Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35
36 static int update_block_group(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 u64 bytenr, u64 num_bytes, int alloc);
39 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
40 u64 num_bytes, int reserve, int sinfo);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root,
43 u64 bytenr, u64 num_bytes, u64 parent,
44 u64 root_objectid, u64 owner_objectid,
45 u64 owner_offset, int refs_to_drop,
46 struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 struct extent_buffer *leaf,
49 struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root,
52 u64 parent, u64 root_objectid,
53 u64 flags, u64 owner, u64 offset,
54 struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 parent, u64 root_objectid,
58 u64 flags, struct btrfs_disk_key *key,
59 int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 struct btrfs_root *extent_root, u64 alloc_bytes,
62 u64 flags, int force);
63 static int find_next_key(struct btrfs_path *path, int level,
64 struct btrfs_key *key);
65 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
66 int dump_block_groups);
67
68 static noinline int
69 block_group_cache_done(struct btrfs_block_group_cache *cache)
70 {
71 smp_mb();
72 return cache->cached == BTRFS_CACHE_FINISHED;
73 }
74
75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
76 {
77 return (cache->flags & bits) == bits;
78 }
79
80 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
81 {
82 atomic_inc(&cache->count);
83 }
84
85 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
86 {
87 if (atomic_dec_and_test(&cache->count)) {
88 WARN_ON(cache->pinned > 0);
89 WARN_ON(cache->reserved > 0);
90 WARN_ON(cache->reserved_pinned > 0);
91 kfree(cache);
92 }
93 }
94
95 /*
96 * this adds the block group to the fs_info rb tree for the block group
97 * cache
98 */
99 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
100 struct btrfs_block_group_cache *block_group)
101 {
102 struct rb_node **p;
103 struct rb_node *parent = NULL;
104 struct btrfs_block_group_cache *cache;
105
106 spin_lock(&info->block_group_cache_lock);
107 p = &info->block_group_cache_tree.rb_node;
108
109 while (*p) {
110 parent = *p;
111 cache = rb_entry(parent, struct btrfs_block_group_cache,
112 cache_node);
113 if (block_group->key.objectid < cache->key.objectid) {
114 p = &(*p)->rb_left;
115 } else if (block_group->key.objectid > cache->key.objectid) {
116 p = &(*p)->rb_right;
117 } else {
118 spin_unlock(&info->block_group_cache_lock);
119 return -EEXIST;
120 }
121 }
122
123 rb_link_node(&block_group->cache_node, parent, p);
124 rb_insert_color(&block_group->cache_node,
125 &info->block_group_cache_tree);
126 spin_unlock(&info->block_group_cache_lock);
127
128 return 0;
129 }
130
131 /*
132 * This will return the block group at or after bytenr if contains is 0, else
133 * it will return the block group that contains the bytenr
134 */
135 static struct btrfs_block_group_cache *
136 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
137 int contains)
138 {
139 struct btrfs_block_group_cache *cache, *ret = NULL;
140 struct rb_node *n;
141 u64 end, start;
142
143 spin_lock(&info->block_group_cache_lock);
144 n = info->block_group_cache_tree.rb_node;
145
146 while (n) {
147 cache = rb_entry(n, struct btrfs_block_group_cache,
148 cache_node);
149 end = cache->key.objectid + cache->key.offset - 1;
150 start = cache->key.objectid;
151
152 if (bytenr < start) {
153 if (!contains && (!ret || start < ret->key.objectid))
154 ret = cache;
155 n = n->rb_left;
156 } else if (bytenr > start) {
157 if (contains && bytenr <= end) {
158 ret = cache;
159 break;
160 }
161 n = n->rb_right;
162 } else {
163 ret = cache;
164 break;
165 }
166 }
167 if (ret)
168 btrfs_get_block_group(ret);
169 spin_unlock(&info->block_group_cache_lock);
170
171 return ret;
172 }
173
174 static int add_excluded_extent(struct btrfs_root *root,
175 u64 start, u64 num_bytes)
176 {
177 u64 end = start + num_bytes - 1;
178 set_extent_bits(&root->fs_info->freed_extents[0],
179 start, end, EXTENT_UPTODATE, GFP_NOFS);
180 set_extent_bits(&root->fs_info->freed_extents[1],
181 start, end, EXTENT_UPTODATE, GFP_NOFS);
182 return 0;
183 }
184
185 static void free_excluded_extents(struct btrfs_root *root,
186 struct btrfs_block_group_cache *cache)
187 {
188 u64 start, end;
189
190 start = cache->key.objectid;
191 end = start + cache->key.offset - 1;
192
193 clear_extent_bits(&root->fs_info->freed_extents[0],
194 start, end, EXTENT_UPTODATE, GFP_NOFS);
195 clear_extent_bits(&root->fs_info->freed_extents[1],
196 start, end, EXTENT_UPTODATE, GFP_NOFS);
197 }
198
199 static int exclude_super_stripes(struct btrfs_root *root,
200 struct btrfs_block_group_cache *cache)
201 {
202 u64 bytenr;
203 u64 *logical;
204 int stripe_len;
205 int i, nr, ret;
206
207 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
208 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
209 cache->bytes_super += stripe_len;
210 ret = add_excluded_extent(root, cache->key.objectid,
211 stripe_len);
212 BUG_ON(ret);
213 }
214
215 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
216 bytenr = btrfs_sb_offset(i);
217 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
218 cache->key.objectid, bytenr,
219 0, &logical, &nr, &stripe_len);
220 BUG_ON(ret);
221
222 while (nr--) {
223 cache->bytes_super += stripe_len;
224 ret = add_excluded_extent(root, logical[nr],
225 stripe_len);
226 BUG_ON(ret);
227 }
228
229 kfree(logical);
230 }
231 return 0;
232 }
233
234 static struct btrfs_caching_control *
235 get_caching_control(struct btrfs_block_group_cache *cache)
236 {
237 struct btrfs_caching_control *ctl;
238
239 spin_lock(&cache->lock);
240 if (cache->cached != BTRFS_CACHE_STARTED) {
241 spin_unlock(&cache->lock);
242 return NULL;
243 }
244
245 ctl = cache->caching_ctl;
246 atomic_inc(&ctl->count);
247 spin_unlock(&cache->lock);
248 return ctl;
249 }
250
251 static void put_caching_control(struct btrfs_caching_control *ctl)
252 {
253 if (atomic_dec_and_test(&ctl->count))
254 kfree(ctl);
255 }
256
257 /*
258 * this is only called by cache_block_group, since we could have freed extents
259 * we need to check the pinned_extents for any extents that can't be used yet
260 * since their free space will be released as soon as the transaction commits.
261 */
262 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
263 struct btrfs_fs_info *info, u64 start, u64 end)
264 {
265 u64 extent_start, extent_end, size, total_added = 0;
266 int ret;
267
268 while (start < end) {
269 ret = find_first_extent_bit(info->pinned_extents, start,
270 &extent_start, &extent_end,
271 EXTENT_DIRTY | EXTENT_UPTODATE);
272 if (ret)
273 break;
274
275 if (extent_start <= start) {
276 start = extent_end + 1;
277 } else if (extent_start > start && extent_start < end) {
278 size = extent_start - start;
279 total_added += size;
280 ret = btrfs_add_free_space(block_group, start,
281 size);
282 BUG_ON(ret);
283 start = extent_end + 1;
284 } else {
285 break;
286 }
287 }
288
289 if (start < end) {
290 size = end - start;
291 total_added += size;
292 ret = btrfs_add_free_space(block_group, start, size);
293 BUG_ON(ret);
294 }
295
296 return total_added;
297 }
298
299 static int caching_kthread(void *data)
300 {
301 struct btrfs_block_group_cache *block_group = data;
302 struct btrfs_fs_info *fs_info = block_group->fs_info;
303 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
304 struct btrfs_root *extent_root = fs_info->extent_root;
305 struct btrfs_path *path;
306 struct extent_buffer *leaf;
307 struct btrfs_key key;
308 u64 total_found = 0;
309 u64 last = 0;
310 u32 nritems;
311 int ret = 0;
312
313 path = btrfs_alloc_path();
314 if (!path)
315 return -ENOMEM;
316
317 exclude_super_stripes(extent_root, block_group);
318 spin_lock(&block_group->space_info->lock);
319 block_group->space_info->bytes_readonly += block_group->bytes_super;
320 spin_unlock(&block_group->space_info->lock);
321
322 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
323
324 /*
325 * We don't want to deadlock with somebody trying to allocate a new
326 * extent for the extent root while also trying to search the extent
327 * root to add free space. So we skip locking and search the commit
328 * root, since its read-only
329 */
330 path->skip_locking = 1;
331 path->search_commit_root = 1;
332 path->reada = 2;
333
334 key.objectid = last;
335 key.offset = 0;
336 key.type = BTRFS_EXTENT_ITEM_KEY;
337 again:
338 mutex_lock(&caching_ctl->mutex);
339 /* need to make sure the commit_root doesn't disappear */
340 down_read(&fs_info->extent_commit_sem);
341
342 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
343 if (ret < 0)
344 goto err;
345
346 leaf = path->nodes[0];
347 nritems = btrfs_header_nritems(leaf);
348
349 while (1) {
350 smp_mb();
351 if (fs_info->closing > 1) {
352 last = (u64)-1;
353 break;
354 }
355
356 if (path->slots[0] < nritems) {
357 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
358 } else {
359 ret = find_next_key(path, 0, &key);
360 if (ret)
361 break;
362
363 caching_ctl->progress = last;
364 btrfs_release_path(extent_root, path);
365 up_read(&fs_info->extent_commit_sem);
366 mutex_unlock(&caching_ctl->mutex);
367 if (btrfs_transaction_in_commit(fs_info))
368 schedule_timeout(1);
369 else
370 cond_resched();
371 goto again;
372 }
373
374 if (key.objectid < block_group->key.objectid) {
375 path->slots[0]++;
376 continue;
377 }
378
379 if (key.objectid >= block_group->key.objectid +
380 block_group->key.offset)
381 break;
382
383 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
384 total_found += add_new_free_space(block_group,
385 fs_info, last,
386 key.objectid);
387 last = key.objectid + key.offset;
388
389 if (total_found > (1024 * 1024 * 2)) {
390 total_found = 0;
391 wake_up(&caching_ctl->wait);
392 }
393 }
394 path->slots[0]++;
395 }
396 ret = 0;
397
398 total_found += add_new_free_space(block_group, fs_info, last,
399 block_group->key.objectid +
400 block_group->key.offset);
401 caching_ctl->progress = (u64)-1;
402
403 spin_lock(&block_group->lock);
404 block_group->caching_ctl = NULL;
405 block_group->cached = BTRFS_CACHE_FINISHED;
406 spin_unlock(&block_group->lock);
407
408 err:
409 btrfs_free_path(path);
410 up_read(&fs_info->extent_commit_sem);
411
412 free_excluded_extents(extent_root, block_group);
413
414 mutex_unlock(&caching_ctl->mutex);
415 wake_up(&caching_ctl->wait);
416
417 put_caching_control(caching_ctl);
418 atomic_dec(&block_group->space_info->caching_threads);
419 btrfs_put_block_group(block_group);
420
421 return 0;
422 }
423
424 static int cache_block_group(struct btrfs_block_group_cache *cache)
425 {
426 struct btrfs_fs_info *fs_info = cache->fs_info;
427 struct btrfs_caching_control *caching_ctl;
428 struct task_struct *tsk;
429 int ret = 0;
430
431 smp_mb();
432 if (cache->cached != BTRFS_CACHE_NO)
433 return 0;
434
435 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
436 BUG_ON(!caching_ctl);
437
438 INIT_LIST_HEAD(&caching_ctl->list);
439 mutex_init(&caching_ctl->mutex);
440 init_waitqueue_head(&caching_ctl->wait);
441 caching_ctl->block_group = cache;
442 caching_ctl->progress = cache->key.objectid;
443 /* one for caching kthread, one for caching block group list */
444 atomic_set(&caching_ctl->count, 2);
445
446 spin_lock(&cache->lock);
447 if (cache->cached != BTRFS_CACHE_NO) {
448 spin_unlock(&cache->lock);
449 kfree(caching_ctl);
450 return 0;
451 }
452 cache->caching_ctl = caching_ctl;
453 cache->cached = BTRFS_CACHE_STARTED;
454 spin_unlock(&cache->lock);
455
456 down_write(&fs_info->extent_commit_sem);
457 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
458 up_write(&fs_info->extent_commit_sem);
459
460 atomic_inc(&cache->space_info->caching_threads);
461 btrfs_get_block_group(cache);
462
463 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
464 cache->key.objectid);
465 if (IS_ERR(tsk)) {
466 ret = PTR_ERR(tsk);
467 printk(KERN_ERR "error running thread %d\n", ret);
468 BUG();
469 }
470
471 return ret;
472 }
473
474 /*
475 * return the block group that starts at or after bytenr
476 */
477 static struct btrfs_block_group_cache *
478 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
479 {
480 struct btrfs_block_group_cache *cache;
481
482 cache = block_group_cache_tree_search(info, bytenr, 0);
483
484 return cache;
485 }
486
487 /*
488 * return the block group that contains the given bytenr
489 */
490 struct btrfs_block_group_cache *btrfs_lookup_block_group(
491 struct btrfs_fs_info *info,
492 u64 bytenr)
493 {
494 struct btrfs_block_group_cache *cache;
495
496 cache = block_group_cache_tree_search(info, bytenr, 1);
497
498 return cache;
499 }
500
501 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
502 u64 flags)
503 {
504 struct list_head *head = &info->space_info;
505 struct btrfs_space_info *found;
506
507 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
508 BTRFS_BLOCK_GROUP_METADATA;
509
510 rcu_read_lock();
511 list_for_each_entry_rcu(found, head, list) {
512 if (found->flags == flags) {
513 rcu_read_unlock();
514 return found;
515 }
516 }
517 rcu_read_unlock();
518 return NULL;
519 }
520
521 /*
522 * after adding space to the filesystem, we need to clear the full flags
523 * on all the space infos.
524 */
525 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
526 {
527 struct list_head *head = &info->space_info;
528 struct btrfs_space_info *found;
529
530 rcu_read_lock();
531 list_for_each_entry_rcu(found, head, list)
532 found->full = 0;
533 rcu_read_unlock();
534 }
535
536 static u64 div_factor(u64 num, int factor)
537 {
538 if (factor == 10)
539 return num;
540 num *= factor;
541 do_div(num, 10);
542 return num;
543 }
544
545 u64 btrfs_find_block_group(struct btrfs_root *root,
546 u64 search_start, u64 search_hint, int owner)
547 {
548 struct btrfs_block_group_cache *cache;
549 u64 used;
550 u64 last = max(search_hint, search_start);
551 u64 group_start = 0;
552 int full_search = 0;
553 int factor = 9;
554 int wrapped = 0;
555 again:
556 while (1) {
557 cache = btrfs_lookup_first_block_group(root->fs_info, last);
558 if (!cache)
559 break;
560
561 spin_lock(&cache->lock);
562 last = cache->key.objectid + cache->key.offset;
563 used = btrfs_block_group_used(&cache->item);
564
565 if ((full_search || !cache->ro) &&
566 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
567 if (used + cache->pinned + cache->reserved <
568 div_factor(cache->key.offset, factor)) {
569 group_start = cache->key.objectid;
570 spin_unlock(&cache->lock);
571 btrfs_put_block_group(cache);
572 goto found;
573 }
574 }
575 spin_unlock(&cache->lock);
576 btrfs_put_block_group(cache);
577 cond_resched();
578 }
579 if (!wrapped) {
580 last = search_start;
581 wrapped = 1;
582 goto again;
583 }
584 if (!full_search && factor < 10) {
585 last = search_start;
586 full_search = 1;
587 factor = 10;
588 goto again;
589 }
590 found:
591 return group_start;
592 }
593
594 /* simple helper to search for an existing extent at a given offset */
595 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
596 {
597 int ret;
598 struct btrfs_key key;
599 struct btrfs_path *path;
600
601 path = btrfs_alloc_path();
602 BUG_ON(!path);
603 key.objectid = start;
604 key.offset = len;
605 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
606 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
607 0, 0);
608 btrfs_free_path(path);
609 return ret;
610 }
611
612 /*
613 * helper function to lookup reference count and flags of extent.
614 *
615 * the head node for delayed ref is used to store the sum of all the
616 * reference count modifications queued up in the rbtree. the head
617 * node may also store the extent flags to set. This way you can check
618 * to see what the reference count and extent flags would be if all of
619 * the delayed refs are not processed.
620 */
621 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
622 struct btrfs_root *root, u64 bytenr,
623 u64 num_bytes, u64 *refs, u64 *flags)
624 {
625 struct btrfs_delayed_ref_head *head;
626 struct btrfs_delayed_ref_root *delayed_refs;
627 struct btrfs_path *path;
628 struct btrfs_extent_item *ei;
629 struct extent_buffer *leaf;
630 struct btrfs_key key;
631 u32 item_size;
632 u64 num_refs;
633 u64 extent_flags;
634 int ret;
635
636 path = btrfs_alloc_path();
637 if (!path)
638 return -ENOMEM;
639
640 key.objectid = bytenr;
641 key.type = BTRFS_EXTENT_ITEM_KEY;
642 key.offset = num_bytes;
643 if (!trans) {
644 path->skip_locking = 1;
645 path->search_commit_root = 1;
646 }
647 again:
648 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
649 &key, path, 0, 0);
650 if (ret < 0)
651 goto out_free;
652
653 if (ret == 0) {
654 leaf = path->nodes[0];
655 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
656 if (item_size >= sizeof(*ei)) {
657 ei = btrfs_item_ptr(leaf, path->slots[0],
658 struct btrfs_extent_item);
659 num_refs = btrfs_extent_refs(leaf, ei);
660 extent_flags = btrfs_extent_flags(leaf, ei);
661 } else {
662 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
663 struct btrfs_extent_item_v0 *ei0;
664 BUG_ON(item_size != sizeof(*ei0));
665 ei0 = btrfs_item_ptr(leaf, path->slots[0],
666 struct btrfs_extent_item_v0);
667 num_refs = btrfs_extent_refs_v0(leaf, ei0);
668 /* FIXME: this isn't correct for data */
669 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
670 #else
671 BUG();
672 #endif
673 }
674 BUG_ON(num_refs == 0);
675 } else {
676 num_refs = 0;
677 extent_flags = 0;
678 ret = 0;
679 }
680
681 if (!trans)
682 goto out;
683
684 delayed_refs = &trans->transaction->delayed_refs;
685 spin_lock(&delayed_refs->lock);
686 head = btrfs_find_delayed_ref_head(trans, bytenr);
687 if (head) {
688 if (!mutex_trylock(&head->mutex)) {
689 atomic_inc(&head->node.refs);
690 spin_unlock(&delayed_refs->lock);
691
692 btrfs_release_path(root->fs_info->extent_root, path);
693
694 mutex_lock(&head->mutex);
695 mutex_unlock(&head->mutex);
696 btrfs_put_delayed_ref(&head->node);
697 goto again;
698 }
699 if (head->extent_op && head->extent_op->update_flags)
700 extent_flags |= head->extent_op->flags_to_set;
701 else
702 BUG_ON(num_refs == 0);
703
704 num_refs += head->node.ref_mod;
705 mutex_unlock(&head->mutex);
706 }
707 spin_unlock(&delayed_refs->lock);
708 out:
709 WARN_ON(num_refs == 0);
710 if (refs)
711 *refs = num_refs;
712 if (flags)
713 *flags = extent_flags;
714 out_free:
715 btrfs_free_path(path);
716 return ret;
717 }
718
719 /*
720 * Back reference rules. Back refs have three main goals:
721 *
722 * 1) differentiate between all holders of references to an extent so that
723 * when a reference is dropped we can make sure it was a valid reference
724 * before freeing the extent.
725 *
726 * 2) Provide enough information to quickly find the holders of an extent
727 * if we notice a given block is corrupted or bad.
728 *
729 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
730 * maintenance. This is actually the same as #2, but with a slightly
731 * different use case.
732 *
733 * There are two kinds of back refs. The implicit back refs is optimized
734 * for pointers in non-shared tree blocks. For a given pointer in a block,
735 * back refs of this kind provide information about the block's owner tree
736 * and the pointer's key. These information allow us to find the block by
737 * b-tree searching. The full back refs is for pointers in tree blocks not
738 * referenced by their owner trees. The location of tree block is recorded
739 * in the back refs. Actually the full back refs is generic, and can be
740 * used in all cases the implicit back refs is used. The major shortcoming
741 * of the full back refs is its overhead. Every time a tree block gets
742 * COWed, we have to update back refs entry for all pointers in it.
743 *
744 * For a newly allocated tree block, we use implicit back refs for
745 * pointers in it. This means most tree related operations only involve
746 * implicit back refs. For a tree block created in old transaction, the
747 * only way to drop a reference to it is COW it. So we can detect the
748 * event that tree block loses its owner tree's reference and do the
749 * back refs conversion.
750 *
751 * When a tree block is COW'd through a tree, there are four cases:
752 *
753 * The reference count of the block is one and the tree is the block's
754 * owner tree. Nothing to do in this case.
755 *
756 * The reference count of the block is one and the tree is not the
757 * block's owner tree. In this case, full back refs is used for pointers
758 * in the block. Remove these full back refs, add implicit back refs for
759 * every pointers in the new block.
760 *
761 * The reference count of the block is greater than one and the tree is
762 * the block's owner tree. In this case, implicit back refs is used for
763 * pointers in the block. Add full back refs for every pointers in the
764 * block, increase lower level extents' reference counts. The original
765 * implicit back refs are entailed to the new block.
766 *
767 * The reference count of the block is greater than one and the tree is
768 * not the block's owner tree. Add implicit back refs for every pointer in
769 * the new block, increase lower level extents' reference count.
770 *
771 * Back Reference Key composing:
772 *
773 * The key objectid corresponds to the first byte in the extent,
774 * The key type is used to differentiate between types of back refs.
775 * There are different meanings of the key offset for different types
776 * of back refs.
777 *
778 * File extents can be referenced by:
779 *
780 * - multiple snapshots, subvolumes, or different generations in one subvol
781 * - different files inside a single subvolume
782 * - different offsets inside a file (bookend extents in file.c)
783 *
784 * The extent ref structure for the implicit back refs has fields for:
785 *
786 * - Objectid of the subvolume root
787 * - objectid of the file holding the reference
788 * - original offset in the file
789 * - how many bookend extents
790 *
791 * The key offset for the implicit back refs is hash of the first
792 * three fields.
793 *
794 * The extent ref structure for the full back refs has field for:
795 *
796 * - number of pointers in the tree leaf
797 *
798 * The key offset for the implicit back refs is the first byte of
799 * the tree leaf
800 *
801 * When a file extent is allocated, The implicit back refs is used.
802 * the fields are filled in:
803 *
804 * (root_key.objectid, inode objectid, offset in file, 1)
805 *
806 * When a file extent is removed file truncation, we find the
807 * corresponding implicit back refs and check the following fields:
808 *
809 * (btrfs_header_owner(leaf), inode objectid, offset in file)
810 *
811 * Btree extents can be referenced by:
812 *
813 * - Different subvolumes
814 *
815 * Both the implicit back refs and the full back refs for tree blocks
816 * only consist of key. The key offset for the implicit back refs is
817 * objectid of block's owner tree. The key offset for the full back refs
818 * is the first byte of parent block.
819 *
820 * When implicit back refs is used, information about the lowest key and
821 * level of the tree block are required. These information are stored in
822 * tree block info structure.
823 */
824
825 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
826 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
827 struct btrfs_root *root,
828 struct btrfs_path *path,
829 u64 owner, u32 extra_size)
830 {
831 struct btrfs_extent_item *item;
832 struct btrfs_extent_item_v0 *ei0;
833 struct btrfs_extent_ref_v0 *ref0;
834 struct btrfs_tree_block_info *bi;
835 struct extent_buffer *leaf;
836 struct btrfs_key key;
837 struct btrfs_key found_key;
838 u32 new_size = sizeof(*item);
839 u64 refs;
840 int ret;
841
842 leaf = path->nodes[0];
843 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
844
845 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
846 ei0 = btrfs_item_ptr(leaf, path->slots[0],
847 struct btrfs_extent_item_v0);
848 refs = btrfs_extent_refs_v0(leaf, ei0);
849
850 if (owner == (u64)-1) {
851 while (1) {
852 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
853 ret = btrfs_next_leaf(root, path);
854 if (ret < 0)
855 return ret;
856 BUG_ON(ret > 0);
857 leaf = path->nodes[0];
858 }
859 btrfs_item_key_to_cpu(leaf, &found_key,
860 path->slots[0]);
861 BUG_ON(key.objectid != found_key.objectid);
862 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
863 path->slots[0]++;
864 continue;
865 }
866 ref0 = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_ref_v0);
868 owner = btrfs_ref_objectid_v0(leaf, ref0);
869 break;
870 }
871 }
872 btrfs_release_path(root, path);
873
874 if (owner < BTRFS_FIRST_FREE_OBJECTID)
875 new_size += sizeof(*bi);
876
877 new_size -= sizeof(*ei0);
878 ret = btrfs_search_slot(trans, root, &key, path,
879 new_size + extra_size, 1);
880 if (ret < 0)
881 return ret;
882 BUG_ON(ret);
883
884 ret = btrfs_extend_item(trans, root, path, new_size);
885 BUG_ON(ret);
886
887 leaf = path->nodes[0];
888 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
889 btrfs_set_extent_refs(leaf, item, refs);
890 /* FIXME: get real generation */
891 btrfs_set_extent_generation(leaf, item, 0);
892 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
893 btrfs_set_extent_flags(leaf, item,
894 BTRFS_EXTENT_FLAG_TREE_BLOCK |
895 BTRFS_BLOCK_FLAG_FULL_BACKREF);
896 bi = (struct btrfs_tree_block_info *)(item + 1);
897 /* FIXME: get first key of the block */
898 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
899 btrfs_set_tree_block_level(leaf, bi, (int)owner);
900 } else {
901 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
902 }
903 btrfs_mark_buffer_dirty(leaf);
904 return 0;
905 }
906 #endif
907
908 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
909 {
910 u32 high_crc = ~(u32)0;
911 u32 low_crc = ~(u32)0;
912 __le64 lenum;
913
914 lenum = cpu_to_le64(root_objectid);
915 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
916 lenum = cpu_to_le64(owner);
917 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
918 lenum = cpu_to_le64(offset);
919 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
920
921 return ((u64)high_crc << 31) ^ (u64)low_crc;
922 }
923
924 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
925 struct btrfs_extent_data_ref *ref)
926 {
927 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
928 btrfs_extent_data_ref_objectid(leaf, ref),
929 btrfs_extent_data_ref_offset(leaf, ref));
930 }
931
932 static int match_extent_data_ref(struct extent_buffer *leaf,
933 struct btrfs_extent_data_ref *ref,
934 u64 root_objectid, u64 owner, u64 offset)
935 {
936 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
937 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
938 btrfs_extent_data_ref_offset(leaf, ref) != offset)
939 return 0;
940 return 1;
941 }
942
943 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
944 struct btrfs_root *root,
945 struct btrfs_path *path,
946 u64 bytenr, u64 parent,
947 u64 root_objectid,
948 u64 owner, u64 offset)
949 {
950 struct btrfs_key key;
951 struct btrfs_extent_data_ref *ref;
952 struct extent_buffer *leaf;
953 u32 nritems;
954 int ret;
955 int recow;
956 int err = -ENOENT;
957
958 key.objectid = bytenr;
959 if (parent) {
960 key.type = BTRFS_SHARED_DATA_REF_KEY;
961 key.offset = parent;
962 } else {
963 key.type = BTRFS_EXTENT_DATA_REF_KEY;
964 key.offset = hash_extent_data_ref(root_objectid,
965 owner, offset);
966 }
967 again:
968 recow = 0;
969 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
970 if (ret < 0) {
971 err = ret;
972 goto fail;
973 }
974
975 if (parent) {
976 if (!ret)
977 return 0;
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 key.type = BTRFS_EXTENT_REF_V0_KEY;
980 btrfs_release_path(root, path);
981 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
982 if (ret < 0) {
983 err = ret;
984 goto fail;
985 }
986 if (!ret)
987 return 0;
988 #endif
989 goto fail;
990 }
991
992 leaf = path->nodes[0];
993 nritems = btrfs_header_nritems(leaf);
994 while (1) {
995 if (path->slots[0] >= nritems) {
996 ret = btrfs_next_leaf(root, path);
997 if (ret < 0)
998 err = ret;
999 if (ret)
1000 goto fail;
1001
1002 leaf = path->nodes[0];
1003 nritems = btrfs_header_nritems(leaf);
1004 recow = 1;
1005 }
1006
1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008 if (key.objectid != bytenr ||
1009 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1010 goto fail;
1011
1012 ref = btrfs_item_ptr(leaf, path->slots[0],
1013 struct btrfs_extent_data_ref);
1014
1015 if (match_extent_data_ref(leaf, ref, root_objectid,
1016 owner, offset)) {
1017 if (recow) {
1018 btrfs_release_path(root, path);
1019 goto again;
1020 }
1021 err = 0;
1022 break;
1023 }
1024 path->slots[0]++;
1025 }
1026 fail:
1027 return err;
1028 }
1029
1030 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1031 struct btrfs_root *root,
1032 struct btrfs_path *path,
1033 u64 bytenr, u64 parent,
1034 u64 root_objectid, u64 owner,
1035 u64 offset, int refs_to_add)
1036 {
1037 struct btrfs_key key;
1038 struct extent_buffer *leaf;
1039 u32 size;
1040 u32 num_refs;
1041 int ret;
1042
1043 key.objectid = bytenr;
1044 if (parent) {
1045 key.type = BTRFS_SHARED_DATA_REF_KEY;
1046 key.offset = parent;
1047 size = sizeof(struct btrfs_shared_data_ref);
1048 } else {
1049 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1050 key.offset = hash_extent_data_ref(root_objectid,
1051 owner, offset);
1052 size = sizeof(struct btrfs_extent_data_ref);
1053 }
1054
1055 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1056 if (ret && ret != -EEXIST)
1057 goto fail;
1058
1059 leaf = path->nodes[0];
1060 if (parent) {
1061 struct btrfs_shared_data_ref *ref;
1062 ref = btrfs_item_ptr(leaf, path->slots[0],
1063 struct btrfs_shared_data_ref);
1064 if (ret == 0) {
1065 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1066 } else {
1067 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1068 num_refs += refs_to_add;
1069 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1070 }
1071 } else {
1072 struct btrfs_extent_data_ref *ref;
1073 while (ret == -EEXIST) {
1074 ref = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_extent_data_ref);
1076 if (match_extent_data_ref(leaf, ref, root_objectid,
1077 owner, offset))
1078 break;
1079 btrfs_release_path(root, path);
1080 key.offset++;
1081 ret = btrfs_insert_empty_item(trans, root, path, &key,
1082 size);
1083 if (ret && ret != -EEXIST)
1084 goto fail;
1085
1086 leaf = path->nodes[0];
1087 }
1088 ref = btrfs_item_ptr(leaf, path->slots[0],
1089 struct btrfs_extent_data_ref);
1090 if (ret == 0) {
1091 btrfs_set_extent_data_ref_root(leaf, ref,
1092 root_objectid);
1093 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1094 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1095 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1096 } else {
1097 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1098 num_refs += refs_to_add;
1099 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1100 }
1101 }
1102 btrfs_mark_buffer_dirty(leaf);
1103 ret = 0;
1104 fail:
1105 btrfs_release_path(root, path);
1106 return ret;
1107 }
1108
1109 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1110 struct btrfs_root *root,
1111 struct btrfs_path *path,
1112 int refs_to_drop)
1113 {
1114 struct btrfs_key key;
1115 struct btrfs_extent_data_ref *ref1 = NULL;
1116 struct btrfs_shared_data_ref *ref2 = NULL;
1117 struct extent_buffer *leaf;
1118 u32 num_refs = 0;
1119 int ret = 0;
1120
1121 leaf = path->nodes[0];
1122 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1123
1124 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1125 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1126 struct btrfs_extent_data_ref);
1127 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1128 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1129 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1130 struct btrfs_shared_data_ref);
1131 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1132 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1133 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1134 struct btrfs_extent_ref_v0 *ref0;
1135 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1136 struct btrfs_extent_ref_v0);
1137 num_refs = btrfs_ref_count_v0(leaf, ref0);
1138 #endif
1139 } else {
1140 BUG();
1141 }
1142
1143 BUG_ON(num_refs < refs_to_drop);
1144 num_refs -= refs_to_drop;
1145
1146 if (num_refs == 0) {
1147 ret = btrfs_del_item(trans, root, path);
1148 } else {
1149 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1150 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1151 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1152 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1154 else {
1155 struct btrfs_extent_ref_v0 *ref0;
1156 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1157 struct btrfs_extent_ref_v0);
1158 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1159 }
1160 #endif
1161 btrfs_mark_buffer_dirty(leaf);
1162 }
1163 return ret;
1164 }
1165
1166 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1167 struct btrfs_path *path,
1168 struct btrfs_extent_inline_ref *iref)
1169 {
1170 struct btrfs_key key;
1171 struct extent_buffer *leaf;
1172 struct btrfs_extent_data_ref *ref1;
1173 struct btrfs_shared_data_ref *ref2;
1174 u32 num_refs = 0;
1175
1176 leaf = path->nodes[0];
1177 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1178 if (iref) {
1179 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1180 BTRFS_EXTENT_DATA_REF_KEY) {
1181 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1182 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1183 } else {
1184 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1185 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1186 }
1187 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1188 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_extent_data_ref);
1190 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1191 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1192 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1193 struct btrfs_shared_data_ref);
1194 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1196 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1197 struct btrfs_extent_ref_v0 *ref0;
1198 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1199 struct btrfs_extent_ref_v0);
1200 num_refs = btrfs_ref_count_v0(leaf, ref0);
1201 #endif
1202 } else {
1203 WARN_ON(1);
1204 }
1205 return num_refs;
1206 }
1207
1208 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1209 struct btrfs_root *root,
1210 struct btrfs_path *path,
1211 u64 bytenr, u64 parent,
1212 u64 root_objectid)
1213 {
1214 struct btrfs_key key;
1215 int ret;
1216
1217 key.objectid = bytenr;
1218 if (parent) {
1219 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1220 key.offset = parent;
1221 } else {
1222 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1223 key.offset = root_objectid;
1224 }
1225
1226 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1227 if (ret > 0)
1228 ret = -ENOENT;
1229 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1230 if (ret == -ENOENT && parent) {
1231 btrfs_release_path(root, path);
1232 key.type = BTRFS_EXTENT_REF_V0_KEY;
1233 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1234 if (ret > 0)
1235 ret = -ENOENT;
1236 }
1237 #endif
1238 return ret;
1239 }
1240
1241 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1242 struct btrfs_root *root,
1243 struct btrfs_path *path,
1244 u64 bytenr, u64 parent,
1245 u64 root_objectid)
1246 {
1247 struct btrfs_key key;
1248 int ret;
1249
1250 key.objectid = bytenr;
1251 if (parent) {
1252 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1256 key.offset = root_objectid;
1257 }
1258
1259 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1260 btrfs_release_path(root, path);
1261 return ret;
1262 }
1263
1264 static inline int extent_ref_type(u64 parent, u64 owner)
1265 {
1266 int type;
1267 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1268 if (parent > 0)
1269 type = BTRFS_SHARED_BLOCK_REF_KEY;
1270 else
1271 type = BTRFS_TREE_BLOCK_REF_KEY;
1272 } else {
1273 if (parent > 0)
1274 type = BTRFS_SHARED_DATA_REF_KEY;
1275 else
1276 type = BTRFS_EXTENT_DATA_REF_KEY;
1277 }
1278 return type;
1279 }
1280
1281 static int find_next_key(struct btrfs_path *path, int level,
1282 struct btrfs_key *key)
1283
1284 {
1285 for (; level < BTRFS_MAX_LEVEL; level++) {
1286 if (!path->nodes[level])
1287 break;
1288 if (path->slots[level] + 1 >=
1289 btrfs_header_nritems(path->nodes[level]))
1290 continue;
1291 if (level == 0)
1292 btrfs_item_key_to_cpu(path->nodes[level], key,
1293 path->slots[level] + 1);
1294 else
1295 btrfs_node_key_to_cpu(path->nodes[level], key,
1296 path->slots[level] + 1);
1297 return 0;
1298 }
1299 return 1;
1300 }
1301
1302 /*
1303 * look for inline back ref. if back ref is found, *ref_ret is set
1304 * to the address of inline back ref, and 0 is returned.
1305 *
1306 * if back ref isn't found, *ref_ret is set to the address where it
1307 * should be inserted, and -ENOENT is returned.
1308 *
1309 * if insert is true and there are too many inline back refs, the path
1310 * points to the extent item, and -EAGAIN is returned.
1311 *
1312 * NOTE: inline back refs are ordered in the same way that back ref
1313 * items in the tree are ordered.
1314 */
1315 static noinline_for_stack
1316 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1317 struct btrfs_root *root,
1318 struct btrfs_path *path,
1319 struct btrfs_extent_inline_ref **ref_ret,
1320 u64 bytenr, u64 num_bytes,
1321 u64 parent, u64 root_objectid,
1322 u64 owner, u64 offset, int insert)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_item *ei;
1327 struct btrfs_extent_inline_ref *iref;
1328 u64 flags;
1329 u64 item_size;
1330 unsigned long ptr;
1331 unsigned long end;
1332 int extra_size;
1333 int type;
1334 int want;
1335 int ret;
1336 int err = 0;
1337
1338 key.objectid = bytenr;
1339 key.type = BTRFS_EXTENT_ITEM_KEY;
1340 key.offset = num_bytes;
1341
1342 want = extent_ref_type(parent, owner);
1343 if (insert) {
1344 extra_size = btrfs_extent_inline_ref_size(want);
1345 path->keep_locks = 1;
1346 } else
1347 extra_size = -1;
1348 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1349 if (ret < 0) {
1350 err = ret;
1351 goto out;
1352 }
1353 BUG_ON(ret);
1354
1355 leaf = path->nodes[0];
1356 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 if (item_size < sizeof(*ei)) {
1359 if (!insert) {
1360 err = -ENOENT;
1361 goto out;
1362 }
1363 ret = convert_extent_item_v0(trans, root, path, owner,
1364 extra_size);
1365 if (ret < 0) {
1366 err = ret;
1367 goto out;
1368 }
1369 leaf = path->nodes[0];
1370 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1371 }
1372 #endif
1373 BUG_ON(item_size < sizeof(*ei));
1374
1375 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1376 flags = btrfs_extent_flags(leaf, ei);
1377
1378 ptr = (unsigned long)(ei + 1);
1379 end = (unsigned long)ei + item_size;
1380
1381 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1382 ptr += sizeof(struct btrfs_tree_block_info);
1383 BUG_ON(ptr > end);
1384 } else {
1385 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1386 }
1387
1388 err = -ENOENT;
1389 while (1) {
1390 if (ptr >= end) {
1391 WARN_ON(ptr > end);
1392 break;
1393 }
1394 iref = (struct btrfs_extent_inline_ref *)ptr;
1395 type = btrfs_extent_inline_ref_type(leaf, iref);
1396 if (want < type)
1397 break;
1398 if (want > type) {
1399 ptr += btrfs_extent_inline_ref_size(type);
1400 continue;
1401 }
1402
1403 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 struct btrfs_extent_data_ref *dref;
1405 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1406 if (match_extent_data_ref(leaf, dref, root_objectid,
1407 owner, offset)) {
1408 err = 0;
1409 break;
1410 }
1411 if (hash_extent_data_ref_item(leaf, dref) <
1412 hash_extent_data_ref(root_objectid, owner, offset))
1413 break;
1414 } else {
1415 u64 ref_offset;
1416 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1417 if (parent > 0) {
1418 if (parent == ref_offset) {
1419 err = 0;
1420 break;
1421 }
1422 if (ref_offset < parent)
1423 break;
1424 } else {
1425 if (root_objectid == ref_offset) {
1426 err = 0;
1427 break;
1428 }
1429 if (ref_offset < root_objectid)
1430 break;
1431 }
1432 }
1433 ptr += btrfs_extent_inline_ref_size(type);
1434 }
1435 if (err == -ENOENT && insert) {
1436 if (item_size + extra_size >=
1437 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1438 err = -EAGAIN;
1439 goto out;
1440 }
1441 /*
1442 * To add new inline back ref, we have to make sure
1443 * there is no corresponding back ref item.
1444 * For simplicity, we just do not add new inline back
1445 * ref if there is any kind of item for this block
1446 */
1447 if (find_next_key(path, 0, &key) == 0 &&
1448 key.objectid == bytenr &&
1449 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1450 err = -EAGAIN;
1451 goto out;
1452 }
1453 }
1454 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1455 out:
1456 if (insert) {
1457 path->keep_locks = 0;
1458 btrfs_unlock_up_safe(path, 1);
1459 }
1460 return err;
1461 }
1462
1463 /*
1464 * helper to add new inline back ref
1465 */
1466 static noinline_for_stack
1467 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1468 struct btrfs_root *root,
1469 struct btrfs_path *path,
1470 struct btrfs_extent_inline_ref *iref,
1471 u64 parent, u64 root_objectid,
1472 u64 owner, u64 offset, int refs_to_add,
1473 struct btrfs_delayed_extent_op *extent_op)
1474 {
1475 struct extent_buffer *leaf;
1476 struct btrfs_extent_item *ei;
1477 unsigned long ptr;
1478 unsigned long end;
1479 unsigned long item_offset;
1480 u64 refs;
1481 int size;
1482 int type;
1483 int ret;
1484
1485 leaf = path->nodes[0];
1486 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1487 item_offset = (unsigned long)iref - (unsigned long)ei;
1488
1489 type = extent_ref_type(parent, owner);
1490 size = btrfs_extent_inline_ref_size(type);
1491
1492 ret = btrfs_extend_item(trans, root, path, size);
1493 BUG_ON(ret);
1494
1495 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1496 refs = btrfs_extent_refs(leaf, ei);
1497 refs += refs_to_add;
1498 btrfs_set_extent_refs(leaf, ei, refs);
1499 if (extent_op)
1500 __run_delayed_extent_op(extent_op, leaf, ei);
1501
1502 ptr = (unsigned long)ei + item_offset;
1503 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1504 if (ptr < end - size)
1505 memmove_extent_buffer(leaf, ptr + size, ptr,
1506 end - size - ptr);
1507
1508 iref = (struct btrfs_extent_inline_ref *)ptr;
1509 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1510 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1511 struct btrfs_extent_data_ref *dref;
1512 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1513 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1514 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1515 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1516 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1517 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1518 struct btrfs_shared_data_ref *sref;
1519 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1520 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1521 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1522 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1523 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1524 } else {
1525 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1526 }
1527 btrfs_mark_buffer_dirty(leaf);
1528 return 0;
1529 }
1530
1531 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root,
1533 struct btrfs_path *path,
1534 struct btrfs_extent_inline_ref **ref_ret,
1535 u64 bytenr, u64 num_bytes, u64 parent,
1536 u64 root_objectid, u64 owner, u64 offset)
1537 {
1538 int ret;
1539
1540 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1541 bytenr, num_bytes, parent,
1542 root_objectid, owner, offset, 0);
1543 if (ret != -ENOENT)
1544 return ret;
1545
1546 btrfs_release_path(root, path);
1547 *ref_ret = NULL;
1548
1549 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1550 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1551 root_objectid);
1552 } else {
1553 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1554 root_objectid, owner, offset);
1555 }
1556 return ret;
1557 }
1558
1559 /*
1560 * helper to update/remove inline back ref
1561 */
1562 static noinline_for_stack
1563 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1564 struct btrfs_root *root,
1565 struct btrfs_path *path,
1566 struct btrfs_extent_inline_ref *iref,
1567 int refs_to_mod,
1568 struct btrfs_delayed_extent_op *extent_op)
1569 {
1570 struct extent_buffer *leaf;
1571 struct btrfs_extent_item *ei;
1572 struct btrfs_extent_data_ref *dref = NULL;
1573 struct btrfs_shared_data_ref *sref = NULL;
1574 unsigned long ptr;
1575 unsigned long end;
1576 u32 item_size;
1577 int size;
1578 int type;
1579 int ret;
1580 u64 refs;
1581
1582 leaf = path->nodes[0];
1583 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1584 refs = btrfs_extent_refs(leaf, ei);
1585 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1586 refs += refs_to_mod;
1587 btrfs_set_extent_refs(leaf, ei, refs);
1588 if (extent_op)
1589 __run_delayed_extent_op(extent_op, leaf, ei);
1590
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592
1593 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1594 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1595 refs = btrfs_extent_data_ref_count(leaf, dref);
1596 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1597 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1598 refs = btrfs_shared_data_ref_count(leaf, sref);
1599 } else {
1600 refs = 1;
1601 BUG_ON(refs_to_mod != -1);
1602 }
1603
1604 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1605 refs += refs_to_mod;
1606
1607 if (refs > 0) {
1608 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1609 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1610 else
1611 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1612 } else {
1613 size = btrfs_extent_inline_ref_size(type);
1614 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1615 ptr = (unsigned long)iref;
1616 end = (unsigned long)ei + item_size;
1617 if (ptr + size < end)
1618 memmove_extent_buffer(leaf, ptr, ptr + size,
1619 end - ptr - size);
1620 item_size -= size;
1621 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1622 BUG_ON(ret);
1623 }
1624 btrfs_mark_buffer_dirty(leaf);
1625 return 0;
1626 }
1627
1628 static noinline_for_stack
1629 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1630 struct btrfs_root *root,
1631 struct btrfs_path *path,
1632 u64 bytenr, u64 num_bytes, u64 parent,
1633 u64 root_objectid, u64 owner,
1634 u64 offset, int refs_to_add,
1635 struct btrfs_delayed_extent_op *extent_op)
1636 {
1637 struct btrfs_extent_inline_ref *iref;
1638 int ret;
1639
1640 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1641 bytenr, num_bytes, parent,
1642 root_objectid, owner, offset, 1);
1643 if (ret == 0) {
1644 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1645 ret = update_inline_extent_backref(trans, root, path, iref,
1646 refs_to_add, extent_op);
1647 } else if (ret == -ENOENT) {
1648 ret = setup_inline_extent_backref(trans, root, path, iref,
1649 parent, root_objectid,
1650 owner, offset, refs_to_add,
1651 extent_op);
1652 }
1653 return ret;
1654 }
1655
1656 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1657 struct btrfs_root *root,
1658 struct btrfs_path *path,
1659 u64 bytenr, u64 parent, u64 root_objectid,
1660 u64 owner, u64 offset, int refs_to_add)
1661 {
1662 int ret;
1663 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1664 BUG_ON(refs_to_add != 1);
1665 ret = insert_tree_block_ref(trans, root, path, bytenr,
1666 parent, root_objectid);
1667 } else {
1668 ret = insert_extent_data_ref(trans, root, path, bytenr,
1669 parent, root_objectid,
1670 owner, offset, refs_to_add);
1671 }
1672 return ret;
1673 }
1674
1675 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1676 struct btrfs_root *root,
1677 struct btrfs_path *path,
1678 struct btrfs_extent_inline_ref *iref,
1679 int refs_to_drop, int is_data)
1680 {
1681 int ret;
1682
1683 BUG_ON(!is_data && refs_to_drop != 1);
1684 if (iref) {
1685 ret = update_inline_extent_backref(trans, root, path, iref,
1686 -refs_to_drop, NULL);
1687 } else if (is_data) {
1688 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1689 } else {
1690 ret = btrfs_del_item(trans, root, path);
1691 }
1692 return ret;
1693 }
1694
1695 static void btrfs_issue_discard(struct block_device *bdev,
1696 u64 start, u64 len)
1697 {
1698 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL,
1699 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
1700 }
1701
1702 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1703 u64 num_bytes)
1704 {
1705 int ret;
1706 u64 map_length = num_bytes;
1707 struct btrfs_multi_bio *multi = NULL;
1708
1709 if (!btrfs_test_opt(root, DISCARD))
1710 return 0;
1711
1712 /* Tell the block device(s) that the sectors can be discarded */
1713 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1714 bytenr, &map_length, &multi, 0);
1715 if (!ret) {
1716 struct btrfs_bio_stripe *stripe = multi->stripes;
1717 int i;
1718
1719 if (map_length > num_bytes)
1720 map_length = num_bytes;
1721
1722 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1723 btrfs_issue_discard(stripe->dev->bdev,
1724 stripe->physical,
1725 map_length);
1726 }
1727 kfree(multi);
1728 }
1729
1730 return ret;
1731 }
1732
1733 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1734 struct btrfs_root *root,
1735 u64 bytenr, u64 num_bytes, u64 parent,
1736 u64 root_objectid, u64 owner, u64 offset)
1737 {
1738 int ret;
1739 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1740 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1741
1742 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1743 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1744 parent, root_objectid, (int)owner,
1745 BTRFS_ADD_DELAYED_REF, NULL);
1746 } else {
1747 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1748 parent, root_objectid, owner, offset,
1749 BTRFS_ADD_DELAYED_REF, NULL);
1750 }
1751 return ret;
1752 }
1753
1754 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1755 struct btrfs_root *root,
1756 u64 bytenr, u64 num_bytes,
1757 u64 parent, u64 root_objectid,
1758 u64 owner, u64 offset, int refs_to_add,
1759 struct btrfs_delayed_extent_op *extent_op)
1760 {
1761 struct btrfs_path *path;
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *item;
1764 u64 refs;
1765 int ret;
1766 int err = 0;
1767
1768 path = btrfs_alloc_path();
1769 if (!path)
1770 return -ENOMEM;
1771
1772 path->reada = 1;
1773 path->leave_spinning = 1;
1774 /* this will setup the path even if it fails to insert the back ref */
1775 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1776 path, bytenr, num_bytes, parent,
1777 root_objectid, owner, offset,
1778 refs_to_add, extent_op);
1779 if (ret == 0)
1780 goto out;
1781
1782 if (ret != -EAGAIN) {
1783 err = ret;
1784 goto out;
1785 }
1786
1787 leaf = path->nodes[0];
1788 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1789 refs = btrfs_extent_refs(leaf, item);
1790 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1791 if (extent_op)
1792 __run_delayed_extent_op(extent_op, leaf, item);
1793
1794 btrfs_mark_buffer_dirty(leaf);
1795 btrfs_release_path(root->fs_info->extent_root, path);
1796
1797 path->reada = 1;
1798 path->leave_spinning = 1;
1799
1800 /* now insert the actual backref */
1801 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1802 path, bytenr, parent, root_objectid,
1803 owner, offset, refs_to_add);
1804 BUG_ON(ret);
1805 out:
1806 btrfs_free_path(path);
1807 return err;
1808 }
1809
1810 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1811 struct btrfs_root *root,
1812 struct btrfs_delayed_ref_node *node,
1813 struct btrfs_delayed_extent_op *extent_op,
1814 int insert_reserved)
1815 {
1816 int ret = 0;
1817 struct btrfs_delayed_data_ref *ref;
1818 struct btrfs_key ins;
1819 u64 parent = 0;
1820 u64 ref_root = 0;
1821 u64 flags = 0;
1822
1823 ins.objectid = node->bytenr;
1824 ins.offset = node->num_bytes;
1825 ins.type = BTRFS_EXTENT_ITEM_KEY;
1826
1827 ref = btrfs_delayed_node_to_data_ref(node);
1828 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1829 parent = ref->parent;
1830 else
1831 ref_root = ref->root;
1832
1833 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1834 if (extent_op) {
1835 BUG_ON(extent_op->update_key);
1836 flags |= extent_op->flags_to_set;
1837 }
1838 ret = alloc_reserved_file_extent(trans, root,
1839 parent, ref_root, flags,
1840 ref->objectid, ref->offset,
1841 &ins, node->ref_mod);
1842 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1843 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1844 node->num_bytes, parent,
1845 ref_root, ref->objectid,
1846 ref->offset, node->ref_mod,
1847 extent_op);
1848 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1849 ret = __btrfs_free_extent(trans, root, node->bytenr,
1850 node->num_bytes, parent,
1851 ref_root, ref->objectid,
1852 ref->offset, node->ref_mod,
1853 extent_op);
1854 } else {
1855 BUG();
1856 }
1857 return ret;
1858 }
1859
1860 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1861 struct extent_buffer *leaf,
1862 struct btrfs_extent_item *ei)
1863 {
1864 u64 flags = btrfs_extent_flags(leaf, ei);
1865 if (extent_op->update_flags) {
1866 flags |= extent_op->flags_to_set;
1867 btrfs_set_extent_flags(leaf, ei, flags);
1868 }
1869
1870 if (extent_op->update_key) {
1871 struct btrfs_tree_block_info *bi;
1872 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1873 bi = (struct btrfs_tree_block_info *)(ei + 1);
1874 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1875 }
1876 }
1877
1878 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1879 struct btrfs_root *root,
1880 struct btrfs_delayed_ref_node *node,
1881 struct btrfs_delayed_extent_op *extent_op)
1882 {
1883 struct btrfs_key key;
1884 struct btrfs_path *path;
1885 struct btrfs_extent_item *ei;
1886 struct extent_buffer *leaf;
1887 u32 item_size;
1888 int ret;
1889 int err = 0;
1890
1891 path = btrfs_alloc_path();
1892 if (!path)
1893 return -ENOMEM;
1894
1895 key.objectid = node->bytenr;
1896 key.type = BTRFS_EXTENT_ITEM_KEY;
1897 key.offset = node->num_bytes;
1898
1899 path->reada = 1;
1900 path->leave_spinning = 1;
1901 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1902 path, 0, 1);
1903 if (ret < 0) {
1904 err = ret;
1905 goto out;
1906 }
1907 if (ret > 0) {
1908 err = -EIO;
1909 goto out;
1910 }
1911
1912 leaf = path->nodes[0];
1913 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1914 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1915 if (item_size < sizeof(*ei)) {
1916 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1917 path, (u64)-1, 0);
1918 if (ret < 0) {
1919 err = ret;
1920 goto out;
1921 }
1922 leaf = path->nodes[0];
1923 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1924 }
1925 #endif
1926 BUG_ON(item_size < sizeof(*ei));
1927 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1928 __run_delayed_extent_op(extent_op, leaf, ei);
1929
1930 btrfs_mark_buffer_dirty(leaf);
1931 out:
1932 btrfs_free_path(path);
1933 return err;
1934 }
1935
1936 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1937 struct btrfs_root *root,
1938 struct btrfs_delayed_ref_node *node,
1939 struct btrfs_delayed_extent_op *extent_op,
1940 int insert_reserved)
1941 {
1942 int ret = 0;
1943 struct btrfs_delayed_tree_ref *ref;
1944 struct btrfs_key ins;
1945 u64 parent = 0;
1946 u64 ref_root = 0;
1947
1948 ins.objectid = node->bytenr;
1949 ins.offset = node->num_bytes;
1950 ins.type = BTRFS_EXTENT_ITEM_KEY;
1951
1952 ref = btrfs_delayed_node_to_tree_ref(node);
1953 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1954 parent = ref->parent;
1955 else
1956 ref_root = ref->root;
1957
1958 BUG_ON(node->ref_mod != 1);
1959 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1960 BUG_ON(!extent_op || !extent_op->update_flags ||
1961 !extent_op->update_key);
1962 ret = alloc_reserved_tree_block(trans, root,
1963 parent, ref_root,
1964 extent_op->flags_to_set,
1965 &extent_op->key,
1966 ref->level, &ins);
1967 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1968 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1969 node->num_bytes, parent, ref_root,
1970 ref->level, 0, 1, extent_op);
1971 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1972 ret = __btrfs_free_extent(trans, root, node->bytenr,
1973 node->num_bytes, parent, ref_root,
1974 ref->level, 0, 1, extent_op);
1975 } else {
1976 BUG();
1977 }
1978 return ret;
1979 }
1980
1981 /* helper function to actually process a single delayed ref entry */
1982 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1983 struct btrfs_root *root,
1984 struct btrfs_delayed_ref_node *node,
1985 struct btrfs_delayed_extent_op *extent_op,
1986 int insert_reserved)
1987 {
1988 int ret;
1989 if (btrfs_delayed_ref_is_head(node)) {
1990 struct btrfs_delayed_ref_head *head;
1991 /*
1992 * we've hit the end of the chain and we were supposed
1993 * to insert this extent into the tree. But, it got
1994 * deleted before we ever needed to insert it, so all
1995 * we have to do is clean up the accounting
1996 */
1997 BUG_ON(extent_op);
1998 head = btrfs_delayed_node_to_head(node);
1999 if (insert_reserved) {
2000 btrfs_pin_extent(root, node->bytenr,
2001 node->num_bytes, 1);
2002 if (head->is_data) {
2003 ret = btrfs_del_csums(trans, root,
2004 node->bytenr,
2005 node->num_bytes);
2006 BUG_ON(ret);
2007 }
2008 }
2009 mutex_unlock(&head->mutex);
2010 return 0;
2011 }
2012
2013 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2014 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2015 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2016 insert_reserved);
2017 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2018 node->type == BTRFS_SHARED_DATA_REF_KEY)
2019 ret = run_delayed_data_ref(trans, root, node, extent_op,
2020 insert_reserved);
2021 else
2022 BUG();
2023 return ret;
2024 }
2025
2026 static noinline struct btrfs_delayed_ref_node *
2027 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2028 {
2029 struct rb_node *node;
2030 struct btrfs_delayed_ref_node *ref;
2031 int action = BTRFS_ADD_DELAYED_REF;
2032 again:
2033 /*
2034 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2035 * this prevents ref count from going down to zero when
2036 * there still are pending delayed ref.
2037 */
2038 node = rb_prev(&head->node.rb_node);
2039 while (1) {
2040 if (!node)
2041 break;
2042 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2043 rb_node);
2044 if (ref->bytenr != head->node.bytenr)
2045 break;
2046 if (ref->action == action)
2047 return ref;
2048 node = rb_prev(node);
2049 }
2050 if (action == BTRFS_ADD_DELAYED_REF) {
2051 action = BTRFS_DROP_DELAYED_REF;
2052 goto again;
2053 }
2054 return NULL;
2055 }
2056
2057 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2058 struct btrfs_root *root,
2059 struct list_head *cluster)
2060 {
2061 struct btrfs_delayed_ref_root *delayed_refs;
2062 struct btrfs_delayed_ref_node *ref;
2063 struct btrfs_delayed_ref_head *locked_ref = NULL;
2064 struct btrfs_delayed_extent_op *extent_op;
2065 int ret;
2066 int count = 0;
2067 int must_insert_reserved = 0;
2068
2069 delayed_refs = &trans->transaction->delayed_refs;
2070 while (1) {
2071 if (!locked_ref) {
2072 /* pick a new head ref from the cluster list */
2073 if (list_empty(cluster))
2074 break;
2075
2076 locked_ref = list_entry(cluster->next,
2077 struct btrfs_delayed_ref_head, cluster);
2078
2079 /* grab the lock that says we are going to process
2080 * all the refs for this head */
2081 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2082
2083 /*
2084 * we may have dropped the spin lock to get the head
2085 * mutex lock, and that might have given someone else
2086 * time to free the head. If that's true, it has been
2087 * removed from our list and we can move on.
2088 */
2089 if (ret == -EAGAIN) {
2090 locked_ref = NULL;
2091 count++;
2092 continue;
2093 }
2094 }
2095
2096 /*
2097 * record the must insert reserved flag before we
2098 * drop the spin lock.
2099 */
2100 must_insert_reserved = locked_ref->must_insert_reserved;
2101 locked_ref->must_insert_reserved = 0;
2102
2103 extent_op = locked_ref->extent_op;
2104 locked_ref->extent_op = NULL;
2105
2106 /*
2107 * locked_ref is the head node, so we have to go one
2108 * node back for any delayed ref updates
2109 */
2110 ref = select_delayed_ref(locked_ref);
2111 if (!ref) {
2112 /* All delayed refs have been processed, Go ahead
2113 * and send the head node to run_one_delayed_ref,
2114 * so that any accounting fixes can happen
2115 */
2116 ref = &locked_ref->node;
2117
2118 if (extent_op && must_insert_reserved) {
2119 kfree(extent_op);
2120 extent_op = NULL;
2121 }
2122
2123 if (extent_op) {
2124 spin_unlock(&delayed_refs->lock);
2125
2126 ret = run_delayed_extent_op(trans, root,
2127 ref, extent_op);
2128 BUG_ON(ret);
2129 kfree(extent_op);
2130
2131 cond_resched();
2132 spin_lock(&delayed_refs->lock);
2133 continue;
2134 }
2135
2136 list_del_init(&locked_ref->cluster);
2137 locked_ref = NULL;
2138 }
2139
2140 ref->in_tree = 0;
2141 rb_erase(&ref->rb_node, &delayed_refs->root);
2142 delayed_refs->num_entries--;
2143
2144 spin_unlock(&delayed_refs->lock);
2145
2146 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2147 must_insert_reserved);
2148 BUG_ON(ret);
2149
2150 btrfs_put_delayed_ref(ref);
2151 kfree(extent_op);
2152 count++;
2153
2154 cond_resched();
2155 spin_lock(&delayed_refs->lock);
2156 }
2157 return count;
2158 }
2159
2160 /*
2161 * this starts processing the delayed reference count updates and
2162 * extent insertions we have queued up so far. count can be
2163 * 0, which means to process everything in the tree at the start
2164 * of the run (but not newly added entries), or it can be some target
2165 * number you'd like to process.
2166 */
2167 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2168 struct btrfs_root *root, unsigned long count)
2169 {
2170 struct rb_node *node;
2171 struct btrfs_delayed_ref_root *delayed_refs;
2172 struct btrfs_delayed_ref_node *ref;
2173 struct list_head cluster;
2174 int ret;
2175 int run_all = count == (unsigned long)-1;
2176 int run_most = 0;
2177
2178 if (root == root->fs_info->extent_root)
2179 root = root->fs_info->tree_root;
2180
2181 delayed_refs = &trans->transaction->delayed_refs;
2182 INIT_LIST_HEAD(&cluster);
2183 again:
2184 spin_lock(&delayed_refs->lock);
2185 if (count == 0) {
2186 count = delayed_refs->num_entries * 2;
2187 run_most = 1;
2188 }
2189 while (1) {
2190 if (!(run_all || run_most) &&
2191 delayed_refs->num_heads_ready < 64)
2192 break;
2193
2194 /*
2195 * go find something we can process in the rbtree. We start at
2196 * the beginning of the tree, and then build a cluster
2197 * of refs to process starting at the first one we are able to
2198 * lock
2199 */
2200 ret = btrfs_find_ref_cluster(trans, &cluster,
2201 delayed_refs->run_delayed_start);
2202 if (ret)
2203 break;
2204
2205 ret = run_clustered_refs(trans, root, &cluster);
2206 BUG_ON(ret < 0);
2207
2208 count -= min_t(unsigned long, ret, count);
2209
2210 if (count == 0)
2211 break;
2212 }
2213
2214 if (run_all) {
2215 node = rb_first(&delayed_refs->root);
2216 if (!node)
2217 goto out;
2218 count = (unsigned long)-1;
2219
2220 while (node) {
2221 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2222 rb_node);
2223 if (btrfs_delayed_ref_is_head(ref)) {
2224 struct btrfs_delayed_ref_head *head;
2225
2226 head = btrfs_delayed_node_to_head(ref);
2227 atomic_inc(&ref->refs);
2228
2229 spin_unlock(&delayed_refs->lock);
2230 mutex_lock(&head->mutex);
2231 mutex_unlock(&head->mutex);
2232
2233 btrfs_put_delayed_ref(ref);
2234 cond_resched();
2235 goto again;
2236 }
2237 node = rb_next(node);
2238 }
2239 spin_unlock(&delayed_refs->lock);
2240 schedule_timeout(1);
2241 goto again;
2242 }
2243 out:
2244 spin_unlock(&delayed_refs->lock);
2245 return 0;
2246 }
2247
2248 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2249 struct btrfs_root *root,
2250 u64 bytenr, u64 num_bytes, u64 flags,
2251 int is_data)
2252 {
2253 struct btrfs_delayed_extent_op *extent_op;
2254 int ret;
2255
2256 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2257 if (!extent_op)
2258 return -ENOMEM;
2259
2260 extent_op->flags_to_set = flags;
2261 extent_op->update_flags = 1;
2262 extent_op->update_key = 0;
2263 extent_op->is_data = is_data ? 1 : 0;
2264
2265 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2266 if (ret)
2267 kfree(extent_op);
2268 return ret;
2269 }
2270
2271 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2272 struct btrfs_root *root,
2273 struct btrfs_path *path,
2274 u64 objectid, u64 offset, u64 bytenr)
2275 {
2276 struct btrfs_delayed_ref_head *head;
2277 struct btrfs_delayed_ref_node *ref;
2278 struct btrfs_delayed_data_ref *data_ref;
2279 struct btrfs_delayed_ref_root *delayed_refs;
2280 struct rb_node *node;
2281 int ret = 0;
2282
2283 ret = -ENOENT;
2284 delayed_refs = &trans->transaction->delayed_refs;
2285 spin_lock(&delayed_refs->lock);
2286 head = btrfs_find_delayed_ref_head(trans, bytenr);
2287 if (!head)
2288 goto out;
2289
2290 if (!mutex_trylock(&head->mutex)) {
2291 atomic_inc(&head->node.refs);
2292 spin_unlock(&delayed_refs->lock);
2293
2294 btrfs_release_path(root->fs_info->extent_root, path);
2295
2296 mutex_lock(&head->mutex);
2297 mutex_unlock(&head->mutex);
2298 btrfs_put_delayed_ref(&head->node);
2299 return -EAGAIN;
2300 }
2301
2302 node = rb_prev(&head->node.rb_node);
2303 if (!node)
2304 goto out_unlock;
2305
2306 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2307
2308 if (ref->bytenr != bytenr)
2309 goto out_unlock;
2310
2311 ret = 1;
2312 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2313 goto out_unlock;
2314
2315 data_ref = btrfs_delayed_node_to_data_ref(ref);
2316
2317 node = rb_prev(node);
2318 if (node) {
2319 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2320 if (ref->bytenr == bytenr)
2321 goto out_unlock;
2322 }
2323
2324 if (data_ref->root != root->root_key.objectid ||
2325 data_ref->objectid != objectid || data_ref->offset != offset)
2326 goto out_unlock;
2327
2328 ret = 0;
2329 out_unlock:
2330 mutex_unlock(&head->mutex);
2331 out:
2332 spin_unlock(&delayed_refs->lock);
2333 return ret;
2334 }
2335
2336 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2337 struct btrfs_root *root,
2338 struct btrfs_path *path,
2339 u64 objectid, u64 offset, u64 bytenr)
2340 {
2341 struct btrfs_root *extent_root = root->fs_info->extent_root;
2342 struct extent_buffer *leaf;
2343 struct btrfs_extent_data_ref *ref;
2344 struct btrfs_extent_inline_ref *iref;
2345 struct btrfs_extent_item *ei;
2346 struct btrfs_key key;
2347 u32 item_size;
2348 int ret;
2349
2350 key.objectid = bytenr;
2351 key.offset = (u64)-1;
2352 key.type = BTRFS_EXTENT_ITEM_KEY;
2353
2354 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2355 if (ret < 0)
2356 goto out;
2357 BUG_ON(ret == 0);
2358
2359 ret = -ENOENT;
2360 if (path->slots[0] == 0)
2361 goto out;
2362
2363 path->slots[0]--;
2364 leaf = path->nodes[0];
2365 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2366
2367 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2368 goto out;
2369
2370 ret = 1;
2371 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2372 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2373 if (item_size < sizeof(*ei)) {
2374 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2375 goto out;
2376 }
2377 #endif
2378 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2379
2380 if (item_size != sizeof(*ei) +
2381 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2382 goto out;
2383
2384 if (btrfs_extent_generation(leaf, ei) <=
2385 btrfs_root_last_snapshot(&root->root_item))
2386 goto out;
2387
2388 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2389 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2390 BTRFS_EXTENT_DATA_REF_KEY)
2391 goto out;
2392
2393 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2394 if (btrfs_extent_refs(leaf, ei) !=
2395 btrfs_extent_data_ref_count(leaf, ref) ||
2396 btrfs_extent_data_ref_root(leaf, ref) !=
2397 root->root_key.objectid ||
2398 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2399 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2400 goto out;
2401
2402 ret = 0;
2403 out:
2404 return ret;
2405 }
2406
2407 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2408 struct btrfs_root *root,
2409 u64 objectid, u64 offset, u64 bytenr)
2410 {
2411 struct btrfs_path *path;
2412 int ret;
2413 int ret2;
2414
2415 path = btrfs_alloc_path();
2416 if (!path)
2417 return -ENOENT;
2418
2419 do {
2420 ret = check_committed_ref(trans, root, path, objectid,
2421 offset, bytenr);
2422 if (ret && ret != -ENOENT)
2423 goto out;
2424
2425 ret2 = check_delayed_ref(trans, root, path, objectid,
2426 offset, bytenr);
2427 } while (ret2 == -EAGAIN);
2428
2429 if (ret2 && ret2 != -ENOENT) {
2430 ret = ret2;
2431 goto out;
2432 }
2433
2434 if (ret != -ENOENT || ret2 != -ENOENT)
2435 ret = 0;
2436 out:
2437 btrfs_free_path(path);
2438 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2439 WARN_ON(ret > 0);
2440 return ret;
2441 }
2442
2443 #if 0
2444 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2445 struct extent_buffer *buf, u32 nr_extents)
2446 {
2447 struct btrfs_key key;
2448 struct btrfs_file_extent_item *fi;
2449 u64 root_gen;
2450 u32 nritems;
2451 int i;
2452 int level;
2453 int ret = 0;
2454 int shared = 0;
2455
2456 if (!root->ref_cows)
2457 return 0;
2458
2459 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2460 shared = 0;
2461 root_gen = root->root_key.offset;
2462 } else {
2463 shared = 1;
2464 root_gen = trans->transid - 1;
2465 }
2466
2467 level = btrfs_header_level(buf);
2468 nritems = btrfs_header_nritems(buf);
2469
2470 if (level == 0) {
2471 struct btrfs_leaf_ref *ref;
2472 struct btrfs_extent_info *info;
2473
2474 ref = btrfs_alloc_leaf_ref(root, nr_extents);
2475 if (!ref) {
2476 ret = -ENOMEM;
2477 goto out;
2478 }
2479
2480 ref->root_gen = root_gen;
2481 ref->bytenr = buf->start;
2482 ref->owner = btrfs_header_owner(buf);
2483 ref->generation = btrfs_header_generation(buf);
2484 ref->nritems = nr_extents;
2485 info = ref->extents;
2486
2487 for (i = 0; nr_extents > 0 && i < nritems; i++) {
2488 u64 disk_bytenr;
2489 btrfs_item_key_to_cpu(buf, &key, i);
2490 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2491 continue;
2492 fi = btrfs_item_ptr(buf, i,
2493 struct btrfs_file_extent_item);
2494 if (btrfs_file_extent_type(buf, fi) ==
2495 BTRFS_FILE_EXTENT_INLINE)
2496 continue;
2497 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2498 if (disk_bytenr == 0)
2499 continue;
2500
2501 info->bytenr = disk_bytenr;
2502 info->num_bytes =
2503 btrfs_file_extent_disk_num_bytes(buf, fi);
2504 info->objectid = key.objectid;
2505 info->offset = key.offset;
2506 info++;
2507 }
2508
2509 ret = btrfs_add_leaf_ref(root, ref, shared);
2510 if (ret == -EEXIST && shared) {
2511 struct btrfs_leaf_ref *old;
2512 old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2513 BUG_ON(!old);
2514 btrfs_remove_leaf_ref(root, old);
2515 btrfs_free_leaf_ref(root, old);
2516 ret = btrfs_add_leaf_ref(root, ref, shared);
2517 }
2518 WARN_ON(ret);
2519 btrfs_free_leaf_ref(root, ref);
2520 }
2521 out:
2522 return ret;
2523 }
2524
2525 /* when a block goes through cow, we update the reference counts of
2526 * everything that block points to. The internal pointers of the block
2527 * can be in just about any order, and it is likely to have clusters of
2528 * things that are close together and clusters of things that are not.
2529 *
2530 * To help reduce the seeks that come with updating all of these reference
2531 * counts, sort them by byte number before actual updates are done.
2532 *
2533 * struct refsort is used to match byte number to slot in the btree block.
2534 * we sort based on the byte number and then use the slot to actually
2535 * find the item.
2536 *
2537 * struct refsort is smaller than strcut btrfs_item and smaller than
2538 * struct btrfs_key_ptr. Since we're currently limited to the page size
2539 * for a btree block, there's no way for a kmalloc of refsorts for a
2540 * single node to be bigger than a page.
2541 */
2542 struct refsort {
2543 u64 bytenr;
2544 u32 slot;
2545 };
2546
2547 /*
2548 * for passing into sort()
2549 */
2550 static int refsort_cmp(const void *a_void, const void *b_void)
2551 {
2552 const struct refsort *a = a_void;
2553 const struct refsort *b = b_void;
2554
2555 if (a->bytenr < b->bytenr)
2556 return -1;
2557 if (a->bytenr > b->bytenr)
2558 return 1;
2559 return 0;
2560 }
2561 #endif
2562
2563 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2564 struct btrfs_root *root,
2565 struct extent_buffer *buf,
2566 int full_backref, int inc)
2567 {
2568 u64 bytenr;
2569 u64 num_bytes;
2570 u64 parent;
2571 u64 ref_root;
2572 u32 nritems;
2573 struct btrfs_key key;
2574 struct btrfs_file_extent_item *fi;
2575 int i;
2576 int level;
2577 int ret = 0;
2578 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2579 u64, u64, u64, u64, u64, u64);
2580
2581 ref_root = btrfs_header_owner(buf);
2582 nritems = btrfs_header_nritems(buf);
2583 level = btrfs_header_level(buf);
2584
2585 if (!root->ref_cows && level == 0)
2586 return 0;
2587
2588 if (inc)
2589 process_func = btrfs_inc_extent_ref;
2590 else
2591 process_func = btrfs_free_extent;
2592
2593 if (full_backref)
2594 parent = buf->start;
2595 else
2596 parent = 0;
2597
2598 for (i = 0; i < nritems; i++) {
2599 if (level == 0) {
2600 btrfs_item_key_to_cpu(buf, &key, i);
2601 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2602 continue;
2603 fi = btrfs_item_ptr(buf, i,
2604 struct btrfs_file_extent_item);
2605 if (btrfs_file_extent_type(buf, fi) ==
2606 BTRFS_FILE_EXTENT_INLINE)
2607 continue;
2608 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2609 if (bytenr == 0)
2610 continue;
2611
2612 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2613 key.offset -= btrfs_file_extent_offset(buf, fi);
2614 ret = process_func(trans, root, bytenr, num_bytes,
2615 parent, ref_root, key.objectid,
2616 key.offset);
2617 if (ret)
2618 goto fail;
2619 } else {
2620 bytenr = btrfs_node_blockptr(buf, i);
2621 num_bytes = btrfs_level_size(root, level - 1);
2622 ret = process_func(trans, root, bytenr, num_bytes,
2623 parent, ref_root, level - 1, 0);
2624 if (ret)
2625 goto fail;
2626 }
2627 }
2628 return 0;
2629 fail:
2630 BUG();
2631 return ret;
2632 }
2633
2634 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2635 struct extent_buffer *buf, int full_backref)
2636 {
2637 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2638 }
2639
2640 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2641 struct extent_buffer *buf, int full_backref)
2642 {
2643 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2644 }
2645
2646 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2647 struct btrfs_root *root,
2648 struct btrfs_path *path,
2649 struct btrfs_block_group_cache *cache)
2650 {
2651 int ret;
2652 struct btrfs_root *extent_root = root->fs_info->extent_root;
2653 unsigned long bi;
2654 struct extent_buffer *leaf;
2655
2656 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2657 if (ret < 0)
2658 goto fail;
2659 BUG_ON(ret);
2660
2661 leaf = path->nodes[0];
2662 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2663 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2664 btrfs_mark_buffer_dirty(leaf);
2665 btrfs_release_path(extent_root, path);
2666 fail:
2667 if (ret)
2668 return ret;
2669 return 0;
2670
2671 }
2672
2673 static struct btrfs_block_group_cache *
2674 next_block_group(struct btrfs_root *root,
2675 struct btrfs_block_group_cache *cache)
2676 {
2677 struct rb_node *node;
2678 spin_lock(&root->fs_info->block_group_cache_lock);
2679 node = rb_next(&cache->cache_node);
2680 btrfs_put_block_group(cache);
2681 if (node) {
2682 cache = rb_entry(node, struct btrfs_block_group_cache,
2683 cache_node);
2684 btrfs_get_block_group(cache);
2685 } else
2686 cache = NULL;
2687 spin_unlock(&root->fs_info->block_group_cache_lock);
2688 return cache;
2689 }
2690
2691 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2692 struct btrfs_root *root)
2693 {
2694 struct btrfs_block_group_cache *cache;
2695 int err = 0;
2696 struct btrfs_path *path;
2697 u64 last = 0;
2698
2699 path = btrfs_alloc_path();
2700 if (!path)
2701 return -ENOMEM;
2702
2703 while (1) {
2704 if (last == 0) {
2705 err = btrfs_run_delayed_refs(trans, root,
2706 (unsigned long)-1);
2707 BUG_ON(err);
2708 }
2709
2710 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2711 while (cache) {
2712 if (cache->dirty)
2713 break;
2714 cache = next_block_group(root, cache);
2715 }
2716 if (!cache) {
2717 if (last == 0)
2718 break;
2719 last = 0;
2720 continue;
2721 }
2722
2723 cache->dirty = 0;
2724 last = cache->key.objectid + cache->key.offset;
2725
2726 err = write_one_cache_group(trans, root, path, cache);
2727 BUG_ON(err);
2728 btrfs_put_block_group(cache);
2729 }
2730
2731 btrfs_free_path(path);
2732 return 0;
2733 }
2734
2735 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2736 {
2737 struct btrfs_block_group_cache *block_group;
2738 int readonly = 0;
2739
2740 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2741 if (!block_group || block_group->ro)
2742 readonly = 1;
2743 if (block_group)
2744 btrfs_put_block_group(block_group);
2745 return readonly;
2746 }
2747
2748 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2749 u64 total_bytes, u64 bytes_used,
2750 struct btrfs_space_info **space_info)
2751 {
2752 struct btrfs_space_info *found;
2753 int i;
2754 int factor;
2755
2756 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2757 BTRFS_BLOCK_GROUP_RAID10))
2758 factor = 2;
2759 else
2760 factor = 1;
2761
2762 found = __find_space_info(info, flags);
2763 if (found) {
2764 spin_lock(&found->lock);
2765 found->total_bytes += total_bytes;
2766 found->bytes_used += bytes_used;
2767 found->disk_used += bytes_used * factor;
2768 found->full = 0;
2769 spin_unlock(&found->lock);
2770 *space_info = found;
2771 return 0;
2772 }
2773 found = kzalloc(sizeof(*found), GFP_NOFS);
2774 if (!found)
2775 return -ENOMEM;
2776
2777 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2778 INIT_LIST_HEAD(&found->block_groups[i]);
2779 init_rwsem(&found->groups_sem);
2780 spin_lock_init(&found->lock);
2781 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2782 BTRFS_BLOCK_GROUP_SYSTEM |
2783 BTRFS_BLOCK_GROUP_METADATA);
2784 found->total_bytes = total_bytes;
2785 found->bytes_used = bytes_used;
2786 found->disk_used = bytes_used * factor;
2787 found->bytes_pinned = 0;
2788 found->bytes_reserved = 0;
2789 found->bytes_readonly = 0;
2790 found->bytes_may_use = 0;
2791 found->full = 0;
2792 found->force_alloc = 0;
2793 *space_info = found;
2794 list_add_rcu(&found->list, &info->space_info);
2795 atomic_set(&found->caching_threads, 0);
2796 return 0;
2797 }
2798
2799 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2800 {
2801 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2802 BTRFS_BLOCK_GROUP_RAID1 |
2803 BTRFS_BLOCK_GROUP_RAID10 |
2804 BTRFS_BLOCK_GROUP_DUP);
2805 if (extra_flags) {
2806 if (flags & BTRFS_BLOCK_GROUP_DATA)
2807 fs_info->avail_data_alloc_bits |= extra_flags;
2808 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2809 fs_info->avail_metadata_alloc_bits |= extra_flags;
2810 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2811 fs_info->avail_system_alloc_bits |= extra_flags;
2812 }
2813 }
2814
2815 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2816 {
2817 u64 num_devices = root->fs_info->fs_devices->rw_devices;
2818
2819 if (num_devices == 1)
2820 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2821 if (num_devices < 4)
2822 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2823
2824 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2825 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2826 BTRFS_BLOCK_GROUP_RAID10))) {
2827 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2828 }
2829
2830 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2831 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2832 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2833 }
2834
2835 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2836 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2837 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2838 (flags & BTRFS_BLOCK_GROUP_DUP)))
2839 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2840 return flags;
2841 }
2842
2843 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2844 {
2845 if (flags & BTRFS_BLOCK_GROUP_DATA)
2846 flags |= root->fs_info->avail_data_alloc_bits &
2847 root->fs_info->data_alloc_profile;
2848 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2849 flags |= root->fs_info->avail_system_alloc_bits &
2850 root->fs_info->system_alloc_profile;
2851 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
2852 flags |= root->fs_info->avail_metadata_alloc_bits &
2853 root->fs_info->metadata_alloc_profile;
2854 return btrfs_reduce_alloc_profile(root, flags);
2855 }
2856
2857 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
2858 {
2859 u64 flags;
2860
2861 if (data)
2862 flags = BTRFS_BLOCK_GROUP_DATA;
2863 else if (root == root->fs_info->chunk_root)
2864 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2865 else
2866 flags = BTRFS_BLOCK_GROUP_METADATA;
2867
2868 return get_alloc_profile(root, flags);
2869 }
2870
2871 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
2872 {
2873 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
2874 BTRFS_BLOCK_GROUP_DATA);
2875 }
2876
2877 /*
2878 * This will check the space that the inode allocates from to make sure we have
2879 * enough space for bytes.
2880 */
2881 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
2882 {
2883 struct btrfs_space_info *data_sinfo;
2884 struct btrfs_root *root = BTRFS_I(inode)->root;
2885 u64 used;
2886 int ret = 0, committed = 0;
2887
2888 /* make sure bytes are sectorsize aligned */
2889 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2890
2891 data_sinfo = BTRFS_I(inode)->space_info;
2892 if (!data_sinfo)
2893 goto alloc;
2894
2895 again:
2896 /* make sure we have enough space to handle the data first */
2897 spin_lock(&data_sinfo->lock);
2898 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
2899 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
2900 data_sinfo->bytes_may_use;
2901
2902 if (used + bytes > data_sinfo->total_bytes) {
2903 struct btrfs_trans_handle *trans;
2904
2905 /*
2906 * if we don't have enough free bytes in this space then we need
2907 * to alloc a new chunk.
2908 */
2909 if (!data_sinfo->full) {
2910 u64 alloc_target;
2911
2912 data_sinfo->force_alloc = 1;
2913 spin_unlock(&data_sinfo->lock);
2914 alloc:
2915 alloc_target = btrfs_get_alloc_profile(root, 1);
2916 trans = btrfs_join_transaction(root, 1);
2917 if (IS_ERR(trans))
2918 return PTR_ERR(trans);
2919
2920 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2921 bytes + 2 * 1024 * 1024,
2922 alloc_target, 0);
2923 btrfs_end_transaction(trans, root);
2924 if (ret < 0)
2925 return ret;
2926
2927 if (!data_sinfo) {
2928 btrfs_set_inode_space_info(root, inode);
2929 data_sinfo = BTRFS_I(inode)->space_info;
2930 }
2931 goto again;
2932 }
2933 spin_unlock(&data_sinfo->lock);
2934
2935 /* commit the current transaction and try again */
2936 if (!committed && !root->fs_info->open_ioctl_trans) {
2937 committed = 1;
2938 trans = btrfs_join_transaction(root, 1);
2939 if (IS_ERR(trans))
2940 return PTR_ERR(trans);
2941 ret = btrfs_commit_transaction(trans, root);
2942 if (ret)
2943 return ret;
2944 goto again;
2945 }
2946
2947 #if 0 /* I hope we never need this code again, just in case */
2948 printk(KERN_ERR "no space left, need %llu, %llu bytes_used, "
2949 "%llu bytes_reserved, " "%llu bytes_pinned, "
2950 "%llu bytes_readonly, %llu may use %llu total\n",
2951 (unsigned long long)bytes,
2952 (unsigned long long)data_sinfo->bytes_used,
2953 (unsigned long long)data_sinfo->bytes_reserved,
2954 (unsigned long long)data_sinfo->bytes_pinned,
2955 (unsigned long long)data_sinfo->bytes_readonly,
2956 (unsigned long long)data_sinfo->bytes_may_use,
2957 (unsigned long long)data_sinfo->total_bytes);
2958 #endif
2959 return -ENOSPC;
2960 }
2961 data_sinfo->bytes_may_use += bytes;
2962 BTRFS_I(inode)->reserved_bytes += bytes;
2963 spin_unlock(&data_sinfo->lock);
2964
2965 return 0;
2966 }
2967
2968 /*
2969 * called when we are clearing an delalloc extent from the
2970 * inode's io_tree or there was an error for whatever reason
2971 * after calling btrfs_check_data_free_space
2972 */
2973 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
2974 {
2975 struct btrfs_root *root = BTRFS_I(inode)->root;
2976 struct btrfs_space_info *data_sinfo;
2977
2978 /* make sure bytes are sectorsize aligned */
2979 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2980
2981 data_sinfo = BTRFS_I(inode)->space_info;
2982 spin_lock(&data_sinfo->lock);
2983 data_sinfo->bytes_may_use -= bytes;
2984 BTRFS_I(inode)->reserved_bytes -= bytes;
2985 spin_unlock(&data_sinfo->lock);
2986 }
2987
2988 static void force_metadata_allocation(struct btrfs_fs_info *info)
2989 {
2990 struct list_head *head = &info->space_info;
2991 struct btrfs_space_info *found;
2992
2993 rcu_read_lock();
2994 list_for_each_entry_rcu(found, head, list) {
2995 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2996 found->force_alloc = 1;
2997 }
2998 rcu_read_unlock();
2999 }
3000
3001 static int should_alloc_chunk(struct btrfs_space_info *sinfo,
3002 u64 alloc_bytes)
3003 {
3004 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3005
3006 if (sinfo->bytes_used + sinfo->bytes_reserved +
3007 alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3008 return 0;
3009
3010 if (sinfo->bytes_used + sinfo->bytes_reserved +
3011 alloc_bytes < div_factor(num_bytes, 8))
3012 return 0;
3013
3014 return 1;
3015 }
3016
3017 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3018 struct btrfs_root *extent_root, u64 alloc_bytes,
3019 u64 flags, int force)
3020 {
3021 struct btrfs_space_info *space_info;
3022 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3023 int ret = 0;
3024
3025 mutex_lock(&fs_info->chunk_mutex);
3026
3027 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3028
3029 space_info = __find_space_info(extent_root->fs_info, flags);
3030 if (!space_info) {
3031 ret = update_space_info(extent_root->fs_info, flags,
3032 0, 0, &space_info);
3033 BUG_ON(ret);
3034 }
3035 BUG_ON(!space_info);
3036
3037 spin_lock(&space_info->lock);
3038 if (space_info->force_alloc)
3039 force = 1;
3040 if (space_info->full) {
3041 spin_unlock(&space_info->lock);
3042 goto out;
3043 }
3044
3045 if (!force && !should_alloc_chunk(space_info, alloc_bytes)) {
3046 spin_unlock(&space_info->lock);
3047 goto out;
3048 }
3049 spin_unlock(&space_info->lock);
3050
3051 /*
3052 * if we're doing a data chunk, go ahead and make sure that
3053 * we keep a reasonable number of metadata chunks allocated in the
3054 * FS as well.
3055 */
3056 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3057 fs_info->data_chunk_allocations++;
3058 if (!(fs_info->data_chunk_allocations %
3059 fs_info->metadata_ratio))
3060 force_metadata_allocation(fs_info);
3061 }
3062
3063 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3064 spin_lock(&space_info->lock);
3065 if (ret)
3066 space_info->full = 1;
3067 else
3068 ret = 1;
3069 space_info->force_alloc = 0;
3070 spin_unlock(&space_info->lock);
3071 out:
3072 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3073 return ret;
3074 }
3075
3076 static int maybe_allocate_chunk(struct btrfs_trans_handle *trans,
3077 struct btrfs_root *root,
3078 struct btrfs_space_info *sinfo, u64 num_bytes)
3079 {
3080 int ret;
3081 int end_trans = 0;
3082
3083 if (sinfo->full)
3084 return 0;
3085
3086 spin_lock(&sinfo->lock);
3087 ret = should_alloc_chunk(sinfo, num_bytes + 2 * 1024 * 1024);
3088 spin_unlock(&sinfo->lock);
3089 if (!ret)
3090 return 0;
3091
3092 if (!trans) {
3093 trans = btrfs_join_transaction(root, 1);
3094 BUG_ON(IS_ERR(trans));
3095 end_trans = 1;
3096 }
3097
3098 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3099 num_bytes + 2 * 1024 * 1024,
3100 get_alloc_profile(root, sinfo->flags), 0);
3101
3102 if (end_trans)
3103 btrfs_end_transaction(trans, root);
3104
3105 return ret == 1 ? 1 : 0;
3106 }
3107
3108 /*
3109 * shrink metadata reservation for delalloc
3110 */
3111 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3112 struct btrfs_root *root, u64 to_reclaim)
3113 {
3114 struct btrfs_block_rsv *block_rsv;
3115 u64 reserved;
3116 u64 max_reclaim;
3117 u64 reclaimed = 0;
3118 int pause = 1;
3119 int ret;
3120
3121 block_rsv = &root->fs_info->delalloc_block_rsv;
3122 spin_lock(&block_rsv->lock);
3123 reserved = block_rsv->reserved;
3124 spin_unlock(&block_rsv->lock);
3125
3126 if (reserved == 0)
3127 return 0;
3128
3129 max_reclaim = min(reserved, to_reclaim);
3130
3131 while (1) {
3132 ret = btrfs_start_one_delalloc_inode(root, trans ? 1 : 0);
3133 if (!ret) {
3134 __set_current_state(TASK_INTERRUPTIBLE);
3135 schedule_timeout(pause);
3136 pause <<= 1;
3137 if (pause > HZ / 10)
3138 pause = HZ / 10;
3139 } else {
3140 pause = 1;
3141 }
3142
3143 spin_lock(&block_rsv->lock);
3144 if (reserved > block_rsv->reserved)
3145 reclaimed = reserved - block_rsv->reserved;
3146 reserved = block_rsv->reserved;
3147 spin_unlock(&block_rsv->lock);
3148
3149 if (reserved == 0 || reclaimed >= max_reclaim)
3150 break;
3151
3152 if (trans && trans->transaction->blocked)
3153 return -EAGAIN;
3154 }
3155 return reclaimed >= to_reclaim;
3156 }
3157
3158 static int should_retry_reserve(struct btrfs_trans_handle *trans,
3159 struct btrfs_root *root,
3160 struct btrfs_block_rsv *block_rsv,
3161 u64 num_bytes, int *retries)
3162 {
3163 struct btrfs_space_info *space_info = block_rsv->space_info;
3164 int ret;
3165
3166 if ((*retries) > 2)
3167 return -ENOSPC;
3168
3169 ret = maybe_allocate_chunk(trans, root, space_info, num_bytes);
3170 if (ret)
3171 return 1;
3172
3173 if (trans && trans->transaction->in_commit)
3174 return -ENOSPC;
3175
3176 ret = shrink_delalloc(trans, root, num_bytes);
3177 if (ret)
3178 return ret;
3179
3180 spin_lock(&space_info->lock);
3181 if (space_info->bytes_pinned < num_bytes)
3182 ret = 1;
3183 spin_unlock(&space_info->lock);
3184 if (ret)
3185 return -ENOSPC;
3186
3187 (*retries)++;
3188
3189 if (trans)
3190 return -EAGAIN;
3191
3192 trans = btrfs_join_transaction(root, 1);
3193 BUG_ON(IS_ERR(trans));
3194 ret = btrfs_commit_transaction(trans, root);
3195 BUG_ON(ret);
3196
3197 return 1;
3198 }
3199
3200 static int reserve_metadata_bytes(struct btrfs_block_rsv *block_rsv,
3201 u64 num_bytes)
3202 {
3203 struct btrfs_space_info *space_info = block_rsv->space_info;
3204 u64 unused;
3205 int ret = -ENOSPC;
3206
3207 spin_lock(&space_info->lock);
3208 unused = space_info->bytes_used + space_info->bytes_reserved +
3209 space_info->bytes_pinned + space_info->bytes_readonly;
3210
3211 if (unused < space_info->total_bytes)
3212 unused = space_info->total_bytes - unused;
3213 else
3214 unused = 0;
3215
3216 if (unused >= num_bytes) {
3217 if (block_rsv->priority >= 10) {
3218 space_info->bytes_reserved += num_bytes;
3219 ret = 0;
3220 } else {
3221 if ((unused + block_rsv->reserved) *
3222 block_rsv->priority >=
3223 (num_bytes + block_rsv->reserved) * 10) {
3224 space_info->bytes_reserved += num_bytes;
3225 ret = 0;
3226 }
3227 }
3228 }
3229 spin_unlock(&space_info->lock);
3230
3231 return ret;
3232 }
3233
3234 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3235 struct btrfs_root *root)
3236 {
3237 struct btrfs_block_rsv *block_rsv;
3238 if (root->ref_cows)
3239 block_rsv = trans->block_rsv;
3240 else
3241 block_rsv = root->block_rsv;
3242
3243 if (!block_rsv)
3244 block_rsv = &root->fs_info->empty_block_rsv;
3245
3246 return block_rsv;
3247 }
3248
3249 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3250 u64 num_bytes)
3251 {
3252 int ret = -ENOSPC;
3253 spin_lock(&block_rsv->lock);
3254 if (block_rsv->reserved >= num_bytes) {
3255 block_rsv->reserved -= num_bytes;
3256 if (block_rsv->reserved < block_rsv->size)
3257 block_rsv->full = 0;
3258 ret = 0;
3259 }
3260 spin_unlock(&block_rsv->lock);
3261 return ret;
3262 }
3263
3264 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3265 u64 num_bytes, int update_size)
3266 {
3267 spin_lock(&block_rsv->lock);
3268 block_rsv->reserved += num_bytes;
3269 if (update_size)
3270 block_rsv->size += num_bytes;
3271 else if (block_rsv->reserved >= block_rsv->size)
3272 block_rsv->full = 1;
3273 spin_unlock(&block_rsv->lock);
3274 }
3275
3276 void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3277 struct btrfs_block_rsv *dest, u64 num_bytes)
3278 {
3279 struct btrfs_space_info *space_info = block_rsv->space_info;
3280
3281 spin_lock(&block_rsv->lock);
3282 if (num_bytes == (u64)-1)
3283 num_bytes = block_rsv->size;
3284 block_rsv->size -= num_bytes;
3285 if (block_rsv->reserved >= block_rsv->size) {
3286 num_bytes = block_rsv->reserved - block_rsv->size;
3287 block_rsv->reserved = block_rsv->size;
3288 block_rsv->full = 1;
3289 } else {
3290 num_bytes = 0;
3291 }
3292 spin_unlock(&block_rsv->lock);
3293
3294 if (num_bytes > 0) {
3295 if (dest) {
3296 block_rsv_add_bytes(dest, num_bytes, 0);
3297 } else {
3298 spin_lock(&space_info->lock);
3299 space_info->bytes_reserved -= num_bytes;
3300 spin_unlock(&space_info->lock);
3301 }
3302 }
3303 }
3304
3305 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3306 struct btrfs_block_rsv *dst, u64 num_bytes)
3307 {
3308 int ret;
3309
3310 ret = block_rsv_use_bytes(src, num_bytes);
3311 if (ret)
3312 return ret;
3313
3314 block_rsv_add_bytes(dst, num_bytes, 1);
3315 return 0;
3316 }
3317
3318 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3319 {
3320 memset(rsv, 0, sizeof(*rsv));
3321 spin_lock_init(&rsv->lock);
3322 atomic_set(&rsv->usage, 1);
3323 rsv->priority = 6;
3324 INIT_LIST_HEAD(&rsv->list);
3325 }
3326
3327 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3328 {
3329 struct btrfs_block_rsv *block_rsv;
3330 struct btrfs_fs_info *fs_info = root->fs_info;
3331 u64 alloc_target;
3332
3333 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3334 if (!block_rsv)
3335 return NULL;
3336
3337 btrfs_init_block_rsv(block_rsv);
3338
3339 alloc_target = btrfs_get_alloc_profile(root, 0);
3340 block_rsv->space_info = __find_space_info(fs_info,
3341 BTRFS_BLOCK_GROUP_METADATA);
3342
3343 return block_rsv;
3344 }
3345
3346 void btrfs_free_block_rsv(struct btrfs_root *root,
3347 struct btrfs_block_rsv *rsv)
3348 {
3349 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3350 btrfs_block_rsv_release(root, rsv, (u64)-1);
3351 if (!rsv->durable)
3352 kfree(rsv);
3353 }
3354 }
3355
3356 /*
3357 * make the block_rsv struct be able to capture freed space.
3358 * the captured space will re-add to the the block_rsv struct
3359 * after transaction commit
3360 */
3361 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3362 struct btrfs_block_rsv *block_rsv)
3363 {
3364 block_rsv->durable = 1;
3365 mutex_lock(&fs_info->durable_block_rsv_mutex);
3366 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3367 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3368 }
3369
3370 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3371 struct btrfs_root *root,
3372 struct btrfs_block_rsv *block_rsv,
3373 u64 num_bytes, int *retries)
3374 {
3375 int ret;
3376
3377 if (num_bytes == 0)
3378 return 0;
3379 again:
3380 ret = reserve_metadata_bytes(block_rsv, num_bytes);
3381 if (!ret) {
3382 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3383 return 0;
3384 }
3385
3386 ret = should_retry_reserve(trans, root, block_rsv, num_bytes, retries);
3387 if (ret > 0)
3388 goto again;
3389
3390 return ret;
3391 }
3392
3393 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3394 struct btrfs_root *root,
3395 struct btrfs_block_rsv *block_rsv,
3396 u64 min_reserved, int min_factor)
3397 {
3398 u64 num_bytes = 0;
3399 int commit_trans = 0;
3400 int ret = -ENOSPC;
3401
3402 if (!block_rsv)
3403 return 0;
3404
3405 spin_lock(&block_rsv->lock);
3406 if (min_factor > 0)
3407 num_bytes = div_factor(block_rsv->size, min_factor);
3408 if (min_reserved > num_bytes)
3409 num_bytes = min_reserved;
3410
3411 if (block_rsv->reserved >= num_bytes) {
3412 ret = 0;
3413 } else {
3414 num_bytes -= block_rsv->reserved;
3415 if (block_rsv->durable &&
3416 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3417 commit_trans = 1;
3418 }
3419 spin_unlock(&block_rsv->lock);
3420 if (!ret)
3421 return 0;
3422
3423 if (block_rsv->refill_used) {
3424 ret = reserve_metadata_bytes(block_rsv, num_bytes);
3425 if (!ret) {
3426 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3427 return 0;
3428 }
3429 }
3430
3431 if (commit_trans) {
3432 if (trans)
3433 return -EAGAIN;
3434
3435 trans = btrfs_join_transaction(root, 1);
3436 BUG_ON(IS_ERR(trans));
3437 ret = btrfs_commit_transaction(trans, root);
3438 return 0;
3439 }
3440
3441 WARN_ON(1);
3442 printk(KERN_INFO"block_rsv size %llu reserved %llu freed %llu %llu\n",
3443 block_rsv->size, block_rsv->reserved,
3444 block_rsv->freed[0], block_rsv->freed[1]);
3445
3446 return -ENOSPC;
3447 }
3448
3449 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3450 struct btrfs_block_rsv *dst_rsv,
3451 u64 num_bytes)
3452 {
3453 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3454 }
3455
3456 void btrfs_block_rsv_release(struct btrfs_root *root,
3457 struct btrfs_block_rsv *block_rsv,
3458 u64 num_bytes)
3459 {
3460 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3461 if (global_rsv->full || global_rsv == block_rsv ||
3462 block_rsv->space_info != global_rsv->space_info)
3463 global_rsv = NULL;
3464 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3465 }
3466
3467 /*
3468 * helper to calculate size of global block reservation.
3469 * the desired value is sum of space used by extent tree,
3470 * checksum tree and root tree
3471 */
3472 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3473 {
3474 struct btrfs_space_info *sinfo;
3475 u64 num_bytes;
3476 u64 meta_used;
3477 u64 data_used;
3478 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3479 #if 0
3480 /*
3481 * per tree used space accounting can be inaccuracy, so we
3482 * can't rely on it.
3483 */
3484 spin_lock(&fs_info->extent_root->accounting_lock);
3485 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item);
3486 spin_unlock(&fs_info->extent_root->accounting_lock);
3487
3488 spin_lock(&fs_info->csum_root->accounting_lock);
3489 num_bytes += btrfs_root_used(&fs_info->csum_root->root_item);
3490 spin_unlock(&fs_info->csum_root->accounting_lock);
3491
3492 spin_lock(&fs_info->tree_root->accounting_lock);
3493 num_bytes += btrfs_root_used(&fs_info->tree_root->root_item);
3494 spin_unlock(&fs_info->tree_root->accounting_lock);
3495 #endif
3496 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3497 spin_lock(&sinfo->lock);
3498 data_used = sinfo->bytes_used;
3499 spin_unlock(&sinfo->lock);
3500
3501 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3502 spin_lock(&sinfo->lock);
3503 meta_used = sinfo->bytes_used;
3504 spin_unlock(&sinfo->lock);
3505
3506 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3507 csum_size * 2;
3508 num_bytes += div64_u64(data_used + meta_used, 50);
3509
3510 if (num_bytes * 3 > meta_used)
3511 num_bytes = div64_u64(meta_used, 3);
3512
3513 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3514 }
3515
3516 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3517 {
3518 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3519 struct btrfs_space_info *sinfo = block_rsv->space_info;
3520 u64 num_bytes;
3521
3522 num_bytes = calc_global_metadata_size(fs_info);
3523
3524 spin_lock(&block_rsv->lock);
3525 spin_lock(&sinfo->lock);
3526
3527 block_rsv->size = num_bytes;
3528
3529 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3530 sinfo->bytes_reserved + sinfo->bytes_readonly;
3531
3532 if (sinfo->total_bytes > num_bytes) {
3533 num_bytes = sinfo->total_bytes - num_bytes;
3534 block_rsv->reserved += num_bytes;
3535 sinfo->bytes_reserved += num_bytes;
3536 }
3537
3538 if (block_rsv->reserved >= block_rsv->size) {
3539 num_bytes = block_rsv->reserved - block_rsv->size;
3540 sinfo->bytes_reserved -= num_bytes;
3541 block_rsv->reserved = block_rsv->size;
3542 block_rsv->full = 1;
3543 }
3544 #if 0
3545 printk(KERN_INFO"global block rsv size %llu reserved %llu\n",
3546 block_rsv->size, block_rsv->reserved);
3547 #endif
3548 spin_unlock(&sinfo->lock);
3549 spin_unlock(&block_rsv->lock);
3550 }
3551
3552 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3553 {
3554 struct btrfs_space_info *space_info;
3555
3556 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3557 fs_info->chunk_block_rsv.space_info = space_info;
3558 fs_info->chunk_block_rsv.priority = 10;
3559
3560 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3561 fs_info->global_block_rsv.space_info = space_info;
3562 fs_info->global_block_rsv.priority = 10;
3563 fs_info->global_block_rsv.refill_used = 1;
3564 fs_info->delalloc_block_rsv.space_info = space_info;
3565 fs_info->trans_block_rsv.space_info = space_info;
3566 fs_info->empty_block_rsv.space_info = space_info;
3567 fs_info->empty_block_rsv.priority = 10;
3568
3569 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3570 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3571 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3572 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3573 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3574
3575 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3576
3577 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3578
3579 update_global_block_rsv(fs_info);
3580 }
3581
3582 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3583 {
3584 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3585 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3586 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3587 WARN_ON(fs_info->trans_block_rsv.size > 0);
3588 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3589 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3590 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3591 }
3592
3593 static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items)
3594 {
3595 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3596 3 * num_items;
3597 }
3598
3599 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3600 struct btrfs_root *root,
3601 int num_items, int *retries)
3602 {
3603 u64 num_bytes;
3604 int ret;
3605
3606 if (num_items == 0 || root->fs_info->chunk_root == root)
3607 return 0;
3608
3609 num_bytes = calc_trans_metadata_size(root, num_items);
3610 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3611 num_bytes, retries);
3612 if (!ret) {
3613 trans->bytes_reserved += num_bytes;
3614 trans->block_rsv = &root->fs_info->trans_block_rsv;
3615 }
3616 return ret;
3617 }
3618
3619 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3620 struct btrfs_root *root)
3621 {
3622 if (!trans->bytes_reserved)
3623 return;
3624
3625 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3626 btrfs_block_rsv_release(root, trans->block_rsv,
3627 trans->bytes_reserved);
3628 trans->bytes_reserved = 0;
3629 }
3630
3631 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3632 struct inode *inode)
3633 {
3634 struct btrfs_root *root = BTRFS_I(inode)->root;
3635 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3636 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3637
3638 /*
3639 * one for deleting orphan item, one for updating inode and
3640 * two for calling btrfs_truncate_inode_items.
3641 *
3642 * btrfs_truncate_inode_items is a delete operation, it frees
3643 * more space than it uses in most cases. So two units of
3644 * metadata space should be enough for calling it many times.
3645 * If all of the metadata space is used, we can commit
3646 * transaction and use space it freed.
3647 */
3648 u64 num_bytes = calc_trans_metadata_size(root, 4);
3649 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3650 }
3651
3652 void btrfs_orphan_release_metadata(struct inode *inode)
3653 {
3654 struct btrfs_root *root = BTRFS_I(inode)->root;
3655 u64 num_bytes = calc_trans_metadata_size(root, 4);
3656 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3657 }
3658
3659 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3660 struct btrfs_pending_snapshot *pending)
3661 {
3662 struct btrfs_root *root = pending->root;
3663 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3664 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3665 /*
3666 * two for root back/forward refs, two for directory entries
3667 * and one for root of the snapshot.
3668 */
3669 u64 num_bytes = calc_trans_metadata_size(root, 5);
3670 dst_rsv->space_info = src_rsv->space_info;
3671 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3672 }
3673
3674 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3675 {
3676 return num_bytes >>= 3;
3677 }
3678
3679 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3680 {
3681 struct btrfs_root *root = BTRFS_I(inode)->root;
3682 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3683 u64 to_reserve;
3684 int nr_extents;
3685 int retries = 0;
3686 int ret;
3687
3688 if (btrfs_transaction_in_commit(root->fs_info))
3689 schedule_timeout(1);
3690
3691 num_bytes = ALIGN(num_bytes, root->sectorsize);
3692 again:
3693 spin_lock(&BTRFS_I(inode)->accounting_lock);
3694 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
3695 if (nr_extents > BTRFS_I(inode)->reserved_extents) {
3696 nr_extents -= BTRFS_I(inode)->reserved_extents;
3697 to_reserve = calc_trans_metadata_size(root, nr_extents);
3698 } else {
3699 nr_extents = 0;
3700 to_reserve = 0;
3701 }
3702
3703 to_reserve += calc_csum_metadata_size(inode, num_bytes);
3704 ret = reserve_metadata_bytes(block_rsv, to_reserve);
3705 if (ret) {
3706 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3707 ret = should_retry_reserve(NULL, root, block_rsv, to_reserve,
3708 &retries);
3709 if (ret > 0)
3710 goto again;
3711 return ret;
3712 }
3713
3714 BTRFS_I(inode)->reserved_extents += nr_extents;
3715 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
3716 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3717
3718 block_rsv_add_bytes(block_rsv, to_reserve, 1);
3719
3720 if (block_rsv->size > 512 * 1024 * 1024)
3721 shrink_delalloc(NULL, root, to_reserve);
3722
3723 return 0;
3724 }
3725
3726 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
3727 {
3728 struct btrfs_root *root = BTRFS_I(inode)->root;
3729 u64 to_free;
3730 int nr_extents;
3731
3732 num_bytes = ALIGN(num_bytes, root->sectorsize);
3733 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
3734
3735 spin_lock(&BTRFS_I(inode)->accounting_lock);
3736 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
3737 if (nr_extents < BTRFS_I(inode)->reserved_extents) {
3738 nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents;
3739 BTRFS_I(inode)->reserved_extents -= nr_extents;
3740 } else {
3741 nr_extents = 0;
3742 }
3743 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3744
3745 to_free = calc_csum_metadata_size(inode, num_bytes);
3746 if (nr_extents > 0)
3747 to_free += calc_trans_metadata_size(root, nr_extents);
3748
3749 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
3750 to_free);
3751 }
3752
3753 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
3754 {
3755 int ret;
3756
3757 ret = btrfs_check_data_free_space(inode, num_bytes);
3758 if (ret)
3759 return ret;
3760
3761 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
3762 if (ret) {
3763 btrfs_free_reserved_data_space(inode, num_bytes);
3764 return ret;
3765 }
3766
3767 return 0;
3768 }
3769
3770 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
3771 {
3772 btrfs_delalloc_release_metadata(inode, num_bytes);
3773 btrfs_free_reserved_data_space(inode, num_bytes);
3774 }
3775
3776 static int update_block_group(struct btrfs_trans_handle *trans,
3777 struct btrfs_root *root,
3778 u64 bytenr, u64 num_bytes, int alloc)
3779 {
3780 struct btrfs_block_group_cache *cache;
3781 struct btrfs_fs_info *info = root->fs_info;
3782 int factor;
3783 u64 total = num_bytes;
3784 u64 old_val;
3785 u64 byte_in_group;
3786
3787 /* block accounting for super block */
3788 spin_lock(&info->delalloc_lock);
3789 old_val = btrfs_super_bytes_used(&info->super_copy);
3790 if (alloc)
3791 old_val += num_bytes;
3792 else
3793 old_val -= num_bytes;
3794 btrfs_set_super_bytes_used(&info->super_copy, old_val);
3795 spin_unlock(&info->delalloc_lock);
3796
3797 while (total) {
3798 cache = btrfs_lookup_block_group(info, bytenr);
3799 if (!cache)
3800 return -1;
3801 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
3802 BTRFS_BLOCK_GROUP_RAID1 |
3803 BTRFS_BLOCK_GROUP_RAID10))
3804 factor = 2;
3805 else
3806 factor = 1;
3807 byte_in_group = bytenr - cache->key.objectid;
3808 WARN_ON(byte_in_group > cache->key.offset);
3809
3810 spin_lock(&cache->space_info->lock);
3811 spin_lock(&cache->lock);
3812 cache->dirty = 1;
3813 old_val = btrfs_block_group_used(&cache->item);
3814 num_bytes = min(total, cache->key.offset - byte_in_group);
3815 if (alloc) {
3816 old_val += num_bytes;
3817 btrfs_set_block_group_used(&cache->item, old_val);
3818 cache->reserved -= num_bytes;
3819 cache->space_info->bytes_reserved -= num_bytes;
3820 cache->space_info->bytes_used += num_bytes;
3821 cache->space_info->disk_used += num_bytes * factor;
3822 spin_unlock(&cache->lock);
3823 spin_unlock(&cache->space_info->lock);
3824 } else {
3825 old_val -= num_bytes;
3826 btrfs_set_block_group_used(&cache->item, old_val);
3827 cache->pinned += num_bytes;
3828 cache->space_info->bytes_pinned += num_bytes;
3829 cache->space_info->bytes_used -= num_bytes;
3830 cache->space_info->disk_used -= num_bytes * factor;
3831 spin_unlock(&cache->lock);
3832 spin_unlock(&cache->space_info->lock);
3833
3834 set_extent_dirty(info->pinned_extents,
3835 bytenr, bytenr + num_bytes - 1,
3836 GFP_NOFS | __GFP_NOFAIL);
3837 }
3838 btrfs_put_block_group(cache);
3839 total -= num_bytes;
3840 bytenr += num_bytes;
3841 }
3842 return 0;
3843 }
3844
3845 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
3846 {
3847 struct btrfs_block_group_cache *cache;
3848 u64 bytenr;
3849
3850 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
3851 if (!cache)
3852 return 0;
3853
3854 bytenr = cache->key.objectid;
3855 btrfs_put_block_group(cache);
3856
3857 return bytenr;
3858 }
3859
3860 static int pin_down_extent(struct btrfs_root *root,
3861 struct btrfs_block_group_cache *cache,
3862 u64 bytenr, u64 num_bytes, int reserved)
3863 {
3864 spin_lock(&cache->space_info->lock);
3865 spin_lock(&cache->lock);
3866 cache->pinned += num_bytes;
3867 cache->space_info->bytes_pinned += num_bytes;
3868 if (reserved) {
3869 cache->reserved -= num_bytes;
3870 cache->space_info->bytes_reserved -= num_bytes;
3871 }
3872 spin_unlock(&cache->lock);
3873 spin_unlock(&cache->space_info->lock);
3874
3875 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
3876 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
3877 return 0;
3878 }
3879
3880 /*
3881 * this function must be called within transaction
3882 */
3883 int btrfs_pin_extent(struct btrfs_root *root,
3884 u64 bytenr, u64 num_bytes, int reserved)
3885 {
3886 struct btrfs_block_group_cache *cache;
3887
3888 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
3889 BUG_ON(!cache);
3890
3891 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
3892
3893 btrfs_put_block_group(cache);
3894 return 0;
3895 }
3896
3897 /*
3898 * update size of reserved extents. this function may return -EAGAIN
3899 * if 'reserve' is true or 'sinfo' is false.
3900 */
3901 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
3902 u64 num_bytes, int reserve, int sinfo)
3903 {
3904 int ret = 0;
3905 if (sinfo) {
3906 struct btrfs_space_info *space_info = cache->space_info;
3907 spin_lock(&space_info->lock);
3908 spin_lock(&cache->lock);
3909 if (reserve) {
3910 if (cache->ro) {
3911 ret = -EAGAIN;
3912 } else {
3913 cache->reserved += num_bytes;
3914 space_info->bytes_reserved += num_bytes;
3915 }
3916 } else {
3917 if (cache->ro)
3918 space_info->bytes_readonly += num_bytes;
3919 cache->reserved -= num_bytes;
3920 space_info->bytes_reserved -= num_bytes;
3921 }
3922 spin_unlock(&cache->lock);
3923 spin_unlock(&space_info->lock);
3924 } else {
3925 spin_lock(&cache->lock);
3926 if (cache->ro) {
3927 ret = -EAGAIN;
3928 } else {
3929 if (reserve)
3930 cache->reserved += num_bytes;
3931 else
3932 cache->reserved -= num_bytes;
3933 }
3934 spin_unlock(&cache->lock);
3935 }
3936 return ret;
3937 }
3938
3939 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3940 struct btrfs_root *root)
3941 {
3942 struct btrfs_fs_info *fs_info = root->fs_info;
3943 struct btrfs_caching_control *next;
3944 struct btrfs_caching_control *caching_ctl;
3945 struct btrfs_block_group_cache *cache;
3946
3947 down_write(&fs_info->extent_commit_sem);
3948
3949 list_for_each_entry_safe(caching_ctl, next,
3950 &fs_info->caching_block_groups, list) {
3951 cache = caching_ctl->block_group;
3952 if (block_group_cache_done(cache)) {
3953 cache->last_byte_to_unpin = (u64)-1;
3954 list_del_init(&caching_ctl->list);
3955 put_caching_control(caching_ctl);
3956 } else {
3957 cache->last_byte_to_unpin = caching_ctl->progress;
3958 }
3959 }
3960
3961 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
3962 fs_info->pinned_extents = &fs_info->freed_extents[1];
3963 else
3964 fs_info->pinned_extents = &fs_info->freed_extents[0];
3965
3966 up_write(&fs_info->extent_commit_sem);
3967
3968 update_global_block_rsv(fs_info);
3969 return 0;
3970 }
3971
3972 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
3973 {
3974 struct btrfs_fs_info *fs_info = root->fs_info;
3975 struct btrfs_block_group_cache *cache = NULL;
3976 u64 len;
3977
3978 while (start <= end) {
3979 if (!cache ||
3980 start >= cache->key.objectid + cache->key.offset) {
3981 if (cache)
3982 btrfs_put_block_group(cache);
3983 cache = btrfs_lookup_block_group(fs_info, start);
3984 BUG_ON(!cache);
3985 }
3986
3987 len = cache->key.objectid + cache->key.offset - start;
3988 len = min(len, end + 1 - start);
3989
3990 if (start < cache->last_byte_to_unpin) {
3991 len = min(len, cache->last_byte_to_unpin - start);
3992 btrfs_add_free_space(cache, start, len);
3993 }
3994
3995 start += len;
3996
3997 spin_lock(&cache->space_info->lock);
3998 spin_lock(&cache->lock);
3999 cache->pinned -= len;
4000 cache->space_info->bytes_pinned -= len;
4001 if (cache->ro) {
4002 cache->space_info->bytes_readonly += len;
4003 } else if (cache->reserved_pinned > 0) {
4004 len = min(len, cache->reserved_pinned);
4005 cache->reserved_pinned -= len;
4006 cache->space_info->bytes_reserved += len;
4007 }
4008 spin_unlock(&cache->lock);
4009 spin_unlock(&cache->space_info->lock);
4010 }
4011
4012 if (cache)
4013 btrfs_put_block_group(cache);
4014 return 0;
4015 }
4016
4017 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4018 struct btrfs_root *root)
4019 {
4020 struct btrfs_fs_info *fs_info = root->fs_info;
4021 struct extent_io_tree *unpin;
4022 struct btrfs_block_rsv *block_rsv;
4023 struct btrfs_block_rsv *next_rsv;
4024 u64 start;
4025 u64 end;
4026 int idx;
4027 int ret;
4028
4029 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4030 unpin = &fs_info->freed_extents[1];
4031 else
4032 unpin = &fs_info->freed_extents[0];
4033
4034 while (1) {
4035 ret = find_first_extent_bit(unpin, 0, &start, &end,
4036 EXTENT_DIRTY);
4037 if (ret)
4038 break;
4039
4040 ret = btrfs_discard_extent(root, start, end + 1 - start);
4041
4042 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4043 unpin_extent_range(root, start, end);
4044 cond_resched();
4045 }
4046
4047 mutex_lock(&fs_info->durable_block_rsv_mutex);
4048 list_for_each_entry_safe(block_rsv, next_rsv,
4049 &fs_info->durable_block_rsv_list, list) {
4050
4051 idx = trans->transid & 0x1;
4052 if (block_rsv->freed[idx] > 0) {
4053 block_rsv_add_bytes(block_rsv,
4054 block_rsv->freed[idx], 0);
4055 block_rsv->freed[idx] = 0;
4056 }
4057 if (atomic_read(&block_rsv->usage) == 0) {
4058 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4059
4060 if (block_rsv->freed[0] == 0 &&
4061 block_rsv->freed[1] == 0) {
4062 list_del_init(&block_rsv->list);
4063 kfree(block_rsv);
4064 }
4065 } else {
4066 btrfs_block_rsv_release(root, block_rsv, 0);
4067 }
4068 }
4069 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4070
4071 return 0;
4072 }
4073
4074 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4075 struct btrfs_root *root,
4076 u64 bytenr, u64 num_bytes, u64 parent,
4077 u64 root_objectid, u64 owner_objectid,
4078 u64 owner_offset, int refs_to_drop,
4079 struct btrfs_delayed_extent_op *extent_op)
4080 {
4081 struct btrfs_key key;
4082 struct btrfs_path *path;
4083 struct btrfs_fs_info *info = root->fs_info;
4084 struct btrfs_root *extent_root = info->extent_root;
4085 struct extent_buffer *leaf;
4086 struct btrfs_extent_item *ei;
4087 struct btrfs_extent_inline_ref *iref;
4088 int ret;
4089 int is_data;
4090 int extent_slot = 0;
4091 int found_extent = 0;
4092 int num_to_del = 1;
4093 u32 item_size;
4094 u64 refs;
4095
4096 path = btrfs_alloc_path();
4097 if (!path)
4098 return -ENOMEM;
4099
4100 path->reada = 1;
4101 path->leave_spinning = 1;
4102
4103 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4104 BUG_ON(!is_data && refs_to_drop != 1);
4105
4106 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4107 bytenr, num_bytes, parent,
4108 root_objectid, owner_objectid,
4109 owner_offset);
4110 if (ret == 0) {
4111 extent_slot = path->slots[0];
4112 while (extent_slot >= 0) {
4113 btrfs_item_key_to_cpu(path->nodes[0], &key,
4114 extent_slot);
4115 if (key.objectid != bytenr)
4116 break;
4117 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4118 key.offset == num_bytes) {
4119 found_extent = 1;
4120 break;
4121 }
4122 if (path->slots[0] - extent_slot > 5)
4123 break;
4124 extent_slot--;
4125 }
4126 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4127 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4128 if (found_extent && item_size < sizeof(*ei))
4129 found_extent = 0;
4130 #endif
4131 if (!found_extent) {
4132 BUG_ON(iref);
4133 ret = remove_extent_backref(trans, extent_root, path,
4134 NULL, refs_to_drop,
4135 is_data);
4136 BUG_ON(ret);
4137 btrfs_release_path(extent_root, path);
4138 path->leave_spinning = 1;
4139
4140 key.objectid = bytenr;
4141 key.type = BTRFS_EXTENT_ITEM_KEY;
4142 key.offset = num_bytes;
4143
4144 ret = btrfs_search_slot(trans, extent_root,
4145 &key, path, -1, 1);
4146 if (ret) {
4147 printk(KERN_ERR "umm, got %d back from search"
4148 ", was looking for %llu\n", ret,
4149 (unsigned long long)bytenr);
4150 btrfs_print_leaf(extent_root, path->nodes[0]);
4151 }
4152 BUG_ON(ret);
4153 extent_slot = path->slots[0];
4154 }
4155 } else {
4156 btrfs_print_leaf(extent_root, path->nodes[0]);
4157 WARN_ON(1);
4158 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4159 "parent %llu root %llu owner %llu offset %llu\n",
4160 (unsigned long long)bytenr,
4161 (unsigned long long)parent,
4162 (unsigned long long)root_objectid,
4163 (unsigned long long)owner_objectid,
4164 (unsigned long long)owner_offset);
4165 }
4166
4167 leaf = path->nodes[0];
4168 item_size = btrfs_item_size_nr(leaf, extent_slot);
4169 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4170 if (item_size < sizeof(*ei)) {
4171 BUG_ON(found_extent || extent_slot != path->slots[0]);
4172 ret = convert_extent_item_v0(trans, extent_root, path,
4173 owner_objectid, 0);
4174 BUG_ON(ret < 0);
4175
4176 btrfs_release_path(extent_root, path);
4177 path->leave_spinning = 1;
4178
4179 key.objectid = bytenr;
4180 key.type = BTRFS_EXTENT_ITEM_KEY;
4181 key.offset = num_bytes;
4182
4183 ret = btrfs_search_slot(trans, extent_root, &key, path,
4184 -1, 1);
4185 if (ret) {
4186 printk(KERN_ERR "umm, got %d back from search"
4187 ", was looking for %llu\n", ret,
4188 (unsigned long long)bytenr);
4189 btrfs_print_leaf(extent_root, path->nodes[0]);
4190 }
4191 BUG_ON(ret);
4192 extent_slot = path->slots[0];
4193 leaf = path->nodes[0];
4194 item_size = btrfs_item_size_nr(leaf, extent_slot);
4195 }
4196 #endif
4197 BUG_ON(item_size < sizeof(*ei));
4198 ei = btrfs_item_ptr(leaf, extent_slot,
4199 struct btrfs_extent_item);
4200 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4201 struct btrfs_tree_block_info *bi;
4202 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4203 bi = (struct btrfs_tree_block_info *)(ei + 1);
4204 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4205 }
4206
4207 refs = btrfs_extent_refs(leaf, ei);
4208 BUG_ON(refs < refs_to_drop);
4209 refs -= refs_to_drop;
4210
4211 if (refs > 0) {
4212 if (extent_op)
4213 __run_delayed_extent_op(extent_op, leaf, ei);
4214 /*
4215 * In the case of inline back ref, reference count will
4216 * be updated by remove_extent_backref
4217 */
4218 if (iref) {
4219 BUG_ON(!found_extent);
4220 } else {
4221 btrfs_set_extent_refs(leaf, ei, refs);
4222 btrfs_mark_buffer_dirty(leaf);
4223 }
4224 if (found_extent) {
4225 ret = remove_extent_backref(trans, extent_root, path,
4226 iref, refs_to_drop,
4227 is_data);
4228 BUG_ON(ret);
4229 }
4230 } else {
4231 if (found_extent) {
4232 BUG_ON(is_data && refs_to_drop !=
4233 extent_data_ref_count(root, path, iref));
4234 if (iref) {
4235 BUG_ON(path->slots[0] != extent_slot);
4236 } else {
4237 BUG_ON(path->slots[0] != extent_slot + 1);
4238 path->slots[0] = extent_slot;
4239 num_to_del = 2;
4240 }
4241 }
4242
4243 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4244 num_to_del);
4245 BUG_ON(ret);
4246 btrfs_release_path(extent_root, path);
4247
4248 if (is_data) {
4249 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4250 BUG_ON(ret);
4251 } else {
4252 invalidate_mapping_pages(info->btree_inode->i_mapping,
4253 bytenr >> PAGE_CACHE_SHIFT,
4254 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4255 }
4256
4257 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4258 BUG_ON(ret);
4259 }
4260 btrfs_free_path(path);
4261 return ret;
4262 }
4263
4264 /*
4265 * when we free an block, it is possible (and likely) that we free the last
4266 * delayed ref for that extent as well. This searches the delayed ref tree for
4267 * a given extent, and if there are no other delayed refs to be processed, it
4268 * removes it from the tree.
4269 */
4270 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4271 struct btrfs_root *root, u64 bytenr)
4272 {
4273 struct btrfs_delayed_ref_head *head;
4274 struct btrfs_delayed_ref_root *delayed_refs;
4275 struct btrfs_delayed_ref_node *ref;
4276 struct rb_node *node;
4277 int ret = 0;
4278
4279 delayed_refs = &trans->transaction->delayed_refs;
4280 spin_lock(&delayed_refs->lock);
4281 head = btrfs_find_delayed_ref_head(trans, bytenr);
4282 if (!head)
4283 goto out;
4284
4285 node = rb_prev(&head->node.rb_node);
4286 if (!node)
4287 goto out;
4288
4289 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4290
4291 /* there are still entries for this ref, we can't drop it */
4292 if (ref->bytenr == bytenr)
4293 goto out;
4294
4295 if (head->extent_op) {
4296 if (!head->must_insert_reserved)
4297 goto out;
4298 kfree(head->extent_op);
4299 head->extent_op = NULL;
4300 }
4301
4302 /*
4303 * waiting for the lock here would deadlock. If someone else has it
4304 * locked they are already in the process of dropping it anyway
4305 */
4306 if (!mutex_trylock(&head->mutex))
4307 goto out;
4308
4309 /*
4310 * at this point we have a head with no other entries. Go
4311 * ahead and process it.
4312 */
4313 head->node.in_tree = 0;
4314 rb_erase(&head->node.rb_node, &delayed_refs->root);
4315
4316 delayed_refs->num_entries--;
4317
4318 /*
4319 * we don't take a ref on the node because we're removing it from the
4320 * tree, so we just steal the ref the tree was holding.
4321 */
4322 delayed_refs->num_heads--;
4323 if (list_empty(&head->cluster))
4324 delayed_refs->num_heads_ready--;
4325
4326 list_del_init(&head->cluster);
4327 spin_unlock(&delayed_refs->lock);
4328
4329 BUG_ON(head->extent_op);
4330 if (head->must_insert_reserved)
4331 ret = 1;
4332
4333 mutex_unlock(&head->mutex);
4334 btrfs_put_delayed_ref(&head->node);
4335 return ret;
4336 out:
4337 spin_unlock(&delayed_refs->lock);
4338 return 0;
4339 }
4340
4341 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4342 struct btrfs_root *root,
4343 struct extent_buffer *buf,
4344 u64 parent, int last_ref)
4345 {
4346 struct btrfs_block_rsv *block_rsv;
4347 struct btrfs_block_group_cache *cache = NULL;
4348 int ret;
4349
4350 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4351 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4352 parent, root->root_key.objectid,
4353 btrfs_header_level(buf),
4354 BTRFS_DROP_DELAYED_REF, NULL);
4355 BUG_ON(ret);
4356 }
4357
4358 if (!last_ref)
4359 return;
4360
4361 block_rsv = get_block_rsv(trans, root);
4362 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4363 if (block_rsv->space_info != cache->space_info)
4364 goto out;
4365
4366 if (btrfs_header_generation(buf) == trans->transid) {
4367 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4368 ret = check_ref_cleanup(trans, root, buf->start);
4369 if (!ret)
4370 goto pin;
4371 }
4372
4373 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4374 pin_down_extent(root, cache, buf->start, buf->len, 1);
4375 goto pin;
4376 }
4377
4378 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4379
4380 btrfs_add_free_space(cache, buf->start, buf->len);
4381 ret = update_reserved_bytes(cache, buf->len, 0, 0);
4382 if (ret == -EAGAIN) {
4383 /* block group became read-only */
4384 update_reserved_bytes(cache, buf->len, 0, 1);
4385 goto out;
4386 }
4387
4388 ret = 1;
4389 spin_lock(&block_rsv->lock);
4390 if (block_rsv->reserved < block_rsv->size) {
4391 block_rsv->reserved += buf->len;
4392 ret = 0;
4393 }
4394 spin_unlock(&block_rsv->lock);
4395
4396 if (ret) {
4397 spin_lock(&cache->space_info->lock);
4398 cache->space_info->bytes_reserved -= buf->len;
4399 spin_unlock(&cache->space_info->lock);
4400 }
4401 goto out;
4402 }
4403 pin:
4404 if (block_rsv->durable && !cache->ro) {
4405 ret = 0;
4406 spin_lock(&cache->lock);
4407 if (!cache->ro) {
4408 cache->reserved_pinned += buf->len;
4409 ret = 1;
4410 }
4411 spin_unlock(&cache->lock);
4412
4413 if (ret) {
4414 spin_lock(&block_rsv->lock);
4415 block_rsv->freed[trans->transid & 0x1] += buf->len;
4416 spin_unlock(&block_rsv->lock);
4417 }
4418 }
4419 out:
4420 btrfs_put_block_group(cache);
4421 }
4422
4423 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4424 struct btrfs_root *root,
4425 u64 bytenr, u64 num_bytes, u64 parent,
4426 u64 root_objectid, u64 owner, u64 offset)
4427 {
4428 int ret;
4429
4430 /*
4431 * tree log blocks never actually go into the extent allocation
4432 * tree, just update pinning info and exit early.
4433 */
4434 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4435 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4436 /* unlocks the pinned mutex */
4437 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4438 ret = 0;
4439 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4440 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4441 parent, root_objectid, (int)owner,
4442 BTRFS_DROP_DELAYED_REF, NULL);
4443 BUG_ON(ret);
4444 } else {
4445 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4446 parent, root_objectid, owner,
4447 offset, BTRFS_DROP_DELAYED_REF, NULL);
4448 BUG_ON(ret);
4449 }
4450 return ret;
4451 }
4452
4453 static u64 stripe_align(struct btrfs_root *root, u64 val)
4454 {
4455 u64 mask = ((u64)root->stripesize - 1);
4456 u64 ret = (val + mask) & ~mask;
4457 return ret;
4458 }
4459
4460 /*
4461 * when we wait for progress in the block group caching, its because
4462 * our allocation attempt failed at least once. So, we must sleep
4463 * and let some progress happen before we try again.
4464 *
4465 * This function will sleep at least once waiting for new free space to
4466 * show up, and then it will check the block group free space numbers
4467 * for our min num_bytes. Another option is to have it go ahead
4468 * and look in the rbtree for a free extent of a given size, but this
4469 * is a good start.
4470 */
4471 static noinline int
4472 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4473 u64 num_bytes)
4474 {
4475 struct btrfs_caching_control *caching_ctl;
4476 DEFINE_WAIT(wait);
4477
4478 caching_ctl = get_caching_control(cache);
4479 if (!caching_ctl)
4480 return 0;
4481
4482 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4483 (cache->free_space >= num_bytes));
4484
4485 put_caching_control(caching_ctl);
4486 return 0;
4487 }
4488
4489 static noinline int
4490 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4491 {
4492 struct btrfs_caching_control *caching_ctl;
4493 DEFINE_WAIT(wait);
4494
4495 caching_ctl = get_caching_control(cache);
4496 if (!caching_ctl)
4497 return 0;
4498
4499 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4500
4501 put_caching_control(caching_ctl);
4502 return 0;
4503 }
4504
4505 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4506 {
4507 int index;
4508 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4509 index = 0;
4510 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4511 index = 1;
4512 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4513 index = 2;
4514 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4515 index = 3;
4516 else
4517 index = 4;
4518 return index;
4519 }
4520
4521 enum btrfs_loop_type {
4522 LOOP_FIND_IDEAL = 0,
4523 LOOP_CACHING_NOWAIT = 1,
4524 LOOP_CACHING_WAIT = 2,
4525 LOOP_ALLOC_CHUNK = 3,
4526 LOOP_NO_EMPTY_SIZE = 4,
4527 };
4528
4529 /*
4530 * walks the btree of allocated extents and find a hole of a given size.
4531 * The key ins is changed to record the hole:
4532 * ins->objectid == block start
4533 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4534 * ins->offset == number of blocks
4535 * Any available blocks before search_start are skipped.
4536 */
4537 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4538 struct btrfs_root *orig_root,
4539 u64 num_bytes, u64 empty_size,
4540 u64 search_start, u64 search_end,
4541 u64 hint_byte, struct btrfs_key *ins,
4542 int data)
4543 {
4544 int ret = 0;
4545 struct btrfs_root *root = orig_root->fs_info->extent_root;
4546 struct btrfs_free_cluster *last_ptr = NULL;
4547 struct btrfs_block_group_cache *block_group = NULL;
4548 int empty_cluster = 2 * 1024 * 1024;
4549 int allowed_chunk_alloc = 0;
4550 int done_chunk_alloc = 0;
4551 struct btrfs_space_info *space_info;
4552 int last_ptr_loop = 0;
4553 int loop = 0;
4554 int index = 0;
4555 bool found_uncached_bg = false;
4556 bool failed_cluster_refill = false;
4557 bool failed_alloc = false;
4558 u64 ideal_cache_percent = 0;
4559 u64 ideal_cache_offset = 0;
4560
4561 WARN_ON(num_bytes < root->sectorsize);
4562 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4563 ins->objectid = 0;
4564 ins->offset = 0;
4565
4566 space_info = __find_space_info(root->fs_info, data);
4567 if (!space_info) {
4568 printk(KERN_ERR "No space info for %d\n", data);
4569 return -ENOSPC;
4570 }
4571
4572 if (orig_root->ref_cows || empty_size)
4573 allowed_chunk_alloc = 1;
4574
4575 if (data & BTRFS_BLOCK_GROUP_METADATA) {
4576 last_ptr = &root->fs_info->meta_alloc_cluster;
4577 if (!btrfs_test_opt(root, SSD))
4578 empty_cluster = 64 * 1024;
4579 }
4580
4581 if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
4582 last_ptr = &root->fs_info->data_alloc_cluster;
4583 }
4584
4585 if (last_ptr) {
4586 spin_lock(&last_ptr->lock);
4587 if (last_ptr->block_group)
4588 hint_byte = last_ptr->window_start;
4589 spin_unlock(&last_ptr->lock);
4590 }
4591
4592 search_start = max(search_start, first_logical_byte(root, 0));
4593 search_start = max(search_start, hint_byte);
4594
4595 if (!last_ptr)
4596 empty_cluster = 0;
4597
4598 if (search_start == hint_byte) {
4599 ideal_cache:
4600 block_group = btrfs_lookup_block_group(root->fs_info,
4601 search_start);
4602 /*
4603 * we don't want to use the block group if it doesn't match our
4604 * allocation bits, or if its not cached.
4605 *
4606 * However if we are re-searching with an ideal block group
4607 * picked out then we don't care that the block group is cached.
4608 */
4609 if (block_group && block_group_bits(block_group, data) &&
4610 (block_group->cached != BTRFS_CACHE_NO ||
4611 search_start == ideal_cache_offset)) {
4612 down_read(&space_info->groups_sem);
4613 if (list_empty(&block_group->list) ||
4614 block_group->ro) {
4615 /*
4616 * someone is removing this block group,
4617 * we can't jump into the have_block_group
4618 * target because our list pointers are not
4619 * valid
4620 */
4621 btrfs_put_block_group(block_group);
4622 up_read(&space_info->groups_sem);
4623 } else {
4624 index = get_block_group_index(block_group);
4625 goto have_block_group;
4626 }
4627 } else if (block_group) {
4628 btrfs_put_block_group(block_group);
4629 }
4630 }
4631 search:
4632 down_read(&space_info->groups_sem);
4633 list_for_each_entry(block_group, &space_info->block_groups[index],
4634 list) {
4635 u64 offset;
4636 int cached;
4637
4638 btrfs_get_block_group(block_group);
4639 search_start = block_group->key.objectid;
4640
4641 have_block_group:
4642 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4643 u64 free_percent;
4644
4645 free_percent = btrfs_block_group_used(&block_group->item);
4646 free_percent *= 100;
4647 free_percent = div64_u64(free_percent,
4648 block_group->key.offset);
4649 free_percent = 100 - free_percent;
4650 if (free_percent > ideal_cache_percent &&
4651 likely(!block_group->ro)) {
4652 ideal_cache_offset = block_group->key.objectid;
4653 ideal_cache_percent = free_percent;
4654 }
4655
4656 /*
4657 * We only want to start kthread caching if we are at
4658 * the point where we will wait for caching to make
4659 * progress, or if our ideal search is over and we've
4660 * found somebody to start caching.
4661 */
4662 if (loop > LOOP_CACHING_NOWAIT ||
4663 (loop > LOOP_FIND_IDEAL &&
4664 atomic_read(&space_info->caching_threads) < 2)) {
4665 ret = cache_block_group(block_group);
4666 BUG_ON(ret);
4667 }
4668 found_uncached_bg = true;
4669
4670 /*
4671 * If loop is set for cached only, try the next block
4672 * group.
4673 */
4674 if (loop == LOOP_FIND_IDEAL)
4675 goto loop;
4676 }
4677
4678 cached = block_group_cache_done(block_group);
4679 if (unlikely(!cached))
4680 found_uncached_bg = true;
4681
4682 if (unlikely(block_group->ro))
4683 goto loop;
4684
4685 /*
4686 * Ok we want to try and use the cluster allocator, so lets look
4687 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
4688 * have tried the cluster allocator plenty of times at this
4689 * point and not have found anything, so we are likely way too
4690 * fragmented for the clustering stuff to find anything, so lets
4691 * just skip it and let the allocator find whatever block it can
4692 * find
4693 */
4694 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
4695 /*
4696 * the refill lock keeps out other
4697 * people trying to start a new cluster
4698 */
4699 spin_lock(&last_ptr->refill_lock);
4700 if (last_ptr->block_group &&
4701 (last_ptr->block_group->ro ||
4702 !block_group_bits(last_ptr->block_group, data))) {
4703 offset = 0;
4704 goto refill_cluster;
4705 }
4706
4707 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
4708 num_bytes, search_start);
4709 if (offset) {
4710 /* we have a block, we're done */
4711 spin_unlock(&last_ptr->refill_lock);
4712 goto checks;
4713 }
4714
4715 spin_lock(&last_ptr->lock);
4716 /*
4717 * whoops, this cluster doesn't actually point to
4718 * this block group. Get a ref on the block
4719 * group is does point to and try again
4720 */
4721 if (!last_ptr_loop && last_ptr->block_group &&
4722 last_ptr->block_group != block_group) {
4723
4724 btrfs_put_block_group(block_group);
4725 block_group = last_ptr->block_group;
4726 btrfs_get_block_group(block_group);
4727 spin_unlock(&last_ptr->lock);
4728 spin_unlock(&last_ptr->refill_lock);
4729
4730 last_ptr_loop = 1;
4731 search_start = block_group->key.objectid;
4732 /*
4733 * we know this block group is properly
4734 * in the list because
4735 * btrfs_remove_block_group, drops the
4736 * cluster before it removes the block
4737 * group from the list
4738 */
4739 goto have_block_group;
4740 }
4741 spin_unlock(&last_ptr->lock);
4742 refill_cluster:
4743 /*
4744 * this cluster didn't work out, free it and
4745 * start over
4746 */
4747 btrfs_return_cluster_to_free_space(NULL, last_ptr);
4748
4749 last_ptr_loop = 0;
4750
4751 /* allocate a cluster in this block group */
4752 ret = btrfs_find_space_cluster(trans, root,
4753 block_group, last_ptr,
4754 offset, num_bytes,
4755 empty_cluster + empty_size);
4756 if (ret == 0) {
4757 /*
4758 * now pull our allocation out of this
4759 * cluster
4760 */
4761 offset = btrfs_alloc_from_cluster(block_group,
4762 last_ptr, num_bytes,
4763 search_start);
4764 if (offset) {
4765 /* we found one, proceed */
4766 spin_unlock(&last_ptr->refill_lock);
4767 goto checks;
4768 }
4769 } else if (!cached && loop > LOOP_CACHING_NOWAIT
4770 && !failed_cluster_refill) {
4771 spin_unlock(&last_ptr->refill_lock);
4772
4773 failed_cluster_refill = true;
4774 wait_block_group_cache_progress(block_group,
4775 num_bytes + empty_cluster + empty_size);
4776 goto have_block_group;
4777 }
4778
4779 /*
4780 * at this point we either didn't find a cluster
4781 * or we weren't able to allocate a block from our
4782 * cluster. Free the cluster we've been trying
4783 * to use, and go to the next block group
4784 */
4785 btrfs_return_cluster_to_free_space(NULL, last_ptr);
4786 spin_unlock(&last_ptr->refill_lock);
4787 goto loop;
4788 }
4789
4790 offset = btrfs_find_space_for_alloc(block_group, search_start,
4791 num_bytes, empty_size);
4792 /*
4793 * If we didn't find a chunk, and we haven't failed on this
4794 * block group before, and this block group is in the middle of
4795 * caching and we are ok with waiting, then go ahead and wait
4796 * for progress to be made, and set failed_alloc to true.
4797 *
4798 * If failed_alloc is true then we've already waited on this
4799 * block group once and should move on to the next block group.
4800 */
4801 if (!offset && !failed_alloc && !cached &&
4802 loop > LOOP_CACHING_NOWAIT) {
4803 wait_block_group_cache_progress(block_group,
4804 num_bytes + empty_size);
4805 failed_alloc = true;
4806 goto have_block_group;
4807 } else if (!offset) {
4808 goto loop;
4809 }
4810 checks:
4811 search_start = stripe_align(root, offset);
4812 /* move on to the next group */
4813 if (search_start + num_bytes >= search_end) {
4814 btrfs_add_free_space(block_group, offset, num_bytes);
4815 goto loop;
4816 }
4817
4818 /* move on to the next group */
4819 if (search_start + num_bytes >
4820 block_group->key.objectid + block_group->key.offset) {
4821 btrfs_add_free_space(block_group, offset, num_bytes);
4822 goto loop;
4823 }
4824
4825 ins->objectid = search_start;
4826 ins->offset = num_bytes;
4827
4828 if (offset < search_start)
4829 btrfs_add_free_space(block_group, offset,
4830 search_start - offset);
4831 BUG_ON(offset > search_start);
4832
4833 ret = update_reserved_bytes(block_group, num_bytes, 1,
4834 (data & BTRFS_BLOCK_GROUP_DATA));
4835 if (ret == -EAGAIN) {
4836 btrfs_add_free_space(block_group, offset, num_bytes);
4837 goto loop;
4838 }
4839
4840 /* we are all good, lets return */
4841 ins->objectid = search_start;
4842 ins->offset = num_bytes;
4843
4844 if (offset < search_start)
4845 btrfs_add_free_space(block_group, offset,
4846 search_start - offset);
4847 BUG_ON(offset > search_start);
4848 break;
4849 loop:
4850 failed_cluster_refill = false;
4851 failed_alloc = false;
4852 BUG_ON(index != get_block_group_index(block_group));
4853 btrfs_put_block_group(block_group);
4854 }
4855 up_read(&space_info->groups_sem);
4856
4857 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
4858 goto search;
4859
4860 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
4861 * for them to make caching progress. Also
4862 * determine the best possible bg to cache
4863 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4864 * caching kthreads as we move along
4865 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4866 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4867 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4868 * again
4869 */
4870 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
4871 (found_uncached_bg || empty_size || empty_cluster ||
4872 allowed_chunk_alloc)) {
4873 index = 0;
4874 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
4875 found_uncached_bg = false;
4876 loop++;
4877 if (!ideal_cache_percent &&
4878 atomic_read(&space_info->caching_threads))
4879 goto search;
4880
4881 /*
4882 * 1 of the following 2 things have happened so far
4883 *
4884 * 1) We found an ideal block group for caching that
4885 * is mostly full and will cache quickly, so we might
4886 * as well wait for it.
4887 *
4888 * 2) We searched for cached only and we didn't find
4889 * anything, and we didn't start any caching kthreads
4890 * either, so chances are we will loop through and
4891 * start a couple caching kthreads, and then come back
4892 * around and just wait for them. This will be slower
4893 * because we will have 2 caching kthreads reading at
4894 * the same time when we could have just started one
4895 * and waited for it to get far enough to give us an
4896 * allocation, so go ahead and go to the wait caching
4897 * loop.
4898 */
4899 loop = LOOP_CACHING_WAIT;
4900 search_start = ideal_cache_offset;
4901 ideal_cache_percent = 0;
4902 goto ideal_cache;
4903 } else if (loop == LOOP_FIND_IDEAL) {
4904 /*
4905 * Didn't find a uncached bg, wait on anything we find
4906 * next.
4907 */
4908 loop = LOOP_CACHING_WAIT;
4909 goto search;
4910 }
4911
4912 if (loop < LOOP_CACHING_WAIT) {
4913 loop++;
4914 goto search;
4915 }
4916
4917 if (loop == LOOP_ALLOC_CHUNK) {
4918 empty_size = 0;
4919 empty_cluster = 0;
4920 }
4921
4922 if (allowed_chunk_alloc) {
4923 ret = do_chunk_alloc(trans, root, num_bytes +
4924 2 * 1024 * 1024, data, 1);
4925 allowed_chunk_alloc = 0;
4926 done_chunk_alloc = 1;
4927 } else if (!done_chunk_alloc) {
4928 space_info->force_alloc = 1;
4929 }
4930
4931 if (loop < LOOP_NO_EMPTY_SIZE) {
4932 loop++;
4933 goto search;
4934 }
4935 ret = -ENOSPC;
4936 } else if (!ins->objectid) {
4937 ret = -ENOSPC;
4938 }
4939
4940 /* we found what we needed */
4941 if (ins->objectid) {
4942 if (!(data & BTRFS_BLOCK_GROUP_DATA))
4943 trans->block_group = block_group->key.objectid;
4944
4945 btrfs_put_block_group(block_group);
4946 ret = 0;
4947 }
4948
4949 return ret;
4950 }
4951
4952 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
4953 int dump_block_groups)
4954 {
4955 struct btrfs_block_group_cache *cache;
4956 int index = 0;
4957
4958 spin_lock(&info->lock);
4959 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
4960 (unsigned long long)(info->total_bytes - info->bytes_used -
4961 info->bytes_pinned - info->bytes_reserved -
4962 info->bytes_readonly),
4963 (info->full) ? "" : "not ");
4964 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
4965 "reserved=%llu, may_use=%llu, readonly=%llu\n",
4966 (unsigned long long)info->total_bytes,
4967 (unsigned long long)info->bytes_used,
4968 (unsigned long long)info->bytes_pinned,
4969 (unsigned long long)info->bytes_reserved,
4970 (unsigned long long)info->bytes_may_use,
4971 (unsigned long long)info->bytes_readonly);
4972 spin_unlock(&info->lock);
4973
4974 if (!dump_block_groups)
4975 return;
4976
4977 down_read(&info->groups_sem);
4978 again:
4979 list_for_each_entry(cache, &info->block_groups[index], list) {
4980 spin_lock(&cache->lock);
4981 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
4982 "%llu pinned %llu reserved\n",
4983 (unsigned long long)cache->key.objectid,
4984 (unsigned long long)cache->key.offset,
4985 (unsigned long long)btrfs_block_group_used(&cache->item),
4986 (unsigned long long)cache->pinned,
4987 (unsigned long long)cache->reserved);
4988 btrfs_dump_free_space(cache, bytes);
4989 spin_unlock(&cache->lock);
4990 }
4991 if (++index < BTRFS_NR_RAID_TYPES)
4992 goto again;
4993 up_read(&info->groups_sem);
4994 }
4995
4996 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
4997 struct btrfs_root *root,
4998 u64 num_bytes, u64 min_alloc_size,
4999 u64 empty_size, u64 hint_byte,
5000 u64 search_end, struct btrfs_key *ins,
5001 u64 data)
5002 {
5003 int ret;
5004 u64 search_start = 0;
5005
5006 data = btrfs_get_alloc_profile(root, data);
5007 again:
5008 /*
5009 * the only place that sets empty_size is btrfs_realloc_node, which
5010 * is not called recursively on allocations
5011 */
5012 if (empty_size || root->ref_cows)
5013 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5014 num_bytes + 2 * 1024 * 1024, data, 0);
5015
5016 WARN_ON(num_bytes < root->sectorsize);
5017 ret = find_free_extent(trans, root, num_bytes, empty_size,
5018 search_start, search_end, hint_byte,
5019 ins, data);
5020
5021 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5022 num_bytes = num_bytes >> 1;
5023 num_bytes = num_bytes & ~(root->sectorsize - 1);
5024 num_bytes = max(num_bytes, min_alloc_size);
5025 do_chunk_alloc(trans, root->fs_info->extent_root,
5026 num_bytes, data, 1);
5027 goto again;
5028 }
5029 if (ret == -ENOSPC) {
5030 struct btrfs_space_info *sinfo;
5031
5032 sinfo = __find_space_info(root->fs_info, data);
5033 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5034 "wanted %llu\n", (unsigned long long)data,
5035 (unsigned long long)num_bytes);
5036 dump_space_info(sinfo, num_bytes, 1);
5037 }
5038
5039 return ret;
5040 }
5041
5042 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5043 {
5044 struct btrfs_block_group_cache *cache;
5045 int ret = 0;
5046
5047 cache = btrfs_lookup_block_group(root->fs_info, start);
5048 if (!cache) {
5049 printk(KERN_ERR "Unable to find block group for %llu\n",
5050 (unsigned long long)start);
5051 return -ENOSPC;
5052 }
5053
5054 ret = btrfs_discard_extent(root, start, len);
5055
5056 btrfs_add_free_space(cache, start, len);
5057 update_reserved_bytes(cache, len, 0, 1);
5058 btrfs_put_block_group(cache);
5059
5060 return ret;
5061 }
5062
5063 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5064 struct btrfs_root *root,
5065 u64 parent, u64 root_objectid,
5066 u64 flags, u64 owner, u64 offset,
5067 struct btrfs_key *ins, int ref_mod)
5068 {
5069 int ret;
5070 struct btrfs_fs_info *fs_info = root->fs_info;
5071 struct btrfs_extent_item *extent_item;
5072 struct btrfs_extent_inline_ref *iref;
5073 struct btrfs_path *path;
5074 struct extent_buffer *leaf;
5075 int type;
5076 u32 size;
5077
5078 if (parent > 0)
5079 type = BTRFS_SHARED_DATA_REF_KEY;
5080 else
5081 type = BTRFS_EXTENT_DATA_REF_KEY;
5082
5083 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5084
5085 path = btrfs_alloc_path();
5086 BUG_ON(!path);
5087
5088 path->leave_spinning = 1;
5089 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5090 ins, size);
5091 BUG_ON(ret);
5092
5093 leaf = path->nodes[0];
5094 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5095 struct btrfs_extent_item);
5096 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5097 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5098 btrfs_set_extent_flags(leaf, extent_item,
5099 flags | BTRFS_EXTENT_FLAG_DATA);
5100
5101 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5102 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5103 if (parent > 0) {
5104 struct btrfs_shared_data_ref *ref;
5105 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5106 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5107 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5108 } else {
5109 struct btrfs_extent_data_ref *ref;
5110 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5111 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5112 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5113 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5114 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5115 }
5116
5117 btrfs_mark_buffer_dirty(path->nodes[0]);
5118 btrfs_free_path(path);
5119
5120 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5121 if (ret) {
5122 printk(KERN_ERR "btrfs update block group failed for %llu "
5123 "%llu\n", (unsigned long long)ins->objectid,
5124 (unsigned long long)ins->offset);
5125 BUG();
5126 }
5127 return ret;
5128 }
5129
5130 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5131 struct btrfs_root *root,
5132 u64 parent, u64 root_objectid,
5133 u64 flags, struct btrfs_disk_key *key,
5134 int level, struct btrfs_key *ins)
5135 {
5136 int ret;
5137 struct btrfs_fs_info *fs_info = root->fs_info;
5138 struct btrfs_extent_item *extent_item;
5139 struct btrfs_tree_block_info *block_info;
5140 struct btrfs_extent_inline_ref *iref;
5141 struct btrfs_path *path;
5142 struct extent_buffer *leaf;
5143 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5144
5145 path = btrfs_alloc_path();
5146 BUG_ON(!path);
5147
5148 path->leave_spinning = 1;
5149 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5150 ins, size);
5151 BUG_ON(ret);
5152
5153 leaf = path->nodes[0];
5154 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5155 struct btrfs_extent_item);
5156 btrfs_set_extent_refs(leaf, extent_item, 1);
5157 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5158 btrfs_set_extent_flags(leaf, extent_item,
5159 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5160 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5161
5162 btrfs_set_tree_block_key(leaf, block_info, key);
5163 btrfs_set_tree_block_level(leaf, block_info, level);
5164
5165 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5166 if (parent > 0) {
5167 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5168 btrfs_set_extent_inline_ref_type(leaf, iref,
5169 BTRFS_SHARED_BLOCK_REF_KEY);
5170 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5171 } else {
5172 btrfs_set_extent_inline_ref_type(leaf, iref,
5173 BTRFS_TREE_BLOCK_REF_KEY);
5174 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5175 }
5176
5177 btrfs_mark_buffer_dirty(leaf);
5178 btrfs_free_path(path);
5179
5180 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5181 if (ret) {
5182 printk(KERN_ERR "btrfs update block group failed for %llu "
5183 "%llu\n", (unsigned long long)ins->objectid,
5184 (unsigned long long)ins->offset);
5185 BUG();
5186 }
5187 return ret;
5188 }
5189
5190 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5191 struct btrfs_root *root,
5192 u64 root_objectid, u64 owner,
5193 u64 offset, struct btrfs_key *ins)
5194 {
5195 int ret;
5196
5197 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5198
5199 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5200 0, root_objectid, owner, offset,
5201 BTRFS_ADD_DELAYED_EXTENT, NULL);
5202 return ret;
5203 }
5204
5205 /*
5206 * this is used by the tree logging recovery code. It records that
5207 * an extent has been allocated and makes sure to clear the free
5208 * space cache bits as well
5209 */
5210 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5211 struct btrfs_root *root,
5212 u64 root_objectid, u64 owner, u64 offset,
5213 struct btrfs_key *ins)
5214 {
5215 int ret;
5216 struct btrfs_block_group_cache *block_group;
5217 struct btrfs_caching_control *caching_ctl;
5218 u64 start = ins->objectid;
5219 u64 num_bytes = ins->offset;
5220
5221 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5222 cache_block_group(block_group);
5223 caching_ctl = get_caching_control(block_group);
5224
5225 if (!caching_ctl) {
5226 BUG_ON(!block_group_cache_done(block_group));
5227 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5228 BUG_ON(ret);
5229 } else {
5230 mutex_lock(&caching_ctl->mutex);
5231
5232 if (start >= caching_ctl->progress) {
5233 ret = add_excluded_extent(root, start, num_bytes);
5234 BUG_ON(ret);
5235 } else if (start + num_bytes <= caching_ctl->progress) {
5236 ret = btrfs_remove_free_space(block_group,
5237 start, num_bytes);
5238 BUG_ON(ret);
5239 } else {
5240 num_bytes = caching_ctl->progress - start;
5241 ret = btrfs_remove_free_space(block_group,
5242 start, num_bytes);
5243 BUG_ON(ret);
5244
5245 start = caching_ctl->progress;
5246 num_bytes = ins->objectid + ins->offset -
5247 caching_ctl->progress;
5248 ret = add_excluded_extent(root, start, num_bytes);
5249 BUG_ON(ret);
5250 }
5251
5252 mutex_unlock(&caching_ctl->mutex);
5253 put_caching_control(caching_ctl);
5254 }
5255
5256 ret = update_reserved_bytes(block_group, ins->offset, 1, 1);
5257 BUG_ON(ret);
5258 btrfs_put_block_group(block_group);
5259 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5260 0, owner, offset, ins, 1);
5261 return ret;
5262 }
5263
5264 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5265 struct btrfs_root *root,
5266 u64 bytenr, u32 blocksize,
5267 int level)
5268 {
5269 struct extent_buffer *buf;
5270
5271 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5272 if (!buf)
5273 return ERR_PTR(-ENOMEM);
5274 btrfs_set_header_generation(buf, trans->transid);
5275 btrfs_set_buffer_lockdep_class(buf, level);
5276 btrfs_tree_lock(buf);
5277 clean_tree_block(trans, root, buf);
5278
5279 btrfs_set_lock_blocking(buf);
5280 btrfs_set_buffer_uptodate(buf);
5281
5282 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5283 /*
5284 * we allow two log transactions at a time, use different
5285 * EXENT bit to differentiate dirty pages.
5286 */
5287 if (root->log_transid % 2 == 0)
5288 set_extent_dirty(&root->dirty_log_pages, buf->start,
5289 buf->start + buf->len - 1, GFP_NOFS);
5290 else
5291 set_extent_new(&root->dirty_log_pages, buf->start,
5292 buf->start + buf->len - 1, GFP_NOFS);
5293 } else {
5294 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5295 buf->start + buf->len - 1, GFP_NOFS);
5296 }
5297 trans->blocks_used++;
5298 /* this returns a buffer locked for blocking */
5299 return buf;
5300 }
5301
5302 static struct btrfs_block_rsv *
5303 use_block_rsv(struct btrfs_trans_handle *trans,
5304 struct btrfs_root *root, u32 blocksize)
5305 {
5306 struct btrfs_block_rsv *block_rsv;
5307 int ret;
5308
5309 block_rsv = get_block_rsv(trans, root);
5310
5311 if (block_rsv->size == 0) {
5312 ret = reserve_metadata_bytes(block_rsv, blocksize);
5313 if (ret)
5314 return ERR_PTR(ret);
5315 return block_rsv;
5316 }
5317
5318 ret = block_rsv_use_bytes(block_rsv, blocksize);
5319 if (!ret)
5320 return block_rsv;
5321
5322 WARN_ON(1);
5323 printk(KERN_INFO"block_rsv size %llu reserved %llu freed %llu %llu\n",
5324 block_rsv->size, block_rsv->reserved,
5325 block_rsv->freed[0], block_rsv->freed[1]);
5326
5327 return ERR_PTR(-ENOSPC);
5328 }
5329
5330 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5331 {
5332 block_rsv_add_bytes(block_rsv, blocksize, 0);
5333 block_rsv_release_bytes(block_rsv, NULL, 0);
5334 }
5335
5336 /*
5337 * finds a free extent and does all the dirty work required for allocation
5338 * returns the key for the extent through ins, and a tree buffer for
5339 * the first block of the extent through buf.
5340 *
5341 * returns the tree buffer or NULL.
5342 */
5343 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5344 struct btrfs_root *root, u32 blocksize,
5345 u64 parent, u64 root_objectid,
5346 struct btrfs_disk_key *key, int level,
5347 u64 hint, u64 empty_size)
5348 {
5349 struct btrfs_key ins;
5350 struct btrfs_block_rsv *block_rsv;
5351 struct extent_buffer *buf;
5352 u64 flags = 0;
5353 int ret;
5354
5355
5356 block_rsv = use_block_rsv(trans, root, blocksize);
5357 if (IS_ERR(block_rsv))
5358 return ERR_CAST(block_rsv);
5359
5360 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5361 empty_size, hint, (u64)-1, &ins, 0);
5362 if (ret) {
5363 unuse_block_rsv(block_rsv, blocksize);
5364 return ERR_PTR(ret);
5365 }
5366
5367 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5368 blocksize, level);
5369 BUG_ON(IS_ERR(buf));
5370
5371 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5372 if (parent == 0)
5373 parent = ins.objectid;
5374 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5375 } else
5376 BUG_ON(parent > 0);
5377
5378 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5379 struct btrfs_delayed_extent_op *extent_op;
5380 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5381 BUG_ON(!extent_op);
5382 if (key)
5383 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5384 else
5385 memset(&extent_op->key, 0, sizeof(extent_op->key));
5386 extent_op->flags_to_set = flags;
5387 extent_op->update_key = 1;
5388 extent_op->update_flags = 1;
5389 extent_op->is_data = 0;
5390
5391 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5392 ins.offset, parent, root_objectid,
5393 level, BTRFS_ADD_DELAYED_EXTENT,
5394 extent_op);
5395 BUG_ON(ret);
5396 }
5397 return buf;
5398 }
5399
5400 struct walk_control {
5401 u64 refs[BTRFS_MAX_LEVEL];
5402 u64 flags[BTRFS_MAX_LEVEL];
5403 struct btrfs_key update_progress;
5404 int stage;
5405 int level;
5406 int shared_level;
5407 int update_ref;
5408 int keep_locks;
5409 int reada_slot;
5410 int reada_count;
5411 };
5412
5413 #define DROP_REFERENCE 1
5414 #define UPDATE_BACKREF 2
5415
5416 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5417 struct btrfs_root *root,
5418 struct walk_control *wc,
5419 struct btrfs_path *path)
5420 {
5421 u64 bytenr;
5422 u64 generation;
5423 u64 refs;
5424 u64 flags;
5425 u64 last = 0;
5426 u32 nritems;
5427 u32 blocksize;
5428 struct btrfs_key key;
5429 struct extent_buffer *eb;
5430 int ret;
5431 int slot;
5432 int nread = 0;
5433
5434 if (path->slots[wc->level] < wc->reada_slot) {
5435 wc->reada_count = wc->reada_count * 2 / 3;
5436 wc->reada_count = max(wc->reada_count, 2);
5437 } else {
5438 wc->reada_count = wc->reada_count * 3 / 2;
5439 wc->reada_count = min_t(int, wc->reada_count,
5440 BTRFS_NODEPTRS_PER_BLOCK(root));
5441 }
5442
5443 eb = path->nodes[wc->level];
5444 nritems = btrfs_header_nritems(eb);
5445 blocksize = btrfs_level_size(root, wc->level - 1);
5446
5447 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5448 if (nread >= wc->reada_count)
5449 break;
5450
5451 cond_resched();
5452 bytenr = btrfs_node_blockptr(eb, slot);
5453 generation = btrfs_node_ptr_generation(eb, slot);
5454
5455 if (slot == path->slots[wc->level])
5456 goto reada;
5457
5458 if (wc->stage == UPDATE_BACKREF &&
5459 generation <= root->root_key.offset)
5460 continue;
5461
5462 /* We don't lock the tree block, it's OK to be racy here */
5463 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5464 &refs, &flags);
5465 BUG_ON(ret);
5466 BUG_ON(refs == 0);
5467
5468 if (wc->stage == DROP_REFERENCE) {
5469 if (refs == 1)
5470 goto reada;
5471
5472 if (wc->level == 1 &&
5473 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5474 continue;
5475 if (!wc->update_ref ||
5476 generation <= root->root_key.offset)
5477 continue;
5478 btrfs_node_key_to_cpu(eb, &key, slot);
5479 ret = btrfs_comp_cpu_keys(&key,
5480 &wc->update_progress);
5481 if (ret < 0)
5482 continue;
5483 } else {
5484 if (wc->level == 1 &&
5485 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5486 continue;
5487 }
5488 reada:
5489 ret = readahead_tree_block(root, bytenr, blocksize,
5490 generation);
5491 if (ret)
5492 break;
5493 last = bytenr + blocksize;
5494 nread++;
5495 }
5496 wc->reada_slot = slot;
5497 }
5498
5499 /*
5500 * hepler to process tree block while walking down the tree.
5501 *
5502 * when wc->stage == UPDATE_BACKREF, this function updates
5503 * back refs for pointers in the block.
5504 *
5505 * NOTE: return value 1 means we should stop walking down.
5506 */
5507 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5508 struct btrfs_root *root,
5509 struct btrfs_path *path,
5510 struct walk_control *wc, int lookup_info)
5511 {
5512 int level = wc->level;
5513 struct extent_buffer *eb = path->nodes[level];
5514 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5515 int ret;
5516
5517 if (wc->stage == UPDATE_BACKREF &&
5518 btrfs_header_owner(eb) != root->root_key.objectid)
5519 return 1;
5520
5521 /*
5522 * when reference count of tree block is 1, it won't increase
5523 * again. once full backref flag is set, we never clear it.
5524 */
5525 if (lookup_info &&
5526 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5527 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5528 BUG_ON(!path->locks[level]);
5529 ret = btrfs_lookup_extent_info(trans, root,
5530 eb->start, eb->len,
5531 &wc->refs[level],
5532 &wc->flags[level]);
5533 BUG_ON(ret);
5534 BUG_ON(wc->refs[level] == 0);
5535 }
5536
5537 if (wc->stage == DROP_REFERENCE) {
5538 if (wc->refs[level] > 1)
5539 return 1;
5540
5541 if (path->locks[level] && !wc->keep_locks) {
5542 btrfs_tree_unlock(eb);
5543 path->locks[level] = 0;
5544 }
5545 return 0;
5546 }
5547
5548 /* wc->stage == UPDATE_BACKREF */
5549 if (!(wc->flags[level] & flag)) {
5550 BUG_ON(!path->locks[level]);
5551 ret = btrfs_inc_ref(trans, root, eb, 1);
5552 BUG_ON(ret);
5553 ret = btrfs_dec_ref(trans, root, eb, 0);
5554 BUG_ON(ret);
5555 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5556 eb->len, flag, 0);
5557 BUG_ON(ret);
5558 wc->flags[level] |= flag;
5559 }
5560
5561 /*
5562 * the block is shared by multiple trees, so it's not good to
5563 * keep the tree lock
5564 */
5565 if (path->locks[level] && level > 0) {
5566 btrfs_tree_unlock(eb);
5567 path->locks[level] = 0;
5568 }
5569 return 0;
5570 }
5571
5572 /*
5573 * hepler to process tree block pointer.
5574 *
5575 * when wc->stage == DROP_REFERENCE, this function checks
5576 * reference count of the block pointed to. if the block
5577 * is shared and we need update back refs for the subtree
5578 * rooted at the block, this function changes wc->stage to
5579 * UPDATE_BACKREF. if the block is shared and there is no
5580 * need to update back, this function drops the reference
5581 * to the block.
5582 *
5583 * NOTE: return value 1 means we should stop walking down.
5584 */
5585 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5586 struct btrfs_root *root,
5587 struct btrfs_path *path,
5588 struct walk_control *wc, int *lookup_info)
5589 {
5590 u64 bytenr;
5591 u64 generation;
5592 u64 parent;
5593 u32 blocksize;
5594 struct btrfs_key key;
5595 struct extent_buffer *next;
5596 int level = wc->level;
5597 int reada = 0;
5598 int ret = 0;
5599
5600 generation = btrfs_node_ptr_generation(path->nodes[level],
5601 path->slots[level]);
5602 /*
5603 * if the lower level block was created before the snapshot
5604 * was created, we know there is no need to update back refs
5605 * for the subtree
5606 */
5607 if (wc->stage == UPDATE_BACKREF &&
5608 generation <= root->root_key.offset) {
5609 *lookup_info = 1;
5610 return 1;
5611 }
5612
5613 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5614 blocksize = btrfs_level_size(root, level - 1);
5615
5616 next = btrfs_find_tree_block(root, bytenr, blocksize);
5617 if (!next) {
5618 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5619 if (!next)
5620 return -ENOMEM;
5621 reada = 1;
5622 }
5623 btrfs_tree_lock(next);
5624 btrfs_set_lock_blocking(next);
5625
5626 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5627 &wc->refs[level - 1],
5628 &wc->flags[level - 1]);
5629 BUG_ON(ret);
5630 BUG_ON(wc->refs[level - 1] == 0);
5631 *lookup_info = 0;
5632
5633 if (wc->stage == DROP_REFERENCE) {
5634 if (wc->refs[level - 1] > 1) {
5635 if (level == 1 &&
5636 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5637 goto skip;
5638
5639 if (!wc->update_ref ||
5640 generation <= root->root_key.offset)
5641 goto skip;
5642
5643 btrfs_node_key_to_cpu(path->nodes[level], &key,
5644 path->slots[level]);
5645 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5646 if (ret < 0)
5647 goto skip;
5648
5649 wc->stage = UPDATE_BACKREF;
5650 wc->shared_level = level - 1;
5651 }
5652 } else {
5653 if (level == 1 &&
5654 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5655 goto skip;
5656 }
5657
5658 if (!btrfs_buffer_uptodate(next, generation)) {
5659 btrfs_tree_unlock(next);
5660 free_extent_buffer(next);
5661 next = NULL;
5662 *lookup_info = 1;
5663 }
5664
5665 if (!next) {
5666 if (reada && level == 1)
5667 reada_walk_down(trans, root, wc, path);
5668 next = read_tree_block(root, bytenr, blocksize, generation);
5669 btrfs_tree_lock(next);
5670 btrfs_set_lock_blocking(next);
5671 }
5672
5673 level--;
5674 BUG_ON(level != btrfs_header_level(next));
5675 path->nodes[level] = next;
5676 path->slots[level] = 0;
5677 path->locks[level] = 1;
5678 wc->level = level;
5679 if (wc->level == 1)
5680 wc->reada_slot = 0;
5681 return 0;
5682 skip:
5683 wc->refs[level - 1] = 0;
5684 wc->flags[level - 1] = 0;
5685 if (wc->stage == DROP_REFERENCE) {
5686 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5687 parent = path->nodes[level]->start;
5688 } else {
5689 BUG_ON(root->root_key.objectid !=
5690 btrfs_header_owner(path->nodes[level]));
5691 parent = 0;
5692 }
5693
5694 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
5695 root->root_key.objectid, level - 1, 0);
5696 BUG_ON(ret);
5697 }
5698 btrfs_tree_unlock(next);
5699 free_extent_buffer(next);
5700 *lookup_info = 1;
5701 return 1;
5702 }
5703
5704 /*
5705 * hepler to process tree block while walking up the tree.
5706 *
5707 * when wc->stage == DROP_REFERENCE, this function drops
5708 * reference count on the block.
5709 *
5710 * when wc->stage == UPDATE_BACKREF, this function changes
5711 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5712 * to UPDATE_BACKREF previously while processing the block.
5713 *
5714 * NOTE: return value 1 means we should stop walking up.
5715 */
5716 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5717 struct btrfs_root *root,
5718 struct btrfs_path *path,
5719 struct walk_control *wc)
5720 {
5721 int ret;
5722 int level = wc->level;
5723 struct extent_buffer *eb = path->nodes[level];
5724 u64 parent = 0;
5725
5726 if (wc->stage == UPDATE_BACKREF) {
5727 BUG_ON(wc->shared_level < level);
5728 if (level < wc->shared_level)
5729 goto out;
5730
5731 ret = find_next_key(path, level + 1, &wc->update_progress);
5732 if (ret > 0)
5733 wc->update_ref = 0;
5734
5735 wc->stage = DROP_REFERENCE;
5736 wc->shared_level = -1;
5737 path->slots[level] = 0;
5738
5739 /*
5740 * check reference count again if the block isn't locked.
5741 * we should start walking down the tree again if reference
5742 * count is one.
5743 */
5744 if (!path->locks[level]) {
5745 BUG_ON(level == 0);
5746 btrfs_tree_lock(eb);
5747 btrfs_set_lock_blocking(eb);
5748 path->locks[level] = 1;
5749
5750 ret = btrfs_lookup_extent_info(trans, root,
5751 eb->start, eb->len,
5752 &wc->refs[level],
5753 &wc->flags[level]);
5754 BUG_ON(ret);
5755 BUG_ON(wc->refs[level] == 0);
5756 if (wc->refs[level] == 1) {
5757 btrfs_tree_unlock(eb);
5758 path->locks[level] = 0;
5759 return 1;
5760 }
5761 }
5762 }
5763
5764 /* wc->stage == DROP_REFERENCE */
5765 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5766
5767 if (wc->refs[level] == 1) {
5768 if (level == 0) {
5769 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5770 ret = btrfs_dec_ref(trans, root, eb, 1);
5771 else
5772 ret = btrfs_dec_ref(trans, root, eb, 0);
5773 BUG_ON(ret);
5774 }
5775 /* make block locked assertion in clean_tree_block happy */
5776 if (!path->locks[level] &&
5777 btrfs_header_generation(eb) == trans->transid) {
5778 btrfs_tree_lock(eb);
5779 btrfs_set_lock_blocking(eb);
5780 path->locks[level] = 1;
5781 }
5782 clean_tree_block(trans, root, eb);
5783 }
5784
5785 if (eb == root->node) {
5786 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5787 parent = eb->start;
5788 else
5789 BUG_ON(root->root_key.objectid !=
5790 btrfs_header_owner(eb));
5791 } else {
5792 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5793 parent = path->nodes[level + 1]->start;
5794 else
5795 BUG_ON(root->root_key.objectid !=
5796 btrfs_header_owner(path->nodes[level + 1]));
5797 }
5798
5799 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5800 out:
5801 wc->refs[level] = 0;
5802 wc->flags[level] = 0;
5803 return 0;
5804 }
5805
5806 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5807 struct btrfs_root *root,
5808 struct btrfs_path *path,
5809 struct walk_control *wc)
5810 {
5811 int level = wc->level;
5812 int lookup_info = 1;
5813 int ret;
5814
5815 while (level >= 0) {
5816 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5817 if (ret > 0)
5818 break;
5819
5820 if (level == 0)
5821 break;
5822
5823 if (path->slots[level] >=
5824 btrfs_header_nritems(path->nodes[level]))
5825 break;
5826
5827 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5828 if (ret > 0) {
5829 path->slots[level]++;
5830 continue;
5831 } else if (ret < 0)
5832 return ret;
5833 level = wc->level;
5834 }
5835 return 0;
5836 }
5837
5838 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5839 struct btrfs_root *root,
5840 struct btrfs_path *path,
5841 struct walk_control *wc, int max_level)
5842 {
5843 int level = wc->level;
5844 int ret;
5845
5846 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5847 while (level < max_level && path->nodes[level]) {
5848 wc->level = level;
5849 if (path->slots[level] + 1 <
5850 btrfs_header_nritems(path->nodes[level])) {
5851 path->slots[level]++;
5852 return 0;
5853 } else {
5854 ret = walk_up_proc(trans, root, path, wc);
5855 if (ret > 0)
5856 return 0;
5857
5858 if (path->locks[level]) {
5859 btrfs_tree_unlock(path->nodes[level]);
5860 path->locks[level] = 0;
5861 }
5862 free_extent_buffer(path->nodes[level]);
5863 path->nodes[level] = NULL;
5864 level++;
5865 }
5866 }
5867 return 1;
5868 }
5869
5870 /*
5871 * drop a subvolume tree.
5872 *
5873 * this function traverses the tree freeing any blocks that only
5874 * referenced by the tree.
5875 *
5876 * when a shared tree block is found. this function decreases its
5877 * reference count by one. if update_ref is true, this function
5878 * also make sure backrefs for the shared block and all lower level
5879 * blocks are properly updated.
5880 */
5881 int btrfs_drop_snapshot(struct btrfs_root *root,
5882 struct btrfs_block_rsv *block_rsv, int update_ref)
5883 {
5884 struct btrfs_path *path;
5885 struct btrfs_trans_handle *trans;
5886 struct btrfs_root *tree_root = root->fs_info->tree_root;
5887 struct btrfs_root_item *root_item = &root->root_item;
5888 struct walk_control *wc;
5889 struct btrfs_key key;
5890 int err = 0;
5891 int ret;
5892 int level;
5893
5894 path = btrfs_alloc_path();
5895 BUG_ON(!path);
5896
5897 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5898 BUG_ON(!wc);
5899
5900 trans = btrfs_start_transaction(tree_root, 0);
5901 if (block_rsv)
5902 trans->block_rsv = block_rsv;
5903
5904 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5905 level = btrfs_header_level(root->node);
5906 path->nodes[level] = btrfs_lock_root_node(root);
5907 btrfs_set_lock_blocking(path->nodes[level]);
5908 path->slots[level] = 0;
5909 path->locks[level] = 1;
5910 memset(&wc->update_progress, 0,
5911 sizeof(wc->update_progress));
5912 } else {
5913 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5914 memcpy(&wc->update_progress, &key,
5915 sizeof(wc->update_progress));
5916
5917 level = root_item->drop_level;
5918 BUG_ON(level == 0);
5919 path->lowest_level = level;
5920 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5921 path->lowest_level = 0;
5922 if (ret < 0) {
5923 err = ret;
5924 goto out;
5925 }
5926 WARN_ON(ret > 0);
5927
5928 /*
5929 * unlock our path, this is safe because only this
5930 * function is allowed to delete this snapshot
5931 */
5932 btrfs_unlock_up_safe(path, 0);
5933
5934 level = btrfs_header_level(root->node);
5935 while (1) {
5936 btrfs_tree_lock(path->nodes[level]);
5937 btrfs_set_lock_blocking(path->nodes[level]);
5938
5939 ret = btrfs_lookup_extent_info(trans, root,
5940 path->nodes[level]->start,
5941 path->nodes[level]->len,
5942 &wc->refs[level],
5943 &wc->flags[level]);
5944 BUG_ON(ret);
5945 BUG_ON(wc->refs[level] == 0);
5946
5947 if (level == root_item->drop_level)
5948 break;
5949
5950 btrfs_tree_unlock(path->nodes[level]);
5951 WARN_ON(wc->refs[level] != 1);
5952 level--;
5953 }
5954 }
5955
5956 wc->level = level;
5957 wc->shared_level = -1;
5958 wc->stage = DROP_REFERENCE;
5959 wc->update_ref = update_ref;
5960 wc->keep_locks = 0;
5961 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
5962
5963 while (1) {
5964 ret = walk_down_tree(trans, root, path, wc);
5965 if (ret < 0) {
5966 err = ret;
5967 break;
5968 }
5969
5970 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5971 if (ret < 0) {
5972 err = ret;
5973 break;
5974 }
5975
5976 if (ret > 0) {
5977 BUG_ON(wc->stage != DROP_REFERENCE);
5978 break;
5979 }
5980
5981 if (wc->stage == DROP_REFERENCE) {
5982 level = wc->level;
5983 btrfs_node_key(path->nodes[level],
5984 &root_item->drop_progress,
5985 path->slots[level]);
5986 root_item->drop_level = level;
5987 }
5988
5989 BUG_ON(wc->level == 0);
5990 if (btrfs_should_end_transaction(trans, tree_root)) {
5991 ret = btrfs_update_root(trans, tree_root,
5992 &root->root_key,
5993 root_item);
5994 BUG_ON(ret);
5995
5996 btrfs_end_transaction_throttle(trans, tree_root);
5997 trans = btrfs_start_transaction(tree_root, 0);
5998 if (block_rsv)
5999 trans->block_rsv = block_rsv;
6000 }
6001 }
6002 btrfs_release_path(root, path);
6003 BUG_ON(err);
6004
6005 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6006 BUG_ON(ret);
6007
6008 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6009 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6010 NULL, NULL);
6011 BUG_ON(ret < 0);
6012 if (ret > 0) {
6013 ret = btrfs_del_orphan_item(trans, tree_root,
6014 root->root_key.objectid);
6015 BUG_ON(ret);
6016 }
6017 }
6018
6019 if (root->in_radix) {
6020 btrfs_free_fs_root(tree_root->fs_info, root);
6021 } else {
6022 free_extent_buffer(root->node);
6023 free_extent_buffer(root->commit_root);
6024 kfree(root);
6025 }
6026 out:
6027 btrfs_end_transaction_throttle(trans, tree_root);
6028 kfree(wc);
6029 btrfs_free_path(path);
6030 return err;
6031 }
6032
6033 /*
6034 * drop subtree rooted at tree block 'node'.
6035 *
6036 * NOTE: this function will unlock and release tree block 'node'
6037 */
6038 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6039 struct btrfs_root *root,
6040 struct extent_buffer *node,
6041 struct extent_buffer *parent)
6042 {
6043 struct btrfs_path *path;
6044 struct walk_control *wc;
6045 int level;
6046 int parent_level;
6047 int ret = 0;
6048 int wret;
6049
6050 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6051
6052 path = btrfs_alloc_path();
6053 BUG_ON(!path);
6054
6055 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6056 BUG_ON(!wc);
6057
6058 btrfs_assert_tree_locked(parent);
6059 parent_level = btrfs_header_level(parent);
6060 extent_buffer_get(parent);
6061 path->nodes[parent_level] = parent;
6062 path->slots[parent_level] = btrfs_header_nritems(parent);
6063
6064 btrfs_assert_tree_locked(node);
6065 level = btrfs_header_level(node);
6066 path->nodes[level] = node;
6067 path->slots[level] = 0;
6068 path->locks[level] = 1;
6069
6070 wc->refs[parent_level] = 1;
6071 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6072 wc->level = level;
6073 wc->shared_level = -1;
6074 wc->stage = DROP_REFERENCE;
6075 wc->update_ref = 0;
6076 wc->keep_locks = 1;
6077 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6078
6079 while (1) {
6080 wret = walk_down_tree(trans, root, path, wc);
6081 if (wret < 0) {
6082 ret = wret;
6083 break;
6084 }
6085
6086 wret = walk_up_tree(trans, root, path, wc, parent_level);
6087 if (wret < 0)
6088 ret = wret;
6089 if (wret != 0)
6090 break;
6091 }
6092
6093 kfree(wc);
6094 btrfs_free_path(path);
6095 return ret;
6096 }
6097
6098 #if 0
6099 static unsigned long calc_ra(unsigned long start, unsigned long last,
6100 unsigned long nr)
6101 {
6102 return min(last, start + nr - 1);
6103 }
6104
6105 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
6106 u64 len)
6107 {
6108 u64 page_start;
6109 u64 page_end;
6110 unsigned long first_index;
6111 unsigned long last_index;
6112 unsigned long i;
6113 struct page *page;
6114 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6115 struct file_ra_state *ra;
6116 struct btrfs_ordered_extent *ordered;
6117 unsigned int total_read = 0;
6118 unsigned int total_dirty = 0;
6119 int ret = 0;
6120
6121 ra = kzalloc(sizeof(*ra), GFP_NOFS);
6122
6123 mutex_lock(&inode->i_mutex);
6124 first_index = start >> PAGE_CACHE_SHIFT;
6125 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
6126
6127 /* make sure the dirty trick played by the caller work */
6128 ret = invalidate_inode_pages2_range(inode->i_mapping,
6129 first_index, last_index);
6130 if (ret)
6131 goto out_unlock;
6132
6133 file_ra_state_init(ra, inode->i_mapping);
6134
6135 for (i = first_index ; i <= last_index; i++) {
6136 if (total_read % ra->ra_pages == 0) {
6137 btrfs_force_ra(inode->i_mapping, ra, NULL, i,
6138 calc_ra(i, last_index, ra->ra_pages));
6139 }
6140 total_read++;
6141 again:
6142 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
6143 BUG_ON(1);
6144 page = grab_cache_page(inode->i_mapping, i);
6145 if (!page) {
6146 ret = -ENOMEM;
6147 goto out_unlock;
6148 }
6149 if (!PageUptodate(page)) {
6150 btrfs_readpage(NULL, page);
6151 lock_page(page);
6152 if (!PageUptodate(page)) {
6153 unlock_page(page);
6154 page_cache_release(page);
6155 ret = -EIO;
6156 goto out_unlock;
6157 }
6158 }
6159 wait_on_page_writeback(page);
6160
6161 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
6162 page_end = page_start + PAGE_CACHE_SIZE - 1;
6163 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
6164
6165 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6166 if (ordered) {
6167 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6168 unlock_page(page);
6169 page_cache_release(page);
6170 btrfs_start_ordered_extent(inode, ordered, 1);
6171 btrfs_put_ordered_extent(ordered);
6172 goto again;
6173 }
6174 set_page_extent_mapped(page);
6175
6176 if (i == first_index)
6177 set_extent_bits(io_tree, page_start, page_end,
6178 EXTENT_BOUNDARY, GFP_NOFS);
6179 btrfs_set_extent_delalloc(inode, page_start, page_end);
6180
6181 set_page_dirty(page);
6182 total_dirty++;
6183
6184 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6185 unlock_page(page);
6186 page_cache_release(page);
6187 }
6188
6189 out_unlock:
6190 kfree(ra);
6191 mutex_unlock(&inode->i_mutex);
6192 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
6193 return ret;
6194 }
6195
6196 static noinline int relocate_data_extent(struct inode *reloc_inode,
6197 struct btrfs_key *extent_key,
6198 u64 offset)
6199 {
6200 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6201 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
6202 struct extent_map *em;
6203 u64 start = extent_key->objectid - offset;
6204 u64 end = start + extent_key->offset - 1;
6205
6206 em = alloc_extent_map(GFP_NOFS);
6207 BUG_ON(!em || IS_ERR(em));
6208
6209 em->start = start;
6210 em->len = extent_key->offset;
6211 em->block_len = extent_key->offset;
6212 em->block_start = extent_key->objectid;
6213 em->bdev = root->fs_info->fs_devices->latest_bdev;
6214 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6215
6216 /* setup extent map to cheat btrfs_readpage */
6217 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6218 while (1) {
6219 int ret;
6220 write_lock(&em_tree->lock);
6221 ret = add_extent_mapping(em_tree, em);
6222 write_unlock(&em_tree->lock);
6223 if (ret != -EEXIST) {
6224 free_extent_map(em);
6225 break;
6226 }
6227 btrfs_drop_extent_cache(reloc_inode, start, end, 0);
6228 }
6229 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6230
6231 return relocate_inode_pages(reloc_inode, start, extent_key->offset);
6232 }
6233
6234 struct btrfs_ref_path {
6235 u64 extent_start;
6236 u64 nodes[BTRFS_MAX_LEVEL];
6237 u64 root_objectid;
6238 u64 root_generation;
6239 u64 owner_objectid;
6240 u32 num_refs;
6241 int lowest_level;
6242 int current_level;
6243 int shared_level;
6244
6245 struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
6246 u64 new_nodes[BTRFS_MAX_LEVEL];
6247 };
6248
6249 struct disk_extent {
6250 u64 ram_bytes;
6251 u64 disk_bytenr;
6252 u64 disk_num_bytes;
6253 u64 offset;
6254 u64 num_bytes;
6255 u8 compression;
6256 u8 encryption;
6257 u16 other_encoding;
6258 };
6259
6260 static int is_cowonly_root(u64 root_objectid)
6261 {
6262 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
6263 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
6264 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
6265 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
6266 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
6267 root_objectid == BTRFS_CSUM_TREE_OBJECTID)
6268 return 1;
6269 return 0;
6270 }
6271
6272 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
6273 struct btrfs_root *extent_root,
6274 struct btrfs_ref_path *ref_path,
6275 int first_time)
6276 {
6277 struct extent_buffer *leaf;
6278 struct btrfs_path *path;
6279 struct btrfs_extent_ref *ref;
6280 struct btrfs_key key;
6281 struct btrfs_key found_key;
6282 u64 bytenr;
6283 u32 nritems;
6284 int level;
6285 int ret = 1;
6286
6287 path = btrfs_alloc_path();
6288 if (!path)
6289 return -ENOMEM;
6290
6291 if (first_time) {
6292 ref_path->lowest_level = -1;
6293 ref_path->current_level = -1;
6294 ref_path->shared_level = -1;
6295 goto walk_up;
6296 }
6297 walk_down:
6298 level = ref_path->current_level - 1;
6299 while (level >= -1) {
6300 u64 parent;
6301 if (level < ref_path->lowest_level)
6302 break;
6303
6304 if (level >= 0)
6305 bytenr = ref_path->nodes[level];
6306 else
6307 bytenr = ref_path->extent_start;
6308 BUG_ON(bytenr == 0);
6309
6310 parent = ref_path->nodes[level + 1];
6311 ref_path->nodes[level + 1] = 0;
6312 ref_path->current_level = level;
6313 BUG_ON(parent == 0);
6314
6315 key.objectid = bytenr;
6316 key.offset = parent + 1;
6317 key.type = BTRFS_EXTENT_REF_KEY;
6318
6319 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6320 if (ret < 0)
6321 goto out;
6322 BUG_ON(ret == 0);
6323
6324 leaf = path->nodes[0];
6325 nritems = btrfs_header_nritems(leaf);
6326 if (path->slots[0] >= nritems) {
6327 ret = btrfs_next_leaf(extent_root, path);
6328 if (ret < 0)
6329 goto out;
6330 if (ret > 0)
6331 goto next;
6332 leaf = path->nodes[0];
6333 }
6334
6335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6336 if (found_key.objectid == bytenr &&
6337 found_key.type == BTRFS_EXTENT_REF_KEY) {
6338 if (level < ref_path->shared_level)
6339 ref_path->shared_level = level;
6340 goto found;
6341 }
6342 next:
6343 level--;
6344 btrfs_release_path(extent_root, path);
6345 cond_resched();
6346 }
6347 /* reached lowest level */
6348 ret = 1;
6349 goto out;
6350 walk_up:
6351 level = ref_path->current_level;
6352 while (level < BTRFS_MAX_LEVEL - 1) {
6353 u64 ref_objectid;
6354
6355 if (level >= 0)
6356 bytenr = ref_path->nodes[level];
6357 else
6358 bytenr = ref_path->extent_start;
6359
6360 BUG_ON(bytenr == 0);
6361
6362 key.objectid = bytenr;
6363 key.offset = 0;
6364 key.type = BTRFS_EXTENT_REF_KEY;
6365
6366 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6367 if (ret < 0)
6368 goto out;
6369
6370 leaf = path->nodes[0];
6371 nritems = btrfs_header_nritems(leaf);
6372 if (path->slots[0] >= nritems) {
6373 ret = btrfs_next_leaf(extent_root, path);
6374 if (ret < 0)
6375 goto out;
6376 if (ret > 0) {
6377 /* the extent was freed by someone */
6378 if (ref_path->lowest_level == level)
6379 goto out;
6380 btrfs_release_path(extent_root, path);
6381 goto walk_down;
6382 }
6383 leaf = path->nodes[0];
6384 }
6385
6386 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6387 if (found_key.objectid != bytenr ||
6388 found_key.type != BTRFS_EXTENT_REF_KEY) {
6389 /* the extent was freed by someone */
6390 if (ref_path->lowest_level == level) {
6391 ret = 1;
6392 goto out;
6393 }
6394 btrfs_release_path(extent_root, path);
6395 goto walk_down;
6396 }
6397 found:
6398 ref = btrfs_item_ptr(leaf, path->slots[0],
6399 struct btrfs_extent_ref);
6400 ref_objectid = btrfs_ref_objectid(leaf, ref);
6401 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
6402 if (first_time) {
6403 level = (int)ref_objectid;
6404 BUG_ON(level >= BTRFS_MAX_LEVEL);
6405 ref_path->lowest_level = level;
6406 ref_path->current_level = level;
6407 ref_path->nodes[level] = bytenr;
6408 } else {
6409 WARN_ON(ref_objectid != level);
6410 }
6411 } else {
6412 WARN_ON(level != -1);
6413 }
6414 first_time = 0;
6415
6416 if (ref_path->lowest_level == level) {
6417 ref_path->owner_objectid = ref_objectid;
6418 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
6419 }
6420
6421 /*
6422 * the block is tree root or the block isn't in reference
6423 * counted tree.
6424 */
6425 if (found_key.objectid == found_key.offset ||
6426 is_cowonly_root(btrfs_ref_root(leaf, ref))) {
6427 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6428 ref_path->root_generation =
6429 btrfs_ref_generation(leaf, ref);
6430 if (level < 0) {
6431 /* special reference from the tree log */
6432 ref_path->nodes[0] = found_key.offset;
6433 ref_path->current_level = 0;
6434 }
6435 ret = 0;
6436 goto out;
6437 }
6438
6439 level++;
6440 BUG_ON(ref_path->nodes[level] != 0);
6441 ref_path->nodes[level] = found_key.offset;
6442 ref_path->current_level = level;
6443
6444 /*
6445 * the reference was created in the running transaction,
6446 * no need to continue walking up.
6447 */
6448 if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6449 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6450 ref_path->root_generation =
6451 btrfs_ref_generation(leaf, ref);
6452 ret = 0;
6453 goto out;
6454 }
6455
6456 btrfs_release_path(extent_root, path);
6457 cond_resched();
6458 }
6459 /* reached max tree level, but no tree root found. */
6460 BUG();
6461 out:
6462 btrfs_free_path(path);
6463 return ret;
6464 }
6465
6466 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6467 struct btrfs_root *extent_root,
6468 struct btrfs_ref_path *ref_path,
6469 u64 extent_start)
6470 {
6471 memset(ref_path, 0, sizeof(*ref_path));
6472 ref_path->extent_start = extent_start;
6473
6474 return __next_ref_path(trans, extent_root, ref_path, 1);
6475 }
6476
6477 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6478 struct btrfs_root *extent_root,
6479 struct btrfs_ref_path *ref_path)
6480 {
6481 return __next_ref_path(trans, extent_root, ref_path, 0);
6482 }
6483
6484 static noinline int get_new_locations(struct inode *reloc_inode,
6485 struct btrfs_key *extent_key,
6486 u64 offset, int no_fragment,
6487 struct disk_extent **extents,
6488 int *nr_extents)
6489 {
6490 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6491 struct btrfs_path *path;
6492 struct btrfs_file_extent_item *fi;
6493 struct extent_buffer *leaf;
6494 struct disk_extent *exts = *extents;
6495 struct btrfs_key found_key;
6496 u64 cur_pos;
6497 u64 last_byte;
6498 u32 nritems;
6499 int nr = 0;
6500 int max = *nr_extents;
6501 int ret;
6502
6503 WARN_ON(!no_fragment && *extents);
6504 if (!exts) {
6505 max = 1;
6506 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6507 if (!exts)
6508 return -ENOMEM;
6509 }
6510
6511 path = btrfs_alloc_path();
6512 BUG_ON(!path);
6513
6514 cur_pos = extent_key->objectid - offset;
6515 last_byte = extent_key->objectid + extent_key->offset;
6516 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6517 cur_pos, 0);
6518 if (ret < 0)
6519 goto out;
6520 if (ret > 0) {
6521 ret = -ENOENT;
6522 goto out;
6523 }
6524
6525 while (1) {
6526 leaf = path->nodes[0];
6527 nritems = btrfs_header_nritems(leaf);
6528 if (path->slots[0] >= nritems) {
6529 ret = btrfs_next_leaf(root, path);
6530 if (ret < 0)
6531 goto out;
6532 if (ret > 0)
6533 break;
6534 leaf = path->nodes[0];
6535 }
6536
6537 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6538 if (found_key.offset != cur_pos ||
6539 found_key.type != BTRFS_EXTENT_DATA_KEY ||
6540 found_key.objectid != reloc_inode->i_ino)
6541 break;
6542
6543 fi = btrfs_item_ptr(leaf, path->slots[0],
6544 struct btrfs_file_extent_item);
6545 if (btrfs_file_extent_type(leaf, fi) !=
6546 BTRFS_FILE_EXTENT_REG ||
6547 btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6548 break;
6549
6550 if (nr == max) {
6551 struct disk_extent *old = exts;
6552 max *= 2;
6553 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6554 memcpy(exts, old, sizeof(*exts) * nr);
6555 if (old != *extents)
6556 kfree(old);
6557 }
6558
6559 exts[nr].disk_bytenr =
6560 btrfs_file_extent_disk_bytenr(leaf, fi);
6561 exts[nr].disk_num_bytes =
6562 btrfs_file_extent_disk_num_bytes(leaf, fi);
6563 exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6564 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6565 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6566 exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6567 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6568 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6569 fi);
6570 BUG_ON(exts[nr].offset > 0);
6571 BUG_ON(exts[nr].compression || exts[nr].encryption);
6572 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6573
6574 cur_pos += exts[nr].num_bytes;
6575 nr++;
6576
6577 if (cur_pos + offset >= last_byte)
6578 break;
6579
6580 if (no_fragment) {
6581 ret = 1;
6582 goto out;
6583 }
6584 path->slots[0]++;
6585 }
6586
6587 BUG_ON(cur_pos + offset > last_byte);
6588 if (cur_pos + offset < last_byte) {
6589 ret = -ENOENT;
6590 goto out;
6591 }
6592 ret = 0;
6593 out:
6594 btrfs_free_path(path);
6595 if (ret) {
6596 if (exts != *extents)
6597 kfree(exts);
6598 } else {
6599 *extents = exts;
6600 *nr_extents = nr;
6601 }
6602 return ret;
6603 }
6604
6605 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
6606 struct btrfs_root *root,
6607 struct btrfs_path *path,
6608 struct btrfs_key *extent_key,
6609 struct btrfs_key *leaf_key,
6610 struct btrfs_ref_path *ref_path,
6611 struct disk_extent *new_extents,
6612 int nr_extents)
6613 {
6614 struct extent_buffer *leaf;
6615 struct btrfs_file_extent_item *fi;
6616 struct inode *inode = NULL;
6617 struct btrfs_key key;
6618 u64 lock_start = 0;
6619 u64 lock_end = 0;
6620 u64 num_bytes;
6621 u64 ext_offset;
6622 u64 search_end = (u64)-1;
6623 u32 nritems;
6624 int nr_scaned = 0;
6625 int extent_locked = 0;
6626 int extent_type;
6627 int ret;
6628
6629 memcpy(&key, leaf_key, sizeof(key));
6630 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6631 if (key.objectid < ref_path->owner_objectid ||
6632 (key.objectid == ref_path->owner_objectid &&
6633 key.type < BTRFS_EXTENT_DATA_KEY)) {
6634 key.objectid = ref_path->owner_objectid;
6635 key.type = BTRFS_EXTENT_DATA_KEY;
6636 key.offset = 0;
6637 }
6638 }
6639
6640 while (1) {
6641 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
6642 if (ret < 0)
6643 goto out;
6644
6645 leaf = path->nodes[0];
6646 nritems = btrfs_header_nritems(leaf);
6647 next:
6648 if (extent_locked && ret > 0) {
6649 /*
6650 * the file extent item was modified by someone
6651 * before the extent got locked.
6652 */
6653 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6654 lock_end, GFP_NOFS);
6655 extent_locked = 0;
6656 }
6657
6658 if (path->slots[0] >= nritems) {
6659 if (++nr_scaned > 2)
6660 break;
6661
6662 BUG_ON(extent_locked);
6663 ret = btrfs_next_leaf(root, path);
6664 if (ret < 0)
6665 goto out;
6666 if (ret > 0)
6667 break;
6668 leaf = path->nodes[0];
6669 nritems = btrfs_header_nritems(leaf);
6670 }
6671
6672 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
6673
6674 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6675 if ((key.objectid > ref_path->owner_objectid) ||
6676 (key.objectid == ref_path->owner_objectid &&
6677 key.type > BTRFS_EXTENT_DATA_KEY) ||
6678 key.offset >= search_end)
6679 break;
6680 }
6681
6682 if (inode && key.objectid != inode->i_ino) {
6683 BUG_ON(extent_locked);
6684 btrfs_release_path(root, path);
6685 mutex_unlock(&inode->i_mutex);
6686 iput(inode);
6687 inode = NULL;
6688 continue;
6689 }
6690
6691 if (key.type != BTRFS_EXTENT_DATA_KEY) {
6692 path->slots[0]++;
6693 ret = 1;
6694 goto next;
6695 }
6696 fi = btrfs_item_ptr(leaf, path->slots[0],
6697 struct btrfs_file_extent_item);
6698 extent_type = btrfs_file_extent_type(leaf, fi);
6699 if ((extent_type != BTRFS_FILE_EXTENT_REG &&
6700 extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
6701 (btrfs_file_extent_disk_bytenr(leaf, fi) !=
6702 extent_key->objectid)) {
6703 path->slots[0]++;
6704 ret = 1;
6705 goto next;
6706 }
6707
6708 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6709 ext_offset = btrfs_file_extent_offset(leaf, fi);
6710
6711 if (search_end == (u64)-1) {
6712 search_end = key.offset - ext_offset +
6713 btrfs_file_extent_ram_bytes(leaf, fi);
6714 }
6715
6716 if (!extent_locked) {
6717 lock_start = key.offset;
6718 lock_end = lock_start + num_bytes - 1;
6719 } else {
6720 if (lock_start > key.offset ||
6721 lock_end + 1 < key.offset + num_bytes) {
6722 unlock_extent(&BTRFS_I(inode)->io_tree,
6723 lock_start, lock_end, GFP_NOFS);
6724 extent_locked = 0;
6725 }
6726 }
6727
6728 if (!inode) {
6729 btrfs_release_path(root, path);
6730
6731 inode = btrfs_iget_locked(root->fs_info->sb,
6732 key.objectid, root);
6733 if (inode->i_state & I_NEW) {
6734 BTRFS_I(inode)->root = root;
6735 BTRFS_I(inode)->location.objectid =
6736 key.objectid;
6737 BTRFS_I(inode)->location.type =
6738 BTRFS_INODE_ITEM_KEY;
6739 BTRFS_I(inode)->location.offset = 0;
6740 btrfs_read_locked_inode(inode);
6741 unlock_new_inode(inode);
6742 }
6743 /*
6744 * some code call btrfs_commit_transaction while
6745 * holding the i_mutex, so we can't use mutex_lock
6746 * here.
6747 */
6748 if (is_bad_inode(inode) ||
6749 !mutex_trylock(&inode->i_mutex)) {
6750 iput(inode);
6751 inode = NULL;
6752 key.offset = (u64)-1;
6753 goto skip;
6754 }
6755 }
6756
6757 if (!extent_locked) {
6758 struct btrfs_ordered_extent *ordered;
6759
6760 btrfs_release_path(root, path);
6761
6762 lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6763 lock_end, GFP_NOFS);
6764 ordered = btrfs_lookup_first_ordered_extent(inode,
6765 lock_end);
6766 if (ordered &&
6767 ordered->file_offset <= lock_end &&
6768 ordered->file_offset + ordered->len > lock_start) {
6769 unlock_extent(&BTRFS_I(inode)->io_tree,
6770 lock_start, lock_end, GFP_NOFS);
6771 btrfs_start_ordered_extent(inode, ordered, 1);
6772 btrfs_put_ordered_extent(ordered);
6773 key.offset += num_bytes;
6774 goto skip;
6775 }
6776 if (ordered)
6777 btrfs_put_ordered_extent(ordered);
6778
6779 extent_locked = 1;
6780 continue;
6781 }
6782
6783 if (nr_extents == 1) {
6784 /* update extent pointer in place */
6785 btrfs_set_file_extent_disk_bytenr(leaf, fi,
6786 new_extents[0].disk_bytenr);
6787 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6788 new_extents[0].disk_num_bytes);
6789 btrfs_mark_buffer_dirty(leaf);
6790
6791 btrfs_drop_extent_cache(inode, key.offset,
6792 key.offset + num_bytes - 1, 0);
6793
6794 ret = btrfs_inc_extent_ref(trans, root,
6795 new_extents[0].disk_bytenr,
6796 new_extents[0].disk_num_bytes,
6797 leaf->start,
6798 root->root_key.objectid,
6799 trans->transid,
6800 key.objectid);
6801 BUG_ON(ret);
6802
6803 ret = btrfs_free_extent(trans, root,
6804 extent_key->objectid,
6805 extent_key->offset,
6806 leaf->start,
6807 btrfs_header_owner(leaf),
6808 btrfs_header_generation(leaf),
6809 key.objectid, 0);
6810 BUG_ON(ret);
6811
6812 btrfs_release_path(root, path);
6813 key.offset += num_bytes;
6814 } else {
6815 BUG_ON(1);
6816 #if 0
6817 u64 alloc_hint;
6818 u64 extent_len;
6819 int i;
6820 /*
6821 * drop old extent pointer at first, then insert the
6822 * new pointers one bye one
6823 */
6824 btrfs_release_path(root, path);
6825 ret = btrfs_drop_extents(trans, root, inode, key.offset,
6826 key.offset + num_bytes,
6827 key.offset, &alloc_hint);
6828 BUG_ON(ret);
6829
6830 for (i = 0; i < nr_extents; i++) {
6831 if (ext_offset >= new_extents[i].num_bytes) {
6832 ext_offset -= new_extents[i].num_bytes;
6833 continue;
6834 }
6835 extent_len = min(new_extents[i].num_bytes -
6836 ext_offset, num_bytes);
6837
6838 ret = btrfs_insert_empty_item(trans, root,
6839 path, &key,
6840 sizeof(*fi));
6841 BUG_ON(ret);
6842
6843 leaf = path->nodes[0];
6844 fi = btrfs_item_ptr(leaf, path->slots[0],
6845 struct btrfs_file_extent_item);
6846 btrfs_set_file_extent_generation(leaf, fi,
6847 trans->transid);
6848 btrfs_set_file_extent_type(leaf, fi,
6849 BTRFS_FILE_EXTENT_REG);
6850 btrfs_set_file_extent_disk_bytenr(leaf, fi,
6851 new_extents[i].disk_bytenr);
6852 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6853 new_extents[i].disk_num_bytes);
6854 btrfs_set_file_extent_ram_bytes(leaf, fi,
6855 new_extents[i].ram_bytes);
6856
6857 btrfs_set_file_extent_compression(leaf, fi,
6858 new_extents[i].compression);
6859 btrfs_set_file_extent_encryption(leaf, fi,
6860 new_extents[i].encryption);
6861 btrfs_set_file_extent_other_encoding(leaf, fi,
6862 new_extents[i].other_encoding);
6863
6864 btrfs_set_file_extent_num_bytes(leaf, fi,
6865 extent_len);
6866 ext_offset += new_extents[i].offset;
6867 btrfs_set_file_extent_offset(leaf, fi,
6868 ext_offset);
6869 btrfs_mark_buffer_dirty(leaf);
6870
6871 btrfs_drop_extent_cache(inode, key.offset,
6872 key.offset + extent_len - 1, 0);
6873
6874 ret = btrfs_inc_extent_ref(trans, root,
6875 new_extents[i].disk_bytenr,
6876 new_extents[i].disk_num_bytes,
6877 leaf->start,
6878 root->root_key.objectid,
6879 trans->transid, key.objectid);
6880 BUG_ON(ret);
6881 btrfs_release_path(root, path);
6882
6883 inode_add_bytes(inode, extent_len);
6884
6885 ext_offset = 0;
6886 num_bytes -= extent_len;
6887 key.offset += extent_len;
6888
6889 if (num_bytes == 0)
6890 break;
6891 }
6892 BUG_ON(i >= nr_extents);
6893 #endif
6894 }
6895
6896 if (extent_locked) {
6897 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6898 lock_end, GFP_NOFS);
6899 extent_locked = 0;
6900 }
6901 skip:
6902 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
6903 key.offset >= search_end)
6904 break;
6905
6906 cond_resched();
6907 }
6908 ret = 0;
6909 out:
6910 btrfs_release_path(root, path);
6911 if (inode) {
6912 mutex_unlock(&inode->i_mutex);
6913 if (extent_locked) {
6914 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6915 lock_end, GFP_NOFS);
6916 }
6917 iput(inode);
6918 }
6919 return ret;
6920 }
6921
6922 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
6923 struct btrfs_root *root,
6924 struct extent_buffer *buf, u64 orig_start)
6925 {
6926 int level;
6927 int ret;
6928
6929 BUG_ON(btrfs_header_generation(buf) != trans->transid);
6930 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6931
6932 level = btrfs_header_level(buf);
6933 if (level == 0) {
6934 struct btrfs_leaf_ref *ref;
6935 struct btrfs_leaf_ref *orig_ref;
6936
6937 orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
6938 if (!orig_ref)
6939 return -ENOENT;
6940
6941 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
6942 if (!ref) {
6943 btrfs_free_leaf_ref(root, orig_ref);
6944 return -ENOMEM;
6945 }
6946
6947 ref->nritems = orig_ref->nritems;
6948 memcpy(ref->extents, orig_ref->extents,
6949 sizeof(ref->extents[0]) * ref->nritems);
6950
6951 btrfs_free_leaf_ref(root, orig_ref);
6952
6953 ref->root_gen = trans->transid;
6954 ref->bytenr = buf->start;
6955 ref->owner = btrfs_header_owner(buf);
6956 ref->generation = btrfs_header_generation(buf);
6957
6958 ret = btrfs_add_leaf_ref(root, ref, 0);
6959 WARN_ON(ret);
6960 btrfs_free_leaf_ref(root, ref);
6961 }
6962 return 0;
6963 }
6964
6965 static noinline int invalidate_extent_cache(struct btrfs_root *root,
6966 struct extent_buffer *leaf,
6967 struct btrfs_block_group_cache *group,
6968 struct btrfs_root *target_root)
6969 {
6970 struct btrfs_key key;
6971 struct inode *inode = NULL;
6972 struct btrfs_file_extent_item *fi;
6973 struct extent_state *cached_state = NULL;
6974 u64 num_bytes;
6975 u64 skip_objectid = 0;
6976 u32 nritems;
6977 u32 i;
6978
6979 nritems = btrfs_header_nritems(leaf);
6980 for (i = 0; i < nritems; i++) {
6981 btrfs_item_key_to_cpu(leaf, &key, i);
6982 if (key.objectid == skip_objectid ||
6983 key.type != BTRFS_EXTENT_DATA_KEY)
6984 continue;
6985 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6986 if (btrfs_file_extent_type(leaf, fi) ==
6987 BTRFS_FILE_EXTENT_INLINE)
6988 continue;
6989 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6990 continue;
6991 if (!inode || inode->i_ino != key.objectid) {
6992 iput(inode);
6993 inode = btrfs_ilookup(target_root->fs_info->sb,
6994 key.objectid, target_root, 1);
6995 }
6996 if (!inode) {
6997 skip_objectid = key.objectid;
6998 continue;
6999 }
7000 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7001
7002 lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset,
7003 key.offset + num_bytes - 1, 0, &cached_state,
7004 GFP_NOFS);
7005 btrfs_drop_extent_cache(inode, key.offset,
7006 key.offset + num_bytes - 1, 1);
7007 unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset,
7008 key.offset + num_bytes - 1, &cached_state,
7009 GFP_NOFS);
7010 cond_resched();
7011 }
7012 iput(inode);
7013 return 0;
7014 }
7015
7016 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
7017 struct btrfs_root *root,
7018 struct extent_buffer *leaf,
7019 struct btrfs_block_group_cache *group,
7020 struct inode *reloc_inode)
7021 {
7022 struct btrfs_key key;
7023 struct btrfs_key extent_key;
7024 struct btrfs_file_extent_item *fi;
7025 struct btrfs_leaf_ref *ref;
7026 struct disk_extent *new_extent;
7027 u64 bytenr;
7028 u64 num_bytes;
7029 u32 nritems;
7030 u32 i;
7031 int ext_index;
7032 int nr_extent;
7033 int ret;
7034
7035 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
7036 BUG_ON(!new_extent);
7037
7038 ref = btrfs_lookup_leaf_ref(root, leaf->start);
7039 BUG_ON(!ref);
7040
7041 ext_index = -1;
7042 nritems = btrfs_header_nritems(leaf);
7043 for (i = 0; i < nritems; i++) {
7044 btrfs_item_key_to_cpu(leaf, &key, i);
7045 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
7046 continue;
7047 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7048 if (btrfs_file_extent_type(leaf, fi) ==
7049 BTRFS_FILE_EXTENT_INLINE)
7050 continue;
7051 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7052 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
7053 if (bytenr == 0)
7054 continue;
7055
7056 ext_index++;
7057 if (bytenr >= group->key.objectid + group->key.offset ||
7058 bytenr + num_bytes <= group->key.objectid)
7059 continue;
7060
7061 extent_key.objectid = bytenr;
7062 extent_key.offset = num_bytes;
7063 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7064 nr_extent = 1;
7065 ret = get_new_locations(reloc_inode, &extent_key,
7066 group->key.objectid, 1,
7067 &new_extent, &nr_extent);
7068 if (ret > 0)
7069 continue;
7070 BUG_ON(ret < 0);
7071
7072 BUG_ON(ref->extents[ext_index].bytenr != bytenr);
7073 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
7074 ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
7075 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
7076
7077 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7078 new_extent->disk_bytenr);
7079 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7080 new_extent->disk_num_bytes);
7081 btrfs_mark_buffer_dirty(leaf);
7082
7083 ret = btrfs_inc_extent_ref(trans, root,
7084 new_extent->disk_bytenr,
7085 new_extent->disk_num_bytes,
7086 leaf->start,
7087 root->root_key.objectid,
7088 trans->transid, key.objectid);
7089 BUG_ON(ret);
7090
7091 ret = btrfs_free_extent(trans, root,
7092 bytenr, num_bytes, leaf->start,
7093 btrfs_header_owner(leaf),
7094 btrfs_header_generation(leaf),
7095 key.objectid, 0);
7096 BUG_ON(ret);
7097 cond_resched();
7098 }
7099 kfree(new_extent);
7100 BUG_ON(ext_index + 1 != ref->nritems);
7101 btrfs_free_leaf_ref(root, ref);
7102 return 0;
7103 }
7104
7105 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
7106 struct btrfs_root *root)
7107 {
7108 struct btrfs_root *reloc_root;
7109 int ret;
7110
7111 if (root->reloc_root) {
7112 reloc_root = root->reloc_root;
7113 root->reloc_root = NULL;
7114 list_add(&reloc_root->dead_list,
7115 &root->fs_info->dead_reloc_roots);
7116
7117 btrfs_set_root_bytenr(&reloc_root->root_item,
7118 reloc_root->node->start);
7119 btrfs_set_root_level(&root->root_item,
7120 btrfs_header_level(reloc_root->node));
7121 memset(&reloc_root->root_item.drop_progress, 0,
7122 sizeof(struct btrfs_disk_key));
7123 reloc_root->root_item.drop_level = 0;
7124
7125 ret = btrfs_update_root(trans, root->fs_info->tree_root,
7126 &reloc_root->root_key,
7127 &reloc_root->root_item);
7128 BUG_ON(ret);
7129 }
7130 return 0;
7131 }
7132
7133 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
7134 {
7135 struct btrfs_trans_handle *trans;
7136 struct btrfs_root *reloc_root;
7137 struct btrfs_root *prev_root = NULL;
7138 struct list_head dead_roots;
7139 int ret;
7140 unsigned long nr;
7141
7142 INIT_LIST_HEAD(&dead_roots);
7143 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
7144
7145 while (!list_empty(&dead_roots)) {
7146 reloc_root = list_entry(dead_roots.prev,
7147 struct btrfs_root, dead_list);
7148 list_del_init(&reloc_root->dead_list);
7149
7150 BUG_ON(reloc_root->commit_root != NULL);
7151 while (1) {
7152 trans = btrfs_join_transaction(root, 1);
7153 BUG_ON(!trans);
7154
7155 mutex_lock(&root->fs_info->drop_mutex);
7156 ret = btrfs_drop_snapshot(trans, reloc_root);
7157 if (ret != -EAGAIN)
7158 break;
7159 mutex_unlock(&root->fs_info->drop_mutex);
7160
7161 nr = trans->blocks_used;
7162 ret = btrfs_end_transaction(trans, root);
7163 BUG_ON(ret);
7164 btrfs_btree_balance_dirty(root, nr);
7165 }
7166
7167 free_extent_buffer(reloc_root->node);
7168
7169 ret = btrfs_del_root(trans, root->fs_info->tree_root,
7170 &reloc_root->root_key);
7171 BUG_ON(ret);
7172 mutex_unlock(&root->fs_info->drop_mutex);
7173
7174 nr = trans->blocks_used;
7175 ret = btrfs_end_transaction(trans, root);
7176 BUG_ON(ret);
7177 btrfs_btree_balance_dirty(root, nr);
7178
7179 kfree(prev_root);
7180 prev_root = reloc_root;
7181 }
7182 if (prev_root) {
7183 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
7184 kfree(prev_root);
7185 }
7186 return 0;
7187 }
7188
7189 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
7190 {
7191 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
7192 return 0;
7193 }
7194
7195 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
7196 {
7197 struct btrfs_root *reloc_root;
7198 struct btrfs_trans_handle *trans;
7199 struct btrfs_key location;
7200 int found;
7201 int ret;
7202
7203 mutex_lock(&root->fs_info->tree_reloc_mutex);
7204 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
7205 BUG_ON(ret);
7206 found = !list_empty(&root->fs_info->dead_reloc_roots);
7207 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7208
7209 if (found) {
7210 trans = btrfs_start_transaction(root, 1);
7211 BUG_ON(!trans);
7212 ret = btrfs_commit_transaction(trans, root);
7213 BUG_ON(ret);
7214 }
7215
7216 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
7217 location.offset = (u64)-1;
7218 location.type = BTRFS_ROOT_ITEM_KEY;
7219
7220 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
7221 BUG_ON(!reloc_root);
7222 btrfs_orphan_cleanup(reloc_root);
7223 return 0;
7224 }
7225
7226 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
7227 struct btrfs_root *root)
7228 {
7229 struct btrfs_root *reloc_root;
7230 struct extent_buffer *eb;
7231 struct btrfs_root_item *root_item;
7232 struct btrfs_key root_key;
7233 int ret;
7234
7235 BUG_ON(!root->ref_cows);
7236 if (root->reloc_root)
7237 return 0;
7238
7239 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
7240 BUG_ON(!root_item);
7241
7242 ret = btrfs_copy_root(trans, root, root->commit_root,
7243 &eb, BTRFS_TREE_RELOC_OBJECTID);
7244 BUG_ON(ret);
7245
7246 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
7247 root_key.offset = root->root_key.objectid;
7248 root_key.type = BTRFS_ROOT_ITEM_KEY;
7249
7250 memcpy(root_item, &root->root_item, sizeof(root_item));
7251 btrfs_set_root_refs(root_item, 0);
7252 btrfs_set_root_bytenr(root_item, eb->start);
7253 btrfs_set_root_level(root_item, btrfs_header_level(eb));
7254 btrfs_set_root_generation(root_item, trans->transid);
7255
7256 btrfs_tree_unlock(eb);
7257 free_extent_buffer(eb);
7258
7259 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
7260 &root_key, root_item);
7261 BUG_ON(ret);
7262 kfree(root_item);
7263
7264 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
7265 &root_key);
7266 BUG_ON(!reloc_root);
7267 reloc_root->last_trans = trans->transid;
7268 reloc_root->commit_root = NULL;
7269 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
7270
7271 root->reloc_root = reloc_root;
7272 return 0;
7273 }
7274
7275 /*
7276 * Core function of space balance.
7277 *
7278 * The idea is using reloc trees to relocate tree blocks in reference
7279 * counted roots. There is one reloc tree for each subvol, and all
7280 * reloc trees share same root key objectid. Reloc trees are snapshots
7281 * of the latest committed roots of subvols (root->commit_root).
7282 *
7283 * To relocate a tree block referenced by a subvol, there are two steps.
7284 * COW the block through subvol's reloc tree, then update block pointer
7285 * in the subvol to point to the new block. Since all reloc trees share
7286 * same root key objectid, doing special handing for tree blocks owned
7287 * by them is easy. Once a tree block has been COWed in one reloc tree,
7288 * we can use the resulting new block directly when the same block is
7289 * required to COW again through other reloc trees. By this way, relocated
7290 * tree blocks are shared between reloc trees, so they are also shared
7291 * between subvols.
7292 */
7293 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
7294 struct btrfs_root *root,
7295 struct btrfs_path *path,
7296 struct btrfs_key *first_key,
7297 struct btrfs_ref_path *ref_path,
7298 struct btrfs_block_group_cache *group,
7299 struct inode *reloc_inode)
7300 {
7301 struct btrfs_root *reloc_root;
7302 struct extent_buffer *eb = NULL;
7303 struct btrfs_key *keys;
7304 u64 *nodes;
7305 int level;
7306 int shared_level;
7307 int lowest_level = 0;
7308 int ret;
7309
7310 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
7311 lowest_level = ref_path->owner_objectid;
7312
7313 if (!root->ref_cows) {
7314 path->lowest_level = lowest_level;
7315 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
7316 BUG_ON(ret < 0);
7317 path->lowest_level = 0;
7318 btrfs_release_path(root, path);
7319 return 0;
7320 }
7321
7322 mutex_lock(&root->fs_info->tree_reloc_mutex);
7323 ret = init_reloc_tree(trans, root);
7324 BUG_ON(ret);
7325 reloc_root = root->reloc_root;
7326
7327 shared_level = ref_path->shared_level;
7328 ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
7329
7330 keys = ref_path->node_keys;
7331 nodes = ref_path->new_nodes;
7332 memset(&keys[shared_level + 1], 0,
7333 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
7334 memset(&nodes[shared_level + 1], 0,
7335 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
7336
7337 if (nodes[lowest_level] == 0) {
7338 path->lowest_level = lowest_level;
7339 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7340 0, 1);
7341 BUG_ON(ret);
7342 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
7343 eb = path->nodes[level];
7344 if (!eb || eb == reloc_root->node)
7345 break;
7346 nodes[level] = eb->start;
7347 if (level == 0)
7348 btrfs_item_key_to_cpu(eb, &keys[level], 0);
7349 else
7350 btrfs_node_key_to_cpu(eb, &keys[level], 0);
7351 }
7352 if (nodes[0] &&
7353 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7354 eb = path->nodes[0];
7355 ret = replace_extents_in_leaf(trans, reloc_root, eb,
7356 group, reloc_inode);
7357 BUG_ON(ret);
7358 }
7359 btrfs_release_path(reloc_root, path);
7360 } else {
7361 ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
7362 lowest_level);
7363 BUG_ON(ret);
7364 }
7365
7366 /*
7367 * replace tree blocks in the fs tree with tree blocks in
7368 * the reloc tree.
7369 */
7370 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
7371 BUG_ON(ret < 0);
7372
7373 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7374 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7375 0, 0);
7376 BUG_ON(ret);
7377 extent_buffer_get(path->nodes[0]);
7378 eb = path->nodes[0];
7379 btrfs_release_path(reloc_root, path);
7380 ret = invalidate_extent_cache(reloc_root, eb, group, root);
7381 BUG_ON(ret);
7382 free_extent_buffer(eb);
7383 }
7384
7385 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7386 path->lowest_level = 0;
7387 return 0;
7388 }
7389
7390 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
7391 struct btrfs_root *root,
7392 struct btrfs_path *path,
7393 struct btrfs_key *first_key,
7394 struct btrfs_ref_path *ref_path)
7395 {
7396 int ret;
7397
7398 ret = relocate_one_path(trans, root, path, first_key,
7399 ref_path, NULL, NULL);
7400 BUG_ON(ret);
7401
7402 return 0;
7403 }
7404
7405 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
7406 struct btrfs_root *extent_root,
7407 struct btrfs_path *path,
7408 struct btrfs_key *extent_key)
7409 {
7410 int ret;
7411
7412 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
7413 if (ret)
7414 goto out;
7415 ret = btrfs_del_item(trans, extent_root, path);
7416 out:
7417 btrfs_release_path(extent_root, path);
7418 return ret;
7419 }
7420
7421 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
7422 struct btrfs_ref_path *ref_path)
7423 {
7424 struct btrfs_key root_key;
7425
7426 root_key.objectid = ref_path->root_objectid;
7427 root_key.type = BTRFS_ROOT_ITEM_KEY;
7428 if (is_cowonly_root(ref_path->root_objectid))
7429 root_key.offset = 0;
7430 else
7431 root_key.offset = (u64)-1;
7432
7433 return btrfs_read_fs_root_no_name(fs_info, &root_key);
7434 }
7435
7436 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
7437 struct btrfs_path *path,
7438 struct btrfs_key *extent_key,
7439 struct btrfs_block_group_cache *group,
7440 struct inode *reloc_inode, int pass)
7441 {
7442 struct btrfs_trans_handle *trans;
7443 struct btrfs_root *found_root;
7444 struct btrfs_ref_path *ref_path = NULL;
7445 struct disk_extent *new_extents = NULL;
7446 int nr_extents = 0;
7447 int loops;
7448 int ret;
7449 int level;
7450 struct btrfs_key first_key;
7451 u64 prev_block = 0;
7452
7453
7454 trans = btrfs_start_transaction(extent_root, 1);
7455 BUG_ON(!trans);
7456
7457 if (extent_key->objectid == 0) {
7458 ret = del_extent_zero(trans, extent_root, path, extent_key);
7459 goto out;
7460 }
7461
7462 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7463 if (!ref_path) {
7464 ret = -ENOMEM;
7465 goto out;
7466 }
7467
7468 for (loops = 0; ; loops++) {
7469 if (loops == 0) {
7470 ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7471 extent_key->objectid);
7472 } else {
7473 ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7474 }
7475 if (ret < 0)
7476 goto out;
7477 if (ret > 0)
7478 break;
7479
7480 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7481 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7482 continue;
7483
7484 found_root = read_ref_root(extent_root->fs_info, ref_path);
7485 BUG_ON(!found_root);
7486 /*
7487 * for reference counted tree, only process reference paths
7488 * rooted at the latest committed root.
7489 */
7490 if (found_root->ref_cows &&
7491 ref_path->root_generation != found_root->root_key.offset)
7492 continue;
7493
7494 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7495 if (pass == 0) {
7496 /*
7497 * copy data extents to new locations
7498 */
7499 u64 group_start = group->key.objectid;
7500 ret = relocate_data_extent(reloc_inode,
7501 extent_key,
7502 group_start);
7503 if (ret < 0)
7504 goto out;
7505 break;
7506 }
7507 level = 0;
7508 } else {
7509 level = ref_path->owner_objectid;
7510 }
7511
7512 if (prev_block != ref_path->nodes[level]) {
7513 struct extent_buffer *eb;
7514 u64 block_start = ref_path->nodes[level];
7515 u64 block_size = btrfs_level_size(found_root, level);
7516
7517 eb = read_tree_block(found_root, block_start,
7518 block_size, 0);
7519 btrfs_tree_lock(eb);
7520 BUG_ON(level != btrfs_header_level(eb));
7521
7522 if (level == 0)
7523 btrfs_item_key_to_cpu(eb, &first_key, 0);
7524 else
7525 btrfs_node_key_to_cpu(eb, &first_key, 0);
7526
7527 btrfs_tree_unlock(eb);
7528 free_extent_buffer(eb);
7529 prev_block = block_start;
7530 }
7531
7532 mutex_lock(&extent_root->fs_info->trans_mutex);
7533 btrfs_record_root_in_trans(found_root);
7534 mutex_unlock(&extent_root->fs_info->trans_mutex);
7535 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7536 /*
7537 * try to update data extent references while
7538 * keeping metadata shared between snapshots.
7539 */
7540 if (pass == 1) {
7541 ret = relocate_one_path(trans, found_root,
7542 path, &first_key, ref_path,
7543 group, reloc_inode);
7544 if (ret < 0)
7545 goto out;
7546 continue;
7547 }
7548 /*
7549 * use fallback method to process the remaining
7550 * references.
7551 */
7552 if (!new_extents) {
7553 u64 group_start = group->key.objectid;
7554 new_extents = kmalloc(sizeof(*new_extents),
7555 GFP_NOFS);
7556 nr_extents = 1;
7557 ret = get_new_locations(reloc_inode,
7558 extent_key,
7559 group_start, 1,
7560 &new_extents,
7561 &nr_extents);
7562 if (ret)
7563 goto out;
7564 }
7565 ret = replace_one_extent(trans, found_root,
7566 path, extent_key,
7567 &first_key, ref_path,
7568 new_extents, nr_extents);
7569 } else {
7570 ret = relocate_tree_block(trans, found_root, path,
7571 &first_key, ref_path);
7572 }
7573 if (ret < 0)
7574 goto out;
7575 }
7576 ret = 0;
7577 out:
7578 btrfs_end_transaction(trans, extent_root);
7579 kfree(new_extents);
7580 kfree(ref_path);
7581 return ret;
7582 }
7583 #endif
7584
7585 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7586 {
7587 u64 num_devices;
7588 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7589 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7590
7591 num_devices = root->fs_info->fs_devices->rw_devices;
7592 if (num_devices == 1) {
7593 stripped |= BTRFS_BLOCK_GROUP_DUP;
7594 stripped = flags & ~stripped;
7595
7596 /* turn raid0 into single device chunks */
7597 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7598 return stripped;
7599
7600 /* turn mirroring into duplication */
7601 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7602 BTRFS_BLOCK_GROUP_RAID10))
7603 return stripped | BTRFS_BLOCK_GROUP_DUP;
7604 return flags;
7605 } else {
7606 /* they already had raid on here, just return */
7607 if (flags & stripped)
7608 return flags;
7609
7610 stripped |= BTRFS_BLOCK_GROUP_DUP;
7611 stripped = flags & ~stripped;
7612
7613 /* switch duplicated blocks with raid1 */
7614 if (flags & BTRFS_BLOCK_GROUP_DUP)
7615 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7616
7617 /* turn single device chunks into raid0 */
7618 return stripped | BTRFS_BLOCK_GROUP_RAID0;
7619 }
7620 return flags;
7621 }
7622
7623 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
7624 {
7625 struct btrfs_space_info *sinfo = cache->space_info;
7626 u64 num_bytes;
7627 int ret = -ENOSPC;
7628
7629 if (cache->ro)
7630 return 0;
7631
7632 spin_lock(&sinfo->lock);
7633 spin_lock(&cache->lock);
7634 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7635 cache->bytes_super - btrfs_block_group_used(&cache->item);
7636
7637 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7638 sinfo->bytes_may_use + sinfo->bytes_readonly +
7639 cache->reserved_pinned + num_bytes < sinfo->total_bytes) {
7640 sinfo->bytes_readonly += num_bytes;
7641 sinfo->bytes_reserved += cache->reserved_pinned;
7642 cache->reserved_pinned = 0;
7643 cache->ro = 1;
7644 ret = 0;
7645 }
7646 spin_unlock(&cache->lock);
7647 spin_unlock(&sinfo->lock);
7648 return ret;
7649 }
7650
7651 int btrfs_set_block_group_ro(struct btrfs_root *root,
7652 struct btrfs_block_group_cache *cache)
7653
7654 {
7655 struct btrfs_trans_handle *trans;
7656 u64 alloc_flags;
7657 int ret;
7658
7659 BUG_ON(cache->ro);
7660
7661 trans = btrfs_join_transaction(root, 1);
7662 BUG_ON(IS_ERR(trans));
7663
7664 alloc_flags = update_block_group_flags(root, cache->flags);
7665 if (alloc_flags != cache->flags)
7666 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
7667
7668 ret = set_block_group_ro(cache);
7669 if (!ret)
7670 goto out;
7671 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7672 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
7673 if (ret < 0)
7674 goto out;
7675 ret = set_block_group_ro(cache);
7676 out:
7677 btrfs_end_transaction(trans, root);
7678 return ret;
7679 }
7680
7681 int btrfs_set_block_group_rw(struct btrfs_root *root,
7682 struct btrfs_block_group_cache *cache)
7683 {
7684 struct btrfs_space_info *sinfo = cache->space_info;
7685 u64 num_bytes;
7686
7687 BUG_ON(!cache->ro);
7688
7689 spin_lock(&sinfo->lock);
7690 spin_lock(&cache->lock);
7691 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7692 cache->bytes_super - btrfs_block_group_used(&cache->item);
7693 sinfo->bytes_readonly -= num_bytes;
7694 cache->ro = 0;
7695 spin_unlock(&cache->lock);
7696 spin_unlock(&sinfo->lock);
7697 return 0;
7698 }
7699
7700 /*
7701 * checks to see if its even possible to relocate this block group.
7702 *
7703 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7704 * ok to go ahead and try.
7705 */
7706 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7707 {
7708 struct btrfs_block_group_cache *block_group;
7709 struct btrfs_space_info *space_info;
7710 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7711 struct btrfs_device *device;
7712 int full = 0;
7713 int ret = 0;
7714
7715 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7716
7717 /* odd, couldn't find the block group, leave it alone */
7718 if (!block_group)
7719 return -1;
7720
7721 /* no bytes used, we're good */
7722 if (!btrfs_block_group_used(&block_group->item))
7723 goto out;
7724
7725 space_info = block_group->space_info;
7726 spin_lock(&space_info->lock);
7727
7728 full = space_info->full;
7729
7730 /*
7731 * if this is the last block group we have in this space, we can't
7732 * relocate it unless we're able to allocate a new chunk below.
7733 *
7734 * Otherwise, we need to make sure we have room in the space to handle
7735 * all of the extents from this block group. If we can, we're good
7736 */
7737 if ((space_info->total_bytes != block_group->key.offset) &&
7738 (space_info->bytes_used + space_info->bytes_reserved +
7739 space_info->bytes_pinned + space_info->bytes_readonly +
7740 btrfs_block_group_used(&block_group->item) <
7741 space_info->total_bytes)) {
7742 spin_unlock(&space_info->lock);
7743 goto out;
7744 }
7745 spin_unlock(&space_info->lock);
7746
7747 /*
7748 * ok we don't have enough space, but maybe we have free space on our
7749 * devices to allocate new chunks for relocation, so loop through our
7750 * alloc devices and guess if we have enough space. However, if we
7751 * were marked as full, then we know there aren't enough chunks, and we
7752 * can just return.
7753 */
7754 ret = -1;
7755 if (full)
7756 goto out;
7757
7758 mutex_lock(&root->fs_info->chunk_mutex);
7759 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7760 u64 min_free = btrfs_block_group_used(&block_group->item);
7761 u64 dev_offset, max_avail;
7762
7763 /*
7764 * check to make sure we can actually find a chunk with enough
7765 * space to fit our block group in.
7766 */
7767 if (device->total_bytes > device->bytes_used + min_free) {
7768 ret = find_free_dev_extent(NULL, device, min_free,
7769 &dev_offset, &max_avail);
7770 if (!ret)
7771 break;
7772 ret = -1;
7773 }
7774 }
7775 mutex_unlock(&root->fs_info->chunk_mutex);
7776 out:
7777 btrfs_put_block_group(block_group);
7778 return ret;
7779 }
7780
7781 static int find_first_block_group(struct btrfs_root *root,
7782 struct btrfs_path *path, struct btrfs_key *key)
7783 {
7784 int ret = 0;
7785 struct btrfs_key found_key;
7786 struct extent_buffer *leaf;
7787 int slot;
7788
7789 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7790 if (ret < 0)
7791 goto out;
7792
7793 while (1) {
7794 slot = path->slots[0];
7795 leaf = path->nodes[0];
7796 if (slot >= btrfs_header_nritems(leaf)) {
7797 ret = btrfs_next_leaf(root, path);
7798 if (ret == 0)
7799 continue;
7800 if (ret < 0)
7801 goto out;
7802 break;
7803 }
7804 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7805
7806 if (found_key.objectid >= key->objectid &&
7807 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7808 ret = 0;
7809 goto out;
7810 }
7811 path->slots[0]++;
7812 }
7813 out:
7814 return ret;
7815 }
7816
7817 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7818 {
7819 struct btrfs_block_group_cache *block_group;
7820 struct btrfs_space_info *space_info;
7821 struct btrfs_caching_control *caching_ctl;
7822 struct rb_node *n;
7823
7824 down_write(&info->extent_commit_sem);
7825 while (!list_empty(&info->caching_block_groups)) {
7826 caching_ctl = list_entry(info->caching_block_groups.next,
7827 struct btrfs_caching_control, list);
7828 list_del(&caching_ctl->list);
7829 put_caching_control(caching_ctl);
7830 }
7831 up_write(&info->extent_commit_sem);
7832
7833 spin_lock(&info->block_group_cache_lock);
7834 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7835 block_group = rb_entry(n, struct btrfs_block_group_cache,
7836 cache_node);
7837 rb_erase(&block_group->cache_node,
7838 &info->block_group_cache_tree);
7839 spin_unlock(&info->block_group_cache_lock);
7840
7841 down_write(&block_group->space_info->groups_sem);
7842 list_del(&block_group->list);
7843 up_write(&block_group->space_info->groups_sem);
7844
7845 if (block_group->cached == BTRFS_CACHE_STARTED)
7846 wait_block_group_cache_done(block_group);
7847
7848 btrfs_remove_free_space_cache(block_group);
7849 btrfs_put_block_group(block_group);
7850
7851 spin_lock(&info->block_group_cache_lock);
7852 }
7853 spin_unlock(&info->block_group_cache_lock);
7854
7855 /* now that all the block groups are freed, go through and
7856 * free all the space_info structs. This is only called during
7857 * the final stages of unmount, and so we know nobody is
7858 * using them. We call synchronize_rcu() once before we start,
7859 * just to be on the safe side.
7860 */
7861 synchronize_rcu();
7862
7863 release_global_block_rsv(info);
7864
7865 while(!list_empty(&info->space_info)) {
7866 space_info = list_entry(info->space_info.next,
7867 struct btrfs_space_info,
7868 list);
7869 if (space_info->bytes_pinned > 0 ||
7870 space_info->bytes_reserved > 0) {
7871 WARN_ON(1);
7872 dump_space_info(space_info, 0, 0);
7873 }
7874 list_del(&space_info->list);
7875 kfree(space_info);
7876 }
7877 return 0;
7878 }
7879
7880 static void __link_block_group(struct btrfs_space_info *space_info,
7881 struct btrfs_block_group_cache *cache)
7882 {
7883 int index = get_block_group_index(cache);
7884
7885 down_write(&space_info->groups_sem);
7886 list_add_tail(&cache->list, &space_info->block_groups[index]);
7887 up_write(&space_info->groups_sem);
7888 }
7889
7890 int btrfs_read_block_groups(struct btrfs_root *root)
7891 {
7892 struct btrfs_path *path;
7893 int ret;
7894 struct btrfs_block_group_cache *cache;
7895 struct btrfs_fs_info *info = root->fs_info;
7896 struct btrfs_space_info *space_info;
7897 struct btrfs_key key;
7898 struct btrfs_key found_key;
7899 struct extent_buffer *leaf;
7900
7901 root = info->extent_root;
7902 key.objectid = 0;
7903 key.offset = 0;
7904 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7905 path = btrfs_alloc_path();
7906 if (!path)
7907 return -ENOMEM;
7908
7909 while (1) {
7910 ret = find_first_block_group(root, path, &key);
7911 if (ret > 0)
7912 break;
7913 if (ret != 0)
7914 goto error;
7915
7916 leaf = path->nodes[0];
7917 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7918 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7919 if (!cache) {
7920 ret = -ENOMEM;
7921 goto error;
7922 }
7923
7924 atomic_set(&cache->count, 1);
7925 spin_lock_init(&cache->lock);
7926 spin_lock_init(&cache->tree_lock);
7927 cache->fs_info = info;
7928 INIT_LIST_HEAD(&cache->list);
7929 INIT_LIST_HEAD(&cache->cluster_list);
7930
7931 /*
7932 * we only want to have 32k of ram per block group for keeping
7933 * track of free space, and if we pass 1/2 of that we want to
7934 * start converting things over to using bitmaps
7935 */
7936 cache->extents_thresh = ((1024 * 32) / 2) /
7937 sizeof(struct btrfs_free_space);
7938
7939 read_extent_buffer(leaf, &cache->item,
7940 btrfs_item_ptr_offset(leaf, path->slots[0]),
7941 sizeof(cache->item));
7942 memcpy(&cache->key, &found_key, sizeof(found_key));
7943
7944 key.objectid = found_key.objectid + found_key.offset;
7945 btrfs_release_path(root, path);
7946 cache->flags = btrfs_block_group_flags(&cache->item);
7947 cache->sectorsize = root->sectorsize;
7948
7949 /*
7950 * check for two cases, either we are full, and therefore
7951 * don't need to bother with the caching work since we won't
7952 * find any space, or we are empty, and we can just add all
7953 * the space in and be done with it. This saves us _alot_ of
7954 * time, particularly in the full case.
7955 */
7956 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7957 exclude_super_stripes(root, cache);
7958 cache->last_byte_to_unpin = (u64)-1;
7959 cache->cached = BTRFS_CACHE_FINISHED;
7960 free_excluded_extents(root, cache);
7961 } else if (btrfs_block_group_used(&cache->item) == 0) {
7962 exclude_super_stripes(root, cache);
7963 cache->last_byte_to_unpin = (u64)-1;
7964 cache->cached = BTRFS_CACHE_FINISHED;
7965 add_new_free_space(cache, root->fs_info,
7966 found_key.objectid,
7967 found_key.objectid +
7968 found_key.offset);
7969 free_excluded_extents(root, cache);
7970 }
7971
7972 ret = update_space_info(info, cache->flags, found_key.offset,
7973 btrfs_block_group_used(&cache->item),
7974 &space_info);
7975 BUG_ON(ret);
7976 cache->space_info = space_info;
7977 spin_lock(&cache->space_info->lock);
7978 cache->space_info->bytes_readonly += cache->bytes_super;
7979 spin_unlock(&cache->space_info->lock);
7980
7981 __link_block_group(space_info, cache);
7982
7983 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7984 BUG_ON(ret);
7985
7986 set_avail_alloc_bits(root->fs_info, cache->flags);
7987 if (btrfs_chunk_readonly(root, cache->key.objectid))
7988 set_block_group_ro(cache);
7989 }
7990
7991 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7992 if (!(get_alloc_profile(root, space_info->flags) &
7993 (BTRFS_BLOCK_GROUP_RAID10 |
7994 BTRFS_BLOCK_GROUP_RAID1 |
7995 BTRFS_BLOCK_GROUP_DUP)))
7996 continue;
7997 /*
7998 * avoid allocating from un-mirrored block group if there are
7999 * mirrored block groups.
8000 */
8001 list_for_each_entry(cache, &space_info->block_groups[3], list)
8002 set_block_group_ro(cache);
8003 list_for_each_entry(cache, &space_info->block_groups[4], list)
8004 set_block_group_ro(cache);
8005 }
8006
8007 init_global_block_rsv(info);
8008 ret = 0;
8009 error:
8010 btrfs_free_path(path);
8011 return ret;
8012 }
8013
8014 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8015 struct btrfs_root *root, u64 bytes_used,
8016 u64 type, u64 chunk_objectid, u64 chunk_offset,
8017 u64 size)
8018 {
8019 int ret;
8020 struct btrfs_root *extent_root;
8021 struct btrfs_block_group_cache *cache;
8022
8023 extent_root = root->fs_info->extent_root;
8024
8025 root->fs_info->last_trans_log_full_commit = trans->transid;
8026
8027 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8028 if (!cache)
8029 return -ENOMEM;
8030
8031 cache->key.objectid = chunk_offset;
8032 cache->key.offset = size;
8033 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8034 cache->sectorsize = root->sectorsize;
8035
8036 /*
8037 * we only want to have 32k of ram per block group for keeping track
8038 * of free space, and if we pass 1/2 of that we want to start
8039 * converting things over to using bitmaps
8040 */
8041 cache->extents_thresh = ((1024 * 32) / 2) /
8042 sizeof(struct btrfs_free_space);
8043 atomic_set(&cache->count, 1);
8044 spin_lock_init(&cache->lock);
8045 spin_lock_init(&cache->tree_lock);
8046 INIT_LIST_HEAD(&cache->list);
8047 INIT_LIST_HEAD(&cache->cluster_list);
8048
8049 btrfs_set_block_group_used(&cache->item, bytes_used);
8050 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8051 cache->flags = type;
8052 btrfs_set_block_group_flags(&cache->item, type);
8053
8054 cache->last_byte_to_unpin = (u64)-1;
8055 cache->cached = BTRFS_CACHE_FINISHED;
8056 exclude_super_stripes(root, cache);
8057
8058 add_new_free_space(cache, root->fs_info, chunk_offset,
8059 chunk_offset + size);
8060
8061 free_excluded_extents(root, cache);
8062
8063 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8064 &cache->space_info);
8065 BUG_ON(ret);
8066
8067 spin_lock(&cache->space_info->lock);
8068 cache->space_info->bytes_readonly += cache->bytes_super;
8069 spin_unlock(&cache->space_info->lock);
8070
8071 __link_block_group(cache->space_info, cache);
8072
8073 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8074 BUG_ON(ret);
8075
8076 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
8077 sizeof(cache->item));
8078 BUG_ON(ret);
8079
8080 set_avail_alloc_bits(extent_root->fs_info, type);
8081
8082 return 0;
8083 }
8084
8085 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8086 struct btrfs_root *root, u64 group_start)
8087 {
8088 struct btrfs_path *path;
8089 struct btrfs_block_group_cache *block_group;
8090 struct btrfs_free_cluster *cluster;
8091 struct btrfs_key key;
8092 int ret;
8093
8094 root = root->fs_info->extent_root;
8095
8096 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8097 BUG_ON(!block_group);
8098 BUG_ON(!block_group->ro);
8099
8100 memcpy(&key, &block_group->key, sizeof(key));
8101
8102 /* make sure this block group isn't part of an allocation cluster */
8103 cluster = &root->fs_info->data_alloc_cluster;
8104 spin_lock(&cluster->refill_lock);
8105 btrfs_return_cluster_to_free_space(block_group, cluster);
8106 spin_unlock(&cluster->refill_lock);
8107
8108 /*
8109 * make sure this block group isn't part of a metadata
8110 * allocation cluster
8111 */
8112 cluster = &root->fs_info->meta_alloc_cluster;
8113 spin_lock(&cluster->refill_lock);
8114 btrfs_return_cluster_to_free_space(block_group, cluster);
8115 spin_unlock(&cluster->refill_lock);
8116
8117 path = btrfs_alloc_path();
8118 BUG_ON(!path);
8119
8120 spin_lock(&root->fs_info->block_group_cache_lock);
8121 rb_erase(&block_group->cache_node,
8122 &root->fs_info->block_group_cache_tree);
8123 spin_unlock(&root->fs_info->block_group_cache_lock);
8124
8125 down_write(&block_group->space_info->groups_sem);
8126 /*
8127 * we must use list_del_init so people can check to see if they
8128 * are still on the list after taking the semaphore
8129 */
8130 list_del_init(&block_group->list);
8131 up_write(&block_group->space_info->groups_sem);
8132
8133 if (block_group->cached == BTRFS_CACHE_STARTED)
8134 wait_block_group_cache_done(block_group);
8135
8136 btrfs_remove_free_space_cache(block_group);
8137
8138 spin_lock(&block_group->space_info->lock);
8139 block_group->space_info->total_bytes -= block_group->key.offset;
8140 block_group->space_info->bytes_readonly -= block_group->key.offset;
8141 spin_unlock(&block_group->space_info->lock);
8142
8143 btrfs_clear_space_info_full(root->fs_info);
8144
8145 btrfs_put_block_group(block_group);
8146 btrfs_put_block_group(block_group);
8147
8148 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8149 if (ret > 0)
8150 ret = -EIO;
8151 if (ret < 0)
8152 goto out;
8153
8154 ret = btrfs_del_item(trans, root, path);
8155 out:
8156 btrfs_free_path(path);
8157 return ret;
8158 }
This page took 0.251467 seconds and 5 git commands to generate.