Merge branch 'error-handling' into for-linus
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
53 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
57 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
64
65 /*
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
70 struct end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 int error;
76 int metadata;
77 struct list_head list;
78 struct btrfs_work work;
79 };
80
81 /*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
86 struct async_submit_bio {
87 struct inode *inode;
88 struct bio *bio;
89 struct list_head list;
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
92 int rw;
93 int mirror_num;
94 unsigned long bio_flags;
95 /*
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
98 */
99 u64 bio_offset;
100 struct btrfs_work work;
101 int error;
102 };
103
104 /*
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
108 *
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
114 *
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
118 *
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
122 *
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
126 */
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
129 # error
130 # endif
131
132 static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
149 };
150
151 void __init btrfs_init_lockdep(void)
152 {
153 int i, j;
154
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
162 }
163 }
164
165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 int level)
167 {
168 struct btrfs_lockdep_keyset *ks;
169
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
175 break;
176
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
179 }
180
181 #endif
182
183 /*
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
186 */
187 static struct extent_map *btree_get_extent(struct inode *inode,
188 struct page *page, size_t pg_offset, u64 start, u64 len,
189 int create)
190 {
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
193 int ret;
194
195 read_lock(&em_tree->lock);
196 em = lookup_extent_mapping(em_tree, start, len);
197 if (em) {
198 em->bdev =
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200 read_unlock(&em_tree->lock);
201 goto out;
202 }
203 read_unlock(&em_tree->lock);
204
205 em = alloc_extent_map();
206 if (!em) {
207 em = ERR_PTR(-ENOMEM);
208 goto out;
209 }
210 em->start = 0;
211 em->len = (u64)-1;
212 em->block_len = (u64)-1;
213 em->block_start = 0;
214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215
216 write_lock(&em_tree->lock);
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
221
222 free_extent_map(em);
223 em = lookup_extent_mapping(em_tree, start, len);
224 if (em) {
225 ret = 0;
226 } else {
227 em = lookup_extent_mapping(em_tree, failed_start,
228 failed_len);
229 ret = -EIO;
230 }
231 } else if (ret) {
232 free_extent_map(em);
233 em = NULL;
234 }
235 write_unlock(&em_tree->lock);
236
237 if (ret)
238 em = ERR_PTR(ret);
239 out:
240 return em;
241 }
242
243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 {
245 return crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250 put_unaligned_le32(~crc, result);
251 }
252
253 /*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259 {
260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261 char *result = NULL;
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
270 unsigned long inline_result;
271
272 len = buf->len - offset;
273 while (len > 0) {
274 err = map_private_extent_buffer(buf, offset, 32,
275 &kaddr, &map_start, &map_len);
276 if (err)
277 return 1;
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
283 }
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296 u32 val;
297 u32 found = 0;
298 memcpy(&found, result, csum_size);
299
300 read_extent_buffer(buf, &val, 0, csum_size);
301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
307 if (result != (char *)&inline_result)
308 kfree(result);
309 return 1;
310 }
311 } else {
312 write_extent_buffer(buf, result, 0, csum_size);
313 }
314 if (result != (char *)&inline_result)
315 kfree(result);
316 return 0;
317 }
318
319 /*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327 {
328 struct extent_state *cached_state = NULL;
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state);
336 if (extent_buffer_uptodate(eb) &&
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
346 ret = 1;
347 clear_extent_buffer_uptodate(eb);
348 out:
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
351 return ret;
352 }
353
354 /*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
360 u64 start, u64 parent_transid)
361 {
362 struct extent_io_tree *io_tree;
363 int failed = 0;
364 int ret;
365 int num_copies = 0;
366 int mirror_num = 0;
367 int failed_mirror = 0;
368
369 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
370 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371 while (1) {
372 ret = read_extent_buffer_pages(io_tree, eb, start,
373 WAIT_COMPLETE,
374 btree_get_extent, mirror_num);
375 if (!ret && !verify_parent_transid(io_tree, eb, parent_transid))
376 break;
377
378 /*
379 * This buffer's crc is fine, but its contents are corrupted, so
380 * there is no reason to read the other copies, they won't be
381 * any less wrong.
382 */
383 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
384 break;
385
386 if (!failed_mirror) {
387 failed = 1;
388 printk(KERN_ERR "failed mirror was %d\n", eb->failed_mirror);
389 failed_mirror = eb->failed_mirror;
390 }
391
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
394 if (num_copies == 1)
395 break;
396
397 mirror_num++;
398 if (mirror_num == failed_mirror)
399 mirror_num++;
400
401 if (mirror_num > num_copies)
402 break;
403 }
404
405 if (failed && !ret)
406 repair_eb_io_failure(root, eb, failed_mirror);
407
408 return ret;
409 }
410
411 /*
412 * checksum a dirty tree block before IO. This has extra checks to make sure
413 * we only fill in the checksum field in the first page of a multi-page block
414 */
415
416 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
417 {
418 struct extent_io_tree *tree;
419 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
420 u64 found_start;
421 struct extent_buffer *eb;
422
423 tree = &BTRFS_I(page->mapping->host)->io_tree;
424
425 eb = (struct extent_buffer *)page->private;
426 if (page != eb->pages[0])
427 return 0;
428 found_start = btrfs_header_bytenr(eb);
429 if (found_start != start) {
430 WARN_ON(1);
431 return 0;
432 }
433 if (eb->pages[0] != page) {
434 WARN_ON(1);
435 return 0;
436 }
437 if (!PageUptodate(page)) {
438 WARN_ON(1);
439 return 0;
440 }
441 csum_tree_block(root, eb, 0);
442 return 0;
443 }
444
445 static int check_tree_block_fsid(struct btrfs_root *root,
446 struct extent_buffer *eb)
447 {
448 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
449 u8 fsid[BTRFS_UUID_SIZE];
450 int ret = 1;
451
452 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
453 BTRFS_FSID_SIZE);
454 while (fs_devices) {
455 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
456 ret = 0;
457 break;
458 }
459 fs_devices = fs_devices->seed;
460 }
461 return ret;
462 }
463
464 #define CORRUPT(reason, eb, root, slot) \
465 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
466 "root=%llu, slot=%d\n", reason, \
467 (unsigned long long)btrfs_header_bytenr(eb), \
468 (unsigned long long)root->objectid, slot)
469
470 static noinline int check_leaf(struct btrfs_root *root,
471 struct extent_buffer *leaf)
472 {
473 struct btrfs_key key;
474 struct btrfs_key leaf_key;
475 u32 nritems = btrfs_header_nritems(leaf);
476 int slot;
477
478 if (nritems == 0)
479 return 0;
480
481 /* Check the 0 item */
482 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
483 BTRFS_LEAF_DATA_SIZE(root)) {
484 CORRUPT("invalid item offset size pair", leaf, root, 0);
485 return -EIO;
486 }
487
488 /*
489 * Check to make sure each items keys are in the correct order and their
490 * offsets make sense. We only have to loop through nritems-1 because
491 * we check the current slot against the next slot, which verifies the
492 * next slot's offset+size makes sense and that the current's slot
493 * offset is correct.
494 */
495 for (slot = 0; slot < nritems - 1; slot++) {
496 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
497 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
498
499 /* Make sure the keys are in the right order */
500 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
501 CORRUPT("bad key order", leaf, root, slot);
502 return -EIO;
503 }
504
505 /*
506 * Make sure the offset and ends are right, remember that the
507 * item data starts at the end of the leaf and grows towards the
508 * front.
509 */
510 if (btrfs_item_offset_nr(leaf, slot) !=
511 btrfs_item_end_nr(leaf, slot + 1)) {
512 CORRUPT("slot offset bad", leaf, root, slot);
513 return -EIO;
514 }
515
516 /*
517 * Check to make sure that we don't point outside of the leaf,
518 * just incase all the items are consistent to eachother, but
519 * all point outside of the leaf.
520 */
521 if (btrfs_item_end_nr(leaf, slot) >
522 BTRFS_LEAF_DATA_SIZE(root)) {
523 CORRUPT("slot end outside of leaf", leaf, root, slot);
524 return -EIO;
525 }
526 }
527
528 return 0;
529 }
530
531 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
532 struct page *page, int max_walk)
533 {
534 struct extent_buffer *eb;
535 u64 start = page_offset(page);
536 u64 target = start;
537 u64 min_start;
538
539 if (start < max_walk)
540 min_start = 0;
541 else
542 min_start = start - max_walk;
543
544 while (start >= min_start) {
545 eb = find_extent_buffer(tree, start, 0);
546 if (eb) {
547 /*
548 * we found an extent buffer and it contains our page
549 * horray!
550 */
551 if (eb->start <= target &&
552 eb->start + eb->len > target)
553 return eb;
554
555 /* we found an extent buffer that wasn't for us */
556 free_extent_buffer(eb);
557 return NULL;
558 }
559 if (start == 0)
560 break;
561 start -= PAGE_CACHE_SIZE;
562 }
563 return NULL;
564 }
565
566 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
567 struct extent_state *state)
568 {
569 struct extent_io_tree *tree;
570 u64 found_start;
571 int found_level;
572 struct extent_buffer *eb;
573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
574 int ret = 0;
575 int reads_done;
576
577 if (!page->private)
578 goto out;
579
580 tree = &BTRFS_I(page->mapping->host)->io_tree;
581 eb = (struct extent_buffer *)page->private;
582
583 /* the pending IO might have been the only thing that kept this buffer
584 * in memory. Make sure we have a ref for all this other checks
585 */
586 extent_buffer_get(eb);
587
588 reads_done = atomic_dec_and_test(&eb->io_pages);
589 if (!reads_done)
590 goto err;
591
592 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593 ret = -EIO;
594 goto err;
595 }
596
597 found_start = btrfs_header_bytenr(eb);
598 if (found_start != eb->start) {
599 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
600 "%llu %llu\n",
601 (unsigned long long)found_start,
602 (unsigned long long)eb->start);
603 ret = -EIO;
604 goto err;
605 }
606 if (check_tree_block_fsid(root, eb)) {
607 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
608 (unsigned long long)eb->start);
609 ret = -EIO;
610 goto err;
611 }
612 found_level = btrfs_header_level(eb);
613
614 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
615 eb, found_level);
616
617 ret = csum_tree_block(root, eb, 1);
618 if (ret) {
619 ret = -EIO;
620 goto err;
621 }
622
623 /*
624 * If this is a leaf block and it is corrupt, set the corrupt bit so
625 * that we don't try and read the other copies of this block, just
626 * return -EIO.
627 */
628 if (found_level == 0 && check_leaf(root, eb)) {
629 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
630 ret = -EIO;
631 }
632
633 if (!ret)
634 set_extent_buffer_uptodate(eb);
635 err:
636 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
637 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
638 btree_readahead_hook(root, eb, eb->start, ret);
639 }
640
641 if (ret)
642 clear_extent_buffer_uptodate(eb);
643 free_extent_buffer(eb);
644 out:
645 return ret;
646 }
647
648 static int btree_io_failed_hook(struct page *page, int failed_mirror)
649 {
650 struct extent_buffer *eb;
651 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
652
653 eb = (struct extent_buffer *)page->private;
654 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
655 eb->failed_mirror = failed_mirror;
656 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
657 btree_readahead_hook(root, eb, eb->start, -EIO);
658 return -EIO; /* we fixed nothing */
659 }
660
661 static void end_workqueue_bio(struct bio *bio, int err)
662 {
663 struct end_io_wq *end_io_wq = bio->bi_private;
664 struct btrfs_fs_info *fs_info;
665
666 fs_info = end_io_wq->info;
667 end_io_wq->error = err;
668 end_io_wq->work.func = end_workqueue_fn;
669 end_io_wq->work.flags = 0;
670
671 if (bio->bi_rw & REQ_WRITE) {
672 if (end_io_wq->metadata == 1)
673 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
674 &end_io_wq->work);
675 else if (end_io_wq->metadata == 2)
676 btrfs_queue_worker(&fs_info->endio_freespace_worker,
677 &end_io_wq->work);
678 else
679 btrfs_queue_worker(&fs_info->endio_write_workers,
680 &end_io_wq->work);
681 } else {
682 if (end_io_wq->metadata)
683 btrfs_queue_worker(&fs_info->endio_meta_workers,
684 &end_io_wq->work);
685 else
686 btrfs_queue_worker(&fs_info->endio_workers,
687 &end_io_wq->work);
688 }
689 }
690
691 /*
692 * For the metadata arg you want
693 *
694 * 0 - if data
695 * 1 - if normal metadta
696 * 2 - if writing to the free space cache area
697 */
698 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
699 int metadata)
700 {
701 struct end_io_wq *end_io_wq;
702 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
703 if (!end_io_wq)
704 return -ENOMEM;
705
706 end_io_wq->private = bio->bi_private;
707 end_io_wq->end_io = bio->bi_end_io;
708 end_io_wq->info = info;
709 end_io_wq->error = 0;
710 end_io_wq->bio = bio;
711 end_io_wq->metadata = metadata;
712
713 bio->bi_private = end_io_wq;
714 bio->bi_end_io = end_workqueue_bio;
715 return 0;
716 }
717
718 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
719 {
720 unsigned long limit = min_t(unsigned long,
721 info->workers.max_workers,
722 info->fs_devices->open_devices);
723 return 256 * limit;
724 }
725
726 static void run_one_async_start(struct btrfs_work *work)
727 {
728 struct async_submit_bio *async;
729 int ret;
730
731 async = container_of(work, struct async_submit_bio, work);
732 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
733 async->mirror_num, async->bio_flags,
734 async->bio_offset);
735 if (ret)
736 async->error = ret;
737 }
738
739 static void run_one_async_done(struct btrfs_work *work)
740 {
741 struct btrfs_fs_info *fs_info;
742 struct async_submit_bio *async;
743 int limit;
744
745 async = container_of(work, struct async_submit_bio, work);
746 fs_info = BTRFS_I(async->inode)->root->fs_info;
747
748 limit = btrfs_async_submit_limit(fs_info);
749 limit = limit * 2 / 3;
750
751 atomic_dec(&fs_info->nr_async_submits);
752
753 if (atomic_read(&fs_info->nr_async_submits) < limit &&
754 waitqueue_active(&fs_info->async_submit_wait))
755 wake_up(&fs_info->async_submit_wait);
756
757 /* If an error occured we just want to clean up the bio and move on */
758 if (async->error) {
759 bio_endio(async->bio, async->error);
760 return;
761 }
762
763 async->submit_bio_done(async->inode, async->rw, async->bio,
764 async->mirror_num, async->bio_flags,
765 async->bio_offset);
766 }
767
768 static void run_one_async_free(struct btrfs_work *work)
769 {
770 struct async_submit_bio *async;
771
772 async = container_of(work, struct async_submit_bio, work);
773 kfree(async);
774 }
775
776 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
777 int rw, struct bio *bio, int mirror_num,
778 unsigned long bio_flags,
779 u64 bio_offset,
780 extent_submit_bio_hook_t *submit_bio_start,
781 extent_submit_bio_hook_t *submit_bio_done)
782 {
783 struct async_submit_bio *async;
784
785 async = kmalloc(sizeof(*async), GFP_NOFS);
786 if (!async)
787 return -ENOMEM;
788
789 async->inode = inode;
790 async->rw = rw;
791 async->bio = bio;
792 async->mirror_num = mirror_num;
793 async->submit_bio_start = submit_bio_start;
794 async->submit_bio_done = submit_bio_done;
795
796 async->work.func = run_one_async_start;
797 async->work.ordered_func = run_one_async_done;
798 async->work.ordered_free = run_one_async_free;
799
800 async->work.flags = 0;
801 async->bio_flags = bio_flags;
802 async->bio_offset = bio_offset;
803
804 async->error = 0;
805
806 atomic_inc(&fs_info->nr_async_submits);
807
808 if (rw & REQ_SYNC)
809 btrfs_set_work_high_prio(&async->work);
810
811 btrfs_queue_worker(&fs_info->workers, &async->work);
812
813 while (atomic_read(&fs_info->async_submit_draining) &&
814 atomic_read(&fs_info->nr_async_submits)) {
815 wait_event(fs_info->async_submit_wait,
816 (atomic_read(&fs_info->nr_async_submits) == 0));
817 }
818
819 return 0;
820 }
821
822 static int btree_csum_one_bio(struct bio *bio)
823 {
824 struct bio_vec *bvec = bio->bi_io_vec;
825 int bio_index = 0;
826 struct btrfs_root *root;
827 int ret = 0;
828
829 WARN_ON(bio->bi_vcnt <= 0);
830 while (bio_index < bio->bi_vcnt) {
831 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
832 ret = csum_dirty_buffer(root, bvec->bv_page);
833 if (ret)
834 break;
835 bio_index++;
836 bvec++;
837 }
838 return ret;
839 }
840
841 static int __btree_submit_bio_start(struct inode *inode, int rw,
842 struct bio *bio, int mirror_num,
843 unsigned long bio_flags,
844 u64 bio_offset)
845 {
846 /*
847 * when we're called for a write, we're already in the async
848 * submission context. Just jump into btrfs_map_bio
849 */
850 return btree_csum_one_bio(bio);
851 }
852
853 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
854 int mirror_num, unsigned long bio_flags,
855 u64 bio_offset)
856 {
857 /*
858 * when we're called for a write, we're already in the async
859 * submission context. Just jump into btrfs_map_bio
860 */
861 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
862 }
863
864 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
865 int mirror_num, unsigned long bio_flags,
866 u64 bio_offset)
867 {
868 int ret;
869
870 if (!(rw & REQ_WRITE)) {
871
872 /*
873 * called for a read, do the setup so that checksum validation
874 * can happen in the async kernel threads
875 */
876 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
877 bio, 1);
878 if (ret)
879 return ret;
880 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
881 mirror_num, 0);
882 }
883
884 /*
885 * kthread helpers are used to submit writes so that checksumming
886 * can happen in parallel across all CPUs
887 */
888 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
889 inode, rw, bio, mirror_num, 0,
890 bio_offset,
891 __btree_submit_bio_start,
892 __btree_submit_bio_done);
893 }
894
895 #ifdef CONFIG_MIGRATION
896 static int btree_migratepage(struct address_space *mapping,
897 struct page *newpage, struct page *page,
898 enum migrate_mode mode)
899 {
900 /*
901 * we can't safely write a btree page from here,
902 * we haven't done the locking hook
903 */
904 if (PageDirty(page))
905 return -EAGAIN;
906 /*
907 * Buffers may be managed in a filesystem specific way.
908 * We must have no buffers or drop them.
909 */
910 if (page_has_private(page) &&
911 !try_to_release_page(page, GFP_KERNEL))
912 return -EAGAIN;
913 return migrate_page(mapping, newpage, page, mode);
914 }
915 #endif
916
917
918 static int btree_writepages(struct address_space *mapping,
919 struct writeback_control *wbc)
920 {
921 struct extent_io_tree *tree;
922 tree = &BTRFS_I(mapping->host)->io_tree;
923 if (wbc->sync_mode == WB_SYNC_NONE) {
924 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
925 u64 num_dirty;
926 unsigned long thresh = 32 * 1024 * 1024;
927
928 if (wbc->for_kupdate)
929 return 0;
930
931 /* this is a bit racy, but that's ok */
932 num_dirty = root->fs_info->dirty_metadata_bytes;
933 if (num_dirty < thresh)
934 return 0;
935 }
936 return btree_write_cache_pages(mapping, wbc);
937 }
938
939 static int btree_readpage(struct file *file, struct page *page)
940 {
941 struct extent_io_tree *tree;
942 tree = &BTRFS_I(page->mapping->host)->io_tree;
943 return extent_read_full_page(tree, page, btree_get_extent, 0);
944 }
945
946 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
947 {
948 if (PageWriteback(page) || PageDirty(page))
949 return 0;
950 /*
951 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
952 * slab allocation from alloc_extent_state down the callchain where
953 * it'd hit a BUG_ON as those flags are not allowed.
954 */
955 gfp_flags &= ~GFP_SLAB_BUG_MASK;
956
957 return try_release_extent_buffer(page, gfp_flags);
958 }
959
960 static void btree_invalidatepage(struct page *page, unsigned long offset)
961 {
962 struct extent_io_tree *tree;
963 tree = &BTRFS_I(page->mapping->host)->io_tree;
964 extent_invalidatepage(tree, page, offset);
965 btree_releasepage(page, GFP_NOFS);
966 if (PagePrivate(page)) {
967 printk(KERN_WARNING "btrfs warning page private not zero "
968 "on page %llu\n", (unsigned long long)page_offset(page));
969 ClearPagePrivate(page);
970 set_page_private(page, 0);
971 page_cache_release(page);
972 }
973 }
974
975 static int btree_set_page_dirty(struct page *page)
976 {
977 struct extent_buffer *eb;
978
979 BUG_ON(!PagePrivate(page));
980 eb = (struct extent_buffer *)page->private;
981 BUG_ON(!eb);
982 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
983 BUG_ON(!atomic_read(&eb->refs));
984 btrfs_assert_tree_locked(eb);
985 return __set_page_dirty_nobuffers(page);
986 }
987
988 static const struct address_space_operations btree_aops = {
989 .readpage = btree_readpage,
990 .writepages = btree_writepages,
991 .releasepage = btree_releasepage,
992 .invalidatepage = btree_invalidatepage,
993 #ifdef CONFIG_MIGRATION
994 .migratepage = btree_migratepage,
995 #endif
996 .set_page_dirty = btree_set_page_dirty,
997 };
998
999 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1000 u64 parent_transid)
1001 {
1002 struct extent_buffer *buf = NULL;
1003 struct inode *btree_inode = root->fs_info->btree_inode;
1004 int ret = 0;
1005
1006 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1007 if (!buf)
1008 return 0;
1009 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1010 buf, 0, WAIT_NONE, btree_get_extent, 0);
1011 free_extent_buffer(buf);
1012 return ret;
1013 }
1014
1015 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1016 int mirror_num, struct extent_buffer **eb)
1017 {
1018 struct extent_buffer *buf = NULL;
1019 struct inode *btree_inode = root->fs_info->btree_inode;
1020 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1021 int ret;
1022
1023 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1024 if (!buf)
1025 return 0;
1026
1027 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1028
1029 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1030 btree_get_extent, mirror_num);
1031 if (ret) {
1032 free_extent_buffer(buf);
1033 return ret;
1034 }
1035
1036 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1037 free_extent_buffer(buf);
1038 return -EIO;
1039 } else if (extent_buffer_uptodate(buf)) {
1040 *eb = buf;
1041 } else {
1042 free_extent_buffer(buf);
1043 }
1044 return 0;
1045 }
1046
1047 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1048 u64 bytenr, u32 blocksize)
1049 {
1050 struct inode *btree_inode = root->fs_info->btree_inode;
1051 struct extent_buffer *eb;
1052 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1053 bytenr, blocksize);
1054 return eb;
1055 }
1056
1057 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1058 u64 bytenr, u32 blocksize)
1059 {
1060 struct inode *btree_inode = root->fs_info->btree_inode;
1061 struct extent_buffer *eb;
1062
1063 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1064 bytenr, blocksize);
1065 return eb;
1066 }
1067
1068
1069 int btrfs_write_tree_block(struct extent_buffer *buf)
1070 {
1071 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1072 buf->start + buf->len - 1);
1073 }
1074
1075 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1076 {
1077 return filemap_fdatawait_range(buf->pages[0]->mapping,
1078 buf->start, buf->start + buf->len - 1);
1079 }
1080
1081 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1082 u32 blocksize, u64 parent_transid)
1083 {
1084 struct extent_buffer *buf = NULL;
1085 int ret;
1086
1087 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1088 if (!buf)
1089 return NULL;
1090
1091 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1092 return buf;
1093
1094 }
1095
1096 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1097 struct extent_buffer *buf)
1098 {
1099 if (btrfs_header_generation(buf) ==
1100 root->fs_info->running_transaction->transid) {
1101 btrfs_assert_tree_locked(buf);
1102
1103 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1104 spin_lock(&root->fs_info->delalloc_lock);
1105 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1106 root->fs_info->dirty_metadata_bytes -= buf->len;
1107 else {
1108 spin_unlock(&root->fs_info->delalloc_lock);
1109 btrfs_panic(root->fs_info, -EOVERFLOW,
1110 "Can't clear %lu bytes from "
1111 " dirty_mdatadata_bytes (%lu)",
1112 buf->len,
1113 root->fs_info->dirty_metadata_bytes);
1114 }
1115 spin_unlock(&root->fs_info->delalloc_lock);
1116 }
1117
1118 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1119 btrfs_set_lock_blocking(buf);
1120 clear_extent_buffer_dirty(buf);
1121 }
1122 }
1123
1124 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1125 u32 stripesize, struct btrfs_root *root,
1126 struct btrfs_fs_info *fs_info,
1127 u64 objectid)
1128 {
1129 root->node = NULL;
1130 root->commit_root = NULL;
1131 root->sectorsize = sectorsize;
1132 root->nodesize = nodesize;
1133 root->leafsize = leafsize;
1134 root->stripesize = stripesize;
1135 root->ref_cows = 0;
1136 root->track_dirty = 0;
1137 root->in_radix = 0;
1138 root->orphan_item_inserted = 0;
1139 root->orphan_cleanup_state = 0;
1140
1141 root->objectid = objectid;
1142 root->last_trans = 0;
1143 root->highest_objectid = 0;
1144 root->name = NULL;
1145 root->inode_tree = RB_ROOT;
1146 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1147 root->block_rsv = NULL;
1148 root->orphan_block_rsv = NULL;
1149
1150 INIT_LIST_HEAD(&root->dirty_list);
1151 INIT_LIST_HEAD(&root->orphan_list);
1152 INIT_LIST_HEAD(&root->root_list);
1153 spin_lock_init(&root->orphan_lock);
1154 spin_lock_init(&root->inode_lock);
1155 spin_lock_init(&root->accounting_lock);
1156 mutex_init(&root->objectid_mutex);
1157 mutex_init(&root->log_mutex);
1158 init_waitqueue_head(&root->log_writer_wait);
1159 init_waitqueue_head(&root->log_commit_wait[0]);
1160 init_waitqueue_head(&root->log_commit_wait[1]);
1161 atomic_set(&root->log_commit[0], 0);
1162 atomic_set(&root->log_commit[1], 0);
1163 atomic_set(&root->log_writers, 0);
1164 root->log_batch = 0;
1165 root->log_transid = 0;
1166 root->last_log_commit = 0;
1167 extent_io_tree_init(&root->dirty_log_pages,
1168 fs_info->btree_inode->i_mapping);
1169
1170 memset(&root->root_key, 0, sizeof(root->root_key));
1171 memset(&root->root_item, 0, sizeof(root->root_item));
1172 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1173 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1174 root->defrag_trans_start = fs_info->generation;
1175 init_completion(&root->kobj_unregister);
1176 root->defrag_running = 0;
1177 root->root_key.objectid = objectid;
1178 root->anon_dev = 0;
1179 }
1180
1181 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1182 struct btrfs_fs_info *fs_info,
1183 u64 objectid,
1184 struct btrfs_root *root)
1185 {
1186 int ret;
1187 u32 blocksize;
1188 u64 generation;
1189
1190 __setup_root(tree_root->nodesize, tree_root->leafsize,
1191 tree_root->sectorsize, tree_root->stripesize,
1192 root, fs_info, objectid);
1193 ret = btrfs_find_last_root(tree_root, objectid,
1194 &root->root_item, &root->root_key);
1195 if (ret > 0)
1196 return -ENOENT;
1197 else if (ret < 0)
1198 return ret;
1199
1200 generation = btrfs_root_generation(&root->root_item);
1201 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1202 root->commit_root = NULL;
1203 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1204 blocksize, generation);
1205 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1206 free_extent_buffer(root->node);
1207 root->node = NULL;
1208 return -EIO;
1209 }
1210 root->commit_root = btrfs_root_node(root);
1211 return 0;
1212 }
1213
1214 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1215 {
1216 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1217 if (root)
1218 root->fs_info = fs_info;
1219 return root;
1220 }
1221
1222 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1223 struct btrfs_fs_info *fs_info)
1224 {
1225 struct btrfs_root *root;
1226 struct btrfs_root *tree_root = fs_info->tree_root;
1227 struct extent_buffer *leaf;
1228
1229 root = btrfs_alloc_root(fs_info);
1230 if (!root)
1231 return ERR_PTR(-ENOMEM);
1232
1233 __setup_root(tree_root->nodesize, tree_root->leafsize,
1234 tree_root->sectorsize, tree_root->stripesize,
1235 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1236
1237 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1238 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1239 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1240 /*
1241 * log trees do not get reference counted because they go away
1242 * before a real commit is actually done. They do store pointers
1243 * to file data extents, and those reference counts still get
1244 * updated (along with back refs to the log tree).
1245 */
1246 root->ref_cows = 0;
1247
1248 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1249 BTRFS_TREE_LOG_OBJECTID, NULL,
1250 0, 0, 0, 0);
1251 if (IS_ERR(leaf)) {
1252 kfree(root);
1253 return ERR_CAST(leaf);
1254 }
1255
1256 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1257 btrfs_set_header_bytenr(leaf, leaf->start);
1258 btrfs_set_header_generation(leaf, trans->transid);
1259 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1260 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1261 root->node = leaf;
1262
1263 write_extent_buffer(root->node, root->fs_info->fsid,
1264 (unsigned long)btrfs_header_fsid(root->node),
1265 BTRFS_FSID_SIZE);
1266 btrfs_mark_buffer_dirty(root->node);
1267 btrfs_tree_unlock(root->node);
1268 return root;
1269 }
1270
1271 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1272 struct btrfs_fs_info *fs_info)
1273 {
1274 struct btrfs_root *log_root;
1275
1276 log_root = alloc_log_tree(trans, fs_info);
1277 if (IS_ERR(log_root))
1278 return PTR_ERR(log_root);
1279 WARN_ON(fs_info->log_root_tree);
1280 fs_info->log_root_tree = log_root;
1281 return 0;
1282 }
1283
1284 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1285 struct btrfs_root *root)
1286 {
1287 struct btrfs_root *log_root;
1288 struct btrfs_inode_item *inode_item;
1289
1290 log_root = alloc_log_tree(trans, root->fs_info);
1291 if (IS_ERR(log_root))
1292 return PTR_ERR(log_root);
1293
1294 log_root->last_trans = trans->transid;
1295 log_root->root_key.offset = root->root_key.objectid;
1296
1297 inode_item = &log_root->root_item.inode;
1298 inode_item->generation = cpu_to_le64(1);
1299 inode_item->size = cpu_to_le64(3);
1300 inode_item->nlink = cpu_to_le32(1);
1301 inode_item->nbytes = cpu_to_le64(root->leafsize);
1302 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1303
1304 btrfs_set_root_node(&log_root->root_item, log_root->node);
1305
1306 WARN_ON(root->log_root);
1307 root->log_root = log_root;
1308 root->log_transid = 0;
1309 root->last_log_commit = 0;
1310 return 0;
1311 }
1312
1313 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1314 struct btrfs_key *location)
1315 {
1316 struct btrfs_root *root;
1317 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1318 struct btrfs_path *path;
1319 struct extent_buffer *l;
1320 u64 generation;
1321 u32 blocksize;
1322 int ret = 0;
1323
1324 root = btrfs_alloc_root(fs_info);
1325 if (!root)
1326 return ERR_PTR(-ENOMEM);
1327 if (location->offset == (u64)-1) {
1328 ret = find_and_setup_root(tree_root, fs_info,
1329 location->objectid, root);
1330 if (ret) {
1331 kfree(root);
1332 return ERR_PTR(ret);
1333 }
1334 goto out;
1335 }
1336
1337 __setup_root(tree_root->nodesize, tree_root->leafsize,
1338 tree_root->sectorsize, tree_root->stripesize,
1339 root, fs_info, location->objectid);
1340
1341 path = btrfs_alloc_path();
1342 if (!path) {
1343 kfree(root);
1344 return ERR_PTR(-ENOMEM);
1345 }
1346 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1347 if (ret == 0) {
1348 l = path->nodes[0];
1349 read_extent_buffer(l, &root->root_item,
1350 btrfs_item_ptr_offset(l, path->slots[0]),
1351 sizeof(root->root_item));
1352 memcpy(&root->root_key, location, sizeof(*location));
1353 }
1354 btrfs_free_path(path);
1355 if (ret) {
1356 kfree(root);
1357 if (ret > 0)
1358 ret = -ENOENT;
1359 return ERR_PTR(ret);
1360 }
1361
1362 generation = btrfs_root_generation(&root->root_item);
1363 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1364 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1365 blocksize, generation);
1366 root->commit_root = btrfs_root_node(root);
1367 BUG_ON(!root->node); /* -ENOMEM */
1368 out:
1369 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1370 root->ref_cows = 1;
1371 btrfs_check_and_init_root_item(&root->root_item);
1372 }
1373
1374 return root;
1375 }
1376
1377 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1378 struct btrfs_key *location)
1379 {
1380 struct btrfs_root *root;
1381 int ret;
1382
1383 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1384 return fs_info->tree_root;
1385 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1386 return fs_info->extent_root;
1387 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1388 return fs_info->chunk_root;
1389 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1390 return fs_info->dev_root;
1391 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1392 return fs_info->csum_root;
1393 again:
1394 spin_lock(&fs_info->fs_roots_radix_lock);
1395 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1396 (unsigned long)location->objectid);
1397 spin_unlock(&fs_info->fs_roots_radix_lock);
1398 if (root)
1399 return root;
1400
1401 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1402 if (IS_ERR(root))
1403 return root;
1404
1405 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1406 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1407 GFP_NOFS);
1408 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1409 ret = -ENOMEM;
1410 goto fail;
1411 }
1412
1413 btrfs_init_free_ino_ctl(root);
1414 mutex_init(&root->fs_commit_mutex);
1415 spin_lock_init(&root->cache_lock);
1416 init_waitqueue_head(&root->cache_wait);
1417
1418 ret = get_anon_bdev(&root->anon_dev);
1419 if (ret)
1420 goto fail;
1421
1422 if (btrfs_root_refs(&root->root_item) == 0) {
1423 ret = -ENOENT;
1424 goto fail;
1425 }
1426
1427 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1428 if (ret < 0)
1429 goto fail;
1430 if (ret == 0)
1431 root->orphan_item_inserted = 1;
1432
1433 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1434 if (ret)
1435 goto fail;
1436
1437 spin_lock(&fs_info->fs_roots_radix_lock);
1438 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1439 (unsigned long)root->root_key.objectid,
1440 root);
1441 if (ret == 0)
1442 root->in_radix = 1;
1443
1444 spin_unlock(&fs_info->fs_roots_radix_lock);
1445 radix_tree_preload_end();
1446 if (ret) {
1447 if (ret == -EEXIST) {
1448 free_fs_root(root);
1449 goto again;
1450 }
1451 goto fail;
1452 }
1453
1454 ret = btrfs_find_dead_roots(fs_info->tree_root,
1455 root->root_key.objectid);
1456 WARN_ON(ret);
1457 return root;
1458 fail:
1459 free_fs_root(root);
1460 return ERR_PTR(ret);
1461 }
1462
1463 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1464 {
1465 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1466 int ret = 0;
1467 struct btrfs_device *device;
1468 struct backing_dev_info *bdi;
1469
1470 rcu_read_lock();
1471 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1472 if (!device->bdev)
1473 continue;
1474 bdi = blk_get_backing_dev_info(device->bdev);
1475 if (bdi && bdi_congested(bdi, bdi_bits)) {
1476 ret = 1;
1477 break;
1478 }
1479 }
1480 rcu_read_unlock();
1481 return ret;
1482 }
1483
1484 /*
1485 * If this fails, caller must call bdi_destroy() to get rid of the
1486 * bdi again.
1487 */
1488 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1489 {
1490 int err;
1491
1492 bdi->capabilities = BDI_CAP_MAP_COPY;
1493 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1494 if (err)
1495 return err;
1496
1497 bdi->ra_pages = default_backing_dev_info.ra_pages;
1498 bdi->congested_fn = btrfs_congested_fn;
1499 bdi->congested_data = info;
1500 return 0;
1501 }
1502
1503 /*
1504 * called by the kthread helper functions to finally call the bio end_io
1505 * functions. This is where read checksum verification actually happens
1506 */
1507 static void end_workqueue_fn(struct btrfs_work *work)
1508 {
1509 struct bio *bio;
1510 struct end_io_wq *end_io_wq;
1511 struct btrfs_fs_info *fs_info;
1512 int error;
1513
1514 end_io_wq = container_of(work, struct end_io_wq, work);
1515 bio = end_io_wq->bio;
1516 fs_info = end_io_wq->info;
1517
1518 error = end_io_wq->error;
1519 bio->bi_private = end_io_wq->private;
1520 bio->bi_end_io = end_io_wq->end_io;
1521 kfree(end_io_wq);
1522 bio_endio(bio, error);
1523 }
1524
1525 static int cleaner_kthread(void *arg)
1526 {
1527 struct btrfs_root *root = arg;
1528
1529 do {
1530 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1531
1532 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1533 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1534 btrfs_run_delayed_iputs(root);
1535 btrfs_clean_old_snapshots(root);
1536 mutex_unlock(&root->fs_info->cleaner_mutex);
1537 btrfs_run_defrag_inodes(root->fs_info);
1538 }
1539
1540 if (!try_to_freeze()) {
1541 set_current_state(TASK_INTERRUPTIBLE);
1542 if (!kthread_should_stop())
1543 schedule();
1544 __set_current_state(TASK_RUNNING);
1545 }
1546 } while (!kthread_should_stop());
1547 return 0;
1548 }
1549
1550 static int transaction_kthread(void *arg)
1551 {
1552 struct btrfs_root *root = arg;
1553 struct btrfs_trans_handle *trans;
1554 struct btrfs_transaction *cur;
1555 u64 transid;
1556 unsigned long now;
1557 unsigned long delay;
1558 bool cannot_commit;
1559
1560 do {
1561 cannot_commit = false;
1562 delay = HZ * 30;
1563 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1564 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1565
1566 spin_lock(&root->fs_info->trans_lock);
1567 cur = root->fs_info->running_transaction;
1568 if (!cur) {
1569 spin_unlock(&root->fs_info->trans_lock);
1570 goto sleep;
1571 }
1572
1573 now = get_seconds();
1574 if (!cur->blocked &&
1575 (now < cur->start_time || now - cur->start_time < 30)) {
1576 spin_unlock(&root->fs_info->trans_lock);
1577 delay = HZ * 5;
1578 goto sleep;
1579 }
1580 transid = cur->transid;
1581 spin_unlock(&root->fs_info->trans_lock);
1582
1583 /* If the file system is aborted, this will always fail. */
1584 trans = btrfs_join_transaction(root);
1585 if (IS_ERR(trans)) {
1586 cannot_commit = true;
1587 goto sleep;
1588 }
1589 if (transid == trans->transid) {
1590 btrfs_commit_transaction(trans, root);
1591 } else {
1592 btrfs_end_transaction(trans, root);
1593 }
1594 sleep:
1595 wake_up_process(root->fs_info->cleaner_kthread);
1596 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1597
1598 if (!try_to_freeze()) {
1599 set_current_state(TASK_INTERRUPTIBLE);
1600 if (!kthread_should_stop() &&
1601 (!btrfs_transaction_blocked(root->fs_info) ||
1602 cannot_commit))
1603 schedule_timeout(delay);
1604 __set_current_state(TASK_RUNNING);
1605 }
1606 } while (!kthread_should_stop());
1607 return 0;
1608 }
1609
1610 /*
1611 * this will find the highest generation in the array of
1612 * root backups. The index of the highest array is returned,
1613 * or -1 if we can't find anything.
1614 *
1615 * We check to make sure the array is valid by comparing the
1616 * generation of the latest root in the array with the generation
1617 * in the super block. If they don't match we pitch it.
1618 */
1619 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1620 {
1621 u64 cur;
1622 int newest_index = -1;
1623 struct btrfs_root_backup *root_backup;
1624 int i;
1625
1626 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1627 root_backup = info->super_copy->super_roots + i;
1628 cur = btrfs_backup_tree_root_gen(root_backup);
1629 if (cur == newest_gen)
1630 newest_index = i;
1631 }
1632
1633 /* check to see if we actually wrapped around */
1634 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1635 root_backup = info->super_copy->super_roots;
1636 cur = btrfs_backup_tree_root_gen(root_backup);
1637 if (cur == newest_gen)
1638 newest_index = 0;
1639 }
1640 return newest_index;
1641 }
1642
1643
1644 /*
1645 * find the oldest backup so we know where to store new entries
1646 * in the backup array. This will set the backup_root_index
1647 * field in the fs_info struct
1648 */
1649 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1650 u64 newest_gen)
1651 {
1652 int newest_index = -1;
1653
1654 newest_index = find_newest_super_backup(info, newest_gen);
1655 /* if there was garbage in there, just move along */
1656 if (newest_index == -1) {
1657 info->backup_root_index = 0;
1658 } else {
1659 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1660 }
1661 }
1662
1663 /*
1664 * copy all the root pointers into the super backup array.
1665 * this will bump the backup pointer by one when it is
1666 * done
1667 */
1668 static void backup_super_roots(struct btrfs_fs_info *info)
1669 {
1670 int next_backup;
1671 struct btrfs_root_backup *root_backup;
1672 int last_backup;
1673
1674 next_backup = info->backup_root_index;
1675 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1676 BTRFS_NUM_BACKUP_ROOTS;
1677
1678 /*
1679 * just overwrite the last backup if we're at the same generation
1680 * this happens only at umount
1681 */
1682 root_backup = info->super_for_commit->super_roots + last_backup;
1683 if (btrfs_backup_tree_root_gen(root_backup) ==
1684 btrfs_header_generation(info->tree_root->node))
1685 next_backup = last_backup;
1686
1687 root_backup = info->super_for_commit->super_roots + next_backup;
1688
1689 /*
1690 * make sure all of our padding and empty slots get zero filled
1691 * regardless of which ones we use today
1692 */
1693 memset(root_backup, 0, sizeof(*root_backup));
1694
1695 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1696
1697 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1698 btrfs_set_backup_tree_root_gen(root_backup,
1699 btrfs_header_generation(info->tree_root->node));
1700
1701 btrfs_set_backup_tree_root_level(root_backup,
1702 btrfs_header_level(info->tree_root->node));
1703
1704 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1705 btrfs_set_backup_chunk_root_gen(root_backup,
1706 btrfs_header_generation(info->chunk_root->node));
1707 btrfs_set_backup_chunk_root_level(root_backup,
1708 btrfs_header_level(info->chunk_root->node));
1709
1710 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1711 btrfs_set_backup_extent_root_gen(root_backup,
1712 btrfs_header_generation(info->extent_root->node));
1713 btrfs_set_backup_extent_root_level(root_backup,
1714 btrfs_header_level(info->extent_root->node));
1715
1716 /*
1717 * we might commit during log recovery, which happens before we set
1718 * the fs_root. Make sure it is valid before we fill it in.
1719 */
1720 if (info->fs_root && info->fs_root->node) {
1721 btrfs_set_backup_fs_root(root_backup,
1722 info->fs_root->node->start);
1723 btrfs_set_backup_fs_root_gen(root_backup,
1724 btrfs_header_generation(info->fs_root->node));
1725 btrfs_set_backup_fs_root_level(root_backup,
1726 btrfs_header_level(info->fs_root->node));
1727 }
1728
1729 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1730 btrfs_set_backup_dev_root_gen(root_backup,
1731 btrfs_header_generation(info->dev_root->node));
1732 btrfs_set_backup_dev_root_level(root_backup,
1733 btrfs_header_level(info->dev_root->node));
1734
1735 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1736 btrfs_set_backup_csum_root_gen(root_backup,
1737 btrfs_header_generation(info->csum_root->node));
1738 btrfs_set_backup_csum_root_level(root_backup,
1739 btrfs_header_level(info->csum_root->node));
1740
1741 btrfs_set_backup_total_bytes(root_backup,
1742 btrfs_super_total_bytes(info->super_copy));
1743 btrfs_set_backup_bytes_used(root_backup,
1744 btrfs_super_bytes_used(info->super_copy));
1745 btrfs_set_backup_num_devices(root_backup,
1746 btrfs_super_num_devices(info->super_copy));
1747
1748 /*
1749 * if we don't copy this out to the super_copy, it won't get remembered
1750 * for the next commit
1751 */
1752 memcpy(&info->super_copy->super_roots,
1753 &info->super_for_commit->super_roots,
1754 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1755 }
1756
1757 /*
1758 * this copies info out of the root backup array and back into
1759 * the in-memory super block. It is meant to help iterate through
1760 * the array, so you send it the number of backups you've already
1761 * tried and the last backup index you used.
1762 *
1763 * this returns -1 when it has tried all the backups
1764 */
1765 static noinline int next_root_backup(struct btrfs_fs_info *info,
1766 struct btrfs_super_block *super,
1767 int *num_backups_tried, int *backup_index)
1768 {
1769 struct btrfs_root_backup *root_backup;
1770 int newest = *backup_index;
1771
1772 if (*num_backups_tried == 0) {
1773 u64 gen = btrfs_super_generation(super);
1774
1775 newest = find_newest_super_backup(info, gen);
1776 if (newest == -1)
1777 return -1;
1778
1779 *backup_index = newest;
1780 *num_backups_tried = 1;
1781 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1782 /* we've tried all the backups, all done */
1783 return -1;
1784 } else {
1785 /* jump to the next oldest backup */
1786 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1787 BTRFS_NUM_BACKUP_ROOTS;
1788 *backup_index = newest;
1789 *num_backups_tried += 1;
1790 }
1791 root_backup = super->super_roots + newest;
1792
1793 btrfs_set_super_generation(super,
1794 btrfs_backup_tree_root_gen(root_backup));
1795 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1796 btrfs_set_super_root_level(super,
1797 btrfs_backup_tree_root_level(root_backup));
1798 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1799
1800 /*
1801 * fixme: the total bytes and num_devices need to match or we should
1802 * need a fsck
1803 */
1804 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1805 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1806 return 0;
1807 }
1808
1809 /* helper to cleanup tree roots */
1810 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1811 {
1812 free_extent_buffer(info->tree_root->node);
1813 free_extent_buffer(info->tree_root->commit_root);
1814 free_extent_buffer(info->dev_root->node);
1815 free_extent_buffer(info->dev_root->commit_root);
1816 free_extent_buffer(info->extent_root->node);
1817 free_extent_buffer(info->extent_root->commit_root);
1818 free_extent_buffer(info->csum_root->node);
1819 free_extent_buffer(info->csum_root->commit_root);
1820
1821 info->tree_root->node = NULL;
1822 info->tree_root->commit_root = NULL;
1823 info->dev_root->node = NULL;
1824 info->dev_root->commit_root = NULL;
1825 info->extent_root->node = NULL;
1826 info->extent_root->commit_root = NULL;
1827 info->csum_root->node = NULL;
1828 info->csum_root->commit_root = NULL;
1829
1830 if (chunk_root) {
1831 free_extent_buffer(info->chunk_root->node);
1832 free_extent_buffer(info->chunk_root->commit_root);
1833 info->chunk_root->node = NULL;
1834 info->chunk_root->commit_root = NULL;
1835 }
1836 }
1837
1838
1839 int open_ctree(struct super_block *sb,
1840 struct btrfs_fs_devices *fs_devices,
1841 char *options)
1842 {
1843 u32 sectorsize;
1844 u32 nodesize;
1845 u32 leafsize;
1846 u32 blocksize;
1847 u32 stripesize;
1848 u64 generation;
1849 u64 features;
1850 struct btrfs_key location;
1851 struct buffer_head *bh;
1852 struct btrfs_super_block *disk_super;
1853 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1854 struct btrfs_root *tree_root;
1855 struct btrfs_root *extent_root;
1856 struct btrfs_root *csum_root;
1857 struct btrfs_root *chunk_root;
1858 struct btrfs_root *dev_root;
1859 struct btrfs_root *log_tree_root;
1860 int ret;
1861 int err = -EINVAL;
1862 int num_backups_tried = 0;
1863 int backup_index = 0;
1864
1865 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1866 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1867 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1868 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1869 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1870
1871 if (!tree_root || !extent_root || !csum_root ||
1872 !chunk_root || !dev_root) {
1873 err = -ENOMEM;
1874 goto fail;
1875 }
1876
1877 ret = init_srcu_struct(&fs_info->subvol_srcu);
1878 if (ret) {
1879 err = ret;
1880 goto fail;
1881 }
1882
1883 ret = setup_bdi(fs_info, &fs_info->bdi);
1884 if (ret) {
1885 err = ret;
1886 goto fail_srcu;
1887 }
1888
1889 fs_info->btree_inode = new_inode(sb);
1890 if (!fs_info->btree_inode) {
1891 err = -ENOMEM;
1892 goto fail_bdi;
1893 }
1894
1895 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1896
1897 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1898 INIT_LIST_HEAD(&fs_info->trans_list);
1899 INIT_LIST_HEAD(&fs_info->dead_roots);
1900 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1901 INIT_LIST_HEAD(&fs_info->hashers);
1902 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1903 INIT_LIST_HEAD(&fs_info->ordered_operations);
1904 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1905 spin_lock_init(&fs_info->delalloc_lock);
1906 spin_lock_init(&fs_info->trans_lock);
1907 spin_lock_init(&fs_info->ref_cache_lock);
1908 spin_lock_init(&fs_info->fs_roots_radix_lock);
1909 spin_lock_init(&fs_info->delayed_iput_lock);
1910 spin_lock_init(&fs_info->defrag_inodes_lock);
1911 spin_lock_init(&fs_info->free_chunk_lock);
1912 mutex_init(&fs_info->reloc_mutex);
1913
1914 init_completion(&fs_info->kobj_unregister);
1915 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1916 INIT_LIST_HEAD(&fs_info->space_info);
1917 btrfs_mapping_init(&fs_info->mapping_tree);
1918 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1919 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1920 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1921 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1922 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1923 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1924 atomic_set(&fs_info->nr_async_submits, 0);
1925 atomic_set(&fs_info->async_delalloc_pages, 0);
1926 atomic_set(&fs_info->async_submit_draining, 0);
1927 atomic_set(&fs_info->nr_async_bios, 0);
1928 atomic_set(&fs_info->defrag_running, 0);
1929 fs_info->sb = sb;
1930 fs_info->max_inline = 8192 * 1024;
1931 fs_info->metadata_ratio = 0;
1932 fs_info->defrag_inodes = RB_ROOT;
1933 fs_info->trans_no_join = 0;
1934 fs_info->free_chunk_space = 0;
1935
1936 /* readahead state */
1937 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1938 spin_lock_init(&fs_info->reada_lock);
1939
1940 fs_info->thread_pool_size = min_t(unsigned long,
1941 num_online_cpus() + 2, 8);
1942
1943 INIT_LIST_HEAD(&fs_info->ordered_extents);
1944 spin_lock_init(&fs_info->ordered_extent_lock);
1945 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1946 GFP_NOFS);
1947 if (!fs_info->delayed_root) {
1948 err = -ENOMEM;
1949 goto fail_iput;
1950 }
1951 btrfs_init_delayed_root(fs_info->delayed_root);
1952
1953 mutex_init(&fs_info->scrub_lock);
1954 atomic_set(&fs_info->scrubs_running, 0);
1955 atomic_set(&fs_info->scrub_pause_req, 0);
1956 atomic_set(&fs_info->scrubs_paused, 0);
1957 atomic_set(&fs_info->scrub_cancel_req, 0);
1958 init_waitqueue_head(&fs_info->scrub_pause_wait);
1959 init_rwsem(&fs_info->scrub_super_lock);
1960 fs_info->scrub_workers_refcnt = 0;
1961 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1962 fs_info->check_integrity_print_mask = 0;
1963 #endif
1964
1965 spin_lock_init(&fs_info->balance_lock);
1966 mutex_init(&fs_info->balance_mutex);
1967 atomic_set(&fs_info->balance_running, 0);
1968 atomic_set(&fs_info->balance_pause_req, 0);
1969 atomic_set(&fs_info->balance_cancel_req, 0);
1970 fs_info->balance_ctl = NULL;
1971 init_waitqueue_head(&fs_info->balance_wait_q);
1972
1973 sb->s_blocksize = 4096;
1974 sb->s_blocksize_bits = blksize_bits(4096);
1975 sb->s_bdi = &fs_info->bdi;
1976
1977 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1978 set_nlink(fs_info->btree_inode, 1);
1979 /*
1980 * we set the i_size on the btree inode to the max possible int.
1981 * the real end of the address space is determined by all of
1982 * the devices in the system
1983 */
1984 fs_info->btree_inode->i_size = OFFSET_MAX;
1985 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1986 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1987
1988 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1989 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1990 fs_info->btree_inode->i_mapping);
1991 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
1992 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1993
1994 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1995
1996 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1997 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1998 sizeof(struct btrfs_key));
1999 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2000 insert_inode_hash(fs_info->btree_inode);
2001
2002 spin_lock_init(&fs_info->block_group_cache_lock);
2003 fs_info->block_group_cache_tree = RB_ROOT;
2004
2005 extent_io_tree_init(&fs_info->freed_extents[0],
2006 fs_info->btree_inode->i_mapping);
2007 extent_io_tree_init(&fs_info->freed_extents[1],
2008 fs_info->btree_inode->i_mapping);
2009 fs_info->pinned_extents = &fs_info->freed_extents[0];
2010 fs_info->do_barriers = 1;
2011
2012
2013 mutex_init(&fs_info->ordered_operations_mutex);
2014 mutex_init(&fs_info->tree_log_mutex);
2015 mutex_init(&fs_info->chunk_mutex);
2016 mutex_init(&fs_info->transaction_kthread_mutex);
2017 mutex_init(&fs_info->cleaner_mutex);
2018 mutex_init(&fs_info->volume_mutex);
2019 init_rwsem(&fs_info->extent_commit_sem);
2020 init_rwsem(&fs_info->cleanup_work_sem);
2021 init_rwsem(&fs_info->subvol_sem);
2022
2023 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2024 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2025
2026 init_waitqueue_head(&fs_info->transaction_throttle);
2027 init_waitqueue_head(&fs_info->transaction_wait);
2028 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2029 init_waitqueue_head(&fs_info->async_submit_wait);
2030
2031 __setup_root(4096, 4096, 4096, 4096, tree_root,
2032 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2033
2034 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2035 if (!bh) {
2036 err = -EINVAL;
2037 goto fail_alloc;
2038 }
2039
2040 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2041 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2042 sizeof(*fs_info->super_for_commit));
2043 brelse(bh);
2044
2045 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2046
2047 disk_super = fs_info->super_copy;
2048 if (!btrfs_super_root(disk_super))
2049 goto fail_alloc;
2050
2051 /* check FS state, whether FS is broken. */
2052 fs_info->fs_state |= btrfs_super_flags(disk_super);
2053
2054 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2055 if (ret) {
2056 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2057 err = ret;
2058 goto fail_alloc;
2059 }
2060
2061 /*
2062 * run through our array of backup supers and setup
2063 * our ring pointer to the oldest one
2064 */
2065 generation = btrfs_super_generation(disk_super);
2066 find_oldest_super_backup(fs_info, generation);
2067
2068 /*
2069 * In the long term, we'll store the compression type in the super
2070 * block, and it'll be used for per file compression control.
2071 */
2072 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2073
2074 ret = btrfs_parse_options(tree_root, options);
2075 if (ret) {
2076 err = ret;
2077 goto fail_alloc;
2078 }
2079
2080 features = btrfs_super_incompat_flags(disk_super) &
2081 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2082 if (features) {
2083 printk(KERN_ERR "BTRFS: couldn't mount because of "
2084 "unsupported optional features (%Lx).\n",
2085 (unsigned long long)features);
2086 err = -EINVAL;
2087 goto fail_alloc;
2088 }
2089
2090 if (btrfs_super_leafsize(disk_super) !=
2091 btrfs_super_nodesize(disk_super)) {
2092 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2093 "blocksizes don't match. node %d leaf %d\n",
2094 btrfs_super_nodesize(disk_super),
2095 btrfs_super_leafsize(disk_super));
2096 err = -EINVAL;
2097 goto fail_alloc;
2098 }
2099 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2100 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2101 "blocksize (%d) was too large\n",
2102 btrfs_super_leafsize(disk_super));
2103 err = -EINVAL;
2104 goto fail_alloc;
2105 }
2106
2107 features = btrfs_super_incompat_flags(disk_super);
2108 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2109 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2110 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2111
2112 /*
2113 * flag our filesystem as having big metadata blocks if
2114 * they are bigger than the page size
2115 */
2116 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2117 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2118 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2119 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2120 }
2121
2122 btrfs_set_super_incompat_flags(disk_super, features);
2123
2124 features = btrfs_super_compat_ro_flags(disk_super) &
2125 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2126 if (!(sb->s_flags & MS_RDONLY) && features) {
2127 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2128 "unsupported option features (%Lx).\n",
2129 (unsigned long long)features);
2130 err = -EINVAL;
2131 goto fail_alloc;
2132 }
2133
2134 btrfs_init_workers(&fs_info->generic_worker,
2135 "genwork", 1, NULL);
2136
2137 btrfs_init_workers(&fs_info->workers, "worker",
2138 fs_info->thread_pool_size,
2139 &fs_info->generic_worker);
2140
2141 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2142 fs_info->thread_pool_size,
2143 &fs_info->generic_worker);
2144
2145 btrfs_init_workers(&fs_info->submit_workers, "submit",
2146 min_t(u64, fs_devices->num_devices,
2147 fs_info->thread_pool_size),
2148 &fs_info->generic_worker);
2149
2150 btrfs_init_workers(&fs_info->caching_workers, "cache",
2151 2, &fs_info->generic_worker);
2152
2153 /* a higher idle thresh on the submit workers makes it much more
2154 * likely that bios will be send down in a sane order to the
2155 * devices
2156 */
2157 fs_info->submit_workers.idle_thresh = 64;
2158
2159 fs_info->workers.idle_thresh = 16;
2160 fs_info->workers.ordered = 1;
2161
2162 fs_info->delalloc_workers.idle_thresh = 2;
2163 fs_info->delalloc_workers.ordered = 1;
2164
2165 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2166 &fs_info->generic_worker);
2167 btrfs_init_workers(&fs_info->endio_workers, "endio",
2168 fs_info->thread_pool_size,
2169 &fs_info->generic_worker);
2170 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2171 fs_info->thread_pool_size,
2172 &fs_info->generic_worker);
2173 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2174 "endio-meta-write", fs_info->thread_pool_size,
2175 &fs_info->generic_worker);
2176 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2177 fs_info->thread_pool_size,
2178 &fs_info->generic_worker);
2179 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2180 1, &fs_info->generic_worker);
2181 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2182 fs_info->thread_pool_size,
2183 &fs_info->generic_worker);
2184 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2185 fs_info->thread_pool_size,
2186 &fs_info->generic_worker);
2187
2188 /*
2189 * endios are largely parallel and should have a very
2190 * low idle thresh
2191 */
2192 fs_info->endio_workers.idle_thresh = 4;
2193 fs_info->endio_meta_workers.idle_thresh = 4;
2194
2195 fs_info->endio_write_workers.idle_thresh = 2;
2196 fs_info->endio_meta_write_workers.idle_thresh = 2;
2197 fs_info->readahead_workers.idle_thresh = 2;
2198
2199 /*
2200 * btrfs_start_workers can really only fail because of ENOMEM so just
2201 * return -ENOMEM if any of these fail.
2202 */
2203 ret = btrfs_start_workers(&fs_info->workers);
2204 ret |= btrfs_start_workers(&fs_info->generic_worker);
2205 ret |= btrfs_start_workers(&fs_info->submit_workers);
2206 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2207 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2208 ret |= btrfs_start_workers(&fs_info->endio_workers);
2209 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2210 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2211 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2212 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2213 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2214 ret |= btrfs_start_workers(&fs_info->caching_workers);
2215 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2216 if (ret) {
2217 ret = -ENOMEM;
2218 goto fail_sb_buffer;
2219 }
2220
2221 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2222 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2223 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2224
2225 nodesize = btrfs_super_nodesize(disk_super);
2226 leafsize = btrfs_super_leafsize(disk_super);
2227 sectorsize = btrfs_super_sectorsize(disk_super);
2228 stripesize = btrfs_super_stripesize(disk_super);
2229 tree_root->nodesize = nodesize;
2230 tree_root->leafsize = leafsize;
2231 tree_root->sectorsize = sectorsize;
2232 tree_root->stripesize = stripesize;
2233
2234 sb->s_blocksize = sectorsize;
2235 sb->s_blocksize_bits = blksize_bits(sectorsize);
2236
2237 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2238 sizeof(disk_super->magic))) {
2239 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2240 goto fail_sb_buffer;
2241 }
2242
2243 if (sectorsize < PAGE_SIZE) {
2244 printk(KERN_WARNING "btrfs: Incompatible sector size "
2245 "found on %s\n", sb->s_id);
2246 goto fail_sb_buffer;
2247 }
2248
2249 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2250 (leafsize != nodesize || sectorsize != nodesize)) {
2251 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2252 "are not allowed for mixed block groups on %s\n",
2253 sb->s_id);
2254 goto fail_sb_buffer;
2255 }
2256
2257 mutex_lock(&fs_info->chunk_mutex);
2258 ret = btrfs_read_sys_array(tree_root);
2259 mutex_unlock(&fs_info->chunk_mutex);
2260 if (ret) {
2261 printk(KERN_WARNING "btrfs: failed to read the system "
2262 "array on %s\n", sb->s_id);
2263 goto fail_sb_buffer;
2264 }
2265
2266 blocksize = btrfs_level_size(tree_root,
2267 btrfs_super_chunk_root_level(disk_super));
2268 generation = btrfs_super_chunk_root_generation(disk_super);
2269
2270 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2271 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2272
2273 chunk_root->node = read_tree_block(chunk_root,
2274 btrfs_super_chunk_root(disk_super),
2275 blocksize, generation);
2276 BUG_ON(!chunk_root->node); /* -ENOMEM */
2277 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2278 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2279 sb->s_id);
2280 goto fail_tree_roots;
2281 }
2282 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2283 chunk_root->commit_root = btrfs_root_node(chunk_root);
2284
2285 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2286 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2287 BTRFS_UUID_SIZE);
2288
2289 ret = btrfs_read_chunk_tree(chunk_root);
2290 if (ret) {
2291 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2292 sb->s_id);
2293 goto fail_tree_roots;
2294 }
2295
2296 btrfs_close_extra_devices(fs_devices);
2297
2298 if (!fs_devices->latest_bdev) {
2299 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2300 sb->s_id);
2301 goto fail_tree_roots;
2302 }
2303
2304 retry_root_backup:
2305 blocksize = btrfs_level_size(tree_root,
2306 btrfs_super_root_level(disk_super));
2307 generation = btrfs_super_generation(disk_super);
2308
2309 tree_root->node = read_tree_block(tree_root,
2310 btrfs_super_root(disk_super),
2311 blocksize, generation);
2312 if (!tree_root->node ||
2313 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2314 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2315 sb->s_id);
2316
2317 goto recovery_tree_root;
2318 }
2319
2320 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2321 tree_root->commit_root = btrfs_root_node(tree_root);
2322
2323 ret = find_and_setup_root(tree_root, fs_info,
2324 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2325 if (ret)
2326 goto recovery_tree_root;
2327 extent_root->track_dirty = 1;
2328
2329 ret = find_and_setup_root(tree_root, fs_info,
2330 BTRFS_DEV_TREE_OBJECTID, dev_root);
2331 if (ret)
2332 goto recovery_tree_root;
2333 dev_root->track_dirty = 1;
2334
2335 ret = find_and_setup_root(tree_root, fs_info,
2336 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2337 if (ret)
2338 goto recovery_tree_root;
2339
2340 csum_root->track_dirty = 1;
2341
2342 fs_info->generation = generation;
2343 fs_info->last_trans_committed = generation;
2344
2345 ret = btrfs_init_space_info(fs_info);
2346 if (ret) {
2347 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2348 goto fail_block_groups;
2349 }
2350
2351 ret = btrfs_read_block_groups(extent_root);
2352 if (ret) {
2353 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2354 goto fail_block_groups;
2355 }
2356
2357 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2358 "btrfs-cleaner");
2359 if (IS_ERR(fs_info->cleaner_kthread))
2360 goto fail_block_groups;
2361
2362 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2363 tree_root,
2364 "btrfs-transaction");
2365 if (IS_ERR(fs_info->transaction_kthread))
2366 goto fail_cleaner;
2367
2368 if (!btrfs_test_opt(tree_root, SSD) &&
2369 !btrfs_test_opt(tree_root, NOSSD) &&
2370 !fs_info->fs_devices->rotating) {
2371 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2372 "mode\n");
2373 btrfs_set_opt(fs_info->mount_opt, SSD);
2374 }
2375
2376 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2377 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2378 ret = btrfsic_mount(tree_root, fs_devices,
2379 btrfs_test_opt(tree_root,
2380 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2381 1 : 0,
2382 fs_info->check_integrity_print_mask);
2383 if (ret)
2384 printk(KERN_WARNING "btrfs: failed to initialize"
2385 " integrity check module %s\n", sb->s_id);
2386 }
2387 #endif
2388
2389 /* do not make disk changes in broken FS */
2390 if (btrfs_super_log_root(disk_super) != 0 &&
2391 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2392 u64 bytenr = btrfs_super_log_root(disk_super);
2393
2394 if (fs_devices->rw_devices == 0) {
2395 printk(KERN_WARNING "Btrfs log replay required "
2396 "on RO media\n");
2397 err = -EIO;
2398 goto fail_trans_kthread;
2399 }
2400 blocksize =
2401 btrfs_level_size(tree_root,
2402 btrfs_super_log_root_level(disk_super));
2403
2404 log_tree_root = btrfs_alloc_root(fs_info);
2405 if (!log_tree_root) {
2406 err = -ENOMEM;
2407 goto fail_trans_kthread;
2408 }
2409
2410 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2411 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2412
2413 log_tree_root->node = read_tree_block(tree_root, bytenr,
2414 blocksize,
2415 generation + 1);
2416 /* returns with log_tree_root freed on success */
2417 ret = btrfs_recover_log_trees(log_tree_root);
2418 if (ret) {
2419 btrfs_error(tree_root->fs_info, ret,
2420 "Failed to recover log tree");
2421 free_extent_buffer(log_tree_root->node);
2422 kfree(log_tree_root);
2423 goto fail_trans_kthread;
2424 }
2425
2426 if (sb->s_flags & MS_RDONLY) {
2427 ret = btrfs_commit_super(tree_root);
2428 if (ret)
2429 goto fail_trans_kthread;
2430 }
2431 }
2432
2433 ret = btrfs_find_orphan_roots(tree_root);
2434 if (ret)
2435 goto fail_trans_kthread;
2436
2437 if (!(sb->s_flags & MS_RDONLY)) {
2438 ret = btrfs_cleanup_fs_roots(fs_info);
2439 if (ret) {
2440 }
2441
2442 ret = btrfs_recover_relocation(tree_root);
2443 if (ret < 0) {
2444 printk(KERN_WARNING
2445 "btrfs: failed to recover relocation\n");
2446 err = -EINVAL;
2447 goto fail_trans_kthread;
2448 }
2449 }
2450
2451 location.objectid = BTRFS_FS_TREE_OBJECTID;
2452 location.type = BTRFS_ROOT_ITEM_KEY;
2453 location.offset = (u64)-1;
2454
2455 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2456 if (!fs_info->fs_root)
2457 goto fail_trans_kthread;
2458 if (IS_ERR(fs_info->fs_root)) {
2459 err = PTR_ERR(fs_info->fs_root);
2460 goto fail_trans_kthread;
2461 }
2462
2463 if (!(sb->s_flags & MS_RDONLY)) {
2464 down_read(&fs_info->cleanup_work_sem);
2465 err = btrfs_orphan_cleanup(fs_info->fs_root);
2466 if (!err)
2467 err = btrfs_orphan_cleanup(fs_info->tree_root);
2468 up_read(&fs_info->cleanup_work_sem);
2469
2470 if (!err)
2471 err = btrfs_recover_balance(fs_info->tree_root);
2472
2473 if (err) {
2474 close_ctree(tree_root);
2475 return err;
2476 }
2477 }
2478
2479 return 0;
2480
2481 fail_trans_kthread:
2482 kthread_stop(fs_info->transaction_kthread);
2483 fail_cleaner:
2484 kthread_stop(fs_info->cleaner_kthread);
2485
2486 /*
2487 * make sure we're done with the btree inode before we stop our
2488 * kthreads
2489 */
2490 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2491 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2492
2493 fail_block_groups:
2494 btrfs_free_block_groups(fs_info);
2495
2496 fail_tree_roots:
2497 free_root_pointers(fs_info, 1);
2498
2499 fail_sb_buffer:
2500 btrfs_stop_workers(&fs_info->generic_worker);
2501 btrfs_stop_workers(&fs_info->readahead_workers);
2502 btrfs_stop_workers(&fs_info->fixup_workers);
2503 btrfs_stop_workers(&fs_info->delalloc_workers);
2504 btrfs_stop_workers(&fs_info->workers);
2505 btrfs_stop_workers(&fs_info->endio_workers);
2506 btrfs_stop_workers(&fs_info->endio_meta_workers);
2507 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2508 btrfs_stop_workers(&fs_info->endio_write_workers);
2509 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2510 btrfs_stop_workers(&fs_info->submit_workers);
2511 btrfs_stop_workers(&fs_info->delayed_workers);
2512 btrfs_stop_workers(&fs_info->caching_workers);
2513 fail_alloc:
2514 fail_iput:
2515 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2516
2517 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2518 iput(fs_info->btree_inode);
2519 fail_bdi:
2520 bdi_destroy(&fs_info->bdi);
2521 fail_srcu:
2522 cleanup_srcu_struct(&fs_info->subvol_srcu);
2523 fail:
2524 btrfs_close_devices(fs_info->fs_devices);
2525 return err;
2526
2527 recovery_tree_root:
2528 if (!btrfs_test_opt(tree_root, RECOVERY))
2529 goto fail_tree_roots;
2530
2531 free_root_pointers(fs_info, 0);
2532
2533 /* don't use the log in recovery mode, it won't be valid */
2534 btrfs_set_super_log_root(disk_super, 0);
2535
2536 /* we can't trust the free space cache either */
2537 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2538
2539 ret = next_root_backup(fs_info, fs_info->super_copy,
2540 &num_backups_tried, &backup_index);
2541 if (ret == -1)
2542 goto fail_block_groups;
2543 goto retry_root_backup;
2544 }
2545
2546 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2547 {
2548 char b[BDEVNAME_SIZE];
2549
2550 if (uptodate) {
2551 set_buffer_uptodate(bh);
2552 } else {
2553 printk_ratelimited(KERN_WARNING "lost page write due to "
2554 "I/O error on %s\n",
2555 bdevname(bh->b_bdev, b));
2556 /* note, we dont' set_buffer_write_io_error because we have
2557 * our own ways of dealing with the IO errors
2558 */
2559 clear_buffer_uptodate(bh);
2560 }
2561 unlock_buffer(bh);
2562 put_bh(bh);
2563 }
2564
2565 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2566 {
2567 struct buffer_head *bh;
2568 struct buffer_head *latest = NULL;
2569 struct btrfs_super_block *super;
2570 int i;
2571 u64 transid = 0;
2572 u64 bytenr;
2573
2574 /* we would like to check all the supers, but that would make
2575 * a btrfs mount succeed after a mkfs from a different FS.
2576 * So, we need to add a special mount option to scan for
2577 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2578 */
2579 for (i = 0; i < 1; i++) {
2580 bytenr = btrfs_sb_offset(i);
2581 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2582 break;
2583 bh = __bread(bdev, bytenr / 4096, 4096);
2584 if (!bh)
2585 continue;
2586
2587 super = (struct btrfs_super_block *)bh->b_data;
2588 if (btrfs_super_bytenr(super) != bytenr ||
2589 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2590 sizeof(super->magic))) {
2591 brelse(bh);
2592 continue;
2593 }
2594
2595 if (!latest || btrfs_super_generation(super) > transid) {
2596 brelse(latest);
2597 latest = bh;
2598 transid = btrfs_super_generation(super);
2599 } else {
2600 brelse(bh);
2601 }
2602 }
2603 return latest;
2604 }
2605
2606 /*
2607 * this should be called twice, once with wait == 0 and
2608 * once with wait == 1. When wait == 0 is done, all the buffer heads
2609 * we write are pinned.
2610 *
2611 * They are released when wait == 1 is done.
2612 * max_mirrors must be the same for both runs, and it indicates how
2613 * many supers on this one device should be written.
2614 *
2615 * max_mirrors == 0 means to write them all.
2616 */
2617 static int write_dev_supers(struct btrfs_device *device,
2618 struct btrfs_super_block *sb,
2619 int do_barriers, int wait, int max_mirrors)
2620 {
2621 struct buffer_head *bh;
2622 int i;
2623 int ret;
2624 int errors = 0;
2625 u32 crc;
2626 u64 bytenr;
2627
2628 if (max_mirrors == 0)
2629 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2630
2631 for (i = 0; i < max_mirrors; i++) {
2632 bytenr = btrfs_sb_offset(i);
2633 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2634 break;
2635
2636 if (wait) {
2637 bh = __find_get_block(device->bdev, bytenr / 4096,
2638 BTRFS_SUPER_INFO_SIZE);
2639 BUG_ON(!bh);
2640 wait_on_buffer(bh);
2641 if (!buffer_uptodate(bh))
2642 errors++;
2643
2644 /* drop our reference */
2645 brelse(bh);
2646
2647 /* drop the reference from the wait == 0 run */
2648 brelse(bh);
2649 continue;
2650 } else {
2651 btrfs_set_super_bytenr(sb, bytenr);
2652
2653 crc = ~(u32)0;
2654 crc = btrfs_csum_data(NULL, (char *)sb +
2655 BTRFS_CSUM_SIZE, crc,
2656 BTRFS_SUPER_INFO_SIZE -
2657 BTRFS_CSUM_SIZE);
2658 btrfs_csum_final(crc, sb->csum);
2659
2660 /*
2661 * one reference for us, and we leave it for the
2662 * caller
2663 */
2664 bh = __getblk(device->bdev, bytenr / 4096,
2665 BTRFS_SUPER_INFO_SIZE);
2666 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2667
2668 /* one reference for submit_bh */
2669 get_bh(bh);
2670
2671 set_buffer_uptodate(bh);
2672 lock_buffer(bh);
2673 bh->b_end_io = btrfs_end_buffer_write_sync;
2674 }
2675
2676 /*
2677 * we fua the first super. The others we allow
2678 * to go down lazy.
2679 */
2680 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2681 if (ret)
2682 errors++;
2683 }
2684 return errors < i ? 0 : -1;
2685 }
2686
2687 /*
2688 * endio for the write_dev_flush, this will wake anyone waiting
2689 * for the barrier when it is done
2690 */
2691 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2692 {
2693 if (err) {
2694 if (err == -EOPNOTSUPP)
2695 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2696 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2697 }
2698 if (bio->bi_private)
2699 complete(bio->bi_private);
2700 bio_put(bio);
2701 }
2702
2703 /*
2704 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2705 * sent down. With wait == 1, it waits for the previous flush.
2706 *
2707 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2708 * capable
2709 */
2710 static int write_dev_flush(struct btrfs_device *device, int wait)
2711 {
2712 struct bio *bio;
2713 int ret = 0;
2714
2715 if (device->nobarriers)
2716 return 0;
2717
2718 if (wait) {
2719 bio = device->flush_bio;
2720 if (!bio)
2721 return 0;
2722
2723 wait_for_completion(&device->flush_wait);
2724
2725 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2726 printk("btrfs: disabling barriers on dev %s\n",
2727 device->name);
2728 device->nobarriers = 1;
2729 }
2730 if (!bio_flagged(bio, BIO_UPTODATE)) {
2731 ret = -EIO;
2732 }
2733
2734 /* drop the reference from the wait == 0 run */
2735 bio_put(bio);
2736 device->flush_bio = NULL;
2737
2738 return ret;
2739 }
2740
2741 /*
2742 * one reference for us, and we leave it for the
2743 * caller
2744 */
2745 device->flush_bio = NULL;;
2746 bio = bio_alloc(GFP_NOFS, 0);
2747 if (!bio)
2748 return -ENOMEM;
2749
2750 bio->bi_end_io = btrfs_end_empty_barrier;
2751 bio->bi_bdev = device->bdev;
2752 init_completion(&device->flush_wait);
2753 bio->bi_private = &device->flush_wait;
2754 device->flush_bio = bio;
2755
2756 bio_get(bio);
2757 btrfsic_submit_bio(WRITE_FLUSH, bio);
2758
2759 return 0;
2760 }
2761
2762 /*
2763 * send an empty flush down to each device in parallel,
2764 * then wait for them
2765 */
2766 static int barrier_all_devices(struct btrfs_fs_info *info)
2767 {
2768 struct list_head *head;
2769 struct btrfs_device *dev;
2770 int errors = 0;
2771 int ret;
2772
2773 /* send down all the barriers */
2774 head = &info->fs_devices->devices;
2775 list_for_each_entry_rcu(dev, head, dev_list) {
2776 if (!dev->bdev) {
2777 errors++;
2778 continue;
2779 }
2780 if (!dev->in_fs_metadata || !dev->writeable)
2781 continue;
2782
2783 ret = write_dev_flush(dev, 0);
2784 if (ret)
2785 errors++;
2786 }
2787
2788 /* wait for all the barriers */
2789 list_for_each_entry_rcu(dev, head, dev_list) {
2790 if (!dev->bdev) {
2791 errors++;
2792 continue;
2793 }
2794 if (!dev->in_fs_metadata || !dev->writeable)
2795 continue;
2796
2797 ret = write_dev_flush(dev, 1);
2798 if (ret)
2799 errors++;
2800 }
2801 if (errors)
2802 return -EIO;
2803 return 0;
2804 }
2805
2806 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2807 {
2808 struct list_head *head;
2809 struct btrfs_device *dev;
2810 struct btrfs_super_block *sb;
2811 struct btrfs_dev_item *dev_item;
2812 int ret;
2813 int do_barriers;
2814 int max_errors;
2815 int total_errors = 0;
2816 u64 flags;
2817
2818 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2819 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2820 backup_super_roots(root->fs_info);
2821
2822 sb = root->fs_info->super_for_commit;
2823 dev_item = &sb->dev_item;
2824
2825 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2826 head = &root->fs_info->fs_devices->devices;
2827
2828 if (do_barriers)
2829 barrier_all_devices(root->fs_info);
2830
2831 list_for_each_entry_rcu(dev, head, dev_list) {
2832 if (!dev->bdev) {
2833 total_errors++;
2834 continue;
2835 }
2836 if (!dev->in_fs_metadata || !dev->writeable)
2837 continue;
2838
2839 btrfs_set_stack_device_generation(dev_item, 0);
2840 btrfs_set_stack_device_type(dev_item, dev->type);
2841 btrfs_set_stack_device_id(dev_item, dev->devid);
2842 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2843 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2844 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2845 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2846 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2847 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2848 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2849
2850 flags = btrfs_super_flags(sb);
2851 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2852
2853 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2854 if (ret)
2855 total_errors++;
2856 }
2857 if (total_errors > max_errors) {
2858 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2859 total_errors);
2860
2861 /* This shouldn't happen. FUA is masked off if unsupported */
2862 BUG();
2863 }
2864
2865 total_errors = 0;
2866 list_for_each_entry_rcu(dev, head, dev_list) {
2867 if (!dev->bdev)
2868 continue;
2869 if (!dev->in_fs_metadata || !dev->writeable)
2870 continue;
2871
2872 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2873 if (ret)
2874 total_errors++;
2875 }
2876 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2877 if (total_errors > max_errors) {
2878 btrfs_error(root->fs_info, -EIO,
2879 "%d errors while writing supers", total_errors);
2880 return -EIO;
2881 }
2882 return 0;
2883 }
2884
2885 int write_ctree_super(struct btrfs_trans_handle *trans,
2886 struct btrfs_root *root, int max_mirrors)
2887 {
2888 int ret;
2889
2890 ret = write_all_supers(root, max_mirrors);
2891 return ret;
2892 }
2893
2894 /* Kill all outstanding I/O */
2895 void btrfs_abort_devices(struct btrfs_root *root)
2896 {
2897 struct list_head *head;
2898 struct btrfs_device *dev;
2899 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2900 head = &root->fs_info->fs_devices->devices;
2901 list_for_each_entry_rcu(dev, head, dev_list) {
2902 blk_abort_queue(dev->bdev->bd_disk->queue);
2903 }
2904 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2905 }
2906
2907 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2908 {
2909 spin_lock(&fs_info->fs_roots_radix_lock);
2910 radix_tree_delete(&fs_info->fs_roots_radix,
2911 (unsigned long)root->root_key.objectid);
2912 spin_unlock(&fs_info->fs_roots_radix_lock);
2913
2914 if (btrfs_root_refs(&root->root_item) == 0)
2915 synchronize_srcu(&fs_info->subvol_srcu);
2916
2917 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2918 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2919 free_fs_root(root);
2920 }
2921
2922 static void free_fs_root(struct btrfs_root *root)
2923 {
2924 iput(root->cache_inode);
2925 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2926 if (root->anon_dev)
2927 free_anon_bdev(root->anon_dev);
2928 free_extent_buffer(root->node);
2929 free_extent_buffer(root->commit_root);
2930 kfree(root->free_ino_ctl);
2931 kfree(root->free_ino_pinned);
2932 kfree(root->name);
2933 kfree(root);
2934 }
2935
2936 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2937 {
2938 int ret;
2939 struct btrfs_root *gang[8];
2940 int i;
2941
2942 while (!list_empty(&fs_info->dead_roots)) {
2943 gang[0] = list_entry(fs_info->dead_roots.next,
2944 struct btrfs_root, root_list);
2945 list_del(&gang[0]->root_list);
2946
2947 if (gang[0]->in_radix) {
2948 btrfs_free_fs_root(fs_info, gang[0]);
2949 } else {
2950 free_extent_buffer(gang[0]->node);
2951 free_extent_buffer(gang[0]->commit_root);
2952 kfree(gang[0]);
2953 }
2954 }
2955
2956 while (1) {
2957 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2958 (void **)gang, 0,
2959 ARRAY_SIZE(gang));
2960 if (!ret)
2961 break;
2962 for (i = 0; i < ret; i++)
2963 btrfs_free_fs_root(fs_info, gang[i]);
2964 }
2965 }
2966
2967 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2968 {
2969 u64 root_objectid = 0;
2970 struct btrfs_root *gang[8];
2971 int i;
2972 int ret;
2973
2974 while (1) {
2975 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2976 (void **)gang, root_objectid,
2977 ARRAY_SIZE(gang));
2978 if (!ret)
2979 break;
2980
2981 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2982 for (i = 0; i < ret; i++) {
2983 int err;
2984
2985 root_objectid = gang[i]->root_key.objectid;
2986 err = btrfs_orphan_cleanup(gang[i]);
2987 if (err)
2988 return err;
2989 }
2990 root_objectid++;
2991 }
2992 return 0;
2993 }
2994
2995 int btrfs_commit_super(struct btrfs_root *root)
2996 {
2997 struct btrfs_trans_handle *trans;
2998 int ret;
2999
3000 mutex_lock(&root->fs_info->cleaner_mutex);
3001 btrfs_run_delayed_iputs(root);
3002 btrfs_clean_old_snapshots(root);
3003 mutex_unlock(&root->fs_info->cleaner_mutex);
3004
3005 /* wait until ongoing cleanup work done */
3006 down_write(&root->fs_info->cleanup_work_sem);
3007 up_write(&root->fs_info->cleanup_work_sem);
3008
3009 trans = btrfs_join_transaction(root);
3010 if (IS_ERR(trans))
3011 return PTR_ERR(trans);
3012 ret = btrfs_commit_transaction(trans, root);
3013 if (ret)
3014 return ret;
3015 /* run commit again to drop the original snapshot */
3016 trans = btrfs_join_transaction(root);
3017 if (IS_ERR(trans))
3018 return PTR_ERR(trans);
3019 ret = btrfs_commit_transaction(trans, root);
3020 if (ret)
3021 return ret;
3022 ret = btrfs_write_and_wait_transaction(NULL, root);
3023 if (ret) {
3024 btrfs_error(root->fs_info, ret,
3025 "Failed to sync btree inode to disk.");
3026 return ret;
3027 }
3028
3029 ret = write_ctree_super(NULL, root, 0);
3030 return ret;
3031 }
3032
3033 int close_ctree(struct btrfs_root *root)
3034 {
3035 struct btrfs_fs_info *fs_info = root->fs_info;
3036 int ret;
3037
3038 fs_info->closing = 1;
3039 smp_mb();
3040
3041 /* pause restriper - we want to resume on mount */
3042 btrfs_pause_balance(root->fs_info);
3043
3044 btrfs_scrub_cancel(root);
3045
3046 /* wait for any defraggers to finish */
3047 wait_event(fs_info->transaction_wait,
3048 (atomic_read(&fs_info->defrag_running) == 0));
3049
3050 /* clear out the rbtree of defraggable inodes */
3051 btrfs_run_defrag_inodes(fs_info);
3052
3053 /*
3054 * Here come 2 situations when btrfs is broken to flip readonly:
3055 *
3056 * 1. when btrfs flips readonly somewhere else before
3057 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3058 * and btrfs will skip to write sb directly to keep
3059 * ERROR state on disk.
3060 *
3061 * 2. when btrfs flips readonly just in btrfs_commit_super,
3062 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3063 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3064 * btrfs will cleanup all FS resources first and write sb then.
3065 */
3066 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3067 ret = btrfs_commit_super(root);
3068 if (ret)
3069 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3070 }
3071
3072 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3073 ret = btrfs_error_commit_super(root);
3074 if (ret)
3075 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3076 }
3077
3078 btrfs_put_block_group_cache(fs_info);
3079
3080 kthread_stop(fs_info->transaction_kthread);
3081 kthread_stop(fs_info->cleaner_kthread);
3082
3083 fs_info->closing = 2;
3084 smp_mb();
3085
3086 if (fs_info->delalloc_bytes) {
3087 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3088 (unsigned long long)fs_info->delalloc_bytes);
3089 }
3090 if (fs_info->total_ref_cache_size) {
3091 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3092 (unsigned long long)fs_info->total_ref_cache_size);
3093 }
3094
3095 free_extent_buffer(fs_info->extent_root->node);
3096 free_extent_buffer(fs_info->extent_root->commit_root);
3097 free_extent_buffer(fs_info->tree_root->node);
3098 free_extent_buffer(fs_info->tree_root->commit_root);
3099 free_extent_buffer(fs_info->chunk_root->node);
3100 free_extent_buffer(fs_info->chunk_root->commit_root);
3101 free_extent_buffer(fs_info->dev_root->node);
3102 free_extent_buffer(fs_info->dev_root->commit_root);
3103 free_extent_buffer(fs_info->csum_root->node);
3104 free_extent_buffer(fs_info->csum_root->commit_root);
3105
3106 btrfs_free_block_groups(fs_info);
3107
3108 del_fs_roots(fs_info);
3109
3110 iput(fs_info->btree_inode);
3111
3112 btrfs_stop_workers(&fs_info->generic_worker);
3113 btrfs_stop_workers(&fs_info->fixup_workers);
3114 btrfs_stop_workers(&fs_info->delalloc_workers);
3115 btrfs_stop_workers(&fs_info->workers);
3116 btrfs_stop_workers(&fs_info->endio_workers);
3117 btrfs_stop_workers(&fs_info->endio_meta_workers);
3118 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3119 btrfs_stop_workers(&fs_info->endio_write_workers);
3120 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3121 btrfs_stop_workers(&fs_info->submit_workers);
3122 btrfs_stop_workers(&fs_info->delayed_workers);
3123 btrfs_stop_workers(&fs_info->caching_workers);
3124 btrfs_stop_workers(&fs_info->readahead_workers);
3125
3126 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3127 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3128 btrfsic_unmount(root, fs_info->fs_devices);
3129 #endif
3130
3131 btrfs_close_devices(fs_info->fs_devices);
3132 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3133
3134 bdi_destroy(&fs_info->bdi);
3135 cleanup_srcu_struct(&fs_info->subvol_srcu);
3136
3137 return 0;
3138 }
3139
3140 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
3141 {
3142 int ret;
3143 struct inode *btree_inode = buf->pages[0]->mapping->host;
3144
3145 ret = extent_buffer_uptodate(buf);
3146 if (!ret)
3147 return ret;
3148
3149 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3150 parent_transid);
3151 return !ret;
3152 }
3153
3154 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3155 {
3156 return set_extent_buffer_uptodate(buf);
3157 }
3158
3159 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3160 {
3161 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3162 u64 transid = btrfs_header_generation(buf);
3163 int was_dirty;
3164
3165 btrfs_assert_tree_locked(buf);
3166 if (transid != root->fs_info->generation) {
3167 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3168 "found %llu running %llu\n",
3169 (unsigned long long)buf->start,
3170 (unsigned long long)transid,
3171 (unsigned long long)root->fs_info->generation);
3172 WARN_ON(1);
3173 }
3174 was_dirty = set_extent_buffer_dirty(buf);
3175 if (!was_dirty) {
3176 spin_lock(&root->fs_info->delalloc_lock);
3177 root->fs_info->dirty_metadata_bytes += buf->len;
3178 spin_unlock(&root->fs_info->delalloc_lock);
3179 }
3180 }
3181
3182 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3183 {
3184 /*
3185 * looks as though older kernels can get into trouble with
3186 * this code, they end up stuck in balance_dirty_pages forever
3187 */
3188 u64 num_dirty;
3189 unsigned long thresh = 32 * 1024 * 1024;
3190
3191 if (current->flags & PF_MEMALLOC)
3192 return;
3193
3194 btrfs_balance_delayed_items(root);
3195
3196 num_dirty = root->fs_info->dirty_metadata_bytes;
3197
3198 if (num_dirty > thresh) {
3199 balance_dirty_pages_ratelimited_nr(
3200 root->fs_info->btree_inode->i_mapping, 1);
3201 }
3202 return;
3203 }
3204
3205 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3206 {
3207 /*
3208 * looks as though older kernels can get into trouble with
3209 * this code, they end up stuck in balance_dirty_pages forever
3210 */
3211 u64 num_dirty;
3212 unsigned long thresh = 32 * 1024 * 1024;
3213
3214 if (current->flags & PF_MEMALLOC)
3215 return;
3216
3217 num_dirty = root->fs_info->dirty_metadata_bytes;
3218
3219 if (num_dirty > thresh) {
3220 balance_dirty_pages_ratelimited_nr(
3221 root->fs_info->btree_inode->i_mapping, 1);
3222 }
3223 return;
3224 }
3225
3226 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3227 {
3228 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3229 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3230 }
3231
3232 static int btree_lock_page_hook(struct page *page, void *data,
3233 void (*flush_fn)(void *))
3234 {
3235 struct inode *inode = page->mapping->host;
3236 struct btrfs_root *root = BTRFS_I(inode)->root;
3237 struct extent_buffer *eb;
3238
3239 /*
3240 * We culled this eb but the page is still hanging out on the mapping,
3241 * carry on.
3242 */
3243 if (!PagePrivate(page))
3244 goto out;
3245
3246 eb = (struct extent_buffer *)page->private;
3247 if (!eb) {
3248 WARN_ON(1);
3249 goto out;
3250 }
3251 if (page != eb->pages[0])
3252 goto out;
3253
3254 if (!btrfs_try_tree_write_lock(eb)) {
3255 flush_fn(data);
3256 btrfs_tree_lock(eb);
3257 }
3258 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3259
3260 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3261 spin_lock(&root->fs_info->delalloc_lock);
3262 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3263 root->fs_info->dirty_metadata_bytes -= eb->len;
3264 else
3265 WARN_ON(1);
3266 spin_unlock(&root->fs_info->delalloc_lock);
3267 }
3268
3269 btrfs_tree_unlock(eb);
3270 out:
3271 if (!trylock_page(page)) {
3272 flush_fn(data);
3273 lock_page(page);
3274 }
3275 return 0;
3276 }
3277
3278 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3279 int read_only)
3280 {
3281 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3282 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3283 return -EINVAL;
3284 }
3285
3286 if (read_only)
3287 return 0;
3288
3289 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3290 printk(KERN_WARNING "warning: mount fs with errors, "
3291 "running btrfsck is recommended\n");
3292 }
3293
3294 return 0;
3295 }
3296
3297 int btrfs_error_commit_super(struct btrfs_root *root)
3298 {
3299 int ret;
3300
3301 mutex_lock(&root->fs_info->cleaner_mutex);
3302 btrfs_run_delayed_iputs(root);
3303 mutex_unlock(&root->fs_info->cleaner_mutex);
3304
3305 down_write(&root->fs_info->cleanup_work_sem);
3306 up_write(&root->fs_info->cleanup_work_sem);
3307
3308 /* cleanup FS via transaction */
3309 btrfs_cleanup_transaction(root);
3310
3311 ret = write_ctree_super(NULL, root, 0);
3312
3313 return ret;
3314 }
3315
3316 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3317 {
3318 struct btrfs_inode *btrfs_inode;
3319 struct list_head splice;
3320
3321 INIT_LIST_HEAD(&splice);
3322
3323 mutex_lock(&root->fs_info->ordered_operations_mutex);
3324 spin_lock(&root->fs_info->ordered_extent_lock);
3325
3326 list_splice_init(&root->fs_info->ordered_operations, &splice);
3327 while (!list_empty(&splice)) {
3328 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3329 ordered_operations);
3330
3331 list_del_init(&btrfs_inode->ordered_operations);
3332
3333 btrfs_invalidate_inodes(btrfs_inode->root);
3334 }
3335
3336 spin_unlock(&root->fs_info->ordered_extent_lock);
3337 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3338 }
3339
3340 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3341 {
3342 struct list_head splice;
3343 struct btrfs_ordered_extent *ordered;
3344 struct inode *inode;
3345
3346 INIT_LIST_HEAD(&splice);
3347
3348 spin_lock(&root->fs_info->ordered_extent_lock);
3349
3350 list_splice_init(&root->fs_info->ordered_extents, &splice);
3351 while (!list_empty(&splice)) {
3352 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3353 root_extent_list);
3354
3355 list_del_init(&ordered->root_extent_list);
3356 atomic_inc(&ordered->refs);
3357
3358 /* the inode may be getting freed (in sys_unlink path). */
3359 inode = igrab(ordered->inode);
3360
3361 spin_unlock(&root->fs_info->ordered_extent_lock);
3362 if (inode)
3363 iput(inode);
3364
3365 atomic_set(&ordered->refs, 1);
3366 btrfs_put_ordered_extent(ordered);
3367
3368 spin_lock(&root->fs_info->ordered_extent_lock);
3369 }
3370
3371 spin_unlock(&root->fs_info->ordered_extent_lock);
3372 }
3373
3374 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3375 struct btrfs_root *root)
3376 {
3377 struct rb_node *node;
3378 struct btrfs_delayed_ref_root *delayed_refs;
3379 struct btrfs_delayed_ref_node *ref;
3380 int ret = 0;
3381
3382 delayed_refs = &trans->delayed_refs;
3383
3384 again:
3385 spin_lock(&delayed_refs->lock);
3386 if (delayed_refs->num_entries == 0) {
3387 spin_unlock(&delayed_refs->lock);
3388 printk(KERN_INFO "delayed_refs has NO entry\n");
3389 return ret;
3390 }
3391
3392 node = rb_first(&delayed_refs->root);
3393 while (node) {
3394 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3395 node = rb_next(node);
3396
3397 ref->in_tree = 0;
3398 rb_erase(&ref->rb_node, &delayed_refs->root);
3399 delayed_refs->num_entries--;
3400
3401 atomic_set(&ref->refs, 1);
3402 if (btrfs_delayed_ref_is_head(ref)) {
3403 struct btrfs_delayed_ref_head *head;
3404
3405 head = btrfs_delayed_node_to_head(ref);
3406 spin_unlock(&delayed_refs->lock);
3407 mutex_lock(&head->mutex);
3408 kfree(head->extent_op);
3409 delayed_refs->num_heads--;
3410 if (list_empty(&head->cluster))
3411 delayed_refs->num_heads_ready--;
3412 list_del_init(&head->cluster);
3413 mutex_unlock(&head->mutex);
3414 btrfs_put_delayed_ref(ref);
3415 goto again;
3416 }
3417 spin_unlock(&delayed_refs->lock);
3418 btrfs_put_delayed_ref(ref);
3419
3420 cond_resched();
3421 spin_lock(&delayed_refs->lock);
3422 }
3423
3424 spin_unlock(&delayed_refs->lock);
3425
3426 return ret;
3427 }
3428
3429 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3430 {
3431 struct btrfs_pending_snapshot *snapshot;
3432 struct list_head splice;
3433
3434 INIT_LIST_HEAD(&splice);
3435
3436 list_splice_init(&t->pending_snapshots, &splice);
3437
3438 while (!list_empty(&splice)) {
3439 snapshot = list_entry(splice.next,
3440 struct btrfs_pending_snapshot,
3441 list);
3442
3443 list_del_init(&snapshot->list);
3444
3445 kfree(snapshot);
3446 }
3447 }
3448
3449 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3450 {
3451 struct btrfs_inode *btrfs_inode;
3452 struct list_head splice;
3453
3454 INIT_LIST_HEAD(&splice);
3455
3456 spin_lock(&root->fs_info->delalloc_lock);
3457 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3458
3459 while (!list_empty(&splice)) {
3460 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3461 delalloc_inodes);
3462
3463 list_del_init(&btrfs_inode->delalloc_inodes);
3464
3465 btrfs_invalidate_inodes(btrfs_inode->root);
3466 }
3467
3468 spin_unlock(&root->fs_info->delalloc_lock);
3469 }
3470
3471 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3472 struct extent_io_tree *dirty_pages,
3473 int mark)
3474 {
3475 int ret;
3476 struct page *page;
3477 struct inode *btree_inode = root->fs_info->btree_inode;
3478 struct extent_buffer *eb;
3479 u64 start = 0;
3480 u64 end;
3481 u64 offset;
3482 unsigned long index;
3483
3484 while (1) {
3485 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3486 mark);
3487 if (ret)
3488 break;
3489
3490 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3491 while (start <= end) {
3492 index = start >> PAGE_CACHE_SHIFT;
3493 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3494 page = find_get_page(btree_inode->i_mapping, index);
3495 if (!page)
3496 continue;
3497 offset = page_offset(page);
3498
3499 spin_lock(&dirty_pages->buffer_lock);
3500 eb = radix_tree_lookup(
3501 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3502 offset >> PAGE_CACHE_SHIFT);
3503 spin_unlock(&dirty_pages->buffer_lock);
3504 if (eb) {
3505 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3506 &eb->bflags);
3507 atomic_set(&eb->refs, 1);
3508 }
3509 if (PageWriteback(page))
3510 end_page_writeback(page);
3511
3512 lock_page(page);
3513 if (PageDirty(page)) {
3514 clear_page_dirty_for_io(page);
3515 spin_lock_irq(&page->mapping->tree_lock);
3516 radix_tree_tag_clear(&page->mapping->page_tree,
3517 page_index(page),
3518 PAGECACHE_TAG_DIRTY);
3519 spin_unlock_irq(&page->mapping->tree_lock);
3520 }
3521
3522 page->mapping->a_ops->invalidatepage(page, 0);
3523 unlock_page(page);
3524 }
3525 }
3526
3527 return ret;
3528 }
3529
3530 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3531 struct extent_io_tree *pinned_extents)
3532 {
3533 struct extent_io_tree *unpin;
3534 u64 start;
3535 u64 end;
3536 int ret;
3537
3538 unpin = pinned_extents;
3539 while (1) {
3540 ret = find_first_extent_bit(unpin, 0, &start, &end,
3541 EXTENT_DIRTY);
3542 if (ret)
3543 break;
3544
3545 /* opt_discard */
3546 if (btrfs_test_opt(root, DISCARD))
3547 ret = btrfs_error_discard_extent(root, start,
3548 end + 1 - start,
3549 NULL);
3550
3551 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3552 btrfs_error_unpin_extent_range(root, start, end);
3553 cond_resched();
3554 }
3555
3556 return 0;
3557 }
3558
3559 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3560 struct btrfs_root *root)
3561 {
3562 btrfs_destroy_delayed_refs(cur_trans, root);
3563 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3564 cur_trans->dirty_pages.dirty_bytes);
3565
3566 /* FIXME: cleanup wait for commit */
3567 cur_trans->in_commit = 1;
3568 cur_trans->blocked = 1;
3569 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3570 wake_up(&root->fs_info->transaction_blocked_wait);
3571
3572 cur_trans->blocked = 0;
3573 if (waitqueue_active(&root->fs_info->transaction_wait))
3574 wake_up(&root->fs_info->transaction_wait);
3575
3576 cur_trans->commit_done = 1;
3577 if (waitqueue_active(&cur_trans->commit_wait))
3578 wake_up(&cur_trans->commit_wait);
3579
3580 btrfs_destroy_pending_snapshots(cur_trans);
3581
3582 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3583 EXTENT_DIRTY);
3584
3585 /*
3586 memset(cur_trans, 0, sizeof(*cur_trans));
3587 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3588 */
3589 }
3590
3591 int btrfs_cleanup_transaction(struct btrfs_root *root)
3592 {
3593 struct btrfs_transaction *t;
3594 LIST_HEAD(list);
3595
3596 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3597
3598 spin_lock(&root->fs_info->trans_lock);
3599 list_splice_init(&root->fs_info->trans_list, &list);
3600 root->fs_info->trans_no_join = 1;
3601 spin_unlock(&root->fs_info->trans_lock);
3602
3603 while (!list_empty(&list)) {
3604 t = list_entry(list.next, struct btrfs_transaction, list);
3605 if (!t)
3606 break;
3607
3608 btrfs_destroy_ordered_operations(root);
3609
3610 btrfs_destroy_ordered_extents(root);
3611
3612 btrfs_destroy_delayed_refs(t, root);
3613
3614 btrfs_block_rsv_release(root,
3615 &root->fs_info->trans_block_rsv,
3616 t->dirty_pages.dirty_bytes);
3617
3618 /* FIXME: cleanup wait for commit */
3619 t->in_commit = 1;
3620 t->blocked = 1;
3621 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3622 wake_up(&root->fs_info->transaction_blocked_wait);
3623
3624 t->blocked = 0;
3625 if (waitqueue_active(&root->fs_info->transaction_wait))
3626 wake_up(&root->fs_info->transaction_wait);
3627
3628 t->commit_done = 1;
3629 if (waitqueue_active(&t->commit_wait))
3630 wake_up(&t->commit_wait);
3631
3632 btrfs_destroy_pending_snapshots(t);
3633
3634 btrfs_destroy_delalloc_inodes(root);
3635
3636 spin_lock(&root->fs_info->trans_lock);
3637 root->fs_info->running_transaction = NULL;
3638 spin_unlock(&root->fs_info->trans_lock);
3639
3640 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3641 EXTENT_DIRTY);
3642
3643 btrfs_destroy_pinned_extent(root,
3644 root->fs_info->pinned_extents);
3645
3646 atomic_set(&t->use_count, 0);
3647 list_del_init(&t->list);
3648 memset(t, 0, sizeof(*t));
3649 kmem_cache_free(btrfs_transaction_cachep, t);
3650 }
3651
3652 spin_lock(&root->fs_info->trans_lock);
3653 root->fs_info->trans_no_join = 0;
3654 spin_unlock(&root->fs_info->trans_lock);
3655 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3656
3657 return 0;
3658 }
3659
3660 static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page,
3661 u64 start, u64 end,
3662 struct extent_state *state)
3663 {
3664 struct super_block *sb = page->mapping->host->i_sb;
3665 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3666 btrfs_error(fs_info, -EIO,
3667 "Error occured while writing out btree at %llu", start);
3668 return -EIO;
3669 }
3670
3671 static struct extent_io_ops btree_extent_io_ops = {
3672 .write_cache_pages_lock_hook = btree_lock_page_hook,
3673 .readpage_end_io_hook = btree_readpage_end_io_hook,
3674 .readpage_io_failed_hook = btree_io_failed_hook,
3675 .submit_bio_hook = btree_submit_bio_hook,
3676 /* note we're sharing with inode.c for the merge bio hook */
3677 .merge_bio_hook = btrfs_merge_bio_hook,
3678 .writepage_io_failed_hook = btree_writepage_io_failed_hook,
3679 };
This page took 0.109695 seconds and 6 git commands to generate.