 0));
3662
3663 /* clear out the rbtree of defraggable inodes */
3664 btrfs_cleanup_defrag_inodes(fs_info);
3665
3666 cancel_work_sync(&fs_info->async_reclaim_work);
3667
3668 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3669 ret = btrfs_commit_super(root);
3670 if (ret)
3671 btrfs_err(root->fs_info, "commit super ret %d", ret);
3672 }
3673
3674 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3675 btrfs_error_commit_super(root);
3676
3677 kthread_stop(fs_info->transaction_kthread);
3678 kthread_stop(fs_info->cleaner_kthread);
3679
3680 fs_info->closing = 2;
3681 smp_mb();
3682
3683 btrfs_free_qgroup_config(root->fs_info);
3684
3685 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3686 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3687 percpu_counter_sum(&fs_info->delalloc_bytes));
3688 }
3689
3690 btrfs_sysfs_remove_one(fs_info);
3691
3692 btrfs_free_fs_roots(fs_info);
3693
3694 btrfs_put_block_group_cache(fs_info);
3695
3696 btrfs_free_block_groups(fs_info);
3697
3698 /*
3699 * we must make sure there is not any read request to
3700 * submit after we stopping all workers.
3701 */
3702 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3703 btrfs_stop_all_workers(fs_info);
3704
3705 fs_info->open = 0;
3706 free_root_pointers(fs_info, 1);
3707
3708 iput(fs_info->btree_inode);
3709
3710 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3711 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3712 btrfsic_unmount(root, fs_info->fs_devices);
3713 #endif
3714
3715 btrfs_close_devices(fs_info->fs_devices);
3716 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3717
3718 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3719 percpu_counter_destroy(&fs_info->delalloc_bytes);
3720 percpu_counter_destroy(&fs_info->bio_counter);
3721 bdi_destroy(&fs_info->bdi);
3722 cleanup_srcu_struct(&fs_info->subvol_srcu);
3723
3724 btrfs_free_stripe_hash_table(fs_info);
3725
3726 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3727 root->orphan_block_rsv = NULL;
3728
3729 lock_chunks(root);
3730 while (!list_empty(&fs_info->pinned_chunks)) {
3731 struct extent_map *em;
3732
3733 em = list_first_entry(&fs_info->pinned_chunks,
3734 struct extent_map, list);
3735 list_del_init(&em->list);
3736 free_extent_map(em);
3737 }
3738 unlock_chunks(root);
3739 }
3740
3741 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3742 int atomic)
3743 {
3744 int ret;
3745 struct inode *btree_inode = buf->pages[0]->mapping->host;
3746
3747 ret = extent_buffer_uptodate(buf);
3748 if (!ret)
3749 return ret;
3750
3751 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3752 parent_transid, atomic);
3753 if (ret == -EAGAIN)
3754 return ret;
3755 return !ret;
3756 }
3757
3758 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3759 {
3760 return set_extent_buffer_uptodate(buf);
3761 }
3762
3763 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3764 {
3765 struct btrfs_root *root;
3766 u64 transid = btrfs_header_generation(buf);
3767 int was_dirty;
3768
3769 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3770 /*
3771 * This is a fast path so only do this check if we have sanity tests
3772 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3773 * outside of the sanity tests.
3774 */
3775 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3776 return;
3777 #endif
3778 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3779 btrfs_assert_tree_locked(buf);
3780 if (transid != root->fs_info->generation)
3781 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3782 "found %llu running %llu\n",
3783 buf->start, transid, root->fs_info->generation);
3784 was_dirty = set_extent_buffer_dirty(buf);
3785 if (!was_dirty)
3786 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3787 buf->len,
3788 root->fs_info->dirty_metadata_batch);
3789 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3790 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3791 btrfs_print_leaf(root, buf);
3792 ASSERT(0);
3793 }
3794 #endif
3795 }
3796
3797 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3798 int flush_delayed)
3799 {
3800 /*
3801 * looks as though older kernels can get into trouble with
3802 * this code, they end up stuck in balance_dirty_pages forever
3803 */
3804 int ret;
3805
3806 if (current->flags & PF_MEMALLOC)
3807 return;
3808
3809 if (flush_delayed)
3810 btrfs_balance_delayed_items(root);
3811
3812 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3813 BTRFS_DIRTY_METADATA_THRESH);
3814 if (ret > 0) {
3815 balance_dirty_pages_ratelimited(
3816 root->fs_info->btree_inode->i_mapping);
3817 }
3818 return;
3819 }
3820
3821 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3822 {
3823 __btrfs_btree_balance_dirty(root, 1);
3824 }
3825
3826 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3827 {
3828 __btrfs_btree_balance_dirty(root, 0);
3829 }
3830
3831 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3832 {
3833 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3834 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3835 }
3836
3837 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3838 int read_only)
3839 {
3840 struct btrfs_super_block *sb = fs_info->super_copy;
3841 int ret = 0;
3842
3843 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3844 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3845 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3846 ret = -EINVAL;
3847 }
3848 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3849 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3850 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3851 ret = -EINVAL;
3852 }
3853 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3854 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3855 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3856 ret = -EINVAL;
3857 }
3858
3859 /*
3860 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3861 * items yet, they'll be verified later. Issue just a warning.
3862 */
3863 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3864 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3865 btrfs_super_root(sb));
3866 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3867 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3868 btrfs_super_chunk_root(sb));
3869 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3870 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3871 btrfs_super_log_root(sb));
3872
3873 /*
3874 * Check the lower bound, the alignment and other constraints are
3875 * checked later.
3876 */
3877 if (btrfs_super_nodesize(sb) < 4096) {
3878 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3879 btrfs_super_nodesize(sb));
3880 ret = -EINVAL;
3881 }
3882 if (btrfs_super_sectorsize(sb) < 4096) {
3883 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3884 btrfs_super_sectorsize(sb));
3885 ret = -EINVAL;
3886 }
3887
3888 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3889 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3890 fs_info->fsid, sb->dev_item.fsid);
3891 ret = -EINVAL;
3892 }
3893
3894 /*
3895 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3896 * done later
3897 */
3898 if (btrfs_super_num_devices(sb) > (1UL << 31))
3899 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
3900 btrfs_super_num_devices(sb));
3901 if (btrfs_super_num_devices(sb) == 0) {
3902 printk(KERN_ERR "BTRFS: number of devices is 0\n");
3903 ret = -EINVAL;
3904 }
3905
3906 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
3907 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
3908 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
3909 ret = -EINVAL;
3910 }
3911
3912 /*
3913 * Obvious sys_chunk_array corruptions, it must hold at least one key
3914 * and one chunk
3915 */
3916 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
3917 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
3918 btrfs_super_sys_array_size(sb),
3919 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
3920 ret = -EINVAL;
3921 }
3922 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
3923 + sizeof(struct btrfs_chunk)) {
3924 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
3925 btrfs_super_sys_array_size(sb),
3926 sizeof(struct btrfs_disk_key)
3927 + sizeof(struct btrfs_chunk));
3928 ret = -EINVAL;
3929 }
3930
3931 /*
3932 * The generation is a global counter, we'll trust it more than the others
3933 * but it's still possible that it's the one that's wrong.
3934 */
3935 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
3936 printk(KERN_WARNING
3937 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
3938 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
3939 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
3940 && btrfs_super_cache_generation(sb) != (u64)-1)
3941 printk(KERN_WARNING
3942 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
3943 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
3944
3945 return ret;
3946 }
3947
3948 static void btrfs_error_commit_super(struct btrfs_root *root)
3949 {
3950 mutex_lock(&root->fs_info->cleaner_mutex);
3951 btrfs_run_delayed_iputs(root);
3952 mutex_unlock(&root->fs_info->cleaner_mutex);
3953
3954 down_write(&root->fs_info->cleanup_work_sem);
3955 up_write(&root->fs_info->cleanup_work_sem);
3956
3957 /* cleanup FS via transaction */
3958 btrfs_cleanup_transaction(root);
3959 }
3960
3961 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3962 {
3963 struct btrfs_ordered_extent *ordered;
3964
3965 spin_lock(&root->ordered_extent_lock);
3966 /*
3967 * This will just short circuit the ordered completion stuff which will
3968 * make sure the ordered extent gets properly cleaned up.
3969 */
3970 list_for_each_entry(ordered, &root->ordered_extents,
3971 root_extent_list)
3972 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3973 spin_unlock(&root->ordered_extent_lock);
3974 }
3975
3976 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3977 {
3978 struct btrfs_root *root;
3979 struct list_head splice;
3980
3981 INIT_LIST_HEAD(&splice);
3982
3983 spin_lock(&fs_info->ordered_root_lock);
3984 list_splice_init(&fs_info->ordered_roots, &splice);
3985 while (!list_empty(&splice)) {
3986 root = list_first_entry(&splice, struct btrfs_root,
3987 ordered_root);
3988 list_move_tail(&root->ordered_root,
3989 &fs_info->ordered_roots);
3990
3991 spin_unlock(&fs_info->ordered_root_lock);
3992 btrfs_destroy_ordered_extents(root);
3993
3994 cond_resched();
3995 spin_lock(&fs_info->ordered_root_lock);
3996 }
3997 spin_unlock(&fs_info->ordered_root_lock);
3998 }
3999
4000 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4001 struct btrfs_root *root)
4002 {
4003 struct rb_node *node;
4004 struct btrfs_delayed_ref_root *delayed_refs;
4005 struct btrfs_delayed_ref_node *ref;
4006 int ret = 0;
4007
4008 delayed_refs = &trans->delayed_refs;
4009
4010 spin_lock(&delayed_refs->lock);
4011 if (atomic_read(&delayed_refs->num_entries) == 0) {
4012 spin_unlock(&delayed_refs->lock);
4013 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4014 return ret;
4015 }
4016
4017 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4018 struct btrfs_delayed_ref_head *head;
4019 bool pin_bytes = false;
4020
4021 head = rb_entry(node, struct btrfs_delayed_ref_head,
4022 href_node);
4023 if (!mutex_trylock(&head->mutex)) {
4024 atomic_inc(&head->node.refs);
4025 spin_unlock(&delayed_refs->lock);
4026
4027 mutex_lock(&head->mutex);
4028 mutex_unlock(&head->mutex);
4029 btrfs_put_delayed_ref(&head->node);
4030 spin_lock(&delayed_refs->lock);
4031 continue;
4032 }
4033 spin_lock(&head->lock);
4034 while ((node = rb_first(&head->ref_root)) != NULL) {
4035 ref = rb_entry(node, struct btrfs_delayed_ref_node,
4036 rb_node);
4037 ref->in_tree = 0;
4038 rb_erase(&ref->rb_node, &head->ref_root);
4039 atomic_dec(&delayed_refs->num_entries);
4040 btrfs_put_delayed_ref(ref);
4041 }
4042 if (head->must_insert_reserved)
4043 pin_bytes = true;
4044 btrfs_free_delayed_extent_op(head->extent_op);
4045 delayed_refs->num_heads--;
4046 if (head->processing == 0)
4047 delayed_refs->num_heads_ready--;
4048 atomic_dec(&delayed_refs->num_entries);
4049 head->node.in_tree = 0;
4050 rb_erase(&head->href_node, &delayed_refs->href_root);
4051 spin_unlock(&head->lock);
4052 spin_unlock(&delayed_refs->lock);
4053 mutex_unlock(&head->mutex);
4054
4055 if (pin_bytes)
4056 btrfs_pin_extent(root, head->node.bytenr,
4057 head->node.num_bytes, 1);
4058 btrfs_put_delayed_ref(&head->node);
4059 cond_resched();
4060 spin_lock(&delayed_refs->lock);
4061 }
4062
4063 spin_unlock(&delayed_refs->lock);
4064
4065 return ret;
4066 }
4067
4068 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4069 {
4070 struct btrfs_inode *btrfs_inode;
4071 struct list_head splice;
4072
4073 INIT_LIST_HEAD(&splice);
4074
4075 spin_lock(&root->delalloc_lock);
4076 list_splice_init(&root->delalloc_inodes, &splice);
4077
4078 while (!list_empty(&splice)) {
4079 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4080 delalloc_inodes);
4081
4082 list_del_init(&btrfs_inode->delalloc_inodes);
4083 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4084 &btrfs_inode->runtime_flags);
4085 spin_unlock(&root->delalloc_lock);
4086
4087 btrfs_invalidate_inodes(btrfs_inode->root);
4088
4089 spin_lock(&root->delalloc_lock);
4090 }
4091
4092 spin_unlock(&root->delalloc_lock);
4093 }
4094
4095 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4096 {
4097 struct btrfs_root *root;
4098 struct list_head splice;
4099
4100 INIT_LIST_HEAD(&splice);
4101
4102 spin_lock(&fs_info->delalloc_root_lock);
4103 list_splice_init(&fs_info->delalloc_roots, &splice);
4104 while (!list_empty(&splice)) {
4105 root = list_first_entry(&splice, struct btrfs_root,
4106 delalloc_root);
4107 list_del_init(&root->delalloc_root);
4108 root = btrfs_grab_fs_root(root);
4109 BUG_ON(!root);
4110 spin_unlock(&fs_info->delalloc_root_lock);
4111
4112 btrfs_destroy_delalloc_inodes(root);
4113 btrfs_put_fs_root(root);
4114
4115 spin_lock(&fs_info->delalloc_root_lock);
4116 }
4117 spin_unlock(&fs_info->delalloc_root_lock);
4118 }
4119
4120 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4121 struct extent_io_tree *dirty_pages,
4122 int mark)
4123 {
4124 int ret;
4125 struct extent_buffer *eb;
4126 u64 start = 0;
4127 u64 end;
4128
4129 while (1) {
4130 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4131 mark, NULL);
4132 if (ret)
4133 break;
4134
4135 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4136 while (start <= end) {
4137 eb = btrfs_find_tree_block(root, start);
4138 start += root->nodesize;
4139 if (!eb)
4140 continue;
4141 wait_on_extent_buffer_writeback(eb);
4142
4143 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4144 &eb->bflags))
4145 clear_extent_buffer_dirty(eb);
4146 free_extent_buffer_stale(eb);
4147 }
4148 }
4149
4150 return ret;
4151 }
4152
4153 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4154 struct extent_io_tree *pinned_extents)
4155 {
4156 struct extent_io_tree *unpin;
4157 u64 start;
4158 u64 end;
4159 int ret;
4160 bool loop = true;
4161
4162 unpin = pinned_extents;
4163 again:
4164 while (1) {
4165 ret = find_first_extent_bit(unpin, 0, &start, &end,
4166 EXTENT_DIRTY, NULL);
4167 if (ret)
4168 break;
4169
4170 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4171 btrfs_error_unpin_extent_range(root, start, end);
4172 cond_resched();
4173 }
4174
4175 if (loop) {
4176 if (unpin == &root->fs_info->freed_extents[0])
4177 unpin = &root->fs_info->freed_extents[1];
4178 else
4179 unpin = &root->fs_info->freed_extents[0];
4180 loop = false;
4181 goto again;
4182 }
4183
4184 return 0;
4185 }
4186
4187 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4188 struct btrfs_fs_info *fs_info)
4189 {
4190 struct btrfs_ordered_extent *ordered;
4191
4192 spin_lock(&fs_info->trans_lock);
4193 while (!list_empty(&cur_trans->pending_ordered)) {
4194 ordered = list_first_entry(&cur_trans->pending_ordered,
4195 struct btrfs_ordered_extent,
4196 trans_list);
4197 list_del_init(&ordered->trans_list);
4198 spin_unlock(&fs_info->trans_lock);
4199
4200 btrfs_put_ordered_extent(ordered);
4201 spin_lock(&fs_info->trans_lock);
4202 }
4203 spin_unlock(&fs_info->trans_lock);
4204 }
4205
4206 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4207 struct btrfs_root *root)
4208 {
4209 btrfs_destroy_delayed_refs(cur_trans, root);
4210
4211 cur_trans->state = TRANS_STATE_COMMIT_START;
4212 wake_up(&root->fs_info->transaction_blocked_wait);
4213
4214 cur_trans->state = TRANS_STATE_UNBLOCKED;
4215 wake_up(&root->fs_info->transaction_wait);
4216
4217 btrfs_free_pending_ordered(cur_trans, root->fs_info);
4218 btrfs_destroy_delayed_inodes(root);
4219 btrfs_assert_delayed_root_empty(root);
4220
4221 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4222 EXTENT_DIRTY);
4223 btrfs_destroy_pinned_extent(root,
4224 root->fs_info->pinned_extents);
4225
4226 cur_trans->state =TRANS_STATE_COMPLETED;
4227 wake_up(&cur_trans->commit_wait);
4228
4229 /*
4230 memset(cur_trans, 0, sizeof(*cur_trans));
4231 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4232 */
4233 }
4234
4235 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4236 {
4237 struct btrfs_transaction *t;
4238
4239 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4240
4241 spin_lock(&root->fs_info->trans_lock);
4242 while (!list_empty(&root->fs_info->trans_list)) {
4243 t = list_first_entry(&root->fs_info->trans_list,
4244 struct btrfs_transaction, list);
4245 if (t->state >= TRANS_STATE_COMMIT_START) {
4246 atomic_inc(&t->use_count);
4247 spin_unlock(&root->fs_info->trans_lock);
4248 btrfs_wait_for_commit(root, t->transid);
4249 btrfs_put_transaction(t);
4250 spin_lock(&root->fs_info->trans_lock);
4251 continue;
4252 }
4253 if (t == root->fs_info->running_transaction) {
4254 t->state = TRANS_STATE_COMMIT_DOING;
4255 spin_unlock(&root->fs_info->trans_lock);
4256 /*
4257 * We wait for 0 num_writers since we don't hold a trans
4258 * handle open currently for this transaction.
4259 */
4260 wait_event(t->writer_wait,
4261 atomic_read(&t->num_writers) == 0);
4262 } else {
4263 spin_unlock(&root->fs_info->trans_lock);
4264 }
4265 btrfs_cleanup_one_transaction(t, root);
4266
4267 spin_lock(&root->fs_info->trans_lock);
4268 if (t == root->fs_info->running_transaction)
4269 root->fs_info->running_transaction = NULL;
4270 list_del_init(&t->list);
4271 spin_unlock(&root->fs_info->trans_lock);
4272
4273 btrfs_put_transaction(t);
4274 trace_btrfs_transaction_commit(root);
4275 spin_lock(&root->fs_info->trans_lock);
4276 }
4277 spin_unlock(&root->fs_info->trans_lock);
4278 btrfs_destroy_all_ordered_extents(root->fs_info);
4279 btrfs_destroy_delayed_inodes(root);
4280 btrfs_assert_delayed_root_empty(root);
4281 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4282 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4283 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4284
4285 return 0;
4286 }
4287
4288 static struct extent_io_ops btree_extent_io_ops = {
4289 .readpage_end_io_hook = btree_readpage_end_io_hook,
4290 .readpage_io_failed_hook = btree_io_failed_hook,
4291 .submit_bio_hook = btree_submit_bio_hook,
4292 /* note we're sharing with inode.c for the merge bio hook */
4293 .merge_bio_hook = btrfs_merge_bio_hook,
4294 };
This page took 0.118103 seconds and 5 git commands to generate.