Merge tag 'upstream-3.8-rc1' of git://git.infradead.org/linux-ubi
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49
50 #ifdef CONFIG_X86
51 #include <asm/cpufeature.h>
52 #endif
53
54 static struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void free_fs_root(struct btrfs_root *root);
57 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
58 int read_only);
59 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
60 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
61 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
62 struct btrfs_root *root);
63 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
64 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
65 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
66 struct extent_io_tree *dirty_pages,
67 int mark);
68 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
69 struct extent_io_tree *pinned_extents);
70
71 /*
72 * end_io_wq structs are used to do processing in task context when an IO is
73 * complete. This is used during reads to verify checksums, and it is used
74 * by writes to insert metadata for new file extents after IO is complete.
75 */
76 struct end_io_wq {
77 struct bio *bio;
78 bio_end_io_t *end_io;
79 void *private;
80 struct btrfs_fs_info *info;
81 int error;
82 int metadata;
83 struct list_head list;
84 struct btrfs_work work;
85 };
86
87 /*
88 * async submit bios are used to offload expensive checksumming
89 * onto the worker threads. They checksum file and metadata bios
90 * just before they are sent down the IO stack.
91 */
92 struct async_submit_bio {
93 struct inode *inode;
94 struct bio *bio;
95 struct list_head list;
96 extent_submit_bio_hook_t *submit_bio_start;
97 extent_submit_bio_hook_t *submit_bio_done;
98 int rw;
99 int mirror_num;
100 unsigned long bio_flags;
101 /*
102 * bio_offset is optional, can be used if the pages in the bio
103 * can't tell us where in the file the bio should go
104 */
105 u64 bio_offset;
106 struct btrfs_work work;
107 int error;
108 };
109
110 /*
111 * Lockdep class keys for extent_buffer->lock's in this root. For a given
112 * eb, the lockdep key is determined by the btrfs_root it belongs to and
113 * the level the eb occupies in the tree.
114 *
115 * Different roots are used for different purposes and may nest inside each
116 * other and they require separate keysets. As lockdep keys should be
117 * static, assign keysets according to the purpose of the root as indicated
118 * by btrfs_root->objectid. This ensures that all special purpose roots
119 * have separate keysets.
120 *
121 * Lock-nesting across peer nodes is always done with the immediate parent
122 * node locked thus preventing deadlock. As lockdep doesn't know this, use
123 * subclass to avoid triggering lockdep warning in such cases.
124 *
125 * The key is set by the readpage_end_io_hook after the buffer has passed
126 * csum validation but before the pages are unlocked. It is also set by
127 * btrfs_init_new_buffer on freshly allocated blocks.
128 *
129 * We also add a check to make sure the highest level of the tree is the
130 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
131 * needs update as well.
132 */
133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
134 # if BTRFS_MAX_LEVEL != 8
135 # error
136 # endif
137
138 static struct btrfs_lockdep_keyset {
139 u64 id; /* root objectid */
140 const char *name_stem; /* lock name stem */
141 char names[BTRFS_MAX_LEVEL + 1][20];
142 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
143 } btrfs_lockdep_keysets[] = {
144 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
145 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
146 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
147 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
148 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
149 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
150 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
151 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
152 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
153 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
154 { .id = 0, .name_stem = "tree" },
155 };
156
157 void __init btrfs_init_lockdep(void)
158 {
159 int i, j;
160
161 /* initialize lockdep class names */
162 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
163 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
164
165 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
166 snprintf(ks->names[j], sizeof(ks->names[j]),
167 "btrfs-%s-%02d", ks->name_stem, j);
168 }
169 }
170
171 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
172 int level)
173 {
174 struct btrfs_lockdep_keyset *ks;
175
176 BUG_ON(level >= ARRAY_SIZE(ks->keys));
177
178 /* find the matching keyset, id 0 is the default entry */
179 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
180 if (ks->id == objectid)
181 break;
182
183 lockdep_set_class_and_name(&eb->lock,
184 &ks->keys[level], ks->names[level]);
185 }
186
187 #endif
188
189 /*
190 * extents on the btree inode are pretty simple, there's one extent
191 * that covers the entire device
192 */
193 static struct extent_map *btree_get_extent(struct inode *inode,
194 struct page *page, size_t pg_offset, u64 start, u64 len,
195 int create)
196 {
197 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
198 struct extent_map *em;
199 int ret;
200
201 read_lock(&em_tree->lock);
202 em = lookup_extent_mapping(em_tree, start, len);
203 if (em) {
204 em->bdev =
205 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
206 read_unlock(&em_tree->lock);
207 goto out;
208 }
209 read_unlock(&em_tree->lock);
210
211 em = alloc_extent_map();
212 if (!em) {
213 em = ERR_PTR(-ENOMEM);
214 goto out;
215 }
216 em->start = 0;
217 em->len = (u64)-1;
218 em->block_len = (u64)-1;
219 em->block_start = 0;
220 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
221
222 write_lock(&em_tree->lock);
223 ret = add_extent_mapping(em_tree, em);
224 if (ret == -EEXIST) {
225 free_extent_map(em);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (!em)
228 em = ERR_PTR(-EIO);
229 } else if (ret) {
230 free_extent_map(em);
231 em = ERR_PTR(ret);
232 }
233 write_unlock(&em_tree->lock);
234
235 out:
236 return em;
237 }
238
239 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
240 {
241 return crc32c(seed, data, len);
242 }
243
244 void btrfs_csum_final(u32 crc, char *result)
245 {
246 put_unaligned_le32(~crc, result);
247 }
248
249 /*
250 * compute the csum for a btree block, and either verify it or write it
251 * into the csum field of the block.
252 */
253 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
254 int verify)
255 {
256 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
257 char *result = NULL;
258 unsigned long len;
259 unsigned long cur_len;
260 unsigned long offset = BTRFS_CSUM_SIZE;
261 char *kaddr;
262 unsigned long map_start;
263 unsigned long map_len;
264 int err;
265 u32 crc = ~(u32)0;
266 unsigned long inline_result;
267
268 len = buf->len - offset;
269 while (len > 0) {
270 err = map_private_extent_buffer(buf, offset, 32,
271 &kaddr, &map_start, &map_len);
272 if (err)
273 return 1;
274 cur_len = min(len, map_len - (offset - map_start));
275 crc = btrfs_csum_data(root, kaddr + offset - map_start,
276 crc, cur_len);
277 len -= cur_len;
278 offset += cur_len;
279 }
280 if (csum_size > sizeof(inline_result)) {
281 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
282 if (!result)
283 return 1;
284 } else {
285 result = (char *)&inline_result;
286 }
287
288 btrfs_csum_final(crc, result);
289
290 if (verify) {
291 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
292 u32 val;
293 u32 found = 0;
294 memcpy(&found, result, csum_size);
295
296 read_extent_buffer(buf, &val, 0, csum_size);
297 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
298 "failed on %llu wanted %X found %X "
299 "level %d\n",
300 root->fs_info->sb->s_id,
301 (unsigned long long)buf->start, val, found,
302 btrfs_header_level(buf));
303 if (result != (char *)&inline_result)
304 kfree(result);
305 return 1;
306 }
307 } else {
308 write_extent_buffer(buf, result, 0, csum_size);
309 }
310 if (result != (char *)&inline_result)
311 kfree(result);
312 return 0;
313 }
314
315 /*
316 * we can't consider a given block up to date unless the transid of the
317 * block matches the transid in the parent node's pointer. This is how we
318 * detect blocks that either didn't get written at all or got written
319 * in the wrong place.
320 */
321 static int verify_parent_transid(struct extent_io_tree *io_tree,
322 struct extent_buffer *eb, u64 parent_transid,
323 int atomic)
324 {
325 struct extent_state *cached_state = NULL;
326 int ret;
327
328 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
329 return 0;
330
331 if (atomic)
332 return -EAGAIN;
333
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state);
336 if (extent_buffer_uptodate(eb) &&
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
346 ret = 1;
347 clear_extent_buffer_uptodate(eb);
348 out:
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
351 return ret;
352 }
353
354 /*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
360 u64 start, u64 parent_transid)
361 {
362 struct extent_io_tree *io_tree;
363 int failed = 0;
364 int ret;
365 int num_copies = 0;
366 int mirror_num = 0;
367 int failed_mirror = 0;
368
369 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
370 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371 while (1) {
372 ret = read_extent_buffer_pages(io_tree, eb, start,
373 WAIT_COMPLETE,
374 btree_get_extent, mirror_num);
375 if (!ret) {
376 if (!verify_parent_transid(io_tree, eb,
377 parent_transid, 0))
378 break;
379 else
380 ret = -EIO;
381 }
382
383 /*
384 * This buffer's crc is fine, but its contents are corrupted, so
385 * there is no reason to read the other copies, they won't be
386 * any less wrong.
387 */
388 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
389 break;
390
391 num_copies = btrfs_num_copies(root->fs_info,
392 eb->start, eb->len);
393 if (num_copies == 1)
394 break;
395
396 if (!failed_mirror) {
397 failed = 1;
398 failed_mirror = eb->read_mirror;
399 }
400
401 mirror_num++;
402 if (mirror_num == failed_mirror)
403 mirror_num++;
404
405 if (mirror_num > num_copies)
406 break;
407 }
408
409 if (failed && !ret && failed_mirror)
410 repair_eb_io_failure(root, eb, failed_mirror);
411
412 return ret;
413 }
414
415 /*
416 * checksum a dirty tree block before IO. This has extra checks to make sure
417 * we only fill in the checksum field in the first page of a multi-page block
418 */
419
420 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
421 {
422 struct extent_io_tree *tree;
423 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
424 u64 found_start;
425 struct extent_buffer *eb;
426
427 tree = &BTRFS_I(page->mapping->host)->io_tree;
428
429 eb = (struct extent_buffer *)page->private;
430 if (page != eb->pages[0])
431 return 0;
432 found_start = btrfs_header_bytenr(eb);
433 if (found_start != start) {
434 WARN_ON(1);
435 return 0;
436 }
437 if (!PageUptodate(page)) {
438 WARN_ON(1);
439 return 0;
440 }
441 csum_tree_block(root, eb, 0);
442 return 0;
443 }
444
445 static int check_tree_block_fsid(struct btrfs_root *root,
446 struct extent_buffer *eb)
447 {
448 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
449 u8 fsid[BTRFS_UUID_SIZE];
450 int ret = 1;
451
452 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
453 BTRFS_FSID_SIZE);
454 while (fs_devices) {
455 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
456 ret = 0;
457 break;
458 }
459 fs_devices = fs_devices->seed;
460 }
461 return ret;
462 }
463
464 #define CORRUPT(reason, eb, root, slot) \
465 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
466 "root=%llu, slot=%d\n", reason, \
467 (unsigned long long)btrfs_header_bytenr(eb), \
468 (unsigned long long)root->objectid, slot)
469
470 static noinline int check_leaf(struct btrfs_root *root,
471 struct extent_buffer *leaf)
472 {
473 struct btrfs_key key;
474 struct btrfs_key leaf_key;
475 u32 nritems = btrfs_header_nritems(leaf);
476 int slot;
477
478 if (nritems == 0)
479 return 0;
480
481 /* Check the 0 item */
482 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
483 BTRFS_LEAF_DATA_SIZE(root)) {
484 CORRUPT("invalid item offset size pair", leaf, root, 0);
485 return -EIO;
486 }
487
488 /*
489 * Check to make sure each items keys are in the correct order and their
490 * offsets make sense. We only have to loop through nritems-1 because
491 * we check the current slot against the next slot, which verifies the
492 * next slot's offset+size makes sense and that the current's slot
493 * offset is correct.
494 */
495 for (slot = 0; slot < nritems - 1; slot++) {
496 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
497 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
498
499 /* Make sure the keys are in the right order */
500 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
501 CORRUPT("bad key order", leaf, root, slot);
502 return -EIO;
503 }
504
505 /*
506 * Make sure the offset and ends are right, remember that the
507 * item data starts at the end of the leaf and grows towards the
508 * front.
509 */
510 if (btrfs_item_offset_nr(leaf, slot) !=
511 btrfs_item_end_nr(leaf, slot + 1)) {
512 CORRUPT("slot offset bad", leaf, root, slot);
513 return -EIO;
514 }
515
516 /*
517 * Check to make sure that we don't point outside of the leaf,
518 * just incase all the items are consistent to eachother, but
519 * all point outside of the leaf.
520 */
521 if (btrfs_item_end_nr(leaf, slot) >
522 BTRFS_LEAF_DATA_SIZE(root)) {
523 CORRUPT("slot end outside of leaf", leaf, root, slot);
524 return -EIO;
525 }
526 }
527
528 return 0;
529 }
530
531 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
532 struct page *page, int max_walk)
533 {
534 struct extent_buffer *eb;
535 u64 start = page_offset(page);
536 u64 target = start;
537 u64 min_start;
538
539 if (start < max_walk)
540 min_start = 0;
541 else
542 min_start = start - max_walk;
543
544 while (start >= min_start) {
545 eb = find_extent_buffer(tree, start, 0);
546 if (eb) {
547 /*
548 * we found an extent buffer and it contains our page
549 * horray!
550 */
551 if (eb->start <= target &&
552 eb->start + eb->len > target)
553 return eb;
554
555 /* we found an extent buffer that wasn't for us */
556 free_extent_buffer(eb);
557 return NULL;
558 }
559 if (start == 0)
560 break;
561 start -= PAGE_CACHE_SIZE;
562 }
563 return NULL;
564 }
565
566 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
567 struct extent_state *state, int mirror)
568 {
569 struct extent_io_tree *tree;
570 u64 found_start;
571 int found_level;
572 struct extent_buffer *eb;
573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
574 int ret = 0;
575 int reads_done;
576
577 if (!page->private)
578 goto out;
579
580 tree = &BTRFS_I(page->mapping->host)->io_tree;
581 eb = (struct extent_buffer *)page->private;
582
583 /* the pending IO might have been the only thing that kept this buffer
584 * in memory. Make sure we have a ref for all this other checks
585 */
586 extent_buffer_get(eb);
587
588 reads_done = atomic_dec_and_test(&eb->io_pages);
589 if (!reads_done)
590 goto err;
591
592 eb->read_mirror = mirror;
593 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594 ret = -EIO;
595 goto err;
596 }
597
598 found_start = btrfs_header_bytenr(eb);
599 if (found_start != eb->start) {
600 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
601 "%llu %llu\n",
602 (unsigned long long)found_start,
603 (unsigned long long)eb->start);
604 ret = -EIO;
605 goto err;
606 }
607 if (check_tree_block_fsid(root, eb)) {
608 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
609 (unsigned long long)eb->start);
610 ret = -EIO;
611 goto err;
612 }
613 found_level = btrfs_header_level(eb);
614
615 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
616 eb, found_level);
617
618 ret = csum_tree_block(root, eb, 1);
619 if (ret) {
620 ret = -EIO;
621 goto err;
622 }
623
624 /*
625 * If this is a leaf block and it is corrupt, set the corrupt bit so
626 * that we don't try and read the other copies of this block, just
627 * return -EIO.
628 */
629 if (found_level == 0 && check_leaf(root, eb)) {
630 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631 ret = -EIO;
632 }
633
634 if (!ret)
635 set_extent_buffer_uptodate(eb);
636 err:
637 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
638 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
639 btree_readahead_hook(root, eb, eb->start, ret);
640 }
641
642 if (ret)
643 clear_extent_buffer_uptodate(eb);
644 free_extent_buffer(eb);
645 out:
646 return ret;
647 }
648
649 static int btree_io_failed_hook(struct page *page, int failed_mirror)
650 {
651 struct extent_buffer *eb;
652 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
653
654 eb = (struct extent_buffer *)page->private;
655 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
656 eb->read_mirror = failed_mirror;
657 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(root, eb, eb->start, -EIO);
659 return -EIO; /* we fixed nothing */
660 }
661
662 static void end_workqueue_bio(struct bio *bio, int err)
663 {
664 struct end_io_wq *end_io_wq = bio->bi_private;
665 struct btrfs_fs_info *fs_info;
666
667 fs_info = end_io_wq->info;
668 end_io_wq->error = err;
669 end_io_wq->work.func = end_workqueue_fn;
670 end_io_wq->work.flags = 0;
671
672 if (bio->bi_rw & REQ_WRITE) {
673 if (end_io_wq->metadata == 1)
674 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
675 &end_io_wq->work);
676 else if (end_io_wq->metadata == 2)
677 btrfs_queue_worker(&fs_info->endio_freespace_worker,
678 &end_io_wq->work);
679 else
680 btrfs_queue_worker(&fs_info->endio_write_workers,
681 &end_io_wq->work);
682 } else {
683 if (end_io_wq->metadata)
684 btrfs_queue_worker(&fs_info->endio_meta_workers,
685 &end_io_wq->work);
686 else
687 btrfs_queue_worker(&fs_info->endio_workers,
688 &end_io_wq->work);
689 }
690 }
691
692 /*
693 * For the metadata arg you want
694 *
695 * 0 - if data
696 * 1 - if normal metadta
697 * 2 - if writing to the free space cache area
698 */
699 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
700 int metadata)
701 {
702 struct end_io_wq *end_io_wq;
703 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
704 if (!end_io_wq)
705 return -ENOMEM;
706
707 end_io_wq->private = bio->bi_private;
708 end_io_wq->end_io = bio->bi_end_io;
709 end_io_wq->info = info;
710 end_io_wq->error = 0;
711 end_io_wq->bio = bio;
712 end_io_wq->metadata = metadata;
713
714 bio->bi_private = end_io_wq;
715 bio->bi_end_io = end_workqueue_bio;
716 return 0;
717 }
718
719 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
720 {
721 unsigned long limit = min_t(unsigned long,
722 info->workers.max_workers,
723 info->fs_devices->open_devices);
724 return 256 * limit;
725 }
726
727 static void run_one_async_start(struct btrfs_work *work)
728 {
729 struct async_submit_bio *async;
730 int ret;
731
732 async = container_of(work, struct async_submit_bio, work);
733 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
734 async->mirror_num, async->bio_flags,
735 async->bio_offset);
736 if (ret)
737 async->error = ret;
738 }
739
740 static void run_one_async_done(struct btrfs_work *work)
741 {
742 struct btrfs_fs_info *fs_info;
743 struct async_submit_bio *async;
744 int limit;
745
746 async = container_of(work, struct async_submit_bio, work);
747 fs_info = BTRFS_I(async->inode)->root->fs_info;
748
749 limit = btrfs_async_submit_limit(fs_info);
750 limit = limit * 2 / 3;
751
752 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
753 waitqueue_active(&fs_info->async_submit_wait))
754 wake_up(&fs_info->async_submit_wait);
755
756 /* If an error occured we just want to clean up the bio and move on */
757 if (async->error) {
758 bio_endio(async->bio, async->error);
759 return;
760 }
761
762 async->submit_bio_done(async->inode, async->rw, async->bio,
763 async->mirror_num, async->bio_flags,
764 async->bio_offset);
765 }
766
767 static void run_one_async_free(struct btrfs_work *work)
768 {
769 struct async_submit_bio *async;
770
771 async = container_of(work, struct async_submit_bio, work);
772 kfree(async);
773 }
774
775 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
776 int rw, struct bio *bio, int mirror_num,
777 unsigned long bio_flags,
778 u64 bio_offset,
779 extent_submit_bio_hook_t *submit_bio_start,
780 extent_submit_bio_hook_t *submit_bio_done)
781 {
782 struct async_submit_bio *async;
783
784 async = kmalloc(sizeof(*async), GFP_NOFS);
785 if (!async)
786 return -ENOMEM;
787
788 async->inode = inode;
789 async->rw = rw;
790 async->bio = bio;
791 async->mirror_num = mirror_num;
792 async->submit_bio_start = submit_bio_start;
793 async->submit_bio_done = submit_bio_done;
794
795 async->work.func = run_one_async_start;
796 async->work.ordered_func = run_one_async_done;
797 async->work.ordered_free = run_one_async_free;
798
799 async->work.flags = 0;
800 async->bio_flags = bio_flags;
801 async->bio_offset = bio_offset;
802
803 async->error = 0;
804
805 atomic_inc(&fs_info->nr_async_submits);
806
807 if (rw & REQ_SYNC)
808 btrfs_set_work_high_prio(&async->work);
809
810 btrfs_queue_worker(&fs_info->workers, &async->work);
811
812 while (atomic_read(&fs_info->async_submit_draining) &&
813 atomic_read(&fs_info->nr_async_submits)) {
814 wait_event(fs_info->async_submit_wait,
815 (atomic_read(&fs_info->nr_async_submits) == 0));
816 }
817
818 return 0;
819 }
820
821 static int btree_csum_one_bio(struct bio *bio)
822 {
823 struct bio_vec *bvec = bio->bi_io_vec;
824 int bio_index = 0;
825 struct btrfs_root *root;
826 int ret = 0;
827
828 WARN_ON(bio->bi_vcnt <= 0);
829 while (bio_index < bio->bi_vcnt) {
830 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
831 ret = csum_dirty_buffer(root, bvec->bv_page);
832 if (ret)
833 break;
834 bio_index++;
835 bvec++;
836 }
837 return ret;
838 }
839
840 static int __btree_submit_bio_start(struct inode *inode, int rw,
841 struct bio *bio, int mirror_num,
842 unsigned long bio_flags,
843 u64 bio_offset)
844 {
845 /*
846 * when we're called for a write, we're already in the async
847 * submission context. Just jump into btrfs_map_bio
848 */
849 return btree_csum_one_bio(bio);
850 }
851
852 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
853 int mirror_num, unsigned long bio_flags,
854 u64 bio_offset)
855 {
856 int ret;
857
858 /*
859 * when we're called for a write, we're already in the async
860 * submission context. Just jump into btrfs_map_bio
861 */
862 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
863 if (ret)
864 bio_endio(bio, ret);
865 return ret;
866 }
867
868 static int check_async_write(struct inode *inode, unsigned long bio_flags)
869 {
870 if (bio_flags & EXTENT_BIO_TREE_LOG)
871 return 0;
872 #ifdef CONFIG_X86
873 if (cpu_has_xmm4_2)
874 return 0;
875 #endif
876 return 1;
877 }
878
879 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
880 int mirror_num, unsigned long bio_flags,
881 u64 bio_offset)
882 {
883 int async = check_async_write(inode, bio_flags);
884 int ret;
885
886 if (!(rw & REQ_WRITE)) {
887 /*
888 * called for a read, do the setup so that checksum validation
889 * can happen in the async kernel threads
890 */
891 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
892 bio, 1);
893 if (ret)
894 goto out_w_error;
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
896 mirror_num, 0);
897 } else if (!async) {
898 ret = btree_csum_one_bio(bio);
899 if (ret)
900 goto out_w_error;
901 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
902 mirror_num, 0);
903 } else {
904 /*
905 * kthread helpers are used to submit writes so that
906 * checksumming can happen in parallel across all CPUs
907 */
908 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
909 inode, rw, bio, mirror_num, 0,
910 bio_offset,
911 __btree_submit_bio_start,
912 __btree_submit_bio_done);
913 }
914
915 if (ret) {
916 out_w_error:
917 bio_endio(bio, ret);
918 }
919 return ret;
920 }
921
922 #ifdef CONFIG_MIGRATION
923 static int btree_migratepage(struct address_space *mapping,
924 struct page *newpage, struct page *page,
925 enum migrate_mode mode)
926 {
927 /*
928 * we can't safely write a btree page from here,
929 * we haven't done the locking hook
930 */
931 if (PageDirty(page))
932 return -EAGAIN;
933 /*
934 * Buffers may be managed in a filesystem specific way.
935 * We must have no buffers or drop them.
936 */
937 if (page_has_private(page) &&
938 !try_to_release_page(page, GFP_KERNEL))
939 return -EAGAIN;
940 return migrate_page(mapping, newpage, page, mode);
941 }
942 #endif
943
944
945 static int btree_writepages(struct address_space *mapping,
946 struct writeback_control *wbc)
947 {
948 struct extent_io_tree *tree;
949 tree = &BTRFS_I(mapping->host)->io_tree;
950 if (wbc->sync_mode == WB_SYNC_NONE) {
951 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
952 u64 num_dirty;
953 unsigned long thresh = 32 * 1024 * 1024;
954
955 if (wbc->for_kupdate)
956 return 0;
957
958 /* this is a bit racy, but that's ok */
959 num_dirty = root->fs_info->dirty_metadata_bytes;
960 if (num_dirty < thresh)
961 return 0;
962 }
963 return btree_write_cache_pages(mapping, wbc);
964 }
965
966 static int btree_readpage(struct file *file, struct page *page)
967 {
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
970 return extent_read_full_page(tree, page, btree_get_extent, 0);
971 }
972
973 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
974 {
975 if (PageWriteback(page) || PageDirty(page))
976 return 0;
977 /*
978 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
979 * slab allocation from alloc_extent_state down the callchain where
980 * it'd hit a BUG_ON as those flags are not allowed.
981 */
982 gfp_flags &= ~GFP_SLAB_BUG_MASK;
983
984 return try_release_extent_buffer(page, gfp_flags);
985 }
986
987 static void btree_invalidatepage(struct page *page, unsigned long offset)
988 {
989 struct extent_io_tree *tree;
990 tree = &BTRFS_I(page->mapping->host)->io_tree;
991 extent_invalidatepage(tree, page, offset);
992 btree_releasepage(page, GFP_NOFS);
993 if (PagePrivate(page)) {
994 printk(KERN_WARNING "btrfs warning page private not zero "
995 "on page %llu\n", (unsigned long long)page_offset(page));
996 ClearPagePrivate(page);
997 set_page_private(page, 0);
998 page_cache_release(page);
999 }
1000 }
1001
1002 static int btree_set_page_dirty(struct page *page)
1003 {
1004 #ifdef DEBUG
1005 struct extent_buffer *eb;
1006
1007 BUG_ON(!PagePrivate(page));
1008 eb = (struct extent_buffer *)page->private;
1009 BUG_ON(!eb);
1010 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1011 BUG_ON(!atomic_read(&eb->refs));
1012 btrfs_assert_tree_locked(eb);
1013 #endif
1014 return __set_page_dirty_nobuffers(page);
1015 }
1016
1017 static const struct address_space_operations btree_aops = {
1018 .readpage = btree_readpage,
1019 .writepages = btree_writepages,
1020 .releasepage = btree_releasepage,
1021 .invalidatepage = btree_invalidatepage,
1022 #ifdef CONFIG_MIGRATION
1023 .migratepage = btree_migratepage,
1024 #endif
1025 .set_page_dirty = btree_set_page_dirty,
1026 };
1027
1028 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1029 u64 parent_transid)
1030 {
1031 struct extent_buffer *buf = NULL;
1032 struct inode *btree_inode = root->fs_info->btree_inode;
1033 int ret = 0;
1034
1035 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1036 if (!buf)
1037 return 0;
1038 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1039 buf, 0, WAIT_NONE, btree_get_extent, 0);
1040 free_extent_buffer(buf);
1041 return ret;
1042 }
1043
1044 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1045 int mirror_num, struct extent_buffer **eb)
1046 {
1047 struct extent_buffer *buf = NULL;
1048 struct inode *btree_inode = root->fs_info->btree_inode;
1049 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1050 int ret;
1051
1052 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1053 if (!buf)
1054 return 0;
1055
1056 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1057
1058 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1059 btree_get_extent, mirror_num);
1060 if (ret) {
1061 free_extent_buffer(buf);
1062 return ret;
1063 }
1064
1065 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1066 free_extent_buffer(buf);
1067 return -EIO;
1068 } else if (extent_buffer_uptodate(buf)) {
1069 *eb = buf;
1070 } else {
1071 free_extent_buffer(buf);
1072 }
1073 return 0;
1074 }
1075
1076 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1077 u64 bytenr, u32 blocksize)
1078 {
1079 struct inode *btree_inode = root->fs_info->btree_inode;
1080 struct extent_buffer *eb;
1081 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1082 bytenr, blocksize);
1083 return eb;
1084 }
1085
1086 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1087 u64 bytenr, u32 blocksize)
1088 {
1089 struct inode *btree_inode = root->fs_info->btree_inode;
1090 struct extent_buffer *eb;
1091
1092 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1093 bytenr, blocksize);
1094 return eb;
1095 }
1096
1097
1098 int btrfs_write_tree_block(struct extent_buffer *buf)
1099 {
1100 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1101 buf->start + buf->len - 1);
1102 }
1103
1104 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1105 {
1106 return filemap_fdatawait_range(buf->pages[0]->mapping,
1107 buf->start, buf->start + buf->len - 1);
1108 }
1109
1110 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1111 u32 blocksize, u64 parent_transid)
1112 {
1113 struct extent_buffer *buf = NULL;
1114 int ret;
1115
1116 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1117 if (!buf)
1118 return NULL;
1119
1120 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1121 return buf;
1122
1123 }
1124
1125 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1126 struct extent_buffer *buf)
1127 {
1128 if (btrfs_header_generation(buf) ==
1129 root->fs_info->running_transaction->transid) {
1130 btrfs_assert_tree_locked(buf);
1131
1132 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1133 spin_lock(&root->fs_info->delalloc_lock);
1134 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1135 root->fs_info->dirty_metadata_bytes -= buf->len;
1136 else {
1137 spin_unlock(&root->fs_info->delalloc_lock);
1138 btrfs_panic(root->fs_info, -EOVERFLOW,
1139 "Can't clear %lu bytes from "
1140 " dirty_mdatadata_bytes (%llu)",
1141 buf->len,
1142 root->fs_info->dirty_metadata_bytes);
1143 }
1144 spin_unlock(&root->fs_info->delalloc_lock);
1145
1146 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1147 btrfs_set_lock_blocking(buf);
1148 clear_extent_buffer_dirty(buf);
1149 }
1150 }
1151 }
1152
1153 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1154 u32 stripesize, struct btrfs_root *root,
1155 struct btrfs_fs_info *fs_info,
1156 u64 objectid)
1157 {
1158 root->node = NULL;
1159 root->commit_root = NULL;
1160 root->sectorsize = sectorsize;
1161 root->nodesize = nodesize;
1162 root->leafsize = leafsize;
1163 root->stripesize = stripesize;
1164 root->ref_cows = 0;
1165 root->track_dirty = 0;
1166 root->in_radix = 0;
1167 root->orphan_item_inserted = 0;
1168 root->orphan_cleanup_state = 0;
1169
1170 root->objectid = objectid;
1171 root->last_trans = 0;
1172 root->highest_objectid = 0;
1173 root->name = NULL;
1174 root->inode_tree = RB_ROOT;
1175 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1176 root->block_rsv = NULL;
1177 root->orphan_block_rsv = NULL;
1178
1179 INIT_LIST_HEAD(&root->dirty_list);
1180 INIT_LIST_HEAD(&root->root_list);
1181 spin_lock_init(&root->orphan_lock);
1182 spin_lock_init(&root->inode_lock);
1183 spin_lock_init(&root->accounting_lock);
1184 mutex_init(&root->objectid_mutex);
1185 mutex_init(&root->log_mutex);
1186 init_waitqueue_head(&root->log_writer_wait);
1187 init_waitqueue_head(&root->log_commit_wait[0]);
1188 init_waitqueue_head(&root->log_commit_wait[1]);
1189 atomic_set(&root->log_commit[0], 0);
1190 atomic_set(&root->log_commit[1], 0);
1191 atomic_set(&root->log_writers, 0);
1192 atomic_set(&root->log_batch, 0);
1193 atomic_set(&root->orphan_inodes, 0);
1194 root->log_transid = 0;
1195 root->last_log_commit = 0;
1196 extent_io_tree_init(&root->dirty_log_pages,
1197 fs_info->btree_inode->i_mapping);
1198
1199 memset(&root->root_key, 0, sizeof(root->root_key));
1200 memset(&root->root_item, 0, sizeof(root->root_item));
1201 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1202 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1203 root->defrag_trans_start = fs_info->generation;
1204 init_completion(&root->kobj_unregister);
1205 root->defrag_running = 0;
1206 root->root_key.objectid = objectid;
1207 root->anon_dev = 0;
1208
1209 spin_lock_init(&root->root_item_lock);
1210 }
1211
1212 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1213 struct btrfs_fs_info *fs_info,
1214 u64 objectid,
1215 struct btrfs_root *root)
1216 {
1217 int ret;
1218 u32 blocksize;
1219 u64 generation;
1220
1221 __setup_root(tree_root->nodesize, tree_root->leafsize,
1222 tree_root->sectorsize, tree_root->stripesize,
1223 root, fs_info, objectid);
1224 ret = btrfs_find_last_root(tree_root, objectid,
1225 &root->root_item, &root->root_key);
1226 if (ret > 0)
1227 return -ENOENT;
1228 else if (ret < 0)
1229 return ret;
1230
1231 generation = btrfs_root_generation(&root->root_item);
1232 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1233 root->commit_root = NULL;
1234 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1235 blocksize, generation);
1236 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1237 free_extent_buffer(root->node);
1238 root->node = NULL;
1239 return -EIO;
1240 }
1241 root->commit_root = btrfs_root_node(root);
1242 return 0;
1243 }
1244
1245 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1246 {
1247 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1248 if (root)
1249 root->fs_info = fs_info;
1250 return root;
1251 }
1252
1253 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1254 struct btrfs_fs_info *fs_info,
1255 u64 objectid)
1256 {
1257 struct extent_buffer *leaf;
1258 struct btrfs_root *tree_root = fs_info->tree_root;
1259 struct btrfs_root *root;
1260 struct btrfs_key key;
1261 int ret = 0;
1262 u64 bytenr;
1263
1264 root = btrfs_alloc_root(fs_info);
1265 if (!root)
1266 return ERR_PTR(-ENOMEM);
1267
1268 __setup_root(tree_root->nodesize, tree_root->leafsize,
1269 tree_root->sectorsize, tree_root->stripesize,
1270 root, fs_info, objectid);
1271 root->root_key.objectid = objectid;
1272 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1273 root->root_key.offset = 0;
1274
1275 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1276 0, objectid, NULL, 0, 0, 0);
1277 if (IS_ERR(leaf)) {
1278 ret = PTR_ERR(leaf);
1279 goto fail;
1280 }
1281
1282 bytenr = leaf->start;
1283 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1284 btrfs_set_header_bytenr(leaf, leaf->start);
1285 btrfs_set_header_generation(leaf, trans->transid);
1286 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1287 btrfs_set_header_owner(leaf, objectid);
1288 root->node = leaf;
1289
1290 write_extent_buffer(leaf, fs_info->fsid,
1291 (unsigned long)btrfs_header_fsid(leaf),
1292 BTRFS_FSID_SIZE);
1293 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1294 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1295 BTRFS_UUID_SIZE);
1296 btrfs_mark_buffer_dirty(leaf);
1297
1298 root->commit_root = btrfs_root_node(root);
1299 root->track_dirty = 1;
1300
1301
1302 root->root_item.flags = 0;
1303 root->root_item.byte_limit = 0;
1304 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1305 btrfs_set_root_generation(&root->root_item, trans->transid);
1306 btrfs_set_root_level(&root->root_item, 0);
1307 btrfs_set_root_refs(&root->root_item, 1);
1308 btrfs_set_root_used(&root->root_item, leaf->len);
1309 btrfs_set_root_last_snapshot(&root->root_item, 0);
1310 btrfs_set_root_dirid(&root->root_item, 0);
1311 root->root_item.drop_level = 0;
1312
1313 key.objectid = objectid;
1314 key.type = BTRFS_ROOT_ITEM_KEY;
1315 key.offset = 0;
1316 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1317 if (ret)
1318 goto fail;
1319
1320 btrfs_tree_unlock(leaf);
1321
1322 fail:
1323 if (ret)
1324 return ERR_PTR(ret);
1325
1326 return root;
1327 }
1328
1329 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1330 struct btrfs_fs_info *fs_info)
1331 {
1332 struct btrfs_root *root;
1333 struct btrfs_root *tree_root = fs_info->tree_root;
1334 struct extent_buffer *leaf;
1335
1336 root = btrfs_alloc_root(fs_info);
1337 if (!root)
1338 return ERR_PTR(-ENOMEM);
1339
1340 __setup_root(tree_root->nodesize, tree_root->leafsize,
1341 tree_root->sectorsize, tree_root->stripesize,
1342 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1343
1344 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1345 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1346 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1347 /*
1348 * log trees do not get reference counted because they go away
1349 * before a real commit is actually done. They do store pointers
1350 * to file data extents, and those reference counts still get
1351 * updated (along with back refs to the log tree).
1352 */
1353 root->ref_cows = 0;
1354
1355 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1356 BTRFS_TREE_LOG_OBJECTID, NULL,
1357 0, 0, 0);
1358 if (IS_ERR(leaf)) {
1359 kfree(root);
1360 return ERR_CAST(leaf);
1361 }
1362
1363 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1364 btrfs_set_header_bytenr(leaf, leaf->start);
1365 btrfs_set_header_generation(leaf, trans->transid);
1366 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1367 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1368 root->node = leaf;
1369
1370 write_extent_buffer(root->node, root->fs_info->fsid,
1371 (unsigned long)btrfs_header_fsid(root->node),
1372 BTRFS_FSID_SIZE);
1373 btrfs_mark_buffer_dirty(root->node);
1374 btrfs_tree_unlock(root->node);
1375 return root;
1376 }
1377
1378 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1379 struct btrfs_fs_info *fs_info)
1380 {
1381 struct btrfs_root *log_root;
1382
1383 log_root = alloc_log_tree(trans, fs_info);
1384 if (IS_ERR(log_root))
1385 return PTR_ERR(log_root);
1386 WARN_ON(fs_info->log_root_tree);
1387 fs_info->log_root_tree = log_root;
1388 return 0;
1389 }
1390
1391 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1392 struct btrfs_root *root)
1393 {
1394 struct btrfs_root *log_root;
1395 struct btrfs_inode_item *inode_item;
1396
1397 log_root = alloc_log_tree(trans, root->fs_info);
1398 if (IS_ERR(log_root))
1399 return PTR_ERR(log_root);
1400
1401 log_root->last_trans = trans->transid;
1402 log_root->root_key.offset = root->root_key.objectid;
1403
1404 inode_item = &log_root->root_item.inode;
1405 inode_item->generation = cpu_to_le64(1);
1406 inode_item->size = cpu_to_le64(3);
1407 inode_item->nlink = cpu_to_le32(1);
1408 inode_item->nbytes = cpu_to_le64(root->leafsize);
1409 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1410
1411 btrfs_set_root_node(&log_root->root_item, log_root->node);
1412
1413 WARN_ON(root->log_root);
1414 root->log_root = log_root;
1415 root->log_transid = 0;
1416 root->last_log_commit = 0;
1417 return 0;
1418 }
1419
1420 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1421 struct btrfs_key *location)
1422 {
1423 struct btrfs_root *root;
1424 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1425 struct btrfs_path *path;
1426 struct extent_buffer *l;
1427 u64 generation;
1428 u32 blocksize;
1429 int ret = 0;
1430 int slot;
1431
1432 root = btrfs_alloc_root(fs_info);
1433 if (!root)
1434 return ERR_PTR(-ENOMEM);
1435 if (location->offset == (u64)-1) {
1436 ret = find_and_setup_root(tree_root, fs_info,
1437 location->objectid, root);
1438 if (ret) {
1439 kfree(root);
1440 return ERR_PTR(ret);
1441 }
1442 goto out;
1443 }
1444
1445 __setup_root(tree_root->nodesize, tree_root->leafsize,
1446 tree_root->sectorsize, tree_root->stripesize,
1447 root, fs_info, location->objectid);
1448
1449 path = btrfs_alloc_path();
1450 if (!path) {
1451 kfree(root);
1452 return ERR_PTR(-ENOMEM);
1453 }
1454 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1455 if (ret == 0) {
1456 l = path->nodes[0];
1457 slot = path->slots[0];
1458 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1459 memcpy(&root->root_key, location, sizeof(*location));
1460 }
1461 btrfs_free_path(path);
1462 if (ret) {
1463 kfree(root);
1464 if (ret > 0)
1465 ret = -ENOENT;
1466 return ERR_PTR(ret);
1467 }
1468
1469 generation = btrfs_root_generation(&root->root_item);
1470 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1471 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1472 blocksize, generation);
1473 root->commit_root = btrfs_root_node(root);
1474 BUG_ON(!root->node); /* -ENOMEM */
1475 out:
1476 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1477 root->ref_cows = 1;
1478 btrfs_check_and_init_root_item(&root->root_item);
1479 }
1480
1481 return root;
1482 }
1483
1484 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1485 struct btrfs_key *location)
1486 {
1487 struct btrfs_root *root;
1488 int ret;
1489
1490 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1491 return fs_info->tree_root;
1492 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1493 return fs_info->extent_root;
1494 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1495 return fs_info->chunk_root;
1496 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1497 return fs_info->dev_root;
1498 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1499 return fs_info->csum_root;
1500 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1501 return fs_info->quota_root ? fs_info->quota_root :
1502 ERR_PTR(-ENOENT);
1503 again:
1504 spin_lock(&fs_info->fs_roots_radix_lock);
1505 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1506 (unsigned long)location->objectid);
1507 spin_unlock(&fs_info->fs_roots_radix_lock);
1508 if (root)
1509 return root;
1510
1511 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1512 if (IS_ERR(root))
1513 return root;
1514
1515 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1516 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1517 GFP_NOFS);
1518 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1519 ret = -ENOMEM;
1520 goto fail;
1521 }
1522
1523 btrfs_init_free_ino_ctl(root);
1524 mutex_init(&root->fs_commit_mutex);
1525 spin_lock_init(&root->cache_lock);
1526 init_waitqueue_head(&root->cache_wait);
1527
1528 ret = get_anon_bdev(&root->anon_dev);
1529 if (ret)
1530 goto fail;
1531
1532 if (btrfs_root_refs(&root->root_item) == 0) {
1533 ret = -ENOENT;
1534 goto fail;
1535 }
1536
1537 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1538 if (ret < 0)
1539 goto fail;
1540 if (ret == 0)
1541 root->orphan_item_inserted = 1;
1542
1543 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1544 if (ret)
1545 goto fail;
1546
1547 spin_lock(&fs_info->fs_roots_radix_lock);
1548 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1549 (unsigned long)root->root_key.objectid,
1550 root);
1551 if (ret == 0)
1552 root->in_radix = 1;
1553
1554 spin_unlock(&fs_info->fs_roots_radix_lock);
1555 radix_tree_preload_end();
1556 if (ret) {
1557 if (ret == -EEXIST) {
1558 free_fs_root(root);
1559 goto again;
1560 }
1561 goto fail;
1562 }
1563
1564 ret = btrfs_find_dead_roots(fs_info->tree_root,
1565 root->root_key.objectid);
1566 WARN_ON(ret);
1567 return root;
1568 fail:
1569 free_fs_root(root);
1570 return ERR_PTR(ret);
1571 }
1572
1573 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1574 {
1575 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1576 int ret = 0;
1577 struct btrfs_device *device;
1578 struct backing_dev_info *bdi;
1579
1580 rcu_read_lock();
1581 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1582 if (!device->bdev)
1583 continue;
1584 bdi = blk_get_backing_dev_info(device->bdev);
1585 if (bdi && bdi_congested(bdi, bdi_bits)) {
1586 ret = 1;
1587 break;
1588 }
1589 }
1590 rcu_read_unlock();
1591 return ret;
1592 }
1593
1594 /*
1595 * If this fails, caller must call bdi_destroy() to get rid of the
1596 * bdi again.
1597 */
1598 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1599 {
1600 int err;
1601
1602 bdi->capabilities = BDI_CAP_MAP_COPY;
1603 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1604 if (err)
1605 return err;
1606
1607 bdi->ra_pages = default_backing_dev_info.ra_pages;
1608 bdi->congested_fn = btrfs_congested_fn;
1609 bdi->congested_data = info;
1610 return 0;
1611 }
1612
1613 /*
1614 * called by the kthread helper functions to finally call the bio end_io
1615 * functions. This is where read checksum verification actually happens
1616 */
1617 static void end_workqueue_fn(struct btrfs_work *work)
1618 {
1619 struct bio *bio;
1620 struct end_io_wq *end_io_wq;
1621 struct btrfs_fs_info *fs_info;
1622 int error;
1623
1624 end_io_wq = container_of(work, struct end_io_wq, work);
1625 bio = end_io_wq->bio;
1626 fs_info = end_io_wq->info;
1627
1628 error = end_io_wq->error;
1629 bio->bi_private = end_io_wq->private;
1630 bio->bi_end_io = end_io_wq->end_io;
1631 kfree(end_io_wq);
1632 bio_endio(bio, error);
1633 }
1634
1635 static int cleaner_kthread(void *arg)
1636 {
1637 struct btrfs_root *root = arg;
1638
1639 do {
1640 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1641 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1642 btrfs_run_delayed_iputs(root);
1643 btrfs_clean_old_snapshots(root);
1644 mutex_unlock(&root->fs_info->cleaner_mutex);
1645 btrfs_run_defrag_inodes(root->fs_info);
1646 }
1647
1648 if (!try_to_freeze()) {
1649 set_current_state(TASK_INTERRUPTIBLE);
1650 if (!kthread_should_stop())
1651 schedule();
1652 __set_current_state(TASK_RUNNING);
1653 }
1654 } while (!kthread_should_stop());
1655 return 0;
1656 }
1657
1658 static int transaction_kthread(void *arg)
1659 {
1660 struct btrfs_root *root = arg;
1661 struct btrfs_trans_handle *trans;
1662 struct btrfs_transaction *cur;
1663 u64 transid;
1664 unsigned long now;
1665 unsigned long delay;
1666 bool cannot_commit;
1667
1668 do {
1669 cannot_commit = false;
1670 delay = HZ * 30;
1671 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1672
1673 spin_lock(&root->fs_info->trans_lock);
1674 cur = root->fs_info->running_transaction;
1675 if (!cur) {
1676 spin_unlock(&root->fs_info->trans_lock);
1677 goto sleep;
1678 }
1679
1680 now = get_seconds();
1681 if (!cur->blocked &&
1682 (now < cur->start_time || now - cur->start_time < 30)) {
1683 spin_unlock(&root->fs_info->trans_lock);
1684 delay = HZ * 5;
1685 goto sleep;
1686 }
1687 transid = cur->transid;
1688 spin_unlock(&root->fs_info->trans_lock);
1689
1690 /* If the file system is aborted, this will always fail. */
1691 trans = btrfs_attach_transaction(root);
1692 if (IS_ERR(trans)) {
1693 if (PTR_ERR(trans) != -ENOENT)
1694 cannot_commit = true;
1695 goto sleep;
1696 }
1697 if (transid == trans->transid) {
1698 btrfs_commit_transaction(trans, root);
1699 } else {
1700 btrfs_end_transaction(trans, root);
1701 }
1702 sleep:
1703 wake_up_process(root->fs_info->cleaner_kthread);
1704 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1705
1706 if (!try_to_freeze()) {
1707 set_current_state(TASK_INTERRUPTIBLE);
1708 if (!kthread_should_stop() &&
1709 (!btrfs_transaction_blocked(root->fs_info) ||
1710 cannot_commit))
1711 schedule_timeout(delay);
1712 __set_current_state(TASK_RUNNING);
1713 }
1714 } while (!kthread_should_stop());
1715 return 0;
1716 }
1717
1718 /*
1719 * this will find the highest generation in the array of
1720 * root backups. The index of the highest array is returned,
1721 * or -1 if we can't find anything.
1722 *
1723 * We check to make sure the array is valid by comparing the
1724 * generation of the latest root in the array with the generation
1725 * in the super block. If they don't match we pitch it.
1726 */
1727 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1728 {
1729 u64 cur;
1730 int newest_index = -1;
1731 struct btrfs_root_backup *root_backup;
1732 int i;
1733
1734 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1735 root_backup = info->super_copy->super_roots + i;
1736 cur = btrfs_backup_tree_root_gen(root_backup);
1737 if (cur == newest_gen)
1738 newest_index = i;
1739 }
1740
1741 /* check to see if we actually wrapped around */
1742 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1743 root_backup = info->super_copy->super_roots;
1744 cur = btrfs_backup_tree_root_gen(root_backup);
1745 if (cur == newest_gen)
1746 newest_index = 0;
1747 }
1748 return newest_index;
1749 }
1750
1751
1752 /*
1753 * find the oldest backup so we know where to store new entries
1754 * in the backup array. This will set the backup_root_index
1755 * field in the fs_info struct
1756 */
1757 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1758 u64 newest_gen)
1759 {
1760 int newest_index = -1;
1761
1762 newest_index = find_newest_super_backup(info, newest_gen);
1763 /* if there was garbage in there, just move along */
1764 if (newest_index == -1) {
1765 info->backup_root_index = 0;
1766 } else {
1767 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1768 }
1769 }
1770
1771 /*
1772 * copy all the root pointers into the super backup array.
1773 * this will bump the backup pointer by one when it is
1774 * done
1775 */
1776 static void backup_super_roots(struct btrfs_fs_info *info)
1777 {
1778 int next_backup;
1779 struct btrfs_root_backup *root_backup;
1780 int last_backup;
1781
1782 next_backup = info->backup_root_index;
1783 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1784 BTRFS_NUM_BACKUP_ROOTS;
1785
1786 /*
1787 * just overwrite the last backup if we're at the same generation
1788 * this happens only at umount
1789 */
1790 root_backup = info->super_for_commit->super_roots + last_backup;
1791 if (btrfs_backup_tree_root_gen(root_backup) ==
1792 btrfs_header_generation(info->tree_root->node))
1793 next_backup = last_backup;
1794
1795 root_backup = info->super_for_commit->super_roots + next_backup;
1796
1797 /*
1798 * make sure all of our padding and empty slots get zero filled
1799 * regardless of which ones we use today
1800 */
1801 memset(root_backup, 0, sizeof(*root_backup));
1802
1803 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1804
1805 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1806 btrfs_set_backup_tree_root_gen(root_backup,
1807 btrfs_header_generation(info->tree_root->node));
1808
1809 btrfs_set_backup_tree_root_level(root_backup,
1810 btrfs_header_level(info->tree_root->node));
1811
1812 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1813 btrfs_set_backup_chunk_root_gen(root_backup,
1814 btrfs_header_generation(info->chunk_root->node));
1815 btrfs_set_backup_chunk_root_level(root_backup,
1816 btrfs_header_level(info->chunk_root->node));
1817
1818 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1819 btrfs_set_backup_extent_root_gen(root_backup,
1820 btrfs_header_generation(info->extent_root->node));
1821 btrfs_set_backup_extent_root_level(root_backup,
1822 btrfs_header_level(info->extent_root->node));
1823
1824 /*
1825 * we might commit during log recovery, which happens before we set
1826 * the fs_root. Make sure it is valid before we fill it in.
1827 */
1828 if (info->fs_root && info->fs_root->node) {
1829 btrfs_set_backup_fs_root(root_backup,
1830 info->fs_root->node->start);
1831 btrfs_set_backup_fs_root_gen(root_backup,
1832 btrfs_header_generation(info->fs_root->node));
1833 btrfs_set_backup_fs_root_level(root_backup,
1834 btrfs_header_level(info->fs_root->node));
1835 }
1836
1837 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1838 btrfs_set_backup_dev_root_gen(root_backup,
1839 btrfs_header_generation(info->dev_root->node));
1840 btrfs_set_backup_dev_root_level(root_backup,
1841 btrfs_header_level(info->dev_root->node));
1842
1843 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1844 btrfs_set_backup_csum_root_gen(root_backup,
1845 btrfs_header_generation(info->csum_root->node));
1846 btrfs_set_backup_csum_root_level(root_backup,
1847 btrfs_header_level(info->csum_root->node));
1848
1849 btrfs_set_backup_total_bytes(root_backup,
1850 btrfs_super_total_bytes(info->super_copy));
1851 btrfs_set_backup_bytes_used(root_backup,
1852 btrfs_super_bytes_used(info->super_copy));
1853 btrfs_set_backup_num_devices(root_backup,
1854 btrfs_super_num_devices(info->super_copy));
1855
1856 /*
1857 * if we don't copy this out to the super_copy, it won't get remembered
1858 * for the next commit
1859 */
1860 memcpy(&info->super_copy->super_roots,
1861 &info->super_for_commit->super_roots,
1862 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1863 }
1864
1865 /*
1866 * this copies info out of the root backup array and back into
1867 * the in-memory super block. It is meant to help iterate through
1868 * the array, so you send it the number of backups you've already
1869 * tried and the last backup index you used.
1870 *
1871 * this returns -1 when it has tried all the backups
1872 */
1873 static noinline int next_root_backup(struct btrfs_fs_info *info,
1874 struct btrfs_super_block *super,
1875 int *num_backups_tried, int *backup_index)
1876 {
1877 struct btrfs_root_backup *root_backup;
1878 int newest = *backup_index;
1879
1880 if (*num_backups_tried == 0) {
1881 u64 gen = btrfs_super_generation(super);
1882
1883 newest = find_newest_super_backup(info, gen);
1884 if (newest == -1)
1885 return -1;
1886
1887 *backup_index = newest;
1888 *num_backups_tried = 1;
1889 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1890 /* we've tried all the backups, all done */
1891 return -1;
1892 } else {
1893 /* jump to the next oldest backup */
1894 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1895 BTRFS_NUM_BACKUP_ROOTS;
1896 *backup_index = newest;
1897 *num_backups_tried += 1;
1898 }
1899 root_backup = super->super_roots + newest;
1900
1901 btrfs_set_super_generation(super,
1902 btrfs_backup_tree_root_gen(root_backup));
1903 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1904 btrfs_set_super_root_level(super,
1905 btrfs_backup_tree_root_level(root_backup));
1906 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1907
1908 /*
1909 * fixme: the total bytes and num_devices need to match or we should
1910 * need a fsck
1911 */
1912 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1913 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1914 return 0;
1915 }
1916
1917 /* helper to cleanup tree roots */
1918 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1919 {
1920 free_extent_buffer(info->tree_root->node);
1921 free_extent_buffer(info->tree_root->commit_root);
1922 free_extent_buffer(info->dev_root->node);
1923 free_extent_buffer(info->dev_root->commit_root);
1924 free_extent_buffer(info->extent_root->node);
1925 free_extent_buffer(info->extent_root->commit_root);
1926 free_extent_buffer(info->csum_root->node);
1927 free_extent_buffer(info->csum_root->commit_root);
1928 if (info->quota_root) {
1929 free_extent_buffer(info->quota_root->node);
1930 free_extent_buffer(info->quota_root->commit_root);
1931 }
1932
1933 info->tree_root->node = NULL;
1934 info->tree_root->commit_root = NULL;
1935 info->dev_root->node = NULL;
1936 info->dev_root->commit_root = NULL;
1937 info->extent_root->node = NULL;
1938 info->extent_root->commit_root = NULL;
1939 info->csum_root->node = NULL;
1940 info->csum_root->commit_root = NULL;
1941 if (info->quota_root) {
1942 info->quota_root->node = NULL;
1943 info->quota_root->commit_root = NULL;
1944 }
1945
1946 if (chunk_root) {
1947 free_extent_buffer(info->chunk_root->node);
1948 free_extent_buffer(info->chunk_root->commit_root);
1949 info->chunk_root->node = NULL;
1950 info->chunk_root->commit_root = NULL;
1951 }
1952 }
1953
1954
1955 int open_ctree(struct super_block *sb,
1956 struct btrfs_fs_devices *fs_devices,
1957 char *options)
1958 {
1959 u32 sectorsize;
1960 u32 nodesize;
1961 u32 leafsize;
1962 u32 blocksize;
1963 u32 stripesize;
1964 u64 generation;
1965 u64 features;
1966 struct btrfs_key location;
1967 struct buffer_head *bh;
1968 struct btrfs_super_block *disk_super;
1969 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1970 struct btrfs_root *tree_root;
1971 struct btrfs_root *extent_root;
1972 struct btrfs_root *csum_root;
1973 struct btrfs_root *chunk_root;
1974 struct btrfs_root *dev_root;
1975 struct btrfs_root *quota_root;
1976 struct btrfs_root *log_tree_root;
1977 int ret;
1978 int err = -EINVAL;
1979 int num_backups_tried = 0;
1980 int backup_index = 0;
1981
1982 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1983 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1984 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1985 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1986 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1987 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1988
1989 if (!tree_root || !extent_root || !csum_root ||
1990 !chunk_root || !dev_root || !quota_root) {
1991 err = -ENOMEM;
1992 goto fail;
1993 }
1994
1995 ret = init_srcu_struct(&fs_info->subvol_srcu);
1996 if (ret) {
1997 err = ret;
1998 goto fail;
1999 }
2000
2001 ret = setup_bdi(fs_info, &fs_info->bdi);
2002 if (ret) {
2003 err = ret;
2004 goto fail_srcu;
2005 }
2006
2007 fs_info->btree_inode = new_inode(sb);
2008 if (!fs_info->btree_inode) {
2009 err = -ENOMEM;
2010 goto fail_bdi;
2011 }
2012
2013 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2014
2015 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2016 INIT_LIST_HEAD(&fs_info->trans_list);
2017 INIT_LIST_HEAD(&fs_info->dead_roots);
2018 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2019 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2020 INIT_LIST_HEAD(&fs_info->ordered_operations);
2021 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2022 spin_lock_init(&fs_info->delalloc_lock);
2023 spin_lock_init(&fs_info->trans_lock);
2024 spin_lock_init(&fs_info->fs_roots_radix_lock);
2025 spin_lock_init(&fs_info->delayed_iput_lock);
2026 spin_lock_init(&fs_info->defrag_inodes_lock);
2027 spin_lock_init(&fs_info->free_chunk_lock);
2028 spin_lock_init(&fs_info->tree_mod_seq_lock);
2029 rwlock_init(&fs_info->tree_mod_log_lock);
2030 mutex_init(&fs_info->reloc_mutex);
2031
2032 init_completion(&fs_info->kobj_unregister);
2033 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2034 INIT_LIST_HEAD(&fs_info->space_info);
2035 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2036 btrfs_mapping_init(&fs_info->mapping_tree);
2037 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2038 BTRFS_BLOCK_RSV_GLOBAL);
2039 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2040 BTRFS_BLOCK_RSV_DELALLOC);
2041 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2042 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2043 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2044 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2045 BTRFS_BLOCK_RSV_DELOPS);
2046 atomic_set(&fs_info->nr_async_submits, 0);
2047 atomic_set(&fs_info->async_delalloc_pages, 0);
2048 atomic_set(&fs_info->async_submit_draining, 0);
2049 atomic_set(&fs_info->nr_async_bios, 0);
2050 atomic_set(&fs_info->defrag_running, 0);
2051 atomic_set(&fs_info->tree_mod_seq, 0);
2052 fs_info->sb = sb;
2053 fs_info->max_inline = 8192 * 1024;
2054 fs_info->metadata_ratio = 0;
2055 fs_info->defrag_inodes = RB_ROOT;
2056 fs_info->trans_no_join = 0;
2057 fs_info->free_chunk_space = 0;
2058 fs_info->tree_mod_log = RB_ROOT;
2059
2060 /* readahead state */
2061 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2062 spin_lock_init(&fs_info->reada_lock);
2063
2064 fs_info->thread_pool_size = min_t(unsigned long,
2065 num_online_cpus() + 2, 8);
2066
2067 INIT_LIST_HEAD(&fs_info->ordered_extents);
2068 spin_lock_init(&fs_info->ordered_extent_lock);
2069 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2070 GFP_NOFS);
2071 if (!fs_info->delayed_root) {
2072 err = -ENOMEM;
2073 goto fail_iput;
2074 }
2075 btrfs_init_delayed_root(fs_info->delayed_root);
2076
2077 mutex_init(&fs_info->scrub_lock);
2078 atomic_set(&fs_info->scrubs_running, 0);
2079 atomic_set(&fs_info->scrub_pause_req, 0);
2080 atomic_set(&fs_info->scrubs_paused, 0);
2081 atomic_set(&fs_info->scrub_cancel_req, 0);
2082 init_waitqueue_head(&fs_info->scrub_pause_wait);
2083 init_rwsem(&fs_info->scrub_super_lock);
2084 fs_info->scrub_workers_refcnt = 0;
2085 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2086 fs_info->check_integrity_print_mask = 0;
2087 #endif
2088
2089 spin_lock_init(&fs_info->balance_lock);
2090 mutex_init(&fs_info->balance_mutex);
2091 atomic_set(&fs_info->balance_running, 0);
2092 atomic_set(&fs_info->balance_pause_req, 0);
2093 atomic_set(&fs_info->balance_cancel_req, 0);
2094 fs_info->balance_ctl = NULL;
2095 init_waitqueue_head(&fs_info->balance_wait_q);
2096
2097 sb->s_blocksize = 4096;
2098 sb->s_blocksize_bits = blksize_bits(4096);
2099 sb->s_bdi = &fs_info->bdi;
2100
2101 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2102 set_nlink(fs_info->btree_inode, 1);
2103 /*
2104 * we set the i_size on the btree inode to the max possible int.
2105 * the real end of the address space is determined by all of
2106 * the devices in the system
2107 */
2108 fs_info->btree_inode->i_size = OFFSET_MAX;
2109 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2110 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2111
2112 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2113 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2114 fs_info->btree_inode->i_mapping);
2115 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2116 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2117
2118 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2119
2120 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2121 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2122 sizeof(struct btrfs_key));
2123 set_bit(BTRFS_INODE_DUMMY,
2124 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2125 insert_inode_hash(fs_info->btree_inode);
2126
2127 spin_lock_init(&fs_info->block_group_cache_lock);
2128 fs_info->block_group_cache_tree = RB_ROOT;
2129
2130 extent_io_tree_init(&fs_info->freed_extents[0],
2131 fs_info->btree_inode->i_mapping);
2132 extent_io_tree_init(&fs_info->freed_extents[1],
2133 fs_info->btree_inode->i_mapping);
2134 fs_info->pinned_extents = &fs_info->freed_extents[0];
2135 fs_info->do_barriers = 1;
2136
2137
2138 mutex_init(&fs_info->ordered_operations_mutex);
2139 mutex_init(&fs_info->tree_log_mutex);
2140 mutex_init(&fs_info->chunk_mutex);
2141 mutex_init(&fs_info->transaction_kthread_mutex);
2142 mutex_init(&fs_info->cleaner_mutex);
2143 mutex_init(&fs_info->volume_mutex);
2144 init_rwsem(&fs_info->extent_commit_sem);
2145 init_rwsem(&fs_info->cleanup_work_sem);
2146 init_rwsem(&fs_info->subvol_sem);
2147 fs_info->dev_replace.lock_owner = 0;
2148 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2149 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2150 mutex_init(&fs_info->dev_replace.lock_management_lock);
2151 mutex_init(&fs_info->dev_replace.lock);
2152
2153 spin_lock_init(&fs_info->qgroup_lock);
2154 fs_info->qgroup_tree = RB_ROOT;
2155 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2156 fs_info->qgroup_seq = 1;
2157 fs_info->quota_enabled = 0;
2158 fs_info->pending_quota_state = 0;
2159
2160 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2161 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2162
2163 init_waitqueue_head(&fs_info->transaction_throttle);
2164 init_waitqueue_head(&fs_info->transaction_wait);
2165 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2166 init_waitqueue_head(&fs_info->async_submit_wait);
2167
2168 __setup_root(4096, 4096, 4096, 4096, tree_root,
2169 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2170
2171 invalidate_bdev(fs_devices->latest_bdev);
2172 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2173 if (!bh) {
2174 err = -EINVAL;
2175 goto fail_alloc;
2176 }
2177
2178 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2179 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2180 sizeof(*fs_info->super_for_commit));
2181 brelse(bh);
2182
2183 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2184
2185 disk_super = fs_info->super_copy;
2186 if (!btrfs_super_root(disk_super))
2187 goto fail_alloc;
2188
2189 /* check FS state, whether FS is broken. */
2190 fs_info->fs_state |= btrfs_super_flags(disk_super);
2191
2192 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2193 if (ret) {
2194 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2195 err = ret;
2196 goto fail_alloc;
2197 }
2198
2199 /*
2200 * run through our array of backup supers and setup
2201 * our ring pointer to the oldest one
2202 */
2203 generation = btrfs_super_generation(disk_super);
2204 find_oldest_super_backup(fs_info, generation);
2205
2206 /*
2207 * In the long term, we'll store the compression type in the super
2208 * block, and it'll be used for per file compression control.
2209 */
2210 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2211
2212 ret = btrfs_parse_options(tree_root, options);
2213 if (ret) {
2214 err = ret;
2215 goto fail_alloc;
2216 }
2217
2218 features = btrfs_super_incompat_flags(disk_super) &
2219 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2220 if (features) {
2221 printk(KERN_ERR "BTRFS: couldn't mount because of "
2222 "unsupported optional features (%Lx).\n",
2223 (unsigned long long)features);
2224 err = -EINVAL;
2225 goto fail_alloc;
2226 }
2227
2228 if (btrfs_super_leafsize(disk_super) !=
2229 btrfs_super_nodesize(disk_super)) {
2230 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2231 "blocksizes don't match. node %d leaf %d\n",
2232 btrfs_super_nodesize(disk_super),
2233 btrfs_super_leafsize(disk_super));
2234 err = -EINVAL;
2235 goto fail_alloc;
2236 }
2237 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2238 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2239 "blocksize (%d) was too large\n",
2240 btrfs_super_leafsize(disk_super));
2241 err = -EINVAL;
2242 goto fail_alloc;
2243 }
2244
2245 features = btrfs_super_incompat_flags(disk_super);
2246 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2247 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2248 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2249
2250 /*
2251 * flag our filesystem as having big metadata blocks if
2252 * they are bigger than the page size
2253 */
2254 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2255 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2256 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2257 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2258 }
2259
2260 nodesize = btrfs_super_nodesize(disk_super);
2261 leafsize = btrfs_super_leafsize(disk_super);
2262 sectorsize = btrfs_super_sectorsize(disk_super);
2263 stripesize = btrfs_super_stripesize(disk_super);
2264
2265 /*
2266 * mixed block groups end up with duplicate but slightly offset
2267 * extent buffers for the same range. It leads to corruptions
2268 */
2269 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2270 (sectorsize != leafsize)) {
2271 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2272 "are not allowed for mixed block groups on %s\n",
2273 sb->s_id);
2274 goto fail_alloc;
2275 }
2276
2277 btrfs_set_super_incompat_flags(disk_super, features);
2278
2279 features = btrfs_super_compat_ro_flags(disk_super) &
2280 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2281 if (!(sb->s_flags & MS_RDONLY) && features) {
2282 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2283 "unsupported option features (%Lx).\n",
2284 (unsigned long long)features);
2285 err = -EINVAL;
2286 goto fail_alloc;
2287 }
2288
2289 btrfs_init_workers(&fs_info->generic_worker,
2290 "genwork", 1, NULL);
2291
2292 btrfs_init_workers(&fs_info->workers, "worker",
2293 fs_info->thread_pool_size,
2294 &fs_info->generic_worker);
2295
2296 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2297 fs_info->thread_pool_size,
2298 &fs_info->generic_worker);
2299
2300 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2301 fs_info->thread_pool_size,
2302 &fs_info->generic_worker);
2303
2304 btrfs_init_workers(&fs_info->submit_workers, "submit",
2305 min_t(u64, fs_devices->num_devices,
2306 fs_info->thread_pool_size),
2307 &fs_info->generic_worker);
2308
2309 btrfs_init_workers(&fs_info->caching_workers, "cache",
2310 2, &fs_info->generic_worker);
2311
2312 /* a higher idle thresh on the submit workers makes it much more
2313 * likely that bios will be send down in a sane order to the
2314 * devices
2315 */
2316 fs_info->submit_workers.idle_thresh = 64;
2317
2318 fs_info->workers.idle_thresh = 16;
2319 fs_info->workers.ordered = 1;
2320
2321 fs_info->delalloc_workers.idle_thresh = 2;
2322 fs_info->delalloc_workers.ordered = 1;
2323
2324 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2325 &fs_info->generic_worker);
2326 btrfs_init_workers(&fs_info->endio_workers, "endio",
2327 fs_info->thread_pool_size,
2328 &fs_info->generic_worker);
2329 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2330 fs_info->thread_pool_size,
2331 &fs_info->generic_worker);
2332 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2333 "endio-meta-write", fs_info->thread_pool_size,
2334 &fs_info->generic_worker);
2335 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2336 fs_info->thread_pool_size,
2337 &fs_info->generic_worker);
2338 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2339 1, &fs_info->generic_worker);
2340 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2341 fs_info->thread_pool_size,
2342 &fs_info->generic_worker);
2343 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2344 fs_info->thread_pool_size,
2345 &fs_info->generic_worker);
2346
2347 /*
2348 * endios are largely parallel and should have a very
2349 * low idle thresh
2350 */
2351 fs_info->endio_workers.idle_thresh = 4;
2352 fs_info->endio_meta_workers.idle_thresh = 4;
2353
2354 fs_info->endio_write_workers.idle_thresh = 2;
2355 fs_info->endio_meta_write_workers.idle_thresh = 2;
2356 fs_info->readahead_workers.idle_thresh = 2;
2357
2358 /*
2359 * btrfs_start_workers can really only fail because of ENOMEM so just
2360 * return -ENOMEM if any of these fail.
2361 */
2362 ret = btrfs_start_workers(&fs_info->workers);
2363 ret |= btrfs_start_workers(&fs_info->generic_worker);
2364 ret |= btrfs_start_workers(&fs_info->submit_workers);
2365 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2366 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2367 ret |= btrfs_start_workers(&fs_info->endio_workers);
2368 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2369 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2370 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2371 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2372 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2373 ret |= btrfs_start_workers(&fs_info->caching_workers);
2374 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2375 ret |= btrfs_start_workers(&fs_info->flush_workers);
2376 if (ret) {
2377 err = -ENOMEM;
2378 goto fail_sb_buffer;
2379 }
2380
2381 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2382 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2383 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2384
2385 tree_root->nodesize = nodesize;
2386 tree_root->leafsize = leafsize;
2387 tree_root->sectorsize = sectorsize;
2388 tree_root->stripesize = stripesize;
2389
2390 sb->s_blocksize = sectorsize;
2391 sb->s_blocksize_bits = blksize_bits(sectorsize);
2392
2393 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2394 sizeof(disk_super->magic))) {
2395 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2396 goto fail_sb_buffer;
2397 }
2398
2399 if (sectorsize != PAGE_SIZE) {
2400 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2401 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2402 goto fail_sb_buffer;
2403 }
2404
2405 mutex_lock(&fs_info->chunk_mutex);
2406 ret = btrfs_read_sys_array(tree_root);
2407 mutex_unlock(&fs_info->chunk_mutex);
2408 if (ret) {
2409 printk(KERN_WARNING "btrfs: failed to read the system "
2410 "array on %s\n", sb->s_id);
2411 goto fail_sb_buffer;
2412 }
2413
2414 blocksize = btrfs_level_size(tree_root,
2415 btrfs_super_chunk_root_level(disk_super));
2416 generation = btrfs_super_chunk_root_generation(disk_super);
2417
2418 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2419 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2420
2421 chunk_root->node = read_tree_block(chunk_root,
2422 btrfs_super_chunk_root(disk_super),
2423 blocksize, generation);
2424 BUG_ON(!chunk_root->node); /* -ENOMEM */
2425 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2426 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2427 sb->s_id);
2428 goto fail_tree_roots;
2429 }
2430 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2431 chunk_root->commit_root = btrfs_root_node(chunk_root);
2432
2433 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2434 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2435 BTRFS_UUID_SIZE);
2436
2437 ret = btrfs_read_chunk_tree(chunk_root);
2438 if (ret) {
2439 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2440 sb->s_id);
2441 goto fail_tree_roots;
2442 }
2443
2444 /*
2445 * keep the device that is marked to be the target device for the
2446 * dev_replace procedure
2447 */
2448 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2449
2450 if (!fs_devices->latest_bdev) {
2451 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2452 sb->s_id);
2453 goto fail_tree_roots;
2454 }
2455
2456 retry_root_backup:
2457 blocksize = btrfs_level_size(tree_root,
2458 btrfs_super_root_level(disk_super));
2459 generation = btrfs_super_generation(disk_super);
2460
2461 tree_root->node = read_tree_block(tree_root,
2462 btrfs_super_root(disk_super),
2463 blocksize, generation);
2464 if (!tree_root->node ||
2465 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2466 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2467 sb->s_id);
2468
2469 goto recovery_tree_root;
2470 }
2471
2472 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2473 tree_root->commit_root = btrfs_root_node(tree_root);
2474
2475 ret = find_and_setup_root(tree_root, fs_info,
2476 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2477 if (ret)
2478 goto recovery_tree_root;
2479 extent_root->track_dirty = 1;
2480
2481 ret = find_and_setup_root(tree_root, fs_info,
2482 BTRFS_DEV_TREE_OBJECTID, dev_root);
2483 if (ret)
2484 goto recovery_tree_root;
2485 dev_root->track_dirty = 1;
2486
2487 ret = find_and_setup_root(tree_root, fs_info,
2488 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2489 if (ret)
2490 goto recovery_tree_root;
2491 csum_root->track_dirty = 1;
2492
2493 ret = find_and_setup_root(tree_root, fs_info,
2494 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2495 if (ret) {
2496 kfree(quota_root);
2497 quota_root = fs_info->quota_root = NULL;
2498 } else {
2499 quota_root->track_dirty = 1;
2500 fs_info->quota_enabled = 1;
2501 fs_info->pending_quota_state = 1;
2502 }
2503
2504 fs_info->generation = generation;
2505 fs_info->last_trans_committed = generation;
2506
2507 ret = btrfs_recover_balance(fs_info);
2508 if (ret) {
2509 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2510 goto fail_block_groups;
2511 }
2512
2513 ret = btrfs_init_dev_stats(fs_info);
2514 if (ret) {
2515 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2516 ret);
2517 goto fail_block_groups;
2518 }
2519
2520 ret = btrfs_init_dev_replace(fs_info);
2521 if (ret) {
2522 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2523 goto fail_block_groups;
2524 }
2525
2526 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2527
2528 ret = btrfs_init_space_info(fs_info);
2529 if (ret) {
2530 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2531 goto fail_block_groups;
2532 }
2533
2534 ret = btrfs_read_block_groups(extent_root);
2535 if (ret) {
2536 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2537 goto fail_block_groups;
2538 }
2539 fs_info->num_tolerated_disk_barrier_failures =
2540 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2541 if (fs_info->fs_devices->missing_devices >
2542 fs_info->num_tolerated_disk_barrier_failures &&
2543 !(sb->s_flags & MS_RDONLY)) {
2544 printk(KERN_WARNING
2545 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2546 goto fail_block_groups;
2547 }
2548
2549 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2550 "btrfs-cleaner");
2551 if (IS_ERR(fs_info->cleaner_kthread))
2552 goto fail_block_groups;
2553
2554 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2555 tree_root,
2556 "btrfs-transaction");
2557 if (IS_ERR(fs_info->transaction_kthread))
2558 goto fail_cleaner;
2559
2560 if (!btrfs_test_opt(tree_root, SSD) &&
2561 !btrfs_test_opt(tree_root, NOSSD) &&
2562 !fs_info->fs_devices->rotating) {
2563 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2564 "mode\n");
2565 btrfs_set_opt(fs_info->mount_opt, SSD);
2566 }
2567
2568 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2569 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2570 ret = btrfsic_mount(tree_root, fs_devices,
2571 btrfs_test_opt(tree_root,
2572 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2573 1 : 0,
2574 fs_info->check_integrity_print_mask);
2575 if (ret)
2576 printk(KERN_WARNING "btrfs: failed to initialize"
2577 " integrity check module %s\n", sb->s_id);
2578 }
2579 #endif
2580 ret = btrfs_read_qgroup_config(fs_info);
2581 if (ret)
2582 goto fail_trans_kthread;
2583
2584 /* do not make disk changes in broken FS */
2585 if (btrfs_super_log_root(disk_super) != 0) {
2586 u64 bytenr = btrfs_super_log_root(disk_super);
2587
2588 if (fs_devices->rw_devices == 0) {
2589 printk(KERN_WARNING "Btrfs log replay required "
2590 "on RO media\n");
2591 err = -EIO;
2592 goto fail_qgroup;
2593 }
2594 blocksize =
2595 btrfs_level_size(tree_root,
2596 btrfs_super_log_root_level(disk_super));
2597
2598 log_tree_root = btrfs_alloc_root(fs_info);
2599 if (!log_tree_root) {
2600 err = -ENOMEM;
2601 goto fail_qgroup;
2602 }
2603
2604 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2605 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2606
2607 log_tree_root->node = read_tree_block(tree_root, bytenr,
2608 blocksize,
2609 generation + 1);
2610 /* returns with log_tree_root freed on success */
2611 ret = btrfs_recover_log_trees(log_tree_root);
2612 if (ret) {
2613 btrfs_error(tree_root->fs_info, ret,
2614 "Failed to recover log tree");
2615 free_extent_buffer(log_tree_root->node);
2616 kfree(log_tree_root);
2617 goto fail_trans_kthread;
2618 }
2619
2620 if (sb->s_flags & MS_RDONLY) {
2621 ret = btrfs_commit_super(tree_root);
2622 if (ret)
2623 goto fail_trans_kthread;
2624 }
2625 }
2626
2627 ret = btrfs_find_orphan_roots(tree_root);
2628 if (ret)
2629 goto fail_trans_kthread;
2630
2631 if (!(sb->s_flags & MS_RDONLY)) {
2632 ret = btrfs_cleanup_fs_roots(fs_info);
2633 if (ret)
2634 goto fail_trans_kthread;
2635
2636 ret = btrfs_recover_relocation(tree_root);
2637 if (ret < 0) {
2638 printk(KERN_WARNING
2639 "btrfs: failed to recover relocation\n");
2640 err = -EINVAL;
2641 goto fail_qgroup;
2642 }
2643 }
2644
2645 location.objectid = BTRFS_FS_TREE_OBJECTID;
2646 location.type = BTRFS_ROOT_ITEM_KEY;
2647 location.offset = (u64)-1;
2648
2649 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2650 if (!fs_info->fs_root)
2651 goto fail_qgroup;
2652 if (IS_ERR(fs_info->fs_root)) {
2653 err = PTR_ERR(fs_info->fs_root);
2654 goto fail_qgroup;
2655 }
2656
2657 if (sb->s_flags & MS_RDONLY)
2658 return 0;
2659
2660 down_read(&fs_info->cleanup_work_sem);
2661 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2662 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2663 up_read(&fs_info->cleanup_work_sem);
2664 close_ctree(tree_root);
2665 return ret;
2666 }
2667 up_read(&fs_info->cleanup_work_sem);
2668
2669 ret = btrfs_resume_balance_async(fs_info);
2670 if (ret) {
2671 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2672 close_ctree(tree_root);
2673 return ret;
2674 }
2675
2676 ret = btrfs_resume_dev_replace_async(fs_info);
2677 if (ret) {
2678 pr_warn("btrfs: failed to resume dev_replace\n");
2679 close_ctree(tree_root);
2680 return ret;
2681 }
2682
2683 return 0;
2684
2685 fail_qgroup:
2686 btrfs_free_qgroup_config(fs_info);
2687 fail_trans_kthread:
2688 kthread_stop(fs_info->transaction_kthread);
2689 fail_cleaner:
2690 kthread_stop(fs_info->cleaner_kthread);
2691
2692 /*
2693 * make sure we're done with the btree inode before we stop our
2694 * kthreads
2695 */
2696 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2697 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2698
2699 fail_block_groups:
2700 btrfs_free_block_groups(fs_info);
2701
2702 fail_tree_roots:
2703 free_root_pointers(fs_info, 1);
2704
2705 fail_sb_buffer:
2706 btrfs_stop_workers(&fs_info->generic_worker);
2707 btrfs_stop_workers(&fs_info->readahead_workers);
2708 btrfs_stop_workers(&fs_info->fixup_workers);
2709 btrfs_stop_workers(&fs_info->delalloc_workers);
2710 btrfs_stop_workers(&fs_info->workers);
2711 btrfs_stop_workers(&fs_info->endio_workers);
2712 btrfs_stop_workers(&fs_info->endio_meta_workers);
2713 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2714 btrfs_stop_workers(&fs_info->endio_write_workers);
2715 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2716 btrfs_stop_workers(&fs_info->submit_workers);
2717 btrfs_stop_workers(&fs_info->delayed_workers);
2718 btrfs_stop_workers(&fs_info->caching_workers);
2719 btrfs_stop_workers(&fs_info->flush_workers);
2720 fail_alloc:
2721 fail_iput:
2722 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2723
2724 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2725 iput(fs_info->btree_inode);
2726 fail_bdi:
2727 bdi_destroy(&fs_info->bdi);
2728 fail_srcu:
2729 cleanup_srcu_struct(&fs_info->subvol_srcu);
2730 fail:
2731 btrfs_close_devices(fs_info->fs_devices);
2732 return err;
2733
2734 recovery_tree_root:
2735 if (!btrfs_test_opt(tree_root, RECOVERY))
2736 goto fail_tree_roots;
2737
2738 free_root_pointers(fs_info, 0);
2739
2740 /* don't use the log in recovery mode, it won't be valid */
2741 btrfs_set_super_log_root(disk_super, 0);
2742
2743 /* we can't trust the free space cache either */
2744 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2745
2746 ret = next_root_backup(fs_info, fs_info->super_copy,
2747 &num_backups_tried, &backup_index);
2748 if (ret == -1)
2749 goto fail_block_groups;
2750 goto retry_root_backup;
2751 }
2752
2753 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2754 {
2755 if (uptodate) {
2756 set_buffer_uptodate(bh);
2757 } else {
2758 struct btrfs_device *device = (struct btrfs_device *)
2759 bh->b_private;
2760
2761 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2762 "I/O error on %s\n",
2763 rcu_str_deref(device->name));
2764 /* note, we dont' set_buffer_write_io_error because we have
2765 * our own ways of dealing with the IO errors
2766 */
2767 clear_buffer_uptodate(bh);
2768 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2769 }
2770 unlock_buffer(bh);
2771 put_bh(bh);
2772 }
2773
2774 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2775 {
2776 struct buffer_head *bh;
2777 struct buffer_head *latest = NULL;
2778 struct btrfs_super_block *super;
2779 int i;
2780 u64 transid = 0;
2781 u64 bytenr;
2782
2783 /* we would like to check all the supers, but that would make
2784 * a btrfs mount succeed after a mkfs from a different FS.
2785 * So, we need to add a special mount option to scan for
2786 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2787 */
2788 for (i = 0; i < 1; i++) {
2789 bytenr = btrfs_sb_offset(i);
2790 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2791 break;
2792 bh = __bread(bdev, bytenr / 4096, 4096);
2793 if (!bh)
2794 continue;
2795
2796 super = (struct btrfs_super_block *)bh->b_data;
2797 if (btrfs_super_bytenr(super) != bytenr ||
2798 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2799 sizeof(super->magic))) {
2800 brelse(bh);
2801 continue;
2802 }
2803
2804 if (!latest || btrfs_super_generation(super) > transid) {
2805 brelse(latest);
2806 latest = bh;
2807 transid = btrfs_super_generation(super);
2808 } else {
2809 brelse(bh);
2810 }
2811 }
2812 return latest;
2813 }
2814
2815 /*
2816 * this should be called twice, once with wait == 0 and
2817 * once with wait == 1. When wait == 0 is done, all the buffer heads
2818 * we write are pinned.
2819 *
2820 * They are released when wait == 1 is done.
2821 * max_mirrors must be the same for both runs, and it indicates how
2822 * many supers on this one device should be written.
2823 *
2824 * max_mirrors == 0 means to write them all.
2825 */
2826 static int write_dev_supers(struct btrfs_device *device,
2827 struct btrfs_super_block *sb,
2828 int do_barriers, int wait, int max_mirrors)
2829 {
2830 struct buffer_head *bh;
2831 int i;
2832 int ret;
2833 int errors = 0;
2834 u32 crc;
2835 u64 bytenr;
2836
2837 if (max_mirrors == 0)
2838 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2839
2840 for (i = 0; i < max_mirrors; i++) {
2841 bytenr = btrfs_sb_offset(i);
2842 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2843 break;
2844
2845 if (wait) {
2846 bh = __find_get_block(device->bdev, bytenr / 4096,
2847 BTRFS_SUPER_INFO_SIZE);
2848 BUG_ON(!bh);
2849 wait_on_buffer(bh);
2850 if (!buffer_uptodate(bh))
2851 errors++;
2852
2853 /* drop our reference */
2854 brelse(bh);
2855
2856 /* drop the reference from the wait == 0 run */
2857 brelse(bh);
2858 continue;
2859 } else {
2860 btrfs_set_super_bytenr(sb, bytenr);
2861
2862 crc = ~(u32)0;
2863 crc = btrfs_csum_data(NULL, (char *)sb +
2864 BTRFS_CSUM_SIZE, crc,
2865 BTRFS_SUPER_INFO_SIZE -
2866 BTRFS_CSUM_SIZE);
2867 btrfs_csum_final(crc, sb->csum);
2868
2869 /*
2870 * one reference for us, and we leave it for the
2871 * caller
2872 */
2873 bh = __getblk(device->bdev, bytenr / 4096,
2874 BTRFS_SUPER_INFO_SIZE);
2875 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2876
2877 /* one reference for submit_bh */
2878 get_bh(bh);
2879
2880 set_buffer_uptodate(bh);
2881 lock_buffer(bh);
2882 bh->b_end_io = btrfs_end_buffer_write_sync;
2883 bh->b_private = device;
2884 }
2885
2886 /*
2887 * we fua the first super. The others we allow
2888 * to go down lazy.
2889 */
2890 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2891 if (ret)
2892 errors++;
2893 }
2894 return errors < i ? 0 : -1;
2895 }
2896
2897 /*
2898 * endio for the write_dev_flush, this will wake anyone waiting
2899 * for the barrier when it is done
2900 */
2901 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2902 {
2903 if (err) {
2904 if (err == -EOPNOTSUPP)
2905 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2906 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2907 }
2908 if (bio->bi_private)
2909 complete(bio->bi_private);
2910 bio_put(bio);
2911 }
2912
2913 /*
2914 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2915 * sent down. With wait == 1, it waits for the previous flush.
2916 *
2917 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2918 * capable
2919 */
2920 static int write_dev_flush(struct btrfs_device *device, int wait)
2921 {
2922 struct bio *bio;
2923 int ret = 0;
2924
2925 if (device->nobarriers)
2926 return 0;
2927
2928 if (wait) {
2929 bio = device->flush_bio;
2930 if (!bio)
2931 return 0;
2932
2933 wait_for_completion(&device->flush_wait);
2934
2935 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2936 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2937 rcu_str_deref(device->name));
2938 device->nobarriers = 1;
2939 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2940 ret = -EIO;
2941 btrfs_dev_stat_inc_and_print(device,
2942 BTRFS_DEV_STAT_FLUSH_ERRS);
2943 }
2944
2945 /* drop the reference from the wait == 0 run */
2946 bio_put(bio);
2947 device->flush_bio = NULL;
2948
2949 return ret;
2950 }
2951
2952 /*
2953 * one reference for us, and we leave it for the
2954 * caller
2955 */
2956 device->flush_bio = NULL;
2957 bio = bio_alloc(GFP_NOFS, 0);
2958 if (!bio)
2959 return -ENOMEM;
2960
2961 bio->bi_end_io = btrfs_end_empty_barrier;
2962 bio->bi_bdev = device->bdev;
2963 init_completion(&device->flush_wait);
2964 bio->bi_private = &device->flush_wait;
2965 device->flush_bio = bio;
2966
2967 bio_get(bio);
2968 btrfsic_submit_bio(WRITE_FLUSH, bio);
2969
2970 return 0;
2971 }
2972
2973 /*
2974 * send an empty flush down to each device in parallel,
2975 * then wait for them
2976 */
2977 static int barrier_all_devices(struct btrfs_fs_info *info)
2978 {
2979 struct list_head *head;
2980 struct btrfs_device *dev;
2981 int errors_send = 0;
2982 int errors_wait = 0;
2983 int ret;
2984
2985 /* send down all the barriers */
2986 head = &info->fs_devices->devices;
2987 list_for_each_entry_rcu(dev, head, dev_list) {
2988 if (!dev->bdev) {
2989 errors_send++;
2990 continue;
2991 }
2992 if (!dev->in_fs_metadata || !dev->writeable)
2993 continue;
2994
2995 ret = write_dev_flush(dev, 0);
2996 if (ret)
2997 errors_send++;
2998 }
2999
3000 /* wait for all the barriers */
3001 list_for_each_entry_rcu(dev, head, dev_list) {
3002 if (!dev->bdev) {
3003 errors_wait++;
3004 continue;
3005 }
3006 if (!dev->in_fs_metadata || !dev->writeable)
3007 continue;
3008
3009 ret = write_dev_flush(dev, 1);
3010 if (ret)
3011 errors_wait++;
3012 }
3013 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3014 errors_wait > info->num_tolerated_disk_barrier_failures)
3015 return -EIO;
3016 return 0;
3017 }
3018
3019 int btrfs_calc_num_tolerated_disk_barrier_failures(
3020 struct btrfs_fs_info *fs_info)
3021 {
3022 struct btrfs_ioctl_space_info space;
3023 struct btrfs_space_info *sinfo;
3024 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3025 BTRFS_BLOCK_GROUP_SYSTEM,
3026 BTRFS_BLOCK_GROUP_METADATA,
3027 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3028 int num_types = 4;
3029 int i;
3030 int c;
3031 int num_tolerated_disk_barrier_failures =
3032 (int)fs_info->fs_devices->num_devices;
3033
3034 for (i = 0; i < num_types; i++) {
3035 struct btrfs_space_info *tmp;
3036
3037 sinfo = NULL;
3038 rcu_read_lock();
3039 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3040 if (tmp->flags == types[i]) {
3041 sinfo = tmp;
3042 break;
3043 }
3044 }
3045 rcu_read_unlock();
3046
3047 if (!sinfo)
3048 continue;
3049
3050 down_read(&sinfo->groups_sem);
3051 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3052 if (!list_empty(&sinfo->block_groups[c])) {
3053 u64 flags;
3054
3055 btrfs_get_block_group_info(
3056 &sinfo->block_groups[c], &space);
3057 if (space.total_bytes == 0 ||
3058 space.used_bytes == 0)
3059 continue;
3060 flags = space.flags;
3061 /*
3062 * return
3063 * 0: if dup, single or RAID0 is configured for
3064 * any of metadata, system or data, else
3065 * 1: if RAID5 is configured, or if RAID1 or
3066 * RAID10 is configured and only two mirrors
3067 * are used, else
3068 * 2: if RAID6 is configured, else
3069 * num_mirrors - 1: if RAID1 or RAID10 is
3070 * configured and more than
3071 * 2 mirrors are used.
3072 */
3073 if (num_tolerated_disk_barrier_failures > 0 &&
3074 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3075 BTRFS_BLOCK_GROUP_RAID0)) ||
3076 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3077 == 0)))
3078 num_tolerated_disk_barrier_failures = 0;
3079 else if (num_tolerated_disk_barrier_failures > 1
3080 &&
3081 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3082 BTRFS_BLOCK_GROUP_RAID10)))
3083 num_tolerated_disk_barrier_failures = 1;
3084 }
3085 }
3086 up_read(&sinfo->groups_sem);
3087 }
3088
3089 return num_tolerated_disk_barrier_failures;
3090 }
3091
3092 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3093 {
3094 struct list_head *head;
3095 struct btrfs_device *dev;
3096 struct btrfs_super_block *sb;
3097 struct btrfs_dev_item *dev_item;
3098 int ret;
3099 int do_barriers;
3100 int max_errors;
3101 int total_errors = 0;
3102 u64 flags;
3103
3104 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3105 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3106 backup_super_roots(root->fs_info);
3107
3108 sb = root->fs_info->super_for_commit;
3109 dev_item = &sb->dev_item;
3110
3111 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3112 head = &root->fs_info->fs_devices->devices;
3113
3114 if (do_barriers) {
3115 ret = barrier_all_devices(root->fs_info);
3116 if (ret) {
3117 mutex_unlock(
3118 &root->fs_info->fs_devices->device_list_mutex);
3119 btrfs_error(root->fs_info, ret,
3120 "errors while submitting device barriers.");
3121 return ret;
3122 }
3123 }
3124
3125 list_for_each_entry_rcu(dev, head, dev_list) {
3126 if (!dev->bdev) {
3127 total_errors++;
3128 continue;
3129 }
3130 if (!dev->in_fs_metadata || !dev->writeable)
3131 continue;
3132
3133 btrfs_set_stack_device_generation(dev_item, 0);
3134 btrfs_set_stack_device_type(dev_item, dev->type);
3135 btrfs_set_stack_device_id(dev_item, dev->devid);
3136 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3137 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3138 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3139 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3140 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3141 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3142 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3143
3144 flags = btrfs_super_flags(sb);
3145 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3146
3147 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3148 if (ret)
3149 total_errors++;
3150 }
3151 if (total_errors > max_errors) {
3152 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3153 total_errors);
3154
3155 /* This shouldn't happen. FUA is masked off if unsupported */
3156 BUG();
3157 }
3158
3159 total_errors = 0;
3160 list_for_each_entry_rcu(dev, head, dev_list) {
3161 if (!dev->bdev)
3162 continue;
3163 if (!dev->in_fs_metadata || !dev->writeable)
3164 continue;
3165
3166 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3167 if (ret)
3168 total_errors++;
3169 }
3170 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3171 if (total_errors > max_errors) {
3172 btrfs_error(root->fs_info, -EIO,
3173 "%d errors while writing supers", total_errors);
3174 return -EIO;
3175 }
3176 return 0;
3177 }
3178
3179 int write_ctree_super(struct btrfs_trans_handle *trans,
3180 struct btrfs_root *root, int max_mirrors)
3181 {
3182 int ret;
3183
3184 ret = write_all_supers(root, max_mirrors);
3185 return ret;
3186 }
3187
3188 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3189 {
3190 spin_lock(&fs_info->fs_roots_radix_lock);
3191 radix_tree_delete(&fs_info->fs_roots_radix,
3192 (unsigned long)root->root_key.objectid);
3193 spin_unlock(&fs_info->fs_roots_radix_lock);
3194
3195 if (btrfs_root_refs(&root->root_item) == 0)
3196 synchronize_srcu(&fs_info->subvol_srcu);
3197
3198 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3199 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3200 free_fs_root(root);
3201 }
3202
3203 static void free_fs_root(struct btrfs_root *root)
3204 {
3205 iput(root->cache_inode);
3206 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3207 if (root->anon_dev)
3208 free_anon_bdev(root->anon_dev);
3209 free_extent_buffer(root->node);
3210 free_extent_buffer(root->commit_root);
3211 kfree(root->free_ino_ctl);
3212 kfree(root->free_ino_pinned);
3213 kfree(root->name);
3214 kfree(root);
3215 }
3216
3217 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3218 {
3219 int ret;
3220 struct btrfs_root *gang[8];
3221 int i;
3222
3223 while (!list_empty(&fs_info->dead_roots)) {
3224 gang[0] = list_entry(fs_info->dead_roots.next,
3225 struct btrfs_root, root_list);
3226 list_del(&gang[0]->root_list);
3227
3228 if (gang[0]->in_radix) {
3229 btrfs_free_fs_root(fs_info, gang[0]);
3230 } else {
3231 free_extent_buffer(gang[0]->node);
3232 free_extent_buffer(gang[0]->commit_root);
3233 kfree(gang[0]);
3234 }
3235 }
3236
3237 while (1) {
3238 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3239 (void **)gang, 0,
3240 ARRAY_SIZE(gang));
3241 if (!ret)
3242 break;
3243 for (i = 0; i < ret; i++)
3244 btrfs_free_fs_root(fs_info, gang[i]);
3245 }
3246 }
3247
3248 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3249 {
3250 u64 root_objectid = 0;
3251 struct btrfs_root *gang[8];
3252 int i;
3253 int ret;
3254
3255 while (1) {
3256 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3257 (void **)gang, root_objectid,
3258 ARRAY_SIZE(gang));
3259 if (!ret)
3260 break;
3261
3262 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3263 for (i = 0; i < ret; i++) {
3264 int err;
3265
3266 root_objectid = gang[i]->root_key.objectid;
3267 err = btrfs_orphan_cleanup(gang[i]);
3268 if (err)
3269 return err;
3270 }
3271 root_objectid++;
3272 }
3273 return 0;
3274 }
3275
3276 int btrfs_commit_super(struct btrfs_root *root)
3277 {
3278 struct btrfs_trans_handle *trans;
3279 int ret;
3280
3281 mutex_lock(&root->fs_info->cleaner_mutex);
3282 btrfs_run_delayed_iputs(root);
3283 btrfs_clean_old_snapshots(root);
3284 mutex_unlock(&root->fs_info->cleaner_mutex);
3285
3286 /* wait until ongoing cleanup work done */
3287 down_write(&root->fs_info->cleanup_work_sem);
3288 up_write(&root->fs_info->cleanup_work_sem);
3289
3290 trans = btrfs_join_transaction(root);
3291 if (IS_ERR(trans))
3292 return PTR_ERR(trans);
3293 ret = btrfs_commit_transaction(trans, root);
3294 if (ret)
3295 return ret;
3296 /* run commit again to drop the original snapshot */
3297 trans = btrfs_join_transaction(root);
3298 if (IS_ERR(trans))
3299 return PTR_ERR(trans);
3300 ret = btrfs_commit_transaction(trans, root);
3301 if (ret)
3302 return ret;
3303 ret = btrfs_write_and_wait_transaction(NULL, root);
3304 if (ret) {
3305 btrfs_error(root->fs_info, ret,
3306 "Failed to sync btree inode to disk.");
3307 return ret;
3308 }
3309
3310 ret = write_ctree_super(NULL, root, 0);
3311 return ret;
3312 }
3313
3314 int close_ctree(struct btrfs_root *root)
3315 {
3316 struct btrfs_fs_info *fs_info = root->fs_info;
3317 int ret;
3318
3319 fs_info->closing = 1;
3320 smp_mb();
3321
3322 /* pause restriper - we want to resume on mount */
3323 btrfs_pause_balance(fs_info);
3324
3325 btrfs_dev_replace_suspend_for_unmount(fs_info);
3326
3327 btrfs_scrub_cancel(fs_info);
3328
3329 /* wait for any defraggers to finish */
3330 wait_event(fs_info->transaction_wait,
3331 (atomic_read(&fs_info->defrag_running) == 0));
3332
3333 /* clear out the rbtree of defraggable inodes */
3334 btrfs_cleanup_defrag_inodes(fs_info);
3335
3336 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3337 ret = btrfs_commit_super(root);
3338 if (ret)
3339 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3340 }
3341
3342 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3343 btrfs_error_commit_super(root);
3344
3345 btrfs_put_block_group_cache(fs_info);
3346
3347 kthread_stop(fs_info->transaction_kthread);
3348 kthread_stop(fs_info->cleaner_kthread);
3349
3350 fs_info->closing = 2;
3351 smp_mb();
3352
3353 btrfs_free_qgroup_config(root->fs_info);
3354
3355 if (fs_info->delalloc_bytes) {
3356 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3357 (unsigned long long)fs_info->delalloc_bytes);
3358 }
3359
3360 free_extent_buffer(fs_info->extent_root->node);
3361 free_extent_buffer(fs_info->extent_root->commit_root);
3362 free_extent_buffer(fs_info->tree_root->node);
3363 free_extent_buffer(fs_info->tree_root->commit_root);
3364 free_extent_buffer(fs_info->chunk_root->node);
3365 free_extent_buffer(fs_info->chunk_root->commit_root);
3366 free_extent_buffer(fs_info->dev_root->node);
3367 free_extent_buffer(fs_info->dev_root->commit_root);
3368 free_extent_buffer(fs_info->csum_root->node);
3369 free_extent_buffer(fs_info->csum_root->commit_root);
3370 if (fs_info->quota_root) {
3371 free_extent_buffer(fs_info->quota_root->node);
3372 free_extent_buffer(fs_info->quota_root->commit_root);
3373 }
3374
3375 btrfs_free_block_groups(fs_info);
3376
3377 del_fs_roots(fs_info);
3378
3379 iput(fs_info->btree_inode);
3380
3381 btrfs_stop_workers(&fs_info->generic_worker);
3382 btrfs_stop_workers(&fs_info->fixup_workers);
3383 btrfs_stop_workers(&fs_info->delalloc_workers);
3384 btrfs_stop_workers(&fs_info->workers);
3385 btrfs_stop_workers(&fs_info->endio_workers);
3386 btrfs_stop_workers(&fs_info->endio_meta_workers);
3387 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3388 btrfs_stop_workers(&fs_info->endio_write_workers);
3389 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3390 btrfs_stop_workers(&fs_info->submit_workers);
3391 btrfs_stop_workers(&fs_info->delayed_workers);
3392 btrfs_stop_workers(&fs_info->caching_workers);
3393 btrfs_stop_workers(&fs_info->readahead_workers);
3394 btrfs_stop_workers(&fs_info->flush_workers);
3395
3396 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3397 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3398 btrfsic_unmount(root, fs_info->fs_devices);
3399 #endif
3400
3401 btrfs_close_devices(fs_info->fs_devices);
3402 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3403
3404 bdi_destroy(&fs_info->bdi);
3405 cleanup_srcu_struct(&fs_info->subvol_srcu);
3406
3407 return 0;
3408 }
3409
3410 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3411 int atomic)
3412 {
3413 int ret;
3414 struct inode *btree_inode = buf->pages[0]->mapping->host;
3415
3416 ret = extent_buffer_uptodate(buf);
3417 if (!ret)
3418 return ret;
3419
3420 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3421 parent_transid, atomic);
3422 if (ret == -EAGAIN)
3423 return ret;
3424 return !ret;
3425 }
3426
3427 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3428 {
3429 return set_extent_buffer_uptodate(buf);
3430 }
3431
3432 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3433 {
3434 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3435 u64 transid = btrfs_header_generation(buf);
3436 int was_dirty;
3437
3438 btrfs_assert_tree_locked(buf);
3439 if (transid != root->fs_info->generation)
3440 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3441 "found %llu running %llu\n",
3442 (unsigned long long)buf->start,
3443 (unsigned long long)transid,
3444 (unsigned long long)root->fs_info->generation);
3445 was_dirty = set_extent_buffer_dirty(buf);
3446 if (!was_dirty) {
3447 spin_lock(&root->fs_info->delalloc_lock);
3448 root->fs_info->dirty_metadata_bytes += buf->len;
3449 spin_unlock(&root->fs_info->delalloc_lock);
3450 }
3451 }
3452
3453 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3454 int flush_delayed)
3455 {
3456 /*
3457 * looks as though older kernels can get into trouble with
3458 * this code, they end up stuck in balance_dirty_pages forever
3459 */
3460 u64 num_dirty;
3461 unsigned long thresh = 32 * 1024 * 1024;
3462
3463 if (current->flags & PF_MEMALLOC)
3464 return;
3465
3466 if (flush_delayed)
3467 btrfs_balance_delayed_items(root);
3468
3469 num_dirty = root->fs_info->dirty_metadata_bytes;
3470
3471 if (num_dirty > thresh) {
3472 balance_dirty_pages_ratelimited(
3473 root->fs_info->btree_inode->i_mapping);
3474 }
3475 return;
3476 }
3477
3478 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3479 {
3480 __btrfs_btree_balance_dirty(root, 1);
3481 }
3482
3483 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3484 {
3485 __btrfs_btree_balance_dirty(root, 0);
3486 }
3487
3488 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3489 {
3490 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3491 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3492 }
3493
3494 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3495 int read_only)
3496 {
3497 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3498 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3499 return -EINVAL;
3500 }
3501
3502 if (read_only)
3503 return 0;
3504
3505 return 0;
3506 }
3507
3508 void btrfs_error_commit_super(struct btrfs_root *root)
3509 {
3510 mutex_lock(&root->fs_info->cleaner_mutex);
3511 btrfs_run_delayed_iputs(root);
3512 mutex_unlock(&root->fs_info->cleaner_mutex);
3513
3514 down_write(&root->fs_info->cleanup_work_sem);
3515 up_write(&root->fs_info->cleanup_work_sem);
3516
3517 /* cleanup FS via transaction */
3518 btrfs_cleanup_transaction(root);
3519 }
3520
3521 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3522 {
3523 struct btrfs_inode *btrfs_inode;
3524 struct list_head splice;
3525
3526 INIT_LIST_HEAD(&splice);
3527
3528 mutex_lock(&root->fs_info->ordered_operations_mutex);
3529 spin_lock(&root->fs_info->ordered_extent_lock);
3530
3531 list_splice_init(&root->fs_info->ordered_operations, &splice);
3532 while (!list_empty(&splice)) {
3533 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3534 ordered_operations);
3535
3536 list_del_init(&btrfs_inode->ordered_operations);
3537
3538 btrfs_invalidate_inodes(btrfs_inode->root);
3539 }
3540
3541 spin_unlock(&root->fs_info->ordered_extent_lock);
3542 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3543 }
3544
3545 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3546 {
3547 struct list_head splice;
3548 struct btrfs_ordered_extent *ordered;
3549 struct inode *inode;
3550
3551 INIT_LIST_HEAD(&splice);
3552
3553 spin_lock(&root->fs_info->ordered_extent_lock);
3554
3555 list_splice_init(&root->fs_info->ordered_extents, &splice);
3556 while (!list_empty(&splice)) {
3557 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3558 root_extent_list);
3559
3560 list_del_init(&ordered->root_extent_list);
3561 atomic_inc(&ordered->refs);
3562
3563 /* the inode may be getting freed (in sys_unlink path). */
3564 inode = igrab(ordered->inode);
3565
3566 spin_unlock(&root->fs_info->ordered_extent_lock);
3567 if (inode)
3568 iput(inode);
3569
3570 atomic_set(&ordered->refs, 1);
3571 btrfs_put_ordered_extent(ordered);
3572
3573 spin_lock(&root->fs_info->ordered_extent_lock);
3574 }
3575
3576 spin_unlock(&root->fs_info->ordered_extent_lock);
3577 }
3578
3579 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3580 struct btrfs_root *root)
3581 {
3582 struct rb_node *node;
3583 struct btrfs_delayed_ref_root *delayed_refs;
3584 struct btrfs_delayed_ref_node *ref;
3585 int ret = 0;
3586
3587 delayed_refs = &trans->delayed_refs;
3588
3589 spin_lock(&delayed_refs->lock);
3590 if (delayed_refs->num_entries == 0) {
3591 spin_unlock(&delayed_refs->lock);
3592 printk(KERN_INFO "delayed_refs has NO entry\n");
3593 return ret;
3594 }
3595
3596 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3597 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3598
3599 atomic_set(&ref->refs, 1);
3600 if (btrfs_delayed_ref_is_head(ref)) {
3601 struct btrfs_delayed_ref_head *head;
3602
3603 head = btrfs_delayed_node_to_head(ref);
3604 if (!mutex_trylock(&head->mutex)) {
3605 atomic_inc(&ref->refs);
3606 spin_unlock(&delayed_refs->lock);
3607
3608 /* Need to wait for the delayed ref to run */
3609 mutex_lock(&head->mutex);
3610 mutex_unlock(&head->mutex);
3611 btrfs_put_delayed_ref(ref);
3612
3613 spin_lock(&delayed_refs->lock);
3614 continue;
3615 }
3616
3617 kfree(head->extent_op);
3618 delayed_refs->num_heads--;
3619 if (list_empty(&head->cluster))
3620 delayed_refs->num_heads_ready--;
3621 list_del_init(&head->cluster);
3622 }
3623 ref->in_tree = 0;
3624 rb_erase(&ref->rb_node, &delayed_refs->root);
3625 delayed_refs->num_entries--;
3626
3627 spin_unlock(&delayed_refs->lock);
3628 btrfs_put_delayed_ref(ref);
3629
3630 cond_resched();
3631 spin_lock(&delayed_refs->lock);
3632 }
3633
3634 spin_unlock(&delayed_refs->lock);
3635
3636 return ret;
3637 }
3638
3639 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3640 {
3641 struct btrfs_pending_snapshot *snapshot;
3642 struct list_head splice;
3643
3644 INIT_LIST_HEAD(&splice);
3645
3646 list_splice_init(&t->pending_snapshots, &splice);
3647
3648 while (!list_empty(&splice)) {
3649 snapshot = list_entry(splice.next,
3650 struct btrfs_pending_snapshot,
3651 list);
3652
3653 list_del_init(&snapshot->list);
3654
3655 kfree(snapshot);
3656 }
3657 }
3658
3659 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3660 {
3661 struct btrfs_inode *btrfs_inode;
3662 struct list_head splice;
3663
3664 INIT_LIST_HEAD(&splice);
3665
3666 spin_lock(&root->fs_info->delalloc_lock);
3667 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3668
3669 while (!list_empty(&splice)) {
3670 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3671 delalloc_inodes);
3672
3673 list_del_init(&btrfs_inode->delalloc_inodes);
3674
3675 btrfs_invalidate_inodes(btrfs_inode->root);
3676 }
3677
3678 spin_unlock(&root->fs_info->delalloc_lock);
3679 }
3680
3681 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3682 struct extent_io_tree *dirty_pages,
3683 int mark)
3684 {
3685 int ret;
3686 struct page *page;
3687 struct inode *btree_inode = root->fs_info->btree_inode;
3688 struct extent_buffer *eb;
3689 u64 start = 0;
3690 u64 end;
3691 u64 offset;
3692 unsigned long index;
3693
3694 while (1) {
3695 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3696 mark, NULL);
3697 if (ret)
3698 break;
3699
3700 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3701 while (start <= end) {
3702 index = start >> PAGE_CACHE_SHIFT;
3703 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3704 page = find_get_page(btree_inode->i_mapping, index);
3705 if (!page)
3706 continue;
3707 offset = page_offset(page);
3708
3709 spin_lock(&dirty_pages->buffer_lock);
3710 eb = radix_tree_lookup(
3711 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3712 offset >> PAGE_CACHE_SHIFT);
3713 spin_unlock(&dirty_pages->buffer_lock);
3714 if (eb)
3715 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3716 &eb->bflags);
3717 if (PageWriteback(page))
3718 end_page_writeback(page);
3719
3720 lock_page(page);
3721 if (PageDirty(page)) {
3722 clear_page_dirty_for_io(page);
3723 spin_lock_irq(&page->mapping->tree_lock);
3724 radix_tree_tag_clear(&page->mapping->page_tree,
3725 page_index(page),
3726 PAGECACHE_TAG_DIRTY);
3727 spin_unlock_irq(&page->mapping->tree_lock);
3728 }
3729
3730 unlock_page(page);
3731 page_cache_release(page);
3732 }
3733 }
3734
3735 return ret;
3736 }
3737
3738 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3739 struct extent_io_tree *pinned_extents)
3740 {
3741 struct extent_io_tree *unpin;
3742 u64 start;
3743 u64 end;
3744 int ret;
3745 bool loop = true;
3746
3747 unpin = pinned_extents;
3748 again:
3749 while (1) {
3750 ret = find_first_extent_bit(unpin, 0, &start, &end,
3751 EXTENT_DIRTY, NULL);
3752 if (ret)
3753 break;
3754
3755 /* opt_discard */
3756 if (btrfs_test_opt(root, DISCARD))
3757 ret = btrfs_error_discard_extent(root, start,
3758 end + 1 - start,
3759 NULL);
3760
3761 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3762 btrfs_error_unpin_extent_range(root, start, end);
3763 cond_resched();
3764 }
3765
3766 if (loop) {
3767 if (unpin == &root->fs_info->freed_extents[0])
3768 unpin = &root->fs_info->freed_extents[1];
3769 else
3770 unpin = &root->fs_info->freed_extents[0];
3771 loop = false;
3772 goto again;
3773 }
3774
3775 return 0;
3776 }
3777
3778 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3779 struct btrfs_root *root)
3780 {
3781 btrfs_destroy_delayed_refs(cur_trans, root);
3782 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3783 cur_trans->dirty_pages.dirty_bytes);
3784
3785 /* FIXME: cleanup wait for commit */
3786 cur_trans->in_commit = 1;
3787 cur_trans->blocked = 1;
3788 wake_up(&root->fs_info->transaction_blocked_wait);
3789
3790 cur_trans->blocked = 0;
3791 wake_up(&root->fs_info->transaction_wait);
3792
3793 cur_trans->commit_done = 1;
3794 wake_up(&cur_trans->commit_wait);
3795
3796 btrfs_destroy_delayed_inodes(root);
3797 btrfs_assert_delayed_root_empty(root);
3798
3799 btrfs_destroy_pending_snapshots(cur_trans);
3800
3801 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3802 EXTENT_DIRTY);
3803 btrfs_destroy_pinned_extent(root,
3804 root->fs_info->pinned_extents);
3805
3806 /*
3807 memset(cur_trans, 0, sizeof(*cur_trans));
3808 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3809 */
3810 }
3811
3812 int btrfs_cleanup_transaction(struct btrfs_root *root)
3813 {
3814 struct btrfs_transaction *t;
3815 LIST_HEAD(list);
3816
3817 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3818
3819 spin_lock(&root->fs_info->trans_lock);
3820 list_splice_init(&root->fs_info->trans_list, &list);
3821 root->fs_info->trans_no_join = 1;
3822 spin_unlock(&root->fs_info->trans_lock);
3823
3824 while (!list_empty(&list)) {
3825 t = list_entry(list.next, struct btrfs_transaction, list);
3826 if (!t)
3827 break;
3828
3829 btrfs_destroy_ordered_operations(root);
3830
3831 btrfs_destroy_ordered_extents(root);
3832
3833 btrfs_destroy_delayed_refs(t, root);
3834
3835 btrfs_block_rsv_release(root,
3836 &root->fs_info->trans_block_rsv,
3837 t->dirty_pages.dirty_bytes);
3838
3839 /* FIXME: cleanup wait for commit */
3840 t->in_commit = 1;
3841 t->blocked = 1;
3842 smp_mb();
3843 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3844 wake_up(&root->fs_info->transaction_blocked_wait);
3845
3846 t->blocked = 0;
3847 smp_mb();
3848 if (waitqueue_active(&root->fs_info->transaction_wait))
3849 wake_up(&root->fs_info->transaction_wait);
3850
3851 t->commit_done = 1;
3852 smp_mb();
3853 if (waitqueue_active(&t->commit_wait))
3854 wake_up(&t->commit_wait);
3855
3856 btrfs_destroy_delayed_inodes(root);
3857 btrfs_assert_delayed_root_empty(root);
3858
3859 btrfs_destroy_pending_snapshots(t);
3860
3861 btrfs_destroy_delalloc_inodes(root);
3862
3863 spin_lock(&root->fs_info->trans_lock);
3864 root->fs_info->running_transaction = NULL;
3865 spin_unlock(&root->fs_info->trans_lock);
3866
3867 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3868 EXTENT_DIRTY);
3869
3870 btrfs_destroy_pinned_extent(root,
3871 root->fs_info->pinned_extents);
3872
3873 atomic_set(&t->use_count, 0);
3874 list_del_init(&t->list);
3875 memset(t, 0, sizeof(*t));
3876 kmem_cache_free(btrfs_transaction_cachep, t);
3877 }
3878
3879 spin_lock(&root->fs_info->trans_lock);
3880 root->fs_info->trans_no_join = 0;
3881 spin_unlock(&root->fs_info->trans_lock);
3882 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3883
3884 return 0;
3885 }
3886
3887 static struct extent_io_ops btree_extent_io_ops = {
3888 .readpage_end_io_hook = btree_readpage_end_io_hook,
3889 .readpage_io_failed_hook = btree_io_failed_hook,
3890 .submit_bio_hook = btree_submit_bio_hook,
3891 /* note we're sharing with inode.c for the merge bio hook */
3892 .merge_bio_hook = btrfs_merge_bio_hook,
3893 };
This page took 0.123192 seconds and 6 git commands to generate.