Btrfs: allow metadata blocks larger than the page size
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
53 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
57 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_root *root);
65
66 /*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71 struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
77 int metadata;
78 struct list_head list;
79 struct btrfs_work work;
80 };
81
82 /*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
87 struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
93 int rw;
94 int mirror_num;
95 unsigned long bio_flags;
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
101 struct btrfs_work work;
102 };
103
104 /*
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
108 *
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
114 *
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
118 *
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
122 *
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
126 */
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
129 # error
130 # endif
131
132 static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
149 };
150
151 void __init btrfs_init_lockdep(void)
152 {
153 int i, j;
154
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
162 }
163 }
164
165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 int level)
167 {
168 struct btrfs_lockdep_keyset *ks;
169
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
175 break;
176
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
179 }
180
181 #endif
182
183 /*
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
186 */
187 static struct extent_map *btree_get_extent(struct inode *inode,
188 struct page *page, size_t pg_offset, u64 start, u64 len,
189 int create)
190 {
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
193 int ret;
194
195 read_lock(&em_tree->lock);
196 em = lookup_extent_mapping(em_tree, start, len);
197 if (em) {
198 em->bdev =
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200 read_unlock(&em_tree->lock);
201 goto out;
202 }
203 read_unlock(&em_tree->lock);
204
205 em = alloc_extent_map();
206 if (!em) {
207 em = ERR_PTR(-ENOMEM);
208 goto out;
209 }
210 em->start = 0;
211 em->len = (u64)-1;
212 em->block_len = (u64)-1;
213 em->block_start = 0;
214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215
216 write_lock(&em_tree->lock);
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
221
222 free_extent_map(em);
223 em = lookup_extent_mapping(em_tree, start, len);
224 if (em) {
225 ret = 0;
226 } else {
227 em = lookup_extent_mapping(em_tree, failed_start,
228 failed_len);
229 ret = -EIO;
230 }
231 } else if (ret) {
232 free_extent_map(em);
233 em = NULL;
234 }
235 write_unlock(&em_tree->lock);
236
237 if (ret)
238 em = ERR_PTR(ret);
239 out:
240 return em;
241 }
242
243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 {
245 return crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250 put_unaligned_le32(~crc, result);
251 }
252
253 /*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259 {
260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261 char *result = NULL;
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
270 unsigned long inline_result;
271
272 len = buf->len - offset;
273 while (len > 0) {
274 err = map_private_extent_buffer(buf, offset, 32,
275 &kaddr, &map_start, &map_len);
276 if (err)
277 return 1;
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
283 }
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296 u32 val;
297 u32 found = 0;
298 memcpy(&found, result, csum_size);
299
300 read_extent_buffer(buf, &val, 0, csum_size);
301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
307 if (result != (char *)&inline_result)
308 kfree(result);
309 return 1;
310 }
311 } else {
312 write_extent_buffer(buf, result, 0, csum_size);
313 }
314 if (result != (char *)&inline_result)
315 kfree(result);
316 return 0;
317 }
318
319 /*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327 {
328 struct extent_state *cached_state = NULL;
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state, GFP_NOFS);
336 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
346 ret = 1;
347 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
348 out:
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
351 return ret;
352 }
353
354 /*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
360 u64 start, u64 parent_transid)
361 {
362 struct extent_io_tree *io_tree;
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
366
367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 while (1) {
370 ret = read_extent_buffer_pages(io_tree, eb, start,
371 WAIT_COMPLETE,
372 btree_get_extent, mirror_num);
373 if (!ret && !verify_parent_transid(io_tree, eb, parent_transid))
374 return ret;
375
376 /*
377 * This buffer's crc is fine, but its contents are corrupted, so
378 * there is no reason to read the other copies, they won't be
379 * any less wrong.
380 */
381 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
382 return ret;
383
384 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
385 eb->start, eb->len);
386 if (num_copies == 1)
387 return ret;
388
389 mirror_num++;
390 if (mirror_num > num_copies)
391 return ret;
392 }
393 return -EIO;
394 }
395
396 /*
397 * checksum a dirty tree block before IO. This has extra checks to make sure
398 * we only fill in the checksum field in the first page of a multi-page block
399 */
400
401 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
402 {
403 struct extent_io_tree *tree;
404 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
405 u64 found_start;
406 unsigned long len;
407 struct extent_buffer *eb;
408
409 tree = &BTRFS_I(page->mapping->host)->io_tree;
410
411 if (page->private == EXTENT_PAGE_PRIVATE)
412 goto out;
413 if (!page->private) {
414 WARN_ON(1);
415 goto out;
416 }
417 len = page->private >> 2;
418 WARN_ON(len == 0);
419
420 eb = find_extent_buffer(tree, start, len);
421
422 found_start = btrfs_header_bytenr(eb);
423 if (found_start != start) {
424 WARN_ON(1);
425 goto err;
426 }
427 if (eb->pages[0] != page) {
428 WARN_ON(1);
429 goto err;
430 }
431 if (!PageUptodate(page)) {
432 WARN_ON(1);
433 goto err;
434 }
435 csum_tree_block(root, eb, 0);
436 err:
437 free_extent_buffer(eb);
438 out:
439 return 0;
440 }
441
442 static int check_tree_block_fsid(struct btrfs_root *root,
443 struct extent_buffer *eb)
444 {
445 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
446 u8 fsid[BTRFS_UUID_SIZE];
447 int ret = 1;
448
449 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
450 BTRFS_FSID_SIZE);
451 while (fs_devices) {
452 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
453 ret = 0;
454 break;
455 }
456 fs_devices = fs_devices->seed;
457 }
458 return ret;
459 }
460
461 #define CORRUPT(reason, eb, root, slot) \
462 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
463 "root=%llu, slot=%d\n", reason, \
464 (unsigned long long)btrfs_header_bytenr(eb), \
465 (unsigned long long)root->objectid, slot)
466
467 static noinline int check_leaf(struct btrfs_root *root,
468 struct extent_buffer *leaf)
469 {
470 struct btrfs_key key;
471 struct btrfs_key leaf_key;
472 u32 nritems = btrfs_header_nritems(leaf);
473 int slot;
474
475 if (nritems == 0)
476 return 0;
477
478 /* Check the 0 item */
479 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
480 BTRFS_LEAF_DATA_SIZE(root)) {
481 CORRUPT("invalid item offset size pair", leaf, root, 0);
482 return -EIO;
483 }
484
485 /*
486 * Check to make sure each items keys are in the correct order and their
487 * offsets make sense. We only have to loop through nritems-1 because
488 * we check the current slot against the next slot, which verifies the
489 * next slot's offset+size makes sense and that the current's slot
490 * offset is correct.
491 */
492 for (slot = 0; slot < nritems - 1; slot++) {
493 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
494 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
495
496 /* Make sure the keys are in the right order */
497 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
498 CORRUPT("bad key order", leaf, root, slot);
499 return -EIO;
500 }
501
502 /*
503 * Make sure the offset and ends are right, remember that the
504 * item data starts at the end of the leaf and grows towards the
505 * front.
506 */
507 if (btrfs_item_offset_nr(leaf, slot) !=
508 btrfs_item_end_nr(leaf, slot + 1)) {
509 CORRUPT("slot offset bad", leaf, root, slot);
510 return -EIO;
511 }
512
513 /*
514 * Check to make sure that we don't point outside of the leaf,
515 * just incase all the items are consistent to eachother, but
516 * all point outside of the leaf.
517 */
518 if (btrfs_item_end_nr(leaf, slot) >
519 BTRFS_LEAF_DATA_SIZE(root)) {
520 CORRUPT("slot end outside of leaf", leaf, root, slot);
521 return -EIO;
522 }
523 }
524
525 return 0;
526 }
527
528 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
529 struct page *page, int max_walk)
530 {
531 struct extent_buffer *eb;
532 u64 start = page_offset(page);
533 u64 target = start;
534 u64 min_start;
535
536 if (start < max_walk)
537 min_start = 0;
538 else
539 min_start = start - max_walk;
540
541 while (start >= min_start) {
542 eb = find_extent_buffer(tree, start, 0);
543 if (eb) {
544 /*
545 * we found an extent buffer and it contains our page
546 * horray!
547 */
548 if (eb->start <= target &&
549 eb->start + eb->len > target)
550 return eb;
551
552 /* we found an extent buffer that wasn't for us */
553 free_extent_buffer(eb);
554 return NULL;
555 }
556 if (start == 0)
557 break;
558 start -= PAGE_CACHE_SIZE;
559 }
560 return NULL;
561 }
562
563 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
564 struct extent_state *state)
565 {
566 struct extent_io_tree *tree;
567 u64 found_start;
568 int found_level;
569 unsigned long len;
570 struct extent_buffer *eb;
571 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
572 int ret = 0;
573 int reads_done;
574
575 if (!page->private)
576 goto out;
577
578 tree = &BTRFS_I(page->mapping->host)->io_tree;
579 len = page->private >> 2;
580
581 eb = find_eb_for_page(tree, page, max(root->leafsize, root->nodesize));
582 if (!eb) {
583 ret = -EIO;
584 goto out;
585 }
586 reads_done = atomic_dec_and_test(&eb->pages_reading);
587 if (!reads_done)
588 goto err;
589
590 found_start = btrfs_header_bytenr(eb);
591 if (found_start != eb->start) {
592 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
593 "%llu %llu\n",
594 (unsigned long long)found_start,
595 (unsigned long long)eb->start);
596 ret = -EIO;
597 goto err;
598 }
599 if (check_tree_block_fsid(root, eb)) {
600 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
601 (unsigned long long)eb->start);
602 ret = -EIO;
603 goto err;
604 }
605 found_level = btrfs_header_level(eb);
606
607 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
608 eb, found_level);
609
610 ret = csum_tree_block(root, eb, 1);
611 if (ret) {
612 ret = -EIO;
613 goto err;
614 }
615
616 /*
617 * If this is a leaf block and it is corrupt, set the corrupt bit so
618 * that we don't try and read the other copies of this block, just
619 * return -EIO.
620 */
621 if (found_level == 0 && check_leaf(root, eb)) {
622 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
623 ret = -EIO;
624 }
625
626 err:
627 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
628 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
629 btree_readahead_hook(root, eb, eb->start, ret);
630 }
631
632 if (ret && eb)
633 clear_extent_buffer_uptodate(tree, eb, NULL);
634 free_extent_buffer(eb);
635 out:
636 return ret;
637 }
638
639 static int btree_io_failed_hook(struct bio *failed_bio,
640 struct page *page, u64 start, u64 end,
641 int mirror_num, struct extent_state *state)
642 {
643 struct extent_io_tree *tree;
644 unsigned long len;
645 struct extent_buffer *eb;
646 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
647
648 tree = &BTRFS_I(page->mapping->host)->io_tree;
649 if (page->private == EXTENT_PAGE_PRIVATE)
650 goto out;
651 if (!page->private)
652 goto out;
653
654 len = page->private >> 2;
655 WARN_ON(len == 0);
656
657 eb = alloc_extent_buffer(tree, start, len);
658 if (eb == NULL)
659 goto out;
660
661 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
662 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
663 btree_readahead_hook(root, eb, eb->start, -EIO);
664 }
665 free_extent_buffer(eb);
666
667 out:
668 return -EIO; /* we fixed nothing */
669 }
670
671 static void end_workqueue_bio(struct bio *bio, int err)
672 {
673 struct end_io_wq *end_io_wq = bio->bi_private;
674 struct btrfs_fs_info *fs_info;
675
676 fs_info = end_io_wq->info;
677 end_io_wq->error = err;
678 end_io_wq->work.func = end_workqueue_fn;
679 end_io_wq->work.flags = 0;
680
681 if (bio->bi_rw & REQ_WRITE) {
682 if (end_io_wq->metadata == 1)
683 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
684 &end_io_wq->work);
685 else if (end_io_wq->metadata == 2)
686 btrfs_queue_worker(&fs_info->endio_freespace_worker,
687 &end_io_wq->work);
688 else
689 btrfs_queue_worker(&fs_info->endio_write_workers,
690 &end_io_wq->work);
691 } else {
692 if (end_io_wq->metadata)
693 btrfs_queue_worker(&fs_info->endio_meta_workers,
694 &end_io_wq->work);
695 else
696 btrfs_queue_worker(&fs_info->endio_workers,
697 &end_io_wq->work);
698 }
699 }
700
701 /*
702 * For the metadata arg you want
703 *
704 * 0 - if data
705 * 1 - if normal metadta
706 * 2 - if writing to the free space cache area
707 */
708 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
709 int metadata)
710 {
711 struct end_io_wq *end_io_wq;
712 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
713 if (!end_io_wq)
714 return -ENOMEM;
715
716 end_io_wq->private = bio->bi_private;
717 end_io_wq->end_io = bio->bi_end_io;
718 end_io_wq->info = info;
719 end_io_wq->error = 0;
720 end_io_wq->bio = bio;
721 end_io_wq->metadata = metadata;
722
723 bio->bi_private = end_io_wq;
724 bio->bi_end_io = end_workqueue_bio;
725 return 0;
726 }
727
728 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
729 {
730 unsigned long limit = min_t(unsigned long,
731 info->workers.max_workers,
732 info->fs_devices->open_devices);
733 return 256 * limit;
734 }
735
736 static void run_one_async_start(struct btrfs_work *work)
737 {
738 struct async_submit_bio *async;
739
740 async = container_of(work, struct async_submit_bio, work);
741 async->submit_bio_start(async->inode, async->rw, async->bio,
742 async->mirror_num, async->bio_flags,
743 async->bio_offset);
744 }
745
746 static void run_one_async_done(struct btrfs_work *work)
747 {
748 struct btrfs_fs_info *fs_info;
749 struct async_submit_bio *async;
750 int limit;
751
752 async = container_of(work, struct async_submit_bio, work);
753 fs_info = BTRFS_I(async->inode)->root->fs_info;
754
755 limit = btrfs_async_submit_limit(fs_info);
756 limit = limit * 2 / 3;
757
758 atomic_dec(&fs_info->nr_async_submits);
759
760 if (atomic_read(&fs_info->nr_async_submits) < limit &&
761 waitqueue_active(&fs_info->async_submit_wait))
762 wake_up(&fs_info->async_submit_wait);
763
764 async->submit_bio_done(async->inode, async->rw, async->bio,
765 async->mirror_num, async->bio_flags,
766 async->bio_offset);
767 }
768
769 static void run_one_async_free(struct btrfs_work *work)
770 {
771 struct async_submit_bio *async;
772
773 async = container_of(work, struct async_submit_bio, work);
774 kfree(async);
775 }
776
777 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
778 int rw, struct bio *bio, int mirror_num,
779 unsigned long bio_flags,
780 u64 bio_offset,
781 extent_submit_bio_hook_t *submit_bio_start,
782 extent_submit_bio_hook_t *submit_bio_done)
783 {
784 struct async_submit_bio *async;
785
786 async = kmalloc(sizeof(*async), GFP_NOFS);
787 if (!async)
788 return -ENOMEM;
789
790 async->inode = inode;
791 async->rw = rw;
792 async->bio = bio;
793 async->mirror_num = mirror_num;
794 async->submit_bio_start = submit_bio_start;
795 async->submit_bio_done = submit_bio_done;
796
797 async->work.func = run_one_async_start;
798 async->work.ordered_func = run_one_async_done;
799 async->work.ordered_free = run_one_async_free;
800
801 async->work.flags = 0;
802 async->bio_flags = bio_flags;
803 async->bio_offset = bio_offset;
804
805 atomic_inc(&fs_info->nr_async_submits);
806
807 if (rw & REQ_SYNC)
808 btrfs_set_work_high_prio(&async->work);
809
810 btrfs_queue_worker(&fs_info->workers, &async->work);
811
812 while (atomic_read(&fs_info->async_submit_draining) &&
813 atomic_read(&fs_info->nr_async_submits)) {
814 wait_event(fs_info->async_submit_wait,
815 (atomic_read(&fs_info->nr_async_submits) == 0));
816 }
817
818 return 0;
819 }
820
821 static int btree_csum_one_bio(struct bio *bio)
822 {
823 struct bio_vec *bvec = bio->bi_io_vec;
824 int bio_index = 0;
825 struct btrfs_root *root;
826
827 WARN_ON(bio->bi_vcnt <= 0);
828 while (bio_index < bio->bi_vcnt) {
829 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
830 csum_dirty_buffer(root, bvec->bv_page);
831 bio_index++;
832 bvec++;
833 }
834 return 0;
835 }
836
837 static int __btree_submit_bio_start(struct inode *inode, int rw,
838 struct bio *bio, int mirror_num,
839 unsigned long bio_flags,
840 u64 bio_offset)
841 {
842 /*
843 * when we're called for a write, we're already in the async
844 * submission context. Just jump into btrfs_map_bio
845 */
846 btree_csum_one_bio(bio);
847 return 0;
848 }
849
850 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
851 int mirror_num, unsigned long bio_flags,
852 u64 bio_offset)
853 {
854 /*
855 * when we're called for a write, we're already in the async
856 * submission context. Just jump into btrfs_map_bio
857 */
858 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
859 }
860
861 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
862 int mirror_num, unsigned long bio_flags,
863 u64 bio_offset)
864 {
865 int ret;
866
867 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
868 bio, 1);
869 BUG_ON(ret);
870
871 if (!(rw & REQ_WRITE)) {
872 /*
873 * called for a read, do the setup so that checksum validation
874 * can happen in the async kernel threads
875 */
876 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
877 mirror_num, 0);
878 }
879
880 /*
881 * kthread helpers are used to submit writes so that checksumming
882 * can happen in parallel across all CPUs
883 */
884 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
885 inode, rw, bio, mirror_num, 0,
886 bio_offset,
887 __btree_submit_bio_start,
888 __btree_submit_bio_done);
889 }
890
891 #ifdef CONFIG_MIGRATION
892 static int btree_migratepage(struct address_space *mapping,
893 struct page *newpage, struct page *page,
894 enum migrate_mode mode)
895 {
896 /*
897 * we can't safely write a btree page from here,
898 * we haven't done the locking hook
899 */
900 if (PageDirty(page))
901 return -EAGAIN;
902 /*
903 * Buffers may be managed in a filesystem specific way.
904 * We must have no buffers or drop them.
905 */
906 if (page_has_private(page) &&
907 !try_to_release_page(page, GFP_KERNEL))
908 return -EAGAIN;
909 return migrate_page(mapping, newpage, page, mode);
910 }
911 #endif
912
913 static int btree_writepage(struct page *page, struct writeback_control *wbc)
914 {
915 struct extent_io_tree *tree;
916 tree = &BTRFS_I(page->mapping->host)->io_tree;
917
918 if (!(current->flags & PF_MEMALLOC)) {
919 return extent_write_full_page(tree, page,
920 btree_get_extent, wbc);
921 }
922
923 redirty_page_for_writepage(wbc, page);
924 unlock_page(page);
925 return 0;
926 }
927
928 static int btree_writepages(struct address_space *mapping,
929 struct writeback_control *wbc)
930 {
931 struct extent_io_tree *tree;
932 tree = &BTRFS_I(mapping->host)->io_tree;
933 if (wbc->sync_mode == WB_SYNC_NONE) {
934 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
935 u64 num_dirty;
936 unsigned long thresh = 32 * 1024 * 1024;
937
938 if (wbc->for_kupdate)
939 return 0;
940
941 /* this is a bit racy, but that's ok */
942 num_dirty = root->fs_info->dirty_metadata_bytes;
943 if (num_dirty < thresh)
944 return 0;
945 }
946 return extent_writepages(tree, mapping, btree_get_extent, wbc);
947 }
948
949 static int btree_readpage(struct file *file, struct page *page)
950 {
951 struct extent_io_tree *tree;
952 tree = &BTRFS_I(page->mapping->host)->io_tree;
953 return extent_read_full_page(tree, page, btree_get_extent, 0);
954 }
955
956 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
957 {
958 struct extent_io_tree *tree;
959 struct extent_map_tree *map;
960 struct extent_buffer *eb;
961 struct btrfs_root *root;
962 int ret;
963
964 if (PageWriteback(page) || PageDirty(page))
965 return 0;
966
967 tree = &BTRFS_I(page->mapping->host)->io_tree;
968 map = &BTRFS_I(page->mapping->host)->extent_tree;
969
970 root = BTRFS_I(page->mapping->host)->root;
971 if (page->private == EXTENT_PAGE_PRIVATE) {
972 eb = find_eb_for_page(tree, page, max(root->leafsize, root->nodesize));
973 free_extent_buffer(eb);
974 if (eb)
975 return 0;
976 }
977 /*
978 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
979 * slab allocation from alloc_extent_state down the callchain where
980 * it'd hit a BUG_ON as those flags are not allowed.
981 */
982 gfp_flags &= ~GFP_SLAB_BUG_MASK;
983
984 ret = try_release_extent_state(map, tree, page, gfp_flags);
985 if (!ret)
986 return 0;
987
988 ret = try_release_extent_buffer(tree, page);
989 if (ret == 1) {
990 ClearPagePrivate(page);
991 set_page_private(page, 0);
992 page_cache_release(page);
993 }
994
995 return ret;
996 }
997
998 static void btree_invalidatepage(struct page *page, unsigned long offset)
999 {
1000 struct extent_io_tree *tree;
1001 tree = &BTRFS_I(page->mapping->host)->io_tree;
1002 extent_invalidatepage(tree, page, offset);
1003 btree_releasepage(page, GFP_NOFS);
1004 if (PagePrivate(page)) {
1005 printk(KERN_WARNING "btrfs warning page private not zero "
1006 "on page %llu\n", (unsigned long long)page_offset(page));
1007 ClearPagePrivate(page);
1008 set_page_private(page, 0);
1009 page_cache_release(page);
1010 }
1011 }
1012
1013 static const struct address_space_operations btree_aops = {
1014 .readpage = btree_readpage,
1015 .writepage = btree_writepage,
1016 .writepages = btree_writepages,
1017 .releasepage = btree_releasepage,
1018 .invalidatepage = btree_invalidatepage,
1019 #ifdef CONFIG_MIGRATION
1020 .migratepage = btree_migratepage,
1021 #endif
1022 };
1023
1024 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1025 u64 parent_transid)
1026 {
1027 struct extent_buffer *buf = NULL;
1028 struct inode *btree_inode = root->fs_info->btree_inode;
1029 int ret = 0;
1030
1031 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1032 if (!buf)
1033 return 0;
1034 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1035 buf, 0, WAIT_NONE, btree_get_extent, 0);
1036 free_extent_buffer(buf);
1037 return ret;
1038 }
1039
1040 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1041 int mirror_num, struct extent_buffer **eb)
1042 {
1043 struct extent_buffer *buf = NULL;
1044 struct inode *btree_inode = root->fs_info->btree_inode;
1045 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1046 int ret;
1047
1048 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1049 if (!buf)
1050 return 0;
1051
1052 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1053
1054 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1055 btree_get_extent, mirror_num);
1056 if (ret) {
1057 free_extent_buffer(buf);
1058 return ret;
1059 }
1060
1061 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1062 free_extent_buffer(buf);
1063 return -EIO;
1064 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1065 *eb = buf;
1066 } else {
1067 free_extent_buffer(buf);
1068 }
1069 return 0;
1070 }
1071
1072 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1073 u64 bytenr, u32 blocksize)
1074 {
1075 struct inode *btree_inode = root->fs_info->btree_inode;
1076 struct extent_buffer *eb;
1077 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1078 bytenr, blocksize);
1079 return eb;
1080 }
1081
1082 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1083 u64 bytenr, u32 blocksize)
1084 {
1085 struct inode *btree_inode = root->fs_info->btree_inode;
1086 struct extent_buffer *eb;
1087
1088 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1089 bytenr, blocksize);
1090 return eb;
1091 }
1092
1093
1094 int btrfs_write_tree_block(struct extent_buffer *buf)
1095 {
1096 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1097 buf->start + buf->len - 1);
1098 }
1099
1100 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1101 {
1102 return filemap_fdatawait_range(buf->pages[0]->mapping,
1103 buf->start, buf->start + buf->len - 1);
1104 }
1105
1106 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1107 u32 blocksize, u64 parent_transid)
1108 {
1109 struct extent_buffer *buf = NULL;
1110 int ret;
1111
1112 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1113 if (!buf)
1114 return NULL;
1115
1116 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1117
1118 if (ret == 0)
1119 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1120 return buf;
1121
1122 }
1123
1124 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1125 struct extent_buffer *buf)
1126 {
1127 struct inode *btree_inode = root->fs_info->btree_inode;
1128 if (btrfs_header_generation(buf) ==
1129 root->fs_info->running_transaction->transid) {
1130 btrfs_assert_tree_locked(buf);
1131
1132 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1133 spin_lock(&root->fs_info->delalloc_lock);
1134 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1135 root->fs_info->dirty_metadata_bytes -= buf->len;
1136 else
1137 WARN_ON(1);
1138 spin_unlock(&root->fs_info->delalloc_lock);
1139 }
1140
1141 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1142 btrfs_set_lock_blocking(buf);
1143 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1144 buf);
1145 }
1146 return 0;
1147 }
1148
1149 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1150 u32 stripesize, struct btrfs_root *root,
1151 struct btrfs_fs_info *fs_info,
1152 u64 objectid)
1153 {
1154 root->node = NULL;
1155 root->commit_root = NULL;
1156 root->sectorsize = sectorsize;
1157 root->nodesize = nodesize;
1158 root->leafsize = leafsize;
1159 root->stripesize = stripesize;
1160 root->ref_cows = 0;
1161 root->track_dirty = 0;
1162 root->in_radix = 0;
1163 root->orphan_item_inserted = 0;
1164 root->orphan_cleanup_state = 0;
1165
1166 root->objectid = objectid;
1167 root->last_trans = 0;
1168 root->highest_objectid = 0;
1169 root->name = NULL;
1170 root->inode_tree = RB_ROOT;
1171 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1172 root->block_rsv = NULL;
1173 root->orphan_block_rsv = NULL;
1174
1175 INIT_LIST_HEAD(&root->dirty_list);
1176 INIT_LIST_HEAD(&root->orphan_list);
1177 INIT_LIST_HEAD(&root->root_list);
1178 spin_lock_init(&root->orphan_lock);
1179 spin_lock_init(&root->inode_lock);
1180 spin_lock_init(&root->accounting_lock);
1181 mutex_init(&root->objectid_mutex);
1182 mutex_init(&root->log_mutex);
1183 init_waitqueue_head(&root->log_writer_wait);
1184 init_waitqueue_head(&root->log_commit_wait[0]);
1185 init_waitqueue_head(&root->log_commit_wait[1]);
1186 atomic_set(&root->log_commit[0], 0);
1187 atomic_set(&root->log_commit[1], 0);
1188 atomic_set(&root->log_writers, 0);
1189 root->log_batch = 0;
1190 root->log_transid = 0;
1191 root->last_log_commit = 0;
1192 extent_io_tree_init(&root->dirty_log_pages,
1193 fs_info->btree_inode->i_mapping);
1194
1195 memset(&root->root_key, 0, sizeof(root->root_key));
1196 memset(&root->root_item, 0, sizeof(root->root_item));
1197 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1198 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1199 root->defrag_trans_start = fs_info->generation;
1200 init_completion(&root->kobj_unregister);
1201 root->defrag_running = 0;
1202 root->root_key.objectid = objectid;
1203 root->anon_dev = 0;
1204 return 0;
1205 }
1206
1207 static int find_and_setup_root(struct btrfs_root *tree_root,
1208 struct btrfs_fs_info *fs_info,
1209 u64 objectid,
1210 struct btrfs_root *root)
1211 {
1212 int ret;
1213 u32 blocksize;
1214 u64 generation;
1215
1216 __setup_root(tree_root->nodesize, tree_root->leafsize,
1217 tree_root->sectorsize, tree_root->stripesize,
1218 root, fs_info, objectid);
1219 ret = btrfs_find_last_root(tree_root, objectid,
1220 &root->root_item, &root->root_key);
1221 if (ret > 0)
1222 return -ENOENT;
1223 BUG_ON(ret);
1224
1225 generation = btrfs_root_generation(&root->root_item);
1226 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1227 root->commit_root = NULL;
1228 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1229 blocksize, generation);
1230 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1231 free_extent_buffer(root->node);
1232 root->node = NULL;
1233 return -EIO;
1234 }
1235 root->commit_root = btrfs_root_node(root);
1236 return 0;
1237 }
1238
1239 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1240 {
1241 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1242 if (root)
1243 root->fs_info = fs_info;
1244 return root;
1245 }
1246
1247 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1248 struct btrfs_fs_info *fs_info)
1249 {
1250 struct btrfs_root *root;
1251 struct btrfs_root *tree_root = fs_info->tree_root;
1252 struct extent_buffer *leaf;
1253
1254 root = btrfs_alloc_root(fs_info);
1255 if (!root)
1256 return ERR_PTR(-ENOMEM);
1257
1258 __setup_root(tree_root->nodesize, tree_root->leafsize,
1259 tree_root->sectorsize, tree_root->stripesize,
1260 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1261
1262 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1263 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1264 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1265 /*
1266 * log trees do not get reference counted because they go away
1267 * before a real commit is actually done. They do store pointers
1268 * to file data extents, and those reference counts still get
1269 * updated (along with back refs to the log tree).
1270 */
1271 root->ref_cows = 0;
1272
1273 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1274 BTRFS_TREE_LOG_OBJECTID, NULL,
1275 0, 0, 0, 0);
1276 if (IS_ERR(leaf)) {
1277 kfree(root);
1278 return ERR_CAST(leaf);
1279 }
1280
1281 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1282 btrfs_set_header_bytenr(leaf, leaf->start);
1283 btrfs_set_header_generation(leaf, trans->transid);
1284 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1285 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1286 root->node = leaf;
1287
1288 write_extent_buffer(root->node, root->fs_info->fsid,
1289 (unsigned long)btrfs_header_fsid(root->node),
1290 BTRFS_FSID_SIZE);
1291 btrfs_mark_buffer_dirty(root->node);
1292 btrfs_tree_unlock(root->node);
1293 return root;
1294 }
1295
1296 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1297 struct btrfs_fs_info *fs_info)
1298 {
1299 struct btrfs_root *log_root;
1300
1301 log_root = alloc_log_tree(trans, fs_info);
1302 if (IS_ERR(log_root))
1303 return PTR_ERR(log_root);
1304 WARN_ON(fs_info->log_root_tree);
1305 fs_info->log_root_tree = log_root;
1306 return 0;
1307 }
1308
1309 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1310 struct btrfs_root *root)
1311 {
1312 struct btrfs_root *log_root;
1313 struct btrfs_inode_item *inode_item;
1314
1315 log_root = alloc_log_tree(trans, root->fs_info);
1316 if (IS_ERR(log_root))
1317 return PTR_ERR(log_root);
1318
1319 log_root->last_trans = trans->transid;
1320 log_root->root_key.offset = root->root_key.objectid;
1321
1322 inode_item = &log_root->root_item.inode;
1323 inode_item->generation = cpu_to_le64(1);
1324 inode_item->size = cpu_to_le64(3);
1325 inode_item->nlink = cpu_to_le32(1);
1326 inode_item->nbytes = cpu_to_le64(root->leafsize);
1327 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1328
1329 btrfs_set_root_node(&log_root->root_item, log_root->node);
1330
1331 WARN_ON(root->log_root);
1332 root->log_root = log_root;
1333 root->log_transid = 0;
1334 root->last_log_commit = 0;
1335 return 0;
1336 }
1337
1338 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1339 struct btrfs_key *location)
1340 {
1341 struct btrfs_root *root;
1342 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1343 struct btrfs_path *path;
1344 struct extent_buffer *l;
1345 u64 generation;
1346 u32 blocksize;
1347 int ret = 0;
1348
1349 root = btrfs_alloc_root(fs_info);
1350 if (!root)
1351 return ERR_PTR(-ENOMEM);
1352 if (location->offset == (u64)-1) {
1353 ret = find_and_setup_root(tree_root, fs_info,
1354 location->objectid, root);
1355 if (ret) {
1356 kfree(root);
1357 return ERR_PTR(ret);
1358 }
1359 goto out;
1360 }
1361
1362 __setup_root(tree_root->nodesize, tree_root->leafsize,
1363 tree_root->sectorsize, tree_root->stripesize,
1364 root, fs_info, location->objectid);
1365
1366 path = btrfs_alloc_path();
1367 if (!path) {
1368 kfree(root);
1369 return ERR_PTR(-ENOMEM);
1370 }
1371 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1372 if (ret == 0) {
1373 l = path->nodes[0];
1374 read_extent_buffer(l, &root->root_item,
1375 btrfs_item_ptr_offset(l, path->slots[0]),
1376 sizeof(root->root_item));
1377 memcpy(&root->root_key, location, sizeof(*location));
1378 }
1379 btrfs_free_path(path);
1380 if (ret) {
1381 kfree(root);
1382 if (ret > 0)
1383 ret = -ENOENT;
1384 return ERR_PTR(ret);
1385 }
1386
1387 generation = btrfs_root_generation(&root->root_item);
1388 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1389 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1390 blocksize, generation);
1391 root->commit_root = btrfs_root_node(root);
1392 BUG_ON(!root->node);
1393 out:
1394 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1395 root->ref_cows = 1;
1396 btrfs_check_and_init_root_item(&root->root_item);
1397 }
1398
1399 return root;
1400 }
1401
1402 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1403 struct btrfs_key *location)
1404 {
1405 struct btrfs_root *root;
1406 int ret;
1407
1408 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1409 return fs_info->tree_root;
1410 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1411 return fs_info->extent_root;
1412 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1413 return fs_info->chunk_root;
1414 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1415 return fs_info->dev_root;
1416 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1417 return fs_info->csum_root;
1418 again:
1419 spin_lock(&fs_info->fs_roots_radix_lock);
1420 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1421 (unsigned long)location->objectid);
1422 spin_unlock(&fs_info->fs_roots_radix_lock);
1423 if (root)
1424 return root;
1425
1426 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1427 if (IS_ERR(root))
1428 return root;
1429
1430 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1431 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1432 GFP_NOFS);
1433 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1434 ret = -ENOMEM;
1435 goto fail;
1436 }
1437
1438 btrfs_init_free_ino_ctl(root);
1439 mutex_init(&root->fs_commit_mutex);
1440 spin_lock_init(&root->cache_lock);
1441 init_waitqueue_head(&root->cache_wait);
1442
1443 ret = get_anon_bdev(&root->anon_dev);
1444 if (ret)
1445 goto fail;
1446
1447 if (btrfs_root_refs(&root->root_item) == 0) {
1448 ret = -ENOENT;
1449 goto fail;
1450 }
1451
1452 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1453 if (ret < 0)
1454 goto fail;
1455 if (ret == 0)
1456 root->orphan_item_inserted = 1;
1457
1458 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1459 if (ret)
1460 goto fail;
1461
1462 spin_lock(&fs_info->fs_roots_radix_lock);
1463 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1464 (unsigned long)root->root_key.objectid,
1465 root);
1466 if (ret == 0)
1467 root->in_radix = 1;
1468
1469 spin_unlock(&fs_info->fs_roots_radix_lock);
1470 radix_tree_preload_end();
1471 if (ret) {
1472 if (ret == -EEXIST) {
1473 free_fs_root(root);
1474 goto again;
1475 }
1476 goto fail;
1477 }
1478
1479 ret = btrfs_find_dead_roots(fs_info->tree_root,
1480 root->root_key.objectid);
1481 WARN_ON(ret);
1482 return root;
1483 fail:
1484 free_fs_root(root);
1485 return ERR_PTR(ret);
1486 }
1487
1488 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1489 {
1490 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1491 int ret = 0;
1492 struct btrfs_device *device;
1493 struct backing_dev_info *bdi;
1494
1495 rcu_read_lock();
1496 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1497 if (!device->bdev)
1498 continue;
1499 bdi = blk_get_backing_dev_info(device->bdev);
1500 if (bdi && bdi_congested(bdi, bdi_bits)) {
1501 ret = 1;
1502 break;
1503 }
1504 }
1505 rcu_read_unlock();
1506 return ret;
1507 }
1508
1509 /*
1510 * If this fails, caller must call bdi_destroy() to get rid of the
1511 * bdi again.
1512 */
1513 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1514 {
1515 int err;
1516
1517 bdi->capabilities = BDI_CAP_MAP_COPY;
1518 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1519 if (err)
1520 return err;
1521
1522 bdi->ra_pages = default_backing_dev_info.ra_pages;
1523 bdi->congested_fn = btrfs_congested_fn;
1524 bdi->congested_data = info;
1525 return 0;
1526 }
1527
1528 /*
1529 * called by the kthread helper functions to finally call the bio end_io
1530 * functions. This is where read checksum verification actually happens
1531 */
1532 static void end_workqueue_fn(struct btrfs_work *work)
1533 {
1534 struct bio *bio;
1535 struct end_io_wq *end_io_wq;
1536 struct btrfs_fs_info *fs_info;
1537 int error;
1538
1539 end_io_wq = container_of(work, struct end_io_wq, work);
1540 bio = end_io_wq->bio;
1541 fs_info = end_io_wq->info;
1542
1543 error = end_io_wq->error;
1544 bio->bi_private = end_io_wq->private;
1545 bio->bi_end_io = end_io_wq->end_io;
1546 kfree(end_io_wq);
1547 bio_endio(bio, error);
1548 }
1549
1550 static int cleaner_kthread(void *arg)
1551 {
1552 struct btrfs_root *root = arg;
1553
1554 do {
1555 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1556
1557 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1558 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1559 btrfs_run_delayed_iputs(root);
1560 btrfs_clean_old_snapshots(root);
1561 mutex_unlock(&root->fs_info->cleaner_mutex);
1562 btrfs_run_defrag_inodes(root->fs_info);
1563 }
1564
1565 if (!try_to_freeze()) {
1566 set_current_state(TASK_INTERRUPTIBLE);
1567 if (!kthread_should_stop())
1568 schedule();
1569 __set_current_state(TASK_RUNNING);
1570 }
1571 } while (!kthread_should_stop());
1572 return 0;
1573 }
1574
1575 static int transaction_kthread(void *arg)
1576 {
1577 struct btrfs_root *root = arg;
1578 struct btrfs_trans_handle *trans;
1579 struct btrfs_transaction *cur;
1580 u64 transid;
1581 unsigned long now;
1582 unsigned long delay;
1583 int ret;
1584
1585 do {
1586 delay = HZ * 30;
1587 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1588 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1589
1590 spin_lock(&root->fs_info->trans_lock);
1591 cur = root->fs_info->running_transaction;
1592 if (!cur) {
1593 spin_unlock(&root->fs_info->trans_lock);
1594 goto sleep;
1595 }
1596
1597 now = get_seconds();
1598 if (!cur->blocked &&
1599 (now < cur->start_time || now - cur->start_time < 30)) {
1600 spin_unlock(&root->fs_info->trans_lock);
1601 delay = HZ * 5;
1602 goto sleep;
1603 }
1604 transid = cur->transid;
1605 spin_unlock(&root->fs_info->trans_lock);
1606
1607 trans = btrfs_join_transaction(root);
1608 BUG_ON(IS_ERR(trans));
1609 if (transid == trans->transid) {
1610 ret = btrfs_commit_transaction(trans, root);
1611 BUG_ON(ret);
1612 } else {
1613 btrfs_end_transaction(trans, root);
1614 }
1615 sleep:
1616 wake_up_process(root->fs_info->cleaner_kthread);
1617 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1618
1619 if (!try_to_freeze()) {
1620 set_current_state(TASK_INTERRUPTIBLE);
1621 if (!kthread_should_stop() &&
1622 !btrfs_transaction_blocked(root->fs_info))
1623 schedule_timeout(delay);
1624 __set_current_state(TASK_RUNNING);
1625 }
1626 } while (!kthread_should_stop());
1627 return 0;
1628 }
1629
1630 /*
1631 * this will find the highest generation in the array of
1632 * root backups. The index of the highest array is returned,
1633 * or -1 if we can't find anything.
1634 *
1635 * We check to make sure the array is valid by comparing the
1636 * generation of the latest root in the array with the generation
1637 * in the super block. If they don't match we pitch it.
1638 */
1639 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1640 {
1641 u64 cur;
1642 int newest_index = -1;
1643 struct btrfs_root_backup *root_backup;
1644 int i;
1645
1646 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1647 root_backup = info->super_copy->super_roots + i;
1648 cur = btrfs_backup_tree_root_gen(root_backup);
1649 if (cur == newest_gen)
1650 newest_index = i;
1651 }
1652
1653 /* check to see if we actually wrapped around */
1654 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1655 root_backup = info->super_copy->super_roots;
1656 cur = btrfs_backup_tree_root_gen(root_backup);
1657 if (cur == newest_gen)
1658 newest_index = 0;
1659 }
1660 return newest_index;
1661 }
1662
1663
1664 /*
1665 * find the oldest backup so we know where to store new entries
1666 * in the backup array. This will set the backup_root_index
1667 * field in the fs_info struct
1668 */
1669 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1670 u64 newest_gen)
1671 {
1672 int newest_index = -1;
1673
1674 newest_index = find_newest_super_backup(info, newest_gen);
1675 /* if there was garbage in there, just move along */
1676 if (newest_index == -1) {
1677 info->backup_root_index = 0;
1678 } else {
1679 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1680 }
1681 }
1682
1683 /*
1684 * copy all the root pointers into the super backup array.
1685 * this will bump the backup pointer by one when it is
1686 * done
1687 */
1688 static void backup_super_roots(struct btrfs_fs_info *info)
1689 {
1690 int next_backup;
1691 struct btrfs_root_backup *root_backup;
1692 int last_backup;
1693
1694 next_backup = info->backup_root_index;
1695 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1696 BTRFS_NUM_BACKUP_ROOTS;
1697
1698 /*
1699 * just overwrite the last backup if we're at the same generation
1700 * this happens only at umount
1701 */
1702 root_backup = info->super_for_commit->super_roots + last_backup;
1703 if (btrfs_backup_tree_root_gen(root_backup) ==
1704 btrfs_header_generation(info->tree_root->node))
1705 next_backup = last_backup;
1706
1707 root_backup = info->super_for_commit->super_roots + next_backup;
1708
1709 /*
1710 * make sure all of our padding and empty slots get zero filled
1711 * regardless of which ones we use today
1712 */
1713 memset(root_backup, 0, sizeof(*root_backup));
1714
1715 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1716
1717 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1718 btrfs_set_backup_tree_root_gen(root_backup,
1719 btrfs_header_generation(info->tree_root->node));
1720
1721 btrfs_set_backup_tree_root_level(root_backup,
1722 btrfs_header_level(info->tree_root->node));
1723
1724 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1725 btrfs_set_backup_chunk_root_gen(root_backup,
1726 btrfs_header_generation(info->chunk_root->node));
1727 btrfs_set_backup_chunk_root_level(root_backup,
1728 btrfs_header_level(info->chunk_root->node));
1729
1730 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1731 btrfs_set_backup_extent_root_gen(root_backup,
1732 btrfs_header_generation(info->extent_root->node));
1733 btrfs_set_backup_extent_root_level(root_backup,
1734 btrfs_header_level(info->extent_root->node));
1735
1736 /*
1737 * we might commit during log recovery, which happens before we set
1738 * the fs_root. Make sure it is valid before we fill it in.
1739 */
1740 if (info->fs_root && info->fs_root->node) {
1741 btrfs_set_backup_fs_root(root_backup,
1742 info->fs_root->node->start);
1743 btrfs_set_backup_fs_root_gen(root_backup,
1744 btrfs_header_generation(info->fs_root->node));
1745 btrfs_set_backup_fs_root_level(root_backup,
1746 btrfs_header_level(info->fs_root->node));
1747 }
1748
1749 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1750 btrfs_set_backup_dev_root_gen(root_backup,
1751 btrfs_header_generation(info->dev_root->node));
1752 btrfs_set_backup_dev_root_level(root_backup,
1753 btrfs_header_level(info->dev_root->node));
1754
1755 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1756 btrfs_set_backup_csum_root_gen(root_backup,
1757 btrfs_header_generation(info->csum_root->node));
1758 btrfs_set_backup_csum_root_level(root_backup,
1759 btrfs_header_level(info->csum_root->node));
1760
1761 btrfs_set_backup_total_bytes(root_backup,
1762 btrfs_super_total_bytes(info->super_copy));
1763 btrfs_set_backup_bytes_used(root_backup,
1764 btrfs_super_bytes_used(info->super_copy));
1765 btrfs_set_backup_num_devices(root_backup,
1766 btrfs_super_num_devices(info->super_copy));
1767
1768 /*
1769 * if we don't copy this out to the super_copy, it won't get remembered
1770 * for the next commit
1771 */
1772 memcpy(&info->super_copy->super_roots,
1773 &info->super_for_commit->super_roots,
1774 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1775 }
1776
1777 /*
1778 * this copies info out of the root backup array and back into
1779 * the in-memory super block. It is meant to help iterate through
1780 * the array, so you send it the number of backups you've already
1781 * tried and the last backup index you used.
1782 *
1783 * this returns -1 when it has tried all the backups
1784 */
1785 static noinline int next_root_backup(struct btrfs_fs_info *info,
1786 struct btrfs_super_block *super,
1787 int *num_backups_tried, int *backup_index)
1788 {
1789 struct btrfs_root_backup *root_backup;
1790 int newest = *backup_index;
1791
1792 if (*num_backups_tried == 0) {
1793 u64 gen = btrfs_super_generation(super);
1794
1795 newest = find_newest_super_backup(info, gen);
1796 if (newest == -1)
1797 return -1;
1798
1799 *backup_index = newest;
1800 *num_backups_tried = 1;
1801 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1802 /* we've tried all the backups, all done */
1803 return -1;
1804 } else {
1805 /* jump to the next oldest backup */
1806 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1807 BTRFS_NUM_BACKUP_ROOTS;
1808 *backup_index = newest;
1809 *num_backups_tried += 1;
1810 }
1811 root_backup = super->super_roots + newest;
1812
1813 btrfs_set_super_generation(super,
1814 btrfs_backup_tree_root_gen(root_backup));
1815 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1816 btrfs_set_super_root_level(super,
1817 btrfs_backup_tree_root_level(root_backup));
1818 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1819
1820 /*
1821 * fixme: the total bytes and num_devices need to match or we should
1822 * need a fsck
1823 */
1824 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1825 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1826 return 0;
1827 }
1828
1829 /* helper to cleanup tree roots */
1830 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1831 {
1832 free_extent_buffer(info->tree_root->node);
1833 free_extent_buffer(info->tree_root->commit_root);
1834 free_extent_buffer(info->dev_root->node);
1835 free_extent_buffer(info->dev_root->commit_root);
1836 free_extent_buffer(info->extent_root->node);
1837 free_extent_buffer(info->extent_root->commit_root);
1838 free_extent_buffer(info->csum_root->node);
1839 free_extent_buffer(info->csum_root->commit_root);
1840
1841 info->tree_root->node = NULL;
1842 info->tree_root->commit_root = NULL;
1843 info->dev_root->node = NULL;
1844 info->dev_root->commit_root = NULL;
1845 info->extent_root->node = NULL;
1846 info->extent_root->commit_root = NULL;
1847 info->csum_root->node = NULL;
1848 info->csum_root->commit_root = NULL;
1849
1850 if (chunk_root) {
1851 free_extent_buffer(info->chunk_root->node);
1852 free_extent_buffer(info->chunk_root->commit_root);
1853 info->chunk_root->node = NULL;
1854 info->chunk_root->commit_root = NULL;
1855 }
1856 }
1857
1858
1859 int open_ctree(struct super_block *sb,
1860 struct btrfs_fs_devices *fs_devices,
1861 char *options)
1862 {
1863 u32 sectorsize;
1864 u32 nodesize;
1865 u32 leafsize;
1866 u32 blocksize;
1867 u32 stripesize;
1868 u64 generation;
1869 u64 features;
1870 struct btrfs_key location;
1871 struct buffer_head *bh;
1872 struct btrfs_super_block *disk_super;
1873 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1874 struct btrfs_root *tree_root;
1875 struct btrfs_root *extent_root;
1876 struct btrfs_root *csum_root;
1877 struct btrfs_root *chunk_root;
1878 struct btrfs_root *dev_root;
1879 struct btrfs_root *log_tree_root;
1880 int ret;
1881 int err = -EINVAL;
1882 int num_backups_tried = 0;
1883 int backup_index = 0;
1884
1885 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1886 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1887 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1888 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1889 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1890
1891 if (!tree_root || !extent_root || !csum_root ||
1892 !chunk_root || !dev_root) {
1893 err = -ENOMEM;
1894 goto fail;
1895 }
1896
1897 ret = init_srcu_struct(&fs_info->subvol_srcu);
1898 if (ret) {
1899 err = ret;
1900 goto fail;
1901 }
1902
1903 ret = setup_bdi(fs_info, &fs_info->bdi);
1904 if (ret) {
1905 err = ret;
1906 goto fail_srcu;
1907 }
1908
1909 fs_info->btree_inode = new_inode(sb);
1910 if (!fs_info->btree_inode) {
1911 err = -ENOMEM;
1912 goto fail_bdi;
1913 }
1914
1915 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1916
1917 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1918 INIT_LIST_HEAD(&fs_info->trans_list);
1919 INIT_LIST_HEAD(&fs_info->dead_roots);
1920 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1921 INIT_LIST_HEAD(&fs_info->hashers);
1922 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1923 INIT_LIST_HEAD(&fs_info->ordered_operations);
1924 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1925 spin_lock_init(&fs_info->delalloc_lock);
1926 spin_lock_init(&fs_info->trans_lock);
1927 spin_lock_init(&fs_info->ref_cache_lock);
1928 spin_lock_init(&fs_info->fs_roots_radix_lock);
1929 spin_lock_init(&fs_info->delayed_iput_lock);
1930 spin_lock_init(&fs_info->defrag_inodes_lock);
1931 spin_lock_init(&fs_info->free_chunk_lock);
1932 mutex_init(&fs_info->reloc_mutex);
1933
1934 init_completion(&fs_info->kobj_unregister);
1935 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1936 INIT_LIST_HEAD(&fs_info->space_info);
1937 btrfs_mapping_init(&fs_info->mapping_tree);
1938 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1939 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1940 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1941 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1942 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1943 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1944 atomic_set(&fs_info->nr_async_submits, 0);
1945 atomic_set(&fs_info->async_delalloc_pages, 0);
1946 atomic_set(&fs_info->async_submit_draining, 0);
1947 atomic_set(&fs_info->nr_async_bios, 0);
1948 atomic_set(&fs_info->defrag_running, 0);
1949 fs_info->sb = sb;
1950 fs_info->max_inline = 8192 * 1024;
1951 fs_info->metadata_ratio = 0;
1952 fs_info->defrag_inodes = RB_ROOT;
1953 fs_info->trans_no_join = 0;
1954 fs_info->free_chunk_space = 0;
1955
1956 /* readahead state */
1957 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1958 spin_lock_init(&fs_info->reada_lock);
1959
1960 fs_info->thread_pool_size = min_t(unsigned long,
1961 num_online_cpus() + 2, 8);
1962
1963 INIT_LIST_HEAD(&fs_info->ordered_extents);
1964 spin_lock_init(&fs_info->ordered_extent_lock);
1965 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1966 GFP_NOFS);
1967 if (!fs_info->delayed_root) {
1968 err = -ENOMEM;
1969 goto fail_iput;
1970 }
1971 btrfs_init_delayed_root(fs_info->delayed_root);
1972
1973 mutex_init(&fs_info->scrub_lock);
1974 atomic_set(&fs_info->scrubs_running, 0);
1975 atomic_set(&fs_info->scrub_pause_req, 0);
1976 atomic_set(&fs_info->scrubs_paused, 0);
1977 atomic_set(&fs_info->scrub_cancel_req, 0);
1978 init_waitqueue_head(&fs_info->scrub_pause_wait);
1979 init_rwsem(&fs_info->scrub_super_lock);
1980 fs_info->scrub_workers_refcnt = 0;
1981 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1982 fs_info->check_integrity_print_mask = 0;
1983 #endif
1984
1985 spin_lock_init(&fs_info->balance_lock);
1986 mutex_init(&fs_info->balance_mutex);
1987 atomic_set(&fs_info->balance_running, 0);
1988 atomic_set(&fs_info->balance_pause_req, 0);
1989 atomic_set(&fs_info->balance_cancel_req, 0);
1990 fs_info->balance_ctl = NULL;
1991 init_waitqueue_head(&fs_info->balance_wait_q);
1992
1993 sb->s_blocksize = 4096;
1994 sb->s_blocksize_bits = blksize_bits(4096);
1995 sb->s_bdi = &fs_info->bdi;
1996
1997 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1998 set_nlink(fs_info->btree_inode, 1);
1999 /*
2000 * we set the i_size on the btree inode to the max possible int.
2001 * the real end of the address space is determined by all of
2002 * the devices in the system
2003 */
2004 fs_info->btree_inode->i_size = OFFSET_MAX;
2005 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2006 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2007
2008 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2009 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2010 fs_info->btree_inode->i_mapping);
2011 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2012
2013 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2014
2015 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2016 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2017 sizeof(struct btrfs_key));
2018 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2019 insert_inode_hash(fs_info->btree_inode);
2020
2021 spin_lock_init(&fs_info->block_group_cache_lock);
2022 fs_info->block_group_cache_tree = RB_ROOT;
2023
2024 extent_io_tree_init(&fs_info->freed_extents[0],
2025 fs_info->btree_inode->i_mapping);
2026 extent_io_tree_init(&fs_info->freed_extents[1],
2027 fs_info->btree_inode->i_mapping);
2028 fs_info->pinned_extents = &fs_info->freed_extents[0];
2029 fs_info->do_barriers = 1;
2030
2031
2032 mutex_init(&fs_info->ordered_operations_mutex);
2033 mutex_init(&fs_info->tree_log_mutex);
2034 mutex_init(&fs_info->chunk_mutex);
2035 mutex_init(&fs_info->transaction_kthread_mutex);
2036 mutex_init(&fs_info->cleaner_mutex);
2037 mutex_init(&fs_info->volume_mutex);
2038 init_rwsem(&fs_info->extent_commit_sem);
2039 init_rwsem(&fs_info->cleanup_work_sem);
2040 init_rwsem(&fs_info->subvol_sem);
2041
2042 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2043 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2044
2045 init_waitqueue_head(&fs_info->transaction_throttle);
2046 init_waitqueue_head(&fs_info->transaction_wait);
2047 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2048 init_waitqueue_head(&fs_info->async_submit_wait);
2049
2050 __setup_root(4096, 4096, 4096, 4096, tree_root,
2051 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2052
2053 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2054 if (!bh) {
2055 err = -EINVAL;
2056 goto fail_alloc;
2057 }
2058
2059 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2060 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2061 sizeof(*fs_info->super_for_commit));
2062 brelse(bh);
2063
2064 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2065
2066 disk_super = fs_info->super_copy;
2067 if (!btrfs_super_root(disk_super))
2068 goto fail_alloc;
2069
2070 /* check FS state, whether FS is broken. */
2071 fs_info->fs_state |= btrfs_super_flags(disk_super);
2072
2073 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2074
2075 /*
2076 * run through our array of backup supers and setup
2077 * our ring pointer to the oldest one
2078 */
2079 generation = btrfs_super_generation(disk_super);
2080 find_oldest_super_backup(fs_info, generation);
2081
2082 /*
2083 * In the long term, we'll store the compression type in the super
2084 * block, and it'll be used for per file compression control.
2085 */
2086 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2087
2088 ret = btrfs_parse_options(tree_root, options);
2089 if (ret) {
2090 err = ret;
2091 goto fail_alloc;
2092 }
2093
2094 features = btrfs_super_incompat_flags(disk_super) &
2095 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2096 if (features) {
2097 printk(KERN_ERR "BTRFS: couldn't mount because of "
2098 "unsupported optional features (%Lx).\n",
2099 (unsigned long long)features);
2100 err = -EINVAL;
2101 goto fail_alloc;
2102 }
2103
2104 if (btrfs_super_leafsize(disk_super) !=
2105 btrfs_super_nodesize(disk_super)) {
2106 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2107 "blocksizes don't match. node %d leaf %d\n",
2108 btrfs_super_nodesize(disk_super),
2109 btrfs_super_leafsize(disk_super));
2110 err = -EINVAL;
2111 goto fail_alloc;
2112 }
2113 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2114 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2115 "blocksize (%d) was too large\n",
2116 btrfs_super_leafsize(disk_super));
2117 err = -EINVAL;
2118 goto fail_alloc;
2119 }
2120
2121 features = btrfs_super_incompat_flags(disk_super);
2122 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2123 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2124 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2125
2126 /*
2127 * flag our filesystem as having big metadata blocks if
2128 * they are bigger than the page size
2129 */
2130 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2131 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2132 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2133 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2134 }
2135
2136 btrfs_set_super_incompat_flags(disk_super, features);
2137
2138 features = btrfs_super_compat_ro_flags(disk_super) &
2139 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2140 if (!(sb->s_flags & MS_RDONLY) && features) {
2141 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2142 "unsupported option features (%Lx).\n",
2143 (unsigned long long)features);
2144 err = -EINVAL;
2145 goto fail_alloc;
2146 }
2147
2148 btrfs_init_workers(&fs_info->generic_worker,
2149 "genwork", 1, NULL);
2150
2151 btrfs_init_workers(&fs_info->workers, "worker",
2152 fs_info->thread_pool_size,
2153 &fs_info->generic_worker);
2154
2155 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2156 fs_info->thread_pool_size,
2157 &fs_info->generic_worker);
2158
2159 btrfs_init_workers(&fs_info->submit_workers, "submit",
2160 min_t(u64, fs_devices->num_devices,
2161 fs_info->thread_pool_size),
2162 &fs_info->generic_worker);
2163
2164 btrfs_init_workers(&fs_info->caching_workers, "cache",
2165 2, &fs_info->generic_worker);
2166
2167 /* a higher idle thresh on the submit workers makes it much more
2168 * likely that bios will be send down in a sane order to the
2169 * devices
2170 */
2171 fs_info->submit_workers.idle_thresh = 64;
2172
2173 fs_info->workers.idle_thresh = 16;
2174 fs_info->workers.ordered = 1;
2175
2176 fs_info->delalloc_workers.idle_thresh = 2;
2177 fs_info->delalloc_workers.ordered = 1;
2178
2179 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2180 &fs_info->generic_worker);
2181 btrfs_init_workers(&fs_info->endio_workers, "endio",
2182 fs_info->thread_pool_size,
2183 &fs_info->generic_worker);
2184 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2185 fs_info->thread_pool_size,
2186 &fs_info->generic_worker);
2187 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2188 "endio-meta-write", fs_info->thread_pool_size,
2189 &fs_info->generic_worker);
2190 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2191 fs_info->thread_pool_size,
2192 &fs_info->generic_worker);
2193 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2194 1, &fs_info->generic_worker);
2195 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2196 fs_info->thread_pool_size,
2197 &fs_info->generic_worker);
2198 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2199 fs_info->thread_pool_size,
2200 &fs_info->generic_worker);
2201
2202 /*
2203 * endios are largely parallel and should have a very
2204 * low idle thresh
2205 */
2206 fs_info->endio_workers.idle_thresh = 4;
2207 fs_info->endio_meta_workers.idle_thresh = 4;
2208
2209 fs_info->endio_write_workers.idle_thresh = 2;
2210 fs_info->endio_meta_write_workers.idle_thresh = 2;
2211 fs_info->readahead_workers.idle_thresh = 2;
2212
2213 /*
2214 * btrfs_start_workers can really only fail because of ENOMEM so just
2215 * return -ENOMEM if any of these fail.
2216 */
2217 ret = btrfs_start_workers(&fs_info->workers);
2218 ret |= btrfs_start_workers(&fs_info->generic_worker);
2219 ret |= btrfs_start_workers(&fs_info->submit_workers);
2220 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2221 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2222 ret |= btrfs_start_workers(&fs_info->endio_workers);
2223 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2224 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2225 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2226 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2227 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2228 ret |= btrfs_start_workers(&fs_info->caching_workers);
2229 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2230 if (ret) {
2231 ret = -ENOMEM;
2232 goto fail_sb_buffer;
2233 }
2234
2235 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2236 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2237 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2238
2239 nodesize = btrfs_super_nodesize(disk_super);
2240 leafsize = btrfs_super_leafsize(disk_super);
2241 sectorsize = btrfs_super_sectorsize(disk_super);
2242 stripesize = btrfs_super_stripesize(disk_super);
2243 tree_root->nodesize = nodesize;
2244 tree_root->leafsize = leafsize;
2245 tree_root->sectorsize = sectorsize;
2246 tree_root->stripesize = stripesize;
2247
2248 sb->s_blocksize = sectorsize;
2249 sb->s_blocksize_bits = blksize_bits(sectorsize);
2250
2251 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2252 sizeof(disk_super->magic))) {
2253 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2254 goto fail_sb_buffer;
2255 }
2256
2257 if (sectorsize < PAGE_SIZE) {
2258 printk(KERN_WARNING "btrfs: Incompatible sector size "
2259 "found on %s\n", sb->s_id);
2260 goto fail_sb_buffer;
2261 }
2262
2263 mutex_lock(&fs_info->chunk_mutex);
2264 ret = btrfs_read_sys_array(tree_root);
2265 mutex_unlock(&fs_info->chunk_mutex);
2266 if (ret) {
2267 printk(KERN_WARNING "btrfs: failed to read the system "
2268 "array on %s\n", sb->s_id);
2269 goto fail_sb_buffer;
2270 }
2271
2272 blocksize = btrfs_level_size(tree_root,
2273 btrfs_super_chunk_root_level(disk_super));
2274 generation = btrfs_super_chunk_root_generation(disk_super);
2275
2276 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2277 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2278
2279 chunk_root->node = read_tree_block(chunk_root,
2280 btrfs_super_chunk_root(disk_super),
2281 blocksize, generation);
2282 BUG_ON(!chunk_root->node);
2283 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2284 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2285 sb->s_id);
2286 goto fail_tree_roots;
2287 }
2288 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2289 chunk_root->commit_root = btrfs_root_node(chunk_root);
2290
2291 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2292 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2293 BTRFS_UUID_SIZE);
2294
2295 ret = btrfs_read_chunk_tree(chunk_root);
2296 if (ret) {
2297 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2298 sb->s_id);
2299 goto fail_tree_roots;
2300 }
2301
2302 btrfs_close_extra_devices(fs_devices);
2303
2304 if (!fs_devices->latest_bdev) {
2305 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2306 sb->s_id);
2307 goto fail_tree_roots;
2308 }
2309
2310 retry_root_backup:
2311 blocksize = btrfs_level_size(tree_root,
2312 btrfs_super_root_level(disk_super));
2313 generation = btrfs_super_generation(disk_super);
2314
2315 tree_root->node = read_tree_block(tree_root,
2316 btrfs_super_root(disk_super),
2317 blocksize, generation);
2318 if (!tree_root->node ||
2319 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2320 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2321 sb->s_id);
2322
2323 goto recovery_tree_root;
2324 }
2325
2326 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2327 tree_root->commit_root = btrfs_root_node(tree_root);
2328
2329 ret = find_and_setup_root(tree_root, fs_info,
2330 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2331 if (ret)
2332 goto recovery_tree_root;
2333 extent_root->track_dirty = 1;
2334
2335 ret = find_and_setup_root(tree_root, fs_info,
2336 BTRFS_DEV_TREE_OBJECTID, dev_root);
2337 if (ret)
2338 goto recovery_tree_root;
2339 dev_root->track_dirty = 1;
2340
2341 ret = find_and_setup_root(tree_root, fs_info,
2342 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2343 if (ret)
2344 goto recovery_tree_root;
2345
2346 csum_root->track_dirty = 1;
2347
2348 fs_info->generation = generation;
2349 fs_info->last_trans_committed = generation;
2350
2351 ret = btrfs_init_space_info(fs_info);
2352 if (ret) {
2353 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2354 goto fail_block_groups;
2355 }
2356
2357 ret = btrfs_read_block_groups(extent_root);
2358 if (ret) {
2359 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2360 goto fail_block_groups;
2361 }
2362
2363 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2364 "btrfs-cleaner");
2365 if (IS_ERR(fs_info->cleaner_kthread))
2366 goto fail_block_groups;
2367
2368 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2369 tree_root,
2370 "btrfs-transaction");
2371 if (IS_ERR(fs_info->transaction_kthread))
2372 goto fail_cleaner;
2373
2374 if (!btrfs_test_opt(tree_root, SSD) &&
2375 !btrfs_test_opt(tree_root, NOSSD) &&
2376 !fs_info->fs_devices->rotating) {
2377 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2378 "mode\n");
2379 btrfs_set_opt(fs_info->mount_opt, SSD);
2380 }
2381
2382 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2383 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2384 ret = btrfsic_mount(tree_root, fs_devices,
2385 btrfs_test_opt(tree_root,
2386 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2387 1 : 0,
2388 fs_info->check_integrity_print_mask);
2389 if (ret)
2390 printk(KERN_WARNING "btrfs: failed to initialize"
2391 " integrity check module %s\n", sb->s_id);
2392 }
2393 #endif
2394
2395 /* do not make disk changes in broken FS */
2396 if (btrfs_super_log_root(disk_super) != 0 &&
2397 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2398 u64 bytenr = btrfs_super_log_root(disk_super);
2399
2400 if (fs_devices->rw_devices == 0) {
2401 printk(KERN_WARNING "Btrfs log replay required "
2402 "on RO media\n");
2403 err = -EIO;
2404 goto fail_trans_kthread;
2405 }
2406 blocksize =
2407 btrfs_level_size(tree_root,
2408 btrfs_super_log_root_level(disk_super));
2409
2410 log_tree_root = btrfs_alloc_root(fs_info);
2411 if (!log_tree_root) {
2412 err = -ENOMEM;
2413 goto fail_trans_kthread;
2414 }
2415
2416 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2417 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2418
2419 log_tree_root->node = read_tree_block(tree_root, bytenr,
2420 blocksize,
2421 generation + 1);
2422 ret = btrfs_recover_log_trees(log_tree_root);
2423 BUG_ON(ret);
2424
2425 if (sb->s_flags & MS_RDONLY) {
2426 ret = btrfs_commit_super(tree_root);
2427 BUG_ON(ret);
2428 }
2429 }
2430
2431 ret = btrfs_find_orphan_roots(tree_root);
2432 BUG_ON(ret);
2433
2434 if (!(sb->s_flags & MS_RDONLY)) {
2435 ret = btrfs_cleanup_fs_roots(fs_info);
2436 BUG_ON(ret);
2437
2438 ret = btrfs_recover_relocation(tree_root);
2439 if (ret < 0) {
2440 printk(KERN_WARNING
2441 "btrfs: failed to recover relocation\n");
2442 err = -EINVAL;
2443 goto fail_trans_kthread;
2444 }
2445 }
2446
2447 location.objectid = BTRFS_FS_TREE_OBJECTID;
2448 location.type = BTRFS_ROOT_ITEM_KEY;
2449 location.offset = (u64)-1;
2450
2451 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2452 if (!fs_info->fs_root)
2453 goto fail_trans_kthread;
2454 if (IS_ERR(fs_info->fs_root)) {
2455 err = PTR_ERR(fs_info->fs_root);
2456 goto fail_trans_kthread;
2457 }
2458
2459 if (!(sb->s_flags & MS_RDONLY)) {
2460 down_read(&fs_info->cleanup_work_sem);
2461 err = btrfs_orphan_cleanup(fs_info->fs_root);
2462 if (!err)
2463 err = btrfs_orphan_cleanup(fs_info->tree_root);
2464 up_read(&fs_info->cleanup_work_sem);
2465
2466 if (!err)
2467 err = btrfs_recover_balance(fs_info->tree_root);
2468
2469 if (err) {
2470 close_ctree(tree_root);
2471 return err;
2472 }
2473 }
2474
2475 return 0;
2476
2477 fail_trans_kthread:
2478 kthread_stop(fs_info->transaction_kthread);
2479 fail_cleaner:
2480 kthread_stop(fs_info->cleaner_kthread);
2481
2482 /*
2483 * make sure we're done with the btree inode before we stop our
2484 * kthreads
2485 */
2486 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2487 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2488
2489 fail_block_groups:
2490 btrfs_free_block_groups(fs_info);
2491
2492 fail_tree_roots:
2493 free_root_pointers(fs_info, 1);
2494
2495 fail_sb_buffer:
2496 btrfs_stop_workers(&fs_info->generic_worker);
2497 btrfs_stop_workers(&fs_info->readahead_workers);
2498 btrfs_stop_workers(&fs_info->fixup_workers);
2499 btrfs_stop_workers(&fs_info->delalloc_workers);
2500 btrfs_stop_workers(&fs_info->workers);
2501 btrfs_stop_workers(&fs_info->endio_workers);
2502 btrfs_stop_workers(&fs_info->endio_meta_workers);
2503 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2504 btrfs_stop_workers(&fs_info->endio_write_workers);
2505 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2506 btrfs_stop_workers(&fs_info->submit_workers);
2507 btrfs_stop_workers(&fs_info->delayed_workers);
2508 btrfs_stop_workers(&fs_info->caching_workers);
2509 fail_alloc:
2510 fail_iput:
2511 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2512
2513 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2514 iput(fs_info->btree_inode);
2515 fail_bdi:
2516 bdi_destroy(&fs_info->bdi);
2517 fail_srcu:
2518 cleanup_srcu_struct(&fs_info->subvol_srcu);
2519 fail:
2520 btrfs_close_devices(fs_info->fs_devices);
2521 return err;
2522
2523 recovery_tree_root:
2524 if (!btrfs_test_opt(tree_root, RECOVERY))
2525 goto fail_tree_roots;
2526
2527 free_root_pointers(fs_info, 0);
2528
2529 /* don't use the log in recovery mode, it won't be valid */
2530 btrfs_set_super_log_root(disk_super, 0);
2531
2532 /* we can't trust the free space cache either */
2533 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2534
2535 ret = next_root_backup(fs_info, fs_info->super_copy,
2536 &num_backups_tried, &backup_index);
2537 if (ret == -1)
2538 goto fail_block_groups;
2539 goto retry_root_backup;
2540 }
2541
2542 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2543 {
2544 char b[BDEVNAME_SIZE];
2545
2546 if (uptodate) {
2547 set_buffer_uptodate(bh);
2548 } else {
2549 printk_ratelimited(KERN_WARNING "lost page write due to "
2550 "I/O error on %s\n",
2551 bdevname(bh->b_bdev, b));
2552 /* note, we dont' set_buffer_write_io_error because we have
2553 * our own ways of dealing with the IO errors
2554 */
2555 clear_buffer_uptodate(bh);
2556 }
2557 unlock_buffer(bh);
2558 put_bh(bh);
2559 }
2560
2561 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2562 {
2563 struct buffer_head *bh;
2564 struct buffer_head *latest = NULL;
2565 struct btrfs_super_block *super;
2566 int i;
2567 u64 transid = 0;
2568 u64 bytenr;
2569
2570 /* we would like to check all the supers, but that would make
2571 * a btrfs mount succeed after a mkfs from a different FS.
2572 * So, we need to add a special mount option to scan for
2573 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2574 */
2575 for (i = 0; i < 1; i++) {
2576 bytenr = btrfs_sb_offset(i);
2577 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2578 break;
2579 bh = __bread(bdev, bytenr / 4096, 4096);
2580 if (!bh)
2581 continue;
2582
2583 super = (struct btrfs_super_block *)bh->b_data;
2584 if (btrfs_super_bytenr(super) != bytenr ||
2585 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2586 sizeof(super->magic))) {
2587 brelse(bh);
2588 continue;
2589 }
2590
2591 if (!latest || btrfs_super_generation(super) > transid) {
2592 brelse(latest);
2593 latest = bh;
2594 transid = btrfs_super_generation(super);
2595 } else {
2596 brelse(bh);
2597 }
2598 }
2599 return latest;
2600 }
2601
2602 /*
2603 * this should be called twice, once with wait == 0 and
2604 * once with wait == 1. When wait == 0 is done, all the buffer heads
2605 * we write are pinned.
2606 *
2607 * They are released when wait == 1 is done.
2608 * max_mirrors must be the same for both runs, and it indicates how
2609 * many supers on this one device should be written.
2610 *
2611 * max_mirrors == 0 means to write them all.
2612 */
2613 static int write_dev_supers(struct btrfs_device *device,
2614 struct btrfs_super_block *sb,
2615 int do_barriers, int wait, int max_mirrors)
2616 {
2617 struct buffer_head *bh;
2618 int i;
2619 int ret;
2620 int errors = 0;
2621 u32 crc;
2622 u64 bytenr;
2623
2624 if (max_mirrors == 0)
2625 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2626
2627 for (i = 0; i < max_mirrors; i++) {
2628 bytenr = btrfs_sb_offset(i);
2629 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2630 break;
2631
2632 if (wait) {
2633 bh = __find_get_block(device->bdev, bytenr / 4096,
2634 BTRFS_SUPER_INFO_SIZE);
2635 BUG_ON(!bh);
2636 wait_on_buffer(bh);
2637 if (!buffer_uptodate(bh))
2638 errors++;
2639
2640 /* drop our reference */
2641 brelse(bh);
2642
2643 /* drop the reference from the wait == 0 run */
2644 brelse(bh);
2645 continue;
2646 } else {
2647 btrfs_set_super_bytenr(sb, bytenr);
2648
2649 crc = ~(u32)0;
2650 crc = btrfs_csum_data(NULL, (char *)sb +
2651 BTRFS_CSUM_SIZE, crc,
2652 BTRFS_SUPER_INFO_SIZE -
2653 BTRFS_CSUM_SIZE);
2654 btrfs_csum_final(crc, sb->csum);
2655
2656 /*
2657 * one reference for us, and we leave it for the
2658 * caller
2659 */
2660 bh = __getblk(device->bdev, bytenr / 4096,
2661 BTRFS_SUPER_INFO_SIZE);
2662 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2663
2664 /* one reference for submit_bh */
2665 get_bh(bh);
2666
2667 set_buffer_uptodate(bh);
2668 lock_buffer(bh);
2669 bh->b_end_io = btrfs_end_buffer_write_sync;
2670 }
2671
2672 /*
2673 * we fua the first super. The others we allow
2674 * to go down lazy.
2675 */
2676 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2677 if (ret)
2678 errors++;
2679 }
2680 return errors < i ? 0 : -1;
2681 }
2682
2683 /*
2684 * endio for the write_dev_flush, this will wake anyone waiting
2685 * for the barrier when it is done
2686 */
2687 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2688 {
2689 if (err) {
2690 if (err == -EOPNOTSUPP)
2691 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2692 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2693 }
2694 if (bio->bi_private)
2695 complete(bio->bi_private);
2696 bio_put(bio);
2697 }
2698
2699 /*
2700 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2701 * sent down. With wait == 1, it waits for the previous flush.
2702 *
2703 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2704 * capable
2705 */
2706 static int write_dev_flush(struct btrfs_device *device, int wait)
2707 {
2708 struct bio *bio;
2709 int ret = 0;
2710
2711 if (device->nobarriers)
2712 return 0;
2713
2714 if (wait) {
2715 bio = device->flush_bio;
2716 if (!bio)
2717 return 0;
2718
2719 wait_for_completion(&device->flush_wait);
2720
2721 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2722 printk("btrfs: disabling barriers on dev %s\n",
2723 device->name);
2724 device->nobarriers = 1;
2725 }
2726 if (!bio_flagged(bio, BIO_UPTODATE)) {
2727 ret = -EIO;
2728 }
2729
2730 /* drop the reference from the wait == 0 run */
2731 bio_put(bio);
2732 device->flush_bio = NULL;
2733
2734 return ret;
2735 }
2736
2737 /*
2738 * one reference for us, and we leave it for the
2739 * caller
2740 */
2741 device->flush_bio = NULL;;
2742 bio = bio_alloc(GFP_NOFS, 0);
2743 if (!bio)
2744 return -ENOMEM;
2745
2746 bio->bi_end_io = btrfs_end_empty_barrier;
2747 bio->bi_bdev = device->bdev;
2748 init_completion(&device->flush_wait);
2749 bio->bi_private = &device->flush_wait;
2750 device->flush_bio = bio;
2751
2752 bio_get(bio);
2753 btrfsic_submit_bio(WRITE_FLUSH, bio);
2754
2755 return 0;
2756 }
2757
2758 /*
2759 * send an empty flush down to each device in parallel,
2760 * then wait for them
2761 */
2762 static int barrier_all_devices(struct btrfs_fs_info *info)
2763 {
2764 struct list_head *head;
2765 struct btrfs_device *dev;
2766 int errors = 0;
2767 int ret;
2768
2769 /* send down all the barriers */
2770 head = &info->fs_devices->devices;
2771 list_for_each_entry_rcu(dev, head, dev_list) {
2772 if (!dev->bdev) {
2773 errors++;
2774 continue;
2775 }
2776 if (!dev->in_fs_metadata || !dev->writeable)
2777 continue;
2778
2779 ret = write_dev_flush(dev, 0);
2780 if (ret)
2781 errors++;
2782 }
2783
2784 /* wait for all the barriers */
2785 list_for_each_entry_rcu(dev, head, dev_list) {
2786 if (!dev->bdev) {
2787 errors++;
2788 continue;
2789 }
2790 if (!dev->in_fs_metadata || !dev->writeable)
2791 continue;
2792
2793 ret = write_dev_flush(dev, 1);
2794 if (ret)
2795 errors++;
2796 }
2797 if (errors)
2798 return -EIO;
2799 return 0;
2800 }
2801
2802 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2803 {
2804 struct list_head *head;
2805 struct btrfs_device *dev;
2806 struct btrfs_super_block *sb;
2807 struct btrfs_dev_item *dev_item;
2808 int ret;
2809 int do_barriers;
2810 int max_errors;
2811 int total_errors = 0;
2812 u64 flags;
2813
2814 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2815 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2816 backup_super_roots(root->fs_info);
2817
2818 sb = root->fs_info->super_for_commit;
2819 dev_item = &sb->dev_item;
2820
2821 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2822 head = &root->fs_info->fs_devices->devices;
2823
2824 if (do_barriers)
2825 barrier_all_devices(root->fs_info);
2826
2827 list_for_each_entry_rcu(dev, head, dev_list) {
2828 if (!dev->bdev) {
2829 total_errors++;
2830 continue;
2831 }
2832 if (!dev->in_fs_metadata || !dev->writeable)
2833 continue;
2834
2835 btrfs_set_stack_device_generation(dev_item, 0);
2836 btrfs_set_stack_device_type(dev_item, dev->type);
2837 btrfs_set_stack_device_id(dev_item, dev->devid);
2838 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2839 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2840 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2841 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2842 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2843 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2844 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2845
2846 flags = btrfs_super_flags(sb);
2847 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2848
2849 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2850 if (ret)
2851 total_errors++;
2852 }
2853 if (total_errors > max_errors) {
2854 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2855 total_errors);
2856 BUG();
2857 }
2858
2859 total_errors = 0;
2860 list_for_each_entry_rcu(dev, head, dev_list) {
2861 if (!dev->bdev)
2862 continue;
2863 if (!dev->in_fs_metadata || !dev->writeable)
2864 continue;
2865
2866 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2867 if (ret)
2868 total_errors++;
2869 }
2870 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2871 if (total_errors > max_errors) {
2872 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2873 total_errors);
2874 BUG();
2875 }
2876 return 0;
2877 }
2878
2879 int write_ctree_super(struct btrfs_trans_handle *trans,
2880 struct btrfs_root *root, int max_mirrors)
2881 {
2882 int ret;
2883
2884 ret = write_all_supers(root, max_mirrors);
2885 return ret;
2886 }
2887
2888 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2889 {
2890 spin_lock(&fs_info->fs_roots_radix_lock);
2891 radix_tree_delete(&fs_info->fs_roots_radix,
2892 (unsigned long)root->root_key.objectid);
2893 spin_unlock(&fs_info->fs_roots_radix_lock);
2894
2895 if (btrfs_root_refs(&root->root_item) == 0)
2896 synchronize_srcu(&fs_info->subvol_srcu);
2897
2898 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2899 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2900 free_fs_root(root);
2901 return 0;
2902 }
2903
2904 static void free_fs_root(struct btrfs_root *root)
2905 {
2906 iput(root->cache_inode);
2907 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2908 if (root->anon_dev)
2909 free_anon_bdev(root->anon_dev);
2910 free_extent_buffer(root->node);
2911 free_extent_buffer(root->commit_root);
2912 kfree(root->free_ino_ctl);
2913 kfree(root->free_ino_pinned);
2914 kfree(root->name);
2915 kfree(root);
2916 }
2917
2918 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2919 {
2920 int ret;
2921 struct btrfs_root *gang[8];
2922 int i;
2923
2924 while (!list_empty(&fs_info->dead_roots)) {
2925 gang[0] = list_entry(fs_info->dead_roots.next,
2926 struct btrfs_root, root_list);
2927 list_del(&gang[0]->root_list);
2928
2929 if (gang[0]->in_radix) {
2930 btrfs_free_fs_root(fs_info, gang[0]);
2931 } else {
2932 free_extent_buffer(gang[0]->node);
2933 free_extent_buffer(gang[0]->commit_root);
2934 kfree(gang[0]);
2935 }
2936 }
2937
2938 while (1) {
2939 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2940 (void **)gang, 0,
2941 ARRAY_SIZE(gang));
2942 if (!ret)
2943 break;
2944 for (i = 0; i < ret; i++)
2945 btrfs_free_fs_root(fs_info, gang[i]);
2946 }
2947 return 0;
2948 }
2949
2950 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2951 {
2952 u64 root_objectid = 0;
2953 struct btrfs_root *gang[8];
2954 int i;
2955 int ret;
2956
2957 while (1) {
2958 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2959 (void **)gang, root_objectid,
2960 ARRAY_SIZE(gang));
2961 if (!ret)
2962 break;
2963
2964 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2965 for (i = 0; i < ret; i++) {
2966 int err;
2967
2968 root_objectid = gang[i]->root_key.objectid;
2969 err = btrfs_orphan_cleanup(gang[i]);
2970 if (err)
2971 return err;
2972 }
2973 root_objectid++;
2974 }
2975 return 0;
2976 }
2977
2978 int btrfs_commit_super(struct btrfs_root *root)
2979 {
2980 struct btrfs_trans_handle *trans;
2981 int ret;
2982
2983 mutex_lock(&root->fs_info->cleaner_mutex);
2984 btrfs_run_delayed_iputs(root);
2985 btrfs_clean_old_snapshots(root);
2986 mutex_unlock(&root->fs_info->cleaner_mutex);
2987
2988 /* wait until ongoing cleanup work done */
2989 down_write(&root->fs_info->cleanup_work_sem);
2990 up_write(&root->fs_info->cleanup_work_sem);
2991
2992 trans = btrfs_join_transaction(root);
2993 if (IS_ERR(trans))
2994 return PTR_ERR(trans);
2995 ret = btrfs_commit_transaction(trans, root);
2996 BUG_ON(ret);
2997 /* run commit again to drop the original snapshot */
2998 trans = btrfs_join_transaction(root);
2999 if (IS_ERR(trans))
3000 return PTR_ERR(trans);
3001 btrfs_commit_transaction(trans, root);
3002 ret = btrfs_write_and_wait_transaction(NULL, root);
3003 BUG_ON(ret);
3004
3005 ret = write_ctree_super(NULL, root, 0);
3006 return ret;
3007 }
3008
3009 int close_ctree(struct btrfs_root *root)
3010 {
3011 struct btrfs_fs_info *fs_info = root->fs_info;
3012 int ret;
3013
3014 fs_info->closing = 1;
3015 smp_mb();
3016
3017 /* pause restriper - we want to resume on mount */
3018 btrfs_pause_balance(root->fs_info);
3019
3020 btrfs_scrub_cancel(root);
3021
3022 /* wait for any defraggers to finish */
3023 wait_event(fs_info->transaction_wait,
3024 (atomic_read(&fs_info->defrag_running) == 0));
3025
3026 /* clear out the rbtree of defraggable inodes */
3027 btrfs_run_defrag_inodes(fs_info);
3028
3029 /*
3030 * Here come 2 situations when btrfs is broken to flip readonly:
3031 *
3032 * 1. when btrfs flips readonly somewhere else before
3033 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3034 * and btrfs will skip to write sb directly to keep
3035 * ERROR state on disk.
3036 *
3037 * 2. when btrfs flips readonly just in btrfs_commit_super,
3038 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3039 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3040 * btrfs will cleanup all FS resources first and write sb then.
3041 */
3042 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3043 ret = btrfs_commit_super(root);
3044 if (ret)
3045 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3046 }
3047
3048 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3049 ret = btrfs_error_commit_super(root);
3050 if (ret)
3051 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3052 }
3053
3054 btrfs_put_block_group_cache(fs_info);
3055
3056 kthread_stop(fs_info->transaction_kthread);
3057 kthread_stop(fs_info->cleaner_kthread);
3058
3059 fs_info->closing = 2;
3060 smp_mb();
3061
3062 if (fs_info->delalloc_bytes) {
3063 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3064 (unsigned long long)fs_info->delalloc_bytes);
3065 }
3066 if (fs_info->total_ref_cache_size) {
3067 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3068 (unsigned long long)fs_info->total_ref_cache_size);
3069 }
3070
3071 free_extent_buffer(fs_info->extent_root->node);
3072 free_extent_buffer(fs_info->extent_root->commit_root);
3073 free_extent_buffer(fs_info->tree_root->node);
3074 free_extent_buffer(fs_info->tree_root->commit_root);
3075 free_extent_buffer(fs_info->chunk_root->node);
3076 free_extent_buffer(fs_info->chunk_root->commit_root);
3077 free_extent_buffer(fs_info->dev_root->node);
3078 free_extent_buffer(fs_info->dev_root->commit_root);
3079 free_extent_buffer(fs_info->csum_root->node);
3080 free_extent_buffer(fs_info->csum_root->commit_root);
3081
3082 btrfs_free_block_groups(fs_info);
3083
3084 del_fs_roots(fs_info);
3085
3086 iput(fs_info->btree_inode);
3087
3088 btrfs_stop_workers(&fs_info->generic_worker);
3089 btrfs_stop_workers(&fs_info->fixup_workers);
3090 btrfs_stop_workers(&fs_info->delalloc_workers);
3091 btrfs_stop_workers(&fs_info->workers);
3092 btrfs_stop_workers(&fs_info->endio_workers);
3093 btrfs_stop_workers(&fs_info->endio_meta_workers);
3094 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3095 btrfs_stop_workers(&fs_info->endio_write_workers);
3096 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3097 btrfs_stop_workers(&fs_info->submit_workers);
3098 btrfs_stop_workers(&fs_info->delayed_workers);
3099 btrfs_stop_workers(&fs_info->caching_workers);
3100 btrfs_stop_workers(&fs_info->readahead_workers);
3101
3102 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3103 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3104 btrfsic_unmount(root, fs_info->fs_devices);
3105 #endif
3106
3107 btrfs_close_devices(fs_info->fs_devices);
3108 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3109
3110 bdi_destroy(&fs_info->bdi);
3111 cleanup_srcu_struct(&fs_info->subvol_srcu);
3112
3113 return 0;
3114 }
3115
3116 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
3117 {
3118 int ret;
3119 struct inode *btree_inode = buf->pages[0]->mapping->host;
3120
3121 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3122 NULL);
3123 if (!ret)
3124 return ret;
3125
3126 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3127 parent_transid);
3128 return !ret;
3129 }
3130
3131 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3132 {
3133 struct inode *btree_inode = buf->pages[0]->mapping->host;
3134 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
3135 buf);
3136 }
3137
3138 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3139 {
3140 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3141 u64 transid = btrfs_header_generation(buf);
3142 struct inode *btree_inode = root->fs_info->btree_inode;
3143 int was_dirty;
3144
3145 btrfs_assert_tree_locked(buf);
3146 if (transid != root->fs_info->generation) {
3147 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3148 "found %llu running %llu\n",
3149 (unsigned long long)buf->start,
3150 (unsigned long long)transid,
3151 (unsigned long long)root->fs_info->generation);
3152 WARN_ON(1);
3153 }
3154 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3155 buf);
3156 if (!was_dirty) {
3157 spin_lock(&root->fs_info->delalloc_lock);
3158 root->fs_info->dirty_metadata_bytes += buf->len;
3159 spin_unlock(&root->fs_info->delalloc_lock);
3160 }
3161 }
3162
3163 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3164 {
3165 /*
3166 * looks as though older kernels can get into trouble with
3167 * this code, they end up stuck in balance_dirty_pages forever
3168 */
3169 u64 num_dirty;
3170 unsigned long thresh = 32 * 1024 * 1024;
3171
3172 if (current->flags & PF_MEMALLOC)
3173 return;
3174
3175 btrfs_balance_delayed_items(root);
3176
3177 num_dirty = root->fs_info->dirty_metadata_bytes;
3178
3179 if (num_dirty > thresh) {
3180 balance_dirty_pages_ratelimited_nr(
3181 root->fs_info->btree_inode->i_mapping, 1);
3182 }
3183 return;
3184 }
3185
3186 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3187 {
3188 /*
3189 * looks as though older kernels can get into trouble with
3190 * this code, they end up stuck in balance_dirty_pages forever
3191 */
3192 u64 num_dirty;
3193 unsigned long thresh = 32 * 1024 * 1024;
3194
3195 if (current->flags & PF_MEMALLOC)
3196 return;
3197
3198 num_dirty = root->fs_info->dirty_metadata_bytes;
3199
3200 if (num_dirty > thresh) {
3201 balance_dirty_pages_ratelimited_nr(
3202 root->fs_info->btree_inode->i_mapping, 1);
3203 }
3204 return;
3205 }
3206
3207 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3208 {
3209 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3210 int ret;
3211 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3212 if (ret == 0)
3213 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
3214 return ret;
3215 }
3216
3217 static int btree_lock_page_hook(struct page *page, void *data,
3218 void (*flush_fn)(void *))
3219 {
3220 struct inode *inode = page->mapping->host;
3221 struct btrfs_root *root = BTRFS_I(inode)->root;
3222 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3223 struct extent_buffer *eb;
3224 unsigned long len;
3225 u64 bytenr = page_offset(page);
3226
3227 if (page->private == EXTENT_PAGE_PRIVATE)
3228 goto out;
3229
3230 len = page->private >> 2;
3231 eb = find_extent_buffer(io_tree, bytenr, len);
3232 if (!eb)
3233 goto out;
3234
3235 if (!btrfs_try_tree_write_lock(eb)) {
3236 flush_fn(data);
3237 btrfs_tree_lock(eb);
3238 }
3239 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3240
3241 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3242 spin_lock(&root->fs_info->delalloc_lock);
3243 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3244 root->fs_info->dirty_metadata_bytes -= eb->len;
3245 else
3246 WARN_ON(1);
3247 spin_unlock(&root->fs_info->delalloc_lock);
3248 }
3249
3250 btrfs_tree_unlock(eb);
3251 free_extent_buffer(eb);
3252 out:
3253 if (!trylock_page(page)) {
3254 flush_fn(data);
3255 lock_page(page);
3256 }
3257 return 0;
3258 }
3259
3260 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3261 int read_only)
3262 {
3263 if (read_only)
3264 return;
3265
3266 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3267 printk(KERN_WARNING "warning: mount fs with errors, "
3268 "running btrfsck is recommended\n");
3269 }
3270
3271 int btrfs_error_commit_super(struct btrfs_root *root)
3272 {
3273 int ret;
3274
3275 mutex_lock(&root->fs_info->cleaner_mutex);
3276 btrfs_run_delayed_iputs(root);
3277 mutex_unlock(&root->fs_info->cleaner_mutex);
3278
3279 down_write(&root->fs_info->cleanup_work_sem);
3280 up_write(&root->fs_info->cleanup_work_sem);
3281
3282 /* cleanup FS via transaction */
3283 btrfs_cleanup_transaction(root);
3284
3285 ret = write_ctree_super(NULL, root, 0);
3286
3287 return ret;
3288 }
3289
3290 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3291 {
3292 struct btrfs_inode *btrfs_inode;
3293 struct list_head splice;
3294
3295 INIT_LIST_HEAD(&splice);
3296
3297 mutex_lock(&root->fs_info->ordered_operations_mutex);
3298 spin_lock(&root->fs_info->ordered_extent_lock);
3299
3300 list_splice_init(&root->fs_info->ordered_operations, &splice);
3301 while (!list_empty(&splice)) {
3302 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3303 ordered_operations);
3304
3305 list_del_init(&btrfs_inode->ordered_operations);
3306
3307 btrfs_invalidate_inodes(btrfs_inode->root);
3308 }
3309
3310 spin_unlock(&root->fs_info->ordered_extent_lock);
3311 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3312
3313 return 0;
3314 }
3315
3316 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3317 {
3318 struct list_head splice;
3319 struct btrfs_ordered_extent *ordered;
3320 struct inode *inode;
3321
3322 INIT_LIST_HEAD(&splice);
3323
3324 spin_lock(&root->fs_info->ordered_extent_lock);
3325
3326 list_splice_init(&root->fs_info->ordered_extents, &splice);
3327 while (!list_empty(&splice)) {
3328 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3329 root_extent_list);
3330
3331 list_del_init(&ordered->root_extent_list);
3332 atomic_inc(&ordered->refs);
3333
3334 /* the inode may be getting freed (in sys_unlink path). */
3335 inode = igrab(ordered->inode);
3336
3337 spin_unlock(&root->fs_info->ordered_extent_lock);
3338 if (inode)
3339 iput(inode);
3340
3341 atomic_set(&ordered->refs, 1);
3342 btrfs_put_ordered_extent(ordered);
3343
3344 spin_lock(&root->fs_info->ordered_extent_lock);
3345 }
3346
3347 spin_unlock(&root->fs_info->ordered_extent_lock);
3348
3349 return 0;
3350 }
3351
3352 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3353 struct btrfs_root *root)
3354 {
3355 struct rb_node *node;
3356 struct btrfs_delayed_ref_root *delayed_refs;
3357 struct btrfs_delayed_ref_node *ref;
3358 int ret = 0;
3359
3360 delayed_refs = &trans->delayed_refs;
3361
3362 spin_lock(&delayed_refs->lock);
3363 if (delayed_refs->num_entries == 0) {
3364 spin_unlock(&delayed_refs->lock);
3365 printk(KERN_INFO "delayed_refs has NO entry\n");
3366 return ret;
3367 }
3368
3369 node = rb_first(&delayed_refs->root);
3370 while (node) {
3371 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3372 node = rb_next(node);
3373
3374 ref->in_tree = 0;
3375 rb_erase(&ref->rb_node, &delayed_refs->root);
3376 delayed_refs->num_entries--;
3377
3378 atomic_set(&ref->refs, 1);
3379 if (btrfs_delayed_ref_is_head(ref)) {
3380 struct btrfs_delayed_ref_head *head;
3381
3382 head = btrfs_delayed_node_to_head(ref);
3383 mutex_lock(&head->mutex);
3384 kfree(head->extent_op);
3385 delayed_refs->num_heads--;
3386 if (list_empty(&head->cluster))
3387 delayed_refs->num_heads_ready--;
3388 list_del_init(&head->cluster);
3389 mutex_unlock(&head->mutex);
3390 }
3391
3392 spin_unlock(&delayed_refs->lock);
3393 btrfs_put_delayed_ref(ref);
3394
3395 cond_resched();
3396 spin_lock(&delayed_refs->lock);
3397 }
3398
3399 spin_unlock(&delayed_refs->lock);
3400
3401 return ret;
3402 }
3403
3404 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3405 {
3406 struct btrfs_pending_snapshot *snapshot;
3407 struct list_head splice;
3408
3409 INIT_LIST_HEAD(&splice);
3410
3411 list_splice_init(&t->pending_snapshots, &splice);
3412
3413 while (!list_empty(&splice)) {
3414 snapshot = list_entry(splice.next,
3415 struct btrfs_pending_snapshot,
3416 list);
3417
3418 list_del_init(&snapshot->list);
3419
3420 kfree(snapshot);
3421 }
3422
3423 return 0;
3424 }
3425
3426 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3427 {
3428 struct btrfs_inode *btrfs_inode;
3429 struct list_head splice;
3430
3431 INIT_LIST_HEAD(&splice);
3432
3433 spin_lock(&root->fs_info->delalloc_lock);
3434 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3435
3436 while (!list_empty(&splice)) {
3437 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3438 delalloc_inodes);
3439
3440 list_del_init(&btrfs_inode->delalloc_inodes);
3441
3442 btrfs_invalidate_inodes(btrfs_inode->root);
3443 }
3444
3445 spin_unlock(&root->fs_info->delalloc_lock);
3446
3447 return 0;
3448 }
3449
3450 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3451 struct extent_io_tree *dirty_pages,
3452 int mark)
3453 {
3454 int ret;
3455 struct page *page;
3456 struct inode *btree_inode = root->fs_info->btree_inode;
3457 struct extent_buffer *eb;
3458 u64 start = 0;
3459 u64 end;
3460 u64 offset;
3461 unsigned long index;
3462
3463 while (1) {
3464 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3465 mark);
3466 if (ret)
3467 break;
3468
3469 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3470 while (start <= end) {
3471 index = start >> PAGE_CACHE_SHIFT;
3472 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3473 page = find_get_page(btree_inode->i_mapping, index);
3474 if (!page)
3475 continue;
3476 offset = page_offset(page);
3477
3478 spin_lock(&dirty_pages->buffer_lock);
3479 eb = radix_tree_lookup(
3480 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3481 offset >> PAGE_CACHE_SHIFT);
3482 spin_unlock(&dirty_pages->buffer_lock);
3483 if (eb) {
3484 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3485 &eb->bflags);
3486 atomic_set(&eb->refs, 1);
3487 }
3488 if (PageWriteback(page))
3489 end_page_writeback(page);
3490
3491 lock_page(page);
3492 if (PageDirty(page)) {
3493 clear_page_dirty_for_io(page);
3494 spin_lock_irq(&page->mapping->tree_lock);
3495 radix_tree_tag_clear(&page->mapping->page_tree,
3496 page_index(page),
3497 PAGECACHE_TAG_DIRTY);
3498 spin_unlock_irq(&page->mapping->tree_lock);
3499 }
3500
3501 page->mapping->a_ops->invalidatepage(page, 0);
3502 unlock_page(page);
3503 }
3504 }
3505
3506 return ret;
3507 }
3508
3509 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3510 struct extent_io_tree *pinned_extents)
3511 {
3512 struct extent_io_tree *unpin;
3513 u64 start;
3514 u64 end;
3515 int ret;
3516
3517 unpin = pinned_extents;
3518 while (1) {
3519 ret = find_first_extent_bit(unpin, 0, &start, &end,
3520 EXTENT_DIRTY);
3521 if (ret)
3522 break;
3523
3524 /* opt_discard */
3525 if (btrfs_test_opt(root, DISCARD))
3526 ret = btrfs_error_discard_extent(root, start,
3527 end + 1 - start,
3528 NULL);
3529
3530 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3531 btrfs_error_unpin_extent_range(root, start, end);
3532 cond_resched();
3533 }
3534
3535 return 0;
3536 }
3537
3538 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3539 {
3540 struct btrfs_transaction *t;
3541 LIST_HEAD(list);
3542
3543 WARN_ON(1);
3544
3545 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3546
3547 spin_lock(&root->fs_info->trans_lock);
3548 list_splice_init(&root->fs_info->trans_list, &list);
3549 root->fs_info->trans_no_join = 1;
3550 spin_unlock(&root->fs_info->trans_lock);
3551
3552 while (!list_empty(&list)) {
3553 t = list_entry(list.next, struct btrfs_transaction, list);
3554 if (!t)
3555 break;
3556
3557 btrfs_destroy_ordered_operations(root);
3558
3559 btrfs_destroy_ordered_extents(root);
3560
3561 btrfs_destroy_delayed_refs(t, root);
3562
3563 btrfs_block_rsv_release(root,
3564 &root->fs_info->trans_block_rsv,
3565 t->dirty_pages.dirty_bytes);
3566
3567 /* FIXME: cleanup wait for commit */
3568 t->in_commit = 1;
3569 t->blocked = 1;
3570 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3571 wake_up(&root->fs_info->transaction_blocked_wait);
3572
3573 t->blocked = 0;
3574 if (waitqueue_active(&root->fs_info->transaction_wait))
3575 wake_up(&root->fs_info->transaction_wait);
3576
3577 t->commit_done = 1;
3578 if (waitqueue_active(&t->commit_wait))
3579 wake_up(&t->commit_wait);
3580
3581 btrfs_destroy_pending_snapshots(t);
3582
3583 btrfs_destroy_delalloc_inodes(root);
3584
3585 spin_lock(&root->fs_info->trans_lock);
3586 root->fs_info->running_transaction = NULL;
3587 spin_unlock(&root->fs_info->trans_lock);
3588
3589 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3590 EXTENT_DIRTY);
3591
3592 btrfs_destroy_pinned_extent(root,
3593 root->fs_info->pinned_extents);
3594
3595 atomic_set(&t->use_count, 0);
3596 list_del_init(&t->list);
3597 memset(t, 0, sizeof(*t));
3598 kmem_cache_free(btrfs_transaction_cachep, t);
3599 }
3600
3601 spin_lock(&root->fs_info->trans_lock);
3602 root->fs_info->trans_no_join = 0;
3603 spin_unlock(&root->fs_info->trans_lock);
3604 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3605
3606 return 0;
3607 }
3608
3609 static struct extent_io_ops btree_extent_io_ops = {
3610 .write_cache_pages_lock_hook = btree_lock_page_hook,
3611 .readpage_end_io_hook = btree_readpage_end_io_hook,
3612 .readpage_io_failed_hook = btree_io_failed_hook,
3613 .submit_bio_hook = btree_submit_bio_hook,
3614 /* note we're sharing with inode.c for the merge bio hook */
3615 .merge_bio_hook = btrfs_merge_bio_hook,
3616 };
This page took 0.121433 seconds and 6 git commands to generate.