Merge tag 'pci-v3.18-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79 struct btrfs_end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 enum btrfs_wq_endio_type metadata;
86 struct list_head list;
87 struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
115 struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
121 int rw;
122 int mirror_num;
123 unsigned long bio_flags;
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
129 struct btrfs_work work;
130 int error;
131 };
132
133 /*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
143 *
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
147 *
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
151 *
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
155 */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 # error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
178 { .id = 0, .name_stem = "tree" },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197 {
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 struct page *page, size_t pg_offset, u64 start, u64 len,
219 int create)
220 {
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
225 read_lock(&em_tree->lock);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 read_unlock(&em_tree->lock);
231 goto out;
232 }
233 read_unlock(&em_tree->lock);
234
235 em = alloc_extent_map();
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
241 em->len = (u64)-1;
242 em->block_len = (u64)-1;
243 em->block_start = 0;
244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246 write_lock(&em_tree->lock);
247 ret = add_extent_mapping(em_tree, em, 0);
248 if (ret == -EEXIST) {
249 free_extent_map(em);
250 em = lookup_extent_mapping(em_tree, start, len);
251 if (!em)
252 em = ERR_PTR(-EIO);
253 } else if (ret) {
254 free_extent_map(em);
255 em = ERR_PTR(ret);
256 }
257 write_unlock(&em_tree->lock);
258
259 out:
260 return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 put_unaligned_le32(~crc, result);
271 }
272
273 /*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
277 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
278 int verify)
279 {
280 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
281 char *result = NULL;
282 unsigned long len;
283 unsigned long cur_len;
284 unsigned long offset = BTRFS_CSUM_SIZE;
285 char *kaddr;
286 unsigned long map_start;
287 unsigned long map_len;
288 int err;
289 u32 crc = ~(u32)0;
290 unsigned long inline_result;
291
292 len = buf->len - offset;
293 while (len > 0) {
294 err = map_private_extent_buffer(buf, offset, 32,
295 &kaddr, &map_start, &map_len);
296 if (err)
297 return 1;
298 cur_len = min(len, map_len - (offset - map_start));
299 crc = btrfs_csum_data(kaddr + offset - map_start,
300 crc, cur_len);
301 len -= cur_len;
302 offset += cur_len;
303 }
304 if (csum_size > sizeof(inline_result)) {
305 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
306 if (!result)
307 return 1;
308 } else {
309 result = (char *)&inline_result;
310 }
311
312 btrfs_csum_final(crc, result);
313
314 if (verify) {
315 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
316 u32 val;
317 u32 found = 0;
318 memcpy(&found, result, csum_size);
319
320 read_extent_buffer(buf, &val, 0, csum_size);
321 printk_ratelimited(KERN_INFO
322 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
323 "level %d\n",
324 root->fs_info->sb->s_id, buf->start,
325 val, found, btrfs_header_level(buf));
326 if (result != (char *)&inline_result)
327 kfree(result);
328 return 1;
329 }
330 } else {
331 write_extent_buffer(buf, result, 0, csum_size);
332 }
333 if (result != (char *)&inline_result)
334 kfree(result);
335 return 0;
336 }
337
338 /*
339 * we can't consider a given block up to date unless the transid of the
340 * block matches the transid in the parent node's pointer. This is how we
341 * detect blocks that either didn't get written at all or got written
342 * in the wrong place.
343 */
344 static int verify_parent_transid(struct extent_io_tree *io_tree,
345 struct extent_buffer *eb, u64 parent_transid,
346 int atomic)
347 {
348 struct extent_state *cached_state = NULL;
349 int ret;
350 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
351
352 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
353 return 0;
354
355 if (atomic)
356 return -EAGAIN;
357
358 if (need_lock) {
359 btrfs_tree_read_lock(eb);
360 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
361 }
362
363 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
364 0, &cached_state);
365 if (extent_buffer_uptodate(eb) &&
366 btrfs_header_generation(eb) == parent_transid) {
367 ret = 0;
368 goto out;
369 }
370 printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
371 eb->fs_info->sb->s_id, eb->start,
372 parent_transid, btrfs_header_generation(eb));
373 ret = 1;
374
375 /*
376 * Things reading via commit roots that don't have normal protection,
377 * like send, can have a really old block in cache that may point at a
378 * block that has been free'd and re-allocated. So don't clear uptodate
379 * if we find an eb that is under IO (dirty/writeback) because we could
380 * end up reading in the stale data and then writing it back out and
381 * making everybody very sad.
382 */
383 if (!extent_buffer_under_io(eb))
384 clear_extent_buffer_uptodate(eb);
385 out:
386 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
387 &cached_state, GFP_NOFS);
388 if (need_lock)
389 btrfs_tree_read_unlock_blocking(eb);
390 return ret;
391 }
392
393 /*
394 * Return 0 if the superblock checksum type matches the checksum value of that
395 * algorithm. Pass the raw disk superblock data.
396 */
397 static int btrfs_check_super_csum(char *raw_disk_sb)
398 {
399 struct btrfs_super_block *disk_sb =
400 (struct btrfs_super_block *)raw_disk_sb;
401 u16 csum_type = btrfs_super_csum_type(disk_sb);
402 int ret = 0;
403
404 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
405 u32 crc = ~(u32)0;
406 const int csum_size = sizeof(crc);
407 char result[csum_size];
408
409 /*
410 * The super_block structure does not span the whole
411 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
412 * is filled with zeros and is included in the checkum.
413 */
414 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
415 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
416 btrfs_csum_final(crc, result);
417
418 if (memcmp(raw_disk_sb, result, csum_size))
419 ret = 1;
420
421 if (ret && btrfs_super_generation(disk_sb) < 10) {
422 printk(KERN_WARNING
423 "BTRFS: super block crcs don't match, older mkfs detected\n");
424 ret = 0;
425 }
426 }
427
428 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
429 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
430 csum_type);
431 ret = 1;
432 }
433
434 return ret;
435 }
436
437 /*
438 * helper to read a given tree block, doing retries as required when
439 * the checksums don't match and we have alternate mirrors to try.
440 */
441 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
442 struct extent_buffer *eb,
443 u64 start, u64 parent_transid)
444 {
445 struct extent_io_tree *io_tree;
446 int failed = 0;
447 int ret;
448 int num_copies = 0;
449 int mirror_num = 0;
450 int failed_mirror = 0;
451
452 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
453 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
454 while (1) {
455 ret = read_extent_buffer_pages(io_tree, eb, start,
456 WAIT_COMPLETE,
457 btree_get_extent, mirror_num);
458 if (!ret) {
459 if (!verify_parent_transid(io_tree, eb,
460 parent_transid, 0))
461 break;
462 else
463 ret = -EIO;
464 }
465
466 /*
467 * This buffer's crc is fine, but its contents are corrupted, so
468 * there is no reason to read the other copies, they won't be
469 * any less wrong.
470 */
471 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
472 break;
473
474 num_copies = btrfs_num_copies(root->fs_info,
475 eb->start, eb->len);
476 if (num_copies == 1)
477 break;
478
479 if (!failed_mirror) {
480 failed = 1;
481 failed_mirror = eb->read_mirror;
482 }
483
484 mirror_num++;
485 if (mirror_num == failed_mirror)
486 mirror_num++;
487
488 if (mirror_num > num_copies)
489 break;
490 }
491
492 if (failed && !ret && failed_mirror)
493 repair_eb_io_failure(root, eb, failed_mirror);
494
495 return ret;
496 }
497
498 /*
499 * checksum a dirty tree block before IO. This has extra checks to make sure
500 * we only fill in the checksum field in the first page of a multi-page block
501 */
502
503 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
504 {
505 u64 start = page_offset(page);
506 u64 found_start;
507 struct extent_buffer *eb;
508
509 eb = (struct extent_buffer *)page->private;
510 if (page != eb->pages[0])
511 return 0;
512 found_start = btrfs_header_bytenr(eb);
513 if (WARN_ON(found_start != start || !PageUptodate(page)))
514 return 0;
515 csum_tree_block(root, eb, 0);
516 return 0;
517 }
518
519 static int check_tree_block_fsid(struct btrfs_root *root,
520 struct extent_buffer *eb)
521 {
522 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
523 u8 fsid[BTRFS_UUID_SIZE];
524 int ret = 1;
525
526 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
527 while (fs_devices) {
528 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
529 ret = 0;
530 break;
531 }
532 fs_devices = fs_devices->seed;
533 }
534 return ret;
535 }
536
537 #define CORRUPT(reason, eb, root, slot) \
538 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
539 "root=%llu, slot=%d", reason, \
540 btrfs_header_bytenr(eb), root->objectid, slot)
541
542 static noinline int check_leaf(struct btrfs_root *root,
543 struct extent_buffer *leaf)
544 {
545 struct btrfs_key key;
546 struct btrfs_key leaf_key;
547 u32 nritems = btrfs_header_nritems(leaf);
548 int slot;
549
550 if (nritems == 0)
551 return 0;
552
553 /* Check the 0 item */
554 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
555 BTRFS_LEAF_DATA_SIZE(root)) {
556 CORRUPT("invalid item offset size pair", leaf, root, 0);
557 return -EIO;
558 }
559
560 /*
561 * Check to make sure each items keys are in the correct order and their
562 * offsets make sense. We only have to loop through nritems-1 because
563 * we check the current slot against the next slot, which verifies the
564 * next slot's offset+size makes sense and that the current's slot
565 * offset is correct.
566 */
567 for (slot = 0; slot < nritems - 1; slot++) {
568 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
569 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
570
571 /* Make sure the keys are in the right order */
572 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
573 CORRUPT("bad key order", leaf, root, slot);
574 return -EIO;
575 }
576
577 /*
578 * Make sure the offset and ends are right, remember that the
579 * item data starts at the end of the leaf and grows towards the
580 * front.
581 */
582 if (btrfs_item_offset_nr(leaf, slot) !=
583 btrfs_item_end_nr(leaf, slot + 1)) {
584 CORRUPT("slot offset bad", leaf, root, slot);
585 return -EIO;
586 }
587
588 /*
589 * Check to make sure that we don't point outside of the leaf,
590 * just incase all the items are consistent to eachother, but
591 * all point outside of the leaf.
592 */
593 if (btrfs_item_end_nr(leaf, slot) >
594 BTRFS_LEAF_DATA_SIZE(root)) {
595 CORRUPT("slot end outside of leaf", leaf, root, slot);
596 return -EIO;
597 }
598 }
599
600 return 0;
601 }
602
603 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
604 u64 phy_offset, struct page *page,
605 u64 start, u64 end, int mirror)
606 {
607 u64 found_start;
608 int found_level;
609 struct extent_buffer *eb;
610 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
611 int ret = 0;
612 int reads_done;
613
614 if (!page->private)
615 goto out;
616
617 eb = (struct extent_buffer *)page->private;
618
619 /* the pending IO might have been the only thing that kept this buffer
620 * in memory. Make sure we have a ref for all this other checks
621 */
622 extent_buffer_get(eb);
623
624 reads_done = atomic_dec_and_test(&eb->io_pages);
625 if (!reads_done)
626 goto err;
627
628 eb->read_mirror = mirror;
629 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
630 ret = -EIO;
631 goto err;
632 }
633
634 found_start = btrfs_header_bytenr(eb);
635 if (found_start != eb->start) {
636 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
637 "%llu %llu\n",
638 eb->fs_info->sb->s_id, found_start, eb->start);
639 ret = -EIO;
640 goto err;
641 }
642 if (check_tree_block_fsid(root, eb)) {
643 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
644 eb->fs_info->sb->s_id, eb->start);
645 ret = -EIO;
646 goto err;
647 }
648 found_level = btrfs_header_level(eb);
649 if (found_level >= BTRFS_MAX_LEVEL) {
650 btrfs_info(root->fs_info, "bad tree block level %d",
651 (int)btrfs_header_level(eb));
652 ret = -EIO;
653 goto err;
654 }
655
656 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
657 eb, found_level);
658
659 ret = csum_tree_block(root, eb, 1);
660 if (ret) {
661 ret = -EIO;
662 goto err;
663 }
664
665 /*
666 * If this is a leaf block and it is corrupt, set the corrupt bit so
667 * that we don't try and read the other copies of this block, just
668 * return -EIO.
669 */
670 if (found_level == 0 && check_leaf(root, eb)) {
671 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
672 ret = -EIO;
673 }
674
675 if (!ret)
676 set_extent_buffer_uptodate(eb);
677 err:
678 if (reads_done &&
679 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
680 btree_readahead_hook(root, eb, eb->start, ret);
681
682 if (ret) {
683 /*
684 * our io error hook is going to dec the io pages
685 * again, we have to make sure it has something
686 * to decrement
687 */
688 atomic_inc(&eb->io_pages);
689 clear_extent_buffer_uptodate(eb);
690 }
691 free_extent_buffer(eb);
692 out:
693 return ret;
694 }
695
696 static int btree_io_failed_hook(struct page *page, int failed_mirror)
697 {
698 struct extent_buffer *eb;
699 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
700
701 eb = (struct extent_buffer *)page->private;
702 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
703 eb->read_mirror = failed_mirror;
704 atomic_dec(&eb->io_pages);
705 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
706 btree_readahead_hook(root, eb, eb->start, -EIO);
707 return -EIO; /* we fixed nothing */
708 }
709
710 static void end_workqueue_bio(struct bio *bio, int err)
711 {
712 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
713 struct btrfs_fs_info *fs_info;
714 struct btrfs_workqueue *wq;
715 btrfs_work_func_t func;
716
717 fs_info = end_io_wq->info;
718 end_io_wq->error = err;
719
720 if (bio->bi_rw & REQ_WRITE) {
721 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
722 wq = fs_info->endio_meta_write_workers;
723 func = btrfs_endio_meta_write_helper;
724 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
725 wq = fs_info->endio_freespace_worker;
726 func = btrfs_freespace_write_helper;
727 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
728 wq = fs_info->endio_raid56_workers;
729 func = btrfs_endio_raid56_helper;
730 } else {
731 wq = fs_info->endio_write_workers;
732 func = btrfs_endio_write_helper;
733 }
734 } else {
735 if (unlikely(end_io_wq->metadata ==
736 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
737 wq = fs_info->endio_repair_workers;
738 func = btrfs_endio_repair_helper;
739 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
740 wq = fs_info->endio_raid56_workers;
741 func = btrfs_endio_raid56_helper;
742 } else if (end_io_wq->metadata) {
743 wq = fs_info->endio_meta_workers;
744 func = btrfs_endio_meta_helper;
745 } else {
746 wq = fs_info->endio_workers;
747 func = btrfs_endio_helper;
748 }
749 }
750
751 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
752 btrfs_queue_work(wq, &end_io_wq->work);
753 }
754
755 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
756 enum btrfs_wq_endio_type metadata)
757 {
758 struct btrfs_end_io_wq *end_io_wq;
759
760 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
761 if (!end_io_wq)
762 return -ENOMEM;
763
764 end_io_wq->private = bio->bi_private;
765 end_io_wq->end_io = bio->bi_end_io;
766 end_io_wq->info = info;
767 end_io_wq->error = 0;
768 end_io_wq->bio = bio;
769 end_io_wq->metadata = metadata;
770
771 bio->bi_private = end_io_wq;
772 bio->bi_end_io = end_workqueue_bio;
773 return 0;
774 }
775
776 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
777 {
778 unsigned long limit = min_t(unsigned long,
779 info->thread_pool_size,
780 info->fs_devices->open_devices);
781 return 256 * limit;
782 }
783
784 static void run_one_async_start(struct btrfs_work *work)
785 {
786 struct async_submit_bio *async;
787 int ret;
788
789 async = container_of(work, struct async_submit_bio, work);
790 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
791 async->mirror_num, async->bio_flags,
792 async->bio_offset);
793 if (ret)
794 async->error = ret;
795 }
796
797 static void run_one_async_done(struct btrfs_work *work)
798 {
799 struct btrfs_fs_info *fs_info;
800 struct async_submit_bio *async;
801 int limit;
802
803 async = container_of(work, struct async_submit_bio, work);
804 fs_info = BTRFS_I(async->inode)->root->fs_info;
805
806 limit = btrfs_async_submit_limit(fs_info);
807 limit = limit * 2 / 3;
808
809 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
810 waitqueue_active(&fs_info->async_submit_wait))
811 wake_up(&fs_info->async_submit_wait);
812
813 /* If an error occured we just want to clean up the bio and move on */
814 if (async->error) {
815 bio_endio(async->bio, async->error);
816 return;
817 }
818
819 async->submit_bio_done(async->inode, async->rw, async->bio,
820 async->mirror_num, async->bio_flags,
821 async->bio_offset);
822 }
823
824 static void run_one_async_free(struct btrfs_work *work)
825 {
826 struct async_submit_bio *async;
827
828 async = container_of(work, struct async_submit_bio, work);
829 kfree(async);
830 }
831
832 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
833 int rw, struct bio *bio, int mirror_num,
834 unsigned long bio_flags,
835 u64 bio_offset,
836 extent_submit_bio_hook_t *submit_bio_start,
837 extent_submit_bio_hook_t *submit_bio_done)
838 {
839 struct async_submit_bio *async;
840
841 async = kmalloc(sizeof(*async), GFP_NOFS);
842 if (!async)
843 return -ENOMEM;
844
845 async->inode = inode;
846 async->rw = rw;
847 async->bio = bio;
848 async->mirror_num = mirror_num;
849 async->submit_bio_start = submit_bio_start;
850 async->submit_bio_done = submit_bio_done;
851
852 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
853 run_one_async_done, run_one_async_free);
854
855 async->bio_flags = bio_flags;
856 async->bio_offset = bio_offset;
857
858 async->error = 0;
859
860 atomic_inc(&fs_info->nr_async_submits);
861
862 if (rw & REQ_SYNC)
863 btrfs_set_work_high_priority(&async->work);
864
865 btrfs_queue_work(fs_info->workers, &async->work);
866
867 while (atomic_read(&fs_info->async_submit_draining) &&
868 atomic_read(&fs_info->nr_async_submits)) {
869 wait_event(fs_info->async_submit_wait,
870 (atomic_read(&fs_info->nr_async_submits) == 0));
871 }
872
873 return 0;
874 }
875
876 static int btree_csum_one_bio(struct bio *bio)
877 {
878 struct bio_vec *bvec;
879 struct btrfs_root *root;
880 int i, ret = 0;
881
882 bio_for_each_segment_all(bvec, bio, i) {
883 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
884 ret = csum_dirty_buffer(root, bvec->bv_page);
885 if (ret)
886 break;
887 }
888
889 return ret;
890 }
891
892 static int __btree_submit_bio_start(struct inode *inode, int rw,
893 struct bio *bio, int mirror_num,
894 unsigned long bio_flags,
895 u64 bio_offset)
896 {
897 /*
898 * when we're called for a write, we're already in the async
899 * submission context. Just jump into btrfs_map_bio
900 */
901 return btree_csum_one_bio(bio);
902 }
903
904 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
905 int mirror_num, unsigned long bio_flags,
906 u64 bio_offset)
907 {
908 int ret;
909
910 /*
911 * when we're called for a write, we're already in the async
912 * submission context. Just jump into btrfs_map_bio
913 */
914 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
915 if (ret)
916 bio_endio(bio, ret);
917 return ret;
918 }
919
920 static int check_async_write(struct inode *inode, unsigned long bio_flags)
921 {
922 if (bio_flags & EXTENT_BIO_TREE_LOG)
923 return 0;
924 #ifdef CONFIG_X86
925 if (cpu_has_xmm4_2)
926 return 0;
927 #endif
928 return 1;
929 }
930
931 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
932 int mirror_num, unsigned long bio_flags,
933 u64 bio_offset)
934 {
935 int async = check_async_write(inode, bio_flags);
936 int ret;
937
938 if (!(rw & REQ_WRITE)) {
939 /*
940 * called for a read, do the setup so that checksum validation
941 * can happen in the async kernel threads
942 */
943 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
944 bio, BTRFS_WQ_ENDIO_METADATA);
945 if (ret)
946 goto out_w_error;
947 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
948 mirror_num, 0);
949 } else if (!async) {
950 ret = btree_csum_one_bio(bio);
951 if (ret)
952 goto out_w_error;
953 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
954 mirror_num, 0);
955 } else {
956 /*
957 * kthread helpers are used to submit writes so that
958 * checksumming can happen in parallel across all CPUs
959 */
960 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
961 inode, rw, bio, mirror_num, 0,
962 bio_offset,
963 __btree_submit_bio_start,
964 __btree_submit_bio_done);
965 }
966
967 if (ret) {
968 out_w_error:
969 bio_endio(bio, ret);
970 }
971 return ret;
972 }
973
974 #ifdef CONFIG_MIGRATION
975 static int btree_migratepage(struct address_space *mapping,
976 struct page *newpage, struct page *page,
977 enum migrate_mode mode)
978 {
979 /*
980 * we can't safely write a btree page from here,
981 * we haven't done the locking hook
982 */
983 if (PageDirty(page))
984 return -EAGAIN;
985 /*
986 * Buffers may be managed in a filesystem specific way.
987 * We must have no buffers or drop them.
988 */
989 if (page_has_private(page) &&
990 !try_to_release_page(page, GFP_KERNEL))
991 return -EAGAIN;
992 return migrate_page(mapping, newpage, page, mode);
993 }
994 #endif
995
996
997 static int btree_writepages(struct address_space *mapping,
998 struct writeback_control *wbc)
999 {
1000 struct btrfs_fs_info *fs_info;
1001 int ret;
1002
1003 if (wbc->sync_mode == WB_SYNC_NONE) {
1004
1005 if (wbc->for_kupdate)
1006 return 0;
1007
1008 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1009 /* this is a bit racy, but that's ok */
1010 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1011 BTRFS_DIRTY_METADATA_THRESH);
1012 if (ret < 0)
1013 return 0;
1014 }
1015 return btree_write_cache_pages(mapping, wbc);
1016 }
1017
1018 static int btree_readpage(struct file *file, struct page *page)
1019 {
1020 struct extent_io_tree *tree;
1021 tree = &BTRFS_I(page->mapping->host)->io_tree;
1022 return extent_read_full_page(tree, page, btree_get_extent, 0);
1023 }
1024
1025 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1026 {
1027 if (PageWriteback(page) || PageDirty(page))
1028 return 0;
1029
1030 return try_release_extent_buffer(page);
1031 }
1032
1033 static void btree_invalidatepage(struct page *page, unsigned int offset,
1034 unsigned int length)
1035 {
1036 struct extent_io_tree *tree;
1037 tree = &BTRFS_I(page->mapping->host)->io_tree;
1038 extent_invalidatepage(tree, page, offset);
1039 btree_releasepage(page, GFP_NOFS);
1040 if (PagePrivate(page)) {
1041 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1042 "page private not zero on page %llu",
1043 (unsigned long long)page_offset(page));
1044 ClearPagePrivate(page);
1045 set_page_private(page, 0);
1046 page_cache_release(page);
1047 }
1048 }
1049
1050 static int btree_set_page_dirty(struct page *page)
1051 {
1052 #ifdef DEBUG
1053 struct extent_buffer *eb;
1054
1055 BUG_ON(!PagePrivate(page));
1056 eb = (struct extent_buffer *)page->private;
1057 BUG_ON(!eb);
1058 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1059 BUG_ON(!atomic_read(&eb->refs));
1060 btrfs_assert_tree_locked(eb);
1061 #endif
1062 return __set_page_dirty_nobuffers(page);
1063 }
1064
1065 static const struct address_space_operations btree_aops = {
1066 .readpage = btree_readpage,
1067 .writepages = btree_writepages,
1068 .releasepage = btree_releasepage,
1069 .invalidatepage = btree_invalidatepage,
1070 #ifdef CONFIG_MIGRATION
1071 .migratepage = btree_migratepage,
1072 #endif
1073 .set_page_dirty = btree_set_page_dirty,
1074 };
1075
1076 void readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
1077 {
1078 struct extent_buffer *buf = NULL;
1079 struct inode *btree_inode = root->fs_info->btree_inode;
1080
1081 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082 if (!buf)
1083 return;
1084 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1085 buf, 0, WAIT_NONE, btree_get_extent, 0);
1086 free_extent_buffer(buf);
1087 }
1088
1089 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1090 int mirror_num, struct extent_buffer **eb)
1091 {
1092 struct extent_buffer *buf = NULL;
1093 struct inode *btree_inode = root->fs_info->btree_inode;
1094 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1095 int ret;
1096
1097 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1098 if (!buf)
1099 return 0;
1100
1101 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1102
1103 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1104 btree_get_extent, mirror_num);
1105 if (ret) {
1106 free_extent_buffer(buf);
1107 return ret;
1108 }
1109
1110 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1111 free_extent_buffer(buf);
1112 return -EIO;
1113 } else if (extent_buffer_uptodate(buf)) {
1114 *eb = buf;
1115 } else {
1116 free_extent_buffer(buf);
1117 }
1118 return 0;
1119 }
1120
1121 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1122 u64 bytenr)
1123 {
1124 return find_extent_buffer(root->fs_info, bytenr);
1125 }
1126
1127 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1128 u64 bytenr, u32 blocksize)
1129 {
1130 if (btrfs_test_is_dummy_root(root))
1131 return alloc_test_extent_buffer(root->fs_info, bytenr,
1132 blocksize);
1133 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1134 }
1135
1136
1137 int btrfs_write_tree_block(struct extent_buffer *buf)
1138 {
1139 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1140 buf->start + buf->len - 1);
1141 }
1142
1143 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1144 {
1145 return filemap_fdatawait_range(buf->pages[0]->mapping,
1146 buf->start, buf->start + buf->len - 1);
1147 }
1148
1149 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1150 u64 parent_transid)
1151 {
1152 struct extent_buffer *buf = NULL;
1153 int ret;
1154
1155 buf = btrfs_find_create_tree_block(root, bytenr, root->nodesize);
1156 if (!buf)
1157 return NULL;
1158
1159 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1160 if (ret) {
1161 free_extent_buffer(buf);
1162 return NULL;
1163 }
1164 return buf;
1165
1166 }
1167
1168 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1169 struct extent_buffer *buf)
1170 {
1171 struct btrfs_fs_info *fs_info = root->fs_info;
1172
1173 if (btrfs_header_generation(buf) ==
1174 fs_info->running_transaction->transid) {
1175 btrfs_assert_tree_locked(buf);
1176
1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1179 -buf->len,
1180 fs_info->dirty_metadata_batch);
1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1182 btrfs_set_lock_blocking(buf);
1183 clear_extent_buffer_dirty(buf);
1184 }
1185 }
1186 }
1187
1188 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1189 {
1190 struct btrfs_subvolume_writers *writers;
1191 int ret;
1192
1193 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1194 if (!writers)
1195 return ERR_PTR(-ENOMEM);
1196
1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1198 if (ret < 0) {
1199 kfree(writers);
1200 return ERR_PTR(ret);
1201 }
1202
1203 init_waitqueue_head(&writers->wait);
1204 return writers;
1205 }
1206
1207 static void
1208 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1209 {
1210 percpu_counter_destroy(&writers->counter);
1211 kfree(writers);
1212 }
1213
1214 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1216 u64 objectid)
1217 {
1218 root->node = NULL;
1219 root->commit_root = NULL;
1220 root->sectorsize = sectorsize;
1221 root->nodesize = nodesize;
1222 root->stripesize = stripesize;
1223 root->state = 0;
1224 root->orphan_cleanup_state = 0;
1225
1226 root->objectid = objectid;
1227 root->last_trans = 0;
1228 root->highest_objectid = 0;
1229 root->nr_delalloc_inodes = 0;
1230 root->nr_ordered_extents = 0;
1231 root->name = NULL;
1232 root->inode_tree = RB_ROOT;
1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1234 root->block_rsv = NULL;
1235 root->orphan_block_rsv = NULL;
1236
1237 INIT_LIST_HEAD(&root->dirty_list);
1238 INIT_LIST_HEAD(&root->root_list);
1239 INIT_LIST_HEAD(&root->delalloc_inodes);
1240 INIT_LIST_HEAD(&root->delalloc_root);
1241 INIT_LIST_HEAD(&root->ordered_extents);
1242 INIT_LIST_HEAD(&root->ordered_root);
1243 INIT_LIST_HEAD(&root->logged_list[0]);
1244 INIT_LIST_HEAD(&root->logged_list[1]);
1245 spin_lock_init(&root->orphan_lock);
1246 spin_lock_init(&root->inode_lock);
1247 spin_lock_init(&root->delalloc_lock);
1248 spin_lock_init(&root->ordered_extent_lock);
1249 spin_lock_init(&root->accounting_lock);
1250 spin_lock_init(&root->log_extents_lock[0]);
1251 spin_lock_init(&root->log_extents_lock[1]);
1252 mutex_init(&root->objectid_mutex);
1253 mutex_init(&root->log_mutex);
1254 mutex_init(&root->ordered_extent_mutex);
1255 mutex_init(&root->delalloc_mutex);
1256 init_waitqueue_head(&root->log_writer_wait);
1257 init_waitqueue_head(&root->log_commit_wait[0]);
1258 init_waitqueue_head(&root->log_commit_wait[1]);
1259 INIT_LIST_HEAD(&root->log_ctxs[0]);
1260 INIT_LIST_HEAD(&root->log_ctxs[1]);
1261 atomic_set(&root->log_commit[0], 0);
1262 atomic_set(&root->log_commit[1], 0);
1263 atomic_set(&root->log_writers, 0);
1264 atomic_set(&root->log_batch, 0);
1265 atomic_set(&root->orphan_inodes, 0);
1266 atomic_set(&root->refs, 1);
1267 atomic_set(&root->will_be_snapshoted, 0);
1268 root->log_transid = 0;
1269 root->log_transid_committed = -1;
1270 root->last_log_commit = 0;
1271 if (fs_info)
1272 extent_io_tree_init(&root->dirty_log_pages,
1273 fs_info->btree_inode->i_mapping);
1274
1275 memset(&root->root_key, 0, sizeof(root->root_key));
1276 memset(&root->root_item, 0, sizeof(root->root_item));
1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1278 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1279 if (fs_info)
1280 root->defrag_trans_start = fs_info->generation;
1281 else
1282 root->defrag_trans_start = 0;
1283 init_completion(&root->kobj_unregister);
1284 root->root_key.objectid = objectid;
1285 root->anon_dev = 0;
1286
1287 spin_lock_init(&root->root_item_lock);
1288 }
1289
1290 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1291 {
1292 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1293 if (root)
1294 root->fs_info = fs_info;
1295 return root;
1296 }
1297
1298 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1299 /* Should only be used by the testing infrastructure */
1300 struct btrfs_root *btrfs_alloc_dummy_root(void)
1301 {
1302 struct btrfs_root *root;
1303
1304 root = btrfs_alloc_root(NULL);
1305 if (!root)
1306 return ERR_PTR(-ENOMEM);
1307 __setup_root(4096, 4096, 4096, root, NULL, 1);
1308 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1309 root->alloc_bytenr = 0;
1310
1311 return root;
1312 }
1313 #endif
1314
1315 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1316 struct btrfs_fs_info *fs_info,
1317 u64 objectid)
1318 {
1319 struct extent_buffer *leaf;
1320 struct btrfs_root *tree_root = fs_info->tree_root;
1321 struct btrfs_root *root;
1322 struct btrfs_key key;
1323 int ret = 0;
1324 uuid_le uuid;
1325
1326 root = btrfs_alloc_root(fs_info);
1327 if (!root)
1328 return ERR_PTR(-ENOMEM);
1329
1330 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1331 tree_root->stripesize, root, fs_info, objectid);
1332 root->root_key.objectid = objectid;
1333 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1334 root->root_key.offset = 0;
1335
1336 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1337 if (IS_ERR(leaf)) {
1338 ret = PTR_ERR(leaf);
1339 leaf = NULL;
1340 goto fail;
1341 }
1342
1343 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1344 btrfs_set_header_bytenr(leaf, leaf->start);
1345 btrfs_set_header_generation(leaf, trans->transid);
1346 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1347 btrfs_set_header_owner(leaf, objectid);
1348 root->node = leaf;
1349
1350 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1351 BTRFS_FSID_SIZE);
1352 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1353 btrfs_header_chunk_tree_uuid(leaf),
1354 BTRFS_UUID_SIZE);
1355 btrfs_mark_buffer_dirty(leaf);
1356
1357 root->commit_root = btrfs_root_node(root);
1358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1359
1360 root->root_item.flags = 0;
1361 root->root_item.byte_limit = 0;
1362 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1363 btrfs_set_root_generation(&root->root_item, trans->transid);
1364 btrfs_set_root_level(&root->root_item, 0);
1365 btrfs_set_root_refs(&root->root_item, 1);
1366 btrfs_set_root_used(&root->root_item, leaf->len);
1367 btrfs_set_root_last_snapshot(&root->root_item, 0);
1368 btrfs_set_root_dirid(&root->root_item, 0);
1369 uuid_le_gen(&uuid);
1370 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1371 root->root_item.drop_level = 0;
1372
1373 key.objectid = objectid;
1374 key.type = BTRFS_ROOT_ITEM_KEY;
1375 key.offset = 0;
1376 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1377 if (ret)
1378 goto fail;
1379
1380 btrfs_tree_unlock(leaf);
1381
1382 return root;
1383
1384 fail:
1385 if (leaf) {
1386 btrfs_tree_unlock(leaf);
1387 free_extent_buffer(root->commit_root);
1388 free_extent_buffer(leaf);
1389 }
1390 kfree(root);
1391
1392 return ERR_PTR(ret);
1393 }
1394
1395 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1396 struct btrfs_fs_info *fs_info)
1397 {
1398 struct btrfs_root *root;
1399 struct btrfs_root *tree_root = fs_info->tree_root;
1400 struct extent_buffer *leaf;
1401
1402 root = btrfs_alloc_root(fs_info);
1403 if (!root)
1404 return ERR_PTR(-ENOMEM);
1405
1406 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1407 tree_root->stripesize, root, fs_info,
1408 BTRFS_TREE_LOG_OBJECTID);
1409
1410 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1411 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1412 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1413
1414 /*
1415 * DON'T set REF_COWS for log trees
1416 *
1417 * log trees do not get reference counted because they go away
1418 * before a real commit is actually done. They do store pointers
1419 * to file data extents, and those reference counts still get
1420 * updated (along with back refs to the log tree).
1421 */
1422
1423 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1424 NULL, 0, 0, 0);
1425 if (IS_ERR(leaf)) {
1426 kfree(root);
1427 return ERR_CAST(leaf);
1428 }
1429
1430 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1431 btrfs_set_header_bytenr(leaf, leaf->start);
1432 btrfs_set_header_generation(leaf, trans->transid);
1433 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1434 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1435 root->node = leaf;
1436
1437 write_extent_buffer(root->node, root->fs_info->fsid,
1438 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1439 btrfs_mark_buffer_dirty(root->node);
1440 btrfs_tree_unlock(root->node);
1441 return root;
1442 }
1443
1444 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1445 struct btrfs_fs_info *fs_info)
1446 {
1447 struct btrfs_root *log_root;
1448
1449 log_root = alloc_log_tree(trans, fs_info);
1450 if (IS_ERR(log_root))
1451 return PTR_ERR(log_root);
1452 WARN_ON(fs_info->log_root_tree);
1453 fs_info->log_root_tree = log_root;
1454 return 0;
1455 }
1456
1457 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root)
1459 {
1460 struct btrfs_root *log_root;
1461 struct btrfs_inode_item *inode_item;
1462
1463 log_root = alloc_log_tree(trans, root->fs_info);
1464 if (IS_ERR(log_root))
1465 return PTR_ERR(log_root);
1466
1467 log_root->last_trans = trans->transid;
1468 log_root->root_key.offset = root->root_key.objectid;
1469
1470 inode_item = &log_root->root_item.inode;
1471 btrfs_set_stack_inode_generation(inode_item, 1);
1472 btrfs_set_stack_inode_size(inode_item, 3);
1473 btrfs_set_stack_inode_nlink(inode_item, 1);
1474 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1475 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1476
1477 btrfs_set_root_node(&log_root->root_item, log_root->node);
1478
1479 WARN_ON(root->log_root);
1480 root->log_root = log_root;
1481 root->log_transid = 0;
1482 root->log_transid_committed = -1;
1483 root->last_log_commit = 0;
1484 return 0;
1485 }
1486
1487 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1488 struct btrfs_key *key)
1489 {
1490 struct btrfs_root *root;
1491 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1492 struct btrfs_path *path;
1493 u64 generation;
1494 int ret;
1495
1496 path = btrfs_alloc_path();
1497 if (!path)
1498 return ERR_PTR(-ENOMEM);
1499
1500 root = btrfs_alloc_root(fs_info);
1501 if (!root) {
1502 ret = -ENOMEM;
1503 goto alloc_fail;
1504 }
1505
1506 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1507 tree_root->stripesize, root, fs_info, key->objectid);
1508
1509 ret = btrfs_find_root(tree_root, key, path,
1510 &root->root_item, &root->root_key);
1511 if (ret) {
1512 if (ret > 0)
1513 ret = -ENOENT;
1514 goto find_fail;
1515 }
1516
1517 generation = btrfs_root_generation(&root->root_item);
1518 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1519 generation);
1520 if (!root->node) {
1521 ret = -ENOMEM;
1522 goto find_fail;
1523 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1524 ret = -EIO;
1525 goto read_fail;
1526 }
1527 root->commit_root = btrfs_root_node(root);
1528 out:
1529 btrfs_free_path(path);
1530 return root;
1531
1532 read_fail:
1533 free_extent_buffer(root->node);
1534 find_fail:
1535 kfree(root);
1536 alloc_fail:
1537 root = ERR_PTR(ret);
1538 goto out;
1539 }
1540
1541 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1542 struct btrfs_key *location)
1543 {
1544 struct btrfs_root *root;
1545
1546 root = btrfs_read_tree_root(tree_root, location);
1547 if (IS_ERR(root))
1548 return root;
1549
1550 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1551 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1552 btrfs_check_and_init_root_item(&root->root_item);
1553 }
1554
1555 return root;
1556 }
1557
1558 int btrfs_init_fs_root(struct btrfs_root *root)
1559 {
1560 int ret;
1561 struct btrfs_subvolume_writers *writers;
1562
1563 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1564 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1565 GFP_NOFS);
1566 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1567 ret = -ENOMEM;
1568 goto fail;
1569 }
1570
1571 writers = btrfs_alloc_subvolume_writers();
1572 if (IS_ERR(writers)) {
1573 ret = PTR_ERR(writers);
1574 goto fail;
1575 }
1576 root->subv_writers = writers;
1577
1578 btrfs_init_free_ino_ctl(root);
1579 spin_lock_init(&root->ino_cache_lock);
1580 init_waitqueue_head(&root->ino_cache_wait);
1581
1582 ret = get_anon_bdev(&root->anon_dev);
1583 if (ret)
1584 goto free_writers;
1585 return 0;
1586
1587 free_writers:
1588 btrfs_free_subvolume_writers(root->subv_writers);
1589 fail:
1590 kfree(root->free_ino_ctl);
1591 kfree(root->free_ino_pinned);
1592 return ret;
1593 }
1594
1595 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1596 u64 root_id)
1597 {
1598 struct btrfs_root *root;
1599
1600 spin_lock(&fs_info->fs_roots_radix_lock);
1601 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1602 (unsigned long)root_id);
1603 spin_unlock(&fs_info->fs_roots_radix_lock);
1604 return root;
1605 }
1606
1607 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1608 struct btrfs_root *root)
1609 {
1610 int ret;
1611
1612 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1613 if (ret)
1614 return ret;
1615
1616 spin_lock(&fs_info->fs_roots_radix_lock);
1617 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1618 (unsigned long)root->root_key.objectid,
1619 root);
1620 if (ret == 0)
1621 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1622 spin_unlock(&fs_info->fs_roots_radix_lock);
1623 radix_tree_preload_end();
1624
1625 return ret;
1626 }
1627
1628 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1629 struct btrfs_key *location,
1630 bool check_ref)
1631 {
1632 struct btrfs_root *root;
1633 int ret;
1634
1635 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1636 return fs_info->tree_root;
1637 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1638 return fs_info->extent_root;
1639 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1640 return fs_info->chunk_root;
1641 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1642 return fs_info->dev_root;
1643 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1644 return fs_info->csum_root;
1645 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1646 return fs_info->quota_root ? fs_info->quota_root :
1647 ERR_PTR(-ENOENT);
1648 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1649 return fs_info->uuid_root ? fs_info->uuid_root :
1650 ERR_PTR(-ENOENT);
1651 again:
1652 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1653 if (root) {
1654 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1655 return ERR_PTR(-ENOENT);
1656 return root;
1657 }
1658
1659 root = btrfs_read_fs_root(fs_info->tree_root, location);
1660 if (IS_ERR(root))
1661 return root;
1662
1663 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1664 ret = -ENOENT;
1665 goto fail;
1666 }
1667
1668 ret = btrfs_init_fs_root(root);
1669 if (ret)
1670 goto fail;
1671
1672 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1673 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1674 if (ret < 0)
1675 goto fail;
1676 if (ret == 0)
1677 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1678
1679 ret = btrfs_insert_fs_root(fs_info, root);
1680 if (ret) {
1681 if (ret == -EEXIST) {
1682 free_fs_root(root);
1683 goto again;
1684 }
1685 goto fail;
1686 }
1687 return root;
1688 fail:
1689 free_fs_root(root);
1690 return ERR_PTR(ret);
1691 }
1692
1693 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1694 {
1695 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1696 int ret = 0;
1697 struct btrfs_device *device;
1698 struct backing_dev_info *bdi;
1699
1700 rcu_read_lock();
1701 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1702 if (!device->bdev)
1703 continue;
1704 bdi = blk_get_backing_dev_info(device->bdev);
1705 if (bdi_congested(bdi, bdi_bits)) {
1706 ret = 1;
1707 break;
1708 }
1709 }
1710 rcu_read_unlock();
1711 return ret;
1712 }
1713
1714 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1715 {
1716 int err;
1717
1718 bdi->capabilities = BDI_CAP_MAP_COPY;
1719 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1720 if (err)
1721 return err;
1722
1723 bdi->ra_pages = default_backing_dev_info.ra_pages;
1724 bdi->congested_fn = btrfs_congested_fn;
1725 bdi->congested_data = info;
1726 return 0;
1727 }
1728
1729 /*
1730 * called by the kthread helper functions to finally call the bio end_io
1731 * functions. This is where read checksum verification actually happens
1732 */
1733 static void end_workqueue_fn(struct btrfs_work *work)
1734 {
1735 struct bio *bio;
1736 struct btrfs_end_io_wq *end_io_wq;
1737 int error;
1738
1739 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1740 bio = end_io_wq->bio;
1741
1742 error = end_io_wq->error;
1743 bio->bi_private = end_io_wq->private;
1744 bio->bi_end_io = end_io_wq->end_io;
1745 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1746 bio_endio_nodec(bio, error);
1747 }
1748
1749 static int cleaner_kthread(void *arg)
1750 {
1751 struct btrfs_root *root = arg;
1752 int again;
1753
1754 do {
1755 again = 0;
1756
1757 /* Make the cleaner go to sleep early. */
1758 if (btrfs_need_cleaner_sleep(root))
1759 goto sleep;
1760
1761 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1762 goto sleep;
1763
1764 /*
1765 * Avoid the problem that we change the status of the fs
1766 * during the above check and trylock.
1767 */
1768 if (btrfs_need_cleaner_sleep(root)) {
1769 mutex_unlock(&root->fs_info->cleaner_mutex);
1770 goto sleep;
1771 }
1772
1773 btrfs_run_delayed_iputs(root);
1774 btrfs_delete_unused_bgs(root->fs_info);
1775 again = btrfs_clean_one_deleted_snapshot(root);
1776 mutex_unlock(&root->fs_info->cleaner_mutex);
1777
1778 /*
1779 * The defragger has dealt with the R/O remount and umount,
1780 * needn't do anything special here.
1781 */
1782 btrfs_run_defrag_inodes(root->fs_info);
1783 sleep:
1784 if (!try_to_freeze() && !again) {
1785 set_current_state(TASK_INTERRUPTIBLE);
1786 if (!kthread_should_stop())
1787 schedule();
1788 __set_current_state(TASK_RUNNING);
1789 }
1790 } while (!kthread_should_stop());
1791 return 0;
1792 }
1793
1794 static int transaction_kthread(void *arg)
1795 {
1796 struct btrfs_root *root = arg;
1797 struct btrfs_trans_handle *trans;
1798 struct btrfs_transaction *cur;
1799 u64 transid;
1800 unsigned long now;
1801 unsigned long delay;
1802 bool cannot_commit;
1803
1804 do {
1805 cannot_commit = false;
1806 delay = HZ * root->fs_info->commit_interval;
1807 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1808
1809 spin_lock(&root->fs_info->trans_lock);
1810 cur = root->fs_info->running_transaction;
1811 if (!cur) {
1812 spin_unlock(&root->fs_info->trans_lock);
1813 goto sleep;
1814 }
1815
1816 now = get_seconds();
1817 if (cur->state < TRANS_STATE_BLOCKED &&
1818 (now < cur->start_time ||
1819 now - cur->start_time < root->fs_info->commit_interval)) {
1820 spin_unlock(&root->fs_info->trans_lock);
1821 delay = HZ * 5;
1822 goto sleep;
1823 }
1824 transid = cur->transid;
1825 spin_unlock(&root->fs_info->trans_lock);
1826
1827 /* If the file system is aborted, this will always fail. */
1828 trans = btrfs_attach_transaction(root);
1829 if (IS_ERR(trans)) {
1830 if (PTR_ERR(trans) != -ENOENT)
1831 cannot_commit = true;
1832 goto sleep;
1833 }
1834 if (transid == trans->transid) {
1835 btrfs_commit_transaction(trans, root);
1836 } else {
1837 btrfs_end_transaction(trans, root);
1838 }
1839 sleep:
1840 wake_up_process(root->fs_info->cleaner_kthread);
1841 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1842
1843 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1844 &root->fs_info->fs_state)))
1845 btrfs_cleanup_transaction(root);
1846 if (!try_to_freeze()) {
1847 set_current_state(TASK_INTERRUPTIBLE);
1848 if (!kthread_should_stop() &&
1849 (!btrfs_transaction_blocked(root->fs_info) ||
1850 cannot_commit))
1851 schedule_timeout(delay);
1852 __set_current_state(TASK_RUNNING);
1853 }
1854 } while (!kthread_should_stop());
1855 return 0;
1856 }
1857
1858 /*
1859 * this will find the highest generation in the array of
1860 * root backups. The index of the highest array is returned,
1861 * or -1 if we can't find anything.
1862 *
1863 * We check to make sure the array is valid by comparing the
1864 * generation of the latest root in the array with the generation
1865 * in the super block. If they don't match we pitch it.
1866 */
1867 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1868 {
1869 u64 cur;
1870 int newest_index = -1;
1871 struct btrfs_root_backup *root_backup;
1872 int i;
1873
1874 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1875 root_backup = info->super_copy->super_roots + i;
1876 cur = btrfs_backup_tree_root_gen(root_backup);
1877 if (cur == newest_gen)
1878 newest_index = i;
1879 }
1880
1881 /* check to see if we actually wrapped around */
1882 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1883 root_backup = info->super_copy->super_roots;
1884 cur = btrfs_backup_tree_root_gen(root_backup);
1885 if (cur == newest_gen)
1886 newest_index = 0;
1887 }
1888 return newest_index;
1889 }
1890
1891
1892 /*
1893 * find the oldest backup so we know where to store new entries
1894 * in the backup array. This will set the backup_root_index
1895 * field in the fs_info struct
1896 */
1897 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1898 u64 newest_gen)
1899 {
1900 int newest_index = -1;
1901
1902 newest_index = find_newest_super_backup(info, newest_gen);
1903 /* if there was garbage in there, just move along */
1904 if (newest_index == -1) {
1905 info->backup_root_index = 0;
1906 } else {
1907 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1908 }
1909 }
1910
1911 /*
1912 * copy all the root pointers into the super backup array.
1913 * this will bump the backup pointer by one when it is
1914 * done
1915 */
1916 static void backup_super_roots(struct btrfs_fs_info *info)
1917 {
1918 int next_backup;
1919 struct btrfs_root_backup *root_backup;
1920 int last_backup;
1921
1922 next_backup = info->backup_root_index;
1923 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1924 BTRFS_NUM_BACKUP_ROOTS;
1925
1926 /*
1927 * just overwrite the last backup if we're at the same generation
1928 * this happens only at umount
1929 */
1930 root_backup = info->super_for_commit->super_roots + last_backup;
1931 if (btrfs_backup_tree_root_gen(root_backup) ==
1932 btrfs_header_generation(info->tree_root->node))
1933 next_backup = last_backup;
1934
1935 root_backup = info->super_for_commit->super_roots + next_backup;
1936
1937 /*
1938 * make sure all of our padding and empty slots get zero filled
1939 * regardless of which ones we use today
1940 */
1941 memset(root_backup, 0, sizeof(*root_backup));
1942
1943 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1944
1945 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1946 btrfs_set_backup_tree_root_gen(root_backup,
1947 btrfs_header_generation(info->tree_root->node));
1948
1949 btrfs_set_backup_tree_root_level(root_backup,
1950 btrfs_header_level(info->tree_root->node));
1951
1952 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1953 btrfs_set_backup_chunk_root_gen(root_backup,
1954 btrfs_header_generation(info->chunk_root->node));
1955 btrfs_set_backup_chunk_root_level(root_backup,
1956 btrfs_header_level(info->chunk_root->node));
1957
1958 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1959 btrfs_set_backup_extent_root_gen(root_backup,
1960 btrfs_header_generation(info->extent_root->node));
1961 btrfs_set_backup_extent_root_level(root_backup,
1962 btrfs_header_level(info->extent_root->node));
1963
1964 /*
1965 * we might commit during log recovery, which happens before we set
1966 * the fs_root. Make sure it is valid before we fill it in.
1967 */
1968 if (info->fs_root && info->fs_root->node) {
1969 btrfs_set_backup_fs_root(root_backup,
1970 info->fs_root->node->start);
1971 btrfs_set_backup_fs_root_gen(root_backup,
1972 btrfs_header_generation(info->fs_root->node));
1973 btrfs_set_backup_fs_root_level(root_backup,
1974 btrfs_header_level(info->fs_root->node));
1975 }
1976
1977 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1978 btrfs_set_backup_dev_root_gen(root_backup,
1979 btrfs_header_generation(info->dev_root->node));
1980 btrfs_set_backup_dev_root_level(root_backup,
1981 btrfs_header_level(info->dev_root->node));
1982
1983 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1984 btrfs_set_backup_csum_root_gen(root_backup,
1985 btrfs_header_generation(info->csum_root->node));
1986 btrfs_set_backup_csum_root_level(root_backup,
1987 btrfs_header_level(info->csum_root->node));
1988
1989 btrfs_set_backup_total_bytes(root_backup,
1990 btrfs_super_total_bytes(info->super_copy));
1991 btrfs_set_backup_bytes_used(root_backup,
1992 btrfs_super_bytes_used(info->super_copy));
1993 btrfs_set_backup_num_devices(root_backup,
1994 btrfs_super_num_devices(info->super_copy));
1995
1996 /*
1997 * if we don't copy this out to the super_copy, it won't get remembered
1998 * for the next commit
1999 */
2000 memcpy(&info->super_copy->super_roots,
2001 &info->super_for_commit->super_roots,
2002 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2003 }
2004
2005 /*
2006 * this copies info out of the root backup array and back into
2007 * the in-memory super block. It is meant to help iterate through
2008 * the array, so you send it the number of backups you've already
2009 * tried and the last backup index you used.
2010 *
2011 * this returns -1 when it has tried all the backups
2012 */
2013 static noinline int next_root_backup(struct btrfs_fs_info *info,
2014 struct btrfs_super_block *super,
2015 int *num_backups_tried, int *backup_index)
2016 {
2017 struct btrfs_root_backup *root_backup;
2018 int newest = *backup_index;
2019
2020 if (*num_backups_tried == 0) {
2021 u64 gen = btrfs_super_generation(super);
2022
2023 newest = find_newest_super_backup(info, gen);
2024 if (newest == -1)
2025 return -1;
2026
2027 *backup_index = newest;
2028 *num_backups_tried = 1;
2029 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2030 /* we've tried all the backups, all done */
2031 return -1;
2032 } else {
2033 /* jump to the next oldest backup */
2034 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2035 BTRFS_NUM_BACKUP_ROOTS;
2036 *backup_index = newest;
2037 *num_backups_tried += 1;
2038 }
2039 root_backup = super->super_roots + newest;
2040
2041 btrfs_set_super_generation(super,
2042 btrfs_backup_tree_root_gen(root_backup));
2043 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2044 btrfs_set_super_root_level(super,
2045 btrfs_backup_tree_root_level(root_backup));
2046 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2047
2048 /*
2049 * fixme: the total bytes and num_devices need to match or we should
2050 * need a fsck
2051 */
2052 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2053 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2054 return 0;
2055 }
2056
2057 /* helper to cleanup workers */
2058 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2059 {
2060 btrfs_destroy_workqueue(fs_info->fixup_workers);
2061 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2062 btrfs_destroy_workqueue(fs_info->workers);
2063 btrfs_destroy_workqueue(fs_info->endio_workers);
2064 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2065 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2066 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2067 btrfs_destroy_workqueue(fs_info->rmw_workers);
2068 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2069 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2070 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2071 btrfs_destroy_workqueue(fs_info->submit_workers);
2072 btrfs_destroy_workqueue(fs_info->delayed_workers);
2073 btrfs_destroy_workqueue(fs_info->caching_workers);
2074 btrfs_destroy_workqueue(fs_info->readahead_workers);
2075 btrfs_destroy_workqueue(fs_info->flush_workers);
2076 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2077 btrfs_destroy_workqueue(fs_info->extent_workers);
2078 }
2079
2080 static void free_root_extent_buffers(struct btrfs_root *root)
2081 {
2082 if (root) {
2083 free_extent_buffer(root->node);
2084 free_extent_buffer(root->commit_root);
2085 root->node = NULL;
2086 root->commit_root = NULL;
2087 }
2088 }
2089
2090 /* helper to cleanup tree roots */
2091 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2092 {
2093 free_root_extent_buffers(info->tree_root);
2094
2095 free_root_extent_buffers(info->dev_root);
2096 free_root_extent_buffers(info->extent_root);
2097 free_root_extent_buffers(info->csum_root);
2098 free_root_extent_buffers(info->quota_root);
2099 free_root_extent_buffers(info->uuid_root);
2100 if (chunk_root)
2101 free_root_extent_buffers(info->chunk_root);
2102 }
2103
2104 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2105 {
2106 int ret;
2107 struct btrfs_root *gang[8];
2108 int i;
2109
2110 while (!list_empty(&fs_info->dead_roots)) {
2111 gang[0] = list_entry(fs_info->dead_roots.next,
2112 struct btrfs_root, root_list);
2113 list_del(&gang[0]->root_list);
2114
2115 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2116 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2117 } else {
2118 free_extent_buffer(gang[0]->node);
2119 free_extent_buffer(gang[0]->commit_root);
2120 btrfs_put_fs_root(gang[0]);
2121 }
2122 }
2123
2124 while (1) {
2125 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2126 (void **)gang, 0,
2127 ARRAY_SIZE(gang));
2128 if (!ret)
2129 break;
2130 for (i = 0; i < ret; i++)
2131 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2132 }
2133
2134 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2135 btrfs_free_log_root_tree(NULL, fs_info);
2136 btrfs_destroy_pinned_extent(fs_info->tree_root,
2137 fs_info->pinned_extents);
2138 }
2139 }
2140
2141 int open_ctree(struct super_block *sb,
2142 struct btrfs_fs_devices *fs_devices,
2143 char *options)
2144 {
2145 u32 sectorsize;
2146 u32 nodesize;
2147 u32 stripesize;
2148 u64 generation;
2149 u64 features;
2150 struct btrfs_key location;
2151 struct buffer_head *bh;
2152 struct btrfs_super_block *disk_super;
2153 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2154 struct btrfs_root *tree_root;
2155 struct btrfs_root *extent_root;
2156 struct btrfs_root *csum_root;
2157 struct btrfs_root *chunk_root;
2158 struct btrfs_root *dev_root;
2159 struct btrfs_root *quota_root;
2160 struct btrfs_root *uuid_root;
2161 struct btrfs_root *log_tree_root;
2162 int ret;
2163 int err = -EINVAL;
2164 int num_backups_tried = 0;
2165 int backup_index = 0;
2166 int max_active;
2167 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2168 bool create_uuid_tree;
2169 bool check_uuid_tree;
2170
2171 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2172 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2173 if (!tree_root || !chunk_root) {
2174 err = -ENOMEM;
2175 goto fail;
2176 }
2177
2178 ret = init_srcu_struct(&fs_info->subvol_srcu);
2179 if (ret) {
2180 err = ret;
2181 goto fail;
2182 }
2183
2184 ret = setup_bdi(fs_info, &fs_info->bdi);
2185 if (ret) {
2186 err = ret;
2187 goto fail_srcu;
2188 }
2189
2190 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2191 if (ret) {
2192 err = ret;
2193 goto fail_bdi;
2194 }
2195 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2196 (1 + ilog2(nr_cpu_ids));
2197
2198 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2199 if (ret) {
2200 err = ret;
2201 goto fail_dirty_metadata_bytes;
2202 }
2203
2204 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2205 if (ret) {
2206 err = ret;
2207 goto fail_delalloc_bytes;
2208 }
2209
2210 fs_info->btree_inode = new_inode(sb);
2211 if (!fs_info->btree_inode) {
2212 err = -ENOMEM;
2213 goto fail_bio_counter;
2214 }
2215
2216 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2217
2218 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2219 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2220 INIT_LIST_HEAD(&fs_info->trans_list);
2221 INIT_LIST_HEAD(&fs_info->dead_roots);
2222 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2223 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2224 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2225 spin_lock_init(&fs_info->delalloc_root_lock);
2226 spin_lock_init(&fs_info->trans_lock);
2227 spin_lock_init(&fs_info->fs_roots_radix_lock);
2228 spin_lock_init(&fs_info->delayed_iput_lock);
2229 spin_lock_init(&fs_info->defrag_inodes_lock);
2230 spin_lock_init(&fs_info->free_chunk_lock);
2231 spin_lock_init(&fs_info->tree_mod_seq_lock);
2232 spin_lock_init(&fs_info->super_lock);
2233 spin_lock_init(&fs_info->qgroup_op_lock);
2234 spin_lock_init(&fs_info->buffer_lock);
2235 spin_lock_init(&fs_info->unused_bgs_lock);
2236 rwlock_init(&fs_info->tree_mod_log_lock);
2237 mutex_init(&fs_info->reloc_mutex);
2238 mutex_init(&fs_info->delalloc_root_mutex);
2239 seqlock_init(&fs_info->profiles_lock);
2240
2241 init_completion(&fs_info->kobj_unregister);
2242 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2243 INIT_LIST_HEAD(&fs_info->space_info);
2244 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2245 INIT_LIST_HEAD(&fs_info->unused_bgs);
2246 btrfs_mapping_init(&fs_info->mapping_tree);
2247 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2248 BTRFS_BLOCK_RSV_GLOBAL);
2249 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2250 BTRFS_BLOCK_RSV_DELALLOC);
2251 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2252 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2253 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2254 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2255 BTRFS_BLOCK_RSV_DELOPS);
2256 atomic_set(&fs_info->nr_async_submits, 0);
2257 atomic_set(&fs_info->async_delalloc_pages, 0);
2258 atomic_set(&fs_info->async_submit_draining, 0);
2259 atomic_set(&fs_info->nr_async_bios, 0);
2260 atomic_set(&fs_info->defrag_running, 0);
2261 atomic_set(&fs_info->qgroup_op_seq, 0);
2262 atomic64_set(&fs_info->tree_mod_seq, 0);
2263 fs_info->sb = sb;
2264 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2265 fs_info->metadata_ratio = 0;
2266 fs_info->defrag_inodes = RB_ROOT;
2267 fs_info->free_chunk_space = 0;
2268 fs_info->tree_mod_log = RB_ROOT;
2269 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2270 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2271 /* readahead state */
2272 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2273 spin_lock_init(&fs_info->reada_lock);
2274
2275 fs_info->thread_pool_size = min_t(unsigned long,
2276 num_online_cpus() + 2, 8);
2277
2278 INIT_LIST_HEAD(&fs_info->ordered_roots);
2279 spin_lock_init(&fs_info->ordered_root_lock);
2280 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2281 GFP_NOFS);
2282 if (!fs_info->delayed_root) {
2283 err = -ENOMEM;
2284 goto fail_iput;
2285 }
2286 btrfs_init_delayed_root(fs_info->delayed_root);
2287
2288 mutex_init(&fs_info->scrub_lock);
2289 atomic_set(&fs_info->scrubs_running, 0);
2290 atomic_set(&fs_info->scrub_pause_req, 0);
2291 atomic_set(&fs_info->scrubs_paused, 0);
2292 atomic_set(&fs_info->scrub_cancel_req, 0);
2293 init_waitqueue_head(&fs_info->replace_wait);
2294 init_waitqueue_head(&fs_info->scrub_pause_wait);
2295 fs_info->scrub_workers_refcnt = 0;
2296 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2297 fs_info->check_integrity_print_mask = 0;
2298 #endif
2299
2300 spin_lock_init(&fs_info->balance_lock);
2301 mutex_init(&fs_info->balance_mutex);
2302 atomic_set(&fs_info->balance_running, 0);
2303 atomic_set(&fs_info->balance_pause_req, 0);
2304 atomic_set(&fs_info->balance_cancel_req, 0);
2305 fs_info->balance_ctl = NULL;
2306 init_waitqueue_head(&fs_info->balance_wait_q);
2307 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2308
2309 sb->s_blocksize = 4096;
2310 sb->s_blocksize_bits = blksize_bits(4096);
2311 sb->s_bdi = &fs_info->bdi;
2312
2313 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2314 set_nlink(fs_info->btree_inode, 1);
2315 /*
2316 * we set the i_size on the btree inode to the max possible int.
2317 * the real end of the address space is determined by all of
2318 * the devices in the system
2319 */
2320 fs_info->btree_inode->i_size = OFFSET_MAX;
2321 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2322 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2323
2324 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2325 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2326 fs_info->btree_inode->i_mapping);
2327 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2328 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2329
2330 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2331
2332 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2333 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2334 sizeof(struct btrfs_key));
2335 set_bit(BTRFS_INODE_DUMMY,
2336 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2337 btrfs_insert_inode_hash(fs_info->btree_inode);
2338
2339 spin_lock_init(&fs_info->block_group_cache_lock);
2340 fs_info->block_group_cache_tree = RB_ROOT;
2341 fs_info->first_logical_byte = (u64)-1;
2342
2343 extent_io_tree_init(&fs_info->freed_extents[0],
2344 fs_info->btree_inode->i_mapping);
2345 extent_io_tree_init(&fs_info->freed_extents[1],
2346 fs_info->btree_inode->i_mapping);
2347 fs_info->pinned_extents = &fs_info->freed_extents[0];
2348 fs_info->do_barriers = 1;
2349
2350
2351 mutex_init(&fs_info->ordered_operations_mutex);
2352 mutex_init(&fs_info->ordered_extent_flush_mutex);
2353 mutex_init(&fs_info->tree_log_mutex);
2354 mutex_init(&fs_info->chunk_mutex);
2355 mutex_init(&fs_info->transaction_kthread_mutex);
2356 mutex_init(&fs_info->cleaner_mutex);
2357 mutex_init(&fs_info->volume_mutex);
2358 init_rwsem(&fs_info->commit_root_sem);
2359 init_rwsem(&fs_info->cleanup_work_sem);
2360 init_rwsem(&fs_info->subvol_sem);
2361 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2362 fs_info->dev_replace.lock_owner = 0;
2363 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2364 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2365 mutex_init(&fs_info->dev_replace.lock_management_lock);
2366 mutex_init(&fs_info->dev_replace.lock);
2367
2368 spin_lock_init(&fs_info->qgroup_lock);
2369 mutex_init(&fs_info->qgroup_ioctl_lock);
2370 fs_info->qgroup_tree = RB_ROOT;
2371 fs_info->qgroup_op_tree = RB_ROOT;
2372 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2373 fs_info->qgroup_seq = 1;
2374 fs_info->quota_enabled = 0;
2375 fs_info->pending_quota_state = 0;
2376 fs_info->qgroup_ulist = NULL;
2377 mutex_init(&fs_info->qgroup_rescan_lock);
2378
2379 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2380 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2381
2382 init_waitqueue_head(&fs_info->transaction_throttle);
2383 init_waitqueue_head(&fs_info->transaction_wait);
2384 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2385 init_waitqueue_head(&fs_info->async_submit_wait);
2386
2387 ret = btrfs_alloc_stripe_hash_table(fs_info);
2388 if (ret) {
2389 err = ret;
2390 goto fail_alloc;
2391 }
2392
2393 __setup_root(4096, 4096, 4096, tree_root,
2394 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2395
2396 invalidate_bdev(fs_devices->latest_bdev);
2397
2398 /*
2399 * Read super block and check the signature bytes only
2400 */
2401 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2402 if (!bh) {
2403 err = -EINVAL;
2404 goto fail_alloc;
2405 }
2406
2407 /*
2408 * We want to check superblock checksum, the type is stored inside.
2409 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2410 */
2411 if (btrfs_check_super_csum(bh->b_data)) {
2412 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2413 err = -EINVAL;
2414 goto fail_alloc;
2415 }
2416
2417 /*
2418 * super_copy is zeroed at allocation time and we never touch the
2419 * following bytes up to INFO_SIZE, the checksum is calculated from
2420 * the whole block of INFO_SIZE
2421 */
2422 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2423 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2424 sizeof(*fs_info->super_for_commit));
2425 brelse(bh);
2426
2427 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2428
2429 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2430 if (ret) {
2431 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2432 err = -EINVAL;
2433 goto fail_alloc;
2434 }
2435
2436 disk_super = fs_info->super_copy;
2437 if (!btrfs_super_root(disk_super))
2438 goto fail_alloc;
2439
2440 /* check FS state, whether FS is broken. */
2441 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2442 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2443
2444 /*
2445 * run through our array of backup supers and setup
2446 * our ring pointer to the oldest one
2447 */
2448 generation = btrfs_super_generation(disk_super);
2449 find_oldest_super_backup(fs_info, generation);
2450
2451 /*
2452 * In the long term, we'll store the compression type in the super
2453 * block, and it'll be used for per file compression control.
2454 */
2455 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2456
2457 ret = btrfs_parse_options(tree_root, options);
2458 if (ret) {
2459 err = ret;
2460 goto fail_alloc;
2461 }
2462
2463 features = btrfs_super_incompat_flags(disk_super) &
2464 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2465 if (features) {
2466 printk(KERN_ERR "BTRFS: couldn't mount because of "
2467 "unsupported optional features (%Lx).\n",
2468 features);
2469 err = -EINVAL;
2470 goto fail_alloc;
2471 }
2472
2473 /*
2474 * Leafsize and nodesize were always equal, this is only a sanity check.
2475 */
2476 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2477 btrfs_super_nodesize(disk_super)) {
2478 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2479 "blocksizes don't match. node %d leaf %d\n",
2480 btrfs_super_nodesize(disk_super),
2481 le32_to_cpu(disk_super->__unused_leafsize));
2482 err = -EINVAL;
2483 goto fail_alloc;
2484 }
2485 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2486 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2487 "blocksize (%d) was too large\n",
2488 btrfs_super_nodesize(disk_super));
2489 err = -EINVAL;
2490 goto fail_alloc;
2491 }
2492
2493 features = btrfs_super_incompat_flags(disk_super);
2494 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2495 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2496 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2497
2498 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2499 printk(KERN_ERR "BTRFS: has skinny extents\n");
2500
2501 /*
2502 * flag our filesystem as having big metadata blocks if
2503 * they are bigger than the page size
2504 */
2505 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2506 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2507 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2508 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2509 }
2510
2511 nodesize = btrfs_super_nodesize(disk_super);
2512 sectorsize = btrfs_super_sectorsize(disk_super);
2513 stripesize = btrfs_super_stripesize(disk_super);
2514 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2515 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2516
2517 /*
2518 * mixed block groups end up with duplicate but slightly offset
2519 * extent buffers for the same range. It leads to corruptions
2520 */
2521 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2522 (sectorsize != nodesize)) {
2523 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2524 "are not allowed for mixed block groups on %s\n",
2525 sb->s_id);
2526 goto fail_alloc;
2527 }
2528
2529 /*
2530 * Needn't use the lock because there is no other task which will
2531 * update the flag.
2532 */
2533 btrfs_set_super_incompat_flags(disk_super, features);
2534
2535 features = btrfs_super_compat_ro_flags(disk_super) &
2536 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2537 if (!(sb->s_flags & MS_RDONLY) && features) {
2538 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2539 "unsupported option features (%Lx).\n",
2540 features);
2541 err = -EINVAL;
2542 goto fail_alloc;
2543 }
2544
2545 max_active = fs_info->thread_pool_size;
2546
2547 fs_info->workers =
2548 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2549 max_active, 16);
2550
2551 fs_info->delalloc_workers =
2552 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2553
2554 fs_info->flush_workers =
2555 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2556
2557 fs_info->caching_workers =
2558 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2559
2560 /*
2561 * a higher idle thresh on the submit workers makes it much more
2562 * likely that bios will be send down in a sane order to the
2563 * devices
2564 */
2565 fs_info->submit_workers =
2566 btrfs_alloc_workqueue("submit", flags,
2567 min_t(u64, fs_devices->num_devices,
2568 max_active), 64);
2569
2570 fs_info->fixup_workers =
2571 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2572
2573 /*
2574 * endios are largely parallel and should have a very
2575 * low idle thresh
2576 */
2577 fs_info->endio_workers =
2578 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2579 fs_info->endio_meta_workers =
2580 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2581 fs_info->endio_meta_write_workers =
2582 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2583 fs_info->endio_raid56_workers =
2584 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2585 fs_info->endio_repair_workers =
2586 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2587 fs_info->rmw_workers =
2588 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2589 fs_info->endio_write_workers =
2590 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2591 fs_info->endio_freespace_worker =
2592 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2593 fs_info->delayed_workers =
2594 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2595 fs_info->readahead_workers =
2596 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2597 fs_info->qgroup_rescan_workers =
2598 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2599 fs_info->extent_workers =
2600 btrfs_alloc_workqueue("extent-refs", flags,
2601 min_t(u64, fs_devices->num_devices,
2602 max_active), 8);
2603
2604 if (!(fs_info->workers && fs_info->delalloc_workers &&
2605 fs_info->submit_workers && fs_info->flush_workers &&
2606 fs_info->endio_workers && fs_info->endio_meta_workers &&
2607 fs_info->endio_meta_write_workers &&
2608 fs_info->endio_repair_workers &&
2609 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2610 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2611 fs_info->caching_workers && fs_info->readahead_workers &&
2612 fs_info->fixup_workers && fs_info->delayed_workers &&
2613 fs_info->extent_workers &&
2614 fs_info->qgroup_rescan_workers)) {
2615 err = -ENOMEM;
2616 goto fail_sb_buffer;
2617 }
2618
2619 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2620 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2621 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2622
2623 tree_root->nodesize = nodesize;
2624 tree_root->sectorsize = sectorsize;
2625 tree_root->stripesize = stripesize;
2626
2627 sb->s_blocksize = sectorsize;
2628 sb->s_blocksize_bits = blksize_bits(sectorsize);
2629
2630 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2631 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2632 goto fail_sb_buffer;
2633 }
2634
2635 if (sectorsize != PAGE_SIZE) {
2636 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2637 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2638 goto fail_sb_buffer;
2639 }
2640
2641 mutex_lock(&fs_info->chunk_mutex);
2642 ret = btrfs_read_sys_array(tree_root);
2643 mutex_unlock(&fs_info->chunk_mutex);
2644 if (ret) {
2645 printk(KERN_WARNING "BTRFS: failed to read the system "
2646 "array on %s\n", sb->s_id);
2647 goto fail_sb_buffer;
2648 }
2649
2650 generation = btrfs_super_chunk_root_generation(disk_super);
2651
2652 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2653 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2654
2655 chunk_root->node = read_tree_block(chunk_root,
2656 btrfs_super_chunk_root(disk_super),
2657 generation);
2658 if (!chunk_root->node ||
2659 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2660 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2661 sb->s_id);
2662 goto fail_tree_roots;
2663 }
2664 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2665 chunk_root->commit_root = btrfs_root_node(chunk_root);
2666
2667 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2668 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2669
2670 ret = btrfs_read_chunk_tree(chunk_root);
2671 if (ret) {
2672 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2673 sb->s_id);
2674 goto fail_tree_roots;
2675 }
2676
2677 /*
2678 * keep the device that is marked to be the target device for the
2679 * dev_replace procedure
2680 */
2681 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2682
2683 if (!fs_devices->latest_bdev) {
2684 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2685 sb->s_id);
2686 goto fail_tree_roots;
2687 }
2688
2689 retry_root_backup:
2690 generation = btrfs_super_generation(disk_super);
2691
2692 tree_root->node = read_tree_block(tree_root,
2693 btrfs_super_root(disk_super),
2694 generation);
2695 if (!tree_root->node ||
2696 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2697 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2698 sb->s_id);
2699
2700 goto recovery_tree_root;
2701 }
2702
2703 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2704 tree_root->commit_root = btrfs_root_node(tree_root);
2705 btrfs_set_root_refs(&tree_root->root_item, 1);
2706
2707 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2708 location.type = BTRFS_ROOT_ITEM_KEY;
2709 location.offset = 0;
2710
2711 extent_root = btrfs_read_tree_root(tree_root, &location);
2712 if (IS_ERR(extent_root)) {
2713 ret = PTR_ERR(extent_root);
2714 goto recovery_tree_root;
2715 }
2716 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2717 fs_info->extent_root = extent_root;
2718
2719 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2720 dev_root = btrfs_read_tree_root(tree_root, &location);
2721 if (IS_ERR(dev_root)) {
2722 ret = PTR_ERR(dev_root);
2723 goto recovery_tree_root;
2724 }
2725 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2726 fs_info->dev_root = dev_root;
2727 btrfs_init_devices_late(fs_info);
2728
2729 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2730 csum_root = btrfs_read_tree_root(tree_root, &location);
2731 if (IS_ERR(csum_root)) {
2732 ret = PTR_ERR(csum_root);
2733 goto recovery_tree_root;
2734 }
2735 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2736 fs_info->csum_root = csum_root;
2737
2738 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2739 quota_root = btrfs_read_tree_root(tree_root, &location);
2740 if (!IS_ERR(quota_root)) {
2741 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2742 fs_info->quota_enabled = 1;
2743 fs_info->pending_quota_state = 1;
2744 fs_info->quota_root = quota_root;
2745 }
2746
2747 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2748 uuid_root = btrfs_read_tree_root(tree_root, &location);
2749 if (IS_ERR(uuid_root)) {
2750 ret = PTR_ERR(uuid_root);
2751 if (ret != -ENOENT)
2752 goto recovery_tree_root;
2753 create_uuid_tree = true;
2754 check_uuid_tree = false;
2755 } else {
2756 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2757 fs_info->uuid_root = uuid_root;
2758 create_uuid_tree = false;
2759 check_uuid_tree =
2760 generation != btrfs_super_uuid_tree_generation(disk_super);
2761 }
2762
2763 fs_info->generation = generation;
2764 fs_info->last_trans_committed = generation;
2765
2766 ret = btrfs_recover_balance(fs_info);
2767 if (ret) {
2768 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2769 goto fail_block_groups;
2770 }
2771
2772 ret = btrfs_init_dev_stats(fs_info);
2773 if (ret) {
2774 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2775 ret);
2776 goto fail_block_groups;
2777 }
2778
2779 ret = btrfs_init_dev_replace(fs_info);
2780 if (ret) {
2781 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2782 goto fail_block_groups;
2783 }
2784
2785 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2786
2787 ret = btrfs_sysfs_add_one(fs_info);
2788 if (ret) {
2789 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2790 goto fail_block_groups;
2791 }
2792
2793 ret = btrfs_init_space_info(fs_info);
2794 if (ret) {
2795 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2796 goto fail_sysfs;
2797 }
2798
2799 ret = btrfs_read_block_groups(extent_root);
2800 if (ret) {
2801 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2802 goto fail_sysfs;
2803 }
2804 fs_info->num_tolerated_disk_barrier_failures =
2805 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2806 if (fs_info->fs_devices->missing_devices >
2807 fs_info->num_tolerated_disk_barrier_failures &&
2808 !(sb->s_flags & MS_RDONLY)) {
2809 printk(KERN_WARNING "BTRFS: "
2810 "too many missing devices, writeable mount is not allowed\n");
2811 goto fail_sysfs;
2812 }
2813
2814 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2815 "btrfs-cleaner");
2816 if (IS_ERR(fs_info->cleaner_kthread))
2817 goto fail_sysfs;
2818
2819 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2820 tree_root,
2821 "btrfs-transaction");
2822 if (IS_ERR(fs_info->transaction_kthread))
2823 goto fail_cleaner;
2824
2825 if (!btrfs_test_opt(tree_root, SSD) &&
2826 !btrfs_test_opt(tree_root, NOSSD) &&
2827 !fs_info->fs_devices->rotating) {
2828 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2829 "mode\n");
2830 btrfs_set_opt(fs_info->mount_opt, SSD);
2831 }
2832
2833 /* Set the real inode map cache flag */
2834 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2835 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2836
2837 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2838 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2839 ret = btrfsic_mount(tree_root, fs_devices,
2840 btrfs_test_opt(tree_root,
2841 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2842 1 : 0,
2843 fs_info->check_integrity_print_mask);
2844 if (ret)
2845 printk(KERN_WARNING "BTRFS: failed to initialize"
2846 " integrity check module %s\n", sb->s_id);
2847 }
2848 #endif
2849 ret = btrfs_read_qgroup_config(fs_info);
2850 if (ret)
2851 goto fail_trans_kthread;
2852
2853 /* do not make disk changes in broken FS */
2854 if (btrfs_super_log_root(disk_super) != 0) {
2855 u64 bytenr = btrfs_super_log_root(disk_super);
2856
2857 if (fs_devices->rw_devices == 0) {
2858 printk(KERN_WARNING "BTRFS: log replay required "
2859 "on RO media\n");
2860 err = -EIO;
2861 goto fail_qgroup;
2862 }
2863
2864 log_tree_root = btrfs_alloc_root(fs_info);
2865 if (!log_tree_root) {
2866 err = -ENOMEM;
2867 goto fail_qgroup;
2868 }
2869
2870 __setup_root(nodesize, sectorsize, stripesize,
2871 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2872
2873 log_tree_root->node = read_tree_block(tree_root, bytenr,
2874 generation + 1);
2875 if (!log_tree_root->node ||
2876 !extent_buffer_uptodate(log_tree_root->node)) {
2877 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2878 free_extent_buffer(log_tree_root->node);
2879 kfree(log_tree_root);
2880 goto fail_qgroup;
2881 }
2882 /* returns with log_tree_root freed on success */
2883 ret = btrfs_recover_log_trees(log_tree_root);
2884 if (ret) {
2885 btrfs_error(tree_root->fs_info, ret,
2886 "Failed to recover log tree");
2887 free_extent_buffer(log_tree_root->node);
2888 kfree(log_tree_root);
2889 goto fail_qgroup;
2890 }
2891
2892 if (sb->s_flags & MS_RDONLY) {
2893 ret = btrfs_commit_super(tree_root);
2894 if (ret)
2895 goto fail_qgroup;
2896 }
2897 }
2898
2899 ret = btrfs_find_orphan_roots(tree_root);
2900 if (ret)
2901 goto fail_qgroup;
2902
2903 if (!(sb->s_flags & MS_RDONLY)) {
2904 ret = btrfs_cleanup_fs_roots(fs_info);
2905 if (ret)
2906 goto fail_qgroup;
2907
2908 mutex_lock(&fs_info->cleaner_mutex);
2909 ret = btrfs_recover_relocation(tree_root);
2910 mutex_unlock(&fs_info->cleaner_mutex);
2911 if (ret < 0) {
2912 printk(KERN_WARNING
2913 "BTRFS: failed to recover relocation\n");
2914 err = -EINVAL;
2915 goto fail_qgroup;
2916 }
2917 }
2918
2919 location.objectid = BTRFS_FS_TREE_OBJECTID;
2920 location.type = BTRFS_ROOT_ITEM_KEY;
2921 location.offset = 0;
2922
2923 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2924 if (IS_ERR(fs_info->fs_root)) {
2925 err = PTR_ERR(fs_info->fs_root);
2926 goto fail_qgroup;
2927 }
2928
2929 if (sb->s_flags & MS_RDONLY)
2930 return 0;
2931
2932 down_read(&fs_info->cleanup_work_sem);
2933 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2934 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2935 up_read(&fs_info->cleanup_work_sem);
2936 close_ctree(tree_root);
2937 return ret;
2938 }
2939 up_read(&fs_info->cleanup_work_sem);
2940
2941 ret = btrfs_resume_balance_async(fs_info);
2942 if (ret) {
2943 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2944 close_ctree(tree_root);
2945 return ret;
2946 }
2947
2948 ret = btrfs_resume_dev_replace_async(fs_info);
2949 if (ret) {
2950 pr_warn("BTRFS: failed to resume dev_replace\n");
2951 close_ctree(tree_root);
2952 return ret;
2953 }
2954
2955 btrfs_qgroup_rescan_resume(fs_info);
2956
2957 if (create_uuid_tree) {
2958 pr_info("BTRFS: creating UUID tree\n");
2959 ret = btrfs_create_uuid_tree(fs_info);
2960 if (ret) {
2961 pr_warn("BTRFS: failed to create the UUID tree %d\n",
2962 ret);
2963 close_ctree(tree_root);
2964 return ret;
2965 }
2966 } else if (check_uuid_tree ||
2967 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2968 pr_info("BTRFS: checking UUID tree\n");
2969 ret = btrfs_check_uuid_tree(fs_info);
2970 if (ret) {
2971 pr_warn("BTRFS: failed to check the UUID tree %d\n",
2972 ret);
2973 close_ctree(tree_root);
2974 return ret;
2975 }
2976 } else {
2977 fs_info->update_uuid_tree_gen = 1;
2978 }
2979
2980 fs_info->open = 1;
2981
2982 return 0;
2983
2984 fail_qgroup:
2985 btrfs_free_qgroup_config(fs_info);
2986 fail_trans_kthread:
2987 kthread_stop(fs_info->transaction_kthread);
2988 btrfs_cleanup_transaction(fs_info->tree_root);
2989 btrfs_free_fs_roots(fs_info);
2990 fail_cleaner:
2991 kthread_stop(fs_info->cleaner_kthread);
2992
2993 /*
2994 * make sure we're done with the btree inode before we stop our
2995 * kthreads
2996 */
2997 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2998
2999 fail_sysfs:
3000 btrfs_sysfs_remove_one(fs_info);
3001
3002 fail_block_groups:
3003 btrfs_put_block_group_cache(fs_info);
3004 btrfs_free_block_groups(fs_info);
3005
3006 fail_tree_roots:
3007 free_root_pointers(fs_info, 1);
3008 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3009
3010 fail_sb_buffer:
3011 btrfs_stop_all_workers(fs_info);
3012 fail_alloc:
3013 fail_iput:
3014 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3015
3016 iput(fs_info->btree_inode);
3017 fail_bio_counter:
3018 percpu_counter_destroy(&fs_info->bio_counter);
3019 fail_delalloc_bytes:
3020 percpu_counter_destroy(&fs_info->delalloc_bytes);
3021 fail_dirty_metadata_bytes:
3022 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3023 fail_bdi:
3024 bdi_destroy(&fs_info->bdi);
3025 fail_srcu:
3026 cleanup_srcu_struct(&fs_info->subvol_srcu);
3027 fail:
3028 btrfs_free_stripe_hash_table(fs_info);
3029 btrfs_close_devices(fs_info->fs_devices);
3030 return err;
3031
3032 recovery_tree_root:
3033 if (!btrfs_test_opt(tree_root, RECOVERY))
3034 goto fail_tree_roots;
3035
3036 free_root_pointers(fs_info, 0);
3037
3038 /* don't use the log in recovery mode, it won't be valid */
3039 btrfs_set_super_log_root(disk_super, 0);
3040
3041 /* we can't trust the free space cache either */
3042 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3043
3044 ret = next_root_backup(fs_info, fs_info->super_copy,
3045 &num_backups_tried, &backup_index);
3046 if (ret == -1)
3047 goto fail_block_groups;
3048 goto retry_root_backup;
3049 }
3050
3051 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3052 {
3053 if (uptodate) {
3054 set_buffer_uptodate(bh);
3055 } else {
3056 struct btrfs_device *device = (struct btrfs_device *)
3057 bh->b_private;
3058
3059 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3060 "I/O error on %s\n",
3061 rcu_str_deref(device->name));
3062 /* note, we dont' set_buffer_write_io_error because we have
3063 * our own ways of dealing with the IO errors
3064 */
3065 clear_buffer_uptodate(bh);
3066 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3067 }
3068 unlock_buffer(bh);
3069 put_bh(bh);
3070 }
3071
3072 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3073 {
3074 struct buffer_head *bh;
3075 struct buffer_head *latest = NULL;
3076 struct btrfs_super_block *super;
3077 int i;
3078 u64 transid = 0;
3079 u64 bytenr;
3080
3081 /* we would like to check all the supers, but that would make
3082 * a btrfs mount succeed after a mkfs from a different FS.
3083 * So, we need to add a special mount option to scan for
3084 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3085 */
3086 for (i = 0; i < 1; i++) {
3087 bytenr = btrfs_sb_offset(i);
3088 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3089 i_size_read(bdev->bd_inode))
3090 break;
3091 bh = __bread(bdev, bytenr / 4096,
3092 BTRFS_SUPER_INFO_SIZE);
3093 if (!bh)
3094 continue;
3095
3096 super = (struct btrfs_super_block *)bh->b_data;
3097 if (btrfs_super_bytenr(super) != bytenr ||
3098 btrfs_super_magic(super) != BTRFS_MAGIC) {
3099 brelse(bh);
3100 continue;
3101 }
3102
3103 if (!latest || btrfs_super_generation(super) > transid) {
3104 brelse(latest);
3105 latest = bh;
3106 transid = btrfs_super_generation(super);
3107 } else {
3108 brelse(bh);
3109 }
3110 }
3111 return latest;
3112 }
3113
3114 /*
3115 * this should be called twice, once with wait == 0 and
3116 * once with wait == 1. When wait == 0 is done, all the buffer heads
3117 * we write are pinned.
3118 *
3119 * They are released when wait == 1 is done.
3120 * max_mirrors must be the same for both runs, and it indicates how
3121 * many supers on this one device should be written.
3122 *
3123 * max_mirrors == 0 means to write them all.
3124 */
3125 static int write_dev_supers(struct btrfs_device *device,
3126 struct btrfs_super_block *sb,
3127 int do_barriers, int wait, int max_mirrors)
3128 {
3129 struct buffer_head *bh;
3130 int i;
3131 int ret;
3132 int errors = 0;
3133 u32 crc;
3134 u64 bytenr;
3135
3136 if (max_mirrors == 0)
3137 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3138
3139 for (i = 0; i < max_mirrors; i++) {
3140 bytenr = btrfs_sb_offset(i);
3141 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3142 device->commit_total_bytes)
3143 break;
3144
3145 if (wait) {
3146 bh = __find_get_block(device->bdev, bytenr / 4096,
3147 BTRFS_SUPER_INFO_SIZE);
3148 if (!bh) {
3149 errors++;
3150 continue;
3151 }
3152 wait_on_buffer(bh);
3153 if (!buffer_uptodate(bh))
3154 errors++;
3155
3156 /* drop our reference */
3157 brelse(bh);
3158
3159 /* drop the reference from the wait == 0 run */
3160 brelse(bh);
3161 continue;
3162 } else {
3163 btrfs_set_super_bytenr(sb, bytenr);
3164
3165 crc = ~(u32)0;
3166 crc = btrfs_csum_data((char *)sb +
3167 BTRFS_CSUM_SIZE, crc,
3168 BTRFS_SUPER_INFO_SIZE -
3169 BTRFS_CSUM_SIZE);
3170 btrfs_csum_final(crc, sb->csum);
3171
3172 /*
3173 * one reference for us, and we leave it for the
3174 * caller
3175 */
3176 bh = __getblk(device->bdev, bytenr / 4096,
3177 BTRFS_SUPER_INFO_SIZE);
3178 if (!bh) {
3179 printk(KERN_ERR "BTRFS: couldn't get super "
3180 "buffer head for bytenr %Lu\n", bytenr);
3181 errors++;
3182 continue;
3183 }
3184
3185 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3186
3187 /* one reference for submit_bh */
3188 get_bh(bh);
3189
3190 set_buffer_uptodate(bh);
3191 lock_buffer(bh);
3192 bh->b_end_io = btrfs_end_buffer_write_sync;
3193 bh->b_private = device;
3194 }
3195
3196 /*
3197 * we fua the first super. The others we allow
3198 * to go down lazy.
3199 */
3200 if (i == 0)
3201 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3202 else
3203 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3204 if (ret)
3205 errors++;
3206 }
3207 return errors < i ? 0 : -1;
3208 }
3209
3210 /*
3211 * endio for the write_dev_flush, this will wake anyone waiting
3212 * for the barrier when it is done
3213 */
3214 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3215 {
3216 if (err) {
3217 if (err == -EOPNOTSUPP)
3218 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3219 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3220 }
3221 if (bio->bi_private)
3222 complete(bio->bi_private);
3223 bio_put(bio);
3224 }
3225
3226 /*
3227 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3228 * sent down. With wait == 1, it waits for the previous flush.
3229 *
3230 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3231 * capable
3232 */
3233 static int write_dev_flush(struct btrfs_device *device, int wait)
3234 {
3235 struct bio *bio;
3236 int ret = 0;
3237
3238 if (device->nobarriers)
3239 return 0;
3240
3241 if (wait) {
3242 bio = device->flush_bio;
3243 if (!bio)
3244 return 0;
3245
3246 wait_for_completion(&device->flush_wait);
3247
3248 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3249 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3250 rcu_str_deref(device->name));
3251 device->nobarriers = 1;
3252 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3253 ret = -EIO;
3254 btrfs_dev_stat_inc_and_print(device,
3255 BTRFS_DEV_STAT_FLUSH_ERRS);
3256 }
3257
3258 /* drop the reference from the wait == 0 run */
3259 bio_put(bio);
3260 device->flush_bio = NULL;
3261
3262 return ret;
3263 }
3264
3265 /*
3266 * one reference for us, and we leave it for the
3267 * caller
3268 */
3269 device->flush_bio = NULL;
3270 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3271 if (!bio)
3272 return -ENOMEM;
3273
3274 bio->bi_end_io = btrfs_end_empty_barrier;
3275 bio->bi_bdev = device->bdev;
3276 init_completion(&device->flush_wait);
3277 bio->bi_private = &device->flush_wait;
3278 device->flush_bio = bio;
3279
3280 bio_get(bio);
3281 btrfsic_submit_bio(WRITE_FLUSH, bio);
3282
3283 return 0;
3284 }
3285
3286 /*
3287 * send an empty flush down to each device in parallel,
3288 * then wait for them
3289 */
3290 static int barrier_all_devices(struct btrfs_fs_info *info)
3291 {
3292 struct list_head *head;
3293 struct btrfs_device *dev;
3294 int errors_send = 0;
3295 int errors_wait = 0;
3296 int ret;
3297
3298 /* send down all the barriers */
3299 head = &info->fs_devices->devices;
3300 list_for_each_entry_rcu(dev, head, dev_list) {
3301 if (dev->missing)
3302 continue;
3303 if (!dev->bdev) {
3304 errors_send++;
3305 continue;
3306 }
3307 if (!dev->in_fs_metadata || !dev->writeable)
3308 continue;
3309
3310 ret = write_dev_flush(dev, 0);
3311 if (ret)
3312 errors_send++;
3313 }
3314
3315 /* wait for all the barriers */
3316 list_for_each_entry_rcu(dev, head, dev_list) {
3317 if (dev->missing)
3318 continue;
3319 if (!dev->bdev) {
3320 errors_wait++;
3321 continue;
3322 }
3323 if (!dev->in_fs_metadata || !dev->writeable)
3324 continue;
3325
3326 ret = write_dev_flush(dev, 1);
3327 if (ret)
3328 errors_wait++;
3329 }
3330 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3331 errors_wait > info->num_tolerated_disk_barrier_failures)
3332 return -EIO;
3333 return 0;
3334 }
3335
3336 int btrfs_calc_num_tolerated_disk_barrier_failures(
3337 struct btrfs_fs_info *fs_info)
3338 {
3339 struct btrfs_ioctl_space_info space;
3340 struct btrfs_space_info *sinfo;
3341 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3342 BTRFS_BLOCK_GROUP_SYSTEM,
3343 BTRFS_BLOCK_GROUP_METADATA,
3344 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3345 int num_types = 4;
3346 int i;
3347 int c;
3348 int num_tolerated_disk_barrier_failures =
3349 (int)fs_info->fs_devices->num_devices;
3350
3351 for (i = 0; i < num_types; i++) {
3352 struct btrfs_space_info *tmp;
3353
3354 sinfo = NULL;
3355 rcu_read_lock();
3356 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3357 if (tmp->flags == types[i]) {
3358 sinfo = tmp;
3359 break;
3360 }
3361 }
3362 rcu_read_unlock();
3363
3364 if (!sinfo)
3365 continue;
3366
3367 down_read(&sinfo->groups_sem);
3368 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3369 if (!list_empty(&sinfo->block_groups[c])) {
3370 u64 flags;
3371
3372 btrfs_get_block_group_info(
3373 &sinfo->block_groups[c], &space);
3374 if (space.total_bytes == 0 ||
3375 space.used_bytes == 0)
3376 continue;
3377 flags = space.flags;
3378 /*
3379 * return
3380 * 0: if dup, single or RAID0 is configured for
3381 * any of metadata, system or data, else
3382 * 1: if RAID5 is configured, or if RAID1 or
3383 * RAID10 is configured and only two mirrors
3384 * are used, else
3385 * 2: if RAID6 is configured, else
3386 * num_mirrors - 1: if RAID1 or RAID10 is
3387 * configured and more than
3388 * 2 mirrors are used.
3389 */
3390 if (num_tolerated_disk_barrier_failures > 0 &&
3391 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3392 BTRFS_BLOCK_GROUP_RAID0)) ||
3393 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3394 == 0)))
3395 num_tolerated_disk_barrier_failures = 0;
3396 else if (num_tolerated_disk_barrier_failures > 1) {
3397 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3398 BTRFS_BLOCK_GROUP_RAID5 |
3399 BTRFS_BLOCK_GROUP_RAID10)) {
3400 num_tolerated_disk_barrier_failures = 1;
3401 } else if (flags &
3402 BTRFS_BLOCK_GROUP_RAID6) {
3403 num_tolerated_disk_barrier_failures = 2;
3404 }
3405 }
3406 }
3407 }
3408 up_read(&sinfo->groups_sem);
3409 }
3410
3411 return num_tolerated_disk_barrier_failures;
3412 }
3413
3414 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3415 {
3416 struct list_head *head;
3417 struct btrfs_device *dev;
3418 struct btrfs_super_block *sb;
3419 struct btrfs_dev_item *dev_item;
3420 int ret;
3421 int do_barriers;
3422 int max_errors;
3423 int total_errors = 0;
3424 u64 flags;
3425
3426 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3427 backup_super_roots(root->fs_info);
3428
3429 sb = root->fs_info->super_for_commit;
3430 dev_item = &sb->dev_item;
3431
3432 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3433 head = &root->fs_info->fs_devices->devices;
3434 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3435
3436 if (do_barriers) {
3437 ret = barrier_all_devices(root->fs_info);
3438 if (ret) {
3439 mutex_unlock(
3440 &root->fs_info->fs_devices->device_list_mutex);
3441 btrfs_error(root->fs_info, ret,
3442 "errors while submitting device barriers.");
3443 return ret;
3444 }
3445 }
3446
3447 list_for_each_entry_rcu(dev, head, dev_list) {
3448 if (!dev->bdev) {
3449 total_errors++;
3450 continue;
3451 }
3452 if (!dev->in_fs_metadata || !dev->writeable)
3453 continue;
3454
3455 btrfs_set_stack_device_generation(dev_item, 0);
3456 btrfs_set_stack_device_type(dev_item, dev->type);
3457 btrfs_set_stack_device_id(dev_item, dev->devid);
3458 btrfs_set_stack_device_total_bytes(dev_item,
3459 dev->commit_total_bytes);
3460 btrfs_set_stack_device_bytes_used(dev_item,
3461 dev->commit_bytes_used);
3462 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3463 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3464 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3465 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3466 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3467
3468 flags = btrfs_super_flags(sb);
3469 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3470
3471 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3472 if (ret)
3473 total_errors++;
3474 }
3475 if (total_errors > max_errors) {
3476 btrfs_err(root->fs_info, "%d errors while writing supers",
3477 total_errors);
3478 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3479
3480 /* FUA is masked off if unsupported and can't be the reason */
3481 btrfs_error(root->fs_info, -EIO,
3482 "%d errors while writing supers", total_errors);
3483 return -EIO;
3484 }
3485
3486 total_errors = 0;
3487 list_for_each_entry_rcu(dev, head, dev_list) {
3488 if (!dev->bdev)
3489 continue;
3490 if (!dev->in_fs_metadata || !dev->writeable)
3491 continue;
3492
3493 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3494 if (ret)
3495 total_errors++;
3496 }
3497 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3498 if (total_errors > max_errors) {
3499 btrfs_error(root->fs_info, -EIO,
3500 "%d errors while writing supers", total_errors);
3501 return -EIO;
3502 }
3503 return 0;
3504 }
3505
3506 int write_ctree_super(struct btrfs_trans_handle *trans,
3507 struct btrfs_root *root, int max_mirrors)
3508 {
3509 return write_all_supers(root, max_mirrors);
3510 }
3511
3512 /* Drop a fs root from the radix tree and free it. */
3513 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3514 struct btrfs_root *root)
3515 {
3516 spin_lock(&fs_info->fs_roots_radix_lock);
3517 radix_tree_delete(&fs_info->fs_roots_radix,
3518 (unsigned long)root->root_key.objectid);
3519 spin_unlock(&fs_info->fs_roots_radix_lock);
3520
3521 if (btrfs_root_refs(&root->root_item) == 0)
3522 synchronize_srcu(&fs_info->subvol_srcu);
3523
3524 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3525 btrfs_free_log(NULL, root);
3526
3527 if (root->free_ino_pinned)
3528 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3529 if (root->free_ino_ctl)
3530 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3531 free_fs_root(root);
3532 }
3533
3534 static void free_fs_root(struct btrfs_root *root)
3535 {
3536 iput(root->ino_cache_inode);
3537 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3538 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3539 root->orphan_block_rsv = NULL;
3540 if (root->anon_dev)
3541 free_anon_bdev(root->anon_dev);
3542 if (root->subv_writers)
3543 btrfs_free_subvolume_writers(root->subv_writers);
3544 free_extent_buffer(root->node);
3545 free_extent_buffer(root->commit_root);
3546 kfree(root->free_ino_ctl);
3547 kfree(root->free_ino_pinned);
3548 kfree(root->name);
3549 btrfs_put_fs_root(root);
3550 }
3551
3552 void btrfs_free_fs_root(struct btrfs_root *root)
3553 {
3554 free_fs_root(root);
3555 }
3556
3557 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3558 {
3559 u64 root_objectid = 0;
3560 struct btrfs_root *gang[8];
3561 int i = 0;
3562 int err = 0;
3563 unsigned int ret = 0;
3564 int index;
3565
3566 while (1) {
3567 index = srcu_read_lock(&fs_info->subvol_srcu);
3568 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3569 (void **)gang, root_objectid,
3570 ARRAY_SIZE(gang));
3571 if (!ret) {
3572 srcu_read_unlock(&fs_info->subvol_srcu, index);
3573 break;
3574 }
3575 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3576
3577 for (i = 0; i < ret; i++) {
3578 /* Avoid to grab roots in dead_roots */
3579 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3580 gang[i] = NULL;
3581 continue;
3582 }
3583 /* grab all the search result for later use */
3584 gang[i] = btrfs_grab_fs_root(gang[i]);
3585 }
3586 srcu_read_unlock(&fs_info->subvol_srcu, index);
3587
3588 for (i = 0; i < ret; i++) {
3589 if (!gang[i])
3590 continue;
3591 root_objectid = gang[i]->root_key.objectid;
3592 err = btrfs_orphan_cleanup(gang[i]);
3593 if (err)
3594 break;
3595 btrfs_put_fs_root(gang[i]);
3596 }
3597 root_objectid++;
3598 }
3599
3600 /* release the uncleaned roots due to error */
3601 for (; i < ret; i++) {
3602 if (gang[i])
3603 btrfs_put_fs_root(gang[i]);
3604 }
3605 return err;
3606 }
3607
3608 int btrfs_commit_super(struct btrfs_root *root)
3609 {
3610 struct btrfs_trans_handle *trans;
3611
3612 mutex_lock(&root->fs_info->cleaner_mutex);
3613 btrfs_run_delayed_iputs(root);
3614 mutex_unlock(&root->fs_info->cleaner_mutex);
3615 wake_up_process(root->fs_info->cleaner_kthread);
3616
3617 /* wait until ongoing cleanup work done */
3618 down_write(&root->fs_info->cleanup_work_sem);
3619 up_write(&root->fs_info->cleanup_work_sem);
3620
3621 trans = btrfs_join_transaction(root);
3622 if (IS_ERR(trans))
3623 return PTR_ERR(trans);
3624 return btrfs_commit_transaction(trans, root);
3625 }
3626
3627 void close_ctree(struct btrfs_root *root)
3628 {
3629 struct btrfs_fs_info *fs_info = root->fs_info;
3630 int ret;
3631
3632 fs_info->closing = 1;
3633 smp_mb();
3634
3635 /* wait for the uuid_scan task to finish */
3636 down(&fs_info->uuid_tree_rescan_sem);
3637 /* avoid complains from lockdep et al., set sem back to initial state */
3638 up(&fs_info->uuid_tree_rescan_sem);
3639
3640 /* pause restriper - we want to resume on mount */
3641 btrfs_pause_balance(fs_info);
3642
3643 btrfs_dev_replace_suspend_for_unmount(fs_info);
3644
3645 btrfs_scrub_cancel(fs_info);
3646
3647 /* wait for any defraggers to finish */
3648 wait_event(fs_info->transaction_wait,
3649 (atomic_read(&fs_info->defrag_running) == 0));
3650
3651 /* clear out the rbtree of defraggable inodes */
3652 btrfs_cleanup_defrag_inodes(fs_info);
3653
3654 cancel_work_sync(&fs_info->async_reclaim_work);
3655
3656 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3657 ret = btrfs_commit_super(root);
3658 if (ret)
3659 btrfs_err(root->fs_info, "commit super ret %d", ret);
3660 }
3661
3662 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3663 btrfs_error_commit_super(root);
3664
3665 kthread_stop(fs_info->transaction_kthread);
3666 kthread_stop(fs_info->cleaner_kthread);
3667
3668 fs_info->closing = 2;
3669 smp_mb();
3670
3671 btrfs_free_qgroup_config(root->fs_info);
3672
3673 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3674 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3675 percpu_counter_sum(&fs_info->delalloc_bytes));
3676 }
3677
3678 btrfs_sysfs_remove_one(fs_info);
3679
3680 btrfs_free_fs_roots(fs_info);
3681
3682 btrfs_put_block_group_cache(fs_info);
3683
3684 btrfs_free_block_groups(fs_info);
3685
3686 /*
3687 * we must make sure there is not any read request to
3688 * submit after we stopping all workers.
3689 */
3690 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3691 btrfs_stop_all_workers(fs_info);
3692
3693 fs_info->open = 0;
3694 free_root_pointers(fs_info, 1);
3695
3696 iput(fs_info->btree_inode);
3697
3698 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3699 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3700 btrfsic_unmount(root, fs_info->fs_devices);
3701 #endif
3702
3703 btrfs_close_devices(fs_info->fs_devices);
3704 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3705
3706 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3707 percpu_counter_destroy(&fs_info->delalloc_bytes);
3708 percpu_counter_destroy(&fs_info->bio_counter);
3709 bdi_destroy(&fs_info->bdi);
3710 cleanup_srcu_struct(&fs_info->subvol_srcu);
3711
3712 btrfs_free_stripe_hash_table(fs_info);
3713
3714 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3715 root->orphan_block_rsv = NULL;
3716 }
3717
3718 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3719 int atomic)
3720 {
3721 int ret;
3722 struct inode *btree_inode = buf->pages[0]->mapping->host;
3723
3724 ret = extent_buffer_uptodate(buf);
3725 if (!ret)
3726 return ret;
3727
3728 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3729 parent_transid, atomic);
3730 if (ret == -EAGAIN)
3731 return ret;
3732 return !ret;
3733 }
3734
3735 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3736 {
3737 return set_extent_buffer_uptodate(buf);
3738 }
3739
3740 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3741 {
3742 struct btrfs_root *root;
3743 u64 transid = btrfs_header_generation(buf);
3744 int was_dirty;
3745
3746 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3747 /*
3748 * This is a fast path so only do this check if we have sanity tests
3749 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3750 * outside of the sanity tests.
3751 */
3752 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3753 return;
3754 #endif
3755 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3756 btrfs_assert_tree_locked(buf);
3757 if (transid != root->fs_info->generation)
3758 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3759 "found %llu running %llu\n",
3760 buf->start, transid, root->fs_info->generation);
3761 was_dirty = set_extent_buffer_dirty(buf);
3762 if (!was_dirty)
3763 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3764 buf->len,
3765 root->fs_info->dirty_metadata_batch);
3766 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3767 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3768 btrfs_print_leaf(root, buf);
3769 ASSERT(0);
3770 }
3771 #endif
3772 }
3773
3774 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3775 int flush_delayed)
3776 {
3777 /*
3778 * looks as though older kernels can get into trouble with
3779 * this code, they end up stuck in balance_dirty_pages forever
3780 */
3781 int ret;
3782
3783 if (current->flags & PF_MEMALLOC)
3784 return;
3785
3786 if (flush_delayed)
3787 btrfs_balance_delayed_items(root);
3788
3789 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3790 BTRFS_DIRTY_METADATA_THRESH);
3791 if (ret > 0) {
3792 balance_dirty_pages_ratelimited(
3793 root->fs_info->btree_inode->i_mapping);
3794 }
3795 return;
3796 }
3797
3798 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3799 {
3800 __btrfs_btree_balance_dirty(root, 1);
3801 }
3802
3803 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3804 {
3805 __btrfs_btree_balance_dirty(root, 0);
3806 }
3807
3808 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3809 {
3810 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3811 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3812 }
3813
3814 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3815 int read_only)
3816 {
3817 struct btrfs_super_block *sb = fs_info->super_copy;
3818 int ret = 0;
3819
3820 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3821 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3822 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3823 ret = -EINVAL;
3824 }
3825 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3826 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3827 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3828 ret = -EINVAL;
3829 }
3830 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3831 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3832 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3833 ret = -EINVAL;
3834 }
3835
3836 /*
3837 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3838 * items yet, they'll be verified later. Issue just a warning.
3839 */
3840 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3841 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3842 sb->root);
3843 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3844 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3845 sb->chunk_root);
3846 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3847 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3848 btrfs_super_log_root(sb));
3849
3850 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3851 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3852 fs_info->fsid, sb->dev_item.fsid);
3853 ret = -EINVAL;
3854 }
3855
3856 /*
3857 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3858 * done later
3859 */
3860 if (btrfs_super_num_devices(sb) > (1UL << 31))
3861 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
3862 btrfs_super_num_devices(sb));
3863
3864 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
3865 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
3866 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
3867 ret = -EINVAL;
3868 }
3869
3870 /*
3871 * The generation is a global counter, we'll trust it more than the others
3872 * but it's still possible that it's the one that's wrong.
3873 */
3874 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
3875 printk(KERN_WARNING
3876 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
3877 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
3878 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
3879 && btrfs_super_cache_generation(sb) != (u64)-1)
3880 printk(KERN_WARNING
3881 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
3882 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
3883
3884 return ret;
3885 }
3886
3887 static void btrfs_error_commit_super(struct btrfs_root *root)
3888 {
3889 mutex_lock(&root->fs_info->cleaner_mutex);
3890 btrfs_run_delayed_iputs(root);
3891 mutex_unlock(&root->fs_info->cleaner_mutex);
3892
3893 down_write(&root->fs_info->cleanup_work_sem);
3894 up_write(&root->fs_info->cleanup_work_sem);
3895
3896 /* cleanup FS via transaction */
3897 btrfs_cleanup_transaction(root);
3898 }
3899
3900 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3901 {
3902 struct btrfs_ordered_extent *ordered;
3903
3904 spin_lock(&root->ordered_extent_lock);
3905 /*
3906 * This will just short circuit the ordered completion stuff which will
3907 * make sure the ordered extent gets properly cleaned up.
3908 */
3909 list_for_each_entry(ordered, &root->ordered_extents,
3910 root_extent_list)
3911 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3912 spin_unlock(&root->ordered_extent_lock);
3913 }
3914
3915 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3916 {
3917 struct btrfs_root *root;
3918 struct list_head splice;
3919
3920 INIT_LIST_HEAD(&splice);
3921
3922 spin_lock(&fs_info->ordered_root_lock);
3923 list_splice_init(&fs_info->ordered_roots, &splice);
3924 while (!list_empty(&splice)) {
3925 root = list_first_entry(&splice, struct btrfs_root,
3926 ordered_root);
3927 list_move_tail(&root->ordered_root,
3928 &fs_info->ordered_roots);
3929
3930 spin_unlock(&fs_info->ordered_root_lock);
3931 btrfs_destroy_ordered_extents(root);
3932
3933 cond_resched();
3934 spin_lock(&fs_info->ordered_root_lock);
3935 }
3936 spin_unlock(&fs_info->ordered_root_lock);
3937 }
3938
3939 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3940 struct btrfs_root *root)
3941 {
3942 struct rb_node *node;
3943 struct btrfs_delayed_ref_root *delayed_refs;
3944 struct btrfs_delayed_ref_node *ref;
3945 int ret = 0;
3946
3947 delayed_refs = &trans->delayed_refs;
3948
3949 spin_lock(&delayed_refs->lock);
3950 if (atomic_read(&delayed_refs->num_entries) == 0) {
3951 spin_unlock(&delayed_refs->lock);
3952 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3953 return ret;
3954 }
3955
3956 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3957 struct btrfs_delayed_ref_head *head;
3958 bool pin_bytes = false;
3959
3960 head = rb_entry(node, struct btrfs_delayed_ref_head,
3961 href_node);
3962 if (!mutex_trylock(&head->mutex)) {
3963 atomic_inc(&head->node.refs);
3964 spin_unlock(&delayed_refs->lock);
3965
3966 mutex_lock(&head->mutex);
3967 mutex_unlock(&head->mutex);
3968 btrfs_put_delayed_ref(&head->node);
3969 spin_lock(&delayed_refs->lock);
3970 continue;
3971 }
3972 spin_lock(&head->lock);
3973 while ((node = rb_first(&head->ref_root)) != NULL) {
3974 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3975 rb_node);
3976 ref->in_tree = 0;
3977 rb_erase(&ref->rb_node, &head->ref_root);
3978 atomic_dec(&delayed_refs->num_entries);
3979 btrfs_put_delayed_ref(ref);
3980 }
3981 if (head->must_insert_reserved)
3982 pin_bytes = true;
3983 btrfs_free_delayed_extent_op(head->extent_op);
3984 delayed_refs->num_heads--;
3985 if (head->processing == 0)
3986 delayed_refs->num_heads_ready--;
3987 atomic_dec(&delayed_refs->num_entries);
3988 head->node.in_tree = 0;
3989 rb_erase(&head->href_node, &delayed_refs->href_root);
3990 spin_unlock(&head->lock);
3991 spin_unlock(&delayed_refs->lock);
3992 mutex_unlock(&head->mutex);
3993
3994 if (pin_bytes)
3995 btrfs_pin_extent(root, head->node.bytenr,
3996 head->node.num_bytes, 1);
3997 btrfs_put_delayed_ref(&head->node);
3998 cond_resched();
3999 spin_lock(&delayed_refs->lock);
4000 }
4001
4002 spin_unlock(&delayed_refs->lock);
4003
4004 return ret;
4005 }
4006
4007 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4008 {
4009 struct btrfs_inode *btrfs_inode;
4010 struct list_head splice;
4011
4012 INIT_LIST_HEAD(&splice);
4013
4014 spin_lock(&root->delalloc_lock);
4015 list_splice_init(&root->delalloc_inodes, &splice);
4016
4017 while (!list_empty(&splice)) {
4018 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4019 delalloc_inodes);
4020
4021 list_del_init(&btrfs_inode->delalloc_inodes);
4022 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4023 &btrfs_inode->runtime_flags);
4024 spin_unlock(&root->delalloc_lock);
4025
4026 btrfs_invalidate_inodes(btrfs_inode->root);
4027
4028 spin_lock(&root->delalloc_lock);
4029 }
4030
4031 spin_unlock(&root->delalloc_lock);
4032 }
4033
4034 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4035 {
4036 struct btrfs_root *root;
4037 struct list_head splice;
4038
4039 INIT_LIST_HEAD(&splice);
4040
4041 spin_lock(&fs_info->delalloc_root_lock);
4042 list_splice_init(&fs_info->delalloc_roots, &splice);
4043 while (!list_empty(&splice)) {
4044 root = list_first_entry(&splice, struct btrfs_root,
4045 delalloc_root);
4046 list_del_init(&root->delalloc_root);
4047 root = btrfs_grab_fs_root(root);
4048 BUG_ON(!root);
4049 spin_unlock(&fs_info->delalloc_root_lock);
4050
4051 btrfs_destroy_delalloc_inodes(root);
4052 btrfs_put_fs_root(root);
4053
4054 spin_lock(&fs_info->delalloc_root_lock);
4055 }
4056 spin_unlock(&fs_info->delalloc_root_lock);
4057 }
4058
4059 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4060 struct extent_io_tree *dirty_pages,
4061 int mark)
4062 {
4063 int ret;
4064 struct extent_buffer *eb;
4065 u64 start = 0;
4066 u64 end;
4067
4068 while (1) {
4069 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4070 mark, NULL);
4071 if (ret)
4072 break;
4073
4074 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4075 while (start <= end) {
4076 eb = btrfs_find_tree_block(root, start);
4077 start += root->nodesize;
4078 if (!eb)
4079 continue;
4080 wait_on_extent_buffer_writeback(eb);
4081
4082 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4083 &eb->bflags))
4084 clear_extent_buffer_dirty(eb);
4085 free_extent_buffer_stale(eb);
4086 }
4087 }
4088
4089 return ret;
4090 }
4091
4092 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4093 struct extent_io_tree *pinned_extents)
4094 {
4095 struct extent_io_tree *unpin;
4096 u64 start;
4097 u64 end;
4098 int ret;
4099 bool loop = true;
4100
4101 unpin = pinned_extents;
4102 again:
4103 while (1) {
4104 ret = find_first_extent_bit(unpin, 0, &start, &end,
4105 EXTENT_DIRTY, NULL);
4106 if (ret)
4107 break;
4108
4109 /* opt_discard */
4110 if (btrfs_test_opt(root, DISCARD))
4111 ret = btrfs_error_discard_extent(root, start,
4112 end + 1 - start,
4113 NULL);
4114
4115 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4116 btrfs_error_unpin_extent_range(root, start, end);
4117 cond_resched();
4118 }
4119
4120 if (loop) {
4121 if (unpin == &root->fs_info->freed_extents[0])
4122 unpin = &root->fs_info->freed_extents[1];
4123 else
4124 unpin = &root->fs_info->freed_extents[0];
4125 loop = false;
4126 goto again;
4127 }
4128
4129 return 0;
4130 }
4131
4132 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4133 struct btrfs_root *root)
4134 {
4135 btrfs_destroy_delayed_refs(cur_trans, root);
4136
4137 cur_trans->state = TRANS_STATE_COMMIT_START;
4138 wake_up(&root->fs_info->transaction_blocked_wait);
4139
4140 cur_trans->state = TRANS_STATE_UNBLOCKED;
4141 wake_up(&root->fs_info->transaction_wait);
4142
4143 btrfs_destroy_delayed_inodes(root);
4144 btrfs_assert_delayed_root_empty(root);
4145
4146 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4147 EXTENT_DIRTY);
4148 btrfs_destroy_pinned_extent(root,
4149 root->fs_info->pinned_extents);
4150
4151 cur_trans->state =TRANS_STATE_COMPLETED;
4152 wake_up(&cur_trans->commit_wait);
4153
4154 /*
4155 memset(cur_trans, 0, sizeof(*cur_trans));
4156 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4157 */
4158 }
4159
4160 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4161 {
4162 struct btrfs_transaction *t;
4163
4164 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4165
4166 spin_lock(&root->fs_info->trans_lock);
4167 while (!list_empty(&root->fs_info->trans_list)) {
4168 t = list_first_entry(&root->fs_info->trans_list,
4169 struct btrfs_transaction, list);
4170 if (t->state >= TRANS_STATE_COMMIT_START) {
4171 atomic_inc(&t->use_count);
4172 spin_unlock(&root->fs_info->trans_lock);
4173 btrfs_wait_for_commit(root, t->transid);
4174 btrfs_put_transaction(t);
4175 spin_lock(&root->fs_info->trans_lock);
4176 continue;
4177 }
4178 if (t == root->fs_info->running_transaction) {
4179 t->state = TRANS_STATE_COMMIT_DOING;
4180 spin_unlock(&root->fs_info->trans_lock);
4181 /*
4182 * We wait for 0 num_writers since we don't hold a trans
4183 * handle open currently for this transaction.
4184 */
4185 wait_event(t->writer_wait,
4186 atomic_read(&t->num_writers) == 0);
4187 } else {
4188 spin_unlock(&root->fs_info->trans_lock);
4189 }
4190 btrfs_cleanup_one_transaction(t, root);
4191
4192 spin_lock(&root->fs_info->trans_lock);
4193 if (t == root->fs_info->running_transaction)
4194 root->fs_info->running_transaction = NULL;
4195 list_del_init(&t->list);
4196 spin_unlock(&root->fs_info->trans_lock);
4197
4198 btrfs_put_transaction(t);
4199 trace_btrfs_transaction_commit(root);
4200 spin_lock(&root->fs_info->trans_lock);
4201 }
4202 spin_unlock(&root->fs_info->trans_lock);
4203 btrfs_destroy_all_ordered_extents(root->fs_info);
4204 btrfs_destroy_delayed_inodes(root);
4205 btrfs_assert_delayed_root_empty(root);
4206 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4207 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4208 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4209
4210 return 0;
4211 }
4212
4213 static struct extent_io_ops btree_extent_io_ops = {
4214 .readpage_end_io_hook = btree_readpage_end_io_hook,
4215 .readpage_io_failed_hook = btree_io_failed_hook,
4216 .submit_bio_hook = btree_submit_bio_hook,
4217 /* note we're sharing with inode.c for the merge bio hook */
4218 .merge_bio_hook = btrfs_merge_bio_hook,
4219 };
This page took 0.113867 seconds and 6 git commands to generate.