Merge branches 'cleanup', 'fixes', 'misc', 'omap-barrier' and 'uaccess' into for...
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79 struct btrfs_end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 enum btrfs_wq_endio_type metadata;
86 struct list_head list;
87 struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
115 struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
121 int rw;
122 int mirror_num;
123 unsigned long bio_flags;
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
129 struct btrfs_work work;
130 int error;
131 };
132
133 /*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
143 *
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
147 *
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
151 *
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
155 */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 # error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
178 { .id = 0, .name_stem = "tree" },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197 {
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 struct page *page, size_t pg_offset, u64 start, u64 len,
219 int create)
220 {
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
225 read_lock(&em_tree->lock);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 read_unlock(&em_tree->lock);
231 goto out;
232 }
233 read_unlock(&em_tree->lock);
234
235 em = alloc_extent_map();
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
241 em->len = (u64)-1;
242 em->block_len = (u64)-1;
243 em->block_start = 0;
244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246 write_lock(&em_tree->lock);
247 ret = add_extent_mapping(em_tree, em, 0);
248 if (ret == -EEXIST) {
249 free_extent_map(em);
250 em = lookup_extent_mapping(em_tree, start, len);
251 if (!em)
252 em = ERR_PTR(-EIO);
253 } else if (ret) {
254 free_extent_map(em);
255 em = ERR_PTR(ret);
256 }
257 write_unlock(&em_tree->lock);
258
259 out:
260 return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 put_unaligned_le32(~crc, result);
271 }
272
273 /*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
279 int verify)
280 {
281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 char *result = NULL;
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
291 unsigned long inline_result;
292
293 len = buf->len - offset;
294 while (len > 0) {
295 err = map_private_extent_buffer(buf, offset, 32,
296 &kaddr, &map_start, &map_len);
297 if (err)
298 return 1;
299 cur_len = min(len, map_len - (offset - map_start));
300 crc = btrfs_csum_data(kaddr + offset - map_start,
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
304 }
305 if (csum_size > sizeof(inline_result)) {
306 result = kzalloc(csum_size, GFP_NOFS);
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 u32 val;
318 u32 found = 0;
319 memcpy(&found, result, csum_size);
320
321 read_extent_buffer(buf, &val, 0, csum_size);
322 printk_ratelimited(KERN_WARNING
323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324 "level %d\n",
325 fs_info->sb->s_id, buf->start,
326 val, found, btrfs_header_level(buf));
327 if (result != (char *)&inline_result)
328 kfree(result);
329 return 1;
330 }
331 } else {
332 write_extent_buffer(buf, result, 0, csum_size);
333 }
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return 0;
337 }
338
339 /*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
348 {
349 struct extent_state *cached_state = NULL;
350 int ret;
351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
356 if (atomic)
357 return -EAGAIN;
358
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 0, &cached_state);
366 if (extent_buffer_uptodate(eb) &&
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
371 printk_ratelimited(KERN_ERR
372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
373 eb->fs_info->sb->s_id, eb->start,
374 parent_transid, btrfs_header_generation(eb));
375 ret = 1;
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
387 out:
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
392 return ret;
393 }
394
395 /*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431 }
432
433 /*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
439 u64 start, u64 parent_transid)
440 {
441 struct extent_io_tree *io_tree;
442 int failed = 0;
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
446 int failed_mirror = 0;
447
448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
453 btree_get_extent, mirror_num);
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
456 parent_transid, 0))
457 break;
458 else
459 ret = -EIO;
460 }
461
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 break;
469
470 num_copies = btrfs_num_copies(root->fs_info,
471 eb->start, eb->len);
472 if (num_copies == 1)
473 break;
474
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
480 mirror_num++;
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
484 if (mirror_num > num_copies)
485 break;
486 }
487
488 if (failed && !ret && failed_mirror)
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
492 }
493
494 /*
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
497 */
498
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501 u64 start = page_offset(page);
502 u64 found_start;
503 struct extent_buffer *eb;
504
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
508 found_start = btrfs_header_bytenr(eb);
509 if (WARN_ON(found_start != start || !PageUptodate(page)))
510 return 0;
511 csum_tree_block(fs_info, eb, 0);
512 return 0;
513 }
514
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 struct extent_buffer *eb)
517 {
518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531 }
532
533 #define CORRUPT(reason, eb, root, slot) \
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
536 btrfs_header_bytenr(eb), root->objectid, slot)
537
538 static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540 {
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597 }
598
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
602 {
603 u64 found_start;
604 int found_level;
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 int ret = 0;
608 int reads_done;
609
610 if (!page->private)
611 goto out;
612
613 eb = (struct extent_buffer *)page->private;
614
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
621 if (!reads_done)
622 goto err;
623
624 eb->read_mirror = mirror;
625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 ret = -EIO;
627 goto err;
628 }
629
630 found_start = btrfs_header_bytenr(eb);
631 if (found_start != eb->start) {
632 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
633 "%llu %llu\n",
634 eb->fs_info->sb->s_id, found_start, eb->start);
635 ret = -EIO;
636 goto err;
637 }
638 if (check_tree_block_fsid(root->fs_info, eb)) {
639 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
640 eb->fs_info->sb->s_id, eb->start);
641 ret = -EIO;
642 goto err;
643 }
644 found_level = btrfs_header_level(eb);
645 if (found_level >= BTRFS_MAX_LEVEL) {
646 btrfs_err(root->fs_info, "bad tree block level %d",
647 (int)btrfs_header_level(eb));
648 ret = -EIO;
649 goto err;
650 }
651
652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 eb, found_level);
654
655 ret = csum_tree_block(root->fs_info, eb, 1);
656 if (ret) {
657 ret = -EIO;
658 goto err;
659 }
660
661 /*
662 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 * that we don't try and read the other copies of this block, just
664 * return -EIO.
665 */
666 if (found_level == 0 && check_leaf(root, eb)) {
667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 ret = -EIO;
669 }
670
671 if (!ret)
672 set_extent_buffer_uptodate(eb);
673 err:
674 if (reads_done &&
675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
676 btree_readahead_hook(root, eb, eb->start, ret);
677
678 if (ret) {
679 /*
680 * our io error hook is going to dec the io pages
681 * again, we have to make sure it has something
682 * to decrement
683 */
684 atomic_inc(&eb->io_pages);
685 clear_extent_buffer_uptodate(eb);
686 }
687 free_extent_buffer(eb);
688 out:
689 return ret;
690 }
691
692 static int btree_io_failed_hook(struct page *page, int failed_mirror)
693 {
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696
697 eb = (struct extent_buffer *)page->private;
698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
699 eb->read_mirror = failed_mirror;
700 atomic_dec(&eb->io_pages);
701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
702 btree_readahead_hook(root, eb, eb->start, -EIO);
703 return -EIO; /* we fixed nothing */
704 }
705
706 static void end_workqueue_bio(struct bio *bio, int err)
707 {
708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709 struct btrfs_fs_info *fs_info;
710 struct btrfs_workqueue *wq;
711 btrfs_work_func_t func;
712
713 fs_info = end_io_wq->info;
714 end_io_wq->error = err;
715
716 if (bio->bi_rw & REQ_WRITE) {
717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 wq = fs_info->endio_meta_write_workers;
719 func = btrfs_endio_meta_write_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 wq = fs_info->endio_freespace_worker;
722 func = btrfs_freespace_write_helper;
723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 wq = fs_info->endio_raid56_workers;
725 func = btrfs_endio_raid56_helper;
726 } else {
727 wq = fs_info->endio_write_workers;
728 func = btrfs_endio_write_helper;
729 }
730 } else {
731 if (unlikely(end_io_wq->metadata ==
732 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 wq = fs_info->endio_repair_workers;
734 func = btrfs_endio_repair_helper;
735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
736 wq = fs_info->endio_raid56_workers;
737 func = btrfs_endio_raid56_helper;
738 } else if (end_io_wq->metadata) {
739 wq = fs_info->endio_meta_workers;
740 func = btrfs_endio_meta_helper;
741 } else {
742 wq = fs_info->endio_workers;
743 func = btrfs_endio_helper;
744 }
745 }
746
747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 btrfs_queue_work(wq, &end_io_wq->work);
749 }
750
751 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
752 enum btrfs_wq_endio_type metadata)
753 {
754 struct btrfs_end_io_wq *end_io_wq;
755
756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
757 if (!end_io_wq)
758 return -ENOMEM;
759
760 end_io_wq->private = bio->bi_private;
761 end_io_wq->end_io = bio->bi_end_io;
762 end_io_wq->info = info;
763 end_io_wq->error = 0;
764 end_io_wq->bio = bio;
765 end_io_wq->metadata = metadata;
766
767 bio->bi_private = end_io_wq;
768 bio->bi_end_io = end_workqueue_bio;
769 return 0;
770 }
771
772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
773 {
774 unsigned long limit = min_t(unsigned long,
775 info->thread_pool_size,
776 info->fs_devices->open_devices);
777 return 256 * limit;
778 }
779
780 static void run_one_async_start(struct btrfs_work *work)
781 {
782 struct async_submit_bio *async;
783 int ret;
784
785 async = container_of(work, struct async_submit_bio, work);
786 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 async->mirror_num, async->bio_flags,
788 async->bio_offset);
789 if (ret)
790 async->error = ret;
791 }
792
793 static void run_one_async_done(struct btrfs_work *work)
794 {
795 struct btrfs_fs_info *fs_info;
796 struct async_submit_bio *async;
797 int limit;
798
799 async = container_of(work, struct async_submit_bio, work);
800 fs_info = BTRFS_I(async->inode)->root->fs_info;
801
802 limit = btrfs_async_submit_limit(fs_info);
803 limit = limit * 2 / 3;
804
805 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
806 waitqueue_active(&fs_info->async_submit_wait))
807 wake_up(&fs_info->async_submit_wait);
808
809 /* If an error occured we just want to clean up the bio and move on */
810 if (async->error) {
811 bio_endio(async->bio, async->error);
812 return;
813 }
814
815 async->submit_bio_done(async->inode, async->rw, async->bio,
816 async->mirror_num, async->bio_flags,
817 async->bio_offset);
818 }
819
820 static void run_one_async_free(struct btrfs_work *work)
821 {
822 struct async_submit_bio *async;
823
824 async = container_of(work, struct async_submit_bio, work);
825 kfree(async);
826 }
827
828 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
829 int rw, struct bio *bio, int mirror_num,
830 unsigned long bio_flags,
831 u64 bio_offset,
832 extent_submit_bio_hook_t *submit_bio_start,
833 extent_submit_bio_hook_t *submit_bio_done)
834 {
835 struct async_submit_bio *async;
836
837 async = kmalloc(sizeof(*async), GFP_NOFS);
838 if (!async)
839 return -ENOMEM;
840
841 async->inode = inode;
842 async->rw = rw;
843 async->bio = bio;
844 async->mirror_num = mirror_num;
845 async->submit_bio_start = submit_bio_start;
846 async->submit_bio_done = submit_bio_done;
847
848 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
849 run_one_async_done, run_one_async_free);
850
851 async->bio_flags = bio_flags;
852 async->bio_offset = bio_offset;
853
854 async->error = 0;
855
856 atomic_inc(&fs_info->nr_async_submits);
857
858 if (rw & REQ_SYNC)
859 btrfs_set_work_high_priority(&async->work);
860
861 btrfs_queue_work(fs_info->workers, &async->work);
862
863 while (atomic_read(&fs_info->async_submit_draining) &&
864 atomic_read(&fs_info->nr_async_submits)) {
865 wait_event(fs_info->async_submit_wait,
866 (atomic_read(&fs_info->nr_async_submits) == 0));
867 }
868
869 return 0;
870 }
871
872 static int btree_csum_one_bio(struct bio *bio)
873 {
874 struct bio_vec *bvec;
875 struct btrfs_root *root;
876 int i, ret = 0;
877
878 bio_for_each_segment_all(bvec, bio, i) {
879 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
880 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
881 if (ret)
882 break;
883 }
884
885 return ret;
886 }
887
888 static int __btree_submit_bio_start(struct inode *inode, int rw,
889 struct bio *bio, int mirror_num,
890 unsigned long bio_flags,
891 u64 bio_offset)
892 {
893 /*
894 * when we're called for a write, we're already in the async
895 * submission context. Just jump into btrfs_map_bio
896 */
897 return btree_csum_one_bio(bio);
898 }
899
900 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
901 int mirror_num, unsigned long bio_flags,
902 u64 bio_offset)
903 {
904 int ret;
905
906 /*
907 * when we're called for a write, we're already in the async
908 * submission context. Just jump into btrfs_map_bio
909 */
910 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
911 if (ret)
912 bio_endio(bio, ret);
913 return ret;
914 }
915
916 static int check_async_write(struct inode *inode, unsigned long bio_flags)
917 {
918 if (bio_flags & EXTENT_BIO_TREE_LOG)
919 return 0;
920 #ifdef CONFIG_X86
921 if (cpu_has_xmm4_2)
922 return 0;
923 #endif
924 return 1;
925 }
926
927 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
928 int mirror_num, unsigned long bio_flags,
929 u64 bio_offset)
930 {
931 int async = check_async_write(inode, bio_flags);
932 int ret;
933
934 if (!(rw & REQ_WRITE)) {
935 /*
936 * called for a read, do the setup so that checksum validation
937 * can happen in the async kernel threads
938 */
939 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
940 bio, BTRFS_WQ_ENDIO_METADATA);
941 if (ret)
942 goto out_w_error;
943 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
944 mirror_num, 0);
945 } else if (!async) {
946 ret = btree_csum_one_bio(bio);
947 if (ret)
948 goto out_w_error;
949 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950 mirror_num, 0);
951 } else {
952 /*
953 * kthread helpers are used to submit writes so that
954 * checksumming can happen in parallel across all CPUs
955 */
956 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
957 inode, rw, bio, mirror_num, 0,
958 bio_offset,
959 __btree_submit_bio_start,
960 __btree_submit_bio_done);
961 }
962
963 if (ret) {
964 out_w_error:
965 bio_endio(bio, ret);
966 }
967 return ret;
968 }
969
970 #ifdef CONFIG_MIGRATION
971 static int btree_migratepage(struct address_space *mapping,
972 struct page *newpage, struct page *page,
973 enum migrate_mode mode)
974 {
975 /*
976 * we can't safely write a btree page from here,
977 * we haven't done the locking hook
978 */
979 if (PageDirty(page))
980 return -EAGAIN;
981 /*
982 * Buffers may be managed in a filesystem specific way.
983 * We must have no buffers or drop them.
984 */
985 if (page_has_private(page) &&
986 !try_to_release_page(page, GFP_KERNEL))
987 return -EAGAIN;
988 return migrate_page(mapping, newpage, page, mode);
989 }
990 #endif
991
992
993 static int btree_writepages(struct address_space *mapping,
994 struct writeback_control *wbc)
995 {
996 struct btrfs_fs_info *fs_info;
997 int ret;
998
999 if (wbc->sync_mode == WB_SYNC_NONE) {
1000
1001 if (wbc->for_kupdate)
1002 return 0;
1003
1004 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1005 /* this is a bit racy, but that's ok */
1006 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1007 BTRFS_DIRTY_METADATA_THRESH);
1008 if (ret < 0)
1009 return 0;
1010 }
1011 return btree_write_cache_pages(mapping, wbc);
1012 }
1013
1014 static int btree_readpage(struct file *file, struct page *page)
1015 {
1016 struct extent_io_tree *tree;
1017 tree = &BTRFS_I(page->mapping->host)->io_tree;
1018 return extent_read_full_page(tree, page, btree_get_extent, 0);
1019 }
1020
1021 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1022 {
1023 if (PageWriteback(page) || PageDirty(page))
1024 return 0;
1025
1026 return try_release_extent_buffer(page);
1027 }
1028
1029 static void btree_invalidatepage(struct page *page, unsigned int offset,
1030 unsigned int length)
1031 {
1032 struct extent_io_tree *tree;
1033 tree = &BTRFS_I(page->mapping->host)->io_tree;
1034 extent_invalidatepage(tree, page, offset);
1035 btree_releasepage(page, GFP_NOFS);
1036 if (PagePrivate(page)) {
1037 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1038 "page private not zero on page %llu",
1039 (unsigned long long)page_offset(page));
1040 ClearPagePrivate(page);
1041 set_page_private(page, 0);
1042 page_cache_release(page);
1043 }
1044 }
1045
1046 static int btree_set_page_dirty(struct page *page)
1047 {
1048 #ifdef DEBUG
1049 struct extent_buffer *eb;
1050
1051 BUG_ON(!PagePrivate(page));
1052 eb = (struct extent_buffer *)page->private;
1053 BUG_ON(!eb);
1054 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1055 BUG_ON(!atomic_read(&eb->refs));
1056 btrfs_assert_tree_locked(eb);
1057 #endif
1058 return __set_page_dirty_nobuffers(page);
1059 }
1060
1061 static const struct address_space_operations btree_aops = {
1062 .readpage = btree_readpage,
1063 .writepages = btree_writepages,
1064 .releasepage = btree_releasepage,
1065 .invalidatepage = btree_invalidatepage,
1066 #ifdef CONFIG_MIGRATION
1067 .migratepage = btree_migratepage,
1068 #endif
1069 .set_page_dirty = btree_set_page_dirty,
1070 };
1071
1072 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1073 {
1074 struct extent_buffer *buf = NULL;
1075 struct inode *btree_inode = root->fs_info->btree_inode;
1076
1077 buf = btrfs_find_create_tree_block(root, bytenr);
1078 if (!buf)
1079 return;
1080 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1081 buf, 0, WAIT_NONE, btree_get_extent, 0);
1082 free_extent_buffer(buf);
1083 }
1084
1085 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1086 int mirror_num, struct extent_buffer **eb)
1087 {
1088 struct extent_buffer *buf = NULL;
1089 struct inode *btree_inode = root->fs_info->btree_inode;
1090 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1091 int ret;
1092
1093 buf = btrfs_find_create_tree_block(root, bytenr);
1094 if (!buf)
1095 return 0;
1096
1097 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1098
1099 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1100 btree_get_extent, mirror_num);
1101 if (ret) {
1102 free_extent_buffer(buf);
1103 return ret;
1104 }
1105
1106 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1107 free_extent_buffer(buf);
1108 return -EIO;
1109 } else if (extent_buffer_uptodate(buf)) {
1110 *eb = buf;
1111 } else {
1112 free_extent_buffer(buf);
1113 }
1114 return 0;
1115 }
1116
1117 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1118 u64 bytenr)
1119 {
1120 return find_extent_buffer(fs_info, bytenr);
1121 }
1122
1123 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1124 u64 bytenr)
1125 {
1126 if (btrfs_test_is_dummy_root(root))
1127 return alloc_test_extent_buffer(root->fs_info, bytenr);
1128 return alloc_extent_buffer(root->fs_info, bytenr);
1129 }
1130
1131
1132 int btrfs_write_tree_block(struct extent_buffer *buf)
1133 {
1134 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1135 buf->start + buf->len - 1);
1136 }
1137
1138 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1139 {
1140 return filemap_fdatawait_range(buf->pages[0]->mapping,
1141 buf->start, buf->start + buf->len - 1);
1142 }
1143
1144 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1145 u64 parent_transid)
1146 {
1147 struct extent_buffer *buf = NULL;
1148 int ret;
1149
1150 buf = btrfs_find_create_tree_block(root, bytenr);
1151 if (!buf)
1152 return ERR_PTR(-ENOMEM);
1153
1154 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1155 if (ret) {
1156 free_extent_buffer(buf);
1157 return ERR_PTR(ret);
1158 }
1159 return buf;
1160
1161 }
1162
1163 void clean_tree_block(struct btrfs_trans_handle *trans,
1164 struct btrfs_fs_info *fs_info,
1165 struct extent_buffer *buf)
1166 {
1167 if (btrfs_header_generation(buf) ==
1168 fs_info->running_transaction->transid) {
1169 btrfs_assert_tree_locked(buf);
1170
1171 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1172 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1173 -buf->len,
1174 fs_info->dirty_metadata_batch);
1175 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1176 btrfs_set_lock_blocking(buf);
1177 clear_extent_buffer_dirty(buf);
1178 }
1179 }
1180 }
1181
1182 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1183 {
1184 struct btrfs_subvolume_writers *writers;
1185 int ret;
1186
1187 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1188 if (!writers)
1189 return ERR_PTR(-ENOMEM);
1190
1191 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1192 if (ret < 0) {
1193 kfree(writers);
1194 return ERR_PTR(ret);
1195 }
1196
1197 init_waitqueue_head(&writers->wait);
1198 return writers;
1199 }
1200
1201 static void
1202 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1203 {
1204 percpu_counter_destroy(&writers->counter);
1205 kfree(writers);
1206 }
1207
1208 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1209 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1210 u64 objectid)
1211 {
1212 root->node = NULL;
1213 root->commit_root = NULL;
1214 root->sectorsize = sectorsize;
1215 root->nodesize = nodesize;
1216 root->stripesize = stripesize;
1217 root->state = 0;
1218 root->orphan_cleanup_state = 0;
1219
1220 root->objectid = objectid;
1221 root->last_trans = 0;
1222 root->highest_objectid = 0;
1223 root->nr_delalloc_inodes = 0;
1224 root->nr_ordered_extents = 0;
1225 root->name = NULL;
1226 root->inode_tree = RB_ROOT;
1227 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1228 root->block_rsv = NULL;
1229 root->orphan_block_rsv = NULL;
1230
1231 INIT_LIST_HEAD(&root->dirty_list);
1232 INIT_LIST_HEAD(&root->root_list);
1233 INIT_LIST_HEAD(&root->delalloc_inodes);
1234 INIT_LIST_HEAD(&root->delalloc_root);
1235 INIT_LIST_HEAD(&root->ordered_extents);
1236 INIT_LIST_HEAD(&root->ordered_root);
1237 INIT_LIST_HEAD(&root->logged_list[0]);
1238 INIT_LIST_HEAD(&root->logged_list[1]);
1239 spin_lock_init(&root->orphan_lock);
1240 spin_lock_init(&root->inode_lock);
1241 spin_lock_init(&root->delalloc_lock);
1242 spin_lock_init(&root->ordered_extent_lock);
1243 spin_lock_init(&root->accounting_lock);
1244 spin_lock_init(&root->log_extents_lock[0]);
1245 spin_lock_init(&root->log_extents_lock[1]);
1246 mutex_init(&root->objectid_mutex);
1247 mutex_init(&root->log_mutex);
1248 mutex_init(&root->ordered_extent_mutex);
1249 mutex_init(&root->delalloc_mutex);
1250 init_waitqueue_head(&root->log_writer_wait);
1251 init_waitqueue_head(&root->log_commit_wait[0]);
1252 init_waitqueue_head(&root->log_commit_wait[1]);
1253 INIT_LIST_HEAD(&root->log_ctxs[0]);
1254 INIT_LIST_HEAD(&root->log_ctxs[1]);
1255 atomic_set(&root->log_commit[0], 0);
1256 atomic_set(&root->log_commit[1], 0);
1257 atomic_set(&root->log_writers, 0);
1258 atomic_set(&root->log_batch, 0);
1259 atomic_set(&root->orphan_inodes, 0);
1260 atomic_set(&root->refs, 1);
1261 atomic_set(&root->will_be_snapshoted, 0);
1262 root->log_transid = 0;
1263 root->log_transid_committed = -1;
1264 root->last_log_commit = 0;
1265 if (fs_info)
1266 extent_io_tree_init(&root->dirty_log_pages,
1267 fs_info->btree_inode->i_mapping);
1268
1269 memset(&root->root_key, 0, sizeof(root->root_key));
1270 memset(&root->root_item, 0, sizeof(root->root_item));
1271 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1272 if (fs_info)
1273 root->defrag_trans_start = fs_info->generation;
1274 else
1275 root->defrag_trans_start = 0;
1276 root->root_key.objectid = objectid;
1277 root->anon_dev = 0;
1278
1279 spin_lock_init(&root->root_item_lock);
1280 }
1281
1282 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1283 {
1284 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1285 if (root)
1286 root->fs_info = fs_info;
1287 return root;
1288 }
1289
1290 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1291 /* Should only be used by the testing infrastructure */
1292 struct btrfs_root *btrfs_alloc_dummy_root(void)
1293 {
1294 struct btrfs_root *root;
1295
1296 root = btrfs_alloc_root(NULL);
1297 if (!root)
1298 return ERR_PTR(-ENOMEM);
1299 __setup_root(4096, 4096, 4096, root, NULL, 1);
1300 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1301 root->alloc_bytenr = 0;
1302
1303 return root;
1304 }
1305 #endif
1306
1307 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1308 struct btrfs_fs_info *fs_info,
1309 u64 objectid)
1310 {
1311 struct extent_buffer *leaf;
1312 struct btrfs_root *tree_root = fs_info->tree_root;
1313 struct btrfs_root *root;
1314 struct btrfs_key key;
1315 int ret = 0;
1316 uuid_le uuid;
1317
1318 root = btrfs_alloc_root(fs_info);
1319 if (!root)
1320 return ERR_PTR(-ENOMEM);
1321
1322 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1323 tree_root->stripesize, root, fs_info, objectid);
1324 root->root_key.objectid = objectid;
1325 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1326 root->root_key.offset = 0;
1327
1328 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1329 if (IS_ERR(leaf)) {
1330 ret = PTR_ERR(leaf);
1331 leaf = NULL;
1332 goto fail;
1333 }
1334
1335 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1336 btrfs_set_header_bytenr(leaf, leaf->start);
1337 btrfs_set_header_generation(leaf, trans->transid);
1338 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1339 btrfs_set_header_owner(leaf, objectid);
1340 root->node = leaf;
1341
1342 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1343 BTRFS_FSID_SIZE);
1344 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1345 btrfs_header_chunk_tree_uuid(leaf),
1346 BTRFS_UUID_SIZE);
1347 btrfs_mark_buffer_dirty(leaf);
1348
1349 root->commit_root = btrfs_root_node(root);
1350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1351
1352 root->root_item.flags = 0;
1353 root->root_item.byte_limit = 0;
1354 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1355 btrfs_set_root_generation(&root->root_item, trans->transid);
1356 btrfs_set_root_level(&root->root_item, 0);
1357 btrfs_set_root_refs(&root->root_item, 1);
1358 btrfs_set_root_used(&root->root_item, leaf->len);
1359 btrfs_set_root_last_snapshot(&root->root_item, 0);
1360 btrfs_set_root_dirid(&root->root_item, 0);
1361 uuid_le_gen(&uuid);
1362 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1363 root->root_item.drop_level = 0;
1364
1365 key.objectid = objectid;
1366 key.type = BTRFS_ROOT_ITEM_KEY;
1367 key.offset = 0;
1368 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1369 if (ret)
1370 goto fail;
1371
1372 btrfs_tree_unlock(leaf);
1373
1374 return root;
1375
1376 fail:
1377 if (leaf) {
1378 btrfs_tree_unlock(leaf);
1379 free_extent_buffer(root->commit_root);
1380 free_extent_buffer(leaf);
1381 }
1382 kfree(root);
1383
1384 return ERR_PTR(ret);
1385 }
1386
1387 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1388 struct btrfs_fs_info *fs_info)
1389 {
1390 struct btrfs_root *root;
1391 struct btrfs_root *tree_root = fs_info->tree_root;
1392 struct extent_buffer *leaf;
1393
1394 root = btrfs_alloc_root(fs_info);
1395 if (!root)
1396 return ERR_PTR(-ENOMEM);
1397
1398 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1399 tree_root->stripesize, root, fs_info,
1400 BTRFS_TREE_LOG_OBJECTID);
1401
1402 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1403 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1404 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1405
1406 /*
1407 * DON'T set REF_COWS for log trees
1408 *
1409 * log trees do not get reference counted because they go away
1410 * before a real commit is actually done. They do store pointers
1411 * to file data extents, and those reference counts still get
1412 * updated (along with back refs to the log tree).
1413 */
1414
1415 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1416 NULL, 0, 0, 0);
1417 if (IS_ERR(leaf)) {
1418 kfree(root);
1419 return ERR_CAST(leaf);
1420 }
1421
1422 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1423 btrfs_set_header_bytenr(leaf, leaf->start);
1424 btrfs_set_header_generation(leaf, trans->transid);
1425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1426 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1427 root->node = leaf;
1428
1429 write_extent_buffer(root->node, root->fs_info->fsid,
1430 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1431 btrfs_mark_buffer_dirty(root->node);
1432 btrfs_tree_unlock(root->node);
1433 return root;
1434 }
1435
1436 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1437 struct btrfs_fs_info *fs_info)
1438 {
1439 struct btrfs_root *log_root;
1440
1441 log_root = alloc_log_tree(trans, fs_info);
1442 if (IS_ERR(log_root))
1443 return PTR_ERR(log_root);
1444 WARN_ON(fs_info->log_root_tree);
1445 fs_info->log_root_tree = log_root;
1446 return 0;
1447 }
1448
1449 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root)
1451 {
1452 struct btrfs_root *log_root;
1453 struct btrfs_inode_item *inode_item;
1454
1455 log_root = alloc_log_tree(trans, root->fs_info);
1456 if (IS_ERR(log_root))
1457 return PTR_ERR(log_root);
1458
1459 log_root->last_trans = trans->transid;
1460 log_root->root_key.offset = root->root_key.objectid;
1461
1462 inode_item = &log_root->root_item.inode;
1463 btrfs_set_stack_inode_generation(inode_item, 1);
1464 btrfs_set_stack_inode_size(inode_item, 3);
1465 btrfs_set_stack_inode_nlink(inode_item, 1);
1466 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1467 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1468
1469 btrfs_set_root_node(&log_root->root_item, log_root->node);
1470
1471 WARN_ON(root->log_root);
1472 root->log_root = log_root;
1473 root->log_transid = 0;
1474 root->log_transid_committed = -1;
1475 root->last_log_commit = 0;
1476 return 0;
1477 }
1478
1479 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1480 struct btrfs_key *key)
1481 {
1482 struct btrfs_root *root;
1483 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1484 struct btrfs_path *path;
1485 u64 generation;
1486 int ret;
1487
1488 path = btrfs_alloc_path();
1489 if (!path)
1490 return ERR_PTR(-ENOMEM);
1491
1492 root = btrfs_alloc_root(fs_info);
1493 if (!root) {
1494 ret = -ENOMEM;
1495 goto alloc_fail;
1496 }
1497
1498 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1499 tree_root->stripesize, root, fs_info, key->objectid);
1500
1501 ret = btrfs_find_root(tree_root, key, path,
1502 &root->root_item, &root->root_key);
1503 if (ret) {
1504 if (ret > 0)
1505 ret = -ENOENT;
1506 goto find_fail;
1507 }
1508
1509 generation = btrfs_root_generation(&root->root_item);
1510 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1511 generation);
1512 if (IS_ERR(root->node)) {
1513 ret = PTR_ERR(root->node);
1514 goto find_fail;
1515 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1516 ret = -EIO;
1517 free_extent_buffer(root->node);
1518 goto find_fail;
1519 }
1520 root->commit_root = btrfs_root_node(root);
1521 out:
1522 btrfs_free_path(path);
1523 return root;
1524
1525 find_fail:
1526 kfree(root);
1527 alloc_fail:
1528 root = ERR_PTR(ret);
1529 goto out;
1530 }
1531
1532 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1533 struct btrfs_key *location)
1534 {
1535 struct btrfs_root *root;
1536
1537 root = btrfs_read_tree_root(tree_root, location);
1538 if (IS_ERR(root))
1539 return root;
1540
1541 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1542 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1543 btrfs_check_and_init_root_item(&root->root_item);
1544 }
1545
1546 return root;
1547 }
1548
1549 int btrfs_init_fs_root(struct btrfs_root *root)
1550 {
1551 int ret;
1552 struct btrfs_subvolume_writers *writers;
1553
1554 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1555 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1556 GFP_NOFS);
1557 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1558 ret = -ENOMEM;
1559 goto fail;
1560 }
1561
1562 writers = btrfs_alloc_subvolume_writers();
1563 if (IS_ERR(writers)) {
1564 ret = PTR_ERR(writers);
1565 goto fail;
1566 }
1567 root->subv_writers = writers;
1568
1569 btrfs_init_free_ino_ctl(root);
1570 spin_lock_init(&root->ino_cache_lock);
1571 init_waitqueue_head(&root->ino_cache_wait);
1572
1573 ret = get_anon_bdev(&root->anon_dev);
1574 if (ret)
1575 goto free_writers;
1576 return 0;
1577
1578 free_writers:
1579 btrfs_free_subvolume_writers(root->subv_writers);
1580 fail:
1581 kfree(root->free_ino_ctl);
1582 kfree(root->free_ino_pinned);
1583 return ret;
1584 }
1585
1586 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1587 u64 root_id)
1588 {
1589 struct btrfs_root *root;
1590
1591 spin_lock(&fs_info->fs_roots_radix_lock);
1592 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1593 (unsigned long)root_id);
1594 spin_unlock(&fs_info->fs_roots_radix_lock);
1595 return root;
1596 }
1597
1598 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1599 struct btrfs_root *root)
1600 {
1601 int ret;
1602
1603 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1604 if (ret)
1605 return ret;
1606
1607 spin_lock(&fs_info->fs_roots_radix_lock);
1608 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1609 (unsigned long)root->root_key.objectid,
1610 root);
1611 if (ret == 0)
1612 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1613 spin_unlock(&fs_info->fs_roots_radix_lock);
1614 radix_tree_preload_end();
1615
1616 return ret;
1617 }
1618
1619 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1620 struct btrfs_key *location,
1621 bool check_ref)
1622 {
1623 struct btrfs_root *root;
1624 struct btrfs_path *path;
1625 struct btrfs_key key;
1626 int ret;
1627
1628 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1629 return fs_info->tree_root;
1630 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1631 return fs_info->extent_root;
1632 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1633 return fs_info->chunk_root;
1634 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1635 return fs_info->dev_root;
1636 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1637 return fs_info->csum_root;
1638 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1639 return fs_info->quota_root ? fs_info->quota_root :
1640 ERR_PTR(-ENOENT);
1641 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1642 return fs_info->uuid_root ? fs_info->uuid_root :
1643 ERR_PTR(-ENOENT);
1644 again:
1645 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1646 if (root) {
1647 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1648 return ERR_PTR(-ENOENT);
1649 return root;
1650 }
1651
1652 root = btrfs_read_fs_root(fs_info->tree_root, location);
1653 if (IS_ERR(root))
1654 return root;
1655
1656 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1657 ret = -ENOENT;
1658 goto fail;
1659 }
1660
1661 ret = btrfs_init_fs_root(root);
1662 if (ret)
1663 goto fail;
1664
1665 path = btrfs_alloc_path();
1666 if (!path) {
1667 ret = -ENOMEM;
1668 goto fail;
1669 }
1670 key.objectid = BTRFS_ORPHAN_OBJECTID;
1671 key.type = BTRFS_ORPHAN_ITEM_KEY;
1672 key.offset = location->objectid;
1673
1674 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1675 btrfs_free_path(path);
1676 if (ret < 0)
1677 goto fail;
1678 if (ret == 0)
1679 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1680
1681 ret = btrfs_insert_fs_root(fs_info, root);
1682 if (ret) {
1683 if (ret == -EEXIST) {
1684 free_fs_root(root);
1685 goto again;
1686 }
1687 goto fail;
1688 }
1689 return root;
1690 fail:
1691 free_fs_root(root);
1692 return ERR_PTR(ret);
1693 }
1694
1695 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1696 {
1697 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1698 int ret = 0;
1699 struct btrfs_device *device;
1700 struct backing_dev_info *bdi;
1701
1702 rcu_read_lock();
1703 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1704 if (!device->bdev)
1705 continue;
1706 bdi = blk_get_backing_dev_info(device->bdev);
1707 if (bdi_congested(bdi, bdi_bits)) {
1708 ret = 1;
1709 break;
1710 }
1711 }
1712 rcu_read_unlock();
1713 return ret;
1714 }
1715
1716 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1717 {
1718 int err;
1719
1720 err = bdi_setup_and_register(bdi, "btrfs");
1721 if (err)
1722 return err;
1723
1724 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1725 bdi->congested_fn = btrfs_congested_fn;
1726 bdi->congested_data = info;
1727 return 0;
1728 }
1729
1730 /*
1731 * called by the kthread helper functions to finally call the bio end_io
1732 * functions. This is where read checksum verification actually happens
1733 */
1734 static void end_workqueue_fn(struct btrfs_work *work)
1735 {
1736 struct bio *bio;
1737 struct btrfs_end_io_wq *end_io_wq;
1738 int error;
1739
1740 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1741 bio = end_io_wq->bio;
1742
1743 error = end_io_wq->error;
1744 bio->bi_private = end_io_wq->private;
1745 bio->bi_end_io = end_io_wq->end_io;
1746 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1747 bio_endio(bio, error);
1748 }
1749
1750 static int cleaner_kthread(void *arg)
1751 {
1752 struct btrfs_root *root = arg;
1753 int again;
1754 struct btrfs_trans_handle *trans;
1755
1756 do {
1757 again = 0;
1758
1759 /* Make the cleaner go to sleep early. */
1760 if (btrfs_need_cleaner_sleep(root))
1761 goto sleep;
1762
1763 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1764 goto sleep;
1765
1766 /*
1767 * Avoid the problem that we change the status of the fs
1768 * during the above check and trylock.
1769 */
1770 if (btrfs_need_cleaner_sleep(root)) {
1771 mutex_unlock(&root->fs_info->cleaner_mutex);
1772 goto sleep;
1773 }
1774
1775 btrfs_run_delayed_iputs(root);
1776 again = btrfs_clean_one_deleted_snapshot(root);
1777 mutex_unlock(&root->fs_info->cleaner_mutex);
1778
1779 /*
1780 * The defragger has dealt with the R/O remount and umount,
1781 * needn't do anything special here.
1782 */
1783 btrfs_run_defrag_inodes(root->fs_info);
1784
1785 /*
1786 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1787 * with relocation (btrfs_relocate_chunk) and relocation
1788 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1789 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1790 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1791 * unused block groups.
1792 */
1793 btrfs_delete_unused_bgs(root->fs_info);
1794 sleep:
1795 if (!try_to_freeze() && !again) {
1796 set_current_state(TASK_INTERRUPTIBLE);
1797 if (!kthread_should_stop())
1798 schedule();
1799 __set_current_state(TASK_RUNNING);
1800 }
1801 } while (!kthread_should_stop());
1802
1803 /*
1804 * Transaction kthread is stopped before us and wakes us up.
1805 * However we might have started a new transaction and COWed some
1806 * tree blocks when deleting unused block groups for example. So
1807 * make sure we commit the transaction we started to have a clean
1808 * shutdown when evicting the btree inode - if it has dirty pages
1809 * when we do the final iput() on it, eviction will trigger a
1810 * writeback for it which will fail with null pointer dereferences
1811 * since work queues and other resources were already released and
1812 * destroyed by the time the iput/eviction/writeback is made.
1813 */
1814 trans = btrfs_attach_transaction(root);
1815 if (IS_ERR(trans)) {
1816 if (PTR_ERR(trans) != -ENOENT)
1817 btrfs_err(root->fs_info,
1818 "cleaner transaction attach returned %ld",
1819 PTR_ERR(trans));
1820 } else {
1821 int ret;
1822
1823 ret = btrfs_commit_transaction(trans, root);
1824 if (ret)
1825 btrfs_err(root->fs_info,
1826 "cleaner open transaction commit returned %d",
1827 ret);
1828 }
1829
1830 return 0;
1831 }
1832
1833 static int transaction_kthread(void *arg)
1834 {
1835 struct btrfs_root *root = arg;
1836 struct btrfs_trans_handle *trans;
1837 struct btrfs_transaction *cur;
1838 u64 transid;
1839 unsigned long now;
1840 unsigned long delay;
1841 bool cannot_commit;
1842
1843 do {
1844 cannot_commit = false;
1845 delay = HZ * root->fs_info->commit_interval;
1846 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1847
1848 spin_lock(&root->fs_info->trans_lock);
1849 cur = root->fs_info->running_transaction;
1850 if (!cur) {
1851 spin_unlock(&root->fs_info->trans_lock);
1852 goto sleep;
1853 }
1854
1855 now = get_seconds();
1856 if (cur->state < TRANS_STATE_BLOCKED &&
1857 (now < cur->start_time ||
1858 now - cur->start_time < root->fs_info->commit_interval)) {
1859 spin_unlock(&root->fs_info->trans_lock);
1860 delay = HZ * 5;
1861 goto sleep;
1862 }
1863 transid = cur->transid;
1864 spin_unlock(&root->fs_info->trans_lock);
1865
1866 /* If the file system is aborted, this will always fail. */
1867 trans = btrfs_attach_transaction(root);
1868 if (IS_ERR(trans)) {
1869 if (PTR_ERR(trans) != -ENOENT)
1870 cannot_commit = true;
1871 goto sleep;
1872 }
1873 if (transid == trans->transid) {
1874 btrfs_commit_transaction(trans, root);
1875 } else {
1876 btrfs_end_transaction(trans, root);
1877 }
1878 sleep:
1879 wake_up_process(root->fs_info->cleaner_kthread);
1880 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1881
1882 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1883 &root->fs_info->fs_state)))
1884 btrfs_cleanup_transaction(root);
1885 if (!try_to_freeze()) {
1886 set_current_state(TASK_INTERRUPTIBLE);
1887 if (!kthread_should_stop() &&
1888 (!btrfs_transaction_blocked(root->fs_info) ||
1889 cannot_commit))
1890 schedule_timeout(delay);
1891 __set_current_state(TASK_RUNNING);
1892 }
1893 } while (!kthread_should_stop());
1894 return 0;
1895 }
1896
1897 /*
1898 * this will find the highest generation in the array of
1899 * root backups. The index of the highest array is returned,
1900 * or -1 if we can't find anything.
1901 *
1902 * We check to make sure the array is valid by comparing the
1903 * generation of the latest root in the array with the generation
1904 * in the super block. If they don't match we pitch it.
1905 */
1906 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1907 {
1908 u64 cur;
1909 int newest_index = -1;
1910 struct btrfs_root_backup *root_backup;
1911 int i;
1912
1913 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1914 root_backup = info->super_copy->super_roots + i;
1915 cur = btrfs_backup_tree_root_gen(root_backup);
1916 if (cur == newest_gen)
1917 newest_index = i;
1918 }
1919
1920 /* check to see if we actually wrapped around */
1921 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1922 root_backup = info->super_copy->super_roots;
1923 cur = btrfs_backup_tree_root_gen(root_backup);
1924 if (cur == newest_gen)
1925 newest_index = 0;
1926 }
1927 return newest_index;
1928 }
1929
1930
1931 /*
1932 * find the oldest backup so we know where to store new entries
1933 * in the backup array. This will set the backup_root_index
1934 * field in the fs_info struct
1935 */
1936 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1937 u64 newest_gen)
1938 {
1939 int newest_index = -1;
1940
1941 newest_index = find_newest_super_backup(info, newest_gen);
1942 /* if there was garbage in there, just move along */
1943 if (newest_index == -1) {
1944 info->backup_root_index = 0;
1945 } else {
1946 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1947 }
1948 }
1949
1950 /*
1951 * copy all the root pointers into the super backup array.
1952 * this will bump the backup pointer by one when it is
1953 * done
1954 */
1955 static void backup_super_roots(struct btrfs_fs_info *info)
1956 {
1957 int next_backup;
1958 struct btrfs_root_backup *root_backup;
1959 int last_backup;
1960
1961 next_backup = info->backup_root_index;
1962 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1963 BTRFS_NUM_BACKUP_ROOTS;
1964
1965 /*
1966 * just overwrite the last backup if we're at the same generation
1967 * this happens only at umount
1968 */
1969 root_backup = info->super_for_commit->super_roots + last_backup;
1970 if (btrfs_backup_tree_root_gen(root_backup) ==
1971 btrfs_header_generation(info->tree_root->node))
1972 next_backup = last_backup;
1973
1974 root_backup = info->super_for_commit->super_roots + next_backup;
1975
1976 /*
1977 * make sure all of our padding and empty slots get zero filled
1978 * regardless of which ones we use today
1979 */
1980 memset(root_backup, 0, sizeof(*root_backup));
1981
1982 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1983
1984 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1985 btrfs_set_backup_tree_root_gen(root_backup,
1986 btrfs_header_generation(info->tree_root->node));
1987
1988 btrfs_set_backup_tree_root_level(root_backup,
1989 btrfs_header_level(info->tree_root->node));
1990
1991 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1992 btrfs_set_backup_chunk_root_gen(root_backup,
1993 btrfs_header_generation(info->chunk_root->node));
1994 btrfs_set_backup_chunk_root_level(root_backup,
1995 btrfs_header_level(info->chunk_root->node));
1996
1997 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1998 btrfs_set_backup_extent_root_gen(root_backup,
1999 btrfs_header_generation(info->extent_root->node));
2000 btrfs_set_backup_extent_root_level(root_backup,
2001 btrfs_header_level(info->extent_root->node));
2002
2003 /*
2004 * we might commit during log recovery, which happens before we set
2005 * the fs_root. Make sure it is valid before we fill it in.
2006 */
2007 if (info->fs_root && info->fs_root->node) {
2008 btrfs_set_backup_fs_root(root_backup,
2009 info->fs_root->node->start);
2010 btrfs_set_backup_fs_root_gen(root_backup,
2011 btrfs_header_generation(info->fs_root->node));
2012 btrfs_set_backup_fs_root_level(root_backup,
2013 btrfs_header_level(info->fs_root->node));
2014 }
2015
2016 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2017 btrfs_set_backup_dev_root_gen(root_backup,
2018 btrfs_header_generation(info->dev_root->node));
2019 btrfs_set_backup_dev_root_level(root_backup,
2020 btrfs_header_level(info->dev_root->node));
2021
2022 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2023 btrfs_set_backup_csum_root_gen(root_backup,
2024 btrfs_header_generation(info->csum_root->node));
2025 btrfs_set_backup_csum_root_level(root_backup,
2026 btrfs_header_level(info->csum_root->node));
2027
2028 btrfs_set_backup_total_bytes(root_backup,
2029 btrfs_super_total_bytes(info->super_copy));
2030 btrfs_set_backup_bytes_used(root_backup,
2031 btrfs_super_bytes_used(info->super_copy));
2032 btrfs_set_backup_num_devices(root_backup,
2033 btrfs_super_num_devices(info->super_copy));
2034
2035 /*
2036 * if we don't copy this out to the super_copy, it won't get remembered
2037 * for the next commit
2038 */
2039 memcpy(&info->super_copy->super_roots,
2040 &info->super_for_commit->super_roots,
2041 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2042 }
2043
2044 /*
2045 * this copies info out of the root backup array and back into
2046 * the in-memory super block. It is meant to help iterate through
2047 * the array, so you send it the number of backups you've already
2048 * tried and the last backup index you used.
2049 *
2050 * this returns -1 when it has tried all the backups
2051 */
2052 static noinline int next_root_backup(struct btrfs_fs_info *info,
2053 struct btrfs_super_block *super,
2054 int *num_backups_tried, int *backup_index)
2055 {
2056 struct btrfs_root_backup *root_backup;
2057 int newest = *backup_index;
2058
2059 if (*num_backups_tried == 0) {
2060 u64 gen = btrfs_super_generation(super);
2061
2062 newest = find_newest_super_backup(info, gen);
2063 if (newest == -1)
2064 return -1;
2065
2066 *backup_index = newest;
2067 *num_backups_tried = 1;
2068 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2069 /* we've tried all the backups, all done */
2070 return -1;
2071 } else {
2072 /* jump to the next oldest backup */
2073 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2074 BTRFS_NUM_BACKUP_ROOTS;
2075 *backup_index = newest;
2076 *num_backups_tried += 1;
2077 }
2078 root_backup = super->super_roots + newest;
2079
2080 btrfs_set_super_generation(super,
2081 btrfs_backup_tree_root_gen(root_backup));
2082 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2083 btrfs_set_super_root_level(super,
2084 btrfs_backup_tree_root_level(root_backup));
2085 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2086
2087 /*
2088 * fixme: the total bytes and num_devices need to match or we should
2089 * need a fsck
2090 */
2091 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2092 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2093 return 0;
2094 }
2095
2096 /* helper to cleanup workers */
2097 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2098 {
2099 btrfs_destroy_workqueue(fs_info->fixup_workers);
2100 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2101 btrfs_destroy_workqueue(fs_info->workers);
2102 btrfs_destroy_workqueue(fs_info->endio_workers);
2103 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2104 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2105 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2106 btrfs_destroy_workqueue(fs_info->rmw_workers);
2107 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2108 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2109 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2110 btrfs_destroy_workqueue(fs_info->submit_workers);
2111 btrfs_destroy_workqueue(fs_info->delayed_workers);
2112 btrfs_destroy_workqueue(fs_info->caching_workers);
2113 btrfs_destroy_workqueue(fs_info->readahead_workers);
2114 btrfs_destroy_workqueue(fs_info->flush_workers);
2115 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2116 btrfs_destroy_workqueue(fs_info->extent_workers);
2117 }
2118
2119 static void free_root_extent_buffers(struct btrfs_root *root)
2120 {
2121 if (root) {
2122 free_extent_buffer(root->node);
2123 free_extent_buffer(root->commit_root);
2124 root->node = NULL;
2125 root->commit_root = NULL;
2126 }
2127 }
2128
2129 /* helper to cleanup tree roots */
2130 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2131 {
2132 free_root_extent_buffers(info->tree_root);
2133
2134 free_root_extent_buffers(info->dev_root);
2135 free_root_extent_buffers(info->extent_root);
2136 free_root_extent_buffers(info->csum_root);
2137 free_root_extent_buffers(info->quota_root);
2138 free_root_extent_buffers(info->uuid_root);
2139 if (chunk_root)
2140 free_root_extent_buffers(info->chunk_root);
2141 }
2142
2143 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2144 {
2145 int ret;
2146 struct btrfs_root *gang[8];
2147 int i;
2148
2149 while (!list_empty(&fs_info->dead_roots)) {
2150 gang[0] = list_entry(fs_info->dead_roots.next,
2151 struct btrfs_root, root_list);
2152 list_del(&gang[0]->root_list);
2153
2154 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2155 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2156 } else {
2157 free_extent_buffer(gang[0]->node);
2158 free_extent_buffer(gang[0]->commit_root);
2159 btrfs_put_fs_root(gang[0]);
2160 }
2161 }
2162
2163 while (1) {
2164 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2165 (void **)gang, 0,
2166 ARRAY_SIZE(gang));
2167 if (!ret)
2168 break;
2169 for (i = 0; i < ret; i++)
2170 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2171 }
2172
2173 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2174 btrfs_free_log_root_tree(NULL, fs_info);
2175 btrfs_destroy_pinned_extent(fs_info->tree_root,
2176 fs_info->pinned_extents);
2177 }
2178 }
2179
2180 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2181 {
2182 mutex_init(&fs_info->scrub_lock);
2183 atomic_set(&fs_info->scrubs_running, 0);
2184 atomic_set(&fs_info->scrub_pause_req, 0);
2185 atomic_set(&fs_info->scrubs_paused, 0);
2186 atomic_set(&fs_info->scrub_cancel_req, 0);
2187 init_waitqueue_head(&fs_info->scrub_pause_wait);
2188 fs_info->scrub_workers_refcnt = 0;
2189 }
2190
2191 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2192 {
2193 spin_lock_init(&fs_info->balance_lock);
2194 mutex_init(&fs_info->balance_mutex);
2195 atomic_set(&fs_info->balance_running, 0);
2196 atomic_set(&fs_info->balance_pause_req, 0);
2197 atomic_set(&fs_info->balance_cancel_req, 0);
2198 fs_info->balance_ctl = NULL;
2199 init_waitqueue_head(&fs_info->balance_wait_q);
2200 }
2201
2202 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2203 struct btrfs_root *tree_root)
2204 {
2205 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2206 set_nlink(fs_info->btree_inode, 1);
2207 /*
2208 * we set the i_size on the btree inode to the max possible int.
2209 * the real end of the address space is determined by all of
2210 * the devices in the system
2211 */
2212 fs_info->btree_inode->i_size = OFFSET_MAX;
2213 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2214
2215 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2216 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2217 fs_info->btree_inode->i_mapping);
2218 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2219 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2220
2221 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2222
2223 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2224 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2225 sizeof(struct btrfs_key));
2226 set_bit(BTRFS_INODE_DUMMY,
2227 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2228 btrfs_insert_inode_hash(fs_info->btree_inode);
2229 }
2230
2231 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2232 {
2233 fs_info->dev_replace.lock_owner = 0;
2234 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2235 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2236 mutex_init(&fs_info->dev_replace.lock_management_lock);
2237 mutex_init(&fs_info->dev_replace.lock);
2238 init_waitqueue_head(&fs_info->replace_wait);
2239 }
2240
2241 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2242 {
2243 spin_lock_init(&fs_info->qgroup_lock);
2244 mutex_init(&fs_info->qgroup_ioctl_lock);
2245 fs_info->qgroup_tree = RB_ROOT;
2246 fs_info->qgroup_op_tree = RB_ROOT;
2247 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2248 fs_info->qgroup_seq = 1;
2249 fs_info->quota_enabled = 0;
2250 fs_info->pending_quota_state = 0;
2251 fs_info->qgroup_ulist = NULL;
2252 mutex_init(&fs_info->qgroup_rescan_lock);
2253 }
2254
2255 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2256 struct btrfs_fs_devices *fs_devices)
2257 {
2258 int max_active = fs_info->thread_pool_size;
2259 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2260
2261 fs_info->workers =
2262 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2263 max_active, 16);
2264
2265 fs_info->delalloc_workers =
2266 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2267
2268 fs_info->flush_workers =
2269 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2270
2271 fs_info->caching_workers =
2272 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2273
2274 /*
2275 * a higher idle thresh on the submit workers makes it much more
2276 * likely that bios will be send down in a sane order to the
2277 * devices
2278 */
2279 fs_info->submit_workers =
2280 btrfs_alloc_workqueue("submit", flags,
2281 min_t(u64, fs_devices->num_devices,
2282 max_active), 64);
2283
2284 fs_info->fixup_workers =
2285 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2286
2287 /*
2288 * endios are largely parallel and should have a very
2289 * low idle thresh
2290 */
2291 fs_info->endio_workers =
2292 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2293 fs_info->endio_meta_workers =
2294 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2295 fs_info->endio_meta_write_workers =
2296 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2297 fs_info->endio_raid56_workers =
2298 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2299 fs_info->endio_repair_workers =
2300 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2301 fs_info->rmw_workers =
2302 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2303 fs_info->endio_write_workers =
2304 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2305 fs_info->endio_freespace_worker =
2306 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2307 fs_info->delayed_workers =
2308 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2309 fs_info->readahead_workers =
2310 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2311 fs_info->qgroup_rescan_workers =
2312 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2313 fs_info->extent_workers =
2314 btrfs_alloc_workqueue("extent-refs", flags,
2315 min_t(u64, fs_devices->num_devices,
2316 max_active), 8);
2317
2318 if (!(fs_info->workers && fs_info->delalloc_workers &&
2319 fs_info->submit_workers && fs_info->flush_workers &&
2320 fs_info->endio_workers && fs_info->endio_meta_workers &&
2321 fs_info->endio_meta_write_workers &&
2322 fs_info->endio_repair_workers &&
2323 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2324 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2325 fs_info->caching_workers && fs_info->readahead_workers &&
2326 fs_info->fixup_workers && fs_info->delayed_workers &&
2327 fs_info->extent_workers &&
2328 fs_info->qgroup_rescan_workers)) {
2329 return -ENOMEM;
2330 }
2331
2332 return 0;
2333 }
2334
2335 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2336 struct btrfs_fs_devices *fs_devices)
2337 {
2338 int ret;
2339 struct btrfs_root *tree_root = fs_info->tree_root;
2340 struct btrfs_root *log_tree_root;
2341 struct btrfs_super_block *disk_super = fs_info->super_copy;
2342 u64 bytenr = btrfs_super_log_root(disk_super);
2343
2344 if (fs_devices->rw_devices == 0) {
2345 printk(KERN_WARNING "BTRFS: log replay required "
2346 "on RO media\n");
2347 return -EIO;
2348 }
2349
2350 log_tree_root = btrfs_alloc_root(fs_info);
2351 if (!log_tree_root)
2352 return -ENOMEM;
2353
2354 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2355 tree_root->stripesize, log_tree_root, fs_info,
2356 BTRFS_TREE_LOG_OBJECTID);
2357
2358 log_tree_root->node = read_tree_block(tree_root, bytenr,
2359 fs_info->generation + 1);
2360 if (IS_ERR(log_tree_root->node)) {
2361 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2362 ret = PTR_ERR(log_tree_root->node);
2363 kfree(log_tree_root);
2364 return ret;
2365 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2366 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2367 free_extent_buffer(log_tree_root->node);
2368 kfree(log_tree_root);
2369 return -EIO;
2370 }
2371 /* returns with log_tree_root freed on success */
2372 ret = btrfs_recover_log_trees(log_tree_root);
2373 if (ret) {
2374 btrfs_error(tree_root->fs_info, ret,
2375 "Failed to recover log tree");
2376 free_extent_buffer(log_tree_root->node);
2377 kfree(log_tree_root);
2378 return ret;
2379 }
2380
2381 if (fs_info->sb->s_flags & MS_RDONLY) {
2382 ret = btrfs_commit_super(tree_root);
2383 if (ret)
2384 return ret;
2385 }
2386
2387 return 0;
2388 }
2389
2390 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2391 struct btrfs_root *tree_root)
2392 {
2393 struct btrfs_root *root;
2394 struct btrfs_key location;
2395 int ret;
2396
2397 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2398 location.type = BTRFS_ROOT_ITEM_KEY;
2399 location.offset = 0;
2400
2401 root = btrfs_read_tree_root(tree_root, &location);
2402 if (IS_ERR(root))
2403 return PTR_ERR(root);
2404 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2405 fs_info->extent_root = root;
2406
2407 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2408 root = btrfs_read_tree_root(tree_root, &location);
2409 if (IS_ERR(root))
2410 return PTR_ERR(root);
2411 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2412 fs_info->dev_root = root;
2413 btrfs_init_devices_late(fs_info);
2414
2415 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2416 root = btrfs_read_tree_root(tree_root, &location);
2417 if (IS_ERR(root))
2418 return PTR_ERR(root);
2419 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2420 fs_info->csum_root = root;
2421
2422 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2423 root = btrfs_read_tree_root(tree_root, &location);
2424 if (!IS_ERR(root)) {
2425 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2426 fs_info->quota_enabled = 1;
2427 fs_info->pending_quota_state = 1;
2428 fs_info->quota_root = root;
2429 }
2430
2431 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2432 root = btrfs_read_tree_root(tree_root, &location);
2433 if (IS_ERR(root)) {
2434 ret = PTR_ERR(root);
2435 if (ret != -ENOENT)
2436 return ret;
2437 } else {
2438 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2439 fs_info->uuid_root = root;
2440 }
2441
2442 return 0;
2443 }
2444
2445 int open_ctree(struct super_block *sb,
2446 struct btrfs_fs_devices *fs_devices,
2447 char *options)
2448 {
2449 u32 sectorsize;
2450 u32 nodesize;
2451 u32 stripesize;
2452 u64 generation;
2453 u64 features;
2454 struct btrfs_key location;
2455 struct buffer_head *bh;
2456 struct btrfs_super_block *disk_super;
2457 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2458 struct btrfs_root *tree_root;
2459 struct btrfs_root *chunk_root;
2460 int ret;
2461 int err = -EINVAL;
2462 int num_backups_tried = 0;
2463 int backup_index = 0;
2464 int max_active;
2465
2466 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2467 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2468 if (!tree_root || !chunk_root) {
2469 err = -ENOMEM;
2470 goto fail;
2471 }
2472
2473 ret = init_srcu_struct(&fs_info->subvol_srcu);
2474 if (ret) {
2475 err = ret;
2476 goto fail;
2477 }
2478
2479 ret = setup_bdi(fs_info, &fs_info->bdi);
2480 if (ret) {
2481 err = ret;
2482 goto fail_srcu;
2483 }
2484
2485 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2486 if (ret) {
2487 err = ret;
2488 goto fail_bdi;
2489 }
2490 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2491 (1 + ilog2(nr_cpu_ids));
2492
2493 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2494 if (ret) {
2495 err = ret;
2496 goto fail_dirty_metadata_bytes;
2497 }
2498
2499 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2500 if (ret) {
2501 err = ret;
2502 goto fail_delalloc_bytes;
2503 }
2504
2505 fs_info->btree_inode = new_inode(sb);
2506 if (!fs_info->btree_inode) {
2507 err = -ENOMEM;
2508 goto fail_bio_counter;
2509 }
2510
2511 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2512
2513 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2514 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2515 INIT_LIST_HEAD(&fs_info->trans_list);
2516 INIT_LIST_HEAD(&fs_info->dead_roots);
2517 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2518 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2519 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2520 spin_lock_init(&fs_info->delalloc_root_lock);
2521 spin_lock_init(&fs_info->trans_lock);
2522 spin_lock_init(&fs_info->fs_roots_radix_lock);
2523 spin_lock_init(&fs_info->delayed_iput_lock);
2524 spin_lock_init(&fs_info->defrag_inodes_lock);
2525 spin_lock_init(&fs_info->free_chunk_lock);
2526 spin_lock_init(&fs_info->tree_mod_seq_lock);
2527 spin_lock_init(&fs_info->super_lock);
2528 spin_lock_init(&fs_info->qgroup_op_lock);
2529 spin_lock_init(&fs_info->buffer_lock);
2530 spin_lock_init(&fs_info->unused_bgs_lock);
2531 rwlock_init(&fs_info->tree_mod_log_lock);
2532 mutex_init(&fs_info->unused_bg_unpin_mutex);
2533 mutex_init(&fs_info->delete_unused_bgs_mutex);
2534 mutex_init(&fs_info->reloc_mutex);
2535 mutex_init(&fs_info->delalloc_root_mutex);
2536 seqlock_init(&fs_info->profiles_lock);
2537 init_rwsem(&fs_info->delayed_iput_sem);
2538
2539 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2540 INIT_LIST_HEAD(&fs_info->space_info);
2541 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2542 INIT_LIST_HEAD(&fs_info->unused_bgs);
2543 btrfs_mapping_init(&fs_info->mapping_tree);
2544 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2545 BTRFS_BLOCK_RSV_GLOBAL);
2546 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2547 BTRFS_BLOCK_RSV_DELALLOC);
2548 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2549 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2550 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2551 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2552 BTRFS_BLOCK_RSV_DELOPS);
2553 atomic_set(&fs_info->nr_async_submits, 0);
2554 atomic_set(&fs_info->async_delalloc_pages, 0);
2555 atomic_set(&fs_info->async_submit_draining, 0);
2556 atomic_set(&fs_info->nr_async_bios, 0);
2557 atomic_set(&fs_info->defrag_running, 0);
2558 atomic_set(&fs_info->qgroup_op_seq, 0);
2559 atomic64_set(&fs_info->tree_mod_seq, 0);
2560 fs_info->sb = sb;
2561 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2562 fs_info->metadata_ratio = 0;
2563 fs_info->defrag_inodes = RB_ROOT;
2564 fs_info->free_chunk_space = 0;
2565 fs_info->tree_mod_log = RB_ROOT;
2566 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2567 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2568 /* readahead state */
2569 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2570 spin_lock_init(&fs_info->reada_lock);
2571
2572 fs_info->thread_pool_size = min_t(unsigned long,
2573 num_online_cpus() + 2, 8);
2574
2575 INIT_LIST_HEAD(&fs_info->ordered_roots);
2576 spin_lock_init(&fs_info->ordered_root_lock);
2577 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2578 GFP_NOFS);
2579 if (!fs_info->delayed_root) {
2580 err = -ENOMEM;
2581 goto fail_iput;
2582 }
2583 btrfs_init_delayed_root(fs_info->delayed_root);
2584
2585 btrfs_init_scrub(fs_info);
2586 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2587 fs_info->check_integrity_print_mask = 0;
2588 #endif
2589 btrfs_init_balance(fs_info);
2590 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2591
2592 sb->s_blocksize = 4096;
2593 sb->s_blocksize_bits = blksize_bits(4096);
2594 sb->s_bdi = &fs_info->bdi;
2595
2596 btrfs_init_btree_inode(fs_info, tree_root);
2597
2598 spin_lock_init(&fs_info->block_group_cache_lock);
2599 fs_info->block_group_cache_tree = RB_ROOT;
2600 fs_info->first_logical_byte = (u64)-1;
2601
2602 extent_io_tree_init(&fs_info->freed_extents[0],
2603 fs_info->btree_inode->i_mapping);
2604 extent_io_tree_init(&fs_info->freed_extents[1],
2605 fs_info->btree_inode->i_mapping);
2606 fs_info->pinned_extents = &fs_info->freed_extents[0];
2607 fs_info->do_barriers = 1;
2608
2609
2610 mutex_init(&fs_info->ordered_operations_mutex);
2611 mutex_init(&fs_info->ordered_extent_flush_mutex);
2612 mutex_init(&fs_info->tree_log_mutex);
2613 mutex_init(&fs_info->chunk_mutex);
2614 mutex_init(&fs_info->transaction_kthread_mutex);
2615 mutex_init(&fs_info->cleaner_mutex);
2616 mutex_init(&fs_info->volume_mutex);
2617 mutex_init(&fs_info->ro_block_group_mutex);
2618 init_rwsem(&fs_info->commit_root_sem);
2619 init_rwsem(&fs_info->cleanup_work_sem);
2620 init_rwsem(&fs_info->subvol_sem);
2621 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2622
2623 btrfs_init_dev_replace_locks(fs_info);
2624 btrfs_init_qgroup(fs_info);
2625
2626 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2627 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2628
2629 init_waitqueue_head(&fs_info->transaction_throttle);
2630 init_waitqueue_head(&fs_info->transaction_wait);
2631 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2632 init_waitqueue_head(&fs_info->async_submit_wait);
2633
2634 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2635
2636 ret = btrfs_alloc_stripe_hash_table(fs_info);
2637 if (ret) {
2638 err = ret;
2639 goto fail_alloc;
2640 }
2641
2642 __setup_root(4096, 4096, 4096, tree_root,
2643 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2644
2645 invalidate_bdev(fs_devices->latest_bdev);
2646
2647 /*
2648 * Read super block and check the signature bytes only
2649 */
2650 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2651 if (!bh) {
2652 err = -EINVAL;
2653 goto fail_alloc;
2654 }
2655
2656 /*
2657 * We want to check superblock checksum, the type is stored inside.
2658 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2659 */
2660 if (btrfs_check_super_csum(bh->b_data)) {
2661 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2662 err = -EINVAL;
2663 goto fail_alloc;
2664 }
2665
2666 /*
2667 * super_copy is zeroed at allocation time and we never touch the
2668 * following bytes up to INFO_SIZE, the checksum is calculated from
2669 * the whole block of INFO_SIZE
2670 */
2671 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2672 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2673 sizeof(*fs_info->super_for_commit));
2674 brelse(bh);
2675
2676 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2677
2678 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2679 if (ret) {
2680 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2681 err = -EINVAL;
2682 goto fail_alloc;
2683 }
2684
2685 disk_super = fs_info->super_copy;
2686 if (!btrfs_super_root(disk_super))
2687 goto fail_alloc;
2688
2689 /* check FS state, whether FS is broken. */
2690 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2691 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2692
2693 /*
2694 * run through our array of backup supers and setup
2695 * our ring pointer to the oldest one
2696 */
2697 generation = btrfs_super_generation(disk_super);
2698 find_oldest_super_backup(fs_info, generation);
2699
2700 /*
2701 * In the long term, we'll store the compression type in the super
2702 * block, and it'll be used for per file compression control.
2703 */
2704 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2705
2706 ret = btrfs_parse_options(tree_root, options);
2707 if (ret) {
2708 err = ret;
2709 goto fail_alloc;
2710 }
2711
2712 features = btrfs_super_incompat_flags(disk_super) &
2713 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2714 if (features) {
2715 printk(KERN_ERR "BTRFS: couldn't mount because of "
2716 "unsupported optional features (%Lx).\n",
2717 features);
2718 err = -EINVAL;
2719 goto fail_alloc;
2720 }
2721
2722 /*
2723 * Leafsize and nodesize were always equal, this is only a sanity check.
2724 */
2725 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2726 btrfs_super_nodesize(disk_super)) {
2727 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2728 "blocksizes don't match. node %d leaf %d\n",
2729 btrfs_super_nodesize(disk_super),
2730 le32_to_cpu(disk_super->__unused_leafsize));
2731 err = -EINVAL;
2732 goto fail_alloc;
2733 }
2734 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2735 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2736 "blocksize (%d) was too large\n",
2737 btrfs_super_nodesize(disk_super));
2738 err = -EINVAL;
2739 goto fail_alloc;
2740 }
2741
2742 features = btrfs_super_incompat_flags(disk_super);
2743 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2744 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2745 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2746
2747 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2748 printk(KERN_INFO "BTRFS: has skinny extents\n");
2749
2750 /*
2751 * flag our filesystem as having big metadata blocks if
2752 * they are bigger than the page size
2753 */
2754 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2755 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2756 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2757 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2758 }
2759
2760 nodesize = btrfs_super_nodesize(disk_super);
2761 sectorsize = btrfs_super_sectorsize(disk_super);
2762 stripesize = btrfs_super_stripesize(disk_super);
2763 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2764 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2765
2766 /*
2767 * mixed block groups end up with duplicate but slightly offset
2768 * extent buffers for the same range. It leads to corruptions
2769 */
2770 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2771 (sectorsize != nodesize)) {
2772 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2773 "are not allowed for mixed block groups on %s\n",
2774 sb->s_id);
2775 goto fail_alloc;
2776 }
2777
2778 /*
2779 * Needn't use the lock because there is no other task which will
2780 * update the flag.
2781 */
2782 btrfs_set_super_incompat_flags(disk_super, features);
2783
2784 features = btrfs_super_compat_ro_flags(disk_super) &
2785 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2786 if (!(sb->s_flags & MS_RDONLY) && features) {
2787 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2788 "unsupported option features (%Lx).\n",
2789 features);
2790 err = -EINVAL;
2791 goto fail_alloc;
2792 }
2793
2794 max_active = fs_info->thread_pool_size;
2795
2796 ret = btrfs_init_workqueues(fs_info, fs_devices);
2797 if (ret) {
2798 err = ret;
2799 goto fail_sb_buffer;
2800 }
2801
2802 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2803 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2804 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2805
2806 tree_root->nodesize = nodesize;
2807 tree_root->sectorsize = sectorsize;
2808 tree_root->stripesize = stripesize;
2809
2810 sb->s_blocksize = sectorsize;
2811 sb->s_blocksize_bits = blksize_bits(sectorsize);
2812
2813 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2814 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2815 goto fail_sb_buffer;
2816 }
2817
2818 if (sectorsize != PAGE_SIZE) {
2819 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2820 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2821 goto fail_sb_buffer;
2822 }
2823
2824 mutex_lock(&fs_info->chunk_mutex);
2825 ret = btrfs_read_sys_array(tree_root);
2826 mutex_unlock(&fs_info->chunk_mutex);
2827 if (ret) {
2828 printk(KERN_ERR "BTRFS: failed to read the system "
2829 "array on %s\n", sb->s_id);
2830 goto fail_sb_buffer;
2831 }
2832
2833 generation = btrfs_super_chunk_root_generation(disk_super);
2834
2835 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2836 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2837
2838 chunk_root->node = read_tree_block(chunk_root,
2839 btrfs_super_chunk_root(disk_super),
2840 generation);
2841 if (IS_ERR(chunk_root->node) ||
2842 !extent_buffer_uptodate(chunk_root->node)) {
2843 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2844 sb->s_id);
2845 goto fail_tree_roots;
2846 }
2847 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2848 chunk_root->commit_root = btrfs_root_node(chunk_root);
2849
2850 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2851 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2852
2853 ret = btrfs_read_chunk_tree(chunk_root);
2854 if (ret) {
2855 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2856 sb->s_id);
2857 goto fail_tree_roots;
2858 }
2859
2860 /*
2861 * keep the device that is marked to be the target device for the
2862 * dev_replace procedure
2863 */
2864 btrfs_close_extra_devices(fs_devices, 0);
2865
2866 if (!fs_devices->latest_bdev) {
2867 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2868 sb->s_id);
2869 goto fail_tree_roots;
2870 }
2871
2872 retry_root_backup:
2873 generation = btrfs_super_generation(disk_super);
2874
2875 tree_root->node = read_tree_block(tree_root,
2876 btrfs_super_root(disk_super),
2877 generation);
2878 if (IS_ERR(tree_root->node) ||
2879 !extent_buffer_uptodate(tree_root->node)) {
2880 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2881 sb->s_id);
2882
2883 goto recovery_tree_root;
2884 }
2885
2886 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2887 tree_root->commit_root = btrfs_root_node(tree_root);
2888 btrfs_set_root_refs(&tree_root->root_item, 1);
2889
2890 ret = btrfs_read_roots(fs_info, tree_root);
2891 if (ret)
2892 goto recovery_tree_root;
2893
2894 fs_info->generation = generation;
2895 fs_info->last_trans_committed = generation;
2896
2897 ret = btrfs_recover_balance(fs_info);
2898 if (ret) {
2899 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2900 goto fail_block_groups;
2901 }
2902
2903 ret = btrfs_init_dev_stats(fs_info);
2904 if (ret) {
2905 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2906 ret);
2907 goto fail_block_groups;
2908 }
2909
2910 ret = btrfs_init_dev_replace(fs_info);
2911 if (ret) {
2912 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2913 goto fail_block_groups;
2914 }
2915
2916 btrfs_close_extra_devices(fs_devices, 1);
2917
2918 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2919 if (ret) {
2920 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2921 goto fail_block_groups;
2922 }
2923
2924 ret = btrfs_sysfs_add_device(fs_devices);
2925 if (ret) {
2926 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2927 goto fail_fsdev_sysfs;
2928 }
2929
2930 ret = btrfs_sysfs_add_one(fs_info);
2931 if (ret) {
2932 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2933 goto fail_fsdev_sysfs;
2934 }
2935
2936 ret = btrfs_init_space_info(fs_info);
2937 if (ret) {
2938 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2939 goto fail_sysfs;
2940 }
2941
2942 ret = btrfs_read_block_groups(fs_info->extent_root);
2943 if (ret) {
2944 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2945 goto fail_sysfs;
2946 }
2947 fs_info->num_tolerated_disk_barrier_failures =
2948 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2949 if (fs_info->fs_devices->missing_devices >
2950 fs_info->num_tolerated_disk_barrier_failures &&
2951 !(sb->s_flags & MS_RDONLY)) {
2952 printk(KERN_WARNING "BTRFS: "
2953 "too many missing devices, writeable mount is not allowed\n");
2954 goto fail_sysfs;
2955 }
2956
2957 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2958 "btrfs-cleaner");
2959 if (IS_ERR(fs_info->cleaner_kthread))
2960 goto fail_sysfs;
2961
2962 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2963 tree_root,
2964 "btrfs-transaction");
2965 if (IS_ERR(fs_info->transaction_kthread))
2966 goto fail_cleaner;
2967
2968 if (!btrfs_test_opt(tree_root, SSD) &&
2969 !btrfs_test_opt(tree_root, NOSSD) &&
2970 !fs_info->fs_devices->rotating) {
2971 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2972 "mode\n");
2973 btrfs_set_opt(fs_info->mount_opt, SSD);
2974 }
2975
2976 /*
2977 * Mount does not set all options immediatelly, we can do it now and do
2978 * not have to wait for transaction commit
2979 */
2980 btrfs_apply_pending_changes(fs_info);
2981
2982 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2983 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2984 ret = btrfsic_mount(tree_root, fs_devices,
2985 btrfs_test_opt(tree_root,
2986 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2987 1 : 0,
2988 fs_info->check_integrity_print_mask);
2989 if (ret)
2990 printk(KERN_WARNING "BTRFS: failed to initialize"
2991 " integrity check module %s\n", sb->s_id);
2992 }
2993 #endif
2994 ret = btrfs_read_qgroup_config(fs_info);
2995 if (ret)
2996 goto fail_trans_kthread;
2997
2998 /* do not make disk changes in broken FS */
2999 if (btrfs_super_log_root(disk_super) != 0) {
3000 ret = btrfs_replay_log(fs_info, fs_devices);
3001 if (ret) {
3002 err = ret;
3003 goto fail_qgroup;
3004 }
3005 }
3006
3007 ret = btrfs_find_orphan_roots(tree_root);
3008 if (ret)
3009 goto fail_qgroup;
3010
3011 if (!(sb->s_flags & MS_RDONLY)) {
3012 ret = btrfs_cleanup_fs_roots(fs_info);
3013 if (ret)
3014 goto fail_qgroup;
3015
3016 mutex_lock(&fs_info->cleaner_mutex);
3017 ret = btrfs_recover_relocation(tree_root);
3018 mutex_unlock(&fs_info->cleaner_mutex);
3019 if (ret < 0) {
3020 printk(KERN_WARNING
3021 "BTRFS: failed to recover relocation\n");
3022 err = -EINVAL;
3023 goto fail_qgroup;
3024 }
3025 }
3026
3027 location.objectid = BTRFS_FS_TREE_OBJECTID;
3028 location.type = BTRFS_ROOT_ITEM_KEY;
3029 location.offset = 0;
3030
3031 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3032 if (IS_ERR(fs_info->fs_root)) {
3033 err = PTR_ERR(fs_info->fs_root);
3034 goto fail_qgroup;
3035 }
3036
3037 if (sb->s_flags & MS_RDONLY)
3038 return 0;
3039
3040 down_read(&fs_info->cleanup_work_sem);
3041 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3042 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3043 up_read(&fs_info->cleanup_work_sem);
3044 close_ctree(tree_root);
3045 return ret;
3046 }
3047 up_read(&fs_info->cleanup_work_sem);
3048
3049 ret = btrfs_resume_balance_async(fs_info);
3050 if (ret) {
3051 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3052 close_ctree(tree_root);
3053 return ret;
3054 }
3055
3056 ret = btrfs_resume_dev_replace_async(fs_info);
3057 if (ret) {
3058 pr_warn("BTRFS: failed to resume dev_replace\n");
3059 close_ctree(tree_root);
3060 return ret;
3061 }
3062
3063 btrfs_qgroup_rescan_resume(fs_info);
3064
3065 if (!fs_info->uuid_root) {
3066 pr_info("BTRFS: creating UUID tree\n");
3067 ret = btrfs_create_uuid_tree(fs_info);
3068 if (ret) {
3069 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3070 ret);
3071 close_ctree(tree_root);
3072 return ret;
3073 }
3074 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3075 fs_info->generation !=
3076 btrfs_super_uuid_tree_generation(disk_super)) {
3077 pr_info("BTRFS: checking UUID tree\n");
3078 ret = btrfs_check_uuid_tree(fs_info);
3079 if (ret) {
3080 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3081 ret);
3082 close_ctree(tree_root);
3083 return ret;
3084 }
3085 } else {
3086 fs_info->update_uuid_tree_gen = 1;
3087 }
3088
3089 fs_info->open = 1;
3090
3091 return 0;
3092
3093 fail_qgroup:
3094 btrfs_free_qgroup_config(fs_info);
3095 fail_trans_kthread:
3096 kthread_stop(fs_info->transaction_kthread);
3097 btrfs_cleanup_transaction(fs_info->tree_root);
3098 btrfs_free_fs_roots(fs_info);
3099 fail_cleaner:
3100 kthread_stop(fs_info->cleaner_kthread);
3101
3102 /*
3103 * make sure we're done with the btree inode before we stop our
3104 * kthreads
3105 */
3106 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3107
3108 fail_sysfs:
3109 btrfs_sysfs_remove_one(fs_info);
3110
3111 fail_fsdev_sysfs:
3112 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3113
3114 fail_block_groups:
3115 btrfs_put_block_group_cache(fs_info);
3116 btrfs_free_block_groups(fs_info);
3117
3118 fail_tree_roots:
3119 free_root_pointers(fs_info, 1);
3120 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3121
3122 fail_sb_buffer:
3123 btrfs_stop_all_workers(fs_info);
3124 fail_alloc:
3125 fail_iput:
3126 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3127
3128 iput(fs_info->btree_inode);
3129 fail_bio_counter:
3130 percpu_counter_destroy(&fs_info->bio_counter);
3131 fail_delalloc_bytes:
3132 percpu_counter_destroy(&fs_info->delalloc_bytes);
3133 fail_dirty_metadata_bytes:
3134 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3135 fail_bdi:
3136 bdi_destroy(&fs_info->bdi);
3137 fail_srcu:
3138 cleanup_srcu_struct(&fs_info->subvol_srcu);
3139 fail:
3140 btrfs_free_stripe_hash_table(fs_info);
3141 btrfs_close_devices(fs_info->fs_devices);
3142 return err;
3143
3144 recovery_tree_root:
3145 if (!btrfs_test_opt(tree_root, RECOVERY))
3146 goto fail_tree_roots;
3147
3148 free_root_pointers(fs_info, 0);
3149
3150 /* don't use the log in recovery mode, it won't be valid */
3151 btrfs_set_super_log_root(disk_super, 0);
3152
3153 /* we can't trust the free space cache either */
3154 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3155
3156 ret = next_root_backup(fs_info, fs_info->super_copy,
3157 &num_backups_tried, &backup_index);
3158 if (ret == -1)
3159 goto fail_block_groups;
3160 goto retry_root_backup;
3161 }
3162
3163 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3164 {
3165 if (uptodate) {
3166 set_buffer_uptodate(bh);
3167 } else {
3168 struct btrfs_device *device = (struct btrfs_device *)
3169 bh->b_private;
3170
3171 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3172 "I/O error on %s\n",
3173 rcu_str_deref(device->name));
3174 /* note, we dont' set_buffer_write_io_error because we have
3175 * our own ways of dealing with the IO errors
3176 */
3177 clear_buffer_uptodate(bh);
3178 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3179 }
3180 unlock_buffer(bh);
3181 put_bh(bh);
3182 }
3183
3184 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3185 {
3186 struct buffer_head *bh;
3187 struct buffer_head *latest = NULL;
3188 struct btrfs_super_block *super;
3189 int i;
3190 u64 transid = 0;
3191 u64 bytenr;
3192
3193 /* we would like to check all the supers, but that would make
3194 * a btrfs mount succeed after a mkfs from a different FS.
3195 * So, we need to add a special mount option to scan for
3196 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3197 */
3198 for (i = 0; i < 1; i++) {
3199 bytenr = btrfs_sb_offset(i);
3200 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3201 i_size_read(bdev->bd_inode))
3202 break;
3203 bh = __bread(bdev, bytenr / 4096,
3204 BTRFS_SUPER_INFO_SIZE);
3205 if (!bh)
3206 continue;
3207
3208 super = (struct btrfs_super_block *)bh->b_data;
3209 if (btrfs_super_bytenr(super) != bytenr ||
3210 btrfs_super_magic(super) != BTRFS_MAGIC) {
3211 brelse(bh);
3212 continue;
3213 }
3214
3215 if (!latest || btrfs_super_generation(super) > transid) {
3216 brelse(latest);
3217 latest = bh;
3218 transid = btrfs_super_generation(super);
3219 } else {
3220 brelse(bh);
3221 }
3222 }
3223 return latest;
3224 }
3225
3226 /*
3227 * this should be called twice, once with wait == 0 and
3228 * once with wait == 1. When wait == 0 is done, all the buffer heads
3229 * we write are pinned.
3230 *
3231 * They are released when wait == 1 is done.
3232 * max_mirrors must be the same for both runs, and it indicates how
3233 * many supers on this one device should be written.
3234 *
3235 * max_mirrors == 0 means to write them all.
3236 */
3237 static int write_dev_supers(struct btrfs_device *device,
3238 struct btrfs_super_block *sb,
3239 int do_barriers, int wait, int max_mirrors)
3240 {
3241 struct buffer_head *bh;
3242 int i;
3243 int ret;
3244 int errors = 0;
3245 u32 crc;
3246 u64 bytenr;
3247
3248 if (max_mirrors == 0)
3249 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3250
3251 for (i = 0; i < max_mirrors; i++) {
3252 bytenr = btrfs_sb_offset(i);
3253 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3254 device->commit_total_bytes)
3255 break;
3256
3257 if (wait) {
3258 bh = __find_get_block(device->bdev, bytenr / 4096,
3259 BTRFS_SUPER_INFO_SIZE);
3260 if (!bh) {
3261 errors++;
3262 continue;
3263 }
3264 wait_on_buffer(bh);
3265 if (!buffer_uptodate(bh))
3266 errors++;
3267
3268 /* drop our reference */
3269 brelse(bh);
3270
3271 /* drop the reference from the wait == 0 run */
3272 brelse(bh);
3273 continue;
3274 } else {
3275 btrfs_set_super_bytenr(sb, bytenr);
3276
3277 crc = ~(u32)0;
3278 crc = btrfs_csum_data((char *)sb +
3279 BTRFS_CSUM_SIZE, crc,
3280 BTRFS_SUPER_INFO_SIZE -
3281 BTRFS_CSUM_SIZE);
3282 btrfs_csum_final(crc, sb->csum);
3283
3284 /*
3285 * one reference for us, and we leave it for the
3286 * caller
3287 */
3288 bh = __getblk(device->bdev, bytenr / 4096,
3289 BTRFS_SUPER_INFO_SIZE);
3290 if (!bh) {
3291 printk(KERN_ERR "BTRFS: couldn't get super "
3292 "buffer head for bytenr %Lu\n", bytenr);
3293 errors++;
3294 continue;
3295 }
3296
3297 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3298
3299 /* one reference for submit_bh */
3300 get_bh(bh);
3301
3302 set_buffer_uptodate(bh);
3303 lock_buffer(bh);
3304 bh->b_end_io = btrfs_end_buffer_write_sync;
3305 bh->b_private = device;
3306 }
3307
3308 /*
3309 * we fua the first super. The others we allow
3310 * to go down lazy.
3311 */
3312 if (i == 0)
3313 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3314 else
3315 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3316 if (ret)
3317 errors++;
3318 }
3319 return errors < i ? 0 : -1;
3320 }
3321
3322 /*
3323 * endio for the write_dev_flush, this will wake anyone waiting
3324 * for the barrier when it is done
3325 */
3326 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3327 {
3328 if (err)
3329 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3330 if (bio->bi_private)
3331 complete(bio->bi_private);
3332 bio_put(bio);
3333 }
3334
3335 /*
3336 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3337 * sent down. With wait == 1, it waits for the previous flush.
3338 *
3339 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3340 * capable
3341 */
3342 static int write_dev_flush(struct btrfs_device *device, int wait)
3343 {
3344 struct bio *bio;
3345 int ret = 0;
3346
3347 if (device->nobarriers)
3348 return 0;
3349
3350 if (wait) {
3351 bio = device->flush_bio;
3352 if (!bio)
3353 return 0;
3354
3355 wait_for_completion(&device->flush_wait);
3356
3357 if (!bio_flagged(bio, BIO_UPTODATE)) {
3358 ret = -EIO;
3359 btrfs_dev_stat_inc_and_print(device,
3360 BTRFS_DEV_STAT_FLUSH_ERRS);
3361 }
3362
3363 /* drop the reference from the wait == 0 run */
3364 bio_put(bio);
3365 device->flush_bio = NULL;
3366
3367 return ret;
3368 }
3369
3370 /*
3371 * one reference for us, and we leave it for the
3372 * caller
3373 */
3374 device->flush_bio = NULL;
3375 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3376 if (!bio)
3377 return -ENOMEM;
3378
3379 bio->bi_end_io = btrfs_end_empty_barrier;
3380 bio->bi_bdev = device->bdev;
3381 init_completion(&device->flush_wait);
3382 bio->bi_private = &device->flush_wait;
3383 device->flush_bio = bio;
3384
3385 bio_get(bio);
3386 btrfsic_submit_bio(WRITE_FLUSH, bio);
3387
3388 return 0;
3389 }
3390
3391 /*
3392 * send an empty flush down to each device in parallel,
3393 * then wait for them
3394 */
3395 static int barrier_all_devices(struct btrfs_fs_info *info)
3396 {
3397 struct list_head *head;
3398 struct btrfs_device *dev;
3399 int errors_send = 0;
3400 int errors_wait = 0;
3401 int ret;
3402
3403 /* send down all the barriers */
3404 head = &info->fs_devices->devices;
3405 list_for_each_entry_rcu(dev, head, dev_list) {
3406 if (dev->missing)
3407 continue;
3408 if (!dev->bdev) {
3409 errors_send++;
3410 continue;
3411 }
3412 if (!dev->in_fs_metadata || !dev->writeable)
3413 continue;
3414
3415 ret = write_dev_flush(dev, 0);
3416 if (ret)
3417 errors_send++;
3418 }
3419
3420 /* wait for all the barriers */
3421 list_for_each_entry_rcu(dev, head, dev_list) {
3422 if (dev->missing)
3423 continue;
3424 if (!dev->bdev) {
3425 errors_wait++;
3426 continue;
3427 }
3428 if (!dev->in_fs_metadata || !dev->writeable)
3429 continue;
3430
3431 ret = write_dev_flush(dev, 1);
3432 if (ret)
3433 errors_wait++;
3434 }
3435 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3436 errors_wait > info->num_tolerated_disk_barrier_failures)
3437 return -EIO;
3438 return 0;
3439 }
3440
3441 int btrfs_calc_num_tolerated_disk_barrier_failures(
3442 struct btrfs_fs_info *fs_info)
3443 {
3444 struct btrfs_ioctl_space_info space;
3445 struct btrfs_space_info *sinfo;
3446 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3447 BTRFS_BLOCK_GROUP_SYSTEM,
3448 BTRFS_BLOCK_GROUP_METADATA,
3449 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3450 int num_types = 4;
3451 int i;
3452 int c;
3453 int num_tolerated_disk_barrier_failures =
3454 (int)fs_info->fs_devices->num_devices;
3455
3456 for (i = 0; i < num_types; i++) {
3457 struct btrfs_space_info *tmp;
3458
3459 sinfo = NULL;
3460 rcu_read_lock();
3461 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3462 if (tmp->flags == types[i]) {
3463 sinfo = tmp;
3464 break;
3465 }
3466 }
3467 rcu_read_unlock();
3468
3469 if (!sinfo)
3470 continue;
3471
3472 down_read(&sinfo->groups_sem);
3473 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3474 if (!list_empty(&sinfo->block_groups[c])) {
3475 u64 flags;
3476
3477 btrfs_get_block_group_info(
3478 &sinfo->block_groups[c], &space);
3479 if (space.total_bytes == 0 ||
3480 space.used_bytes == 0)
3481 continue;
3482 flags = space.flags;
3483 /*
3484 * return
3485 * 0: if dup, single or RAID0 is configured for
3486 * any of metadata, system or data, else
3487 * 1: if RAID5 is configured, or if RAID1 or
3488 * RAID10 is configured and only two mirrors
3489 * are used, else
3490 * 2: if RAID6 is configured, else
3491 * num_mirrors - 1: if RAID1 or RAID10 is
3492 * configured and more than
3493 * 2 mirrors are used.
3494 */
3495 if (num_tolerated_disk_barrier_failures > 0 &&
3496 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3497 BTRFS_BLOCK_GROUP_RAID0)) ||
3498 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3499 == 0)))
3500 num_tolerated_disk_barrier_failures = 0;
3501 else if (num_tolerated_disk_barrier_failures > 1) {
3502 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3503 BTRFS_BLOCK_GROUP_RAID5 |
3504 BTRFS_BLOCK_GROUP_RAID10)) {
3505 num_tolerated_disk_barrier_failures = 1;
3506 } else if (flags &
3507 BTRFS_BLOCK_GROUP_RAID6) {
3508 num_tolerated_disk_barrier_failures = 2;
3509 }
3510 }
3511 }
3512 }
3513 up_read(&sinfo->groups_sem);
3514 }
3515
3516 return num_tolerated_disk_barrier_failures;
3517 }
3518
3519 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3520 {
3521 struct list_head *head;
3522 struct btrfs_device *dev;
3523 struct btrfs_super_block *sb;
3524 struct btrfs_dev_item *dev_item;
3525 int ret;
3526 int do_barriers;
3527 int max_errors;
3528 int total_errors = 0;
3529 u64 flags;
3530
3531 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3532 backup_super_roots(root->fs_info);
3533
3534 sb = root->fs_info->super_for_commit;
3535 dev_item = &sb->dev_item;
3536
3537 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3538 head = &root->fs_info->fs_devices->devices;
3539 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3540
3541 if (do_barriers) {
3542 ret = barrier_all_devices(root->fs_info);
3543 if (ret) {
3544 mutex_unlock(
3545 &root->fs_info->fs_devices->device_list_mutex);
3546 btrfs_error(root->fs_info, ret,
3547 "errors while submitting device barriers.");
3548 return ret;
3549 }
3550 }
3551
3552 list_for_each_entry_rcu(dev, head, dev_list) {
3553 if (!dev->bdev) {
3554 total_errors++;
3555 continue;
3556 }
3557 if (!dev->in_fs_metadata || !dev->writeable)
3558 continue;
3559
3560 btrfs_set_stack_device_generation(dev_item, 0);
3561 btrfs_set_stack_device_type(dev_item, dev->type);
3562 btrfs_set_stack_device_id(dev_item, dev->devid);
3563 btrfs_set_stack_device_total_bytes(dev_item,
3564 dev->commit_total_bytes);
3565 btrfs_set_stack_device_bytes_used(dev_item,
3566 dev->commit_bytes_used);
3567 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3568 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3569 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3570 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3571 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3572
3573 flags = btrfs_super_flags(sb);
3574 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3575
3576 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3577 if (ret)
3578 total_errors++;
3579 }
3580 if (total_errors > max_errors) {
3581 btrfs_err(root->fs_info, "%d errors while writing supers",
3582 total_errors);
3583 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3584
3585 /* FUA is masked off if unsupported and can't be the reason */
3586 btrfs_error(root->fs_info, -EIO,
3587 "%d errors while writing supers", total_errors);
3588 return -EIO;
3589 }
3590
3591 total_errors = 0;
3592 list_for_each_entry_rcu(dev, head, dev_list) {
3593 if (!dev->bdev)
3594 continue;
3595 if (!dev->in_fs_metadata || !dev->writeable)
3596 continue;
3597
3598 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3599 if (ret)
3600 total_errors++;
3601 }
3602 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3603 if (total_errors > max_errors) {
3604 btrfs_error(root->fs_info, -EIO,
3605 "%d errors while writing supers", total_errors);
3606 return -EIO;
3607 }
3608 return 0;
3609 }
3610
3611 int write_ctree_super(struct btrfs_trans_handle *trans,
3612 struct btrfs_root *root, int max_mirrors)
3613 {
3614 return write_all_supers(root, max_mirrors);
3615 }
3616
3617 /* Drop a fs root from the radix tree and free it. */
3618 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3619 struct btrfs_root *root)
3620 {
3621 spin_lock(&fs_info->fs_roots_radix_lock);
3622 radix_tree_delete(&fs_info->fs_roots_radix,
3623 (unsigned long)root->root_key.objectid);
3624 spin_unlock(&fs_info->fs_roots_radix_lock);
3625
3626 if (btrfs_root_refs(&root->root_item) == 0)
3627 synchronize_srcu(&fs_info->subvol_srcu);
3628
3629 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3630 btrfs_free_log(NULL, root);
3631
3632 if (root->free_ino_pinned)
3633 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3634 if (root->free_ino_ctl)
3635 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3636 free_fs_root(root);
3637 }
3638
3639 static void free_fs_root(struct btrfs_root *root)
3640 {
3641 iput(root->ino_cache_inode);
3642 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3643 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3644 root->orphan_block_rsv = NULL;
3645 if (root->anon_dev)
3646 free_anon_bdev(root->anon_dev);
3647 if (root->subv_writers)
3648 btrfs_free_subvolume_writers(root->subv_writers);
3649 free_extent_buffer(root->node);
3650 free_extent_buffer(root->commit_root);
3651 kfree(root->free_ino_ctl);
3652 kfree(root->free_ino_pinned);
3653 kfree(root->name);
3654 btrfs_put_fs_root(root);
3655 }
3656
3657 void btrfs_free_fs_root(struct btrfs_root *root)
3658 {
3659 free_fs_root(root);
3660 }
3661
3662 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3663 {
3664 u64 root_objectid = 0;
3665 struct btrfs_root *gang[8];
3666 int i = 0;
3667 int err = 0;
3668 unsigned int ret = 0;
3669 int index;
3670
3671 while (1) {
3672 index = srcu_read_lock(&fs_info->subvol_srcu);
3673 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3674 (void **)gang, root_objectid,
3675 ARRAY_SIZE(gang));
3676 if (!ret) {
3677 srcu_read_unlock(&fs_info->subvol_srcu, index);
3678 break;
3679 }
3680 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3681
3682 for (i = 0; i < ret; i++) {
3683 /* Avoid to grab roots in dead_roots */
3684 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3685 gang[i] = NULL;
3686 continue;
3687 }
3688 /* grab all the search result for later use */
3689 gang[i] = btrfs_grab_fs_root(gang[i]);
3690 }
3691 srcu_read_unlock(&fs_info->subvol_srcu, index);
3692
3693 for (i = 0; i < ret; i++) {
3694 if (!gang[i])
3695 continue;
3696 root_objectid = gang[i]->root_key.objectid;
3697 err = btrfs_orphan_cleanup(gang[i]);
3698 if (err)
3699 break;
3700 btrfs_put_fs_root(gang[i]);
3701 }
3702 root_objectid++;
3703 }
3704
3705 /* release the uncleaned roots due to error */
3706 for (; i < ret; i++) {
3707 if (gang[i])
3708 btrfs_put_fs_root(gang[i]);
3709 }
3710 return err;
3711 }
3712
3713 int btrfs_commit_super(struct btrfs_root *root)
3714 {
3715 struct btrfs_trans_handle *trans;
3716
3717 mutex_lock(&root->fs_info->cleaner_mutex);
3718 btrfs_run_delayed_iputs(root);
3719 mutex_unlock(&root->fs_info->cleaner_mutex);
3720 wake_up_process(root->fs_info->cleaner_kthread);
3721
3722 /* wait until ongoing cleanup work done */
3723 down_write(&root->fs_info->cleanup_work_sem);
3724 up_write(&root->fs_info->cleanup_work_sem);
3725
3726 trans = btrfs_join_transaction(root);
3727 if (IS_ERR(trans))
3728 return PTR_ERR(trans);
3729 return btrfs_commit_transaction(trans, root);
3730 }
3731
3732 void close_ctree(struct btrfs_root *root)
3733 {
3734 struct btrfs_fs_info *fs_info = root->fs_info;
3735 int ret;
3736
3737 fs_info->closing = 1;
3738 smp_mb();
3739
3740 /* wait for the uuid_scan task to finish */
3741 down(&fs_info->uuid_tree_rescan_sem);
3742 /* avoid complains from lockdep et al., set sem back to initial state */
3743 up(&fs_info->uuid_tree_rescan_sem);
3744
3745 /* pause restriper - we want to resume on mount */
3746 btrfs_pause_balance(fs_info);
3747
3748 btrfs_dev_replace_suspend_for_unmount(fs_info);
3749
3750 btrfs_scrub_cancel(fs_info);
3751
3752 /* wait for any defraggers to finish */
3753 wait_event(fs_info->transaction_wait,
3754 (atomic_read(&fs_info->defrag_running) == 0));
3755
3756 /* clear out the rbtree of defraggable inodes */
3757 btrfs_cleanup_defrag_inodes(fs_info);
3758
3759 cancel_work_sync(&fs_info->async_reclaim_work);
3760
3761 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3762 ret = btrfs_commit_super(root);
3763 if (ret)
3764 btrfs_err(fs_info, "commit super ret %d", ret);
3765 }
3766
3767 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3768 btrfs_error_commit_super(root);
3769
3770 kthread_stop(fs_info->transaction_kthread);
3771 kthread_stop(fs_info->cleaner_kthread);
3772
3773 fs_info->closing = 2;
3774 smp_mb();
3775
3776 btrfs_free_qgroup_config(fs_info);
3777
3778 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3779 btrfs_info(fs_info, "at unmount delalloc count %lld",
3780 percpu_counter_sum(&fs_info->delalloc_bytes));
3781 }
3782
3783 btrfs_sysfs_remove_one(fs_info);
3784 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3785
3786 btrfs_free_fs_roots(fs_info);
3787
3788 btrfs_put_block_group_cache(fs_info);
3789
3790 btrfs_free_block_groups(fs_info);
3791
3792 /*
3793 * we must make sure there is not any read request to
3794 * submit after we stopping all workers.
3795 */
3796 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3797 btrfs_stop_all_workers(fs_info);
3798
3799 fs_info->open = 0;
3800 free_root_pointers(fs_info, 1);
3801
3802 iput(fs_info->btree_inode);
3803
3804 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3805 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3806 btrfsic_unmount(root, fs_info->fs_devices);
3807 #endif
3808
3809 btrfs_close_devices(fs_info->fs_devices);
3810 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3811
3812 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3813 percpu_counter_destroy(&fs_info->delalloc_bytes);
3814 percpu_counter_destroy(&fs_info->bio_counter);
3815 bdi_destroy(&fs_info->bdi);
3816 cleanup_srcu_struct(&fs_info->subvol_srcu);
3817
3818 btrfs_free_stripe_hash_table(fs_info);
3819
3820 __btrfs_free_block_rsv(root->orphan_block_rsv);
3821 root->orphan_block_rsv = NULL;
3822
3823 lock_chunks(root);
3824 while (!list_empty(&fs_info->pinned_chunks)) {
3825 struct extent_map *em;
3826
3827 em = list_first_entry(&fs_info->pinned_chunks,
3828 struct extent_map, list);
3829 list_del_init(&em->list);
3830 free_extent_map(em);
3831 }
3832 unlock_chunks(root);
3833 }
3834
3835 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3836 int atomic)
3837 {
3838 int ret;
3839 struct inode *btree_inode = buf->pages[0]->mapping->host;
3840
3841 ret = extent_buffer_uptodate(buf);
3842 if (!ret)
3843 return ret;
3844
3845 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3846 parent_transid, atomic);
3847 if (ret == -EAGAIN)
3848 return ret;
3849 return !ret;
3850 }
3851
3852 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3853 {
3854 return set_extent_buffer_uptodate(buf);
3855 }
3856
3857 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3858 {
3859 struct btrfs_root *root;
3860 u64 transid = btrfs_header_generation(buf);
3861 int was_dirty;
3862
3863 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3864 /*
3865 * This is a fast path so only do this check if we have sanity tests
3866 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3867 * outside of the sanity tests.
3868 */
3869 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3870 return;
3871 #endif
3872 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3873 btrfs_assert_tree_locked(buf);
3874 if (transid != root->fs_info->generation)
3875 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3876 "found %llu running %llu\n",
3877 buf->start, transid, root->fs_info->generation);
3878 was_dirty = set_extent_buffer_dirty(buf);
3879 if (!was_dirty)
3880 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3881 buf->len,
3882 root->fs_info->dirty_metadata_batch);
3883 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3884 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3885 btrfs_print_leaf(root, buf);
3886 ASSERT(0);
3887 }
3888 #endif
3889 }
3890
3891 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3892 int flush_delayed)
3893 {
3894 /*
3895 * looks as though older kernels can get into trouble with
3896 * this code, they end up stuck in balance_dirty_pages forever
3897 */
3898 int ret;
3899
3900 if (current->flags & PF_MEMALLOC)
3901 return;
3902
3903 if (flush_delayed)
3904 btrfs_balance_delayed_items(root);
3905
3906 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3907 BTRFS_DIRTY_METADATA_THRESH);
3908 if (ret > 0) {
3909 balance_dirty_pages_ratelimited(
3910 root->fs_info->btree_inode->i_mapping);
3911 }
3912 return;
3913 }
3914
3915 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3916 {
3917 __btrfs_btree_balance_dirty(root, 1);
3918 }
3919
3920 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3921 {
3922 __btrfs_btree_balance_dirty(root, 0);
3923 }
3924
3925 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3926 {
3927 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3928 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3929 }
3930
3931 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3932 int read_only)
3933 {
3934 struct btrfs_super_block *sb = fs_info->super_copy;
3935 int ret = 0;
3936
3937 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3938 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3939 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3940 ret = -EINVAL;
3941 }
3942 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3943 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3944 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3945 ret = -EINVAL;
3946 }
3947 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3948 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3949 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3950 ret = -EINVAL;
3951 }
3952
3953 /*
3954 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3955 * items yet, they'll be verified later. Issue just a warning.
3956 */
3957 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3958 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3959 btrfs_super_root(sb));
3960 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3961 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3962 btrfs_super_chunk_root(sb));
3963 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3964 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3965 btrfs_super_log_root(sb));
3966
3967 /*
3968 * Check the lower bound, the alignment and other constraints are
3969 * checked later.
3970 */
3971 if (btrfs_super_nodesize(sb) < 4096) {
3972 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3973 btrfs_super_nodesize(sb));
3974 ret = -EINVAL;
3975 }
3976 if (btrfs_super_sectorsize(sb) < 4096) {
3977 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3978 btrfs_super_sectorsize(sb));
3979 ret = -EINVAL;
3980 }
3981
3982 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3983 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3984 fs_info->fsid, sb->dev_item.fsid);
3985 ret = -EINVAL;
3986 }
3987
3988 /*
3989 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3990 * done later
3991 */
3992 if (btrfs_super_num_devices(sb) > (1UL << 31))
3993 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
3994 btrfs_super_num_devices(sb));
3995 if (btrfs_super_num_devices(sb) == 0) {
3996 printk(KERN_ERR "BTRFS: number of devices is 0\n");
3997 ret = -EINVAL;
3998 }
3999
4000 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4001 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4002 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4003 ret = -EINVAL;
4004 }
4005
4006 /*
4007 * Obvious sys_chunk_array corruptions, it must hold at least one key
4008 * and one chunk
4009 */
4010 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4011 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4012 btrfs_super_sys_array_size(sb),
4013 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4014 ret = -EINVAL;
4015 }
4016 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4017 + sizeof(struct btrfs_chunk)) {
4018 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4019 btrfs_super_sys_array_size(sb),
4020 sizeof(struct btrfs_disk_key)
4021 + sizeof(struct btrfs_chunk));
4022 ret = -EINVAL;
4023 }
4024
4025 /*
4026 * The generation is a global counter, we'll trust it more than the others
4027 * but it's still possible that it's the one that's wrong.
4028 */
4029 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4030 printk(KERN_WARNING
4031 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4032 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4033 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4034 && btrfs_super_cache_generation(sb) != (u64)-1)
4035 printk(KERN_WARNING
4036 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4037 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4038
4039 return ret;
4040 }
4041
4042 static void btrfs_error_commit_super(struct btrfs_root *root)
4043 {
4044 mutex_lock(&root->fs_info->cleaner_mutex);
4045 btrfs_run_delayed_iputs(root);
4046 mutex_unlock(&root->fs_info->cleaner_mutex);
4047
4048 down_write(&root->fs_info->cleanup_work_sem);
4049 up_write(&root->fs_info->cleanup_work_sem);
4050
4051 /* cleanup FS via transaction */
4052 btrfs_cleanup_transaction(root);
4053 }
4054
4055 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4056 {
4057 struct btrfs_ordered_extent *ordered;
4058
4059 spin_lock(&root->ordered_extent_lock);
4060 /*
4061 * This will just short circuit the ordered completion stuff which will
4062 * make sure the ordered extent gets properly cleaned up.
4063 */
4064 list_for_each_entry(ordered, &root->ordered_extents,
4065 root_extent_list)
4066 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4067 spin_unlock(&root->ordered_extent_lock);
4068 }
4069
4070 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4071 {
4072 struct btrfs_root *root;
4073 struct list_head splice;
4074
4075 INIT_LIST_HEAD(&splice);
4076
4077 spin_lock(&fs_info->ordered_root_lock);
4078 list_splice_init(&fs_info->ordered_roots, &splice);
4079 while (!list_empty(&splice)) {
4080 root = list_first_entry(&splice, struct btrfs_root,
4081 ordered_root);
4082 list_move_tail(&root->ordered_root,
4083 &fs_info->ordered_roots);
4084
4085 spin_unlock(&fs_info->ordered_root_lock);
4086 btrfs_destroy_ordered_extents(root);
4087
4088 cond_resched();
4089 spin_lock(&fs_info->ordered_root_lock);
4090 }
4091 spin_unlock(&fs_info->ordered_root_lock);
4092 }
4093
4094 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4095 struct btrfs_root *root)
4096 {
4097 struct rb_node *node;
4098 struct btrfs_delayed_ref_root *delayed_refs;
4099 struct btrfs_delayed_ref_node *ref;
4100 int ret = 0;
4101
4102 delayed_refs = &trans->delayed_refs;
4103
4104 spin_lock(&delayed_refs->lock);
4105 if (atomic_read(&delayed_refs->num_entries) == 0) {
4106 spin_unlock(&delayed_refs->lock);
4107 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4108 return ret;
4109 }
4110
4111 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4112 struct btrfs_delayed_ref_head *head;
4113 struct btrfs_delayed_ref_node *tmp;
4114 bool pin_bytes = false;
4115
4116 head = rb_entry(node, struct btrfs_delayed_ref_head,
4117 href_node);
4118 if (!mutex_trylock(&head->mutex)) {
4119 atomic_inc(&head->node.refs);
4120 spin_unlock(&delayed_refs->lock);
4121
4122 mutex_lock(&head->mutex);
4123 mutex_unlock(&head->mutex);
4124 btrfs_put_delayed_ref(&head->node);
4125 spin_lock(&delayed_refs->lock);
4126 continue;
4127 }
4128 spin_lock(&head->lock);
4129 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4130 list) {
4131 ref->in_tree = 0;
4132 list_del(&ref->list);
4133 atomic_dec(&delayed_refs->num_entries);
4134 btrfs_put_delayed_ref(ref);
4135 }
4136 if (head->must_insert_reserved)
4137 pin_bytes = true;
4138 btrfs_free_delayed_extent_op(head->extent_op);
4139 delayed_refs->num_heads--;
4140 if (head->processing == 0)
4141 delayed_refs->num_heads_ready--;
4142 atomic_dec(&delayed_refs->num_entries);
4143 head->node.in_tree = 0;
4144 rb_erase(&head->href_node, &delayed_refs->href_root);
4145 spin_unlock(&head->lock);
4146 spin_unlock(&delayed_refs->lock);
4147 mutex_unlock(&head->mutex);
4148
4149 if (pin_bytes)
4150 btrfs_pin_extent(root, head->node.bytenr,
4151 head->node.num_bytes, 1);
4152 btrfs_put_delayed_ref(&head->node);
4153 cond_resched();
4154 spin_lock(&delayed_refs->lock);
4155 }
4156
4157 spin_unlock(&delayed_refs->lock);
4158
4159 return ret;
4160 }
4161
4162 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4163 {
4164 struct btrfs_inode *btrfs_inode;
4165 struct list_head splice;
4166
4167 INIT_LIST_HEAD(&splice);
4168
4169 spin_lock(&root->delalloc_lock);
4170 list_splice_init(&root->delalloc_inodes, &splice);
4171
4172 while (!list_empty(&splice)) {
4173 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4174 delalloc_inodes);
4175
4176 list_del_init(&btrfs_inode->delalloc_inodes);
4177 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4178 &btrfs_inode->runtime_flags);
4179 spin_unlock(&root->delalloc_lock);
4180
4181 btrfs_invalidate_inodes(btrfs_inode->root);
4182
4183 spin_lock(&root->delalloc_lock);
4184 }
4185
4186 spin_unlock(&root->delalloc_lock);
4187 }
4188
4189 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4190 {
4191 struct btrfs_root *root;
4192 struct list_head splice;
4193
4194 INIT_LIST_HEAD(&splice);
4195
4196 spin_lock(&fs_info->delalloc_root_lock);
4197 list_splice_init(&fs_info->delalloc_roots, &splice);
4198 while (!list_empty(&splice)) {
4199 root = list_first_entry(&splice, struct btrfs_root,
4200 delalloc_root);
4201 list_del_init(&root->delalloc_root);
4202 root = btrfs_grab_fs_root(root);
4203 BUG_ON(!root);
4204 spin_unlock(&fs_info->delalloc_root_lock);
4205
4206 btrfs_destroy_delalloc_inodes(root);
4207 btrfs_put_fs_root(root);
4208
4209 spin_lock(&fs_info->delalloc_root_lock);
4210 }
4211 spin_unlock(&fs_info->delalloc_root_lock);
4212 }
4213
4214 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4215 struct extent_io_tree *dirty_pages,
4216 int mark)
4217 {
4218 int ret;
4219 struct extent_buffer *eb;
4220 u64 start = 0;
4221 u64 end;
4222
4223 while (1) {
4224 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4225 mark, NULL);
4226 if (ret)
4227 break;
4228
4229 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4230 while (start <= end) {
4231 eb = btrfs_find_tree_block(root->fs_info, start);
4232 start += root->nodesize;
4233 if (!eb)
4234 continue;
4235 wait_on_extent_buffer_writeback(eb);
4236
4237 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4238 &eb->bflags))
4239 clear_extent_buffer_dirty(eb);
4240 free_extent_buffer_stale(eb);
4241 }
4242 }
4243
4244 return ret;
4245 }
4246
4247 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4248 struct extent_io_tree *pinned_extents)
4249 {
4250 struct extent_io_tree *unpin;
4251 u64 start;
4252 u64 end;
4253 int ret;
4254 bool loop = true;
4255
4256 unpin = pinned_extents;
4257 again:
4258 while (1) {
4259 ret = find_first_extent_bit(unpin, 0, &start, &end,
4260 EXTENT_DIRTY, NULL);
4261 if (ret)
4262 break;
4263
4264 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4265 btrfs_error_unpin_extent_range(root, start, end);
4266 cond_resched();
4267 }
4268
4269 if (loop) {
4270 if (unpin == &root->fs_info->freed_extents[0])
4271 unpin = &root->fs_info->freed_extents[1];
4272 else
4273 unpin = &root->fs_info->freed_extents[0];
4274 loop = false;
4275 goto again;
4276 }
4277
4278 return 0;
4279 }
4280
4281 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4282 struct btrfs_fs_info *fs_info)
4283 {
4284 struct btrfs_ordered_extent *ordered;
4285
4286 spin_lock(&fs_info->trans_lock);
4287 while (!list_empty(&cur_trans->pending_ordered)) {
4288 ordered = list_first_entry(&cur_trans->pending_ordered,
4289 struct btrfs_ordered_extent,
4290 trans_list);
4291 list_del_init(&ordered->trans_list);
4292 spin_unlock(&fs_info->trans_lock);
4293
4294 btrfs_put_ordered_extent(ordered);
4295 spin_lock(&fs_info->trans_lock);
4296 }
4297 spin_unlock(&fs_info->trans_lock);
4298 }
4299
4300 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4301 struct btrfs_root *root)
4302 {
4303 btrfs_destroy_delayed_refs(cur_trans, root);
4304
4305 cur_trans->state = TRANS_STATE_COMMIT_START;
4306 wake_up(&root->fs_info->transaction_blocked_wait);
4307
4308 cur_trans->state = TRANS_STATE_UNBLOCKED;
4309 wake_up(&root->fs_info->transaction_wait);
4310
4311 btrfs_free_pending_ordered(cur_trans, root->fs_info);
4312 btrfs_destroy_delayed_inodes(root);
4313 btrfs_assert_delayed_root_empty(root);
4314
4315 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4316 EXTENT_DIRTY);
4317 btrfs_destroy_pinned_extent(root,
4318 root->fs_info->pinned_extents);
4319
4320 cur_trans->state =TRANS_STATE_COMPLETED;
4321 wake_up(&cur_trans->commit_wait);
4322
4323 /*
4324 memset(cur_trans, 0, sizeof(*cur_trans));
4325 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4326 */
4327 }
4328
4329 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4330 {
4331 struct btrfs_transaction *t;
4332
4333 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4334
4335 spin_lock(&root->fs_info->trans_lock);
4336 while (!list_empty(&root->fs_info->trans_list)) {
4337 t = list_first_entry(&root->fs_info->trans_list,
4338 struct btrfs_transaction, list);
4339 if (t->state >= TRANS_STATE_COMMIT_START) {
4340 atomic_inc(&t->use_count);
4341 spin_unlock(&root->fs_info->trans_lock);
4342 btrfs_wait_for_commit(root, t->transid);
4343 btrfs_put_transaction(t);
4344 spin_lock(&root->fs_info->trans_lock);
4345 continue;
4346 }
4347 if (t == root->fs_info->running_transaction) {
4348 t->state = TRANS_STATE_COMMIT_DOING;
4349 spin_unlock(&root->fs_info->trans_lock);
4350 /*
4351 * We wait for 0 num_writers since we don't hold a trans
4352 * handle open currently for this transaction.
4353 */
4354 wait_event(t->writer_wait,
4355 atomic_read(&t->num_writers) == 0);
4356 } else {
4357 spin_unlock(&root->fs_info->trans_lock);
4358 }
4359 btrfs_cleanup_one_transaction(t, root);
4360
4361 spin_lock(&root->fs_info->trans_lock);
4362 if (t == root->fs_info->running_transaction)
4363 root->fs_info->running_transaction = NULL;
4364 list_del_init(&t->list);
4365 spin_unlock(&root->fs_info->trans_lock);
4366
4367 btrfs_put_transaction(t);
4368 trace_btrfs_transaction_commit(root);
4369 spin_lock(&root->fs_info->trans_lock);
4370 }
4371 spin_unlock(&root->fs_info->trans_lock);
4372 btrfs_destroy_all_ordered_extents(root->fs_info);
4373 btrfs_destroy_delayed_inodes(root);
4374 btrfs_assert_delayed_root_empty(root);
4375 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4376 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4377 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4378
4379 return 0;
4380 }
4381
4382 static const struct extent_io_ops btree_extent_io_ops = {
4383 .readpage_end_io_hook = btree_readpage_end_io_hook,
4384 .readpage_io_failed_hook = btree_io_failed_hook,
4385 .submit_bio_hook = btree_submit_bio_hook,
4386 /* note we're sharing with inode.c for the merge bio hook */
4387 .merge_bio_hook = btrfs_merge_bio_hook,
4388 };
This page took 0.116356 seconds and 6 git commands to generate.