Btrfs: hooks to reserve qgroup space
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 #undef SCRAMBLE_DELAYED_REFS
38
39 /*
40 * control flags for do_chunk_alloc's force field
41 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
42 * if we really need one.
43 *
44 * CHUNK_ALLOC_LIMITED means to only try and allocate one
45 * if we have very few chunks already allocated. This is
46 * used as part of the clustering code to help make sure
47 * we have a good pool of storage to cluster in, without
48 * filling the FS with empty chunks
49 *
50 * CHUNK_ALLOC_FORCE means it must try to allocate one
51 *
52 */
53 enum {
54 CHUNK_ALLOC_NO_FORCE = 0,
55 CHUNK_ALLOC_LIMITED = 1,
56 CHUNK_ALLOC_FORCE = 2,
57 };
58
59 /*
60 * Control how reservations are dealt with.
61 *
62 * RESERVE_FREE - freeing a reservation.
63 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
64 * ENOSPC accounting
65 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
66 * bytes_may_use as the ENOSPC accounting is done elsewhere
67 */
68 enum {
69 RESERVE_FREE = 0,
70 RESERVE_ALLOC = 1,
71 RESERVE_ALLOC_NO_ACCOUNT = 2,
72 };
73
74 static int update_block_group(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, int alloc);
77 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root,
79 u64 bytenr, u64 num_bytes, u64 parent,
80 u64 root_objectid, u64 owner_objectid,
81 u64 owner_offset, int refs_to_drop,
82 struct btrfs_delayed_extent_op *extra_op);
83 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
84 struct extent_buffer *leaf,
85 struct btrfs_extent_item *ei);
86 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
87 struct btrfs_root *root,
88 u64 parent, u64 root_objectid,
89 u64 flags, u64 owner, u64 offset,
90 struct btrfs_key *ins, int ref_mod);
91 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
92 struct btrfs_root *root,
93 u64 parent, u64 root_objectid,
94 u64 flags, struct btrfs_disk_key *key,
95 int level, struct btrfs_key *ins);
96 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
97 struct btrfs_root *extent_root, u64 alloc_bytes,
98 u64 flags, int force);
99 static int find_next_key(struct btrfs_path *path, int level,
100 struct btrfs_key *key);
101 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
102 int dump_block_groups);
103 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
104 u64 num_bytes, int reserve);
105
106 static noinline int
107 block_group_cache_done(struct btrfs_block_group_cache *cache)
108 {
109 smp_mb();
110 return cache->cached == BTRFS_CACHE_FINISHED;
111 }
112
113 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
114 {
115 return (cache->flags & bits) == bits;
116 }
117
118 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
119 {
120 atomic_inc(&cache->count);
121 }
122
123 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
124 {
125 if (atomic_dec_and_test(&cache->count)) {
126 WARN_ON(cache->pinned > 0);
127 WARN_ON(cache->reserved > 0);
128 kfree(cache->free_space_ctl);
129 kfree(cache);
130 }
131 }
132
133 /*
134 * this adds the block group to the fs_info rb tree for the block group
135 * cache
136 */
137 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
138 struct btrfs_block_group_cache *block_group)
139 {
140 struct rb_node **p;
141 struct rb_node *parent = NULL;
142 struct btrfs_block_group_cache *cache;
143
144 spin_lock(&info->block_group_cache_lock);
145 p = &info->block_group_cache_tree.rb_node;
146
147 while (*p) {
148 parent = *p;
149 cache = rb_entry(parent, struct btrfs_block_group_cache,
150 cache_node);
151 if (block_group->key.objectid < cache->key.objectid) {
152 p = &(*p)->rb_left;
153 } else if (block_group->key.objectid > cache->key.objectid) {
154 p = &(*p)->rb_right;
155 } else {
156 spin_unlock(&info->block_group_cache_lock);
157 return -EEXIST;
158 }
159 }
160
161 rb_link_node(&block_group->cache_node, parent, p);
162 rb_insert_color(&block_group->cache_node,
163 &info->block_group_cache_tree);
164 spin_unlock(&info->block_group_cache_lock);
165
166 return 0;
167 }
168
169 /*
170 * This will return the block group at or after bytenr if contains is 0, else
171 * it will return the block group that contains the bytenr
172 */
173 static struct btrfs_block_group_cache *
174 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
175 int contains)
176 {
177 struct btrfs_block_group_cache *cache, *ret = NULL;
178 struct rb_node *n;
179 u64 end, start;
180
181 spin_lock(&info->block_group_cache_lock);
182 n = info->block_group_cache_tree.rb_node;
183
184 while (n) {
185 cache = rb_entry(n, struct btrfs_block_group_cache,
186 cache_node);
187 end = cache->key.objectid + cache->key.offset - 1;
188 start = cache->key.objectid;
189
190 if (bytenr < start) {
191 if (!contains && (!ret || start < ret->key.objectid))
192 ret = cache;
193 n = n->rb_left;
194 } else if (bytenr > start) {
195 if (contains && bytenr <= end) {
196 ret = cache;
197 break;
198 }
199 n = n->rb_right;
200 } else {
201 ret = cache;
202 break;
203 }
204 }
205 if (ret)
206 btrfs_get_block_group(ret);
207 spin_unlock(&info->block_group_cache_lock);
208
209 return ret;
210 }
211
212 static int add_excluded_extent(struct btrfs_root *root,
213 u64 start, u64 num_bytes)
214 {
215 u64 end = start + num_bytes - 1;
216 set_extent_bits(&root->fs_info->freed_extents[0],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
218 set_extent_bits(&root->fs_info->freed_extents[1],
219 start, end, EXTENT_UPTODATE, GFP_NOFS);
220 return 0;
221 }
222
223 static void free_excluded_extents(struct btrfs_root *root,
224 struct btrfs_block_group_cache *cache)
225 {
226 u64 start, end;
227
228 start = cache->key.objectid;
229 end = start + cache->key.offset - 1;
230
231 clear_extent_bits(&root->fs_info->freed_extents[0],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 clear_extent_bits(&root->fs_info->freed_extents[1],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 }
236
237 static int exclude_super_stripes(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 bytenr;
241 u64 *logical;
242 int stripe_len;
243 int i, nr, ret;
244
245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
247 cache->bytes_super += stripe_len;
248 ret = add_excluded_extent(root, cache->key.objectid,
249 stripe_len);
250 BUG_ON(ret); /* -ENOMEM */
251 }
252
253 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
254 bytenr = btrfs_sb_offset(i);
255 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
256 cache->key.objectid, bytenr,
257 0, &logical, &nr, &stripe_len);
258 BUG_ON(ret); /* -ENOMEM */
259
260 while (nr--) {
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, logical[nr],
263 stripe_len);
264 BUG_ON(ret); /* -ENOMEM */
265 }
266
267 kfree(logical);
268 }
269 return 0;
270 }
271
272 static struct btrfs_caching_control *
273 get_caching_control(struct btrfs_block_group_cache *cache)
274 {
275 struct btrfs_caching_control *ctl;
276
277 spin_lock(&cache->lock);
278 if (cache->cached != BTRFS_CACHE_STARTED) {
279 spin_unlock(&cache->lock);
280 return NULL;
281 }
282
283 /* We're loading it the fast way, so we don't have a caching_ctl. */
284 if (!cache->caching_ctl) {
285 spin_unlock(&cache->lock);
286 return NULL;
287 }
288
289 ctl = cache->caching_ctl;
290 atomic_inc(&ctl->count);
291 spin_unlock(&cache->lock);
292 return ctl;
293 }
294
295 static void put_caching_control(struct btrfs_caching_control *ctl)
296 {
297 if (atomic_dec_and_test(&ctl->count))
298 kfree(ctl);
299 }
300
301 /*
302 * this is only called by cache_block_group, since we could have freed extents
303 * we need to check the pinned_extents for any extents that can't be used yet
304 * since their free space will be released as soon as the transaction commits.
305 */
306 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
307 struct btrfs_fs_info *info, u64 start, u64 end)
308 {
309 u64 extent_start, extent_end, size, total_added = 0;
310 int ret;
311
312 while (start < end) {
313 ret = find_first_extent_bit(info->pinned_extents, start,
314 &extent_start, &extent_end,
315 EXTENT_DIRTY | EXTENT_UPTODATE);
316 if (ret)
317 break;
318
319 if (extent_start <= start) {
320 start = extent_end + 1;
321 } else if (extent_start > start && extent_start < end) {
322 size = extent_start - start;
323 total_added += size;
324 ret = btrfs_add_free_space(block_group, start,
325 size);
326 BUG_ON(ret); /* -ENOMEM or logic error */
327 start = extent_end + 1;
328 } else {
329 break;
330 }
331 }
332
333 if (start < end) {
334 size = end - start;
335 total_added += size;
336 ret = btrfs_add_free_space(block_group, start, size);
337 BUG_ON(ret); /* -ENOMEM or logic error */
338 }
339
340 return total_added;
341 }
342
343 static noinline void caching_thread(struct btrfs_work *work)
344 {
345 struct btrfs_block_group_cache *block_group;
346 struct btrfs_fs_info *fs_info;
347 struct btrfs_caching_control *caching_ctl;
348 struct btrfs_root *extent_root;
349 struct btrfs_path *path;
350 struct extent_buffer *leaf;
351 struct btrfs_key key;
352 u64 total_found = 0;
353 u64 last = 0;
354 u32 nritems;
355 int ret = 0;
356
357 caching_ctl = container_of(work, struct btrfs_caching_control, work);
358 block_group = caching_ctl->block_group;
359 fs_info = block_group->fs_info;
360 extent_root = fs_info->extent_root;
361
362 path = btrfs_alloc_path();
363 if (!path)
364 goto out;
365
366 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
367
368 /*
369 * We don't want to deadlock with somebody trying to allocate a new
370 * extent for the extent root while also trying to search the extent
371 * root to add free space. So we skip locking and search the commit
372 * root, since its read-only
373 */
374 path->skip_locking = 1;
375 path->search_commit_root = 1;
376 path->reada = 1;
377
378 key.objectid = last;
379 key.offset = 0;
380 key.type = BTRFS_EXTENT_ITEM_KEY;
381 again:
382 mutex_lock(&caching_ctl->mutex);
383 /* need to make sure the commit_root doesn't disappear */
384 down_read(&fs_info->extent_commit_sem);
385
386 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
387 if (ret < 0)
388 goto err;
389
390 leaf = path->nodes[0];
391 nritems = btrfs_header_nritems(leaf);
392
393 while (1) {
394 if (btrfs_fs_closing(fs_info) > 1) {
395 last = (u64)-1;
396 break;
397 }
398
399 if (path->slots[0] < nritems) {
400 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
401 } else {
402 ret = find_next_key(path, 0, &key);
403 if (ret)
404 break;
405
406 if (need_resched() ||
407 btrfs_next_leaf(extent_root, path)) {
408 caching_ctl->progress = last;
409 btrfs_release_path(path);
410 up_read(&fs_info->extent_commit_sem);
411 mutex_unlock(&caching_ctl->mutex);
412 cond_resched();
413 goto again;
414 }
415 leaf = path->nodes[0];
416 nritems = btrfs_header_nritems(leaf);
417 continue;
418 }
419
420 if (key.objectid < block_group->key.objectid) {
421 path->slots[0]++;
422 continue;
423 }
424
425 if (key.objectid >= block_group->key.objectid +
426 block_group->key.offset)
427 break;
428
429 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
430 total_found += add_new_free_space(block_group,
431 fs_info, last,
432 key.objectid);
433 last = key.objectid + key.offset;
434
435 if (total_found > (1024 * 1024 * 2)) {
436 total_found = 0;
437 wake_up(&caching_ctl->wait);
438 }
439 }
440 path->slots[0]++;
441 }
442 ret = 0;
443
444 total_found += add_new_free_space(block_group, fs_info, last,
445 block_group->key.objectid +
446 block_group->key.offset);
447 caching_ctl->progress = (u64)-1;
448
449 spin_lock(&block_group->lock);
450 block_group->caching_ctl = NULL;
451 block_group->cached = BTRFS_CACHE_FINISHED;
452 spin_unlock(&block_group->lock);
453
454 err:
455 btrfs_free_path(path);
456 up_read(&fs_info->extent_commit_sem);
457
458 free_excluded_extents(extent_root, block_group);
459
460 mutex_unlock(&caching_ctl->mutex);
461 out:
462 wake_up(&caching_ctl->wait);
463
464 put_caching_control(caching_ctl);
465 btrfs_put_block_group(block_group);
466 }
467
468 static int cache_block_group(struct btrfs_block_group_cache *cache,
469 struct btrfs_trans_handle *trans,
470 struct btrfs_root *root,
471 int load_cache_only)
472 {
473 DEFINE_WAIT(wait);
474 struct btrfs_fs_info *fs_info = cache->fs_info;
475 struct btrfs_caching_control *caching_ctl;
476 int ret = 0;
477
478 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
479 if (!caching_ctl)
480 return -ENOMEM;
481
482 INIT_LIST_HEAD(&caching_ctl->list);
483 mutex_init(&caching_ctl->mutex);
484 init_waitqueue_head(&caching_ctl->wait);
485 caching_ctl->block_group = cache;
486 caching_ctl->progress = cache->key.objectid;
487 atomic_set(&caching_ctl->count, 1);
488 caching_ctl->work.func = caching_thread;
489
490 spin_lock(&cache->lock);
491 /*
492 * This should be a rare occasion, but this could happen I think in the
493 * case where one thread starts to load the space cache info, and then
494 * some other thread starts a transaction commit which tries to do an
495 * allocation while the other thread is still loading the space cache
496 * info. The previous loop should have kept us from choosing this block
497 * group, but if we've moved to the state where we will wait on caching
498 * block groups we need to first check if we're doing a fast load here,
499 * so we can wait for it to finish, otherwise we could end up allocating
500 * from a block group who's cache gets evicted for one reason or
501 * another.
502 */
503 while (cache->cached == BTRFS_CACHE_FAST) {
504 struct btrfs_caching_control *ctl;
505
506 ctl = cache->caching_ctl;
507 atomic_inc(&ctl->count);
508 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
509 spin_unlock(&cache->lock);
510
511 schedule();
512
513 finish_wait(&ctl->wait, &wait);
514 put_caching_control(ctl);
515 spin_lock(&cache->lock);
516 }
517
518 if (cache->cached != BTRFS_CACHE_NO) {
519 spin_unlock(&cache->lock);
520 kfree(caching_ctl);
521 return 0;
522 }
523 WARN_ON(cache->caching_ctl);
524 cache->caching_ctl = caching_ctl;
525 cache->cached = BTRFS_CACHE_FAST;
526 spin_unlock(&cache->lock);
527
528 /*
529 * We can't do the read from on-disk cache during a commit since we need
530 * to have the normal tree locking. Also if we are currently trying to
531 * allocate blocks for the tree root we can't do the fast caching since
532 * we likely hold important locks.
533 */
534 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
535 ret = load_free_space_cache(fs_info, cache);
536
537 spin_lock(&cache->lock);
538 if (ret == 1) {
539 cache->caching_ctl = NULL;
540 cache->cached = BTRFS_CACHE_FINISHED;
541 cache->last_byte_to_unpin = (u64)-1;
542 } else {
543 if (load_cache_only) {
544 cache->caching_ctl = NULL;
545 cache->cached = BTRFS_CACHE_NO;
546 } else {
547 cache->cached = BTRFS_CACHE_STARTED;
548 }
549 }
550 spin_unlock(&cache->lock);
551 wake_up(&caching_ctl->wait);
552 if (ret == 1) {
553 put_caching_control(caching_ctl);
554 free_excluded_extents(fs_info->extent_root, cache);
555 return 0;
556 }
557 } else {
558 /*
559 * We are not going to do the fast caching, set cached to the
560 * appropriate value and wakeup any waiters.
561 */
562 spin_lock(&cache->lock);
563 if (load_cache_only) {
564 cache->caching_ctl = NULL;
565 cache->cached = BTRFS_CACHE_NO;
566 } else {
567 cache->cached = BTRFS_CACHE_STARTED;
568 }
569 spin_unlock(&cache->lock);
570 wake_up(&caching_ctl->wait);
571 }
572
573 if (load_cache_only) {
574 put_caching_control(caching_ctl);
575 return 0;
576 }
577
578 down_write(&fs_info->extent_commit_sem);
579 atomic_inc(&caching_ctl->count);
580 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
581 up_write(&fs_info->extent_commit_sem);
582
583 btrfs_get_block_group(cache);
584
585 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
586
587 return ret;
588 }
589
590 /*
591 * return the block group that starts at or after bytenr
592 */
593 static struct btrfs_block_group_cache *
594 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
595 {
596 struct btrfs_block_group_cache *cache;
597
598 cache = block_group_cache_tree_search(info, bytenr, 0);
599
600 return cache;
601 }
602
603 /*
604 * return the block group that contains the given bytenr
605 */
606 struct btrfs_block_group_cache *btrfs_lookup_block_group(
607 struct btrfs_fs_info *info,
608 u64 bytenr)
609 {
610 struct btrfs_block_group_cache *cache;
611
612 cache = block_group_cache_tree_search(info, bytenr, 1);
613
614 return cache;
615 }
616
617 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
618 u64 flags)
619 {
620 struct list_head *head = &info->space_info;
621 struct btrfs_space_info *found;
622
623 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
624
625 rcu_read_lock();
626 list_for_each_entry_rcu(found, head, list) {
627 if (found->flags & flags) {
628 rcu_read_unlock();
629 return found;
630 }
631 }
632 rcu_read_unlock();
633 return NULL;
634 }
635
636 /*
637 * after adding space to the filesystem, we need to clear the full flags
638 * on all the space infos.
639 */
640 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
641 {
642 struct list_head *head = &info->space_info;
643 struct btrfs_space_info *found;
644
645 rcu_read_lock();
646 list_for_each_entry_rcu(found, head, list)
647 found->full = 0;
648 rcu_read_unlock();
649 }
650
651 static u64 div_factor(u64 num, int factor)
652 {
653 if (factor == 10)
654 return num;
655 num *= factor;
656 do_div(num, 10);
657 return num;
658 }
659
660 static u64 div_factor_fine(u64 num, int factor)
661 {
662 if (factor == 100)
663 return num;
664 num *= factor;
665 do_div(num, 100);
666 return num;
667 }
668
669 u64 btrfs_find_block_group(struct btrfs_root *root,
670 u64 search_start, u64 search_hint, int owner)
671 {
672 struct btrfs_block_group_cache *cache;
673 u64 used;
674 u64 last = max(search_hint, search_start);
675 u64 group_start = 0;
676 int full_search = 0;
677 int factor = 9;
678 int wrapped = 0;
679 again:
680 while (1) {
681 cache = btrfs_lookup_first_block_group(root->fs_info, last);
682 if (!cache)
683 break;
684
685 spin_lock(&cache->lock);
686 last = cache->key.objectid + cache->key.offset;
687 used = btrfs_block_group_used(&cache->item);
688
689 if ((full_search || !cache->ro) &&
690 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
691 if (used + cache->pinned + cache->reserved <
692 div_factor(cache->key.offset, factor)) {
693 group_start = cache->key.objectid;
694 spin_unlock(&cache->lock);
695 btrfs_put_block_group(cache);
696 goto found;
697 }
698 }
699 spin_unlock(&cache->lock);
700 btrfs_put_block_group(cache);
701 cond_resched();
702 }
703 if (!wrapped) {
704 last = search_start;
705 wrapped = 1;
706 goto again;
707 }
708 if (!full_search && factor < 10) {
709 last = search_start;
710 full_search = 1;
711 factor = 10;
712 goto again;
713 }
714 found:
715 return group_start;
716 }
717
718 /* simple helper to search for an existing extent at a given offset */
719 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
720 {
721 int ret;
722 struct btrfs_key key;
723 struct btrfs_path *path;
724
725 path = btrfs_alloc_path();
726 if (!path)
727 return -ENOMEM;
728
729 key.objectid = start;
730 key.offset = len;
731 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
732 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
733 0, 0);
734 btrfs_free_path(path);
735 return ret;
736 }
737
738 /*
739 * helper function to lookup reference count and flags of extent.
740 *
741 * the head node for delayed ref is used to store the sum of all the
742 * reference count modifications queued up in the rbtree. the head
743 * node may also store the extent flags to set. This way you can check
744 * to see what the reference count and extent flags would be if all of
745 * the delayed refs are not processed.
746 */
747 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
748 struct btrfs_root *root, u64 bytenr,
749 u64 num_bytes, u64 *refs, u64 *flags)
750 {
751 struct btrfs_delayed_ref_head *head;
752 struct btrfs_delayed_ref_root *delayed_refs;
753 struct btrfs_path *path;
754 struct btrfs_extent_item *ei;
755 struct extent_buffer *leaf;
756 struct btrfs_key key;
757 u32 item_size;
758 u64 num_refs;
759 u64 extent_flags;
760 int ret;
761
762 path = btrfs_alloc_path();
763 if (!path)
764 return -ENOMEM;
765
766 key.objectid = bytenr;
767 key.type = BTRFS_EXTENT_ITEM_KEY;
768 key.offset = num_bytes;
769 if (!trans) {
770 path->skip_locking = 1;
771 path->search_commit_root = 1;
772 }
773 again:
774 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
775 &key, path, 0, 0);
776 if (ret < 0)
777 goto out_free;
778
779 if (ret == 0) {
780 leaf = path->nodes[0];
781 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
782 if (item_size >= sizeof(*ei)) {
783 ei = btrfs_item_ptr(leaf, path->slots[0],
784 struct btrfs_extent_item);
785 num_refs = btrfs_extent_refs(leaf, ei);
786 extent_flags = btrfs_extent_flags(leaf, ei);
787 } else {
788 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
789 struct btrfs_extent_item_v0 *ei0;
790 BUG_ON(item_size != sizeof(*ei0));
791 ei0 = btrfs_item_ptr(leaf, path->slots[0],
792 struct btrfs_extent_item_v0);
793 num_refs = btrfs_extent_refs_v0(leaf, ei0);
794 /* FIXME: this isn't correct for data */
795 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
796 #else
797 BUG();
798 #endif
799 }
800 BUG_ON(num_refs == 0);
801 } else {
802 num_refs = 0;
803 extent_flags = 0;
804 ret = 0;
805 }
806
807 if (!trans)
808 goto out;
809
810 delayed_refs = &trans->transaction->delayed_refs;
811 spin_lock(&delayed_refs->lock);
812 head = btrfs_find_delayed_ref_head(trans, bytenr);
813 if (head) {
814 if (!mutex_trylock(&head->mutex)) {
815 atomic_inc(&head->node.refs);
816 spin_unlock(&delayed_refs->lock);
817
818 btrfs_release_path(path);
819
820 /*
821 * Mutex was contended, block until it's released and try
822 * again
823 */
824 mutex_lock(&head->mutex);
825 mutex_unlock(&head->mutex);
826 btrfs_put_delayed_ref(&head->node);
827 goto again;
828 }
829 if (head->extent_op && head->extent_op->update_flags)
830 extent_flags |= head->extent_op->flags_to_set;
831 else
832 BUG_ON(num_refs == 0);
833
834 num_refs += head->node.ref_mod;
835 mutex_unlock(&head->mutex);
836 }
837 spin_unlock(&delayed_refs->lock);
838 out:
839 WARN_ON(num_refs == 0);
840 if (refs)
841 *refs = num_refs;
842 if (flags)
843 *flags = extent_flags;
844 out_free:
845 btrfs_free_path(path);
846 return ret;
847 }
848
849 /*
850 * Back reference rules. Back refs have three main goals:
851 *
852 * 1) differentiate between all holders of references to an extent so that
853 * when a reference is dropped we can make sure it was a valid reference
854 * before freeing the extent.
855 *
856 * 2) Provide enough information to quickly find the holders of an extent
857 * if we notice a given block is corrupted or bad.
858 *
859 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
860 * maintenance. This is actually the same as #2, but with a slightly
861 * different use case.
862 *
863 * There are two kinds of back refs. The implicit back refs is optimized
864 * for pointers in non-shared tree blocks. For a given pointer in a block,
865 * back refs of this kind provide information about the block's owner tree
866 * and the pointer's key. These information allow us to find the block by
867 * b-tree searching. The full back refs is for pointers in tree blocks not
868 * referenced by their owner trees. The location of tree block is recorded
869 * in the back refs. Actually the full back refs is generic, and can be
870 * used in all cases the implicit back refs is used. The major shortcoming
871 * of the full back refs is its overhead. Every time a tree block gets
872 * COWed, we have to update back refs entry for all pointers in it.
873 *
874 * For a newly allocated tree block, we use implicit back refs for
875 * pointers in it. This means most tree related operations only involve
876 * implicit back refs. For a tree block created in old transaction, the
877 * only way to drop a reference to it is COW it. So we can detect the
878 * event that tree block loses its owner tree's reference and do the
879 * back refs conversion.
880 *
881 * When a tree block is COW'd through a tree, there are four cases:
882 *
883 * The reference count of the block is one and the tree is the block's
884 * owner tree. Nothing to do in this case.
885 *
886 * The reference count of the block is one and the tree is not the
887 * block's owner tree. In this case, full back refs is used for pointers
888 * in the block. Remove these full back refs, add implicit back refs for
889 * every pointers in the new block.
890 *
891 * The reference count of the block is greater than one and the tree is
892 * the block's owner tree. In this case, implicit back refs is used for
893 * pointers in the block. Add full back refs for every pointers in the
894 * block, increase lower level extents' reference counts. The original
895 * implicit back refs are entailed to the new block.
896 *
897 * The reference count of the block is greater than one and the tree is
898 * not the block's owner tree. Add implicit back refs for every pointer in
899 * the new block, increase lower level extents' reference count.
900 *
901 * Back Reference Key composing:
902 *
903 * The key objectid corresponds to the first byte in the extent,
904 * The key type is used to differentiate between types of back refs.
905 * There are different meanings of the key offset for different types
906 * of back refs.
907 *
908 * File extents can be referenced by:
909 *
910 * - multiple snapshots, subvolumes, or different generations in one subvol
911 * - different files inside a single subvolume
912 * - different offsets inside a file (bookend extents in file.c)
913 *
914 * The extent ref structure for the implicit back refs has fields for:
915 *
916 * - Objectid of the subvolume root
917 * - objectid of the file holding the reference
918 * - original offset in the file
919 * - how many bookend extents
920 *
921 * The key offset for the implicit back refs is hash of the first
922 * three fields.
923 *
924 * The extent ref structure for the full back refs has field for:
925 *
926 * - number of pointers in the tree leaf
927 *
928 * The key offset for the implicit back refs is the first byte of
929 * the tree leaf
930 *
931 * When a file extent is allocated, The implicit back refs is used.
932 * the fields are filled in:
933 *
934 * (root_key.objectid, inode objectid, offset in file, 1)
935 *
936 * When a file extent is removed file truncation, we find the
937 * corresponding implicit back refs and check the following fields:
938 *
939 * (btrfs_header_owner(leaf), inode objectid, offset in file)
940 *
941 * Btree extents can be referenced by:
942 *
943 * - Different subvolumes
944 *
945 * Both the implicit back refs and the full back refs for tree blocks
946 * only consist of key. The key offset for the implicit back refs is
947 * objectid of block's owner tree. The key offset for the full back refs
948 * is the first byte of parent block.
949 *
950 * When implicit back refs is used, information about the lowest key and
951 * level of the tree block are required. These information are stored in
952 * tree block info structure.
953 */
954
955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
956 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
957 struct btrfs_root *root,
958 struct btrfs_path *path,
959 u64 owner, u32 extra_size)
960 {
961 struct btrfs_extent_item *item;
962 struct btrfs_extent_item_v0 *ei0;
963 struct btrfs_extent_ref_v0 *ref0;
964 struct btrfs_tree_block_info *bi;
965 struct extent_buffer *leaf;
966 struct btrfs_key key;
967 struct btrfs_key found_key;
968 u32 new_size = sizeof(*item);
969 u64 refs;
970 int ret;
971
972 leaf = path->nodes[0];
973 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
974
975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
976 ei0 = btrfs_item_ptr(leaf, path->slots[0],
977 struct btrfs_extent_item_v0);
978 refs = btrfs_extent_refs_v0(leaf, ei0);
979
980 if (owner == (u64)-1) {
981 while (1) {
982 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
983 ret = btrfs_next_leaf(root, path);
984 if (ret < 0)
985 return ret;
986 BUG_ON(ret > 0); /* Corruption */
987 leaf = path->nodes[0];
988 }
989 btrfs_item_key_to_cpu(leaf, &found_key,
990 path->slots[0]);
991 BUG_ON(key.objectid != found_key.objectid);
992 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
993 path->slots[0]++;
994 continue;
995 }
996 ref0 = btrfs_item_ptr(leaf, path->slots[0],
997 struct btrfs_extent_ref_v0);
998 owner = btrfs_ref_objectid_v0(leaf, ref0);
999 break;
1000 }
1001 }
1002 btrfs_release_path(path);
1003
1004 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1005 new_size += sizeof(*bi);
1006
1007 new_size -= sizeof(*ei0);
1008 ret = btrfs_search_slot(trans, root, &key, path,
1009 new_size + extra_size, 1);
1010 if (ret < 0)
1011 return ret;
1012 BUG_ON(ret); /* Corruption */
1013
1014 btrfs_extend_item(trans, root, path, new_size);
1015
1016 leaf = path->nodes[0];
1017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 btrfs_set_extent_refs(leaf, item, refs);
1019 /* FIXME: get real generation */
1020 btrfs_set_extent_generation(leaf, item, 0);
1021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1022 btrfs_set_extent_flags(leaf, item,
1023 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1024 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1025 bi = (struct btrfs_tree_block_info *)(item + 1);
1026 /* FIXME: get first key of the block */
1027 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1028 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1029 } else {
1030 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1031 }
1032 btrfs_mark_buffer_dirty(leaf);
1033 return 0;
1034 }
1035 #endif
1036
1037 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1038 {
1039 u32 high_crc = ~(u32)0;
1040 u32 low_crc = ~(u32)0;
1041 __le64 lenum;
1042
1043 lenum = cpu_to_le64(root_objectid);
1044 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(owner);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047 lenum = cpu_to_le64(offset);
1048 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1049
1050 return ((u64)high_crc << 31) ^ (u64)low_crc;
1051 }
1052
1053 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1054 struct btrfs_extent_data_ref *ref)
1055 {
1056 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1057 btrfs_extent_data_ref_objectid(leaf, ref),
1058 btrfs_extent_data_ref_offset(leaf, ref));
1059 }
1060
1061 static int match_extent_data_ref(struct extent_buffer *leaf,
1062 struct btrfs_extent_data_ref *ref,
1063 u64 root_objectid, u64 owner, u64 offset)
1064 {
1065 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1066 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1067 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1068 return 0;
1069 return 1;
1070 }
1071
1072 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1073 struct btrfs_root *root,
1074 struct btrfs_path *path,
1075 u64 bytenr, u64 parent,
1076 u64 root_objectid,
1077 u64 owner, u64 offset)
1078 {
1079 struct btrfs_key key;
1080 struct btrfs_extent_data_ref *ref;
1081 struct extent_buffer *leaf;
1082 u32 nritems;
1083 int ret;
1084 int recow;
1085 int err = -ENOENT;
1086
1087 key.objectid = bytenr;
1088 if (parent) {
1089 key.type = BTRFS_SHARED_DATA_REF_KEY;
1090 key.offset = parent;
1091 } else {
1092 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1093 key.offset = hash_extent_data_ref(root_objectid,
1094 owner, offset);
1095 }
1096 again:
1097 recow = 0;
1098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1099 if (ret < 0) {
1100 err = ret;
1101 goto fail;
1102 }
1103
1104 if (parent) {
1105 if (!ret)
1106 return 0;
1107 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1108 key.type = BTRFS_EXTENT_REF_V0_KEY;
1109 btrfs_release_path(path);
1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 if (ret < 0) {
1112 err = ret;
1113 goto fail;
1114 }
1115 if (!ret)
1116 return 0;
1117 #endif
1118 goto fail;
1119 }
1120
1121 leaf = path->nodes[0];
1122 nritems = btrfs_header_nritems(leaf);
1123 while (1) {
1124 if (path->slots[0] >= nritems) {
1125 ret = btrfs_next_leaf(root, path);
1126 if (ret < 0)
1127 err = ret;
1128 if (ret)
1129 goto fail;
1130
1131 leaf = path->nodes[0];
1132 nritems = btrfs_header_nritems(leaf);
1133 recow = 1;
1134 }
1135
1136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1137 if (key.objectid != bytenr ||
1138 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1139 goto fail;
1140
1141 ref = btrfs_item_ptr(leaf, path->slots[0],
1142 struct btrfs_extent_data_ref);
1143
1144 if (match_extent_data_ref(leaf, ref, root_objectid,
1145 owner, offset)) {
1146 if (recow) {
1147 btrfs_release_path(path);
1148 goto again;
1149 }
1150 err = 0;
1151 break;
1152 }
1153 path->slots[0]++;
1154 }
1155 fail:
1156 return err;
1157 }
1158
1159 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 u64 bytenr, u64 parent,
1163 u64 root_objectid, u64 owner,
1164 u64 offset, int refs_to_add)
1165 {
1166 struct btrfs_key key;
1167 struct extent_buffer *leaf;
1168 u32 size;
1169 u32 num_refs;
1170 int ret;
1171
1172 key.objectid = bytenr;
1173 if (parent) {
1174 key.type = BTRFS_SHARED_DATA_REF_KEY;
1175 key.offset = parent;
1176 size = sizeof(struct btrfs_shared_data_ref);
1177 } else {
1178 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 key.offset = hash_extent_data_ref(root_objectid,
1180 owner, offset);
1181 size = sizeof(struct btrfs_extent_data_ref);
1182 }
1183
1184 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1185 if (ret && ret != -EEXIST)
1186 goto fail;
1187
1188 leaf = path->nodes[0];
1189 if (parent) {
1190 struct btrfs_shared_data_ref *ref;
1191 ref = btrfs_item_ptr(leaf, path->slots[0],
1192 struct btrfs_shared_data_ref);
1193 if (ret == 0) {
1194 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1195 } else {
1196 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1197 num_refs += refs_to_add;
1198 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 }
1200 } else {
1201 struct btrfs_extent_data_ref *ref;
1202 while (ret == -EEXIST) {
1203 ref = btrfs_item_ptr(leaf, path->slots[0],
1204 struct btrfs_extent_data_ref);
1205 if (match_extent_data_ref(leaf, ref, root_objectid,
1206 owner, offset))
1207 break;
1208 btrfs_release_path(path);
1209 key.offset++;
1210 ret = btrfs_insert_empty_item(trans, root, path, &key,
1211 size);
1212 if (ret && ret != -EEXIST)
1213 goto fail;
1214
1215 leaf = path->nodes[0];
1216 }
1217 ref = btrfs_item_ptr(leaf, path->slots[0],
1218 struct btrfs_extent_data_ref);
1219 if (ret == 0) {
1220 btrfs_set_extent_data_ref_root(leaf, ref,
1221 root_objectid);
1222 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1223 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1224 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1225 } else {
1226 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1227 num_refs += refs_to_add;
1228 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229 }
1230 }
1231 btrfs_mark_buffer_dirty(leaf);
1232 ret = 0;
1233 fail:
1234 btrfs_release_path(path);
1235 return ret;
1236 }
1237
1238 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1239 struct btrfs_root *root,
1240 struct btrfs_path *path,
1241 int refs_to_drop)
1242 {
1243 struct btrfs_key key;
1244 struct btrfs_extent_data_ref *ref1 = NULL;
1245 struct btrfs_shared_data_ref *ref2 = NULL;
1246 struct extent_buffer *leaf;
1247 u32 num_refs = 0;
1248 int ret = 0;
1249
1250 leaf = path->nodes[0];
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252
1253 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1254 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_extent_data_ref);
1256 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1257 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1258 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1259 struct btrfs_shared_data_ref);
1260 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1261 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1262 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1263 struct btrfs_extent_ref_v0 *ref0;
1264 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_extent_ref_v0);
1266 num_refs = btrfs_ref_count_v0(leaf, ref0);
1267 #endif
1268 } else {
1269 BUG();
1270 }
1271
1272 BUG_ON(num_refs < refs_to_drop);
1273 num_refs -= refs_to_drop;
1274
1275 if (num_refs == 0) {
1276 ret = btrfs_del_item(trans, root, path);
1277 } else {
1278 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1279 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1280 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1281 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 else {
1284 struct btrfs_extent_ref_v0 *ref0;
1285 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_ref_v0);
1287 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 }
1289 #endif
1290 btrfs_mark_buffer_dirty(leaf);
1291 }
1292 return ret;
1293 }
1294
1295 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1296 struct btrfs_path *path,
1297 struct btrfs_extent_inline_ref *iref)
1298 {
1299 struct btrfs_key key;
1300 struct extent_buffer *leaf;
1301 struct btrfs_extent_data_ref *ref1;
1302 struct btrfs_shared_data_ref *ref2;
1303 u32 num_refs = 0;
1304
1305 leaf = path->nodes[0];
1306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1307 if (iref) {
1308 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1309 BTRFS_EXTENT_DATA_REF_KEY) {
1310 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1311 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1312 } else {
1313 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1314 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1315 }
1316 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1317 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_data_ref);
1319 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1320 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1321 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1322 struct btrfs_shared_data_ref);
1323 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1325 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1326 struct btrfs_extent_ref_v0 *ref0;
1327 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1328 struct btrfs_extent_ref_v0);
1329 num_refs = btrfs_ref_count_v0(leaf, ref0);
1330 #endif
1331 } else {
1332 WARN_ON(1);
1333 }
1334 return num_refs;
1335 }
1336
1337 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1338 struct btrfs_root *root,
1339 struct btrfs_path *path,
1340 u64 bytenr, u64 parent,
1341 u64 root_objectid)
1342 {
1343 struct btrfs_key key;
1344 int ret;
1345
1346 key.objectid = bytenr;
1347 if (parent) {
1348 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1349 key.offset = parent;
1350 } else {
1351 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1352 key.offset = root_objectid;
1353 }
1354
1355 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1356 if (ret > 0)
1357 ret = -ENOENT;
1358 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1359 if (ret == -ENOENT && parent) {
1360 btrfs_release_path(path);
1361 key.type = BTRFS_EXTENT_REF_V0_KEY;
1362 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1363 if (ret > 0)
1364 ret = -ENOENT;
1365 }
1366 #endif
1367 return ret;
1368 }
1369
1370 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 bytenr, u64 parent,
1374 u64 root_objectid)
1375 {
1376 struct btrfs_key key;
1377 int ret;
1378
1379 key.objectid = bytenr;
1380 if (parent) {
1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 key.offset = parent;
1383 } else {
1384 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 key.offset = root_objectid;
1386 }
1387
1388 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1389 btrfs_release_path(path);
1390 return ret;
1391 }
1392
1393 static inline int extent_ref_type(u64 parent, u64 owner)
1394 {
1395 int type;
1396 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1397 if (parent > 0)
1398 type = BTRFS_SHARED_BLOCK_REF_KEY;
1399 else
1400 type = BTRFS_TREE_BLOCK_REF_KEY;
1401 } else {
1402 if (parent > 0)
1403 type = BTRFS_SHARED_DATA_REF_KEY;
1404 else
1405 type = BTRFS_EXTENT_DATA_REF_KEY;
1406 }
1407 return type;
1408 }
1409
1410 static int find_next_key(struct btrfs_path *path, int level,
1411 struct btrfs_key *key)
1412
1413 {
1414 for (; level < BTRFS_MAX_LEVEL; level++) {
1415 if (!path->nodes[level])
1416 break;
1417 if (path->slots[level] + 1 >=
1418 btrfs_header_nritems(path->nodes[level]))
1419 continue;
1420 if (level == 0)
1421 btrfs_item_key_to_cpu(path->nodes[level], key,
1422 path->slots[level] + 1);
1423 else
1424 btrfs_node_key_to_cpu(path->nodes[level], key,
1425 path->slots[level] + 1);
1426 return 0;
1427 }
1428 return 1;
1429 }
1430
1431 /*
1432 * look for inline back ref. if back ref is found, *ref_ret is set
1433 * to the address of inline back ref, and 0 is returned.
1434 *
1435 * if back ref isn't found, *ref_ret is set to the address where it
1436 * should be inserted, and -ENOENT is returned.
1437 *
1438 * if insert is true and there are too many inline back refs, the path
1439 * points to the extent item, and -EAGAIN is returned.
1440 *
1441 * NOTE: inline back refs are ordered in the same way that back ref
1442 * items in the tree are ordered.
1443 */
1444 static noinline_for_stack
1445 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1446 struct btrfs_root *root,
1447 struct btrfs_path *path,
1448 struct btrfs_extent_inline_ref **ref_ret,
1449 u64 bytenr, u64 num_bytes,
1450 u64 parent, u64 root_objectid,
1451 u64 owner, u64 offset, int insert)
1452 {
1453 struct btrfs_key key;
1454 struct extent_buffer *leaf;
1455 struct btrfs_extent_item *ei;
1456 struct btrfs_extent_inline_ref *iref;
1457 u64 flags;
1458 u64 item_size;
1459 unsigned long ptr;
1460 unsigned long end;
1461 int extra_size;
1462 int type;
1463 int want;
1464 int ret;
1465 int err = 0;
1466
1467 key.objectid = bytenr;
1468 key.type = BTRFS_EXTENT_ITEM_KEY;
1469 key.offset = num_bytes;
1470
1471 want = extent_ref_type(parent, owner);
1472 if (insert) {
1473 extra_size = btrfs_extent_inline_ref_size(want);
1474 path->keep_locks = 1;
1475 } else
1476 extra_size = -1;
1477 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1478 if (ret < 0) {
1479 err = ret;
1480 goto out;
1481 }
1482 if (ret && !insert) {
1483 err = -ENOENT;
1484 goto out;
1485 }
1486 BUG_ON(ret); /* Corruption */
1487
1488 leaf = path->nodes[0];
1489 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1490 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1491 if (item_size < sizeof(*ei)) {
1492 if (!insert) {
1493 err = -ENOENT;
1494 goto out;
1495 }
1496 ret = convert_extent_item_v0(trans, root, path, owner,
1497 extra_size);
1498 if (ret < 0) {
1499 err = ret;
1500 goto out;
1501 }
1502 leaf = path->nodes[0];
1503 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1504 }
1505 #endif
1506 BUG_ON(item_size < sizeof(*ei));
1507
1508 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1509 flags = btrfs_extent_flags(leaf, ei);
1510
1511 ptr = (unsigned long)(ei + 1);
1512 end = (unsigned long)ei + item_size;
1513
1514 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1515 ptr += sizeof(struct btrfs_tree_block_info);
1516 BUG_ON(ptr > end);
1517 } else {
1518 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1519 }
1520
1521 err = -ENOENT;
1522 while (1) {
1523 if (ptr >= end) {
1524 WARN_ON(ptr > end);
1525 break;
1526 }
1527 iref = (struct btrfs_extent_inline_ref *)ptr;
1528 type = btrfs_extent_inline_ref_type(leaf, iref);
1529 if (want < type)
1530 break;
1531 if (want > type) {
1532 ptr += btrfs_extent_inline_ref_size(type);
1533 continue;
1534 }
1535
1536 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1537 struct btrfs_extent_data_ref *dref;
1538 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1539 if (match_extent_data_ref(leaf, dref, root_objectid,
1540 owner, offset)) {
1541 err = 0;
1542 break;
1543 }
1544 if (hash_extent_data_ref_item(leaf, dref) <
1545 hash_extent_data_ref(root_objectid, owner, offset))
1546 break;
1547 } else {
1548 u64 ref_offset;
1549 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1550 if (parent > 0) {
1551 if (parent == ref_offset) {
1552 err = 0;
1553 break;
1554 }
1555 if (ref_offset < parent)
1556 break;
1557 } else {
1558 if (root_objectid == ref_offset) {
1559 err = 0;
1560 break;
1561 }
1562 if (ref_offset < root_objectid)
1563 break;
1564 }
1565 }
1566 ptr += btrfs_extent_inline_ref_size(type);
1567 }
1568 if (err == -ENOENT && insert) {
1569 if (item_size + extra_size >=
1570 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1571 err = -EAGAIN;
1572 goto out;
1573 }
1574 /*
1575 * To add new inline back ref, we have to make sure
1576 * there is no corresponding back ref item.
1577 * For simplicity, we just do not add new inline back
1578 * ref if there is any kind of item for this block
1579 */
1580 if (find_next_key(path, 0, &key) == 0 &&
1581 key.objectid == bytenr &&
1582 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1583 err = -EAGAIN;
1584 goto out;
1585 }
1586 }
1587 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1588 out:
1589 if (insert) {
1590 path->keep_locks = 0;
1591 btrfs_unlock_up_safe(path, 1);
1592 }
1593 return err;
1594 }
1595
1596 /*
1597 * helper to add new inline back ref
1598 */
1599 static noinline_for_stack
1600 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1601 struct btrfs_root *root,
1602 struct btrfs_path *path,
1603 struct btrfs_extent_inline_ref *iref,
1604 u64 parent, u64 root_objectid,
1605 u64 owner, u64 offset, int refs_to_add,
1606 struct btrfs_delayed_extent_op *extent_op)
1607 {
1608 struct extent_buffer *leaf;
1609 struct btrfs_extent_item *ei;
1610 unsigned long ptr;
1611 unsigned long end;
1612 unsigned long item_offset;
1613 u64 refs;
1614 int size;
1615 int type;
1616
1617 leaf = path->nodes[0];
1618 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1619 item_offset = (unsigned long)iref - (unsigned long)ei;
1620
1621 type = extent_ref_type(parent, owner);
1622 size = btrfs_extent_inline_ref_size(type);
1623
1624 btrfs_extend_item(trans, root, path, size);
1625
1626 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1627 refs = btrfs_extent_refs(leaf, ei);
1628 refs += refs_to_add;
1629 btrfs_set_extent_refs(leaf, ei, refs);
1630 if (extent_op)
1631 __run_delayed_extent_op(extent_op, leaf, ei);
1632
1633 ptr = (unsigned long)ei + item_offset;
1634 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1635 if (ptr < end - size)
1636 memmove_extent_buffer(leaf, ptr + size, ptr,
1637 end - size - ptr);
1638
1639 iref = (struct btrfs_extent_inline_ref *)ptr;
1640 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1642 struct btrfs_extent_data_ref *dref;
1643 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1644 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1645 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1646 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1647 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1648 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1649 struct btrfs_shared_data_ref *sref;
1650 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1651 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1653 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1654 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1655 } else {
1656 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1657 }
1658 btrfs_mark_buffer_dirty(leaf);
1659 }
1660
1661 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1662 struct btrfs_root *root,
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref **ref_ret,
1665 u64 bytenr, u64 num_bytes, u64 parent,
1666 u64 root_objectid, u64 owner, u64 offset)
1667 {
1668 int ret;
1669
1670 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1671 bytenr, num_bytes, parent,
1672 root_objectid, owner, offset, 0);
1673 if (ret != -ENOENT)
1674 return ret;
1675
1676 btrfs_release_path(path);
1677 *ref_ret = NULL;
1678
1679 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1680 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1681 root_objectid);
1682 } else {
1683 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1684 root_objectid, owner, offset);
1685 }
1686 return ret;
1687 }
1688
1689 /*
1690 * helper to update/remove inline back ref
1691 */
1692 static noinline_for_stack
1693 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1694 struct btrfs_root *root,
1695 struct btrfs_path *path,
1696 struct btrfs_extent_inline_ref *iref,
1697 int refs_to_mod,
1698 struct btrfs_delayed_extent_op *extent_op)
1699 {
1700 struct extent_buffer *leaf;
1701 struct btrfs_extent_item *ei;
1702 struct btrfs_extent_data_ref *dref = NULL;
1703 struct btrfs_shared_data_ref *sref = NULL;
1704 unsigned long ptr;
1705 unsigned long end;
1706 u32 item_size;
1707 int size;
1708 int type;
1709 u64 refs;
1710
1711 leaf = path->nodes[0];
1712 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713 refs = btrfs_extent_refs(leaf, ei);
1714 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1715 refs += refs_to_mod;
1716 btrfs_set_extent_refs(leaf, ei, refs);
1717 if (extent_op)
1718 __run_delayed_extent_op(extent_op, leaf, ei);
1719
1720 type = btrfs_extent_inline_ref_type(leaf, iref);
1721
1722 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1723 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1724 refs = btrfs_extent_data_ref_count(leaf, dref);
1725 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1726 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1727 refs = btrfs_shared_data_ref_count(leaf, sref);
1728 } else {
1729 refs = 1;
1730 BUG_ON(refs_to_mod != -1);
1731 }
1732
1733 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1734 refs += refs_to_mod;
1735
1736 if (refs > 0) {
1737 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1738 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1739 else
1740 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1741 } else {
1742 size = btrfs_extent_inline_ref_size(type);
1743 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1744 ptr = (unsigned long)iref;
1745 end = (unsigned long)ei + item_size;
1746 if (ptr + size < end)
1747 memmove_extent_buffer(leaf, ptr, ptr + size,
1748 end - ptr - size);
1749 item_size -= size;
1750 btrfs_truncate_item(trans, root, path, item_size, 1);
1751 }
1752 btrfs_mark_buffer_dirty(leaf);
1753 }
1754
1755 static noinline_for_stack
1756 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1757 struct btrfs_root *root,
1758 struct btrfs_path *path,
1759 u64 bytenr, u64 num_bytes, u64 parent,
1760 u64 root_objectid, u64 owner,
1761 u64 offset, int refs_to_add,
1762 struct btrfs_delayed_extent_op *extent_op)
1763 {
1764 struct btrfs_extent_inline_ref *iref;
1765 int ret;
1766
1767 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1768 bytenr, num_bytes, parent,
1769 root_objectid, owner, offset, 1);
1770 if (ret == 0) {
1771 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1772 update_inline_extent_backref(trans, root, path, iref,
1773 refs_to_add, extent_op);
1774 } else if (ret == -ENOENT) {
1775 setup_inline_extent_backref(trans, root, path, iref, parent,
1776 root_objectid, owner, offset,
1777 refs_to_add, extent_op);
1778 ret = 0;
1779 }
1780 return ret;
1781 }
1782
1783 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1784 struct btrfs_root *root,
1785 struct btrfs_path *path,
1786 u64 bytenr, u64 parent, u64 root_objectid,
1787 u64 owner, u64 offset, int refs_to_add)
1788 {
1789 int ret;
1790 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1791 BUG_ON(refs_to_add != 1);
1792 ret = insert_tree_block_ref(trans, root, path, bytenr,
1793 parent, root_objectid);
1794 } else {
1795 ret = insert_extent_data_ref(trans, root, path, bytenr,
1796 parent, root_objectid,
1797 owner, offset, refs_to_add);
1798 }
1799 return ret;
1800 }
1801
1802 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 struct btrfs_extent_inline_ref *iref,
1806 int refs_to_drop, int is_data)
1807 {
1808 int ret = 0;
1809
1810 BUG_ON(!is_data && refs_to_drop != 1);
1811 if (iref) {
1812 update_inline_extent_backref(trans, root, path, iref,
1813 -refs_to_drop, NULL);
1814 } else if (is_data) {
1815 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1816 } else {
1817 ret = btrfs_del_item(trans, root, path);
1818 }
1819 return ret;
1820 }
1821
1822 static int btrfs_issue_discard(struct block_device *bdev,
1823 u64 start, u64 len)
1824 {
1825 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1826 }
1827
1828 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1829 u64 num_bytes, u64 *actual_bytes)
1830 {
1831 int ret;
1832 u64 discarded_bytes = 0;
1833 struct btrfs_bio *bbio = NULL;
1834
1835
1836 /* Tell the block device(s) that the sectors can be discarded */
1837 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1838 bytenr, &num_bytes, &bbio, 0);
1839 /* Error condition is -ENOMEM */
1840 if (!ret) {
1841 struct btrfs_bio_stripe *stripe = bbio->stripes;
1842 int i;
1843
1844
1845 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1846 if (!stripe->dev->can_discard)
1847 continue;
1848
1849 ret = btrfs_issue_discard(stripe->dev->bdev,
1850 stripe->physical,
1851 stripe->length);
1852 if (!ret)
1853 discarded_bytes += stripe->length;
1854 else if (ret != -EOPNOTSUPP)
1855 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1856
1857 /*
1858 * Just in case we get back EOPNOTSUPP for some reason,
1859 * just ignore the return value so we don't screw up
1860 * people calling discard_extent.
1861 */
1862 ret = 0;
1863 }
1864 kfree(bbio);
1865 }
1866
1867 if (actual_bytes)
1868 *actual_bytes = discarded_bytes;
1869
1870
1871 return ret;
1872 }
1873
1874 /* Can return -ENOMEM */
1875 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1876 struct btrfs_root *root,
1877 u64 bytenr, u64 num_bytes, u64 parent,
1878 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1879 {
1880 int ret;
1881 struct btrfs_fs_info *fs_info = root->fs_info;
1882
1883 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1884 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1885
1886 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1887 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1888 num_bytes,
1889 parent, root_objectid, (int)owner,
1890 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1891 } else {
1892 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1893 num_bytes,
1894 parent, root_objectid, owner, offset,
1895 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1896 }
1897 return ret;
1898 }
1899
1900 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1901 struct btrfs_root *root,
1902 u64 bytenr, u64 num_bytes,
1903 u64 parent, u64 root_objectid,
1904 u64 owner, u64 offset, int refs_to_add,
1905 struct btrfs_delayed_extent_op *extent_op)
1906 {
1907 struct btrfs_path *path;
1908 struct extent_buffer *leaf;
1909 struct btrfs_extent_item *item;
1910 u64 refs;
1911 int ret;
1912 int err = 0;
1913
1914 path = btrfs_alloc_path();
1915 if (!path)
1916 return -ENOMEM;
1917
1918 path->reada = 1;
1919 path->leave_spinning = 1;
1920 /* this will setup the path even if it fails to insert the back ref */
1921 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1922 path, bytenr, num_bytes, parent,
1923 root_objectid, owner, offset,
1924 refs_to_add, extent_op);
1925 if (ret == 0)
1926 goto out;
1927
1928 if (ret != -EAGAIN) {
1929 err = ret;
1930 goto out;
1931 }
1932
1933 leaf = path->nodes[0];
1934 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1935 refs = btrfs_extent_refs(leaf, item);
1936 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1937 if (extent_op)
1938 __run_delayed_extent_op(extent_op, leaf, item);
1939
1940 btrfs_mark_buffer_dirty(leaf);
1941 btrfs_release_path(path);
1942
1943 path->reada = 1;
1944 path->leave_spinning = 1;
1945
1946 /* now insert the actual backref */
1947 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1948 path, bytenr, parent, root_objectid,
1949 owner, offset, refs_to_add);
1950 if (ret)
1951 btrfs_abort_transaction(trans, root, ret);
1952 out:
1953 btrfs_free_path(path);
1954 return err;
1955 }
1956
1957 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1958 struct btrfs_root *root,
1959 struct btrfs_delayed_ref_node *node,
1960 struct btrfs_delayed_extent_op *extent_op,
1961 int insert_reserved)
1962 {
1963 int ret = 0;
1964 struct btrfs_delayed_data_ref *ref;
1965 struct btrfs_key ins;
1966 u64 parent = 0;
1967 u64 ref_root = 0;
1968 u64 flags = 0;
1969
1970 ins.objectid = node->bytenr;
1971 ins.offset = node->num_bytes;
1972 ins.type = BTRFS_EXTENT_ITEM_KEY;
1973
1974 ref = btrfs_delayed_node_to_data_ref(node);
1975 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1976 parent = ref->parent;
1977 else
1978 ref_root = ref->root;
1979
1980 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1981 if (extent_op) {
1982 BUG_ON(extent_op->update_key);
1983 flags |= extent_op->flags_to_set;
1984 }
1985 ret = alloc_reserved_file_extent(trans, root,
1986 parent, ref_root, flags,
1987 ref->objectid, ref->offset,
1988 &ins, node->ref_mod);
1989 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1990 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1991 node->num_bytes, parent,
1992 ref_root, ref->objectid,
1993 ref->offset, node->ref_mod,
1994 extent_op);
1995 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1996 ret = __btrfs_free_extent(trans, root, node->bytenr,
1997 node->num_bytes, parent,
1998 ref_root, ref->objectid,
1999 ref->offset, node->ref_mod,
2000 extent_op);
2001 } else {
2002 BUG();
2003 }
2004 return ret;
2005 }
2006
2007 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2008 struct extent_buffer *leaf,
2009 struct btrfs_extent_item *ei)
2010 {
2011 u64 flags = btrfs_extent_flags(leaf, ei);
2012 if (extent_op->update_flags) {
2013 flags |= extent_op->flags_to_set;
2014 btrfs_set_extent_flags(leaf, ei, flags);
2015 }
2016
2017 if (extent_op->update_key) {
2018 struct btrfs_tree_block_info *bi;
2019 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2020 bi = (struct btrfs_tree_block_info *)(ei + 1);
2021 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2022 }
2023 }
2024
2025 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2026 struct btrfs_root *root,
2027 struct btrfs_delayed_ref_node *node,
2028 struct btrfs_delayed_extent_op *extent_op)
2029 {
2030 struct btrfs_key key;
2031 struct btrfs_path *path;
2032 struct btrfs_extent_item *ei;
2033 struct extent_buffer *leaf;
2034 u32 item_size;
2035 int ret;
2036 int err = 0;
2037
2038 if (trans->aborted)
2039 return 0;
2040
2041 path = btrfs_alloc_path();
2042 if (!path)
2043 return -ENOMEM;
2044
2045 key.objectid = node->bytenr;
2046 key.type = BTRFS_EXTENT_ITEM_KEY;
2047 key.offset = node->num_bytes;
2048
2049 path->reada = 1;
2050 path->leave_spinning = 1;
2051 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2052 path, 0, 1);
2053 if (ret < 0) {
2054 err = ret;
2055 goto out;
2056 }
2057 if (ret > 0) {
2058 err = -EIO;
2059 goto out;
2060 }
2061
2062 leaf = path->nodes[0];
2063 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2064 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2065 if (item_size < sizeof(*ei)) {
2066 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2067 path, (u64)-1, 0);
2068 if (ret < 0) {
2069 err = ret;
2070 goto out;
2071 }
2072 leaf = path->nodes[0];
2073 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2074 }
2075 #endif
2076 BUG_ON(item_size < sizeof(*ei));
2077 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 __run_delayed_extent_op(extent_op, leaf, ei);
2079
2080 btrfs_mark_buffer_dirty(leaf);
2081 out:
2082 btrfs_free_path(path);
2083 return err;
2084 }
2085
2086 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2087 struct btrfs_root *root,
2088 struct btrfs_delayed_ref_node *node,
2089 struct btrfs_delayed_extent_op *extent_op,
2090 int insert_reserved)
2091 {
2092 int ret = 0;
2093 struct btrfs_delayed_tree_ref *ref;
2094 struct btrfs_key ins;
2095 u64 parent = 0;
2096 u64 ref_root = 0;
2097
2098 ins.objectid = node->bytenr;
2099 ins.offset = node->num_bytes;
2100 ins.type = BTRFS_EXTENT_ITEM_KEY;
2101
2102 ref = btrfs_delayed_node_to_tree_ref(node);
2103 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2104 parent = ref->parent;
2105 else
2106 ref_root = ref->root;
2107
2108 BUG_ON(node->ref_mod != 1);
2109 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2110 BUG_ON(!extent_op || !extent_op->update_flags ||
2111 !extent_op->update_key);
2112 ret = alloc_reserved_tree_block(trans, root,
2113 parent, ref_root,
2114 extent_op->flags_to_set,
2115 &extent_op->key,
2116 ref->level, &ins);
2117 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2118 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2119 node->num_bytes, parent, ref_root,
2120 ref->level, 0, 1, extent_op);
2121 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2122 ret = __btrfs_free_extent(trans, root, node->bytenr,
2123 node->num_bytes, parent, ref_root,
2124 ref->level, 0, 1, extent_op);
2125 } else {
2126 BUG();
2127 }
2128 return ret;
2129 }
2130
2131 /* helper function to actually process a single delayed ref entry */
2132 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2133 struct btrfs_root *root,
2134 struct btrfs_delayed_ref_node *node,
2135 struct btrfs_delayed_extent_op *extent_op,
2136 int insert_reserved)
2137 {
2138 int ret = 0;
2139
2140 if (trans->aborted)
2141 return 0;
2142
2143 if (btrfs_delayed_ref_is_head(node)) {
2144 struct btrfs_delayed_ref_head *head;
2145 /*
2146 * we've hit the end of the chain and we were supposed
2147 * to insert this extent into the tree. But, it got
2148 * deleted before we ever needed to insert it, so all
2149 * we have to do is clean up the accounting
2150 */
2151 BUG_ON(extent_op);
2152 head = btrfs_delayed_node_to_head(node);
2153 if (insert_reserved) {
2154 btrfs_pin_extent(root, node->bytenr,
2155 node->num_bytes, 1);
2156 if (head->is_data) {
2157 ret = btrfs_del_csums(trans, root,
2158 node->bytenr,
2159 node->num_bytes);
2160 }
2161 }
2162 mutex_unlock(&head->mutex);
2163 return ret;
2164 }
2165
2166 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2167 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2168 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2169 insert_reserved);
2170 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2171 node->type == BTRFS_SHARED_DATA_REF_KEY)
2172 ret = run_delayed_data_ref(trans, root, node, extent_op,
2173 insert_reserved);
2174 else
2175 BUG();
2176 return ret;
2177 }
2178
2179 static noinline struct btrfs_delayed_ref_node *
2180 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2181 {
2182 struct rb_node *node;
2183 struct btrfs_delayed_ref_node *ref;
2184 int action = BTRFS_ADD_DELAYED_REF;
2185 again:
2186 /*
2187 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2188 * this prevents ref count from going down to zero when
2189 * there still are pending delayed ref.
2190 */
2191 node = rb_prev(&head->node.rb_node);
2192 while (1) {
2193 if (!node)
2194 break;
2195 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2196 rb_node);
2197 if (ref->bytenr != head->node.bytenr)
2198 break;
2199 if (ref->action == action)
2200 return ref;
2201 node = rb_prev(node);
2202 }
2203 if (action == BTRFS_ADD_DELAYED_REF) {
2204 action = BTRFS_DROP_DELAYED_REF;
2205 goto again;
2206 }
2207 return NULL;
2208 }
2209
2210 /*
2211 * Returns 0 on success or if called with an already aborted transaction.
2212 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2213 */
2214 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root,
2216 struct list_head *cluster)
2217 {
2218 struct btrfs_delayed_ref_root *delayed_refs;
2219 struct btrfs_delayed_ref_node *ref;
2220 struct btrfs_delayed_ref_head *locked_ref = NULL;
2221 struct btrfs_delayed_extent_op *extent_op;
2222 struct btrfs_fs_info *fs_info = root->fs_info;
2223 int ret;
2224 int count = 0;
2225 int must_insert_reserved = 0;
2226
2227 delayed_refs = &trans->transaction->delayed_refs;
2228 while (1) {
2229 if (!locked_ref) {
2230 /* pick a new head ref from the cluster list */
2231 if (list_empty(cluster))
2232 break;
2233
2234 locked_ref = list_entry(cluster->next,
2235 struct btrfs_delayed_ref_head, cluster);
2236
2237 /* grab the lock that says we are going to process
2238 * all the refs for this head */
2239 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2240
2241 /*
2242 * we may have dropped the spin lock to get the head
2243 * mutex lock, and that might have given someone else
2244 * time to free the head. If that's true, it has been
2245 * removed from our list and we can move on.
2246 */
2247 if (ret == -EAGAIN) {
2248 locked_ref = NULL;
2249 count++;
2250 continue;
2251 }
2252 }
2253
2254 /*
2255 * locked_ref is the head node, so we have to go one
2256 * node back for any delayed ref updates
2257 */
2258 ref = select_delayed_ref(locked_ref);
2259
2260 if (ref && ref->seq &&
2261 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2262 /*
2263 * there are still refs with lower seq numbers in the
2264 * process of being added. Don't run this ref yet.
2265 */
2266 list_del_init(&locked_ref->cluster);
2267 mutex_unlock(&locked_ref->mutex);
2268 locked_ref = NULL;
2269 delayed_refs->num_heads_ready++;
2270 spin_unlock(&delayed_refs->lock);
2271 cond_resched();
2272 spin_lock(&delayed_refs->lock);
2273 continue;
2274 }
2275
2276 /*
2277 * record the must insert reserved flag before we
2278 * drop the spin lock.
2279 */
2280 must_insert_reserved = locked_ref->must_insert_reserved;
2281 locked_ref->must_insert_reserved = 0;
2282
2283 extent_op = locked_ref->extent_op;
2284 locked_ref->extent_op = NULL;
2285
2286 if (!ref) {
2287 /* All delayed refs have been processed, Go ahead
2288 * and send the head node to run_one_delayed_ref,
2289 * so that any accounting fixes can happen
2290 */
2291 ref = &locked_ref->node;
2292
2293 if (extent_op && must_insert_reserved) {
2294 kfree(extent_op);
2295 extent_op = NULL;
2296 }
2297
2298 if (extent_op) {
2299 spin_unlock(&delayed_refs->lock);
2300
2301 ret = run_delayed_extent_op(trans, root,
2302 ref, extent_op);
2303 kfree(extent_op);
2304
2305 if (ret) {
2306 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2307 spin_lock(&delayed_refs->lock);
2308 return ret;
2309 }
2310
2311 goto next;
2312 }
2313
2314 list_del_init(&locked_ref->cluster);
2315 locked_ref = NULL;
2316 }
2317
2318 ref->in_tree = 0;
2319 rb_erase(&ref->rb_node, &delayed_refs->root);
2320 delayed_refs->num_entries--;
2321 /*
2322 * we modified num_entries, but as we're currently running
2323 * delayed refs, skip
2324 * wake_up(&delayed_refs->seq_wait);
2325 * here.
2326 */
2327 spin_unlock(&delayed_refs->lock);
2328
2329 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2330 must_insert_reserved);
2331
2332 btrfs_put_delayed_ref(ref);
2333 kfree(extent_op);
2334 count++;
2335
2336 if (ret) {
2337 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2338 spin_lock(&delayed_refs->lock);
2339 return ret;
2340 }
2341
2342 next:
2343 do_chunk_alloc(trans, fs_info->extent_root,
2344 2 * 1024 * 1024,
2345 btrfs_get_alloc_profile(root, 0),
2346 CHUNK_ALLOC_NO_FORCE);
2347 cond_resched();
2348 spin_lock(&delayed_refs->lock);
2349 }
2350 return count;
2351 }
2352
2353 static void wait_for_more_refs(struct btrfs_fs_info *fs_info,
2354 struct btrfs_delayed_ref_root *delayed_refs,
2355 unsigned long num_refs,
2356 struct list_head *first_seq)
2357 {
2358 spin_unlock(&delayed_refs->lock);
2359 pr_debug("waiting for more refs (num %ld, first %p)\n",
2360 num_refs, first_seq);
2361 wait_event(fs_info->tree_mod_seq_wait,
2362 num_refs != delayed_refs->num_entries ||
2363 fs_info->tree_mod_seq_list.next != first_seq);
2364 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2365 delayed_refs->num_entries, fs_info->tree_mod_seq_list.next);
2366 spin_lock(&delayed_refs->lock);
2367 }
2368
2369 #ifdef SCRAMBLE_DELAYED_REFS
2370 /*
2371 * Normally delayed refs get processed in ascending bytenr order. This
2372 * correlates in most cases to the order added. To expose dependencies on this
2373 * order, we start to process the tree in the middle instead of the beginning
2374 */
2375 static u64 find_middle(struct rb_root *root)
2376 {
2377 struct rb_node *n = root->rb_node;
2378 struct btrfs_delayed_ref_node *entry;
2379 int alt = 1;
2380 u64 middle;
2381 u64 first = 0, last = 0;
2382
2383 n = rb_first(root);
2384 if (n) {
2385 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2386 first = entry->bytenr;
2387 }
2388 n = rb_last(root);
2389 if (n) {
2390 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2391 last = entry->bytenr;
2392 }
2393 n = root->rb_node;
2394
2395 while (n) {
2396 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2397 WARN_ON(!entry->in_tree);
2398
2399 middle = entry->bytenr;
2400
2401 if (alt)
2402 n = n->rb_left;
2403 else
2404 n = n->rb_right;
2405
2406 alt = 1 - alt;
2407 }
2408 return middle;
2409 }
2410 #endif
2411
2412 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2413 struct btrfs_fs_info *fs_info)
2414 {
2415 struct qgroup_update *qgroup_update;
2416 int ret = 0;
2417
2418 if (list_empty(&trans->qgroup_ref_list) !=
2419 !trans->delayed_ref_elem.seq) {
2420 /* list without seq or seq without list */
2421 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2422 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2423 trans->delayed_ref_elem.seq);
2424 BUG();
2425 }
2426
2427 if (!trans->delayed_ref_elem.seq)
2428 return 0;
2429
2430 while (!list_empty(&trans->qgroup_ref_list)) {
2431 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2432 struct qgroup_update, list);
2433 list_del(&qgroup_update->list);
2434 if (!ret)
2435 ret = btrfs_qgroup_account_ref(
2436 trans, fs_info, qgroup_update->node,
2437 qgroup_update->extent_op);
2438 kfree(qgroup_update);
2439 }
2440
2441 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2442
2443 return ret;
2444 }
2445
2446 /*
2447 * this starts processing the delayed reference count updates and
2448 * extent insertions we have queued up so far. count can be
2449 * 0, which means to process everything in the tree at the start
2450 * of the run (but not newly added entries), or it can be some target
2451 * number you'd like to process.
2452 *
2453 * Returns 0 on success or if called with an aborted transaction
2454 * Returns <0 on error and aborts the transaction
2455 */
2456 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2457 struct btrfs_root *root, unsigned long count)
2458 {
2459 struct rb_node *node;
2460 struct btrfs_delayed_ref_root *delayed_refs;
2461 struct btrfs_delayed_ref_node *ref;
2462 struct list_head cluster;
2463 struct list_head *first_seq = NULL;
2464 int ret;
2465 u64 delayed_start;
2466 int run_all = count == (unsigned long)-1;
2467 int run_most = 0;
2468 unsigned long num_refs = 0;
2469 int consider_waiting;
2470
2471 /* We'll clean this up in btrfs_cleanup_transaction */
2472 if (trans->aborted)
2473 return 0;
2474
2475 if (root == root->fs_info->extent_root)
2476 root = root->fs_info->tree_root;
2477
2478 do_chunk_alloc(trans, root->fs_info->extent_root,
2479 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2480 CHUNK_ALLOC_NO_FORCE);
2481
2482 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2483
2484 delayed_refs = &trans->transaction->delayed_refs;
2485 INIT_LIST_HEAD(&cluster);
2486 again:
2487 consider_waiting = 0;
2488 spin_lock(&delayed_refs->lock);
2489
2490 #ifdef SCRAMBLE_DELAYED_REFS
2491 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2492 #endif
2493
2494 if (count == 0) {
2495 count = delayed_refs->num_entries * 2;
2496 run_most = 1;
2497 }
2498 while (1) {
2499 if (!(run_all || run_most) &&
2500 delayed_refs->num_heads_ready < 64)
2501 break;
2502
2503 /*
2504 * go find something we can process in the rbtree. We start at
2505 * the beginning of the tree, and then build a cluster
2506 * of refs to process starting at the first one we are able to
2507 * lock
2508 */
2509 delayed_start = delayed_refs->run_delayed_start;
2510 ret = btrfs_find_ref_cluster(trans, &cluster,
2511 delayed_refs->run_delayed_start);
2512 if (ret)
2513 break;
2514
2515 if (delayed_start >= delayed_refs->run_delayed_start) {
2516 if (consider_waiting == 0) {
2517 /*
2518 * btrfs_find_ref_cluster looped. let's do one
2519 * more cycle. if we don't run any delayed ref
2520 * during that cycle (because we can't because
2521 * all of them are blocked) and if the number of
2522 * refs doesn't change, we avoid busy waiting.
2523 */
2524 consider_waiting = 1;
2525 num_refs = delayed_refs->num_entries;
2526 first_seq = root->fs_info->tree_mod_seq_list.next;
2527 } else {
2528 wait_for_more_refs(root->fs_info, delayed_refs,
2529 num_refs, first_seq);
2530 /*
2531 * after waiting, things have changed. we
2532 * dropped the lock and someone else might have
2533 * run some refs, built new clusters and so on.
2534 * therefore, we restart staleness detection.
2535 */
2536 consider_waiting = 0;
2537 }
2538 }
2539
2540 ret = run_clustered_refs(trans, root, &cluster);
2541 if (ret < 0) {
2542 spin_unlock(&delayed_refs->lock);
2543 btrfs_abort_transaction(trans, root, ret);
2544 return ret;
2545 }
2546
2547 count -= min_t(unsigned long, ret, count);
2548
2549 if (count == 0)
2550 break;
2551
2552 if (ret || delayed_refs->run_delayed_start == 0) {
2553 /* refs were run, let's reset staleness detection */
2554 consider_waiting = 0;
2555 }
2556 }
2557
2558 if (run_all) {
2559 node = rb_first(&delayed_refs->root);
2560 if (!node)
2561 goto out;
2562 count = (unsigned long)-1;
2563
2564 while (node) {
2565 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2566 rb_node);
2567 if (btrfs_delayed_ref_is_head(ref)) {
2568 struct btrfs_delayed_ref_head *head;
2569
2570 head = btrfs_delayed_node_to_head(ref);
2571 atomic_inc(&ref->refs);
2572
2573 spin_unlock(&delayed_refs->lock);
2574 /*
2575 * Mutex was contended, block until it's
2576 * released and try again
2577 */
2578 mutex_lock(&head->mutex);
2579 mutex_unlock(&head->mutex);
2580
2581 btrfs_put_delayed_ref(ref);
2582 cond_resched();
2583 goto again;
2584 }
2585 node = rb_next(node);
2586 }
2587 spin_unlock(&delayed_refs->lock);
2588 schedule_timeout(1);
2589 goto again;
2590 }
2591 out:
2592 spin_unlock(&delayed_refs->lock);
2593 assert_qgroups_uptodate(trans);
2594 return 0;
2595 }
2596
2597 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2598 struct btrfs_root *root,
2599 u64 bytenr, u64 num_bytes, u64 flags,
2600 int is_data)
2601 {
2602 struct btrfs_delayed_extent_op *extent_op;
2603 int ret;
2604
2605 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2606 if (!extent_op)
2607 return -ENOMEM;
2608
2609 extent_op->flags_to_set = flags;
2610 extent_op->update_flags = 1;
2611 extent_op->update_key = 0;
2612 extent_op->is_data = is_data ? 1 : 0;
2613
2614 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2615 num_bytes, extent_op);
2616 if (ret)
2617 kfree(extent_op);
2618 return ret;
2619 }
2620
2621 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2622 struct btrfs_root *root,
2623 struct btrfs_path *path,
2624 u64 objectid, u64 offset, u64 bytenr)
2625 {
2626 struct btrfs_delayed_ref_head *head;
2627 struct btrfs_delayed_ref_node *ref;
2628 struct btrfs_delayed_data_ref *data_ref;
2629 struct btrfs_delayed_ref_root *delayed_refs;
2630 struct rb_node *node;
2631 int ret = 0;
2632
2633 ret = -ENOENT;
2634 delayed_refs = &trans->transaction->delayed_refs;
2635 spin_lock(&delayed_refs->lock);
2636 head = btrfs_find_delayed_ref_head(trans, bytenr);
2637 if (!head)
2638 goto out;
2639
2640 if (!mutex_trylock(&head->mutex)) {
2641 atomic_inc(&head->node.refs);
2642 spin_unlock(&delayed_refs->lock);
2643
2644 btrfs_release_path(path);
2645
2646 /*
2647 * Mutex was contended, block until it's released and let
2648 * caller try again
2649 */
2650 mutex_lock(&head->mutex);
2651 mutex_unlock(&head->mutex);
2652 btrfs_put_delayed_ref(&head->node);
2653 return -EAGAIN;
2654 }
2655
2656 node = rb_prev(&head->node.rb_node);
2657 if (!node)
2658 goto out_unlock;
2659
2660 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2661
2662 if (ref->bytenr != bytenr)
2663 goto out_unlock;
2664
2665 ret = 1;
2666 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2667 goto out_unlock;
2668
2669 data_ref = btrfs_delayed_node_to_data_ref(ref);
2670
2671 node = rb_prev(node);
2672 if (node) {
2673 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2674 if (ref->bytenr == bytenr)
2675 goto out_unlock;
2676 }
2677
2678 if (data_ref->root != root->root_key.objectid ||
2679 data_ref->objectid != objectid || data_ref->offset != offset)
2680 goto out_unlock;
2681
2682 ret = 0;
2683 out_unlock:
2684 mutex_unlock(&head->mutex);
2685 out:
2686 spin_unlock(&delayed_refs->lock);
2687 return ret;
2688 }
2689
2690 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root,
2692 struct btrfs_path *path,
2693 u64 objectid, u64 offset, u64 bytenr)
2694 {
2695 struct btrfs_root *extent_root = root->fs_info->extent_root;
2696 struct extent_buffer *leaf;
2697 struct btrfs_extent_data_ref *ref;
2698 struct btrfs_extent_inline_ref *iref;
2699 struct btrfs_extent_item *ei;
2700 struct btrfs_key key;
2701 u32 item_size;
2702 int ret;
2703
2704 key.objectid = bytenr;
2705 key.offset = (u64)-1;
2706 key.type = BTRFS_EXTENT_ITEM_KEY;
2707
2708 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2709 if (ret < 0)
2710 goto out;
2711 BUG_ON(ret == 0); /* Corruption */
2712
2713 ret = -ENOENT;
2714 if (path->slots[0] == 0)
2715 goto out;
2716
2717 path->slots[0]--;
2718 leaf = path->nodes[0];
2719 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2720
2721 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2722 goto out;
2723
2724 ret = 1;
2725 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2726 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2727 if (item_size < sizeof(*ei)) {
2728 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2729 goto out;
2730 }
2731 #endif
2732 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2733
2734 if (item_size != sizeof(*ei) +
2735 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2736 goto out;
2737
2738 if (btrfs_extent_generation(leaf, ei) <=
2739 btrfs_root_last_snapshot(&root->root_item))
2740 goto out;
2741
2742 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2743 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2744 BTRFS_EXTENT_DATA_REF_KEY)
2745 goto out;
2746
2747 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2748 if (btrfs_extent_refs(leaf, ei) !=
2749 btrfs_extent_data_ref_count(leaf, ref) ||
2750 btrfs_extent_data_ref_root(leaf, ref) !=
2751 root->root_key.objectid ||
2752 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2753 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2754 goto out;
2755
2756 ret = 0;
2757 out:
2758 return ret;
2759 }
2760
2761 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2762 struct btrfs_root *root,
2763 u64 objectid, u64 offset, u64 bytenr)
2764 {
2765 struct btrfs_path *path;
2766 int ret;
2767 int ret2;
2768
2769 path = btrfs_alloc_path();
2770 if (!path)
2771 return -ENOENT;
2772
2773 do {
2774 ret = check_committed_ref(trans, root, path, objectid,
2775 offset, bytenr);
2776 if (ret && ret != -ENOENT)
2777 goto out;
2778
2779 ret2 = check_delayed_ref(trans, root, path, objectid,
2780 offset, bytenr);
2781 } while (ret2 == -EAGAIN);
2782
2783 if (ret2 && ret2 != -ENOENT) {
2784 ret = ret2;
2785 goto out;
2786 }
2787
2788 if (ret != -ENOENT || ret2 != -ENOENT)
2789 ret = 0;
2790 out:
2791 btrfs_free_path(path);
2792 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2793 WARN_ON(ret > 0);
2794 return ret;
2795 }
2796
2797 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2798 struct btrfs_root *root,
2799 struct extent_buffer *buf,
2800 int full_backref, int inc, int for_cow)
2801 {
2802 u64 bytenr;
2803 u64 num_bytes;
2804 u64 parent;
2805 u64 ref_root;
2806 u32 nritems;
2807 struct btrfs_key key;
2808 struct btrfs_file_extent_item *fi;
2809 int i;
2810 int level;
2811 int ret = 0;
2812 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2813 u64, u64, u64, u64, u64, u64, int);
2814
2815 ref_root = btrfs_header_owner(buf);
2816 nritems = btrfs_header_nritems(buf);
2817 level = btrfs_header_level(buf);
2818
2819 if (!root->ref_cows && level == 0)
2820 return 0;
2821
2822 if (inc)
2823 process_func = btrfs_inc_extent_ref;
2824 else
2825 process_func = btrfs_free_extent;
2826
2827 if (full_backref)
2828 parent = buf->start;
2829 else
2830 parent = 0;
2831
2832 for (i = 0; i < nritems; i++) {
2833 if (level == 0) {
2834 btrfs_item_key_to_cpu(buf, &key, i);
2835 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2836 continue;
2837 fi = btrfs_item_ptr(buf, i,
2838 struct btrfs_file_extent_item);
2839 if (btrfs_file_extent_type(buf, fi) ==
2840 BTRFS_FILE_EXTENT_INLINE)
2841 continue;
2842 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2843 if (bytenr == 0)
2844 continue;
2845
2846 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2847 key.offset -= btrfs_file_extent_offset(buf, fi);
2848 ret = process_func(trans, root, bytenr, num_bytes,
2849 parent, ref_root, key.objectid,
2850 key.offset, for_cow);
2851 if (ret)
2852 goto fail;
2853 } else {
2854 bytenr = btrfs_node_blockptr(buf, i);
2855 num_bytes = btrfs_level_size(root, level - 1);
2856 ret = process_func(trans, root, bytenr, num_bytes,
2857 parent, ref_root, level - 1, 0,
2858 for_cow);
2859 if (ret)
2860 goto fail;
2861 }
2862 }
2863 return 0;
2864 fail:
2865 return ret;
2866 }
2867
2868 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2869 struct extent_buffer *buf, int full_backref, int for_cow)
2870 {
2871 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2872 }
2873
2874 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2875 struct extent_buffer *buf, int full_backref, int for_cow)
2876 {
2877 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2878 }
2879
2880 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2881 struct btrfs_root *root,
2882 struct btrfs_path *path,
2883 struct btrfs_block_group_cache *cache)
2884 {
2885 int ret;
2886 struct btrfs_root *extent_root = root->fs_info->extent_root;
2887 unsigned long bi;
2888 struct extent_buffer *leaf;
2889
2890 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2891 if (ret < 0)
2892 goto fail;
2893 BUG_ON(ret); /* Corruption */
2894
2895 leaf = path->nodes[0];
2896 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2897 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2898 btrfs_mark_buffer_dirty(leaf);
2899 btrfs_release_path(path);
2900 fail:
2901 if (ret) {
2902 btrfs_abort_transaction(trans, root, ret);
2903 return ret;
2904 }
2905 return 0;
2906
2907 }
2908
2909 static struct btrfs_block_group_cache *
2910 next_block_group(struct btrfs_root *root,
2911 struct btrfs_block_group_cache *cache)
2912 {
2913 struct rb_node *node;
2914 spin_lock(&root->fs_info->block_group_cache_lock);
2915 node = rb_next(&cache->cache_node);
2916 btrfs_put_block_group(cache);
2917 if (node) {
2918 cache = rb_entry(node, struct btrfs_block_group_cache,
2919 cache_node);
2920 btrfs_get_block_group(cache);
2921 } else
2922 cache = NULL;
2923 spin_unlock(&root->fs_info->block_group_cache_lock);
2924 return cache;
2925 }
2926
2927 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2928 struct btrfs_trans_handle *trans,
2929 struct btrfs_path *path)
2930 {
2931 struct btrfs_root *root = block_group->fs_info->tree_root;
2932 struct inode *inode = NULL;
2933 u64 alloc_hint = 0;
2934 int dcs = BTRFS_DC_ERROR;
2935 int num_pages = 0;
2936 int retries = 0;
2937 int ret = 0;
2938
2939 /*
2940 * If this block group is smaller than 100 megs don't bother caching the
2941 * block group.
2942 */
2943 if (block_group->key.offset < (100 * 1024 * 1024)) {
2944 spin_lock(&block_group->lock);
2945 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2946 spin_unlock(&block_group->lock);
2947 return 0;
2948 }
2949
2950 again:
2951 inode = lookup_free_space_inode(root, block_group, path);
2952 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2953 ret = PTR_ERR(inode);
2954 btrfs_release_path(path);
2955 goto out;
2956 }
2957
2958 if (IS_ERR(inode)) {
2959 BUG_ON(retries);
2960 retries++;
2961
2962 if (block_group->ro)
2963 goto out_free;
2964
2965 ret = create_free_space_inode(root, trans, block_group, path);
2966 if (ret)
2967 goto out_free;
2968 goto again;
2969 }
2970
2971 /* We've already setup this transaction, go ahead and exit */
2972 if (block_group->cache_generation == trans->transid &&
2973 i_size_read(inode)) {
2974 dcs = BTRFS_DC_SETUP;
2975 goto out_put;
2976 }
2977
2978 /*
2979 * We want to set the generation to 0, that way if anything goes wrong
2980 * from here on out we know not to trust this cache when we load up next
2981 * time.
2982 */
2983 BTRFS_I(inode)->generation = 0;
2984 ret = btrfs_update_inode(trans, root, inode);
2985 WARN_ON(ret);
2986
2987 if (i_size_read(inode) > 0) {
2988 ret = btrfs_truncate_free_space_cache(root, trans, path,
2989 inode);
2990 if (ret)
2991 goto out_put;
2992 }
2993
2994 spin_lock(&block_group->lock);
2995 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2996 /* We're not cached, don't bother trying to write stuff out */
2997 dcs = BTRFS_DC_WRITTEN;
2998 spin_unlock(&block_group->lock);
2999 goto out_put;
3000 }
3001 spin_unlock(&block_group->lock);
3002
3003 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
3004 if (!num_pages)
3005 num_pages = 1;
3006
3007 /*
3008 * Just to make absolutely sure we have enough space, we're going to
3009 * preallocate 12 pages worth of space for each block group. In
3010 * practice we ought to use at most 8, but we need extra space so we can
3011 * add our header and have a terminator between the extents and the
3012 * bitmaps.
3013 */
3014 num_pages *= 16;
3015 num_pages *= PAGE_CACHE_SIZE;
3016
3017 ret = btrfs_check_data_free_space(inode, num_pages);
3018 if (ret)
3019 goto out_put;
3020
3021 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3022 num_pages, num_pages,
3023 &alloc_hint);
3024 if (!ret)
3025 dcs = BTRFS_DC_SETUP;
3026 btrfs_free_reserved_data_space(inode, num_pages);
3027
3028 out_put:
3029 iput(inode);
3030 out_free:
3031 btrfs_release_path(path);
3032 out:
3033 spin_lock(&block_group->lock);
3034 if (!ret && dcs == BTRFS_DC_SETUP)
3035 block_group->cache_generation = trans->transid;
3036 block_group->disk_cache_state = dcs;
3037 spin_unlock(&block_group->lock);
3038
3039 return ret;
3040 }
3041
3042 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3043 struct btrfs_root *root)
3044 {
3045 struct btrfs_block_group_cache *cache;
3046 int err = 0;
3047 struct btrfs_path *path;
3048 u64 last = 0;
3049
3050 path = btrfs_alloc_path();
3051 if (!path)
3052 return -ENOMEM;
3053
3054 again:
3055 while (1) {
3056 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3057 while (cache) {
3058 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3059 break;
3060 cache = next_block_group(root, cache);
3061 }
3062 if (!cache) {
3063 if (last == 0)
3064 break;
3065 last = 0;
3066 continue;
3067 }
3068 err = cache_save_setup(cache, trans, path);
3069 last = cache->key.objectid + cache->key.offset;
3070 btrfs_put_block_group(cache);
3071 }
3072
3073 while (1) {
3074 if (last == 0) {
3075 err = btrfs_run_delayed_refs(trans, root,
3076 (unsigned long)-1);
3077 if (err) /* File system offline */
3078 goto out;
3079 }
3080
3081 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3082 while (cache) {
3083 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3084 btrfs_put_block_group(cache);
3085 goto again;
3086 }
3087
3088 if (cache->dirty)
3089 break;
3090 cache = next_block_group(root, cache);
3091 }
3092 if (!cache) {
3093 if (last == 0)
3094 break;
3095 last = 0;
3096 continue;
3097 }
3098
3099 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3100 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3101 cache->dirty = 0;
3102 last = cache->key.objectid + cache->key.offset;
3103
3104 err = write_one_cache_group(trans, root, path, cache);
3105 if (err) /* File system offline */
3106 goto out;
3107
3108 btrfs_put_block_group(cache);
3109 }
3110
3111 while (1) {
3112 /*
3113 * I don't think this is needed since we're just marking our
3114 * preallocated extent as written, but just in case it can't
3115 * hurt.
3116 */
3117 if (last == 0) {
3118 err = btrfs_run_delayed_refs(trans, root,
3119 (unsigned long)-1);
3120 if (err) /* File system offline */
3121 goto out;
3122 }
3123
3124 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3125 while (cache) {
3126 /*
3127 * Really this shouldn't happen, but it could if we
3128 * couldn't write the entire preallocated extent and
3129 * splitting the extent resulted in a new block.
3130 */
3131 if (cache->dirty) {
3132 btrfs_put_block_group(cache);
3133 goto again;
3134 }
3135 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3136 break;
3137 cache = next_block_group(root, cache);
3138 }
3139 if (!cache) {
3140 if (last == 0)
3141 break;
3142 last = 0;
3143 continue;
3144 }
3145
3146 err = btrfs_write_out_cache(root, trans, cache, path);
3147
3148 /*
3149 * If we didn't have an error then the cache state is still
3150 * NEED_WRITE, so we can set it to WRITTEN.
3151 */
3152 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3153 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3154 last = cache->key.objectid + cache->key.offset;
3155 btrfs_put_block_group(cache);
3156 }
3157 out:
3158
3159 btrfs_free_path(path);
3160 return err;
3161 }
3162
3163 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3164 {
3165 struct btrfs_block_group_cache *block_group;
3166 int readonly = 0;
3167
3168 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3169 if (!block_group || block_group->ro)
3170 readonly = 1;
3171 if (block_group)
3172 btrfs_put_block_group(block_group);
3173 return readonly;
3174 }
3175
3176 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3177 u64 total_bytes, u64 bytes_used,
3178 struct btrfs_space_info **space_info)
3179 {
3180 struct btrfs_space_info *found;
3181 int i;
3182 int factor;
3183
3184 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3185 BTRFS_BLOCK_GROUP_RAID10))
3186 factor = 2;
3187 else
3188 factor = 1;
3189
3190 found = __find_space_info(info, flags);
3191 if (found) {
3192 spin_lock(&found->lock);
3193 found->total_bytes += total_bytes;
3194 found->disk_total += total_bytes * factor;
3195 found->bytes_used += bytes_used;
3196 found->disk_used += bytes_used * factor;
3197 found->full = 0;
3198 spin_unlock(&found->lock);
3199 *space_info = found;
3200 return 0;
3201 }
3202 found = kzalloc(sizeof(*found), GFP_NOFS);
3203 if (!found)
3204 return -ENOMEM;
3205
3206 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3207 INIT_LIST_HEAD(&found->block_groups[i]);
3208 init_rwsem(&found->groups_sem);
3209 spin_lock_init(&found->lock);
3210 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3211 found->total_bytes = total_bytes;
3212 found->disk_total = total_bytes * factor;
3213 found->bytes_used = bytes_used;
3214 found->disk_used = bytes_used * factor;
3215 found->bytes_pinned = 0;
3216 found->bytes_reserved = 0;
3217 found->bytes_readonly = 0;
3218 found->bytes_may_use = 0;
3219 found->full = 0;
3220 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3221 found->chunk_alloc = 0;
3222 found->flush = 0;
3223 init_waitqueue_head(&found->wait);
3224 *space_info = found;
3225 list_add_rcu(&found->list, &info->space_info);
3226 return 0;
3227 }
3228
3229 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3230 {
3231 u64 extra_flags = chunk_to_extended(flags) &
3232 BTRFS_EXTENDED_PROFILE_MASK;
3233
3234 if (flags & BTRFS_BLOCK_GROUP_DATA)
3235 fs_info->avail_data_alloc_bits |= extra_flags;
3236 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3237 fs_info->avail_metadata_alloc_bits |= extra_flags;
3238 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3239 fs_info->avail_system_alloc_bits |= extra_flags;
3240 }
3241
3242 /*
3243 * returns target flags in extended format or 0 if restripe for this
3244 * chunk_type is not in progress
3245 *
3246 * should be called with either volume_mutex or balance_lock held
3247 */
3248 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3249 {
3250 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3251 u64 target = 0;
3252
3253 if (!bctl)
3254 return 0;
3255
3256 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3257 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3258 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3259 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3260 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3261 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3262 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3263 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3264 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3265 }
3266
3267 return target;
3268 }
3269
3270 /*
3271 * @flags: available profiles in extended format (see ctree.h)
3272 *
3273 * Returns reduced profile in chunk format. If profile changing is in
3274 * progress (either running or paused) picks the target profile (if it's
3275 * already available), otherwise falls back to plain reducing.
3276 */
3277 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3278 {
3279 /*
3280 * we add in the count of missing devices because we want
3281 * to make sure that any RAID levels on a degraded FS
3282 * continue to be honored.
3283 */
3284 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3285 root->fs_info->fs_devices->missing_devices;
3286 u64 target;
3287
3288 /*
3289 * see if restripe for this chunk_type is in progress, if so
3290 * try to reduce to the target profile
3291 */
3292 spin_lock(&root->fs_info->balance_lock);
3293 target = get_restripe_target(root->fs_info, flags);
3294 if (target) {
3295 /* pick target profile only if it's already available */
3296 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3297 spin_unlock(&root->fs_info->balance_lock);
3298 return extended_to_chunk(target);
3299 }
3300 }
3301 spin_unlock(&root->fs_info->balance_lock);
3302
3303 if (num_devices == 1)
3304 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3305 if (num_devices < 4)
3306 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3307
3308 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3309 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3310 BTRFS_BLOCK_GROUP_RAID10))) {
3311 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3312 }
3313
3314 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3315 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3316 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3317 }
3318
3319 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3320 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3321 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3322 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3323 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3324 }
3325
3326 return extended_to_chunk(flags);
3327 }
3328
3329 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3330 {
3331 if (flags & BTRFS_BLOCK_GROUP_DATA)
3332 flags |= root->fs_info->avail_data_alloc_bits;
3333 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3334 flags |= root->fs_info->avail_system_alloc_bits;
3335 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3336 flags |= root->fs_info->avail_metadata_alloc_bits;
3337
3338 return btrfs_reduce_alloc_profile(root, flags);
3339 }
3340
3341 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3342 {
3343 u64 flags;
3344
3345 if (data)
3346 flags = BTRFS_BLOCK_GROUP_DATA;
3347 else if (root == root->fs_info->chunk_root)
3348 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3349 else
3350 flags = BTRFS_BLOCK_GROUP_METADATA;
3351
3352 return get_alloc_profile(root, flags);
3353 }
3354
3355 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3356 {
3357 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3358 BTRFS_BLOCK_GROUP_DATA);
3359 }
3360
3361 /*
3362 * This will check the space that the inode allocates from to make sure we have
3363 * enough space for bytes.
3364 */
3365 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3366 {
3367 struct btrfs_space_info *data_sinfo;
3368 struct btrfs_root *root = BTRFS_I(inode)->root;
3369 u64 used;
3370 int ret = 0, committed = 0, alloc_chunk = 1;
3371
3372 /* make sure bytes are sectorsize aligned */
3373 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3374
3375 if (root == root->fs_info->tree_root ||
3376 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3377 alloc_chunk = 0;
3378 committed = 1;
3379 }
3380
3381 data_sinfo = BTRFS_I(inode)->space_info;
3382 if (!data_sinfo)
3383 goto alloc;
3384
3385 again:
3386 /* make sure we have enough space to handle the data first */
3387 spin_lock(&data_sinfo->lock);
3388 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3389 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3390 data_sinfo->bytes_may_use;
3391
3392 if (used + bytes > data_sinfo->total_bytes) {
3393 struct btrfs_trans_handle *trans;
3394
3395 /*
3396 * if we don't have enough free bytes in this space then we need
3397 * to alloc a new chunk.
3398 */
3399 if (!data_sinfo->full && alloc_chunk) {
3400 u64 alloc_target;
3401
3402 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3403 spin_unlock(&data_sinfo->lock);
3404 alloc:
3405 alloc_target = btrfs_get_alloc_profile(root, 1);
3406 trans = btrfs_join_transaction(root);
3407 if (IS_ERR(trans))
3408 return PTR_ERR(trans);
3409
3410 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3411 bytes + 2 * 1024 * 1024,
3412 alloc_target,
3413 CHUNK_ALLOC_NO_FORCE);
3414 btrfs_end_transaction(trans, root);
3415 if (ret < 0) {
3416 if (ret != -ENOSPC)
3417 return ret;
3418 else
3419 goto commit_trans;
3420 }
3421
3422 if (!data_sinfo) {
3423 btrfs_set_inode_space_info(root, inode);
3424 data_sinfo = BTRFS_I(inode)->space_info;
3425 }
3426 goto again;
3427 }
3428
3429 /*
3430 * If we have less pinned bytes than we want to allocate then
3431 * don't bother committing the transaction, it won't help us.
3432 */
3433 if (data_sinfo->bytes_pinned < bytes)
3434 committed = 1;
3435 spin_unlock(&data_sinfo->lock);
3436
3437 /* commit the current transaction and try again */
3438 commit_trans:
3439 if (!committed &&
3440 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3441 committed = 1;
3442 trans = btrfs_join_transaction(root);
3443 if (IS_ERR(trans))
3444 return PTR_ERR(trans);
3445 ret = btrfs_commit_transaction(trans, root);
3446 if (ret)
3447 return ret;
3448 goto again;
3449 }
3450
3451 return -ENOSPC;
3452 }
3453 data_sinfo->bytes_may_use += bytes;
3454 trace_btrfs_space_reservation(root->fs_info, "space_info",
3455 data_sinfo->flags, bytes, 1);
3456 spin_unlock(&data_sinfo->lock);
3457
3458 return 0;
3459 }
3460
3461 /*
3462 * Called if we need to clear a data reservation for this inode.
3463 */
3464 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3465 {
3466 struct btrfs_root *root = BTRFS_I(inode)->root;
3467 struct btrfs_space_info *data_sinfo;
3468
3469 /* make sure bytes are sectorsize aligned */
3470 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3471
3472 data_sinfo = BTRFS_I(inode)->space_info;
3473 spin_lock(&data_sinfo->lock);
3474 data_sinfo->bytes_may_use -= bytes;
3475 trace_btrfs_space_reservation(root->fs_info, "space_info",
3476 data_sinfo->flags, bytes, 0);
3477 spin_unlock(&data_sinfo->lock);
3478 }
3479
3480 static void force_metadata_allocation(struct btrfs_fs_info *info)
3481 {
3482 struct list_head *head = &info->space_info;
3483 struct btrfs_space_info *found;
3484
3485 rcu_read_lock();
3486 list_for_each_entry_rcu(found, head, list) {
3487 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3488 found->force_alloc = CHUNK_ALLOC_FORCE;
3489 }
3490 rcu_read_unlock();
3491 }
3492
3493 static int should_alloc_chunk(struct btrfs_root *root,
3494 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3495 int force)
3496 {
3497 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3498 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3499 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3500 u64 thresh;
3501
3502 if (force == CHUNK_ALLOC_FORCE)
3503 return 1;
3504
3505 /*
3506 * We need to take into account the global rsv because for all intents
3507 * and purposes it's used space. Don't worry about locking the
3508 * global_rsv, it doesn't change except when the transaction commits.
3509 */
3510 num_allocated += global_rsv->size;
3511
3512 /*
3513 * in limited mode, we want to have some free space up to
3514 * about 1% of the FS size.
3515 */
3516 if (force == CHUNK_ALLOC_LIMITED) {
3517 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3518 thresh = max_t(u64, 64 * 1024 * 1024,
3519 div_factor_fine(thresh, 1));
3520
3521 if (num_bytes - num_allocated < thresh)
3522 return 1;
3523 }
3524 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3525
3526 /* 256MB or 2% of the FS */
3527 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3528 /* system chunks need a much small threshold */
3529 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3530 thresh = 32 * 1024 * 1024;
3531
3532 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3533 return 0;
3534 return 1;
3535 }
3536
3537 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3538 {
3539 u64 num_dev;
3540
3541 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3542 type & BTRFS_BLOCK_GROUP_RAID0)
3543 num_dev = root->fs_info->fs_devices->rw_devices;
3544 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3545 num_dev = 2;
3546 else
3547 num_dev = 1; /* DUP or single */
3548
3549 /* metadata for updaing devices and chunk tree */
3550 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3551 }
3552
3553 static void check_system_chunk(struct btrfs_trans_handle *trans,
3554 struct btrfs_root *root, u64 type)
3555 {
3556 struct btrfs_space_info *info;
3557 u64 left;
3558 u64 thresh;
3559
3560 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3561 spin_lock(&info->lock);
3562 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3563 info->bytes_reserved - info->bytes_readonly;
3564 spin_unlock(&info->lock);
3565
3566 thresh = get_system_chunk_thresh(root, type);
3567 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3568 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3569 left, thresh, type);
3570 dump_space_info(info, 0, 0);
3571 }
3572
3573 if (left < thresh) {
3574 u64 flags;
3575
3576 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3577 btrfs_alloc_chunk(trans, root, flags);
3578 }
3579 }
3580
3581 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3582 struct btrfs_root *extent_root, u64 alloc_bytes,
3583 u64 flags, int force)
3584 {
3585 struct btrfs_space_info *space_info;
3586 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3587 int wait_for_alloc = 0;
3588 int ret = 0;
3589
3590 space_info = __find_space_info(extent_root->fs_info, flags);
3591 if (!space_info) {
3592 ret = update_space_info(extent_root->fs_info, flags,
3593 0, 0, &space_info);
3594 BUG_ON(ret); /* -ENOMEM */
3595 }
3596 BUG_ON(!space_info); /* Logic error */
3597
3598 again:
3599 spin_lock(&space_info->lock);
3600 if (force < space_info->force_alloc)
3601 force = space_info->force_alloc;
3602 if (space_info->full) {
3603 spin_unlock(&space_info->lock);
3604 return 0;
3605 }
3606
3607 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3608 spin_unlock(&space_info->lock);
3609 return 0;
3610 } else if (space_info->chunk_alloc) {
3611 wait_for_alloc = 1;
3612 } else {
3613 space_info->chunk_alloc = 1;
3614 }
3615
3616 spin_unlock(&space_info->lock);
3617
3618 mutex_lock(&fs_info->chunk_mutex);
3619
3620 /*
3621 * The chunk_mutex is held throughout the entirety of a chunk
3622 * allocation, so once we've acquired the chunk_mutex we know that the
3623 * other guy is done and we need to recheck and see if we should
3624 * allocate.
3625 */
3626 if (wait_for_alloc) {
3627 mutex_unlock(&fs_info->chunk_mutex);
3628 wait_for_alloc = 0;
3629 goto again;
3630 }
3631
3632 /*
3633 * If we have mixed data/metadata chunks we want to make sure we keep
3634 * allocating mixed chunks instead of individual chunks.
3635 */
3636 if (btrfs_mixed_space_info(space_info))
3637 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3638
3639 /*
3640 * if we're doing a data chunk, go ahead and make sure that
3641 * we keep a reasonable number of metadata chunks allocated in the
3642 * FS as well.
3643 */
3644 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3645 fs_info->data_chunk_allocations++;
3646 if (!(fs_info->data_chunk_allocations %
3647 fs_info->metadata_ratio))
3648 force_metadata_allocation(fs_info);
3649 }
3650
3651 /*
3652 * Check if we have enough space in SYSTEM chunk because we may need
3653 * to update devices.
3654 */
3655 check_system_chunk(trans, extent_root, flags);
3656
3657 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3658 if (ret < 0 && ret != -ENOSPC)
3659 goto out;
3660
3661 spin_lock(&space_info->lock);
3662 if (ret)
3663 space_info->full = 1;
3664 else
3665 ret = 1;
3666
3667 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3668 space_info->chunk_alloc = 0;
3669 spin_unlock(&space_info->lock);
3670 out:
3671 mutex_unlock(&fs_info->chunk_mutex);
3672 return ret;
3673 }
3674
3675 /*
3676 * shrink metadata reservation for delalloc
3677 */
3678 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3679 bool wait_ordered)
3680 {
3681 struct btrfs_block_rsv *block_rsv;
3682 struct btrfs_space_info *space_info;
3683 struct btrfs_trans_handle *trans;
3684 u64 reserved;
3685 u64 max_reclaim;
3686 u64 reclaimed = 0;
3687 long time_left;
3688 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3689 int loops = 0;
3690 unsigned long progress;
3691
3692 trans = (struct btrfs_trans_handle *)current->journal_info;
3693 block_rsv = &root->fs_info->delalloc_block_rsv;
3694 space_info = block_rsv->space_info;
3695
3696 smp_mb();
3697 reserved = space_info->bytes_may_use;
3698 progress = space_info->reservation_progress;
3699
3700 if (reserved == 0)
3701 return 0;
3702
3703 smp_mb();
3704 if (root->fs_info->delalloc_bytes == 0) {
3705 if (trans)
3706 return 0;
3707 btrfs_wait_ordered_extents(root, 0, 0);
3708 return 0;
3709 }
3710
3711 max_reclaim = min(reserved, to_reclaim);
3712 nr_pages = max_t(unsigned long, nr_pages,
3713 max_reclaim >> PAGE_CACHE_SHIFT);
3714 while (loops < 1024) {
3715 /* have the flusher threads jump in and do some IO */
3716 smp_mb();
3717 nr_pages = min_t(unsigned long, nr_pages,
3718 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3719 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3720 WB_REASON_FS_FREE_SPACE);
3721
3722 spin_lock(&space_info->lock);
3723 if (reserved > space_info->bytes_may_use)
3724 reclaimed += reserved - space_info->bytes_may_use;
3725 reserved = space_info->bytes_may_use;
3726 spin_unlock(&space_info->lock);
3727
3728 loops++;
3729
3730 if (reserved == 0 || reclaimed >= max_reclaim)
3731 break;
3732
3733 if (trans && trans->transaction->blocked)
3734 return -EAGAIN;
3735
3736 if (wait_ordered && !trans) {
3737 btrfs_wait_ordered_extents(root, 0, 0);
3738 } else {
3739 time_left = schedule_timeout_interruptible(1);
3740
3741 /* We were interrupted, exit */
3742 if (time_left)
3743 break;
3744 }
3745
3746 /* we've kicked the IO a few times, if anything has been freed,
3747 * exit. There is no sense in looping here for a long time
3748 * when we really need to commit the transaction, or there are
3749 * just too many writers without enough free space
3750 */
3751
3752 if (loops > 3) {
3753 smp_mb();
3754 if (progress != space_info->reservation_progress)
3755 break;
3756 }
3757
3758 }
3759
3760 return reclaimed >= to_reclaim;
3761 }
3762
3763 /**
3764 * maybe_commit_transaction - possibly commit the transaction if its ok to
3765 * @root - the root we're allocating for
3766 * @bytes - the number of bytes we want to reserve
3767 * @force - force the commit
3768 *
3769 * This will check to make sure that committing the transaction will actually
3770 * get us somewhere and then commit the transaction if it does. Otherwise it
3771 * will return -ENOSPC.
3772 */
3773 static int may_commit_transaction(struct btrfs_root *root,
3774 struct btrfs_space_info *space_info,
3775 u64 bytes, int force)
3776 {
3777 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3778 struct btrfs_trans_handle *trans;
3779
3780 trans = (struct btrfs_trans_handle *)current->journal_info;
3781 if (trans)
3782 return -EAGAIN;
3783
3784 if (force)
3785 goto commit;
3786
3787 /* See if there is enough pinned space to make this reservation */
3788 spin_lock(&space_info->lock);
3789 if (space_info->bytes_pinned >= bytes) {
3790 spin_unlock(&space_info->lock);
3791 goto commit;
3792 }
3793 spin_unlock(&space_info->lock);
3794
3795 /*
3796 * See if there is some space in the delayed insertion reservation for
3797 * this reservation.
3798 */
3799 if (space_info != delayed_rsv->space_info)
3800 return -ENOSPC;
3801
3802 spin_lock(&space_info->lock);
3803 spin_lock(&delayed_rsv->lock);
3804 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3805 spin_unlock(&delayed_rsv->lock);
3806 spin_unlock(&space_info->lock);
3807 return -ENOSPC;
3808 }
3809 spin_unlock(&delayed_rsv->lock);
3810 spin_unlock(&space_info->lock);
3811
3812 commit:
3813 trans = btrfs_join_transaction(root);
3814 if (IS_ERR(trans))
3815 return -ENOSPC;
3816
3817 return btrfs_commit_transaction(trans, root);
3818 }
3819
3820 /**
3821 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3822 * @root - the root we're allocating for
3823 * @block_rsv - the block_rsv we're allocating for
3824 * @orig_bytes - the number of bytes we want
3825 * @flush - wether or not we can flush to make our reservation
3826 *
3827 * This will reserve orgi_bytes number of bytes from the space info associated
3828 * with the block_rsv. If there is not enough space it will make an attempt to
3829 * flush out space to make room. It will do this by flushing delalloc if
3830 * possible or committing the transaction. If flush is 0 then no attempts to
3831 * regain reservations will be made and this will fail if there is not enough
3832 * space already.
3833 */
3834 static int reserve_metadata_bytes(struct btrfs_root *root,
3835 struct btrfs_block_rsv *block_rsv,
3836 u64 orig_bytes, int flush)
3837 {
3838 struct btrfs_space_info *space_info = block_rsv->space_info;
3839 u64 used;
3840 u64 num_bytes = orig_bytes;
3841 int retries = 0;
3842 int ret = 0;
3843 bool committed = false;
3844 bool flushing = false;
3845 bool wait_ordered = false;
3846
3847 again:
3848 ret = 0;
3849 spin_lock(&space_info->lock);
3850 /*
3851 * We only want to wait if somebody other than us is flushing and we are
3852 * actually alloed to flush.
3853 */
3854 while (flush && !flushing && space_info->flush) {
3855 spin_unlock(&space_info->lock);
3856 /*
3857 * If we have a trans handle we can't wait because the flusher
3858 * may have to commit the transaction, which would mean we would
3859 * deadlock since we are waiting for the flusher to finish, but
3860 * hold the current transaction open.
3861 */
3862 if (current->journal_info)
3863 return -EAGAIN;
3864 ret = wait_event_killable(space_info->wait, !space_info->flush);
3865 /* Must have been killed, return */
3866 if (ret)
3867 return -EINTR;
3868
3869 spin_lock(&space_info->lock);
3870 }
3871
3872 ret = -ENOSPC;
3873 used = space_info->bytes_used + space_info->bytes_reserved +
3874 space_info->bytes_pinned + space_info->bytes_readonly +
3875 space_info->bytes_may_use;
3876
3877 /*
3878 * The idea here is that we've not already over-reserved the block group
3879 * then we can go ahead and save our reservation first and then start
3880 * flushing if we need to. Otherwise if we've already overcommitted
3881 * lets start flushing stuff first and then come back and try to make
3882 * our reservation.
3883 */
3884 if (used <= space_info->total_bytes) {
3885 if (used + orig_bytes <= space_info->total_bytes) {
3886 space_info->bytes_may_use += orig_bytes;
3887 trace_btrfs_space_reservation(root->fs_info,
3888 "space_info", space_info->flags, orig_bytes, 1);
3889 ret = 0;
3890 } else {
3891 /*
3892 * Ok set num_bytes to orig_bytes since we aren't
3893 * overocmmitted, this way we only try and reclaim what
3894 * we need.
3895 */
3896 num_bytes = orig_bytes;
3897 }
3898 } else {
3899 /*
3900 * Ok we're over committed, set num_bytes to the overcommitted
3901 * amount plus the amount of bytes that we need for this
3902 * reservation.
3903 */
3904 wait_ordered = true;
3905 num_bytes = used - space_info->total_bytes +
3906 (orig_bytes * (retries + 1));
3907 }
3908
3909 if (ret) {
3910 u64 profile = btrfs_get_alloc_profile(root, 0);
3911 u64 avail;
3912
3913 /*
3914 * If we have a lot of space that's pinned, don't bother doing
3915 * the overcommit dance yet and just commit the transaction.
3916 */
3917 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3918 do_div(avail, 10);
3919 if (space_info->bytes_pinned >= avail && flush && !committed) {
3920 space_info->flush = 1;
3921 flushing = true;
3922 spin_unlock(&space_info->lock);
3923 ret = may_commit_transaction(root, space_info,
3924 orig_bytes, 1);
3925 if (ret)
3926 goto out;
3927 committed = true;
3928 goto again;
3929 }
3930
3931 spin_lock(&root->fs_info->free_chunk_lock);
3932 avail = root->fs_info->free_chunk_space;
3933
3934 /*
3935 * If we have dup, raid1 or raid10 then only half of the free
3936 * space is actually useable.
3937 */
3938 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3939 BTRFS_BLOCK_GROUP_RAID1 |
3940 BTRFS_BLOCK_GROUP_RAID10))
3941 avail >>= 1;
3942
3943 /*
3944 * If we aren't flushing don't let us overcommit too much, say
3945 * 1/8th of the space. If we can flush, let it overcommit up to
3946 * 1/2 of the space.
3947 */
3948 if (flush)
3949 avail >>= 3;
3950 else
3951 avail >>= 1;
3952 spin_unlock(&root->fs_info->free_chunk_lock);
3953
3954 if (used + num_bytes < space_info->total_bytes + avail) {
3955 space_info->bytes_may_use += orig_bytes;
3956 trace_btrfs_space_reservation(root->fs_info,
3957 "space_info", space_info->flags, orig_bytes, 1);
3958 ret = 0;
3959 } else {
3960 wait_ordered = true;
3961 }
3962 }
3963
3964 /*
3965 * Couldn't make our reservation, save our place so while we're trying
3966 * to reclaim space we can actually use it instead of somebody else
3967 * stealing it from us.
3968 */
3969 if (ret && flush) {
3970 flushing = true;
3971 space_info->flush = 1;
3972 }
3973
3974 spin_unlock(&space_info->lock);
3975
3976 if (!ret || !flush)
3977 goto out;
3978
3979 /*
3980 * We do synchronous shrinking since we don't actually unreserve
3981 * metadata until after the IO is completed.
3982 */
3983 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3984 if (ret < 0)
3985 goto out;
3986
3987 ret = 0;
3988
3989 /*
3990 * So if we were overcommitted it's possible that somebody else flushed
3991 * out enough space and we simply didn't have enough space to reclaim,
3992 * so go back around and try again.
3993 */
3994 if (retries < 2) {
3995 wait_ordered = true;
3996 retries++;
3997 goto again;
3998 }
3999
4000 ret = -ENOSPC;
4001 if (committed)
4002 goto out;
4003
4004 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4005 if (!ret) {
4006 committed = true;
4007 goto again;
4008 }
4009
4010 out:
4011 if (flushing) {
4012 spin_lock(&space_info->lock);
4013 space_info->flush = 0;
4014 wake_up_all(&space_info->wait);
4015 spin_unlock(&space_info->lock);
4016 }
4017 return ret;
4018 }
4019
4020 static struct btrfs_block_rsv *get_block_rsv(
4021 const struct btrfs_trans_handle *trans,
4022 const struct btrfs_root *root)
4023 {
4024 struct btrfs_block_rsv *block_rsv = NULL;
4025
4026 if (root->ref_cows || root == root->fs_info->csum_root)
4027 block_rsv = trans->block_rsv;
4028
4029 if (!block_rsv)
4030 block_rsv = root->block_rsv;
4031
4032 if (!block_rsv)
4033 block_rsv = &root->fs_info->empty_block_rsv;
4034
4035 return block_rsv;
4036 }
4037
4038 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4039 u64 num_bytes)
4040 {
4041 int ret = -ENOSPC;
4042 spin_lock(&block_rsv->lock);
4043 if (block_rsv->reserved >= num_bytes) {
4044 block_rsv->reserved -= num_bytes;
4045 if (block_rsv->reserved < block_rsv->size)
4046 block_rsv->full = 0;
4047 ret = 0;
4048 }
4049 spin_unlock(&block_rsv->lock);
4050 return ret;
4051 }
4052
4053 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4054 u64 num_bytes, int update_size)
4055 {
4056 spin_lock(&block_rsv->lock);
4057 block_rsv->reserved += num_bytes;
4058 if (update_size)
4059 block_rsv->size += num_bytes;
4060 else if (block_rsv->reserved >= block_rsv->size)
4061 block_rsv->full = 1;
4062 spin_unlock(&block_rsv->lock);
4063 }
4064
4065 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4066 struct btrfs_block_rsv *block_rsv,
4067 struct btrfs_block_rsv *dest, u64 num_bytes)
4068 {
4069 struct btrfs_space_info *space_info = block_rsv->space_info;
4070
4071 spin_lock(&block_rsv->lock);
4072 if (num_bytes == (u64)-1)
4073 num_bytes = block_rsv->size;
4074 block_rsv->size -= num_bytes;
4075 if (block_rsv->reserved >= block_rsv->size) {
4076 num_bytes = block_rsv->reserved - block_rsv->size;
4077 block_rsv->reserved = block_rsv->size;
4078 block_rsv->full = 1;
4079 } else {
4080 num_bytes = 0;
4081 }
4082 spin_unlock(&block_rsv->lock);
4083
4084 if (num_bytes > 0) {
4085 if (dest) {
4086 spin_lock(&dest->lock);
4087 if (!dest->full) {
4088 u64 bytes_to_add;
4089
4090 bytes_to_add = dest->size - dest->reserved;
4091 bytes_to_add = min(num_bytes, bytes_to_add);
4092 dest->reserved += bytes_to_add;
4093 if (dest->reserved >= dest->size)
4094 dest->full = 1;
4095 num_bytes -= bytes_to_add;
4096 }
4097 spin_unlock(&dest->lock);
4098 }
4099 if (num_bytes) {
4100 spin_lock(&space_info->lock);
4101 space_info->bytes_may_use -= num_bytes;
4102 trace_btrfs_space_reservation(fs_info, "space_info",
4103 space_info->flags, num_bytes, 0);
4104 space_info->reservation_progress++;
4105 spin_unlock(&space_info->lock);
4106 }
4107 }
4108 }
4109
4110 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4111 struct btrfs_block_rsv *dst, u64 num_bytes)
4112 {
4113 int ret;
4114
4115 ret = block_rsv_use_bytes(src, num_bytes);
4116 if (ret)
4117 return ret;
4118
4119 block_rsv_add_bytes(dst, num_bytes, 1);
4120 return 0;
4121 }
4122
4123 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
4124 {
4125 memset(rsv, 0, sizeof(*rsv));
4126 spin_lock_init(&rsv->lock);
4127 }
4128
4129 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
4130 {
4131 struct btrfs_block_rsv *block_rsv;
4132 struct btrfs_fs_info *fs_info = root->fs_info;
4133
4134 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4135 if (!block_rsv)
4136 return NULL;
4137
4138 btrfs_init_block_rsv(block_rsv);
4139 block_rsv->space_info = __find_space_info(fs_info,
4140 BTRFS_BLOCK_GROUP_METADATA);
4141 return block_rsv;
4142 }
4143
4144 void btrfs_free_block_rsv(struct btrfs_root *root,
4145 struct btrfs_block_rsv *rsv)
4146 {
4147 btrfs_block_rsv_release(root, rsv, (u64)-1);
4148 kfree(rsv);
4149 }
4150
4151 static inline int __block_rsv_add(struct btrfs_root *root,
4152 struct btrfs_block_rsv *block_rsv,
4153 u64 num_bytes, int flush)
4154 {
4155 int ret;
4156
4157 if (num_bytes == 0)
4158 return 0;
4159
4160 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4161 if (!ret) {
4162 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4163 return 0;
4164 }
4165
4166 return ret;
4167 }
4168
4169 int btrfs_block_rsv_add(struct btrfs_root *root,
4170 struct btrfs_block_rsv *block_rsv,
4171 u64 num_bytes)
4172 {
4173 return __block_rsv_add(root, block_rsv, num_bytes, 1);
4174 }
4175
4176 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4177 struct btrfs_block_rsv *block_rsv,
4178 u64 num_bytes)
4179 {
4180 return __block_rsv_add(root, block_rsv, num_bytes, 0);
4181 }
4182
4183 int btrfs_block_rsv_check(struct btrfs_root *root,
4184 struct btrfs_block_rsv *block_rsv, int min_factor)
4185 {
4186 u64 num_bytes = 0;
4187 int ret = -ENOSPC;
4188
4189 if (!block_rsv)
4190 return 0;
4191
4192 spin_lock(&block_rsv->lock);
4193 num_bytes = div_factor(block_rsv->size, min_factor);
4194 if (block_rsv->reserved >= num_bytes)
4195 ret = 0;
4196 spin_unlock(&block_rsv->lock);
4197
4198 return ret;
4199 }
4200
4201 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4202 struct btrfs_block_rsv *block_rsv,
4203 u64 min_reserved, int flush)
4204 {
4205 u64 num_bytes = 0;
4206 int ret = -ENOSPC;
4207
4208 if (!block_rsv)
4209 return 0;
4210
4211 spin_lock(&block_rsv->lock);
4212 num_bytes = min_reserved;
4213 if (block_rsv->reserved >= num_bytes)
4214 ret = 0;
4215 else
4216 num_bytes -= block_rsv->reserved;
4217 spin_unlock(&block_rsv->lock);
4218
4219 if (!ret)
4220 return 0;
4221
4222 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4223 if (!ret) {
4224 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4225 return 0;
4226 }
4227
4228 return ret;
4229 }
4230
4231 int btrfs_block_rsv_refill(struct btrfs_root *root,
4232 struct btrfs_block_rsv *block_rsv,
4233 u64 min_reserved)
4234 {
4235 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4236 }
4237
4238 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4239 struct btrfs_block_rsv *block_rsv,
4240 u64 min_reserved)
4241 {
4242 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4243 }
4244
4245 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4246 struct btrfs_block_rsv *dst_rsv,
4247 u64 num_bytes)
4248 {
4249 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4250 }
4251
4252 void btrfs_block_rsv_release(struct btrfs_root *root,
4253 struct btrfs_block_rsv *block_rsv,
4254 u64 num_bytes)
4255 {
4256 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4257 if (global_rsv->full || global_rsv == block_rsv ||
4258 block_rsv->space_info != global_rsv->space_info)
4259 global_rsv = NULL;
4260 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4261 num_bytes);
4262 }
4263
4264 /*
4265 * helper to calculate size of global block reservation.
4266 * the desired value is sum of space used by extent tree,
4267 * checksum tree and root tree
4268 */
4269 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4270 {
4271 struct btrfs_space_info *sinfo;
4272 u64 num_bytes;
4273 u64 meta_used;
4274 u64 data_used;
4275 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4276
4277 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4278 spin_lock(&sinfo->lock);
4279 data_used = sinfo->bytes_used;
4280 spin_unlock(&sinfo->lock);
4281
4282 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4283 spin_lock(&sinfo->lock);
4284 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4285 data_used = 0;
4286 meta_used = sinfo->bytes_used;
4287 spin_unlock(&sinfo->lock);
4288
4289 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4290 csum_size * 2;
4291 num_bytes += div64_u64(data_used + meta_used, 50);
4292
4293 if (num_bytes * 3 > meta_used)
4294 num_bytes = div64_u64(meta_used, 3);
4295
4296 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4297 }
4298
4299 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4300 {
4301 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4302 struct btrfs_space_info *sinfo = block_rsv->space_info;
4303 u64 num_bytes;
4304
4305 num_bytes = calc_global_metadata_size(fs_info);
4306
4307 spin_lock(&sinfo->lock);
4308 spin_lock(&block_rsv->lock);
4309
4310 block_rsv->size = num_bytes;
4311
4312 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4313 sinfo->bytes_reserved + sinfo->bytes_readonly +
4314 sinfo->bytes_may_use;
4315
4316 if (sinfo->total_bytes > num_bytes) {
4317 num_bytes = sinfo->total_bytes - num_bytes;
4318 block_rsv->reserved += num_bytes;
4319 sinfo->bytes_may_use += num_bytes;
4320 trace_btrfs_space_reservation(fs_info, "space_info",
4321 sinfo->flags, num_bytes, 1);
4322 }
4323
4324 if (block_rsv->reserved >= block_rsv->size) {
4325 num_bytes = block_rsv->reserved - block_rsv->size;
4326 sinfo->bytes_may_use -= num_bytes;
4327 trace_btrfs_space_reservation(fs_info, "space_info",
4328 sinfo->flags, num_bytes, 0);
4329 sinfo->reservation_progress++;
4330 block_rsv->reserved = block_rsv->size;
4331 block_rsv->full = 1;
4332 }
4333
4334 spin_unlock(&block_rsv->lock);
4335 spin_unlock(&sinfo->lock);
4336 }
4337
4338 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4339 {
4340 struct btrfs_space_info *space_info;
4341
4342 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4343 fs_info->chunk_block_rsv.space_info = space_info;
4344
4345 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4346 fs_info->global_block_rsv.space_info = space_info;
4347 fs_info->delalloc_block_rsv.space_info = space_info;
4348 fs_info->trans_block_rsv.space_info = space_info;
4349 fs_info->empty_block_rsv.space_info = space_info;
4350 fs_info->delayed_block_rsv.space_info = space_info;
4351
4352 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4353 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4354 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4355 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4356 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4357
4358 update_global_block_rsv(fs_info);
4359 }
4360
4361 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4362 {
4363 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4364 (u64)-1);
4365 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4366 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4367 WARN_ON(fs_info->trans_block_rsv.size > 0);
4368 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4369 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4370 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4371 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4372 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4373 }
4374
4375 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4376 struct btrfs_root *root)
4377 {
4378 if (!trans->bytes_reserved)
4379 return;
4380
4381 trace_btrfs_space_reservation(root->fs_info, "transaction",
4382 trans->transid, trans->bytes_reserved, 0);
4383 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4384 trans->bytes_reserved = 0;
4385 }
4386
4387 /* Can only return 0 or -ENOSPC */
4388 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4389 struct inode *inode)
4390 {
4391 struct btrfs_root *root = BTRFS_I(inode)->root;
4392 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4393 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4394
4395 /*
4396 * We need to hold space in order to delete our orphan item once we've
4397 * added it, so this takes the reservation so we can release it later
4398 * when we are truly done with the orphan item.
4399 */
4400 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4401 trace_btrfs_space_reservation(root->fs_info, "orphan",
4402 btrfs_ino(inode), num_bytes, 1);
4403 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4404 }
4405
4406 void btrfs_orphan_release_metadata(struct inode *inode)
4407 {
4408 struct btrfs_root *root = BTRFS_I(inode)->root;
4409 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4410 trace_btrfs_space_reservation(root->fs_info, "orphan",
4411 btrfs_ino(inode), num_bytes, 0);
4412 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4413 }
4414
4415 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4416 struct btrfs_pending_snapshot *pending)
4417 {
4418 struct btrfs_root *root = pending->root;
4419 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4420 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4421 /*
4422 * two for root back/forward refs, two for directory entries
4423 * and one for root of the snapshot.
4424 */
4425 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4426 dst_rsv->space_info = src_rsv->space_info;
4427 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4428 }
4429
4430 /**
4431 * drop_outstanding_extent - drop an outstanding extent
4432 * @inode: the inode we're dropping the extent for
4433 *
4434 * This is called when we are freeing up an outstanding extent, either called
4435 * after an error or after an extent is written. This will return the number of
4436 * reserved extents that need to be freed. This must be called with
4437 * BTRFS_I(inode)->lock held.
4438 */
4439 static unsigned drop_outstanding_extent(struct inode *inode)
4440 {
4441 unsigned drop_inode_space = 0;
4442 unsigned dropped_extents = 0;
4443
4444 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4445 BTRFS_I(inode)->outstanding_extents--;
4446
4447 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4448 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4449 &BTRFS_I(inode)->runtime_flags))
4450 drop_inode_space = 1;
4451
4452 /*
4453 * If we have more or the same amount of outsanding extents than we have
4454 * reserved then we need to leave the reserved extents count alone.
4455 */
4456 if (BTRFS_I(inode)->outstanding_extents >=
4457 BTRFS_I(inode)->reserved_extents)
4458 return drop_inode_space;
4459
4460 dropped_extents = BTRFS_I(inode)->reserved_extents -
4461 BTRFS_I(inode)->outstanding_extents;
4462 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4463 return dropped_extents + drop_inode_space;
4464 }
4465
4466 /**
4467 * calc_csum_metadata_size - return the amount of metada space that must be
4468 * reserved/free'd for the given bytes.
4469 * @inode: the inode we're manipulating
4470 * @num_bytes: the number of bytes in question
4471 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4472 *
4473 * This adjusts the number of csum_bytes in the inode and then returns the
4474 * correct amount of metadata that must either be reserved or freed. We
4475 * calculate how many checksums we can fit into one leaf and then divide the
4476 * number of bytes that will need to be checksumed by this value to figure out
4477 * how many checksums will be required. If we are adding bytes then the number
4478 * may go up and we will return the number of additional bytes that must be
4479 * reserved. If it is going down we will return the number of bytes that must
4480 * be freed.
4481 *
4482 * This must be called with BTRFS_I(inode)->lock held.
4483 */
4484 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4485 int reserve)
4486 {
4487 struct btrfs_root *root = BTRFS_I(inode)->root;
4488 u64 csum_size;
4489 int num_csums_per_leaf;
4490 int num_csums;
4491 int old_csums;
4492
4493 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4494 BTRFS_I(inode)->csum_bytes == 0)
4495 return 0;
4496
4497 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4498 if (reserve)
4499 BTRFS_I(inode)->csum_bytes += num_bytes;
4500 else
4501 BTRFS_I(inode)->csum_bytes -= num_bytes;
4502 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4503 num_csums_per_leaf = (int)div64_u64(csum_size,
4504 sizeof(struct btrfs_csum_item) +
4505 sizeof(struct btrfs_disk_key));
4506 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4507 num_csums = num_csums + num_csums_per_leaf - 1;
4508 num_csums = num_csums / num_csums_per_leaf;
4509
4510 old_csums = old_csums + num_csums_per_leaf - 1;
4511 old_csums = old_csums / num_csums_per_leaf;
4512
4513 /* No change, no need to reserve more */
4514 if (old_csums == num_csums)
4515 return 0;
4516
4517 if (reserve)
4518 return btrfs_calc_trans_metadata_size(root,
4519 num_csums - old_csums);
4520
4521 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4522 }
4523
4524 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4525 {
4526 struct btrfs_root *root = BTRFS_I(inode)->root;
4527 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4528 u64 to_reserve = 0;
4529 u64 csum_bytes;
4530 unsigned nr_extents = 0;
4531 int extra_reserve = 0;
4532 int flush = 1;
4533 int ret;
4534
4535 /* Need to be holding the i_mutex here if we aren't free space cache */
4536 if (btrfs_is_free_space_inode(root, inode))
4537 flush = 0;
4538
4539 if (flush && btrfs_transaction_in_commit(root->fs_info))
4540 schedule_timeout(1);
4541
4542 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4543 num_bytes = ALIGN(num_bytes, root->sectorsize);
4544
4545 spin_lock(&BTRFS_I(inode)->lock);
4546 BTRFS_I(inode)->outstanding_extents++;
4547
4548 if (BTRFS_I(inode)->outstanding_extents >
4549 BTRFS_I(inode)->reserved_extents)
4550 nr_extents = BTRFS_I(inode)->outstanding_extents -
4551 BTRFS_I(inode)->reserved_extents;
4552
4553 /*
4554 * Add an item to reserve for updating the inode when we complete the
4555 * delalloc io.
4556 */
4557 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4558 &BTRFS_I(inode)->runtime_flags)) {
4559 nr_extents++;
4560 extra_reserve = 1;
4561 }
4562
4563 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4564 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4565 csum_bytes = BTRFS_I(inode)->csum_bytes;
4566 spin_unlock(&BTRFS_I(inode)->lock);
4567
4568 if (root->fs_info->quota_enabled) {
4569 ret = btrfs_qgroup_reserve(root, num_bytes +
4570 nr_extents * root->leafsize);
4571 if (ret)
4572 return ret;
4573 }
4574
4575 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4576 if (ret) {
4577 u64 to_free = 0;
4578 unsigned dropped;
4579
4580 spin_lock(&BTRFS_I(inode)->lock);
4581 dropped = drop_outstanding_extent(inode);
4582 /*
4583 * If the inodes csum_bytes is the same as the original
4584 * csum_bytes then we know we haven't raced with any free()ers
4585 * so we can just reduce our inodes csum bytes and carry on.
4586 * Otherwise we have to do the normal free thing to account for
4587 * the case that the free side didn't free up its reserve
4588 * because of this outstanding reservation.
4589 */
4590 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4591 calc_csum_metadata_size(inode, num_bytes, 0);
4592 else
4593 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4594 spin_unlock(&BTRFS_I(inode)->lock);
4595 if (dropped)
4596 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4597
4598 if (to_free) {
4599 btrfs_block_rsv_release(root, block_rsv, to_free);
4600 trace_btrfs_space_reservation(root->fs_info,
4601 "delalloc",
4602 btrfs_ino(inode),
4603 to_free, 0);
4604 }
4605 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4606 return ret;
4607 }
4608
4609 spin_lock(&BTRFS_I(inode)->lock);
4610 if (extra_reserve) {
4611 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4612 &BTRFS_I(inode)->runtime_flags);
4613 nr_extents--;
4614 }
4615 BTRFS_I(inode)->reserved_extents += nr_extents;
4616 spin_unlock(&BTRFS_I(inode)->lock);
4617 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4618
4619 if (to_reserve)
4620 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4621 btrfs_ino(inode), to_reserve, 1);
4622 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4623
4624 return 0;
4625 }
4626
4627 /**
4628 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4629 * @inode: the inode to release the reservation for
4630 * @num_bytes: the number of bytes we're releasing
4631 *
4632 * This will release the metadata reservation for an inode. This can be called
4633 * once we complete IO for a given set of bytes to release their metadata
4634 * reservations.
4635 */
4636 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4637 {
4638 struct btrfs_root *root = BTRFS_I(inode)->root;
4639 u64 to_free = 0;
4640 unsigned dropped;
4641
4642 num_bytes = ALIGN(num_bytes, root->sectorsize);
4643 spin_lock(&BTRFS_I(inode)->lock);
4644 dropped = drop_outstanding_extent(inode);
4645
4646 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4647 spin_unlock(&BTRFS_I(inode)->lock);
4648 if (dropped > 0)
4649 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4650
4651 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4652 btrfs_ino(inode), to_free, 0);
4653 if (root->fs_info->quota_enabled) {
4654 btrfs_qgroup_free(root, num_bytes +
4655 dropped * root->leafsize);
4656 }
4657
4658 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4659 to_free);
4660 }
4661
4662 /**
4663 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4664 * @inode: inode we're writing to
4665 * @num_bytes: the number of bytes we want to allocate
4666 *
4667 * This will do the following things
4668 *
4669 * o reserve space in the data space info for num_bytes
4670 * o reserve space in the metadata space info based on number of outstanding
4671 * extents and how much csums will be needed
4672 * o add to the inodes ->delalloc_bytes
4673 * o add it to the fs_info's delalloc inodes list.
4674 *
4675 * This will return 0 for success and -ENOSPC if there is no space left.
4676 */
4677 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4678 {
4679 int ret;
4680
4681 ret = btrfs_check_data_free_space(inode, num_bytes);
4682 if (ret)
4683 return ret;
4684
4685 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4686 if (ret) {
4687 btrfs_free_reserved_data_space(inode, num_bytes);
4688 return ret;
4689 }
4690
4691 return 0;
4692 }
4693
4694 /**
4695 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4696 * @inode: inode we're releasing space for
4697 * @num_bytes: the number of bytes we want to free up
4698 *
4699 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4700 * called in the case that we don't need the metadata AND data reservations
4701 * anymore. So if there is an error or we insert an inline extent.
4702 *
4703 * This function will release the metadata space that was not used and will
4704 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4705 * list if there are no delalloc bytes left.
4706 */
4707 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4708 {
4709 btrfs_delalloc_release_metadata(inode, num_bytes);
4710 btrfs_free_reserved_data_space(inode, num_bytes);
4711 }
4712
4713 static int update_block_group(struct btrfs_trans_handle *trans,
4714 struct btrfs_root *root,
4715 u64 bytenr, u64 num_bytes, int alloc)
4716 {
4717 struct btrfs_block_group_cache *cache = NULL;
4718 struct btrfs_fs_info *info = root->fs_info;
4719 u64 total = num_bytes;
4720 u64 old_val;
4721 u64 byte_in_group;
4722 int factor;
4723
4724 /* block accounting for super block */
4725 spin_lock(&info->delalloc_lock);
4726 old_val = btrfs_super_bytes_used(info->super_copy);
4727 if (alloc)
4728 old_val += num_bytes;
4729 else
4730 old_val -= num_bytes;
4731 btrfs_set_super_bytes_used(info->super_copy, old_val);
4732 spin_unlock(&info->delalloc_lock);
4733
4734 while (total) {
4735 cache = btrfs_lookup_block_group(info, bytenr);
4736 if (!cache)
4737 return -ENOENT;
4738 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4739 BTRFS_BLOCK_GROUP_RAID1 |
4740 BTRFS_BLOCK_GROUP_RAID10))
4741 factor = 2;
4742 else
4743 factor = 1;
4744 /*
4745 * If this block group has free space cache written out, we
4746 * need to make sure to load it if we are removing space. This
4747 * is because we need the unpinning stage to actually add the
4748 * space back to the block group, otherwise we will leak space.
4749 */
4750 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4751 cache_block_group(cache, trans, NULL, 1);
4752
4753 byte_in_group = bytenr - cache->key.objectid;
4754 WARN_ON(byte_in_group > cache->key.offset);
4755
4756 spin_lock(&cache->space_info->lock);
4757 spin_lock(&cache->lock);
4758
4759 if (btrfs_test_opt(root, SPACE_CACHE) &&
4760 cache->disk_cache_state < BTRFS_DC_CLEAR)
4761 cache->disk_cache_state = BTRFS_DC_CLEAR;
4762
4763 cache->dirty = 1;
4764 old_val = btrfs_block_group_used(&cache->item);
4765 num_bytes = min(total, cache->key.offset - byte_in_group);
4766 if (alloc) {
4767 old_val += num_bytes;
4768 btrfs_set_block_group_used(&cache->item, old_val);
4769 cache->reserved -= num_bytes;
4770 cache->space_info->bytes_reserved -= num_bytes;
4771 cache->space_info->bytes_used += num_bytes;
4772 cache->space_info->disk_used += num_bytes * factor;
4773 spin_unlock(&cache->lock);
4774 spin_unlock(&cache->space_info->lock);
4775 } else {
4776 old_val -= num_bytes;
4777 btrfs_set_block_group_used(&cache->item, old_val);
4778 cache->pinned += num_bytes;
4779 cache->space_info->bytes_pinned += num_bytes;
4780 cache->space_info->bytes_used -= num_bytes;
4781 cache->space_info->disk_used -= num_bytes * factor;
4782 spin_unlock(&cache->lock);
4783 spin_unlock(&cache->space_info->lock);
4784
4785 set_extent_dirty(info->pinned_extents,
4786 bytenr, bytenr + num_bytes - 1,
4787 GFP_NOFS | __GFP_NOFAIL);
4788 }
4789 btrfs_put_block_group(cache);
4790 total -= num_bytes;
4791 bytenr += num_bytes;
4792 }
4793 return 0;
4794 }
4795
4796 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4797 {
4798 struct btrfs_block_group_cache *cache;
4799 u64 bytenr;
4800
4801 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4802 if (!cache)
4803 return 0;
4804
4805 bytenr = cache->key.objectid;
4806 btrfs_put_block_group(cache);
4807
4808 return bytenr;
4809 }
4810
4811 static int pin_down_extent(struct btrfs_root *root,
4812 struct btrfs_block_group_cache *cache,
4813 u64 bytenr, u64 num_bytes, int reserved)
4814 {
4815 spin_lock(&cache->space_info->lock);
4816 spin_lock(&cache->lock);
4817 cache->pinned += num_bytes;
4818 cache->space_info->bytes_pinned += num_bytes;
4819 if (reserved) {
4820 cache->reserved -= num_bytes;
4821 cache->space_info->bytes_reserved -= num_bytes;
4822 }
4823 spin_unlock(&cache->lock);
4824 spin_unlock(&cache->space_info->lock);
4825
4826 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4827 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4828 return 0;
4829 }
4830
4831 /*
4832 * this function must be called within transaction
4833 */
4834 int btrfs_pin_extent(struct btrfs_root *root,
4835 u64 bytenr, u64 num_bytes, int reserved)
4836 {
4837 struct btrfs_block_group_cache *cache;
4838
4839 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4840 BUG_ON(!cache); /* Logic error */
4841
4842 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4843
4844 btrfs_put_block_group(cache);
4845 return 0;
4846 }
4847
4848 /*
4849 * this function must be called within transaction
4850 */
4851 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4852 struct btrfs_root *root,
4853 u64 bytenr, u64 num_bytes)
4854 {
4855 struct btrfs_block_group_cache *cache;
4856
4857 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4858 BUG_ON(!cache); /* Logic error */
4859
4860 /*
4861 * pull in the free space cache (if any) so that our pin
4862 * removes the free space from the cache. We have load_only set
4863 * to one because the slow code to read in the free extents does check
4864 * the pinned extents.
4865 */
4866 cache_block_group(cache, trans, root, 1);
4867
4868 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4869
4870 /* remove us from the free space cache (if we're there at all) */
4871 btrfs_remove_free_space(cache, bytenr, num_bytes);
4872 btrfs_put_block_group(cache);
4873 return 0;
4874 }
4875
4876 /**
4877 * btrfs_update_reserved_bytes - update the block_group and space info counters
4878 * @cache: The cache we are manipulating
4879 * @num_bytes: The number of bytes in question
4880 * @reserve: One of the reservation enums
4881 *
4882 * This is called by the allocator when it reserves space, or by somebody who is
4883 * freeing space that was never actually used on disk. For example if you
4884 * reserve some space for a new leaf in transaction A and before transaction A
4885 * commits you free that leaf, you call this with reserve set to 0 in order to
4886 * clear the reservation.
4887 *
4888 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4889 * ENOSPC accounting. For data we handle the reservation through clearing the
4890 * delalloc bits in the io_tree. We have to do this since we could end up
4891 * allocating less disk space for the amount of data we have reserved in the
4892 * case of compression.
4893 *
4894 * If this is a reservation and the block group has become read only we cannot
4895 * make the reservation and return -EAGAIN, otherwise this function always
4896 * succeeds.
4897 */
4898 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4899 u64 num_bytes, int reserve)
4900 {
4901 struct btrfs_space_info *space_info = cache->space_info;
4902 int ret = 0;
4903
4904 spin_lock(&space_info->lock);
4905 spin_lock(&cache->lock);
4906 if (reserve != RESERVE_FREE) {
4907 if (cache->ro) {
4908 ret = -EAGAIN;
4909 } else {
4910 cache->reserved += num_bytes;
4911 space_info->bytes_reserved += num_bytes;
4912 if (reserve == RESERVE_ALLOC) {
4913 trace_btrfs_space_reservation(cache->fs_info,
4914 "space_info", space_info->flags,
4915 num_bytes, 0);
4916 space_info->bytes_may_use -= num_bytes;
4917 }
4918 }
4919 } else {
4920 if (cache->ro)
4921 space_info->bytes_readonly += num_bytes;
4922 cache->reserved -= num_bytes;
4923 space_info->bytes_reserved -= num_bytes;
4924 space_info->reservation_progress++;
4925 }
4926 spin_unlock(&cache->lock);
4927 spin_unlock(&space_info->lock);
4928 return ret;
4929 }
4930
4931 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4932 struct btrfs_root *root)
4933 {
4934 struct btrfs_fs_info *fs_info = root->fs_info;
4935 struct btrfs_caching_control *next;
4936 struct btrfs_caching_control *caching_ctl;
4937 struct btrfs_block_group_cache *cache;
4938
4939 down_write(&fs_info->extent_commit_sem);
4940
4941 list_for_each_entry_safe(caching_ctl, next,
4942 &fs_info->caching_block_groups, list) {
4943 cache = caching_ctl->block_group;
4944 if (block_group_cache_done(cache)) {
4945 cache->last_byte_to_unpin = (u64)-1;
4946 list_del_init(&caching_ctl->list);
4947 put_caching_control(caching_ctl);
4948 } else {
4949 cache->last_byte_to_unpin = caching_ctl->progress;
4950 }
4951 }
4952
4953 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4954 fs_info->pinned_extents = &fs_info->freed_extents[1];
4955 else
4956 fs_info->pinned_extents = &fs_info->freed_extents[0];
4957
4958 up_write(&fs_info->extent_commit_sem);
4959
4960 update_global_block_rsv(fs_info);
4961 }
4962
4963 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4964 {
4965 struct btrfs_fs_info *fs_info = root->fs_info;
4966 struct btrfs_block_group_cache *cache = NULL;
4967 u64 len;
4968
4969 while (start <= end) {
4970 if (!cache ||
4971 start >= cache->key.objectid + cache->key.offset) {
4972 if (cache)
4973 btrfs_put_block_group(cache);
4974 cache = btrfs_lookup_block_group(fs_info, start);
4975 BUG_ON(!cache); /* Logic error */
4976 }
4977
4978 len = cache->key.objectid + cache->key.offset - start;
4979 len = min(len, end + 1 - start);
4980
4981 if (start < cache->last_byte_to_unpin) {
4982 len = min(len, cache->last_byte_to_unpin - start);
4983 btrfs_add_free_space(cache, start, len);
4984 }
4985
4986 start += len;
4987
4988 spin_lock(&cache->space_info->lock);
4989 spin_lock(&cache->lock);
4990 cache->pinned -= len;
4991 cache->space_info->bytes_pinned -= len;
4992 if (cache->ro)
4993 cache->space_info->bytes_readonly += len;
4994 spin_unlock(&cache->lock);
4995 spin_unlock(&cache->space_info->lock);
4996 }
4997
4998 if (cache)
4999 btrfs_put_block_group(cache);
5000 return 0;
5001 }
5002
5003 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5004 struct btrfs_root *root)
5005 {
5006 struct btrfs_fs_info *fs_info = root->fs_info;
5007 struct extent_io_tree *unpin;
5008 u64 start;
5009 u64 end;
5010 int ret;
5011
5012 if (trans->aborted)
5013 return 0;
5014
5015 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5016 unpin = &fs_info->freed_extents[1];
5017 else
5018 unpin = &fs_info->freed_extents[0];
5019
5020 while (1) {
5021 ret = find_first_extent_bit(unpin, 0, &start, &end,
5022 EXTENT_DIRTY);
5023 if (ret)
5024 break;
5025
5026 if (btrfs_test_opt(root, DISCARD))
5027 ret = btrfs_discard_extent(root, start,
5028 end + 1 - start, NULL);
5029
5030 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5031 unpin_extent_range(root, start, end);
5032 cond_resched();
5033 }
5034
5035 return 0;
5036 }
5037
5038 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5039 struct btrfs_root *root,
5040 u64 bytenr, u64 num_bytes, u64 parent,
5041 u64 root_objectid, u64 owner_objectid,
5042 u64 owner_offset, int refs_to_drop,
5043 struct btrfs_delayed_extent_op *extent_op)
5044 {
5045 struct btrfs_key key;
5046 struct btrfs_path *path;
5047 struct btrfs_fs_info *info = root->fs_info;
5048 struct btrfs_root *extent_root = info->extent_root;
5049 struct extent_buffer *leaf;
5050 struct btrfs_extent_item *ei;
5051 struct btrfs_extent_inline_ref *iref;
5052 int ret;
5053 int is_data;
5054 int extent_slot = 0;
5055 int found_extent = 0;
5056 int num_to_del = 1;
5057 u32 item_size;
5058 u64 refs;
5059
5060 path = btrfs_alloc_path();
5061 if (!path)
5062 return -ENOMEM;
5063
5064 path->reada = 1;
5065 path->leave_spinning = 1;
5066
5067 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5068 BUG_ON(!is_data && refs_to_drop != 1);
5069
5070 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5071 bytenr, num_bytes, parent,
5072 root_objectid, owner_objectid,
5073 owner_offset);
5074 if (ret == 0) {
5075 extent_slot = path->slots[0];
5076 while (extent_slot >= 0) {
5077 btrfs_item_key_to_cpu(path->nodes[0], &key,
5078 extent_slot);
5079 if (key.objectid != bytenr)
5080 break;
5081 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5082 key.offset == num_bytes) {
5083 found_extent = 1;
5084 break;
5085 }
5086 if (path->slots[0] - extent_slot > 5)
5087 break;
5088 extent_slot--;
5089 }
5090 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5091 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5092 if (found_extent && item_size < sizeof(*ei))
5093 found_extent = 0;
5094 #endif
5095 if (!found_extent) {
5096 BUG_ON(iref);
5097 ret = remove_extent_backref(trans, extent_root, path,
5098 NULL, refs_to_drop,
5099 is_data);
5100 if (ret)
5101 goto abort;
5102 btrfs_release_path(path);
5103 path->leave_spinning = 1;
5104
5105 key.objectid = bytenr;
5106 key.type = BTRFS_EXTENT_ITEM_KEY;
5107 key.offset = num_bytes;
5108
5109 ret = btrfs_search_slot(trans, extent_root,
5110 &key, path, -1, 1);
5111 if (ret) {
5112 printk(KERN_ERR "umm, got %d back from search"
5113 ", was looking for %llu\n", ret,
5114 (unsigned long long)bytenr);
5115 if (ret > 0)
5116 btrfs_print_leaf(extent_root,
5117 path->nodes[0]);
5118 }
5119 if (ret < 0)
5120 goto abort;
5121 extent_slot = path->slots[0];
5122 }
5123 } else if (ret == -ENOENT) {
5124 btrfs_print_leaf(extent_root, path->nodes[0]);
5125 WARN_ON(1);
5126 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5127 "parent %llu root %llu owner %llu offset %llu\n",
5128 (unsigned long long)bytenr,
5129 (unsigned long long)parent,
5130 (unsigned long long)root_objectid,
5131 (unsigned long long)owner_objectid,
5132 (unsigned long long)owner_offset);
5133 } else {
5134 goto abort;
5135 }
5136
5137 leaf = path->nodes[0];
5138 item_size = btrfs_item_size_nr(leaf, extent_slot);
5139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5140 if (item_size < sizeof(*ei)) {
5141 BUG_ON(found_extent || extent_slot != path->slots[0]);
5142 ret = convert_extent_item_v0(trans, extent_root, path,
5143 owner_objectid, 0);
5144 if (ret < 0)
5145 goto abort;
5146
5147 btrfs_release_path(path);
5148 path->leave_spinning = 1;
5149
5150 key.objectid = bytenr;
5151 key.type = BTRFS_EXTENT_ITEM_KEY;
5152 key.offset = num_bytes;
5153
5154 ret = btrfs_search_slot(trans, extent_root, &key, path,
5155 -1, 1);
5156 if (ret) {
5157 printk(KERN_ERR "umm, got %d back from search"
5158 ", was looking for %llu\n", ret,
5159 (unsigned long long)bytenr);
5160 btrfs_print_leaf(extent_root, path->nodes[0]);
5161 }
5162 if (ret < 0)
5163 goto abort;
5164 extent_slot = path->slots[0];
5165 leaf = path->nodes[0];
5166 item_size = btrfs_item_size_nr(leaf, extent_slot);
5167 }
5168 #endif
5169 BUG_ON(item_size < sizeof(*ei));
5170 ei = btrfs_item_ptr(leaf, extent_slot,
5171 struct btrfs_extent_item);
5172 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5173 struct btrfs_tree_block_info *bi;
5174 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5175 bi = (struct btrfs_tree_block_info *)(ei + 1);
5176 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5177 }
5178
5179 refs = btrfs_extent_refs(leaf, ei);
5180 BUG_ON(refs < refs_to_drop);
5181 refs -= refs_to_drop;
5182
5183 if (refs > 0) {
5184 if (extent_op)
5185 __run_delayed_extent_op(extent_op, leaf, ei);
5186 /*
5187 * In the case of inline back ref, reference count will
5188 * be updated by remove_extent_backref
5189 */
5190 if (iref) {
5191 BUG_ON(!found_extent);
5192 } else {
5193 btrfs_set_extent_refs(leaf, ei, refs);
5194 btrfs_mark_buffer_dirty(leaf);
5195 }
5196 if (found_extent) {
5197 ret = remove_extent_backref(trans, extent_root, path,
5198 iref, refs_to_drop,
5199 is_data);
5200 if (ret)
5201 goto abort;
5202 }
5203 } else {
5204 if (found_extent) {
5205 BUG_ON(is_data && refs_to_drop !=
5206 extent_data_ref_count(root, path, iref));
5207 if (iref) {
5208 BUG_ON(path->slots[0] != extent_slot);
5209 } else {
5210 BUG_ON(path->slots[0] != extent_slot + 1);
5211 path->slots[0] = extent_slot;
5212 num_to_del = 2;
5213 }
5214 }
5215
5216 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5217 num_to_del);
5218 if (ret)
5219 goto abort;
5220 btrfs_release_path(path);
5221
5222 if (is_data) {
5223 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5224 if (ret)
5225 goto abort;
5226 }
5227
5228 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5229 if (ret)
5230 goto abort;
5231 }
5232 out:
5233 btrfs_free_path(path);
5234 return ret;
5235
5236 abort:
5237 btrfs_abort_transaction(trans, extent_root, ret);
5238 goto out;
5239 }
5240
5241 /*
5242 * when we free an block, it is possible (and likely) that we free the last
5243 * delayed ref for that extent as well. This searches the delayed ref tree for
5244 * a given extent, and if there are no other delayed refs to be processed, it
5245 * removes it from the tree.
5246 */
5247 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5248 struct btrfs_root *root, u64 bytenr)
5249 {
5250 struct btrfs_delayed_ref_head *head;
5251 struct btrfs_delayed_ref_root *delayed_refs;
5252 struct btrfs_delayed_ref_node *ref;
5253 struct rb_node *node;
5254 int ret = 0;
5255
5256 delayed_refs = &trans->transaction->delayed_refs;
5257 spin_lock(&delayed_refs->lock);
5258 head = btrfs_find_delayed_ref_head(trans, bytenr);
5259 if (!head)
5260 goto out;
5261
5262 node = rb_prev(&head->node.rb_node);
5263 if (!node)
5264 goto out;
5265
5266 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5267
5268 /* there are still entries for this ref, we can't drop it */
5269 if (ref->bytenr == bytenr)
5270 goto out;
5271
5272 if (head->extent_op) {
5273 if (!head->must_insert_reserved)
5274 goto out;
5275 kfree(head->extent_op);
5276 head->extent_op = NULL;
5277 }
5278
5279 /*
5280 * waiting for the lock here would deadlock. If someone else has it
5281 * locked they are already in the process of dropping it anyway
5282 */
5283 if (!mutex_trylock(&head->mutex))
5284 goto out;
5285
5286 /*
5287 * at this point we have a head with no other entries. Go
5288 * ahead and process it.
5289 */
5290 head->node.in_tree = 0;
5291 rb_erase(&head->node.rb_node, &delayed_refs->root);
5292
5293 delayed_refs->num_entries--;
5294 if (waitqueue_active(&root->fs_info->tree_mod_seq_wait))
5295 wake_up(&root->fs_info->tree_mod_seq_wait);
5296
5297 /*
5298 * we don't take a ref on the node because we're removing it from the
5299 * tree, so we just steal the ref the tree was holding.
5300 */
5301 delayed_refs->num_heads--;
5302 if (list_empty(&head->cluster))
5303 delayed_refs->num_heads_ready--;
5304
5305 list_del_init(&head->cluster);
5306 spin_unlock(&delayed_refs->lock);
5307
5308 BUG_ON(head->extent_op);
5309 if (head->must_insert_reserved)
5310 ret = 1;
5311
5312 mutex_unlock(&head->mutex);
5313 btrfs_put_delayed_ref(&head->node);
5314 return ret;
5315 out:
5316 spin_unlock(&delayed_refs->lock);
5317 return 0;
5318 }
5319
5320 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5321 struct btrfs_root *root,
5322 struct extent_buffer *buf,
5323 u64 parent, int last_ref)
5324 {
5325 struct btrfs_block_group_cache *cache = NULL;
5326 int ret;
5327
5328 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5329 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5330 buf->start, buf->len,
5331 parent, root->root_key.objectid,
5332 btrfs_header_level(buf),
5333 BTRFS_DROP_DELAYED_REF, NULL, 0);
5334 BUG_ON(ret); /* -ENOMEM */
5335 }
5336
5337 if (!last_ref)
5338 return;
5339
5340 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5341
5342 if (btrfs_header_generation(buf) == trans->transid) {
5343 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5344 ret = check_ref_cleanup(trans, root, buf->start);
5345 if (!ret)
5346 goto out;
5347 }
5348
5349 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5350 pin_down_extent(root, cache, buf->start, buf->len, 1);
5351 goto out;
5352 }
5353
5354 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5355
5356 btrfs_add_free_space(cache, buf->start, buf->len);
5357 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5358 }
5359 out:
5360 /*
5361 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5362 * anymore.
5363 */
5364 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5365 btrfs_put_block_group(cache);
5366 }
5367
5368 /* Can return -ENOMEM */
5369 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5370 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5371 u64 owner, u64 offset, int for_cow)
5372 {
5373 int ret;
5374 struct btrfs_fs_info *fs_info = root->fs_info;
5375
5376 /*
5377 * tree log blocks never actually go into the extent allocation
5378 * tree, just update pinning info and exit early.
5379 */
5380 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5381 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5382 /* unlocks the pinned mutex */
5383 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5384 ret = 0;
5385 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5386 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5387 num_bytes,
5388 parent, root_objectid, (int)owner,
5389 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5390 } else {
5391 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5392 num_bytes,
5393 parent, root_objectid, owner,
5394 offset, BTRFS_DROP_DELAYED_REF,
5395 NULL, for_cow);
5396 }
5397 return ret;
5398 }
5399
5400 static u64 stripe_align(struct btrfs_root *root, u64 val)
5401 {
5402 u64 mask = ((u64)root->stripesize - 1);
5403 u64 ret = (val + mask) & ~mask;
5404 return ret;
5405 }
5406
5407 /*
5408 * when we wait for progress in the block group caching, its because
5409 * our allocation attempt failed at least once. So, we must sleep
5410 * and let some progress happen before we try again.
5411 *
5412 * This function will sleep at least once waiting for new free space to
5413 * show up, and then it will check the block group free space numbers
5414 * for our min num_bytes. Another option is to have it go ahead
5415 * and look in the rbtree for a free extent of a given size, but this
5416 * is a good start.
5417 */
5418 static noinline int
5419 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5420 u64 num_bytes)
5421 {
5422 struct btrfs_caching_control *caching_ctl;
5423 DEFINE_WAIT(wait);
5424
5425 caching_ctl = get_caching_control(cache);
5426 if (!caching_ctl)
5427 return 0;
5428
5429 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5430 (cache->free_space_ctl->free_space >= num_bytes));
5431
5432 put_caching_control(caching_ctl);
5433 return 0;
5434 }
5435
5436 static noinline int
5437 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5438 {
5439 struct btrfs_caching_control *caching_ctl;
5440 DEFINE_WAIT(wait);
5441
5442 caching_ctl = get_caching_control(cache);
5443 if (!caching_ctl)
5444 return 0;
5445
5446 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5447
5448 put_caching_control(caching_ctl);
5449 return 0;
5450 }
5451
5452 static int __get_block_group_index(u64 flags)
5453 {
5454 int index;
5455
5456 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5457 index = 0;
5458 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5459 index = 1;
5460 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5461 index = 2;
5462 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5463 index = 3;
5464 else
5465 index = 4;
5466
5467 return index;
5468 }
5469
5470 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5471 {
5472 return __get_block_group_index(cache->flags);
5473 }
5474
5475 enum btrfs_loop_type {
5476 LOOP_CACHING_NOWAIT = 0,
5477 LOOP_CACHING_WAIT = 1,
5478 LOOP_ALLOC_CHUNK = 2,
5479 LOOP_NO_EMPTY_SIZE = 3,
5480 };
5481
5482 /*
5483 * walks the btree of allocated extents and find a hole of a given size.
5484 * The key ins is changed to record the hole:
5485 * ins->objectid == block start
5486 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5487 * ins->offset == number of blocks
5488 * Any available blocks before search_start are skipped.
5489 */
5490 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5491 struct btrfs_root *orig_root,
5492 u64 num_bytes, u64 empty_size,
5493 u64 hint_byte, struct btrfs_key *ins,
5494 u64 data)
5495 {
5496 int ret = 0;
5497 struct btrfs_root *root = orig_root->fs_info->extent_root;
5498 struct btrfs_free_cluster *last_ptr = NULL;
5499 struct btrfs_block_group_cache *block_group = NULL;
5500 struct btrfs_block_group_cache *used_block_group;
5501 u64 search_start = 0;
5502 int empty_cluster = 2 * 1024 * 1024;
5503 int allowed_chunk_alloc = 0;
5504 int done_chunk_alloc = 0;
5505 struct btrfs_space_info *space_info;
5506 int loop = 0;
5507 int index = 0;
5508 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5509 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5510 bool found_uncached_bg = false;
5511 bool failed_cluster_refill = false;
5512 bool failed_alloc = false;
5513 bool use_cluster = true;
5514 bool have_caching_bg = false;
5515
5516 WARN_ON(num_bytes < root->sectorsize);
5517 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5518 ins->objectid = 0;
5519 ins->offset = 0;
5520
5521 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5522
5523 space_info = __find_space_info(root->fs_info, data);
5524 if (!space_info) {
5525 printk(KERN_ERR "No space info for %llu\n", data);
5526 return -ENOSPC;
5527 }
5528
5529 /*
5530 * If the space info is for both data and metadata it means we have a
5531 * small filesystem and we can't use the clustering stuff.
5532 */
5533 if (btrfs_mixed_space_info(space_info))
5534 use_cluster = false;
5535
5536 if (orig_root->ref_cows || empty_size)
5537 allowed_chunk_alloc = 1;
5538
5539 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5540 last_ptr = &root->fs_info->meta_alloc_cluster;
5541 if (!btrfs_test_opt(root, SSD))
5542 empty_cluster = 64 * 1024;
5543 }
5544
5545 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5546 btrfs_test_opt(root, SSD)) {
5547 last_ptr = &root->fs_info->data_alloc_cluster;
5548 }
5549
5550 if (last_ptr) {
5551 spin_lock(&last_ptr->lock);
5552 if (last_ptr->block_group)
5553 hint_byte = last_ptr->window_start;
5554 spin_unlock(&last_ptr->lock);
5555 }
5556
5557 search_start = max(search_start, first_logical_byte(root, 0));
5558 search_start = max(search_start, hint_byte);
5559
5560 if (!last_ptr)
5561 empty_cluster = 0;
5562
5563 if (search_start == hint_byte) {
5564 block_group = btrfs_lookup_block_group(root->fs_info,
5565 search_start);
5566 used_block_group = block_group;
5567 /*
5568 * we don't want to use the block group if it doesn't match our
5569 * allocation bits, or if its not cached.
5570 *
5571 * However if we are re-searching with an ideal block group
5572 * picked out then we don't care that the block group is cached.
5573 */
5574 if (block_group && block_group_bits(block_group, data) &&
5575 block_group->cached != BTRFS_CACHE_NO) {
5576 down_read(&space_info->groups_sem);
5577 if (list_empty(&block_group->list) ||
5578 block_group->ro) {
5579 /*
5580 * someone is removing this block group,
5581 * we can't jump into the have_block_group
5582 * target because our list pointers are not
5583 * valid
5584 */
5585 btrfs_put_block_group(block_group);
5586 up_read(&space_info->groups_sem);
5587 } else {
5588 index = get_block_group_index(block_group);
5589 goto have_block_group;
5590 }
5591 } else if (block_group) {
5592 btrfs_put_block_group(block_group);
5593 }
5594 }
5595 search:
5596 have_caching_bg = false;
5597 down_read(&space_info->groups_sem);
5598 list_for_each_entry(block_group, &space_info->block_groups[index],
5599 list) {
5600 u64 offset;
5601 int cached;
5602
5603 used_block_group = block_group;
5604 btrfs_get_block_group(block_group);
5605 search_start = block_group->key.objectid;
5606
5607 /*
5608 * this can happen if we end up cycling through all the
5609 * raid types, but we want to make sure we only allocate
5610 * for the proper type.
5611 */
5612 if (!block_group_bits(block_group, data)) {
5613 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5614 BTRFS_BLOCK_GROUP_RAID1 |
5615 BTRFS_BLOCK_GROUP_RAID10;
5616
5617 /*
5618 * if they asked for extra copies and this block group
5619 * doesn't provide them, bail. This does allow us to
5620 * fill raid0 from raid1.
5621 */
5622 if ((data & extra) && !(block_group->flags & extra))
5623 goto loop;
5624 }
5625
5626 have_block_group:
5627 cached = block_group_cache_done(block_group);
5628 if (unlikely(!cached)) {
5629 found_uncached_bg = true;
5630 ret = cache_block_group(block_group, trans,
5631 orig_root, 0);
5632 BUG_ON(ret < 0);
5633 ret = 0;
5634 }
5635
5636 if (unlikely(block_group->ro))
5637 goto loop;
5638
5639 /*
5640 * Ok we want to try and use the cluster allocator, so
5641 * lets look there
5642 */
5643 if (last_ptr) {
5644 /*
5645 * the refill lock keeps out other
5646 * people trying to start a new cluster
5647 */
5648 spin_lock(&last_ptr->refill_lock);
5649 used_block_group = last_ptr->block_group;
5650 if (used_block_group != block_group &&
5651 (!used_block_group ||
5652 used_block_group->ro ||
5653 !block_group_bits(used_block_group, data))) {
5654 used_block_group = block_group;
5655 goto refill_cluster;
5656 }
5657
5658 if (used_block_group != block_group)
5659 btrfs_get_block_group(used_block_group);
5660
5661 offset = btrfs_alloc_from_cluster(used_block_group,
5662 last_ptr, num_bytes, used_block_group->key.objectid);
5663 if (offset) {
5664 /* we have a block, we're done */
5665 spin_unlock(&last_ptr->refill_lock);
5666 trace_btrfs_reserve_extent_cluster(root,
5667 block_group, search_start, num_bytes);
5668 goto checks;
5669 }
5670
5671 WARN_ON(last_ptr->block_group != used_block_group);
5672 if (used_block_group != block_group) {
5673 btrfs_put_block_group(used_block_group);
5674 used_block_group = block_group;
5675 }
5676 refill_cluster:
5677 BUG_ON(used_block_group != block_group);
5678 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5679 * set up a new clusters, so lets just skip it
5680 * and let the allocator find whatever block
5681 * it can find. If we reach this point, we
5682 * will have tried the cluster allocator
5683 * plenty of times and not have found
5684 * anything, so we are likely way too
5685 * fragmented for the clustering stuff to find
5686 * anything.
5687 *
5688 * However, if the cluster is taken from the
5689 * current block group, release the cluster
5690 * first, so that we stand a better chance of
5691 * succeeding in the unclustered
5692 * allocation. */
5693 if (loop >= LOOP_NO_EMPTY_SIZE &&
5694 last_ptr->block_group != block_group) {
5695 spin_unlock(&last_ptr->refill_lock);
5696 goto unclustered_alloc;
5697 }
5698
5699 /*
5700 * this cluster didn't work out, free it and
5701 * start over
5702 */
5703 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5704
5705 if (loop >= LOOP_NO_EMPTY_SIZE) {
5706 spin_unlock(&last_ptr->refill_lock);
5707 goto unclustered_alloc;
5708 }
5709
5710 /* allocate a cluster in this block group */
5711 ret = btrfs_find_space_cluster(trans, root,
5712 block_group, last_ptr,
5713 search_start, num_bytes,
5714 empty_cluster + empty_size);
5715 if (ret == 0) {
5716 /*
5717 * now pull our allocation out of this
5718 * cluster
5719 */
5720 offset = btrfs_alloc_from_cluster(block_group,
5721 last_ptr, num_bytes,
5722 search_start);
5723 if (offset) {
5724 /* we found one, proceed */
5725 spin_unlock(&last_ptr->refill_lock);
5726 trace_btrfs_reserve_extent_cluster(root,
5727 block_group, search_start,
5728 num_bytes);
5729 goto checks;
5730 }
5731 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5732 && !failed_cluster_refill) {
5733 spin_unlock(&last_ptr->refill_lock);
5734
5735 failed_cluster_refill = true;
5736 wait_block_group_cache_progress(block_group,
5737 num_bytes + empty_cluster + empty_size);
5738 goto have_block_group;
5739 }
5740
5741 /*
5742 * at this point we either didn't find a cluster
5743 * or we weren't able to allocate a block from our
5744 * cluster. Free the cluster we've been trying
5745 * to use, and go to the next block group
5746 */
5747 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5748 spin_unlock(&last_ptr->refill_lock);
5749 goto loop;
5750 }
5751
5752 unclustered_alloc:
5753 spin_lock(&block_group->free_space_ctl->tree_lock);
5754 if (cached &&
5755 block_group->free_space_ctl->free_space <
5756 num_bytes + empty_cluster + empty_size) {
5757 spin_unlock(&block_group->free_space_ctl->tree_lock);
5758 goto loop;
5759 }
5760 spin_unlock(&block_group->free_space_ctl->tree_lock);
5761
5762 offset = btrfs_find_space_for_alloc(block_group, search_start,
5763 num_bytes, empty_size);
5764 /*
5765 * If we didn't find a chunk, and we haven't failed on this
5766 * block group before, and this block group is in the middle of
5767 * caching and we are ok with waiting, then go ahead and wait
5768 * for progress to be made, and set failed_alloc to true.
5769 *
5770 * If failed_alloc is true then we've already waited on this
5771 * block group once and should move on to the next block group.
5772 */
5773 if (!offset && !failed_alloc && !cached &&
5774 loop > LOOP_CACHING_NOWAIT) {
5775 wait_block_group_cache_progress(block_group,
5776 num_bytes + empty_size);
5777 failed_alloc = true;
5778 goto have_block_group;
5779 } else if (!offset) {
5780 if (!cached)
5781 have_caching_bg = true;
5782 goto loop;
5783 }
5784 checks:
5785 search_start = stripe_align(root, offset);
5786
5787 /* move on to the next group */
5788 if (search_start + num_bytes >
5789 used_block_group->key.objectid + used_block_group->key.offset) {
5790 btrfs_add_free_space(used_block_group, offset, num_bytes);
5791 goto loop;
5792 }
5793
5794 if (offset < search_start)
5795 btrfs_add_free_space(used_block_group, offset,
5796 search_start - offset);
5797 BUG_ON(offset > search_start);
5798
5799 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5800 alloc_type);
5801 if (ret == -EAGAIN) {
5802 btrfs_add_free_space(used_block_group, offset, num_bytes);
5803 goto loop;
5804 }
5805
5806 /* we are all good, lets return */
5807 ins->objectid = search_start;
5808 ins->offset = num_bytes;
5809
5810 trace_btrfs_reserve_extent(orig_root, block_group,
5811 search_start, num_bytes);
5812 if (offset < search_start)
5813 btrfs_add_free_space(used_block_group, offset,
5814 search_start - offset);
5815 BUG_ON(offset > search_start);
5816 if (used_block_group != block_group)
5817 btrfs_put_block_group(used_block_group);
5818 btrfs_put_block_group(block_group);
5819 break;
5820 loop:
5821 failed_cluster_refill = false;
5822 failed_alloc = false;
5823 BUG_ON(index != get_block_group_index(block_group));
5824 if (used_block_group != block_group)
5825 btrfs_put_block_group(used_block_group);
5826 btrfs_put_block_group(block_group);
5827 }
5828 up_read(&space_info->groups_sem);
5829
5830 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5831 goto search;
5832
5833 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5834 goto search;
5835
5836 /*
5837 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5838 * caching kthreads as we move along
5839 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5840 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5841 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5842 * again
5843 */
5844 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5845 index = 0;
5846 loop++;
5847 if (loop == LOOP_ALLOC_CHUNK) {
5848 if (allowed_chunk_alloc) {
5849 ret = do_chunk_alloc(trans, root, num_bytes +
5850 2 * 1024 * 1024, data,
5851 CHUNK_ALLOC_LIMITED);
5852 if (ret < 0) {
5853 btrfs_abort_transaction(trans,
5854 root, ret);
5855 goto out;
5856 }
5857 allowed_chunk_alloc = 0;
5858 if (ret == 1)
5859 done_chunk_alloc = 1;
5860 } else if (!done_chunk_alloc &&
5861 space_info->force_alloc ==
5862 CHUNK_ALLOC_NO_FORCE) {
5863 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5864 }
5865
5866 /*
5867 * We didn't allocate a chunk, go ahead and drop the
5868 * empty size and loop again.
5869 */
5870 if (!done_chunk_alloc)
5871 loop = LOOP_NO_EMPTY_SIZE;
5872 }
5873
5874 if (loop == LOOP_NO_EMPTY_SIZE) {
5875 empty_size = 0;
5876 empty_cluster = 0;
5877 }
5878
5879 goto search;
5880 } else if (!ins->objectid) {
5881 ret = -ENOSPC;
5882 } else if (ins->objectid) {
5883 ret = 0;
5884 }
5885 out:
5886
5887 return ret;
5888 }
5889
5890 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5891 int dump_block_groups)
5892 {
5893 struct btrfs_block_group_cache *cache;
5894 int index = 0;
5895
5896 spin_lock(&info->lock);
5897 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5898 (unsigned long long)info->flags,
5899 (unsigned long long)(info->total_bytes - info->bytes_used -
5900 info->bytes_pinned - info->bytes_reserved -
5901 info->bytes_readonly),
5902 (info->full) ? "" : "not ");
5903 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5904 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5905 (unsigned long long)info->total_bytes,
5906 (unsigned long long)info->bytes_used,
5907 (unsigned long long)info->bytes_pinned,
5908 (unsigned long long)info->bytes_reserved,
5909 (unsigned long long)info->bytes_may_use,
5910 (unsigned long long)info->bytes_readonly);
5911 spin_unlock(&info->lock);
5912
5913 if (!dump_block_groups)
5914 return;
5915
5916 down_read(&info->groups_sem);
5917 again:
5918 list_for_each_entry(cache, &info->block_groups[index], list) {
5919 spin_lock(&cache->lock);
5920 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5921 "%llu pinned %llu reserved\n",
5922 (unsigned long long)cache->key.objectid,
5923 (unsigned long long)cache->key.offset,
5924 (unsigned long long)btrfs_block_group_used(&cache->item),
5925 (unsigned long long)cache->pinned,
5926 (unsigned long long)cache->reserved);
5927 btrfs_dump_free_space(cache, bytes);
5928 spin_unlock(&cache->lock);
5929 }
5930 if (++index < BTRFS_NR_RAID_TYPES)
5931 goto again;
5932 up_read(&info->groups_sem);
5933 }
5934
5935 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5936 struct btrfs_root *root,
5937 u64 num_bytes, u64 min_alloc_size,
5938 u64 empty_size, u64 hint_byte,
5939 struct btrfs_key *ins, u64 data)
5940 {
5941 bool final_tried = false;
5942 int ret;
5943
5944 data = btrfs_get_alloc_profile(root, data);
5945 again:
5946 /*
5947 * the only place that sets empty_size is btrfs_realloc_node, which
5948 * is not called recursively on allocations
5949 */
5950 if (empty_size || root->ref_cows) {
5951 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5952 num_bytes + 2 * 1024 * 1024, data,
5953 CHUNK_ALLOC_NO_FORCE);
5954 if (ret < 0 && ret != -ENOSPC) {
5955 btrfs_abort_transaction(trans, root, ret);
5956 return ret;
5957 }
5958 }
5959
5960 WARN_ON(num_bytes < root->sectorsize);
5961 ret = find_free_extent(trans, root, num_bytes, empty_size,
5962 hint_byte, ins, data);
5963
5964 if (ret == -ENOSPC) {
5965 if (!final_tried) {
5966 num_bytes = num_bytes >> 1;
5967 num_bytes = num_bytes & ~(root->sectorsize - 1);
5968 num_bytes = max(num_bytes, min_alloc_size);
5969 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5970 num_bytes, data, CHUNK_ALLOC_FORCE);
5971 if (ret < 0 && ret != -ENOSPC) {
5972 btrfs_abort_transaction(trans, root, ret);
5973 return ret;
5974 }
5975 if (num_bytes == min_alloc_size)
5976 final_tried = true;
5977 goto again;
5978 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5979 struct btrfs_space_info *sinfo;
5980
5981 sinfo = __find_space_info(root->fs_info, data);
5982 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5983 "wanted %llu\n", (unsigned long long)data,
5984 (unsigned long long)num_bytes);
5985 if (sinfo)
5986 dump_space_info(sinfo, num_bytes, 1);
5987 }
5988 }
5989
5990 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5991
5992 return ret;
5993 }
5994
5995 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5996 u64 start, u64 len, int pin)
5997 {
5998 struct btrfs_block_group_cache *cache;
5999 int ret = 0;
6000
6001 cache = btrfs_lookup_block_group(root->fs_info, start);
6002 if (!cache) {
6003 printk(KERN_ERR "Unable to find block group for %llu\n",
6004 (unsigned long long)start);
6005 return -ENOSPC;
6006 }
6007
6008 if (btrfs_test_opt(root, DISCARD))
6009 ret = btrfs_discard_extent(root, start, len, NULL);
6010
6011 if (pin)
6012 pin_down_extent(root, cache, start, len, 1);
6013 else {
6014 btrfs_add_free_space(cache, start, len);
6015 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6016 }
6017 btrfs_put_block_group(cache);
6018
6019 trace_btrfs_reserved_extent_free(root, start, len);
6020
6021 return ret;
6022 }
6023
6024 int btrfs_free_reserved_extent(struct btrfs_root *root,
6025 u64 start, u64 len)
6026 {
6027 return __btrfs_free_reserved_extent(root, start, len, 0);
6028 }
6029
6030 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6031 u64 start, u64 len)
6032 {
6033 return __btrfs_free_reserved_extent(root, start, len, 1);
6034 }
6035
6036 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6037 struct btrfs_root *root,
6038 u64 parent, u64 root_objectid,
6039 u64 flags, u64 owner, u64 offset,
6040 struct btrfs_key *ins, int ref_mod)
6041 {
6042 int ret;
6043 struct btrfs_fs_info *fs_info = root->fs_info;
6044 struct btrfs_extent_item *extent_item;
6045 struct btrfs_extent_inline_ref *iref;
6046 struct btrfs_path *path;
6047 struct extent_buffer *leaf;
6048 int type;
6049 u32 size;
6050
6051 if (parent > 0)
6052 type = BTRFS_SHARED_DATA_REF_KEY;
6053 else
6054 type = BTRFS_EXTENT_DATA_REF_KEY;
6055
6056 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6057
6058 path = btrfs_alloc_path();
6059 if (!path)
6060 return -ENOMEM;
6061
6062 path->leave_spinning = 1;
6063 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6064 ins, size);
6065 if (ret) {
6066 btrfs_free_path(path);
6067 return ret;
6068 }
6069
6070 leaf = path->nodes[0];
6071 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6072 struct btrfs_extent_item);
6073 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6074 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6075 btrfs_set_extent_flags(leaf, extent_item,
6076 flags | BTRFS_EXTENT_FLAG_DATA);
6077
6078 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6079 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6080 if (parent > 0) {
6081 struct btrfs_shared_data_ref *ref;
6082 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6083 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6084 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6085 } else {
6086 struct btrfs_extent_data_ref *ref;
6087 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6088 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6089 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6090 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6091 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6092 }
6093
6094 btrfs_mark_buffer_dirty(path->nodes[0]);
6095 btrfs_free_path(path);
6096
6097 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6098 if (ret) { /* -ENOENT, logic error */
6099 printk(KERN_ERR "btrfs update block group failed for %llu "
6100 "%llu\n", (unsigned long long)ins->objectid,
6101 (unsigned long long)ins->offset);
6102 BUG();
6103 }
6104 return ret;
6105 }
6106
6107 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6108 struct btrfs_root *root,
6109 u64 parent, u64 root_objectid,
6110 u64 flags, struct btrfs_disk_key *key,
6111 int level, struct btrfs_key *ins)
6112 {
6113 int ret;
6114 struct btrfs_fs_info *fs_info = root->fs_info;
6115 struct btrfs_extent_item *extent_item;
6116 struct btrfs_tree_block_info *block_info;
6117 struct btrfs_extent_inline_ref *iref;
6118 struct btrfs_path *path;
6119 struct extent_buffer *leaf;
6120 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6121
6122 path = btrfs_alloc_path();
6123 if (!path)
6124 return -ENOMEM;
6125
6126 path->leave_spinning = 1;
6127 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6128 ins, size);
6129 if (ret) {
6130 btrfs_free_path(path);
6131 return ret;
6132 }
6133
6134 leaf = path->nodes[0];
6135 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6136 struct btrfs_extent_item);
6137 btrfs_set_extent_refs(leaf, extent_item, 1);
6138 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6139 btrfs_set_extent_flags(leaf, extent_item,
6140 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6141 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6142
6143 btrfs_set_tree_block_key(leaf, block_info, key);
6144 btrfs_set_tree_block_level(leaf, block_info, level);
6145
6146 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6147 if (parent > 0) {
6148 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6149 btrfs_set_extent_inline_ref_type(leaf, iref,
6150 BTRFS_SHARED_BLOCK_REF_KEY);
6151 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6152 } else {
6153 btrfs_set_extent_inline_ref_type(leaf, iref,
6154 BTRFS_TREE_BLOCK_REF_KEY);
6155 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6156 }
6157
6158 btrfs_mark_buffer_dirty(leaf);
6159 btrfs_free_path(path);
6160
6161 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6162 if (ret) { /* -ENOENT, logic error */
6163 printk(KERN_ERR "btrfs update block group failed for %llu "
6164 "%llu\n", (unsigned long long)ins->objectid,
6165 (unsigned long long)ins->offset);
6166 BUG();
6167 }
6168 return ret;
6169 }
6170
6171 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6172 struct btrfs_root *root,
6173 u64 root_objectid, u64 owner,
6174 u64 offset, struct btrfs_key *ins)
6175 {
6176 int ret;
6177
6178 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6179
6180 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6181 ins->offset, 0,
6182 root_objectid, owner, offset,
6183 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6184 return ret;
6185 }
6186
6187 /*
6188 * this is used by the tree logging recovery code. It records that
6189 * an extent has been allocated and makes sure to clear the free
6190 * space cache bits as well
6191 */
6192 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6193 struct btrfs_root *root,
6194 u64 root_objectid, u64 owner, u64 offset,
6195 struct btrfs_key *ins)
6196 {
6197 int ret;
6198 struct btrfs_block_group_cache *block_group;
6199 struct btrfs_caching_control *caching_ctl;
6200 u64 start = ins->objectid;
6201 u64 num_bytes = ins->offset;
6202
6203 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6204 cache_block_group(block_group, trans, NULL, 0);
6205 caching_ctl = get_caching_control(block_group);
6206
6207 if (!caching_ctl) {
6208 BUG_ON(!block_group_cache_done(block_group));
6209 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6210 BUG_ON(ret); /* -ENOMEM */
6211 } else {
6212 mutex_lock(&caching_ctl->mutex);
6213
6214 if (start >= caching_ctl->progress) {
6215 ret = add_excluded_extent(root, start, num_bytes);
6216 BUG_ON(ret); /* -ENOMEM */
6217 } else if (start + num_bytes <= caching_ctl->progress) {
6218 ret = btrfs_remove_free_space(block_group,
6219 start, num_bytes);
6220 BUG_ON(ret); /* -ENOMEM */
6221 } else {
6222 num_bytes = caching_ctl->progress - start;
6223 ret = btrfs_remove_free_space(block_group,
6224 start, num_bytes);
6225 BUG_ON(ret); /* -ENOMEM */
6226
6227 start = caching_ctl->progress;
6228 num_bytes = ins->objectid + ins->offset -
6229 caching_ctl->progress;
6230 ret = add_excluded_extent(root, start, num_bytes);
6231 BUG_ON(ret); /* -ENOMEM */
6232 }
6233
6234 mutex_unlock(&caching_ctl->mutex);
6235 put_caching_control(caching_ctl);
6236 }
6237
6238 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6239 RESERVE_ALLOC_NO_ACCOUNT);
6240 BUG_ON(ret); /* logic error */
6241 btrfs_put_block_group(block_group);
6242 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6243 0, owner, offset, ins, 1);
6244 return ret;
6245 }
6246
6247 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6248 struct btrfs_root *root,
6249 u64 bytenr, u32 blocksize,
6250 int level)
6251 {
6252 struct extent_buffer *buf;
6253
6254 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6255 if (!buf)
6256 return ERR_PTR(-ENOMEM);
6257 btrfs_set_header_generation(buf, trans->transid);
6258 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6259 btrfs_tree_lock(buf);
6260 clean_tree_block(trans, root, buf);
6261 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6262
6263 btrfs_set_lock_blocking(buf);
6264 btrfs_set_buffer_uptodate(buf);
6265
6266 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6267 /*
6268 * we allow two log transactions at a time, use different
6269 * EXENT bit to differentiate dirty pages.
6270 */
6271 if (root->log_transid % 2 == 0)
6272 set_extent_dirty(&root->dirty_log_pages, buf->start,
6273 buf->start + buf->len - 1, GFP_NOFS);
6274 else
6275 set_extent_new(&root->dirty_log_pages, buf->start,
6276 buf->start + buf->len - 1, GFP_NOFS);
6277 } else {
6278 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6279 buf->start + buf->len - 1, GFP_NOFS);
6280 }
6281 trans->blocks_used++;
6282 /* this returns a buffer locked for blocking */
6283 return buf;
6284 }
6285
6286 static struct btrfs_block_rsv *
6287 use_block_rsv(struct btrfs_trans_handle *trans,
6288 struct btrfs_root *root, u32 blocksize)
6289 {
6290 struct btrfs_block_rsv *block_rsv;
6291 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6292 int ret;
6293
6294 block_rsv = get_block_rsv(trans, root);
6295
6296 if (block_rsv->size == 0) {
6297 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6298 /*
6299 * If we couldn't reserve metadata bytes try and use some from
6300 * the global reserve.
6301 */
6302 if (ret && block_rsv != global_rsv) {
6303 ret = block_rsv_use_bytes(global_rsv, blocksize);
6304 if (!ret)
6305 return global_rsv;
6306 return ERR_PTR(ret);
6307 } else if (ret) {
6308 return ERR_PTR(ret);
6309 }
6310 return block_rsv;
6311 }
6312
6313 ret = block_rsv_use_bytes(block_rsv, blocksize);
6314 if (!ret)
6315 return block_rsv;
6316 if (ret) {
6317 static DEFINE_RATELIMIT_STATE(_rs,
6318 DEFAULT_RATELIMIT_INTERVAL,
6319 /*DEFAULT_RATELIMIT_BURST*/ 2);
6320 if (__ratelimit(&_rs)) {
6321 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6322 WARN_ON(1);
6323 }
6324 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6325 if (!ret) {
6326 return block_rsv;
6327 } else if (ret && block_rsv != global_rsv) {
6328 ret = block_rsv_use_bytes(global_rsv, blocksize);
6329 if (!ret)
6330 return global_rsv;
6331 }
6332 }
6333
6334 return ERR_PTR(-ENOSPC);
6335 }
6336
6337 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6338 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6339 {
6340 block_rsv_add_bytes(block_rsv, blocksize, 0);
6341 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6342 }
6343
6344 /*
6345 * finds a free extent and does all the dirty work required for allocation
6346 * returns the key for the extent through ins, and a tree buffer for
6347 * the first block of the extent through buf.
6348 *
6349 * returns the tree buffer or NULL.
6350 */
6351 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6352 struct btrfs_root *root, u32 blocksize,
6353 u64 parent, u64 root_objectid,
6354 struct btrfs_disk_key *key, int level,
6355 u64 hint, u64 empty_size)
6356 {
6357 struct btrfs_key ins;
6358 struct btrfs_block_rsv *block_rsv;
6359 struct extent_buffer *buf;
6360 u64 flags = 0;
6361 int ret;
6362
6363
6364 block_rsv = use_block_rsv(trans, root, blocksize);
6365 if (IS_ERR(block_rsv))
6366 return ERR_CAST(block_rsv);
6367
6368 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6369 empty_size, hint, &ins, 0);
6370 if (ret) {
6371 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6372 return ERR_PTR(ret);
6373 }
6374
6375 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6376 blocksize, level);
6377 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6378
6379 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6380 if (parent == 0)
6381 parent = ins.objectid;
6382 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6383 } else
6384 BUG_ON(parent > 0);
6385
6386 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6387 struct btrfs_delayed_extent_op *extent_op;
6388 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6389 BUG_ON(!extent_op); /* -ENOMEM */
6390 if (key)
6391 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6392 else
6393 memset(&extent_op->key, 0, sizeof(extent_op->key));
6394 extent_op->flags_to_set = flags;
6395 extent_op->update_key = 1;
6396 extent_op->update_flags = 1;
6397 extent_op->is_data = 0;
6398
6399 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6400 ins.objectid,
6401 ins.offset, parent, root_objectid,
6402 level, BTRFS_ADD_DELAYED_EXTENT,
6403 extent_op, 0);
6404 BUG_ON(ret); /* -ENOMEM */
6405 }
6406 return buf;
6407 }
6408
6409 struct walk_control {
6410 u64 refs[BTRFS_MAX_LEVEL];
6411 u64 flags[BTRFS_MAX_LEVEL];
6412 struct btrfs_key update_progress;
6413 int stage;
6414 int level;
6415 int shared_level;
6416 int update_ref;
6417 int keep_locks;
6418 int reada_slot;
6419 int reada_count;
6420 int for_reloc;
6421 };
6422
6423 #define DROP_REFERENCE 1
6424 #define UPDATE_BACKREF 2
6425
6426 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6427 struct btrfs_root *root,
6428 struct walk_control *wc,
6429 struct btrfs_path *path)
6430 {
6431 u64 bytenr;
6432 u64 generation;
6433 u64 refs;
6434 u64 flags;
6435 u32 nritems;
6436 u32 blocksize;
6437 struct btrfs_key key;
6438 struct extent_buffer *eb;
6439 int ret;
6440 int slot;
6441 int nread = 0;
6442
6443 if (path->slots[wc->level] < wc->reada_slot) {
6444 wc->reada_count = wc->reada_count * 2 / 3;
6445 wc->reada_count = max(wc->reada_count, 2);
6446 } else {
6447 wc->reada_count = wc->reada_count * 3 / 2;
6448 wc->reada_count = min_t(int, wc->reada_count,
6449 BTRFS_NODEPTRS_PER_BLOCK(root));
6450 }
6451
6452 eb = path->nodes[wc->level];
6453 nritems = btrfs_header_nritems(eb);
6454 blocksize = btrfs_level_size(root, wc->level - 1);
6455
6456 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6457 if (nread >= wc->reada_count)
6458 break;
6459
6460 cond_resched();
6461 bytenr = btrfs_node_blockptr(eb, slot);
6462 generation = btrfs_node_ptr_generation(eb, slot);
6463
6464 if (slot == path->slots[wc->level])
6465 goto reada;
6466
6467 if (wc->stage == UPDATE_BACKREF &&
6468 generation <= root->root_key.offset)
6469 continue;
6470
6471 /* We don't lock the tree block, it's OK to be racy here */
6472 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6473 &refs, &flags);
6474 /* We don't care about errors in readahead. */
6475 if (ret < 0)
6476 continue;
6477 BUG_ON(refs == 0);
6478
6479 if (wc->stage == DROP_REFERENCE) {
6480 if (refs == 1)
6481 goto reada;
6482
6483 if (wc->level == 1 &&
6484 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6485 continue;
6486 if (!wc->update_ref ||
6487 generation <= root->root_key.offset)
6488 continue;
6489 btrfs_node_key_to_cpu(eb, &key, slot);
6490 ret = btrfs_comp_cpu_keys(&key,
6491 &wc->update_progress);
6492 if (ret < 0)
6493 continue;
6494 } else {
6495 if (wc->level == 1 &&
6496 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6497 continue;
6498 }
6499 reada:
6500 ret = readahead_tree_block(root, bytenr, blocksize,
6501 generation);
6502 if (ret)
6503 break;
6504 nread++;
6505 }
6506 wc->reada_slot = slot;
6507 }
6508
6509 /*
6510 * hepler to process tree block while walking down the tree.
6511 *
6512 * when wc->stage == UPDATE_BACKREF, this function updates
6513 * back refs for pointers in the block.
6514 *
6515 * NOTE: return value 1 means we should stop walking down.
6516 */
6517 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6518 struct btrfs_root *root,
6519 struct btrfs_path *path,
6520 struct walk_control *wc, int lookup_info)
6521 {
6522 int level = wc->level;
6523 struct extent_buffer *eb = path->nodes[level];
6524 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6525 int ret;
6526
6527 if (wc->stage == UPDATE_BACKREF &&
6528 btrfs_header_owner(eb) != root->root_key.objectid)
6529 return 1;
6530
6531 /*
6532 * when reference count of tree block is 1, it won't increase
6533 * again. once full backref flag is set, we never clear it.
6534 */
6535 if (lookup_info &&
6536 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6537 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6538 BUG_ON(!path->locks[level]);
6539 ret = btrfs_lookup_extent_info(trans, root,
6540 eb->start, eb->len,
6541 &wc->refs[level],
6542 &wc->flags[level]);
6543 BUG_ON(ret == -ENOMEM);
6544 if (ret)
6545 return ret;
6546 BUG_ON(wc->refs[level] == 0);
6547 }
6548
6549 if (wc->stage == DROP_REFERENCE) {
6550 if (wc->refs[level] > 1)
6551 return 1;
6552
6553 if (path->locks[level] && !wc->keep_locks) {
6554 btrfs_tree_unlock_rw(eb, path->locks[level]);
6555 path->locks[level] = 0;
6556 }
6557 return 0;
6558 }
6559
6560 /* wc->stage == UPDATE_BACKREF */
6561 if (!(wc->flags[level] & flag)) {
6562 BUG_ON(!path->locks[level]);
6563 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6564 BUG_ON(ret); /* -ENOMEM */
6565 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6566 BUG_ON(ret); /* -ENOMEM */
6567 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6568 eb->len, flag, 0);
6569 BUG_ON(ret); /* -ENOMEM */
6570 wc->flags[level] |= flag;
6571 }
6572
6573 /*
6574 * the block is shared by multiple trees, so it's not good to
6575 * keep the tree lock
6576 */
6577 if (path->locks[level] && level > 0) {
6578 btrfs_tree_unlock_rw(eb, path->locks[level]);
6579 path->locks[level] = 0;
6580 }
6581 return 0;
6582 }
6583
6584 /*
6585 * hepler to process tree block pointer.
6586 *
6587 * when wc->stage == DROP_REFERENCE, this function checks
6588 * reference count of the block pointed to. if the block
6589 * is shared and we need update back refs for the subtree
6590 * rooted at the block, this function changes wc->stage to
6591 * UPDATE_BACKREF. if the block is shared and there is no
6592 * need to update back, this function drops the reference
6593 * to the block.
6594 *
6595 * NOTE: return value 1 means we should stop walking down.
6596 */
6597 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6598 struct btrfs_root *root,
6599 struct btrfs_path *path,
6600 struct walk_control *wc, int *lookup_info)
6601 {
6602 u64 bytenr;
6603 u64 generation;
6604 u64 parent;
6605 u32 blocksize;
6606 struct btrfs_key key;
6607 struct extent_buffer *next;
6608 int level = wc->level;
6609 int reada = 0;
6610 int ret = 0;
6611
6612 generation = btrfs_node_ptr_generation(path->nodes[level],
6613 path->slots[level]);
6614 /*
6615 * if the lower level block was created before the snapshot
6616 * was created, we know there is no need to update back refs
6617 * for the subtree
6618 */
6619 if (wc->stage == UPDATE_BACKREF &&
6620 generation <= root->root_key.offset) {
6621 *lookup_info = 1;
6622 return 1;
6623 }
6624
6625 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6626 blocksize = btrfs_level_size(root, level - 1);
6627
6628 next = btrfs_find_tree_block(root, bytenr, blocksize);
6629 if (!next) {
6630 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6631 if (!next)
6632 return -ENOMEM;
6633 reada = 1;
6634 }
6635 btrfs_tree_lock(next);
6636 btrfs_set_lock_blocking(next);
6637
6638 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6639 &wc->refs[level - 1],
6640 &wc->flags[level - 1]);
6641 if (ret < 0) {
6642 btrfs_tree_unlock(next);
6643 return ret;
6644 }
6645
6646 BUG_ON(wc->refs[level - 1] == 0);
6647 *lookup_info = 0;
6648
6649 if (wc->stage == DROP_REFERENCE) {
6650 if (wc->refs[level - 1] > 1) {
6651 if (level == 1 &&
6652 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6653 goto skip;
6654
6655 if (!wc->update_ref ||
6656 generation <= root->root_key.offset)
6657 goto skip;
6658
6659 btrfs_node_key_to_cpu(path->nodes[level], &key,
6660 path->slots[level]);
6661 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6662 if (ret < 0)
6663 goto skip;
6664
6665 wc->stage = UPDATE_BACKREF;
6666 wc->shared_level = level - 1;
6667 }
6668 } else {
6669 if (level == 1 &&
6670 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6671 goto skip;
6672 }
6673
6674 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6675 btrfs_tree_unlock(next);
6676 free_extent_buffer(next);
6677 next = NULL;
6678 *lookup_info = 1;
6679 }
6680
6681 if (!next) {
6682 if (reada && level == 1)
6683 reada_walk_down(trans, root, wc, path);
6684 next = read_tree_block(root, bytenr, blocksize, generation);
6685 if (!next)
6686 return -EIO;
6687 btrfs_tree_lock(next);
6688 btrfs_set_lock_blocking(next);
6689 }
6690
6691 level--;
6692 BUG_ON(level != btrfs_header_level(next));
6693 path->nodes[level] = next;
6694 path->slots[level] = 0;
6695 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6696 wc->level = level;
6697 if (wc->level == 1)
6698 wc->reada_slot = 0;
6699 return 0;
6700 skip:
6701 wc->refs[level - 1] = 0;
6702 wc->flags[level - 1] = 0;
6703 if (wc->stage == DROP_REFERENCE) {
6704 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6705 parent = path->nodes[level]->start;
6706 } else {
6707 BUG_ON(root->root_key.objectid !=
6708 btrfs_header_owner(path->nodes[level]));
6709 parent = 0;
6710 }
6711
6712 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6713 root->root_key.objectid, level - 1, 0, 0);
6714 BUG_ON(ret); /* -ENOMEM */
6715 }
6716 btrfs_tree_unlock(next);
6717 free_extent_buffer(next);
6718 *lookup_info = 1;
6719 return 1;
6720 }
6721
6722 /*
6723 * hepler to process tree block while walking up the tree.
6724 *
6725 * when wc->stage == DROP_REFERENCE, this function drops
6726 * reference count on the block.
6727 *
6728 * when wc->stage == UPDATE_BACKREF, this function changes
6729 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6730 * to UPDATE_BACKREF previously while processing the block.
6731 *
6732 * NOTE: return value 1 means we should stop walking up.
6733 */
6734 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6735 struct btrfs_root *root,
6736 struct btrfs_path *path,
6737 struct walk_control *wc)
6738 {
6739 int ret;
6740 int level = wc->level;
6741 struct extent_buffer *eb = path->nodes[level];
6742 u64 parent = 0;
6743
6744 if (wc->stage == UPDATE_BACKREF) {
6745 BUG_ON(wc->shared_level < level);
6746 if (level < wc->shared_level)
6747 goto out;
6748
6749 ret = find_next_key(path, level + 1, &wc->update_progress);
6750 if (ret > 0)
6751 wc->update_ref = 0;
6752
6753 wc->stage = DROP_REFERENCE;
6754 wc->shared_level = -1;
6755 path->slots[level] = 0;
6756
6757 /*
6758 * check reference count again if the block isn't locked.
6759 * we should start walking down the tree again if reference
6760 * count is one.
6761 */
6762 if (!path->locks[level]) {
6763 BUG_ON(level == 0);
6764 btrfs_tree_lock(eb);
6765 btrfs_set_lock_blocking(eb);
6766 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6767
6768 ret = btrfs_lookup_extent_info(trans, root,
6769 eb->start, eb->len,
6770 &wc->refs[level],
6771 &wc->flags[level]);
6772 if (ret < 0) {
6773 btrfs_tree_unlock_rw(eb, path->locks[level]);
6774 return ret;
6775 }
6776 BUG_ON(wc->refs[level] == 0);
6777 if (wc->refs[level] == 1) {
6778 btrfs_tree_unlock_rw(eb, path->locks[level]);
6779 return 1;
6780 }
6781 }
6782 }
6783
6784 /* wc->stage == DROP_REFERENCE */
6785 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6786
6787 if (wc->refs[level] == 1) {
6788 if (level == 0) {
6789 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6790 ret = btrfs_dec_ref(trans, root, eb, 1,
6791 wc->for_reloc);
6792 else
6793 ret = btrfs_dec_ref(trans, root, eb, 0,
6794 wc->for_reloc);
6795 BUG_ON(ret); /* -ENOMEM */
6796 }
6797 /* make block locked assertion in clean_tree_block happy */
6798 if (!path->locks[level] &&
6799 btrfs_header_generation(eb) == trans->transid) {
6800 btrfs_tree_lock(eb);
6801 btrfs_set_lock_blocking(eb);
6802 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6803 }
6804 clean_tree_block(trans, root, eb);
6805 }
6806
6807 if (eb == root->node) {
6808 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6809 parent = eb->start;
6810 else
6811 BUG_ON(root->root_key.objectid !=
6812 btrfs_header_owner(eb));
6813 } else {
6814 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6815 parent = path->nodes[level + 1]->start;
6816 else
6817 BUG_ON(root->root_key.objectid !=
6818 btrfs_header_owner(path->nodes[level + 1]));
6819 }
6820
6821 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6822 out:
6823 wc->refs[level] = 0;
6824 wc->flags[level] = 0;
6825 return 0;
6826 }
6827
6828 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6829 struct btrfs_root *root,
6830 struct btrfs_path *path,
6831 struct walk_control *wc)
6832 {
6833 int level = wc->level;
6834 int lookup_info = 1;
6835 int ret;
6836
6837 while (level >= 0) {
6838 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6839 if (ret > 0)
6840 break;
6841
6842 if (level == 0)
6843 break;
6844
6845 if (path->slots[level] >=
6846 btrfs_header_nritems(path->nodes[level]))
6847 break;
6848
6849 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6850 if (ret > 0) {
6851 path->slots[level]++;
6852 continue;
6853 } else if (ret < 0)
6854 return ret;
6855 level = wc->level;
6856 }
6857 return 0;
6858 }
6859
6860 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6861 struct btrfs_root *root,
6862 struct btrfs_path *path,
6863 struct walk_control *wc, int max_level)
6864 {
6865 int level = wc->level;
6866 int ret;
6867
6868 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6869 while (level < max_level && path->nodes[level]) {
6870 wc->level = level;
6871 if (path->slots[level] + 1 <
6872 btrfs_header_nritems(path->nodes[level])) {
6873 path->slots[level]++;
6874 return 0;
6875 } else {
6876 ret = walk_up_proc(trans, root, path, wc);
6877 if (ret > 0)
6878 return 0;
6879
6880 if (path->locks[level]) {
6881 btrfs_tree_unlock_rw(path->nodes[level],
6882 path->locks[level]);
6883 path->locks[level] = 0;
6884 }
6885 free_extent_buffer(path->nodes[level]);
6886 path->nodes[level] = NULL;
6887 level++;
6888 }
6889 }
6890 return 1;
6891 }
6892
6893 /*
6894 * drop a subvolume tree.
6895 *
6896 * this function traverses the tree freeing any blocks that only
6897 * referenced by the tree.
6898 *
6899 * when a shared tree block is found. this function decreases its
6900 * reference count by one. if update_ref is true, this function
6901 * also make sure backrefs for the shared block and all lower level
6902 * blocks are properly updated.
6903 */
6904 int btrfs_drop_snapshot(struct btrfs_root *root,
6905 struct btrfs_block_rsv *block_rsv, int update_ref,
6906 int for_reloc)
6907 {
6908 struct btrfs_path *path;
6909 struct btrfs_trans_handle *trans;
6910 struct btrfs_root *tree_root = root->fs_info->tree_root;
6911 struct btrfs_root_item *root_item = &root->root_item;
6912 struct walk_control *wc;
6913 struct btrfs_key key;
6914 int err = 0;
6915 int ret;
6916 int level;
6917
6918 path = btrfs_alloc_path();
6919 if (!path) {
6920 err = -ENOMEM;
6921 goto out;
6922 }
6923
6924 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6925 if (!wc) {
6926 btrfs_free_path(path);
6927 err = -ENOMEM;
6928 goto out;
6929 }
6930
6931 trans = btrfs_start_transaction(tree_root, 0);
6932 if (IS_ERR(trans)) {
6933 err = PTR_ERR(trans);
6934 goto out_free;
6935 }
6936
6937 if (block_rsv)
6938 trans->block_rsv = block_rsv;
6939
6940 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6941 level = btrfs_header_level(root->node);
6942 path->nodes[level] = btrfs_lock_root_node(root);
6943 btrfs_set_lock_blocking(path->nodes[level]);
6944 path->slots[level] = 0;
6945 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6946 memset(&wc->update_progress, 0,
6947 sizeof(wc->update_progress));
6948 } else {
6949 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6950 memcpy(&wc->update_progress, &key,
6951 sizeof(wc->update_progress));
6952
6953 level = root_item->drop_level;
6954 BUG_ON(level == 0);
6955 path->lowest_level = level;
6956 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6957 path->lowest_level = 0;
6958 if (ret < 0) {
6959 err = ret;
6960 goto out_end_trans;
6961 }
6962 WARN_ON(ret > 0);
6963
6964 /*
6965 * unlock our path, this is safe because only this
6966 * function is allowed to delete this snapshot
6967 */
6968 btrfs_unlock_up_safe(path, 0);
6969
6970 level = btrfs_header_level(root->node);
6971 while (1) {
6972 btrfs_tree_lock(path->nodes[level]);
6973 btrfs_set_lock_blocking(path->nodes[level]);
6974
6975 ret = btrfs_lookup_extent_info(trans, root,
6976 path->nodes[level]->start,
6977 path->nodes[level]->len,
6978 &wc->refs[level],
6979 &wc->flags[level]);
6980 if (ret < 0) {
6981 err = ret;
6982 goto out_end_trans;
6983 }
6984 BUG_ON(wc->refs[level] == 0);
6985
6986 if (level == root_item->drop_level)
6987 break;
6988
6989 btrfs_tree_unlock(path->nodes[level]);
6990 WARN_ON(wc->refs[level] != 1);
6991 level--;
6992 }
6993 }
6994
6995 wc->level = level;
6996 wc->shared_level = -1;
6997 wc->stage = DROP_REFERENCE;
6998 wc->update_ref = update_ref;
6999 wc->keep_locks = 0;
7000 wc->for_reloc = for_reloc;
7001 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7002
7003 while (1) {
7004 ret = walk_down_tree(trans, root, path, wc);
7005 if (ret < 0) {
7006 err = ret;
7007 break;
7008 }
7009
7010 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7011 if (ret < 0) {
7012 err = ret;
7013 break;
7014 }
7015
7016 if (ret > 0) {
7017 BUG_ON(wc->stage != DROP_REFERENCE);
7018 break;
7019 }
7020
7021 if (wc->stage == DROP_REFERENCE) {
7022 level = wc->level;
7023 btrfs_node_key(path->nodes[level],
7024 &root_item->drop_progress,
7025 path->slots[level]);
7026 root_item->drop_level = level;
7027 }
7028
7029 BUG_ON(wc->level == 0);
7030 if (btrfs_should_end_transaction(trans, tree_root)) {
7031 ret = btrfs_update_root(trans, tree_root,
7032 &root->root_key,
7033 root_item);
7034 if (ret) {
7035 btrfs_abort_transaction(trans, tree_root, ret);
7036 err = ret;
7037 goto out_end_trans;
7038 }
7039
7040 btrfs_end_transaction_throttle(trans, tree_root);
7041 trans = btrfs_start_transaction(tree_root, 0);
7042 if (IS_ERR(trans)) {
7043 err = PTR_ERR(trans);
7044 goto out_free;
7045 }
7046 if (block_rsv)
7047 trans->block_rsv = block_rsv;
7048 }
7049 }
7050 btrfs_release_path(path);
7051 if (err)
7052 goto out_end_trans;
7053
7054 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7055 if (ret) {
7056 btrfs_abort_transaction(trans, tree_root, ret);
7057 goto out_end_trans;
7058 }
7059
7060 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7061 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7062 NULL, NULL);
7063 if (ret < 0) {
7064 btrfs_abort_transaction(trans, tree_root, ret);
7065 err = ret;
7066 goto out_end_trans;
7067 } else if (ret > 0) {
7068 /* if we fail to delete the orphan item this time
7069 * around, it'll get picked up the next time.
7070 *
7071 * The most common failure here is just -ENOENT.
7072 */
7073 btrfs_del_orphan_item(trans, tree_root,
7074 root->root_key.objectid);
7075 }
7076 }
7077
7078 if (root->in_radix) {
7079 btrfs_free_fs_root(tree_root->fs_info, root);
7080 } else {
7081 free_extent_buffer(root->node);
7082 free_extent_buffer(root->commit_root);
7083 kfree(root);
7084 }
7085 out_end_trans:
7086 btrfs_end_transaction_throttle(trans, tree_root);
7087 out_free:
7088 kfree(wc);
7089 btrfs_free_path(path);
7090 out:
7091 if (err)
7092 btrfs_std_error(root->fs_info, err);
7093 return err;
7094 }
7095
7096 /*
7097 * drop subtree rooted at tree block 'node'.
7098 *
7099 * NOTE: this function will unlock and release tree block 'node'
7100 * only used by relocation code
7101 */
7102 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7103 struct btrfs_root *root,
7104 struct extent_buffer *node,
7105 struct extent_buffer *parent)
7106 {
7107 struct btrfs_path *path;
7108 struct walk_control *wc;
7109 int level;
7110 int parent_level;
7111 int ret = 0;
7112 int wret;
7113
7114 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7115
7116 path = btrfs_alloc_path();
7117 if (!path)
7118 return -ENOMEM;
7119
7120 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7121 if (!wc) {
7122 btrfs_free_path(path);
7123 return -ENOMEM;
7124 }
7125
7126 btrfs_assert_tree_locked(parent);
7127 parent_level = btrfs_header_level(parent);
7128 extent_buffer_get(parent);
7129 path->nodes[parent_level] = parent;
7130 path->slots[parent_level] = btrfs_header_nritems(parent);
7131
7132 btrfs_assert_tree_locked(node);
7133 level = btrfs_header_level(node);
7134 path->nodes[level] = node;
7135 path->slots[level] = 0;
7136 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7137
7138 wc->refs[parent_level] = 1;
7139 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7140 wc->level = level;
7141 wc->shared_level = -1;
7142 wc->stage = DROP_REFERENCE;
7143 wc->update_ref = 0;
7144 wc->keep_locks = 1;
7145 wc->for_reloc = 1;
7146 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7147
7148 while (1) {
7149 wret = walk_down_tree(trans, root, path, wc);
7150 if (wret < 0) {
7151 ret = wret;
7152 break;
7153 }
7154
7155 wret = walk_up_tree(trans, root, path, wc, parent_level);
7156 if (wret < 0)
7157 ret = wret;
7158 if (wret != 0)
7159 break;
7160 }
7161
7162 kfree(wc);
7163 btrfs_free_path(path);
7164 return ret;
7165 }
7166
7167 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7168 {
7169 u64 num_devices;
7170 u64 stripped;
7171
7172 /*
7173 * if restripe for this chunk_type is on pick target profile and
7174 * return, otherwise do the usual balance
7175 */
7176 stripped = get_restripe_target(root->fs_info, flags);
7177 if (stripped)
7178 return extended_to_chunk(stripped);
7179
7180 /*
7181 * we add in the count of missing devices because we want
7182 * to make sure that any RAID levels on a degraded FS
7183 * continue to be honored.
7184 */
7185 num_devices = root->fs_info->fs_devices->rw_devices +
7186 root->fs_info->fs_devices->missing_devices;
7187
7188 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7189 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7190
7191 if (num_devices == 1) {
7192 stripped |= BTRFS_BLOCK_GROUP_DUP;
7193 stripped = flags & ~stripped;
7194
7195 /* turn raid0 into single device chunks */
7196 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7197 return stripped;
7198
7199 /* turn mirroring into duplication */
7200 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7201 BTRFS_BLOCK_GROUP_RAID10))
7202 return stripped | BTRFS_BLOCK_GROUP_DUP;
7203 } else {
7204 /* they already had raid on here, just return */
7205 if (flags & stripped)
7206 return flags;
7207
7208 stripped |= BTRFS_BLOCK_GROUP_DUP;
7209 stripped = flags & ~stripped;
7210
7211 /* switch duplicated blocks with raid1 */
7212 if (flags & BTRFS_BLOCK_GROUP_DUP)
7213 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7214
7215 /* this is drive concat, leave it alone */
7216 }
7217
7218 return flags;
7219 }
7220
7221 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7222 {
7223 struct btrfs_space_info *sinfo = cache->space_info;
7224 u64 num_bytes;
7225 u64 min_allocable_bytes;
7226 int ret = -ENOSPC;
7227
7228
7229 /*
7230 * We need some metadata space and system metadata space for
7231 * allocating chunks in some corner cases until we force to set
7232 * it to be readonly.
7233 */
7234 if ((sinfo->flags &
7235 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7236 !force)
7237 min_allocable_bytes = 1 * 1024 * 1024;
7238 else
7239 min_allocable_bytes = 0;
7240
7241 spin_lock(&sinfo->lock);
7242 spin_lock(&cache->lock);
7243
7244 if (cache->ro) {
7245 ret = 0;
7246 goto out;
7247 }
7248
7249 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7250 cache->bytes_super - btrfs_block_group_used(&cache->item);
7251
7252 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7253 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7254 min_allocable_bytes <= sinfo->total_bytes) {
7255 sinfo->bytes_readonly += num_bytes;
7256 cache->ro = 1;
7257 ret = 0;
7258 }
7259 out:
7260 spin_unlock(&cache->lock);
7261 spin_unlock(&sinfo->lock);
7262 return ret;
7263 }
7264
7265 int btrfs_set_block_group_ro(struct btrfs_root *root,
7266 struct btrfs_block_group_cache *cache)
7267
7268 {
7269 struct btrfs_trans_handle *trans;
7270 u64 alloc_flags;
7271 int ret;
7272
7273 BUG_ON(cache->ro);
7274
7275 trans = btrfs_join_transaction(root);
7276 if (IS_ERR(trans))
7277 return PTR_ERR(trans);
7278
7279 alloc_flags = update_block_group_flags(root, cache->flags);
7280 if (alloc_flags != cache->flags) {
7281 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7282 CHUNK_ALLOC_FORCE);
7283 if (ret < 0)
7284 goto out;
7285 }
7286
7287 ret = set_block_group_ro(cache, 0);
7288 if (!ret)
7289 goto out;
7290 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7291 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7292 CHUNK_ALLOC_FORCE);
7293 if (ret < 0)
7294 goto out;
7295 ret = set_block_group_ro(cache, 0);
7296 out:
7297 btrfs_end_transaction(trans, root);
7298 return ret;
7299 }
7300
7301 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7302 struct btrfs_root *root, u64 type)
7303 {
7304 u64 alloc_flags = get_alloc_profile(root, type);
7305 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7306 CHUNK_ALLOC_FORCE);
7307 }
7308
7309 /*
7310 * helper to account the unused space of all the readonly block group in the
7311 * list. takes mirrors into account.
7312 */
7313 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7314 {
7315 struct btrfs_block_group_cache *block_group;
7316 u64 free_bytes = 0;
7317 int factor;
7318
7319 list_for_each_entry(block_group, groups_list, list) {
7320 spin_lock(&block_group->lock);
7321
7322 if (!block_group->ro) {
7323 spin_unlock(&block_group->lock);
7324 continue;
7325 }
7326
7327 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7328 BTRFS_BLOCK_GROUP_RAID10 |
7329 BTRFS_BLOCK_GROUP_DUP))
7330 factor = 2;
7331 else
7332 factor = 1;
7333
7334 free_bytes += (block_group->key.offset -
7335 btrfs_block_group_used(&block_group->item)) *
7336 factor;
7337
7338 spin_unlock(&block_group->lock);
7339 }
7340
7341 return free_bytes;
7342 }
7343
7344 /*
7345 * helper to account the unused space of all the readonly block group in the
7346 * space_info. takes mirrors into account.
7347 */
7348 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7349 {
7350 int i;
7351 u64 free_bytes = 0;
7352
7353 spin_lock(&sinfo->lock);
7354
7355 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7356 if (!list_empty(&sinfo->block_groups[i]))
7357 free_bytes += __btrfs_get_ro_block_group_free_space(
7358 &sinfo->block_groups[i]);
7359
7360 spin_unlock(&sinfo->lock);
7361
7362 return free_bytes;
7363 }
7364
7365 void btrfs_set_block_group_rw(struct btrfs_root *root,
7366 struct btrfs_block_group_cache *cache)
7367 {
7368 struct btrfs_space_info *sinfo = cache->space_info;
7369 u64 num_bytes;
7370
7371 BUG_ON(!cache->ro);
7372
7373 spin_lock(&sinfo->lock);
7374 spin_lock(&cache->lock);
7375 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7376 cache->bytes_super - btrfs_block_group_used(&cache->item);
7377 sinfo->bytes_readonly -= num_bytes;
7378 cache->ro = 0;
7379 spin_unlock(&cache->lock);
7380 spin_unlock(&sinfo->lock);
7381 }
7382
7383 /*
7384 * checks to see if its even possible to relocate this block group.
7385 *
7386 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7387 * ok to go ahead and try.
7388 */
7389 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7390 {
7391 struct btrfs_block_group_cache *block_group;
7392 struct btrfs_space_info *space_info;
7393 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7394 struct btrfs_device *device;
7395 u64 min_free;
7396 u64 dev_min = 1;
7397 u64 dev_nr = 0;
7398 u64 target;
7399 int index;
7400 int full = 0;
7401 int ret = 0;
7402
7403 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7404
7405 /* odd, couldn't find the block group, leave it alone */
7406 if (!block_group)
7407 return -1;
7408
7409 min_free = btrfs_block_group_used(&block_group->item);
7410
7411 /* no bytes used, we're good */
7412 if (!min_free)
7413 goto out;
7414
7415 space_info = block_group->space_info;
7416 spin_lock(&space_info->lock);
7417
7418 full = space_info->full;
7419
7420 /*
7421 * if this is the last block group we have in this space, we can't
7422 * relocate it unless we're able to allocate a new chunk below.
7423 *
7424 * Otherwise, we need to make sure we have room in the space to handle
7425 * all of the extents from this block group. If we can, we're good
7426 */
7427 if ((space_info->total_bytes != block_group->key.offset) &&
7428 (space_info->bytes_used + space_info->bytes_reserved +
7429 space_info->bytes_pinned + space_info->bytes_readonly +
7430 min_free < space_info->total_bytes)) {
7431 spin_unlock(&space_info->lock);
7432 goto out;
7433 }
7434 spin_unlock(&space_info->lock);
7435
7436 /*
7437 * ok we don't have enough space, but maybe we have free space on our
7438 * devices to allocate new chunks for relocation, so loop through our
7439 * alloc devices and guess if we have enough space. if this block
7440 * group is going to be restriped, run checks against the target
7441 * profile instead of the current one.
7442 */
7443 ret = -1;
7444
7445 /*
7446 * index:
7447 * 0: raid10
7448 * 1: raid1
7449 * 2: dup
7450 * 3: raid0
7451 * 4: single
7452 */
7453 target = get_restripe_target(root->fs_info, block_group->flags);
7454 if (target) {
7455 index = __get_block_group_index(extended_to_chunk(target));
7456 } else {
7457 /*
7458 * this is just a balance, so if we were marked as full
7459 * we know there is no space for a new chunk
7460 */
7461 if (full)
7462 goto out;
7463
7464 index = get_block_group_index(block_group);
7465 }
7466
7467 if (index == 0) {
7468 dev_min = 4;
7469 /* Divide by 2 */
7470 min_free >>= 1;
7471 } else if (index == 1) {
7472 dev_min = 2;
7473 } else if (index == 2) {
7474 /* Multiply by 2 */
7475 min_free <<= 1;
7476 } else if (index == 3) {
7477 dev_min = fs_devices->rw_devices;
7478 do_div(min_free, dev_min);
7479 }
7480
7481 mutex_lock(&root->fs_info->chunk_mutex);
7482 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7483 u64 dev_offset;
7484
7485 /*
7486 * check to make sure we can actually find a chunk with enough
7487 * space to fit our block group in.
7488 */
7489 if (device->total_bytes > device->bytes_used + min_free) {
7490 ret = find_free_dev_extent(device, min_free,
7491 &dev_offset, NULL);
7492 if (!ret)
7493 dev_nr++;
7494
7495 if (dev_nr >= dev_min)
7496 break;
7497
7498 ret = -1;
7499 }
7500 }
7501 mutex_unlock(&root->fs_info->chunk_mutex);
7502 out:
7503 btrfs_put_block_group(block_group);
7504 return ret;
7505 }
7506
7507 static int find_first_block_group(struct btrfs_root *root,
7508 struct btrfs_path *path, struct btrfs_key *key)
7509 {
7510 int ret = 0;
7511 struct btrfs_key found_key;
7512 struct extent_buffer *leaf;
7513 int slot;
7514
7515 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7516 if (ret < 0)
7517 goto out;
7518
7519 while (1) {
7520 slot = path->slots[0];
7521 leaf = path->nodes[0];
7522 if (slot >= btrfs_header_nritems(leaf)) {
7523 ret = btrfs_next_leaf(root, path);
7524 if (ret == 0)
7525 continue;
7526 if (ret < 0)
7527 goto out;
7528 break;
7529 }
7530 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7531
7532 if (found_key.objectid >= key->objectid &&
7533 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7534 ret = 0;
7535 goto out;
7536 }
7537 path->slots[0]++;
7538 }
7539 out:
7540 return ret;
7541 }
7542
7543 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7544 {
7545 struct btrfs_block_group_cache *block_group;
7546 u64 last = 0;
7547
7548 while (1) {
7549 struct inode *inode;
7550
7551 block_group = btrfs_lookup_first_block_group(info, last);
7552 while (block_group) {
7553 spin_lock(&block_group->lock);
7554 if (block_group->iref)
7555 break;
7556 spin_unlock(&block_group->lock);
7557 block_group = next_block_group(info->tree_root,
7558 block_group);
7559 }
7560 if (!block_group) {
7561 if (last == 0)
7562 break;
7563 last = 0;
7564 continue;
7565 }
7566
7567 inode = block_group->inode;
7568 block_group->iref = 0;
7569 block_group->inode = NULL;
7570 spin_unlock(&block_group->lock);
7571 iput(inode);
7572 last = block_group->key.objectid + block_group->key.offset;
7573 btrfs_put_block_group(block_group);
7574 }
7575 }
7576
7577 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7578 {
7579 struct btrfs_block_group_cache *block_group;
7580 struct btrfs_space_info *space_info;
7581 struct btrfs_caching_control *caching_ctl;
7582 struct rb_node *n;
7583
7584 down_write(&info->extent_commit_sem);
7585 while (!list_empty(&info->caching_block_groups)) {
7586 caching_ctl = list_entry(info->caching_block_groups.next,
7587 struct btrfs_caching_control, list);
7588 list_del(&caching_ctl->list);
7589 put_caching_control(caching_ctl);
7590 }
7591 up_write(&info->extent_commit_sem);
7592
7593 spin_lock(&info->block_group_cache_lock);
7594 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7595 block_group = rb_entry(n, struct btrfs_block_group_cache,
7596 cache_node);
7597 rb_erase(&block_group->cache_node,
7598 &info->block_group_cache_tree);
7599 spin_unlock(&info->block_group_cache_lock);
7600
7601 down_write(&block_group->space_info->groups_sem);
7602 list_del(&block_group->list);
7603 up_write(&block_group->space_info->groups_sem);
7604
7605 if (block_group->cached == BTRFS_CACHE_STARTED)
7606 wait_block_group_cache_done(block_group);
7607
7608 /*
7609 * We haven't cached this block group, which means we could
7610 * possibly have excluded extents on this block group.
7611 */
7612 if (block_group->cached == BTRFS_CACHE_NO)
7613 free_excluded_extents(info->extent_root, block_group);
7614
7615 btrfs_remove_free_space_cache(block_group);
7616 btrfs_put_block_group(block_group);
7617
7618 spin_lock(&info->block_group_cache_lock);
7619 }
7620 spin_unlock(&info->block_group_cache_lock);
7621
7622 /* now that all the block groups are freed, go through and
7623 * free all the space_info structs. This is only called during
7624 * the final stages of unmount, and so we know nobody is
7625 * using them. We call synchronize_rcu() once before we start,
7626 * just to be on the safe side.
7627 */
7628 synchronize_rcu();
7629
7630 release_global_block_rsv(info);
7631
7632 while(!list_empty(&info->space_info)) {
7633 space_info = list_entry(info->space_info.next,
7634 struct btrfs_space_info,
7635 list);
7636 if (space_info->bytes_pinned > 0 ||
7637 space_info->bytes_reserved > 0 ||
7638 space_info->bytes_may_use > 0) {
7639 WARN_ON(1);
7640 dump_space_info(space_info, 0, 0);
7641 }
7642 list_del(&space_info->list);
7643 kfree(space_info);
7644 }
7645 return 0;
7646 }
7647
7648 static void __link_block_group(struct btrfs_space_info *space_info,
7649 struct btrfs_block_group_cache *cache)
7650 {
7651 int index = get_block_group_index(cache);
7652
7653 down_write(&space_info->groups_sem);
7654 list_add_tail(&cache->list, &space_info->block_groups[index]);
7655 up_write(&space_info->groups_sem);
7656 }
7657
7658 int btrfs_read_block_groups(struct btrfs_root *root)
7659 {
7660 struct btrfs_path *path;
7661 int ret;
7662 struct btrfs_block_group_cache *cache;
7663 struct btrfs_fs_info *info = root->fs_info;
7664 struct btrfs_space_info *space_info;
7665 struct btrfs_key key;
7666 struct btrfs_key found_key;
7667 struct extent_buffer *leaf;
7668 int need_clear = 0;
7669 u64 cache_gen;
7670
7671 root = info->extent_root;
7672 key.objectid = 0;
7673 key.offset = 0;
7674 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7675 path = btrfs_alloc_path();
7676 if (!path)
7677 return -ENOMEM;
7678 path->reada = 1;
7679
7680 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7681 if (btrfs_test_opt(root, SPACE_CACHE) &&
7682 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7683 need_clear = 1;
7684 if (btrfs_test_opt(root, CLEAR_CACHE))
7685 need_clear = 1;
7686
7687 while (1) {
7688 ret = find_first_block_group(root, path, &key);
7689 if (ret > 0)
7690 break;
7691 if (ret != 0)
7692 goto error;
7693 leaf = path->nodes[0];
7694 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7695 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7696 if (!cache) {
7697 ret = -ENOMEM;
7698 goto error;
7699 }
7700 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7701 GFP_NOFS);
7702 if (!cache->free_space_ctl) {
7703 kfree(cache);
7704 ret = -ENOMEM;
7705 goto error;
7706 }
7707
7708 atomic_set(&cache->count, 1);
7709 spin_lock_init(&cache->lock);
7710 cache->fs_info = info;
7711 INIT_LIST_HEAD(&cache->list);
7712 INIT_LIST_HEAD(&cache->cluster_list);
7713
7714 if (need_clear)
7715 cache->disk_cache_state = BTRFS_DC_CLEAR;
7716
7717 read_extent_buffer(leaf, &cache->item,
7718 btrfs_item_ptr_offset(leaf, path->slots[0]),
7719 sizeof(cache->item));
7720 memcpy(&cache->key, &found_key, sizeof(found_key));
7721
7722 key.objectid = found_key.objectid + found_key.offset;
7723 btrfs_release_path(path);
7724 cache->flags = btrfs_block_group_flags(&cache->item);
7725 cache->sectorsize = root->sectorsize;
7726
7727 btrfs_init_free_space_ctl(cache);
7728
7729 /*
7730 * We need to exclude the super stripes now so that the space
7731 * info has super bytes accounted for, otherwise we'll think
7732 * we have more space than we actually do.
7733 */
7734 exclude_super_stripes(root, cache);
7735
7736 /*
7737 * check for two cases, either we are full, and therefore
7738 * don't need to bother with the caching work since we won't
7739 * find any space, or we are empty, and we can just add all
7740 * the space in and be done with it. This saves us _alot_ of
7741 * time, particularly in the full case.
7742 */
7743 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7744 cache->last_byte_to_unpin = (u64)-1;
7745 cache->cached = BTRFS_CACHE_FINISHED;
7746 free_excluded_extents(root, cache);
7747 } else if (btrfs_block_group_used(&cache->item) == 0) {
7748 cache->last_byte_to_unpin = (u64)-1;
7749 cache->cached = BTRFS_CACHE_FINISHED;
7750 add_new_free_space(cache, root->fs_info,
7751 found_key.objectid,
7752 found_key.objectid +
7753 found_key.offset);
7754 free_excluded_extents(root, cache);
7755 }
7756
7757 ret = update_space_info(info, cache->flags, found_key.offset,
7758 btrfs_block_group_used(&cache->item),
7759 &space_info);
7760 BUG_ON(ret); /* -ENOMEM */
7761 cache->space_info = space_info;
7762 spin_lock(&cache->space_info->lock);
7763 cache->space_info->bytes_readonly += cache->bytes_super;
7764 spin_unlock(&cache->space_info->lock);
7765
7766 __link_block_group(space_info, cache);
7767
7768 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7769 BUG_ON(ret); /* Logic error */
7770
7771 set_avail_alloc_bits(root->fs_info, cache->flags);
7772 if (btrfs_chunk_readonly(root, cache->key.objectid))
7773 set_block_group_ro(cache, 1);
7774 }
7775
7776 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7777 if (!(get_alloc_profile(root, space_info->flags) &
7778 (BTRFS_BLOCK_GROUP_RAID10 |
7779 BTRFS_BLOCK_GROUP_RAID1 |
7780 BTRFS_BLOCK_GROUP_DUP)))
7781 continue;
7782 /*
7783 * avoid allocating from un-mirrored block group if there are
7784 * mirrored block groups.
7785 */
7786 list_for_each_entry(cache, &space_info->block_groups[3], list)
7787 set_block_group_ro(cache, 1);
7788 list_for_each_entry(cache, &space_info->block_groups[4], list)
7789 set_block_group_ro(cache, 1);
7790 }
7791
7792 init_global_block_rsv(info);
7793 ret = 0;
7794 error:
7795 btrfs_free_path(path);
7796 return ret;
7797 }
7798
7799 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7800 struct btrfs_root *root, u64 bytes_used,
7801 u64 type, u64 chunk_objectid, u64 chunk_offset,
7802 u64 size)
7803 {
7804 int ret;
7805 struct btrfs_root *extent_root;
7806 struct btrfs_block_group_cache *cache;
7807
7808 extent_root = root->fs_info->extent_root;
7809
7810 root->fs_info->last_trans_log_full_commit = trans->transid;
7811
7812 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7813 if (!cache)
7814 return -ENOMEM;
7815 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7816 GFP_NOFS);
7817 if (!cache->free_space_ctl) {
7818 kfree(cache);
7819 return -ENOMEM;
7820 }
7821
7822 cache->key.objectid = chunk_offset;
7823 cache->key.offset = size;
7824 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7825 cache->sectorsize = root->sectorsize;
7826 cache->fs_info = root->fs_info;
7827
7828 atomic_set(&cache->count, 1);
7829 spin_lock_init(&cache->lock);
7830 INIT_LIST_HEAD(&cache->list);
7831 INIT_LIST_HEAD(&cache->cluster_list);
7832
7833 btrfs_init_free_space_ctl(cache);
7834
7835 btrfs_set_block_group_used(&cache->item, bytes_used);
7836 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7837 cache->flags = type;
7838 btrfs_set_block_group_flags(&cache->item, type);
7839
7840 cache->last_byte_to_unpin = (u64)-1;
7841 cache->cached = BTRFS_CACHE_FINISHED;
7842 exclude_super_stripes(root, cache);
7843
7844 add_new_free_space(cache, root->fs_info, chunk_offset,
7845 chunk_offset + size);
7846
7847 free_excluded_extents(root, cache);
7848
7849 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7850 &cache->space_info);
7851 BUG_ON(ret); /* -ENOMEM */
7852 update_global_block_rsv(root->fs_info);
7853
7854 spin_lock(&cache->space_info->lock);
7855 cache->space_info->bytes_readonly += cache->bytes_super;
7856 spin_unlock(&cache->space_info->lock);
7857
7858 __link_block_group(cache->space_info, cache);
7859
7860 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7861 BUG_ON(ret); /* Logic error */
7862
7863 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7864 sizeof(cache->item));
7865 if (ret) {
7866 btrfs_abort_transaction(trans, extent_root, ret);
7867 return ret;
7868 }
7869
7870 set_avail_alloc_bits(extent_root->fs_info, type);
7871
7872 return 0;
7873 }
7874
7875 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7876 {
7877 u64 extra_flags = chunk_to_extended(flags) &
7878 BTRFS_EXTENDED_PROFILE_MASK;
7879
7880 if (flags & BTRFS_BLOCK_GROUP_DATA)
7881 fs_info->avail_data_alloc_bits &= ~extra_flags;
7882 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7883 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7884 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7885 fs_info->avail_system_alloc_bits &= ~extra_flags;
7886 }
7887
7888 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7889 struct btrfs_root *root, u64 group_start)
7890 {
7891 struct btrfs_path *path;
7892 struct btrfs_block_group_cache *block_group;
7893 struct btrfs_free_cluster *cluster;
7894 struct btrfs_root *tree_root = root->fs_info->tree_root;
7895 struct btrfs_key key;
7896 struct inode *inode;
7897 int ret;
7898 int index;
7899 int factor;
7900
7901 root = root->fs_info->extent_root;
7902
7903 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7904 BUG_ON(!block_group);
7905 BUG_ON(!block_group->ro);
7906
7907 /*
7908 * Free the reserved super bytes from this block group before
7909 * remove it.
7910 */
7911 free_excluded_extents(root, block_group);
7912
7913 memcpy(&key, &block_group->key, sizeof(key));
7914 index = get_block_group_index(block_group);
7915 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7916 BTRFS_BLOCK_GROUP_RAID1 |
7917 BTRFS_BLOCK_GROUP_RAID10))
7918 factor = 2;
7919 else
7920 factor = 1;
7921
7922 /* make sure this block group isn't part of an allocation cluster */
7923 cluster = &root->fs_info->data_alloc_cluster;
7924 spin_lock(&cluster->refill_lock);
7925 btrfs_return_cluster_to_free_space(block_group, cluster);
7926 spin_unlock(&cluster->refill_lock);
7927
7928 /*
7929 * make sure this block group isn't part of a metadata
7930 * allocation cluster
7931 */
7932 cluster = &root->fs_info->meta_alloc_cluster;
7933 spin_lock(&cluster->refill_lock);
7934 btrfs_return_cluster_to_free_space(block_group, cluster);
7935 spin_unlock(&cluster->refill_lock);
7936
7937 path = btrfs_alloc_path();
7938 if (!path) {
7939 ret = -ENOMEM;
7940 goto out;
7941 }
7942
7943 inode = lookup_free_space_inode(tree_root, block_group, path);
7944 if (!IS_ERR(inode)) {
7945 ret = btrfs_orphan_add(trans, inode);
7946 if (ret) {
7947 btrfs_add_delayed_iput(inode);
7948 goto out;
7949 }
7950 clear_nlink(inode);
7951 /* One for the block groups ref */
7952 spin_lock(&block_group->lock);
7953 if (block_group->iref) {
7954 block_group->iref = 0;
7955 block_group->inode = NULL;
7956 spin_unlock(&block_group->lock);
7957 iput(inode);
7958 } else {
7959 spin_unlock(&block_group->lock);
7960 }
7961 /* One for our lookup ref */
7962 btrfs_add_delayed_iput(inode);
7963 }
7964
7965 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7966 key.offset = block_group->key.objectid;
7967 key.type = 0;
7968
7969 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7970 if (ret < 0)
7971 goto out;
7972 if (ret > 0)
7973 btrfs_release_path(path);
7974 if (ret == 0) {
7975 ret = btrfs_del_item(trans, tree_root, path);
7976 if (ret)
7977 goto out;
7978 btrfs_release_path(path);
7979 }
7980
7981 spin_lock(&root->fs_info->block_group_cache_lock);
7982 rb_erase(&block_group->cache_node,
7983 &root->fs_info->block_group_cache_tree);
7984 spin_unlock(&root->fs_info->block_group_cache_lock);
7985
7986 down_write(&block_group->space_info->groups_sem);
7987 /*
7988 * we must use list_del_init so people can check to see if they
7989 * are still on the list after taking the semaphore
7990 */
7991 list_del_init(&block_group->list);
7992 if (list_empty(&block_group->space_info->block_groups[index]))
7993 clear_avail_alloc_bits(root->fs_info, block_group->flags);
7994 up_write(&block_group->space_info->groups_sem);
7995
7996 if (block_group->cached == BTRFS_CACHE_STARTED)
7997 wait_block_group_cache_done(block_group);
7998
7999 btrfs_remove_free_space_cache(block_group);
8000
8001 spin_lock(&block_group->space_info->lock);
8002 block_group->space_info->total_bytes -= block_group->key.offset;
8003 block_group->space_info->bytes_readonly -= block_group->key.offset;
8004 block_group->space_info->disk_total -= block_group->key.offset * factor;
8005 spin_unlock(&block_group->space_info->lock);
8006
8007 memcpy(&key, &block_group->key, sizeof(key));
8008
8009 btrfs_clear_space_info_full(root->fs_info);
8010
8011 btrfs_put_block_group(block_group);
8012 btrfs_put_block_group(block_group);
8013
8014 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8015 if (ret > 0)
8016 ret = -EIO;
8017 if (ret < 0)
8018 goto out;
8019
8020 ret = btrfs_del_item(trans, root, path);
8021 out:
8022 btrfs_free_path(path);
8023 return ret;
8024 }
8025
8026 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8027 {
8028 struct btrfs_space_info *space_info;
8029 struct btrfs_super_block *disk_super;
8030 u64 features;
8031 u64 flags;
8032 int mixed = 0;
8033 int ret;
8034
8035 disk_super = fs_info->super_copy;
8036 if (!btrfs_super_root(disk_super))
8037 return 1;
8038
8039 features = btrfs_super_incompat_flags(disk_super);
8040 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8041 mixed = 1;
8042
8043 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8044 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8045 if (ret)
8046 goto out;
8047
8048 if (mixed) {
8049 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8050 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8051 } else {
8052 flags = BTRFS_BLOCK_GROUP_METADATA;
8053 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8054 if (ret)
8055 goto out;
8056
8057 flags = BTRFS_BLOCK_GROUP_DATA;
8058 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8059 }
8060 out:
8061 return ret;
8062 }
8063
8064 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8065 {
8066 return unpin_extent_range(root, start, end);
8067 }
8068
8069 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8070 u64 num_bytes, u64 *actual_bytes)
8071 {
8072 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8073 }
8074
8075 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8076 {
8077 struct btrfs_fs_info *fs_info = root->fs_info;
8078 struct btrfs_block_group_cache *cache = NULL;
8079 u64 group_trimmed;
8080 u64 start;
8081 u64 end;
8082 u64 trimmed = 0;
8083 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8084 int ret = 0;
8085
8086 /*
8087 * try to trim all FS space, our block group may start from non-zero.
8088 */
8089 if (range->len == total_bytes)
8090 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8091 else
8092 cache = btrfs_lookup_block_group(fs_info, range->start);
8093
8094 while (cache) {
8095 if (cache->key.objectid >= (range->start + range->len)) {
8096 btrfs_put_block_group(cache);
8097 break;
8098 }
8099
8100 start = max(range->start, cache->key.objectid);
8101 end = min(range->start + range->len,
8102 cache->key.objectid + cache->key.offset);
8103
8104 if (end - start >= range->minlen) {
8105 if (!block_group_cache_done(cache)) {
8106 ret = cache_block_group(cache, NULL, root, 0);
8107 if (!ret)
8108 wait_block_group_cache_done(cache);
8109 }
8110 ret = btrfs_trim_block_group(cache,
8111 &group_trimmed,
8112 start,
8113 end,
8114 range->minlen);
8115
8116 trimmed += group_trimmed;
8117 if (ret) {
8118 btrfs_put_block_group(cache);
8119 break;
8120 }
8121 }
8122
8123 cache = next_block_group(fs_info->tree_root, cache);
8124 }
8125
8126 range->len = trimmed;
8127 return ret;
8128 }
This page took 0.23429 seconds and 5 git commands to generate.