69083330ee168c62d835fab72f31f02931a17446
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "compat.h"
29 #include "hash.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "transaction.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "math.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 struct extent_buffer *leaf,
87 struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, u64 owner, u64 offset,
92 struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root,
95 u64 parent, u64 root_objectid,
96 u64 flags, struct btrfs_disk_key *key,
97 int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 struct btrfs_root *extent_root, u64 flags,
100 int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 u64 bytenr, u64 num_bytes, int reserved);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135 kfree(cache->free_space_ctl);
136 kfree(cache);
137 }
138 }
139
140 /*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
146 {
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178 }
179
180 /*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187 {
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
228 {
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 set_extent_bits(&root->fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 start, end;
241
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&root->fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE, GFP_NOFS);
247 clear_extent_bits(&root->fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250
251 static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
253 {
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
266 }
267
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 cache->key.objectid, bytenr,
272 0, &logical, &nr, &stripe_len);
273 if (ret)
274 return ret;
275
276 while (nr--) {
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
297 ret = add_excluded_extent(root, start, len);
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
302 }
303
304 kfree(logical);
305 }
306 return 0;
307 }
308
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
315 if (cache->cached != BTRFS_CACHE_STARTED) {
316 spin_unlock(&cache->lock);
317 return NULL;
318 }
319
320 /* We're loading it the fast way, so we don't have a caching_ctl. */
321 if (!cache->caching_ctl) {
322 spin_unlock(&cache->lock);
323 return NULL;
324 }
325
326 ctl = cache->caching_ctl;
327 atomic_inc(&ctl->count);
328 spin_unlock(&cache->lock);
329 return ctl;
330 }
331
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 if (atomic_dec_and_test(&ctl->count))
335 kfree(ctl);
336 }
337
338 /*
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
342 */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 u64 extent_start, extent_end, size, total_added = 0;
347 int ret;
348
349 while (start < end) {
350 ret = find_first_extent_bit(info->pinned_extents, start,
351 &extent_start, &extent_end,
352 EXTENT_DIRTY | EXTENT_UPTODATE,
353 NULL);
354 if (ret)
355 break;
356
357 if (extent_start <= start) {
358 start = extent_end + 1;
359 } else if (extent_start > start && extent_start < end) {
360 size = extent_start - start;
361 total_added += size;
362 ret = btrfs_add_free_space(block_group, start,
363 size);
364 BUG_ON(ret); /* -ENOMEM or logic error */
365 start = extent_end + 1;
366 } else {
367 break;
368 }
369 }
370
371 if (start < end) {
372 size = end - start;
373 total_added += size;
374 ret = btrfs_add_free_space(block_group, start, size);
375 BUG_ON(ret); /* -ENOMEM or logic error */
376 }
377
378 return total_added;
379 }
380
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 struct btrfs_block_group_cache *block_group;
384 struct btrfs_fs_info *fs_info;
385 struct btrfs_caching_control *caching_ctl;
386 struct btrfs_root *extent_root;
387 struct btrfs_path *path;
388 struct extent_buffer *leaf;
389 struct btrfs_key key;
390 u64 total_found = 0;
391 u64 last = 0;
392 u32 nritems;
393 int ret = -ENOMEM;
394
395 caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 block_group = caching_ctl->block_group;
397 fs_info = block_group->fs_info;
398 extent_root = fs_info->extent_root;
399
400 path = btrfs_alloc_path();
401 if (!path)
402 goto out;
403
404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405
406 /*
407 * We don't want to deadlock with somebody trying to allocate a new
408 * extent for the extent root while also trying to search the extent
409 * root to add free space. So we skip locking and search the commit
410 * root, since its read-only
411 */
412 path->skip_locking = 1;
413 path->search_commit_root = 1;
414 path->reada = 1;
415
416 key.objectid = last;
417 key.offset = 0;
418 key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 mutex_lock(&caching_ctl->mutex);
421 /* need to make sure the commit_root doesn't disappear */
422 down_read(&fs_info->extent_commit_sem);
423
424 next:
425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 if (ret < 0)
427 goto err;
428
429 leaf = path->nodes[0];
430 nritems = btrfs_header_nritems(leaf);
431
432 while (1) {
433 if (btrfs_fs_closing(fs_info) > 1) {
434 last = (u64)-1;
435 break;
436 }
437
438 if (path->slots[0] < nritems) {
439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 } else {
441 ret = find_next_key(path, 0, &key);
442 if (ret)
443 break;
444
445 if (need_resched()) {
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->extent_commit_sem);
449 mutex_unlock(&caching_ctl->mutex);
450 cond_resched();
451 goto again;
452 }
453
454 ret = btrfs_next_leaf(extent_root, path);
455 if (ret < 0)
456 goto err;
457 if (ret)
458 break;
459 leaf = path->nodes[0];
460 nritems = btrfs_header_nritems(leaf);
461 continue;
462 }
463
464 if (key.objectid < last) {
465 key.objectid = last;
466 key.offset = 0;
467 key.type = BTRFS_EXTENT_ITEM_KEY;
468
469 caching_ctl->progress = last;
470 btrfs_release_path(path);
471 goto next;
472 }
473
474 if (key.objectid < block_group->key.objectid) {
475 path->slots[0]++;
476 continue;
477 }
478
479 if (key.objectid >= block_group->key.objectid +
480 block_group->key.offset)
481 break;
482
483 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
484 key.type == BTRFS_METADATA_ITEM_KEY) {
485 total_found += add_new_free_space(block_group,
486 fs_info, last,
487 key.objectid);
488 if (key.type == BTRFS_METADATA_ITEM_KEY)
489 last = key.objectid +
490 fs_info->tree_root->leafsize;
491 else
492 last = key.objectid + key.offset;
493
494 if (total_found > (1024 * 1024 * 2)) {
495 total_found = 0;
496 wake_up(&caching_ctl->wait);
497 }
498 }
499 path->slots[0]++;
500 }
501 ret = 0;
502
503 total_found += add_new_free_space(block_group, fs_info, last,
504 block_group->key.objectid +
505 block_group->key.offset);
506 caching_ctl->progress = (u64)-1;
507
508 spin_lock(&block_group->lock);
509 block_group->caching_ctl = NULL;
510 block_group->cached = BTRFS_CACHE_FINISHED;
511 spin_unlock(&block_group->lock);
512
513 err:
514 btrfs_free_path(path);
515 up_read(&fs_info->extent_commit_sem);
516
517 free_excluded_extents(extent_root, block_group);
518
519 mutex_unlock(&caching_ctl->mutex);
520 out:
521 if (ret) {
522 spin_lock(&block_group->lock);
523 block_group->caching_ctl = NULL;
524 block_group->cached = BTRFS_CACHE_ERROR;
525 spin_unlock(&block_group->lock);
526 }
527 wake_up(&caching_ctl->wait);
528
529 put_caching_control(caching_ctl);
530 btrfs_put_block_group(block_group);
531 }
532
533 static int cache_block_group(struct btrfs_block_group_cache *cache,
534 int load_cache_only)
535 {
536 DEFINE_WAIT(wait);
537 struct btrfs_fs_info *fs_info = cache->fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret = 0;
540
541 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
542 if (!caching_ctl)
543 return -ENOMEM;
544
545 INIT_LIST_HEAD(&caching_ctl->list);
546 mutex_init(&caching_ctl->mutex);
547 init_waitqueue_head(&caching_ctl->wait);
548 caching_ctl->block_group = cache;
549 caching_ctl->progress = cache->key.objectid;
550 atomic_set(&caching_ctl->count, 1);
551 caching_ctl->work.func = caching_thread;
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
596 cache->caching_ctl = NULL;
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
599 } else {
600 if (load_cache_only) {
601 cache->caching_ctl = NULL;
602 cache->cached = BTRFS_CACHE_NO;
603 } else {
604 cache->cached = BTRFS_CACHE_STARTED;
605 }
606 }
607 spin_unlock(&cache->lock);
608 wake_up(&caching_ctl->wait);
609 if (ret == 1) {
610 put_caching_control(caching_ctl);
611 free_excluded_extents(fs_info->extent_root, cache);
612 return 0;
613 }
614 } else {
615 /*
616 * We are not going to do the fast caching, set cached to the
617 * appropriate value and wakeup any waiters.
618 */
619 spin_lock(&cache->lock);
620 if (load_cache_only) {
621 cache->caching_ctl = NULL;
622 cache->cached = BTRFS_CACHE_NO;
623 } else {
624 cache->cached = BTRFS_CACHE_STARTED;
625 }
626 spin_unlock(&cache->lock);
627 wake_up(&caching_ctl->wait);
628 }
629
630 if (load_cache_only) {
631 put_caching_control(caching_ctl);
632 return 0;
633 }
634
635 down_write(&fs_info->extent_commit_sem);
636 atomic_inc(&caching_ctl->count);
637 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
638 up_write(&fs_info->extent_commit_sem);
639
640 btrfs_get_block_group(cache);
641
642 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
643
644 return ret;
645 }
646
647 /*
648 * return the block group that starts at or after bytenr
649 */
650 static struct btrfs_block_group_cache *
651 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
652 {
653 struct btrfs_block_group_cache *cache;
654
655 cache = block_group_cache_tree_search(info, bytenr, 0);
656
657 return cache;
658 }
659
660 /*
661 * return the block group that contains the given bytenr
662 */
663 struct btrfs_block_group_cache *btrfs_lookup_block_group(
664 struct btrfs_fs_info *info,
665 u64 bytenr)
666 {
667 struct btrfs_block_group_cache *cache;
668
669 cache = block_group_cache_tree_search(info, bytenr, 1);
670
671 return cache;
672 }
673
674 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
675 u64 flags)
676 {
677 struct list_head *head = &info->space_info;
678 struct btrfs_space_info *found;
679
680 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
681
682 rcu_read_lock();
683 list_for_each_entry_rcu(found, head, list) {
684 if (found->flags & flags) {
685 rcu_read_unlock();
686 return found;
687 }
688 }
689 rcu_read_unlock();
690 return NULL;
691 }
692
693 /*
694 * after adding space to the filesystem, we need to clear the full flags
695 * on all the space infos.
696 */
697 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
698 {
699 struct list_head *head = &info->space_info;
700 struct btrfs_space_info *found;
701
702 rcu_read_lock();
703 list_for_each_entry_rcu(found, head, list)
704 found->full = 0;
705 rcu_read_unlock();
706 }
707
708 /* simple helper to search for an existing extent at a given offset */
709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
710 {
711 int ret;
712 struct btrfs_key key;
713 struct btrfs_path *path;
714
715 path = btrfs_alloc_path();
716 if (!path)
717 return -ENOMEM;
718
719 key.objectid = start;
720 key.offset = len;
721 key.type = BTRFS_EXTENT_ITEM_KEY;
722 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
723 0, 0);
724 if (ret > 0) {
725 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
726 if (key.objectid == start &&
727 key.type == BTRFS_METADATA_ITEM_KEY)
728 ret = 0;
729 }
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->leafsize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (metadata) {
772 key.objectid = bytenr;
773 key.type = BTRFS_METADATA_ITEM_KEY;
774 key.offset = offset;
775 } else {
776 key.objectid = bytenr;
777 key.type = BTRFS_EXTENT_ITEM_KEY;
778 key.offset = offset;
779 }
780
781 if (!trans) {
782 path->skip_locking = 1;
783 path->search_commit_root = 1;
784 }
785 again:
786 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 &key, path, 0, 0);
788 if (ret < 0)
789 goto out_free;
790
791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 metadata = 0;
793 if (path->slots[0]) {
794 path->slots[0]--;
795 btrfs_item_key_to_cpu(path->nodes[0], &key,
796 path->slots[0]);
797 if (key.objectid == bytenr &&
798 key.type == BTRFS_EXTENT_ITEM_KEY &&
799 key.offset == root->leafsize)
800 ret = 0;
801 }
802 if (ret) {
803 key.objectid = bytenr;
804 key.type = BTRFS_EXTENT_ITEM_KEY;
805 key.offset = root->leafsize;
806 btrfs_release_path(path);
807 goto again;
808 }
809 }
810
811 if (ret == 0) {
812 leaf = path->nodes[0];
813 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
814 if (item_size >= sizeof(*ei)) {
815 ei = btrfs_item_ptr(leaf, path->slots[0],
816 struct btrfs_extent_item);
817 num_refs = btrfs_extent_refs(leaf, ei);
818 extent_flags = btrfs_extent_flags(leaf, ei);
819 } else {
820 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
821 struct btrfs_extent_item_v0 *ei0;
822 BUG_ON(item_size != sizeof(*ei0));
823 ei0 = btrfs_item_ptr(leaf, path->slots[0],
824 struct btrfs_extent_item_v0);
825 num_refs = btrfs_extent_refs_v0(leaf, ei0);
826 /* FIXME: this isn't correct for data */
827 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
828 #else
829 BUG();
830 #endif
831 }
832 BUG_ON(num_refs == 0);
833 } else {
834 num_refs = 0;
835 extent_flags = 0;
836 ret = 0;
837 }
838
839 if (!trans)
840 goto out;
841
842 delayed_refs = &trans->transaction->delayed_refs;
843 spin_lock(&delayed_refs->lock);
844 head = btrfs_find_delayed_ref_head(trans, bytenr);
845 if (head) {
846 if (!mutex_trylock(&head->mutex)) {
847 atomic_inc(&head->node.refs);
848 spin_unlock(&delayed_refs->lock);
849
850 btrfs_release_path(path);
851
852 /*
853 * Mutex was contended, block until it's released and try
854 * again
855 */
856 mutex_lock(&head->mutex);
857 mutex_unlock(&head->mutex);
858 btrfs_put_delayed_ref(&head->node);
859 goto again;
860 }
861 if (head->extent_op && head->extent_op->update_flags)
862 extent_flags |= head->extent_op->flags_to_set;
863 else
864 BUG_ON(num_refs == 0);
865
866 num_refs += head->node.ref_mod;
867 mutex_unlock(&head->mutex);
868 }
869 spin_unlock(&delayed_refs->lock);
870 out:
871 WARN_ON(num_refs == 0);
872 if (refs)
873 *refs = num_refs;
874 if (flags)
875 *flags = extent_flags;
876 out_free:
877 btrfs_free_path(path);
878 return ret;
879 }
880
881 /*
882 * Back reference rules. Back refs have three main goals:
883 *
884 * 1) differentiate between all holders of references to an extent so that
885 * when a reference is dropped we can make sure it was a valid reference
886 * before freeing the extent.
887 *
888 * 2) Provide enough information to quickly find the holders of an extent
889 * if we notice a given block is corrupted or bad.
890 *
891 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
892 * maintenance. This is actually the same as #2, but with a slightly
893 * different use case.
894 *
895 * There are two kinds of back refs. The implicit back refs is optimized
896 * for pointers in non-shared tree blocks. For a given pointer in a block,
897 * back refs of this kind provide information about the block's owner tree
898 * and the pointer's key. These information allow us to find the block by
899 * b-tree searching. The full back refs is for pointers in tree blocks not
900 * referenced by their owner trees. The location of tree block is recorded
901 * in the back refs. Actually the full back refs is generic, and can be
902 * used in all cases the implicit back refs is used. The major shortcoming
903 * of the full back refs is its overhead. Every time a tree block gets
904 * COWed, we have to update back refs entry for all pointers in it.
905 *
906 * For a newly allocated tree block, we use implicit back refs for
907 * pointers in it. This means most tree related operations only involve
908 * implicit back refs. For a tree block created in old transaction, the
909 * only way to drop a reference to it is COW it. So we can detect the
910 * event that tree block loses its owner tree's reference and do the
911 * back refs conversion.
912 *
913 * When a tree block is COW'd through a tree, there are four cases:
914 *
915 * The reference count of the block is one and the tree is the block's
916 * owner tree. Nothing to do in this case.
917 *
918 * The reference count of the block is one and the tree is not the
919 * block's owner tree. In this case, full back refs is used for pointers
920 * in the block. Remove these full back refs, add implicit back refs for
921 * every pointers in the new block.
922 *
923 * The reference count of the block is greater than one and the tree is
924 * the block's owner tree. In this case, implicit back refs is used for
925 * pointers in the block. Add full back refs for every pointers in the
926 * block, increase lower level extents' reference counts. The original
927 * implicit back refs are entailed to the new block.
928 *
929 * The reference count of the block is greater than one and the tree is
930 * not the block's owner tree. Add implicit back refs for every pointer in
931 * the new block, increase lower level extents' reference count.
932 *
933 * Back Reference Key composing:
934 *
935 * The key objectid corresponds to the first byte in the extent,
936 * The key type is used to differentiate between types of back refs.
937 * There are different meanings of the key offset for different types
938 * of back refs.
939 *
940 * File extents can be referenced by:
941 *
942 * - multiple snapshots, subvolumes, or different generations in one subvol
943 * - different files inside a single subvolume
944 * - different offsets inside a file (bookend extents in file.c)
945 *
946 * The extent ref structure for the implicit back refs has fields for:
947 *
948 * - Objectid of the subvolume root
949 * - objectid of the file holding the reference
950 * - original offset in the file
951 * - how many bookend extents
952 *
953 * The key offset for the implicit back refs is hash of the first
954 * three fields.
955 *
956 * The extent ref structure for the full back refs has field for:
957 *
958 * - number of pointers in the tree leaf
959 *
960 * The key offset for the implicit back refs is the first byte of
961 * the tree leaf
962 *
963 * When a file extent is allocated, The implicit back refs is used.
964 * the fields are filled in:
965 *
966 * (root_key.objectid, inode objectid, offset in file, 1)
967 *
968 * When a file extent is removed file truncation, we find the
969 * corresponding implicit back refs and check the following fields:
970 *
971 * (btrfs_header_owner(leaf), inode objectid, offset in file)
972 *
973 * Btree extents can be referenced by:
974 *
975 * - Different subvolumes
976 *
977 * Both the implicit back refs and the full back refs for tree blocks
978 * only consist of key. The key offset for the implicit back refs is
979 * objectid of block's owner tree. The key offset for the full back refs
980 * is the first byte of parent block.
981 *
982 * When implicit back refs is used, information about the lowest key and
983 * level of the tree block are required. These information are stored in
984 * tree block info structure.
985 */
986
987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
988 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
989 struct btrfs_root *root,
990 struct btrfs_path *path,
991 u64 owner, u32 extra_size)
992 {
993 struct btrfs_extent_item *item;
994 struct btrfs_extent_item_v0 *ei0;
995 struct btrfs_extent_ref_v0 *ref0;
996 struct btrfs_tree_block_info *bi;
997 struct extent_buffer *leaf;
998 struct btrfs_key key;
999 struct btrfs_key found_key;
1000 u32 new_size = sizeof(*item);
1001 u64 refs;
1002 int ret;
1003
1004 leaf = path->nodes[0];
1005 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1006
1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1009 struct btrfs_extent_item_v0);
1010 refs = btrfs_extent_refs_v0(leaf, ei0);
1011
1012 if (owner == (u64)-1) {
1013 while (1) {
1014 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1015 ret = btrfs_next_leaf(root, path);
1016 if (ret < 0)
1017 return ret;
1018 BUG_ON(ret > 0); /* Corruption */
1019 leaf = path->nodes[0];
1020 }
1021 btrfs_item_key_to_cpu(leaf, &found_key,
1022 path->slots[0]);
1023 BUG_ON(key.objectid != found_key.objectid);
1024 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1025 path->slots[0]++;
1026 continue;
1027 }
1028 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1029 struct btrfs_extent_ref_v0);
1030 owner = btrfs_ref_objectid_v0(leaf, ref0);
1031 break;
1032 }
1033 }
1034 btrfs_release_path(path);
1035
1036 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1037 new_size += sizeof(*bi);
1038
1039 new_size -= sizeof(*ei0);
1040 ret = btrfs_search_slot(trans, root, &key, path,
1041 new_size + extra_size, 1);
1042 if (ret < 0)
1043 return ret;
1044 BUG_ON(ret); /* Corruption */
1045
1046 btrfs_extend_item(root, path, new_size);
1047
1048 leaf = path->nodes[0];
1049 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1050 btrfs_set_extent_refs(leaf, item, refs);
1051 /* FIXME: get real generation */
1052 btrfs_set_extent_generation(leaf, item, 0);
1053 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1054 btrfs_set_extent_flags(leaf, item,
1055 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1056 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1057 bi = (struct btrfs_tree_block_info *)(item + 1);
1058 /* FIXME: get first key of the block */
1059 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1060 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1061 } else {
1062 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1063 }
1064 btrfs_mark_buffer_dirty(leaf);
1065 return 0;
1066 }
1067 #endif
1068
1069 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1070 {
1071 u32 high_crc = ~(u32)0;
1072 u32 low_crc = ~(u32)0;
1073 __le64 lenum;
1074
1075 lenum = cpu_to_le64(root_objectid);
1076 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1077 lenum = cpu_to_le64(owner);
1078 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1079 lenum = cpu_to_le64(offset);
1080 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1081
1082 return ((u64)high_crc << 31) ^ (u64)low_crc;
1083 }
1084
1085 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref)
1087 {
1088 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1089 btrfs_extent_data_ref_objectid(leaf, ref),
1090 btrfs_extent_data_ref_offset(leaf, ref));
1091 }
1092
1093 static int match_extent_data_ref(struct extent_buffer *leaf,
1094 struct btrfs_extent_data_ref *ref,
1095 u64 root_objectid, u64 owner, u64 offset)
1096 {
1097 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1098 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1099 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1100 return 0;
1101 return 1;
1102 }
1103
1104 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1105 struct btrfs_root *root,
1106 struct btrfs_path *path,
1107 u64 bytenr, u64 parent,
1108 u64 root_objectid,
1109 u64 owner, u64 offset)
1110 {
1111 struct btrfs_key key;
1112 struct btrfs_extent_data_ref *ref;
1113 struct extent_buffer *leaf;
1114 u32 nritems;
1115 int ret;
1116 int recow;
1117 int err = -ENOENT;
1118
1119 key.objectid = bytenr;
1120 if (parent) {
1121 key.type = BTRFS_SHARED_DATA_REF_KEY;
1122 key.offset = parent;
1123 } else {
1124 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1125 key.offset = hash_extent_data_ref(root_objectid,
1126 owner, offset);
1127 }
1128 again:
1129 recow = 0;
1130 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1131 if (ret < 0) {
1132 err = ret;
1133 goto fail;
1134 }
1135
1136 if (parent) {
1137 if (!ret)
1138 return 0;
1139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1140 key.type = BTRFS_EXTENT_REF_V0_KEY;
1141 btrfs_release_path(path);
1142 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1143 if (ret < 0) {
1144 err = ret;
1145 goto fail;
1146 }
1147 if (!ret)
1148 return 0;
1149 #endif
1150 goto fail;
1151 }
1152
1153 leaf = path->nodes[0];
1154 nritems = btrfs_header_nritems(leaf);
1155 while (1) {
1156 if (path->slots[0] >= nritems) {
1157 ret = btrfs_next_leaf(root, path);
1158 if (ret < 0)
1159 err = ret;
1160 if (ret)
1161 goto fail;
1162
1163 leaf = path->nodes[0];
1164 nritems = btrfs_header_nritems(leaf);
1165 recow = 1;
1166 }
1167
1168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169 if (key.objectid != bytenr ||
1170 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1171 goto fail;
1172
1173 ref = btrfs_item_ptr(leaf, path->slots[0],
1174 struct btrfs_extent_data_ref);
1175
1176 if (match_extent_data_ref(leaf, ref, root_objectid,
1177 owner, offset)) {
1178 if (recow) {
1179 btrfs_release_path(path);
1180 goto again;
1181 }
1182 err = 0;
1183 break;
1184 }
1185 path->slots[0]++;
1186 }
1187 fail:
1188 return err;
1189 }
1190
1191 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1192 struct btrfs_root *root,
1193 struct btrfs_path *path,
1194 u64 bytenr, u64 parent,
1195 u64 root_objectid, u64 owner,
1196 u64 offset, int refs_to_add)
1197 {
1198 struct btrfs_key key;
1199 struct extent_buffer *leaf;
1200 u32 size;
1201 u32 num_refs;
1202 int ret;
1203
1204 key.objectid = bytenr;
1205 if (parent) {
1206 key.type = BTRFS_SHARED_DATA_REF_KEY;
1207 key.offset = parent;
1208 size = sizeof(struct btrfs_shared_data_ref);
1209 } else {
1210 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1211 key.offset = hash_extent_data_ref(root_objectid,
1212 owner, offset);
1213 size = sizeof(struct btrfs_extent_data_ref);
1214 }
1215
1216 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1217 if (ret && ret != -EEXIST)
1218 goto fail;
1219
1220 leaf = path->nodes[0];
1221 if (parent) {
1222 struct btrfs_shared_data_ref *ref;
1223 ref = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_shared_data_ref);
1225 if (ret == 0) {
1226 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1227 } else {
1228 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1229 num_refs += refs_to_add;
1230 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1231 }
1232 } else {
1233 struct btrfs_extent_data_ref *ref;
1234 while (ret == -EEXIST) {
1235 ref = btrfs_item_ptr(leaf, path->slots[0],
1236 struct btrfs_extent_data_ref);
1237 if (match_extent_data_ref(leaf, ref, root_objectid,
1238 owner, offset))
1239 break;
1240 btrfs_release_path(path);
1241 key.offset++;
1242 ret = btrfs_insert_empty_item(trans, root, path, &key,
1243 size);
1244 if (ret && ret != -EEXIST)
1245 goto fail;
1246
1247 leaf = path->nodes[0];
1248 }
1249 ref = btrfs_item_ptr(leaf, path->slots[0],
1250 struct btrfs_extent_data_ref);
1251 if (ret == 0) {
1252 btrfs_set_extent_data_ref_root(leaf, ref,
1253 root_objectid);
1254 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1255 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1256 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1257 } else {
1258 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1259 num_refs += refs_to_add;
1260 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1261 }
1262 }
1263 btrfs_mark_buffer_dirty(leaf);
1264 ret = 0;
1265 fail:
1266 btrfs_release_path(path);
1267 return ret;
1268 }
1269
1270 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1271 struct btrfs_root *root,
1272 struct btrfs_path *path,
1273 int refs_to_drop)
1274 {
1275 struct btrfs_key key;
1276 struct btrfs_extent_data_ref *ref1 = NULL;
1277 struct btrfs_shared_data_ref *ref2 = NULL;
1278 struct extent_buffer *leaf;
1279 u32 num_refs = 0;
1280 int ret = 0;
1281
1282 leaf = path->nodes[0];
1283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284
1285 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1286 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1287 struct btrfs_extent_data_ref);
1288 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1289 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1290 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_shared_data_ref);
1292 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1294 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1295 struct btrfs_extent_ref_v0 *ref0;
1296 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1297 struct btrfs_extent_ref_v0);
1298 num_refs = btrfs_ref_count_v0(leaf, ref0);
1299 #endif
1300 } else {
1301 BUG();
1302 }
1303
1304 BUG_ON(num_refs < refs_to_drop);
1305 num_refs -= refs_to_drop;
1306
1307 if (num_refs == 0) {
1308 ret = btrfs_del_item(trans, root, path);
1309 } else {
1310 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1311 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1312 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1313 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315 else {
1316 struct btrfs_extent_ref_v0 *ref0;
1317 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_ref_v0);
1319 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1320 }
1321 #endif
1322 btrfs_mark_buffer_dirty(leaf);
1323 }
1324 return ret;
1325 }
1326
1327 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1328 struct btrfs_path *path,
1329 struct btrfs_extent_inline_ref *iref)
1330 {
1331 struct btrfs_key key;
1332 struct extent_buffer *leaf;
1333 struct btrfs_extent_data_ref *ref1;
1334 struct btrfs_shared_data_ref *ref2;
1335 u32 num_refs = 0;
1336
1337 leaf = path->nodes[0];
1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339 if (iref) {
1340 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1341 BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else {
1345 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 }
1348 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_extent_data_ref);
1351 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_shared_data_ref);
1355 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358 struct btrfs_extent_ref_v0 *ref0;
1359 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360 struct btrfs_extent_ref_v0);
1361 num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363 } else {
1364 WARN_ON(1);
1365 }
1366 return num_refs;
1367 }
1368
1369 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *root,
1371 struct btrfs_path *path,
1372 u64 bytenr, u64 parent,
1373 u64 root_objectid)
1374 {
1375 struct btrfs_key key;
1376 int ret;
1377
1378 key.objectid = bytenr;
1379 if (parent) {
1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 key.offset = parent;
1382 } else {
1383 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 key.offset = root_objectid;
1385 }
1386
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1391 if (ret == -ENOENT && parent) {
1392 btrfs_release_path(path);
1393 key.type = BTRFS_EXTENT_REF_V0_KEY;
1394 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1395 if (ret > 0)
1396 ret = -ENOENT;
1397 }
1398 #endif
1399 return ret;
1400 }
1401
1402 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1403 struct btrfs_root *root,
1404 struct btrfs_path *path,
1405 u64 bytenr, u64 parent,
1406 u64 root_objectid)
1407 {
1408 struct btrfs_key key;
1409 int ret;
1410
1411 key.objectid = bytenr;
1412 if (parent) {
1413 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1414 key.offset = parent;
1415 } else {
1416 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1417 key.offset = root_objectid;
1418 }
1419
1420 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1421 btrfs_release_path(path);
1422 return ret;
1423 }
1424
1425 static inline int extent_ref_type(u64 parent, u64 owner)
1426 {
1427 int type;
1428 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1429 if (parent > 0)
1430 type = BTRFS_SHARED_BLOCK_REF_KEY;
1431 else
1432 type = BTRFS_TREE_BLOCK_REF_KEY;
1433 } else {
1434 if (parent > 0)
1435 type = BTRFS_SHARED_DATA_REF_KEY;
1436 else
1437 type = BTRFS_EXTENT_DATA_REF_KEY;
1438 }
1439 return type;
1440 }
1441
1442 static int find_next_key(struct btrfs_path *path, int level,
1443 struct btrfs_key *key)
1444
1445 {
1446 for (; level < BTRFS_MAX_LEVEL; level++) {
1447 if (!path->nodes[level])
1448 break;
1449 if (path->slots[level] + 1 >=
1450 btrfs_header_nritems(path->nodes[level]))
1451 continue;
1452 if (level == 0)
1453 btrfs_item_key_to_cpu(path->nodes[level], key,
1454 path->slots[level] + 1);
1455 else
1456 btrfs_node_key_to_cpu(path->nodes[level], key,
1457 path->slots[level] + 1);
1458 return 0;
1459 }
1460 return 1;
1461 }
1462
1463 /*
1464 * look for inline back ref. if back ref is found, *ref_ret is set
1465 * to the address of inline back ref, and 0 is returned.
1466 *
1467 * if back ref isn't found, *ref_ret is set to the address where it
1468 * should be inserted, and -ENOENT is returned.
1469 *
1470 * if insert is true and there are too many inline back refs, the path
1471 * points to the extent item, and -EAGAIN is returned.
1472 *
1473 * NOTE: inline back refs are ordered in the same way that back ref
1474 * items in the tree are ordered.
1475 */
1476 static noinline_for_stack
1477 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1478 struct btrfs_root *root,
1479 struct btrfs_path *path,
1480 struct btrfs_extent_inline_ref **ref_ret,
1481 u64 bytenr, u64 num_bytes,
1482 u64 parent, u64 root_objectid,
1483 u64 owner, u64 offset, int insert)
1484 {
1485 struct btrfs_key key;
1486 struct extent_buffer *leaf;
1487 struct btrfs_extent_item *ei;
1488 struct btrfs_extent_inline_ref *iref;
1489 u64 flags;
1490 u64 item_size;
1491 unsigned long ptr;
1492 unsigned long end;
1493 int extra_size;
1494 int type;
1495 int want;
1496 int ret;
1497 int err = 0;
1498 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1499 SKINNY_METADATA);
1500
1501 key.objectid = bytenr;
1502 key.type = BTRFS_EXTENT_ITEM_KEY;
1503 key.offset = num_bytes;
1504
1505 want = extent_ref_type(parent, owner);
1506 if (insert) {
1507 extra_size = btrfs_extent_inline_ref_size(want);
1508 path->keep_locks = 1;
1509 } else
1510 extra_size = -1;
1511
1512 /*
1513 * Owner is our parent level, so we can just add one to get the level
1514 * for the block we are interested in.
1515 */
1516 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1517 key.type = BTRFS_METADATA_ITEM_KEY;
1518 key.offset = owner;
1519 }
1520
1521 again:
1522 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1523 if (ret < 0) {
1524 err = ret;
1525 goto out;
1526 }
1527
1528 /*
1529 * We may be a newly converted file system which still has the old fat
1530 * extent entries for metadata, so try and see if we have one of those.
1531 */
1532 if (ret > 0 && skinny_metadata) {
1533 skinny_metadata = false;
1534 if (path->slots[0]) {
1535 path->slots[0]--;
1536 btrfs_item_key_to_cpu(path->nodes[0], &key,
1537 path->slots[0]);
1538 if (key.objectid == bytenr &&
1539 key.type == BTRFS_EXTENT_ITEM_KEY &&
1540 key.offset == num_bytes)
1541 ret = 0;
1542 }
1543 if (ret) {
1544 key.type = BTRFS_EXTENT_ITEM_KEY;
1545 key.offset = num_bytes;
1546 btrfs_release_path(path);
1547 goto again;
1548 }
1549 }
1550
1551 if (ret && !insert) {
1552 err = -ENOENT;
1553 goto out;
1554 } else if (ret) {
1555 err = -EIO;
1556 WARN_ON(1);
1557 goto out;
1558 }
1559
1560 leaf = path->nodes[0];
1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 if (item_size < sizeof(*ei)) {
1564 if (!insert) {
1565 err = -ENOENT;
1566 goto out;
1567 }
1568 ret = convert_extent_item_v0(trans, root, path, owner,
1569 extra_size);
1570 if (ret < 0) {
1571 err = ret;
1572 goto out;
1573 }
1574 leaf = path->nodes[0];
1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576 }
1577 #endif
1578 BUG_ON(item_size < sizeof(*ei));
1579
1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 flags = btrfs_extent_flags(leaf, ei);
1582
1583 ptr = (unsigned long)(ei + 1);
1584 end = (unsigned long)ei + item_size;
1585
1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587 ptr += sizeof(struct btrfs_tree_block_info);
1588 BUG_ON(ptr > end);
1589 }
1590
1591 err = -ENOENT;
1592 while (1) {
1593 if (ptr >= end) {
1594 WARN_ON(ptr > end);
1595 break;
1596 }
1597 iref = (struct btrfs_extent_inline_ref *)ptr;
1598 type = btrfs_extent_inline_ref_type(leaf, iref);
1599 if (want < type)
1600 break;
1601 if (want > type) {
1602 ptr += btrfs_extent_inline_ref_size(type);
1603 continue;
1604 }
1605
1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 struct btrfs_extent_data_ref *dref;
1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 if (match_extent_data_ref(leaf, dref, root_objectid,
1610 owner, offset)) {
1611 err = 0;
1612 break;
1613 }
1614 if (hash_extent_data_ref_item(leaf, dref) <
1615 hash_extent_data_ref(root_objectid, owner, offset))
1616 break;
1617 } else {
1618 u64 ref_offset;
1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 if (parent > 0) {
1621 if (parent == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < parent)
1626 break;
1627 } else {
1628 if (root_objectid == ref_offset) {
1629 err = 0;
1630 break;
1631 }
1632 if (ref_offset < root_objectid)
1633 break;
1634 }
1635 }
1636 ptr += btrfs_extent_inline_ref_size(type);
1637 }
1638 if (err == -ENOENT && insert) {
1639 if (item_size + extra_size >=
1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 err = -EAGAIN;
1642 goto out;
1643 }
1644 /*
1645 * To add new inline back ref, we have to make sure
1646 * there is no corresponding back ref item.
1647 * For simplicity, we just do not add new inline back
1648 * ref if there is any kind of item for this block
1649 */
1650 if (find_next_key(path, 0, &key) == 0 &&
1651 key.objectid == bytenr &&
1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 err = -EAGAIN;
1654 goto out;
1655 }
1656 }
1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 if (insert) {
1660 path->keep_locks = 0;
1661 btrfs_unlock_up_safe(path, 1);
1662 }
1663 return err;
1664 }
1665
1666 /*
1667 * helper to add new inline back ref
1668 */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671 struct btrfs_path *path,
1672 struct btrfs_extent_inline_ref *iref,
1673 u64 parent, u64 root_objectid,
1674 u64 owner, u64 offset, int refs_to_add,
1675 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 struct extent_buffer *leaf;
1678 struct btrfs_extent_item *ei;
1679 unsigned long ptr;
1680 unsigned long end;
1681 unsigned long item_offset;
1682 u64 refs;
1683 int size;
1684 int type;
1685
1686 leaf = path->nodes[0];
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 item_offset = (unsigned long)iref - (unsigned long)ei;
1689
1690 type = extent_ref_type(parent, owner);
1691 size = btrfs_extent_inline_ref_size(type);
1692
1693 btrfs_extend_item(root, path, size);
1694
1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 refs = btrfs_extent_refs(leaf, ei);
1697 refs += refs_to_add;
1698 btrfs_set_extent_refs(leaf, ei, refs);
1699 if (extent_op)
1700 __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702 ptr = (unsigned long)ei + item_offset;
1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 if (ptr < end - size)
1705 memmove_extent_buffer(leaf, ptr + size, ptr,
1706 end - size - ptr);
1707
1708 iref = (struct btrfs_extent_inline_ref *)ptr;
1709 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 struct btrfs_extent_data_ref *dref;
1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 struct btrfs_shared_data_ref *sref;
1719 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 } else {
1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 }
1727 btrfs_mark_buffer_dirty(leaf);
1728 }
1729
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 struct btrfs_root *root,
1732 struct btrfs_path *path,
1733 struct btrfs_extent_inline_ref **ref_ret,
1734 u64 bytenr, u64 num_bytes, u64 parent,
1735 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 int ret;
1738
1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740 bytenr, num_bytes, parent,
1741 root_objectid, owner, offset, 0);
1742 if (ret != -ENOENT)
1743 return ret;
1744
1745 btrfs_release_path(path);
1746 *ref_ret = NULL;
1747
1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750 root_objectid);
1751 } else {
1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753 root_objectid, owner, offset);
1754 }
1755 return ret;
1756 }
1757
1758 /*
1759 * helper to update/remove inline back ref
1760 */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763 struct btrfs_path *path,
1764 struct btrfs_extent_inline_ref *iref,
1765 int refs_to_mod,
1766 struct btrfs_delayed_extent_op *extent_op)
1767 {
1768 struct extent_buffer *leaf;
1769 struct btrfs_extent_item *ei;
1770 struct btrfs_extent_data_ref *dref = NULL;
1771 struct btrfs_shared_data_ref *sref = NULL;
1772 unsigned long ptr;
1773 unsigned long end;
1774 u32 item_size;
1775 int size;
1776 int type;
1777 u64 refs;
1778
1779 leaf = path->nodes[0];
1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781 refs = btrfs_extent_refs(leaf, ei);
1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783 refs += refs_to_mod;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 type = btrfs_extent_inline_ref_type(leaf, iref);
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
1799 }
1800
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
1810 size = btrfs_extent_inline_ref_size(type);
1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 ptr = (unsigned long)iref;
1813 end = (unsigned long)ei + item_size;
1814 if (ptr + size < end)
1815 memmove_extent_buffer(leaf, ptr, ptr + size,
1816 end - ptr - size);
1817 item_size -= size;
1818 btrfs_truncate_item(root, path, item_size, 1);
1819 }
1820 btrfs_mark_buffer_dirty(leaf);
1821 }
1822
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
1835 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 bytenr, num_bytes, parent,
1837 root_objectid, owner, offset, 1);
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(root, path, iref,
1841 refs_to_add, extent_op);
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(root, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
1847 }
1848 return ret;
1849 }
1850
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_root *root,
1853 struct btrfs_path *path,
1854 u64 bytenr, u64 parent, u64 root_objectid,
1855 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 int ret;
1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 BUG_ON(refs_to_add != 1);
1860 ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 parent, root_objectid);
1862 } else {
1863 ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 parent, root_objectid,
1865 owner, offset, refs_to_add);
1866 }
1867 return ret;
1868 }
1869
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root,
1872 struct btrfs_path *path,
1873 struct btrfs_extent_inline_ref *iref,
1874 int refs_to_drop, int is_data)
1875 {
1876 int ret = 0;
1877
1878 BUG_ON(!is_data && refs_to_drop != 1);
1879 if (iref) {
1880 update_inline_extent_backref(root, path, iref,
1881 -refs_to_drop, NULL);
1882 } else if (is_data) {
1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884 } else {
1885 ret = btrfs_del_item(trans, root, path);
1886 }
1887 return ret;
1888 }
1889
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891 u64 start, u64 len)
1892 {
1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897 u64 num_bytes, u64 *actual_bytes)
1898 {
1899 int ret;
1900 u64 discarded_bytes = 0;
1901 struct btrfs_bio *bbio = NULL;
1902
1903
1904 /* Tell the block device(s) that the sectors can be discarded */
1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906 bytenr, &num_bytes, &bbio, 0);
1907 /* Error condition is -ENOMEM */
1908 if (!ret) {
1909 struct btrfs_bio_stripe *stripe = bbio->stripes;
1910 int i;
1911
1912
1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914 if (!stripe->dev->can_discard)
1915 continue;
1916
1917 ret = btrfs_issue_discard(stripe->dev->bdev,
1918 stripe->physical,
1919 stripe->length);
1920 if (!ret)
1921 discarded_bytes += stripe->length;
1922 else if (ret != -EOPNOTSUPP)
1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924
1925 /*
1926 * Just in case we get back EOPNOTSUPP for some reason,
1927 * just ignore the return value so we don't screw up
1928 * people calling discard_extent.
1929 */
1930 ret = 0;
1931 }
1932 kfree(bbio);
1933 }
1934
1935 if (actual_bytes)
1936 *actual_bytes = discarded_bytes;
1937
1938
1939 if (ret == -EOPNOTSUPP)
1940 ret = 0;
1941 return ret;
1942 }
1943
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946 struct btrfs_root *root,
1947 u64 bytenr, u64 num_bytes, u64 parent,
1948 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950 int ret;
1951 struct btrfs_fs_info *fs_info = root->fs_info;
1952
1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955
1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958 num_bytes,
1959 parent, root_objectid, (int)owner,
1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961 } else {
1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963 num_bytes,
1964 parent, root_objectid, owner, offset,
1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966 }
1967 return ret;
1968 }
1969
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971 struct btrfs_root *root,
1972 u64 bytenr, u64 num_bytes,
1973 u64 parent, u64 root_objectid,
1974 u64 owner, u64 offset, int refs_to_add,
1975 struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 u64 refs;
1981 int ret;
1982 int err = 0;
1983
1984 path = btrfs_alloc_path();
1985 if (!path)
1986 return -ENOMEM;
1987
1988 path->reada = 1;
1989 path->leave_spinning = 1;
1990 /* this will setup the path even if it fails to insert the back ref */
1991 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1992 path, bytenr, num_bytes, parent,
1993 root_objectid, owner, offset,
1994 refs_to_add, extent_op);
1995 if (ret == 0)
1996 goto out;
1997
1998 if (ret != -EAGAIN) {
1999 err = ret;
2000 goto out;
2001 }
2002
2003 leaf = path->nodes[0];
2004 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2005 refs = btrfs_extent_refs(leaf, item);
2006 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2007 if (extent_op)
2008 __run_delayed_extent_op(extent_op, leaf, item);
2009
2010 btrfs_mark_buffer_dirty(leaf);
2011 btrfs_release_path(path);
2012
2013 path->reada = 1;
2014 path->leave_spinning = 1;
2015
2016 /* now insert the actual backref */
2017 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2018 path, bytenr, parent, root_objectid,
2019 owner, offset, refs_to_add);
2020 if (ret)
2021 btrfs_abort_transaction(trans, root, ret);
2022 out:
2023 btrfs_free_path(path);
2024 return err;
2025 }
2026
2027 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2028 struct btrfs_root *root,
2029 struct btrfs_delayed_ref_node *node,
2030 struct btrfs_delayed_extent_op *extent_op,
2031 int insert_reserved)
2032 {
2033 int ret = 0;
2034 struct btrfs_delayed_data_ref *ref;
2035 struct btrfs_key ins;
2036 u64 parent = 0;
2037 u64 ref_root = 0;
2038 u64 flags = 0;
2039
2040 ins.objectid = node->bytenr;
2041 ins.offset = node->num_bytes;
2042 ins.type = BTRFS_EXTENT_ITEM_KEY;
2043
2044 ref = btrfs_delayed_node_to_data_ref(node);
2045 trace_run_delayed_data_ref(node, ref, node->action);
2046
2047 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2048 parent = ref->parent;
2049 else
2050 ref_root = ref->root;
2051
2052 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2053 if (extent_op)
2054 flags |= extent_op->flags_to_set;
2055 ret = alloc_reserved_file_extent(trans, root,
2056 parent, ref_root, flags,
2057 ref->objectid, ref->offset,
2058 &ins, node->ref_mod);
2059 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2060 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2061 node->num_bytes, parent,
2062 ref_root, ref->objectid,
2063 ref->offset, node->ref_mod,
2064 extent_op);
2065 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2066 ret = __btrfs_free_extent(trans, root, node->bytenr,
2067 node->num_bytes, parent,
2068 ref_root, ref->objectid,
2069 ref->offset, node->ref_mod,
2070 extent_op);
2071 } else {
2072 BUG();
2073 }
2074 return ret;
2075 }
2076
2077 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2078 struct extent_buffer *leaf,
2079 struct btrfs_extent_item *ei)
2080 {
2081 u64 flags = btrfs_extent_flags(leaf, ei);
2082 if (extent_op->update_flags) {
2083 flags |= extent_op->flags_to_set;
2084 btrfs_set_extent_flags(leaf, ei, flags);
2085 }
2086
2087 if (extent_op->update_key) {
2088 struct btrfs_tree_block_info *bi;
2089 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2090 bi = (struct btrfs_tree_block_info *)(ei + 1);
2091 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2092 }
2093 }
2094
2095 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2096 struct btrfs_root *root,
2097 struct btrfs_delayed_ref_node *node,
2098 struct btrfs_delayed_extent_op *extent_op)
2099 {
2100 struct btrfs_key key;
2101 struct btrfs_path *path;
2102 struct btrfs_extent_item *ei;
2103 struct extent_buffer *leaf;
2104 u32 item_size;
2105 int ret;
2106 int err = 0;
2107 int metadata = !extent_op->is_data;
2108
2109 if (trans->aborted)
2110 return 0;
2111
2112 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2113 metadata = 0;
2114
2115 path = btrfs_alloc_path();
2116 if (!path)
2117 return -ENOMEM;
2118
2119 key.objectid = node->bytenr;
2120
2121 if (metadata) {
2122 key.type = BTRFS_METADATA_ITEM_KEY;
2123 key.offset = extent_op->level;
2124 } else {
2125 key.type = BTRFS_EXTENT_ITEM_KEY;
2126 key.offset = node->num_bytes;
2127 }
2128
2129 again:
2130 path->reada = 1;
2131 path->leave_spinning = 1;
2132 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2133 path, 0, 1);
2134 if (ret < 0) {
2135 err = ret;
2136 goto out;
2137 }
2138 if (ret > 0) {
2139 if (metadata) {
2140 btrfs_release_path(path);
2141 metadata = 0;
2142
2143 key.offset = node->num_bytes;
2144 key.type = BTRFS_EXTENT_ITEM_KEY;
2145 goto again;
2146 }
2147 err = -EIO;
2148 goto out;
2149 }
2150
2151 leaf = path->nodes[0];
2152 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2154 if (item_size < sizeof(*ei)) {
2155 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2156 path, (u64)-1, 0);
2157 if (ret < 0) {
2158 err = ret;
2159 goto out;
2160 }
2161 leaf = path->nodes[0];
2162 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2163 }
2164 #endif
2165 BUG_ON(item_size < sizeof(*ei));
2166 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2167 __run_delayed_extent_op(extent_op, leaf, ei);
2168
2169 btrfs_mark_buffer_dirty(leaf);
2170 out:
2171 btrfs_free_path(path);
2172 return err;
2173 }
2174
2175 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root,
2177 struct btrfs_delayed_ref_node *node,
2178 struct btrfs_delayed_extent_op *extent_op,
2179 int insert_reserved)
2180 {
2181 int ret = 0;
2182 struct btrfs_delayed_tree_ref *ref;
2183 struct btrfs_key ins;
2184 u64 parent = 0;
2185 u64 ref_root = 0;
2186 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2187 SKINNY_METADATA);
2188
2189 ref = btrfs_delayed_node_to_tree_ref(node);
2190 trace_run_delayed_tree_ref(node, ref, node->action);
2191
2192 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2193 parent = ref->parent;
2194 else
2195 ref_root = ref->root;
2196
2197 ins.objectid = node->bytenr;
2198 if (skinny_metadata) {
2199 ins.offset = ref->level;
2200 ins.type = BTRFS_METADATA_ITEM_KEY;
2201 } else {
2202 ins.offset = node->num_bytes;
2203 ins.type = BTRFS_EXTENT_ITEM_KEY;
2204 }
2205
2206 BUG_ON(node->ref_mod != 1);
2207 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2208 BUG_ON(!extent_op || !extent_op->update_flags);
2209 ret = alloc_reserved_tree_block(trans, root,
2210 parent, ref_root,
2211 extent_op->flags_to_set,
2212 &extent_op->key,
2213 ref->level, &ins);
2214 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2215 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2216 node->num_bytes, parent, ref_root,
2217 ref->level, 0, 1, extent_op);
2218 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2219 ret = __btrfs_free_extent(trans, root, node->bytenr,
2220 node->num_bytes, parent, ref_root,
2221 ref->level, 0, 1, extent_op);
2222 } else {
2223 BUG();
2224 }
2225 return ret;
2226 }
2227
2228 /* helper function to actually process a single delayed ref entry */
2229 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2230 struct btrfs_root *root,
2231 struct btrfs_delayed_ref_node *node,
2232 struct btrfs_delayed_extent_op *extent_op,
2233 int insert_reserved)
2234 {
2235 int ret = 0;
2236
2237 if (trans->aborted)
2238 return 0;
2239
2240 if (btrfs_delayed_ref_is_head(node)) {
2241 struct btrfs_delayed_ref_head *head;
2242 /*
2243 * we've hit the end of the chain and we were supposed
2244 * to insert this extent into the tree. But, it got
2245 * deleted before we ever needed to insert it, so all
2246 * we have to do is clean up the accounting
2247 */
2248 BUG_ON(extent_op);
2249 head = btrfs_delayed_node_to_head(node);
2250 trace_run_delayed_ref_head(node, head, node->action);
2251
2252 if (insert_reserved) {
2253 btrfs_pin_extent(root, node->bytenr,
2254 node->num_bytes, 1);
2255 if (head->is_data) {
2256 ret = btrfs_del_csums(trans, root,
2257 node->bytenr,
2258 node->num_bytes);
2259 }
2260 }
2261 return ret;
2262 }
2263
2264 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2265 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2266 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2267 insert_reserved);
2268 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2269 node->type == BTRFS_SHARED_DATA_REF_KEY)
2270 ret = run_delayed_data_ref(trans, root, node, extent_op,
2271 insert_reserved);
2272 else
2273 BUG();
2274 return ret;
2275 }
2276
2277 static noinline struct btrfs_delayed_ref_node *
2278 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2279 {
2280 struct rb_node *node;
2281 struct btrfs_delayed_ref_node *ref;
2282 int action = BTRFS_ADD_DELAYED_REF;
2283 again:
2284 /*
2285 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2286 * this prevents ref count from going down to zero when
2287 * there still are pending delayed ref.
2288 */
2289 node = rb_prev(&head->node.rb_node);
2290 while (1) {
2291 if (!node)
2292 break;
2293 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2294 rb_node);
2295 if (ref->bytenr != head->node.bytenr)
2296 break;
2297 if (ref->action == action)
2298 return ref;
2299 node = rb_prev(node);
2300 }
2301 if (action == BTRFS_ADD_DELAYED_REF) {
2302 action = BTRFS_DROP_DELAYED_REF;
2303 goto again;
2304 }
2305 return NULL;
2306 }
2307
2308 /*
2309 * Returns 0 on success or if called with an already aborted transaction.
2310 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2311 */
2312 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct list_head *cluster)
2315 {
2316 struct btrfs_delayed_ref_root *delayed_refs;
2317 struct btrfs_delayed_ref_node *ref;
2318 struct btrfs_delayed_ref_head *locked_ref = NULL;
2319 struct btrfs_delayed_extent_op *extent_op;
2320 struct btrfs_fs_info *fs_info = root->fs_info;
2321 int ret;
2322 int count = 0;
2323 int must_insert_reserved = 0;
2324
2325 delayed_refs = &trans->transaction->delayed_refs;
2326 while (1) {
2327 if (!locked_ref) {
2328 /* pick a new head ref from the cluster list */
2329 if (list_empty(cluster))
2330 break;
2331
2332 locked_ref = list_entry(cluster->next,
2333 struct btrfs_delayed_ref_head, cluster);
2334
2335 /* grab the lock that says we are going to process
2336 * all the refs for this head */
2337 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2338
2339 /*
2340 * we may have dropped the spin lock to get the head
2341 * mutex lock, and that might have given someone else
2342 * time to free the head. If that's true, it has been
2343 * removed from our list and we can move on.
2344 */
2345 if (ret == -EAGAIN) {
2346 locked_ref = NULL;
2347 count++;
2348 continue;
2349 }
2350 }
2351
2352 /*
2353 * We need to try and merge add/drops of the same ref since we
2354 * can run into issues with relocate dropping the implicit ref
2355 * and then it being added back again before the drop can
2356 * finish. If we merged anything we need to re-loop so we can
2357 * get a good ref.
2358 */
2359 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2360 locked_ref);
2361
2362 /*
2363 * locked_ref is the head node, so we have to go one
2364 * node back for any delayed ref updates
2365 */
2366 ref = select_delayed_ref(locked_ref);
2367
2368 if (ref && ref->seq &&
2369 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2370 /*
2371 * there are still refs with lower seq numbers in the
2372 * process of being added. Don't run this ref yet.
2373 */
2374 list_del_init(&locked_ref->cluster);
2375 btrfs_delayed_ref_unlock(locked_ref);
2376 locked_ref = NULL;
2377 delayed_refs->num_heads_ready++;
2378 spin_unlock(&delayed_refs->lock);
2379 cond_resched();
2380 spin_lock(&delayed_refs->lock);
2381 continue;
2382 }
2383
2384 /*
2385 * record the must insert reserved flag before we
2386 * drop the spin lock.
2387 */
2388 must_insert_reserved = locked_ref->must_insert_reserved;
2389 locked_ref->must_insert_reserved = 0;
2390
2391 extent_op = locked_ref->extent_op;
2392 locked_ref->extent_op = NULL;
2393
2394 if (!ref) {
2395 /* All delayed refs have been processed, Go ahead
2396 * and send the head node to run_one_delayed_ref,
2397 * so that any accounting fixes can happen
2398 */
2399 ref = &locked_ref->node;
2400
2401 if (extent_op && must_insert_reserved) {
2402 btrfs_free_delayed_extent_op(extent_op);
2403 extent_op = NULL;
2404 }
2405
2406 if (extent_op) {
2407 spin_unlock(&delayed_refs->lock);
2408
2409 ret = run_delayed_extent_op(trans, root,
2410 ref, extent_op);
2411 btrfs_free_delayed_extent_op(extent_op);
2412
2413 if (ret) {
2414 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2415 spin_lock(&delayed_refs->lock);
2416 btrfs_delayed_ref_unlock(locked_ref);
2417 return ret;
2418 }
2419
2420 goto next;
2421 }
2422 }
2423
2424 ref->in_tree = 0;
2425 rb_erase(&ref->rb_node, &delayed_refs->root);
2426 delayed_refs->num_entries--;
2427 if (!btrfs_delayed_ref_is_head(ref)) {
2428 /*
2429 * when we play the delayed ref, also correct the
2430 * ref_mod on head
2431 */
2432 switch (ref->action) {
2433 case BTRFS_ADD_DELAYED_REF:
2434 case BTRFS_ADD_DELAYED_EXTENT:
2435 locked_ref->node.ref_mod -= ref->ref_mod;
2436 break;
2437 case BTRFS_DROP_DELAYED_REF:
2438 locked_ref->node.ref_mod += ref->ref_mod;
2439 break;
2440 default:
2441 WARN_ON(1);
2442 }
2443 }
2444 spin_unlock(&delayed_refs->lock);
2445
2446 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2447 must_insert_reserved);
2448
2449 btrfs_free_delayed_extent_op(extent_op);
2450 if (ret) {
2451 btrfs_delayed_ref_unlock(locked_ref);
2452 btrfs_put_delayed_ref(ref);
2453 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2454 spin_lock(&delayed_refs->lock);
2455 return ret;
2456 }
2457
2458 /*
2459 * If this node is a head, that means all the refs in this head
2460 * have been dealt with, and we will pick the next head to deal
2461 * with, so we must unlock the head and drop it from the cluster
2462 * list before we release it.
2463 */
2464 if (btrfs_delayed_ref_is_head(ref)) {
2465 list_del_init(&locked_ref->cluster);
2466 btrfs_delayed_ref_unlock(locked_ref);
2467 locked_ref = NULL;
2468 }
2469 btrfs_put_delayed_ref(ref);
2470 count++;
2471 next:
2472 cond_resched();
2473 spin_lock(&delayed_refs->lock);
2474 }
2475 return count;
2476 }
2477
2478 #ifdef SCRAMBLE_DELAYED_REFS
2479 /*
2480 * Normally delayed refs get processed in ascending bytenr order. This
2481 * correlates in most cases to the order added. To expose dependencies on this
2482 * order, we start to process the tree in the middle instead of the beginning
2483 */
2484 static u64 find_middle(struct rb_root *root)
2485 {
2486 struct rb_node *n = root->rb_node;
2487 struct btrfs_delayed_ref_node *entry;
2488 int alt = 1;
2489 u64 middle;
2490 u64 first = 0, last = 0;
2491
2492 n = rb_first(root);
2493 if (n) {
2494 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2495 first = entry->bytenr;
2496 }
2497 n = rb_last(root);
2498 if (n) {
2499 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2500 last = entry->bytenr;
2501 }
2502 n = root->rb_node;
2503
2504 while (n) {
2505 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2506 WARN_ON(!entry->in_tree);
2507
2508 middle = entry->bytenr;
2509
2510 if (alt)
2511 n = n->rb_left;
2512 else
2513 n = n->rb_right;
2514
2515 alt = 1 - alt;
2516 }
2517 return middle;
2518 }
2519 #endif
2520
2521 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2522 struct btrfs_fs_info *fs_info)
2523 {
2524 struct qgroup_update *qgroup_update;
2525 int ret = 0;
2526
2527 if (list_empty(&trans->qgroup_ref_list) !=
2528 !trans->delayed_ref_elem.seq) {
2529 /* list without seq or seq without list */
2530 btrfs_err(fs_info,
2531 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2532 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2533 (u32)(trans->delayed_ref_elem.seq >> 32),
2534 (u32)trans->delayed_ref_elem.seq);
2535 BUG();
2536 }
2537
2538 if (!trans->delayed_ref_elem.seq)
2539 return 0;
2540
2541 while (!list_empty(&trans->qgroup_ref_list)) {
2542 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2543 struct qgroup_update, list);
2544 list_del(&qgroup_update->list);
2545 if (!ret)
2546 ret = btrfs_qgroup_account_ref(
2547 trans, fs_info, qgroup_update->node,
2548 qgroup_update->extent_op);
2549 kfree(qgroup_update);
2550 }
2551
2552 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2553
2554 return ret;
2555 }
2556
2557 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2558 int count)
2559 {
2560 int val = atomic_read(&delayed_refs->ref_seq);
2561
2562 if (val < seq || val >= seq + count)
2563 return 1;
2564 return 0;
2565 }
2566
2567 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2568 {
2569 u64 num_bytes;
2570
2571 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2572 sizeof(struct btrfs_extent_inline_ref));
2573 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2574 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2575
2576 /*
2577 * We don't ever fill up leaves all the way so multiply by 2 just to be
2578 * closer to what we're really going to want to ouse.
2579 */
2580 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2581 }
2582
2583 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2584 struct btrfs_root *root)
2585 {
2586 struct btrfs_block_rsv *global_rsv;
2587 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2588 u64 num_bytes;
2589 int ret = 0;
2590
2591 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2592 num_heads = heads_to_leaves(root, num_heads);
2593 if (num_heads > 1)
2594 num_bytes += (num_heads - 1) * root->leafsize;
2595 num_bytes <<= 1;
2596 global_rsv = &root->fs_info->global_block_rsv;
2597
2598 /*
2599 * If we can't allocate any more chunks lets make sure we have _lots_ of
2600 * wiggle room since running delayed refs can create more delayed refs.
2601 */
2602 if (global_rsv->space_info->full)
2603 num_bytes <<= 1;
2604
2605 spin_lock(&global_rsv->lock);
2606 if (global_rsv->reserved <= num_bytes)
2607 ret = 1;
2608 spin_unlock(&global_rsv->lock);
2609 return ret;
2610 }
2611
2612 /*
2613 * this starts processing the delayed reference count updates and
2614 * extent insertions we have queued up so far. count can be
2615 * 0, which means to process everything in the tree at the start
2616 * of the run (but not newly added entries), or it can be some target
2617 * number you'd like to process.
2618 *
2619 * Returns 0 on success or if called with an aborted transaction
2620 * Returns <0 on error and aborts the transaction
2621 */
2622 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2623 struct btrfs_root *root, unsigned long count)
2624 {
2625 struct rb_node *node;
2626 struct btrfs_delayed_ref_root *delayed_refs;
2627 struct btrfs_delayed_ref_node *ref;
2628 struct list_head cluster;
2629 int ret;
2630 u64 delayed_start;
2631 int run_all = count == (unsigned long)-1;
2632 int run_most = 0;
2633 int loops;
2634
2635 /* We'll clean this up in btrfs_cleanup_transaction */
2636 if (trans->aborted)
2637 return 0;
2638
2639 if (root == root->fs_info->extent_root)
2640 root = root->fs_info->tree_root;
2641
2642 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2643
2644 delayed_refs = &trans->transaction->delayed_refs;
2645 INIT_LIST_HEAD(&cluster);
2646 if (count == 0) {
2647 count = delayed_refs->num_entries * 2;
2648 run_most = 1;
2649 }
2650
2651 if (!run_all && !run_most) {
2652 int old;
2653 int seq = atomic_read(&delayed_refs->ref_seq);
2654
2655 progress:
2656 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2657 if (old) {
2658 DEFINE_WAIT(__wait);
2659 if (delayed_refs->flushing ||
2660 !btrfs_should_throttle_delayed_refs(trans, root))
2661 return 0;
2662
2663 prepare_to_wait(&delayed_refs->wait, &__wait,
2664 TASK_UNINTERRUPTIBLE);
2665
2666 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2667 if (old) {
2668 schedule();
2669 finish_wait(&delayed_refs->wait, &__wait);
2670
2671 if (!refs_newer(delayed_refs, seq, 256))
2672 goto progress;
2673 else
2674 return 0;
2675 } else {
2676 finish_wait(&delayed_refs->wait, &__wait);
2677 goto again;
2678 }
2679 }
2680
2681 } else {
2682 atomic_inc(&delayed_refs->procs_running_refs);
2683 }
2684
2685 again:
2686 loops = 0;
2687 spin_lock(&delayed_refs->lock);
2688
2689 #ifdef SCRAMBLE_DELAYED_REFS
2690 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2691 #endif
2692
2693 while (1) {
2694 if (!(run_all || run_most) &&
2695 !btrfs_should_throttle_delayed_refs(trans, root))
2696 break;
2697
2698 /*
2699 * go find something we can process in the rbtree. We start at
2700 * the beginning of the tree, and then build a cluster
2701 * of refs to process starting at the first one we are able to
2702 * lock
2703 */
2704 delayed_start = delayed_refs->run_delayed_start;
2705 ret = btrfs_find_ref_cluster(trans, &cluster,
2706 delayed_refs->run_delayed_start);
2707 if (ret)
2708 break;
2709
2710 ret = run_clustered_refs(trans, root, &cluster);
2711 if (ret < 0) {
2712 btrfs_release_ref_cluster(&cluster);
2713 spin_unlock(&delayed_refs->lock);
2714 btrfs_abort_transaction(trans, root, ret);
2715 atomic_dec(&delayed_refs->procs_running_refs);
2716 wake_up(&delayed_refs->wait);
2717 return ret;
2718 }
2719
2720 atomic_add(ret, &delayed_refs->ref_seq);
2721
2722 count -= min_t(unsigned long, ret, count);
2723
2724 if (count == 0)
2725 break;
2726
2727 if (delayed_start >= delayed_refs->run_delayed_start) {
2728 if (loops == 0) {
2729 /*
2730 * btrfs_find_ref_cluster looped. let's do one
2731 * more cycle. if we don't run any delayed ref
2732 * during that cycle (because we can't because
2733 * all of them are blocked), bail out.
2734 */
2735 loops = 1;
2736 } else {
2737 /*
2738 * no runnable refs left, stop trying
2739 */
2740 BUG_ON(run_all);
2741 break;
2742 }
2743 }
2744 if (ret) {
2745 /* refs were run, let's reset staleness detection */
2746 loops = 0;
2747 }
2748 }
2749
2750 if (run_all) {
2751 if (!list_empty(&trans->new_bgs)) {
2752 spin_unlock(&delayed_refs->lock);
2753 btrfs_create_pending_block_groups(trans, root);
2754 spin_lock(&delayed_refs->lock);
2755 }
2756
2757 node = rb_first(&delayed_refs->root);
2758 if (!node)
2759 goto out;
2760 count = (unsigned long)-1;
2761
2762 while (node) {
2763 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2764 rb_node);
2765 if (btrfs_delayed_ref_is_head(ref)) {
2766 struct btrfs_delayed_ref_head *head;
2767
2768 head = btrfs_delayed_node_to_head(ref);
2769 atomic_inc(&ref->refs);
2770
2771 spin_unlock(&delayed_refs->lock);
2772 /*
2773 * Mutex was contended, block until it's
2774 * released and try again
2775 */
2776 mutex_lock(&head->mutex);
2777 mutex_unlock(&head->mutex);
2778
2779 btrfs_put_delayed_ref(ref);
2780 cond_resched();
2781 goto again;
2782 }
2783 node = rb_next(node);
2784 }
2785 spin_unlock(&delayed_refs->lock);
2786 schedule_timeout(1);
2787 goto again;
2788 }
2789 out:
2790 atomic_dec(&delayed_refs->procs_running_refs);
2791 smp_mb();
2792 if (waitqueue_active(&delayed_refs->wait))
2793 wake_up(&delayed_refs->wait);
2794
2795 spin_unlock(&delayed_refs->lock);
2796 assert_qgroups_uptodate(trans);
2797 return 0;
2798 }
2799
2800 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2801 struct btrfs_root *root,
2802 u64 bytenr, u64 num_bytes, u64 flags,
2803 int level, int is_data)
2804 {
2805 struct btrfs_delayed_extent_op *extent_op;
2806 int ret;
2807
2808 extent_op = btrfs_alloc_delayed_extent_op();
2809 if (!extent_op)
2810 return -ENOMEM;
2811
2812 extent_op->flags_to_set = flags;
2813 extent_op->update_flags = 1;
2814 extent_op->update_key = 0;
2815 extent_op->is_data = is_data ? 1 : 0;
2816 extent_op->level = level;
2817
2818 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2819 num_bytes, extent_op);
2820 if (ret)
2821 btrfs_free_delayed_extent_op(extent_op);
2822 return ret;
2823 }
2824
2825 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2826 struct btrfs_root *root,
2827 struct btrfs_path *path,
2828 u64 objectid, u64 offset, u64 bytenr)
2829 {
2830 struct btrfs_delayed_ref_head *head;
2831 struct btrfs_delayed_ref_node *ref;
2832 struct btrfs_delayed_data_ref *data_ref;
2833 struct btrfs_delayed_ref_root *delayed_refs;
2834 struct rb_node *node;
2835 int ret = 0;
2836
2837 ret = -ENOENT;
2838 delayed_refs = &trans->transaction->delayed_refs;
2839 spin_lock(&delayed_refs->lock);
2840 head = btrfs_find_delayed_ref_head(trans, bytenr);
2841 if (!head)
2842 goto out;
2843
2844 if (!mutex_trylock(&head->mutex)) {
2845 atomic_inc(&head->node.refs);
2846 spin_unlock(&delayed_refs->lock);
2847
2848 btrfs_release_path(path);
2849
2850 /*
2851 * Mutex was contended, block until it's released and let
2852 * caller try again
2853 */
2854 mutex_lock(&head->mutex);
2855 mutex_unlock(&head->mutex);
2856 btrfs_put_delayed_ref(&head->node);
2857 return -EAGAIN;
2858 }
2859
2860 node = rb_prev(&head->node.rb_node);
2861 if (!node)
2862 goto out_unlock;
2863
2864 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2865
2866 if (ref->bytenr != bytenr)
2867 goto out_unlock;
2868
2869 ret = 1;
2870 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2871 goto out_unlock;
2872
2873 data_ref = btrfs_delayed_node_to_data_ref(ref);
2874
2875 node = rb_prev(node);
2876 if (node) {
2877 int seq = ref->seq;
2878
2879 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2880 if (ref->bytenr == bytenr && ref->seq == seq)
2881 goto out_unlock;
2882 }
2883
2884 if (data_ref->root != root->root_key.objectid ||
2885 data_ref->objectid != objectid || data_ref->offset != offset)
2886 goto out_unlock;
2887
2888 ret = 0;
2889 out_unlock:
2890 mutex_unlock(&head->mutex);
2891 out:
2892 spin_unlock(&delayed_refs->lock);
2893 return ret;
2894 }
2895
2896 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2897 struct btrfs_root *root,
2898 struct btrfs_path *path,
2899 u64 objectid, u64 offset, u64 bytenr)
2900 {
2901 struct btrfs_root *extent_root = root->fs_info->extent_root;
2902 struct extent_buffer *leaf;
2903 struct btrfs_extent_data_ref *ref;
2904 struct btrfs_extent_inline_ref *iref;
2905 struct btrfs_extent_item *ei;
2906 struct btrfs_key key;
2907 u32 item_size;
2908 int ret;
2909
2910 key.objectid = bytenr;
2911 key.offset = (u64)-1;
2912 key.type = BTRFS_EXTENT_ITEM_KEY;
2913
2914 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2915 if (ret < 0)
2916 goto out;
2917 BUG_ON(ret == 0); /* Corruption */
2918
2919 ret = -ENOENT;
2920 if (path->slots[0] == 0)
2921 goto out;
2922
2923 path->slots[0]--;
2924 leaf = path->nodes[0];
2925 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2926
2927 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2928 goto out;
2929
2930 ret = 1;
2931 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2932 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2933 if (item_size < sizeof(*ei)) {
2934 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2935 goto out;
2936 }
2937 #endif
2938 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2939
2940 if (item_size != sizeof(*ei) +
2941 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2942 goto out;
2943
2944 if (btrfs_extent_generation(leaf, ei) <=
2945 btrfs_root_last_snapshot(&root->root_item))
2946 goto out;
2947
2948 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2949 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2950 BTRFS_EXTENT_DATA_REF_KEY)
2951 goto out;
2952
2953 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2954 if (btrfs_extent_refs(leaf, ei) !=
2955 btrfs_extent_data_ref_count(leaf, ref) ||
2956 btrfs_extent_data_ref_root(leaf, ref) !=
2957 root->root_key.objectid ||
2958 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2959 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2960 goto out;
2961
2962 ret = 0;
2963 out:
2964 return ret;
2965 }
2966
2967 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2968 struct btrfs_root *root,
2969 u64 objectid, u64 offset, u64 bytenr)
2970 {
2971 struct btrfs_path *path;
2972 int ret;
2973 int ret2;
2974
2975 path = btrfs_alloc_path();
2976 if (!path)
2977 return -ENOENT;
2978
2979 do {
2980 ret = check_committed_ref(trans, root, path, objectid,
2981 offset, bytenr);
2982 if (ret && ret != -ENOENT)
2983 goto out;
2984
2985 ret2 = check_delayed_ref(trans, root, path, objectid,
2986 offset, bytenr);
2987 } while (ret2 == -EAGAIN);
2988
2989 if (ret2 && ret2 != -ENOENT) {
2990 ret = ret2;
2991 goto out;
2992 }
2993
2994 if (ret != -ENOENT || ret2 != -ENOENT)
2995 ret = 0;
2996 out:
2997 btrfs_free_path(path);
2998 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2999 WARN_ON(ret > 0);
3000 return ret;
3001 }
3002
3003 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3004 struct btrfs_root *root,
3005 struct extent_buffer *buf,
3006 int full_backref, int inc, int for_cow)
3007 {
3008 u64 bytenr;
3009 u64 num_bytes;
3010 u64 parent;
3011 u64 ref_root;
3012 u32 nritems;
3013 struct btrfs_key key;
3014 struct btrfs_file_extent_item *fi;
3015 int i;
3016 int level;
3017 int ret = 0;
3018 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3019 u64, u64, u64, u64, u64, u64, int);
3020
3021 ref_root = btrfs_header_owner(buf);
3022 nritems = btrfs_header_nritems(buf);
3023 level = btrfs_header_level(buf);
3024
3025 if (!root->ref_cows && level == 0)
3026 return 0;
3027
3028 if (inc)
3029 process_func = btrfs_inc_extent_ref;
3030 else
3031 process_func = btrfs_free_extent;
3032
3033 if (full_backref)
3034 parent = buf->start;
3035 else
3036 parent = 0;
3037
3038 for (i = 0; i < nritems; i++) {
3039 if (level == 0) {
3040 btrfs_item_key_to_cpu(buf, &key, i);
3041 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3042 continue;
3043 fi = btrfs_item_ptr(buf, i,
3044 struct btrfs_file_extent_item);
3045 if (btrfs_file_extent_type(buf, fi) ==
3046 BTRFS_FILE_EXTENT_INLINE)
3047 continue;
3048 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3049 if (bytenr == 0)
3050 continue;
3051
3052 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3053 key.offset -= btrfs_file_extent_offset(buf, fi);
3054 ret = process_func(trans, root, bytenr, num_bytes,
3055 parent, ref_root, key.objectid,
3056 key.offset, for_cow);
3057 if (ret)
3058 goto fail;
3059 } else {
3060 bytenr = btrfs_node_blockptr(buf, i);
3061 num_bytes = btrfs_level_size(root, level - 1);
3062 ret = process_func(trans, root, bytenr, num_bytes,
3063 parent, ref_root, level - 1, 0,
3064 for_cow);
3065 if (ret)
3066 goto fail;
3067 }
3068 }
3069 return 0;
3070 fail:
3071 return ret;
3072 }
3073
3074 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3075 struct extent_buffer *buf, int full_backref, int for_cow)
3076 {
3077 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3078 }
3079
3080 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3081 struct extent_buffer *buf, int full_backref, int for_cow)
3082 {
3083 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3084 }
3085
3086 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3087 struct btrfs_root *root,
3088 struct btrfs_path *path,
3089 struct btrfs_block_group_cache *cache)
3090 {
3091 int ret;
3092 struct btrfs_root *extent_root = root->fs_info->extent_root;
3093 unsigned long bi;
3094 struct extent_buffer *leaf;
3095
3096 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3097 if (ret < 0)
3098 goto fail;
3099 BUG_ON(ret); /* Corruption */
3100
3101 leaf = path->nodes[0];
3102 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3103 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3104 btrfs_mark_buffer_dirty(leaf);
3105 btrfs_release_path(path);
3106 fail:
3107 if (ret) {
3108 btrfs_abort_transaction(trans, root, ret);
3109 return ret;
3110 }
3111 return 0;
3112
3113 }
3114
3115 static struct btrfs_block_group_cache *
3116 next_block_group(struct btrfs_root *root,
3117 struct btrfs_block_group_cache *cache)
3118 {
3119 struct rb_node *node;
3120 spin_lock(&root->fs_info->block_group_cache_lock);
3121 node = rb_next(&cache->cache_node);
3122 btrfs_put_block_group(cache);
3123 if (node) {
3124 cache = rb_entry(node, struct btrfs_block_group_cache,
3125 cache_node);
3126 btrfs_get_block_group(cache);
3127 } else
3128 cache = NULL;
3129 spin_unlock(&root->fs_info->block_group_cache_lock);
3130 return cache;
3131 }
3132
3133 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3134 struct btrfs_trans_handle *trans,
3135 struct btrfs_path *path)
3136 {
3137 struct btrfs_root *root = block_group->fs_info->tree_root;
3138 struct inode *inode = NULL;
3139 u64 alloc_hint = 0;
3140 int dcs = BTRFS_DC_ERROR;
3141 int num_pages = 0;
3142 int retries = 0;
3143 int ret = 0;
3144
3145 /*
3146 * If this block group is smaller than 100 megs don't bother caching the
3147 * block group.
3148 */
3149 if (block_group->key.offset < (100 * 1024 * 1024)) {
3150 spin_lock(&block_group->lock);
3151 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3152 spin_unlock(&block_group->lock);
3153 return 0;
3154 }
3155
3156 again:
3157 inode = lookup_free_space_inode(root, block_group, path);
3158 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3159 ret = PTR_ERR(inode);
3160 btrfs_release_path(path);
3161 goto out;
3162 }
3163
3164 if (IS_ERR(inode)) {
3165 BUG_ON(retries);
3166 retries++;
3167
3168 if (block_group->ro)
3169 goto out_free;
3170
3171 ret = create_free_space_inode(root, trans, block_group, path);
3172 if (ret)
3173 goto out_free;
3174 goto again;
3175 }
3176
3177 /* We've already setup this transaction, go ahead and exit */
3178 if (block_group->cache_generation == trans->transid &&
3179 i_size_read(inode)) {
3180 dcs = BTRFS_DC_SETUP;
3181 goto out_put;
3182 }
3183
3184 /*
3185 * We want to set the generation to 0, that way if anything goes wrong
3186 * from here on out we know not to trust this cache when we load up next
3187 * time.
3188 */
3189 BTRFS_I(inode)->generation = 0;
3190 ret = btrfs_update_inode(trans, root, inode);
3191 WARN_ON(ret);
3192
3193 if (i_size_read(inode) > 0) {
3194 ret = btrfs_check_trunc_cache_free_space(root,
3195 &root->fs_info->global_block_rsv);
3196 if (ret)
3197 goto out_put;
3198
3199 ret = btrfs_truncate_free_space_cache(root, trans, path,
3200 inode);
3201 if (ret)
3202 goto out_put;
3203 }
3204
3205 spin_lock(&block_group->lock);
3206 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3207 !btrfs_test_opt(root, SPACE_CACHE)) {
3208 /*
3209 * don't bother trying to write stuff out _if_
3210 * a) we're not cached,
3211 * b) we're with nospace_cache mount option.
3212 */
3213 dcs = BTRFS_DC_WRITTEN;
3214 spin_unlock(&block_group->lock);
3215 goto out_put;
3216 }
3217 spin_unlock(&block_group->lock);
3218
3219 /*
3220 * Try to preallocate enough space based on how big the block group is.
3221 * Keep in mind this has to include any pinned space which could end up
3222 * taking up quite a bit since it's not folded into the other space
3223 * cache.
3224 */
3225 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3226 if (!num_pages)
3227 num_pages = 1;
3228
3229 num_pages *= 16;
3230 num_pages *= PAGE_CACHE_SIZE;
3231
3232 ret = btrfs_check_data_free_space(inode, num_pages);
3233 if (ret)
3234 goto out_put;
3235
3236 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3237 num_pages, num_pages,
3238 &alloc_hint);
3239 if (!ret)
3240 dcs = BTRFS_DC_SETUP;
3241 btrfs_free_reserved_data_space(inode, num_pages);
3242
3243 out_put:
3244 iput(inode);
3245 out_free:
3246 btrfs_release_path(path);
3247 out:
3248 spin_lock(&block_group->lock);
3249 if (!ret && dcs == BTRFS_DC_SETUP)
3250 block_group->cache_generation = trans->transid;
3251 block_group->disk_cache_state = dcs;
3252 spin_unlock(&block_group->lock);
3253
3254 return ret;
3255 }
3256
3257 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3258 struct btrfs_root *root)
3259 {
3260 struct btrfs_block_group_cache *cache;
3261 int err = 0;
3262 struct btrfs_path *path;
3263 u64 last = 0;
3264
3265 path = btrfs_alloc_path();
3266 if (!path)
3267 return -ENOMEM;
3268
3269 again:
3270 while (1) {
3271 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3272 while (cache) {
3273 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3274 break;
3275 cache = next_block_group(root, cache);
3276 }
3277 if (!cache) {
3278 if (last == 0)
3279 break;
3280 last = 0;
3281 continue;
3282 }
3283 err = cache_save_setup(cache, trans, path);
3284 last = cache->key.objectid + cache->key.offset;
3285 btrfs_put_block_group(cache);
3286 }
3287
3288 while (1) {
3289 if (last == 0) {
3290 err = btrfs_run_delayed_refs(trans, root,
3291 (unsigned long)-1);
3292 if (err) /* File system offline */
3293 goto out;
3294 }
3295
3296 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3297 while (cache) {
3298 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3299 btrfs_put_block_group(cache);
3300 goto again;
3301 }
3302
3303 if (cache->dirty)
3304 break;
3305 cache = next_block_group(root, cache);
3306 }
3307 if (!cache) {
3308 if (last == 0)
3309 break;
3310 last = 0;
3311 continue;
3312 }
3313
3314 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3315 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3316 cache->dirty = 0;
3317 last = cache->key.objectid + cache->key.offset;
3318
3319 err = write_one_cache_group(trans, root, path, cache);
3320 if (err) /* File system offline */
3321 goto out;
3322
3323 btrfs_put_block_group(cache);
3324 }
3325
3326 while (1) {
3327 /*
3328 * I don't think this is needed since we're just marking our
3329 * preallocated extent as written, but just in case it can't
3330 * hurt.
3331 */
3332 if (last == 0) {
3333 err = btrfs_run_delayed_refs(trans, root,
3334 (unsigned long)-1);
3335 if (err) /* File system offline */
3336 goto out;
3337 }
3338
3339 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3340 while (cache) {
3341 /*
3342 * Really this shouldn't happen, but it could if we
3343 * couldn't write the entire preallocated extent and
3344 * splitting the extent resulted in a new block.
3345 */
3346 if (cache->dirty) {
3347 btrfs_put_block_group(cache);
3348 goto again;
3349 }
3350 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3351 break;
3352 cache = next_block_group(root, cache);
3353 }
3354 if (!cache) {
3355 if (last == 0)
3356 break;
3357 last = 0;
3358 continue;
3359 }
3360
3361 err = btrfs_write_out_cache(root, trans, cache, path);
3362
3363 /*
3364 * If we didn't have an error then the cache state is still
3365 * NEED_WRITE, so we can set it to WRITTEN.
3366 */
3367 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3368 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3369 last = cache->key.objectid + cache->key.offset;
3370 btrfs_put_block_group(cache);
3371 }
3372 out:
3373
3374 btrfs_free_path(path);
3375 return err;
3376 }
3377
3378 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3379 {
3380 struct btrfs_block_group_cache *block_group;
3381 int readonly = 0;
3382
3383 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3384 if (!block_group || block_group->ro)
3385 readonly = 1;
3386 if (block_group)
3387 btrfs_put_block_group(block_group);
3388 return readonly;
3389 }
3390
3391 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3392 u64 total_bytes, u64 bytes_used,
3393 struct btrfs_space_info **space_info)
3394 {
3395 struct btrfs_space_info *found;
3396 int i;
3397 int factor;
3398 int ret;
3399
3400 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3401 BTRFS_BLOCK_GROUP_RAID10))
3402 factor = 2;
3403 else
3404 factor = 1;
3405
3406 found = __find_space_info(info, flags);
3407 if (found) {
3408 spin_lock(&found->lock);
3409 found->total_bytes += total_bytes;
3410 found->disk_total += total_bytes * factor;
3411 found->bytes_used += bytes_used;
3412 found->disk_used += bytes_used * factor;
3413 found->full = 0;
3414 spin_unlock(&found->lock);
3415 *space_info = found;
3416 return 0;
3417 }
3418 found = kzalloc(sizeof(*found), GFP_NOFS);
3419 if (!found)
3420 return -ENOMEM;
3421
3422 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3423 if (ret) {
3424 kfree(found);
3425 return ret;
3426 }
3427
3428 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3429 INIT_LIST_HEAD(&found->block_groups[i]);
3430 init_rwsem(&found->groups_sem);
3431 spin_lock_init(&found->lock);
3432 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3433 found->total_bytes = total_bytes;
3434 found->disk_total = total_bytes * factor;
3435 found->bytes_used = bytes_used;
3436 found->disk_used = bytes_used * factor;
3437 found->bytes_pinned = 0;
3438 found->bytes_reserved = 0;
3439 found->bytes_readonly = 0;
3440 found->bytes_may_use = 0;
3441 found->full = 0;
3442 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3443 found->chunk_alloc = 0;
3444 found->flush = 0;
3445 init_waitqueue_head(&found->wait);
3446 *space_info = found;
3447 list_add_rcu(&found->list, &info->space_info);
3448 if (flags & BTRFS_BLOCK_GROUP_DATA)
3449 info->data_sinfo = found;
3450 return 0;
3451 }
3452
3453 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3454 {
3455 u64 extra_flags = chunk_to_extended(flags) &
3456 BTRFS_EXTENDED_PROFILE_MASK;
3457
3458 write_seqlock(&fs_info->profiles_lock);
3459 if (flags & BTRFS_BLOCK_GROUP_DATA)
3460 fs_info->avail_data_alloc_bits |= extra_flags;
3461 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3462 fs_info->avail_metadata_alloc_bits |= extra_flags;
3463 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3464 fs_info->avail_system_alloc_bits |= extra_flags;
3465 write_sequnlock(&fs_info->profiles_lock);
3466 }
3467
3468 /*
3469 * returns target flags in extended format or 0 if restripe for this
3470 * chunk_type is not in progress
3471 *
3472 * should be called with either volume_mutex or balance_lock held
3473 */
3474 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3475 {
3476 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3477 u64 target = 0;
3478
3479 if (!bctl)
3480 return 0;
3481
3482 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3483 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3484 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3485 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3486 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3487 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3488 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3489 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3490 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3491 }
3492
3493 return target;
3494 }
3495
3496 /*
3497 * @flags: available profiles in extended format (see ctree.h)
3498 *
3499 * Returns reduced profile in chunk format. If profile changing is in
3500 * progress (either running or paused) picks the target profile (if it's
3501 * already available), otherwise falls back to plain reducing.
3502 */
3503 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3504 {
3505 /*
3506 * we add in the count of missing devices because we want
3507 * to make sure that any RAID levels on a degraded FS
3508 * continue to be honored.
3509 */
3510 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3511 root->fs_info->fs_devices->missing_devices;
3512 u64 target;
3513 u64 tmp;
3514
3515 /*
3516 * see if restripe for this chunk_type is in progress, if so
3517 * try to reduce to the target profile
3518 */
3519 spin_lock(&root->fs_info->balance_lock);
3520 target = get_restripe_target(root->fs_info, flags);
3521 if (target) {
3522 /* pick target profile only if it's already available */
3523 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3524 spin_unlock(&root->fs_info->balance_lock);
3525 return extended_to_chunk(target);
3526 }
3527 }
3528 spin_unlock(&root->fs_info->balance_lock);
3529
3530 /* First, mask out the RAID levels which aren't possible */
3531 if (num_devices == 1)
3532 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3533 BTRFS_BLOCK_GROUP_RAID5);
3534 if (num_devices < 3)
3535 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3536 if (num_devices < 4)
3537 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3538
3539 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3540 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3541 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3542 flags &= ~tmp;
3543
3544 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3545 tmp = BTRFS_BLOCK_GROUP_RAID6;
3546 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3547 tmp = BTRFS_BLOCK_GROUP_RAID5;
3548 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3549 tmp = BTRFS_BLOCK_GROUP_RAID10;
3550 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3551 tmp = BTRFS_BLOCK_GROUP_RAID1;
3552 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3553 tmp = BTRFS_BLOCK_GROUP_RAID0;
3554
3555 return extended_to_chunk(flags | tmp);
3556 }
3557
3558 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3559 {
3560 unsigned seq;
3561
3562 do {
3563 seq = read_seqbegin(&root->fs_info->profiles_lock);
3564
3565 if (flags & BTRFS_BLOCK_GROUP_DATA)
3566 flags |= root->fs_info->avail_data_alloc_bits;
3567 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3568 flags |= root->fs_info->avail_system_alloc_bits;
3569 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3570 flags |= root->fs_info->avail_metadata_alloc_bits;
3571 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3572
3573 return btrfs_reduce_alloc_profile(root, flags);
3574 }
3575
3576 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3577 {
3578 u64 flags;
3579 u64 ret;
3580
3581 if (data)
3582 flags = BTRFS_BLOCK_GROUP_DATA;
3583 else if (root == root->fs_info->chunk_root)
3584 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3585 else
3586 flags = BTRFS_BLOCK_GROUP_METADATA;
3587
3588 ret = get_alloc_profile(root, flags);
3589 return ret;
3590 }
3591
3592 /*
3593 * This will check the space that the inode allocates from to make sure we have
3594 * enough space for bytes.
3595 */
3596 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3597 {
3598 struct btrfs_space_info *data_sinfo;
3599 struct btrfs_root *root = BTRFS_I(inode)->root;
3600 struct btrfs_fs_info *fs_info = root->fs_info;
3601 u64 used;
3602 int ret = 0, committed = 0, alloc_chunk = 1;
3603
3604 /* make sure bytes are sectorsize aligned */
3605 bytes = ALIGN(bytes, root->sectorsize);
3606
3607 if (root == root->fs_info->tree_root ||
3608 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3609 alloc_chunk = 0;
3610 committed = 1;
3611 }
3612
3613 data_sinfo = fs_info->data_sinfo;
3614 if (!data_sinfo)
3615 goto alloc;
3616
3617 again:
3618 /* make sure we have enough space to handle the data first */
3619 spin_lock(&data_sinfo->lock);
3620 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3621 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3622 data_sinfo->bytes_may_use;
3623
3624 if (used + bytes > data_sinfo->total_bytes) {
3625 struct btrfs_trans_handle *trans;
3626
3627 /*
3628 * if we don't have enough free bytes in this space then we need
3629 * to alloc a new chunk.
3630 */
3631 if (!data_sinfo->full && alloc_chunk) {
3632 u64 alloc_target;
3633
3634 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3635 spin_unlock(&data_sinfo->lock);
3636 alloc:
3637 alloc_target = btrfs_get_alloc_profile(root, 1);
3638 trans = btrfs_join_transaction(root);
3639 if (IS_ERR(trans))
3640 return PTR_ERR(trans);
3641
3642 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3643 alloc_target,
3644 CHUNK_ALLOC_NO_FORCE);
3645 btrfs_end_transaction(trans, root);
3646 if (ret < 0) {
3647 if (ret != -ENOSPC)
3648 return ret;
3649 else
3650 goto commit_trans;
3651 }
3652
3653 if (!data_sinfo)
3654 data_sinfo = fs_info->data_sinfo;
3655
3656 goto again;
3657 }
3658
3659 /*
3660 * If we don't have enough pinned space to deal with this
3661 * allocation don't bother committing the transaction.
3662 */
3663 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3664 bytes) < 0)
3665 committed = 1;
3666 spin_unlock(&data_sinfo->lock);
3667
3668 /* commit the current transaction and try again */
3669 commit_trans:
3670 if (!committed &&
3671 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3672 committed = 1;
3673
3674 trans = btrfs_join_transaction(root);
3675 if (IS_ERR(trans))
3676 return PTR_ERR(trans);
3677 ret = btrfs_commit_transaction(trans, root);
3678 if (ret)
3679 return ret;
3680 goto again;
3681 }
3682
3683 return -ENOSPC;
3684 }
3685 data_sinfo->bytes_may_use += bytes;
3686 trace_btrfs_space_reservation(root->fs_info, "space_info",
3687 data_sinfo->flags, bytes, 1);
3688 spin_unlock(&data_sinfo->lock);
3689
3690 return 0;
3691 }
3692
3693 /*
3694 * Called if we need to clear a data reservation for this inode.
3695 */
3696 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3697 {
3698 struct btrfs_root *root = BTRFS_I(inode)->root;
3699 struct btrfs_space_info *data_sinfo;
3700
3701 /* make sure bytes are sectorsize aligned */
3702 bytes = ALIGN(bytes, root->sectorsize);
3703
3704 data_sinfo = root->fs_info->data_sinfo;
3705 spin_lock(&data_sinfo->lock);
3706 WARN_ON(data_sinfo->bytes_may_use < bytes);
3707 data_sinfo->bytes_may_use -= bytes;
3708 trace_btrfs_space_reservation(root->fs_info, "space_info",
3709 data_sinfo->flags, bytes, 0);
3710 spin_unlock(&data_sinfo->lock);
3711 }
3712
3713 static void force_metadata_allocation(struct btrfs_fs_info *info)
3714 {
3715 struct list_head *head = &info->space_info;
3716 struct btrfs_space_info *found;
3717
3718 rcu_read_lock();
3719 list_for_each_entry_rcu(found, head, list) {
3720 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3721 found->force_alloc = CHUNK_ALLOC_FORCE;
3722 }
3723 rcu_read_unlock();
3724 }
3725
3726 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3727 {
3728 return (global->size << 1);
3729 }
3730
3731 static int should_alloc_chunk(struct btrfs_root *root,
3732 struct btrfs_space_info *sinfo, int force)
3733 {
3734 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3735 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3736 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3737 u64 thresh;
3738
3739 if (force == CHUNK_ALLOC_FORCE)
3740 return 1;
3741
3742 /*
3743 * We need to take into account the global rsv because for all intents
3744 * and purposes it's used space. Don't worry about locking the
3745 * global_rsv, it doesn't change except when the transaction commits.
3746 */
3747 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3748 num_allocated += calc_global_rsv_need_space(global_rsv);
3749
3750 /*
3751 * in limited mode, we want to have some free space up to
3752 * about 1% of the FS size.
3753 */
3754 if (force == CHUNK_ALLOC_LIMITED) {
3755 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3756 thresh = max_t(u64, 64 * 1024 * 1024,
3757 div_factor_fine(thresh, 1));
3758
3759 if (num_bytes - num_allocated < thresh)
3760 return 1;
3761 }
3762
3763 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3764 return 0;
3765 return 1;
3766 }
3767
3768 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3769 {
3770 u64 num_dev;
3771
3772 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3773 BTRFS_BLOCK_GROUP_RAID0 |
3774 BTRFS_BLOCK_GROUP_RAID5 |
3775 BTRFS_BLOCK_GROUP_RAID6))
3776 num_dev = root->fs_info->fs_devices->rw_devices;
3777 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3778 num_dev = 2;
3779 else
3780 num_dev = 1; /* DUP or single */
3781
3782 /* metadata for updaing devices and chunk tree */
3783 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3784 }
3785
3786 static void check_system_chunk(struct btrfs_trans_handle *trans,
3787 struct btrfs_root *root, u64 type)
3788 {
3789 struct btrfs_space_info *info;
3790 u64 left;
3791 u64 thresh;
3792
3793 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3794 spin_lock(&info->lock);
3795 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3796 info->bytes_reserved - info->bytes_readonly;
3797 spin_unlock(&info->lock);
3798
3799 thresh = get_system_chunk_thresh(root, type);
3800 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3801 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3802 left, thresh, type);
3803 dump_space_info(info, 0, 0);
3804 }
3805
3806 if (left < thresh) {
3807 u64 flags;
3808
3809 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3810 btrfs_alloc_chunk(trans, root, flags);
3811 }
3812 }
3813
3814 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3815 struct btrfs_root *extent_root, u64 flags, int force)
3816 {
3817 struct btrfs_space_info *space_info;
3818 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3819 int wait_for_alloc = 0;
3820 int ret = 0;
3821
3822 /* Don't re-enter if we're already allocating a chunk */
3823 if (trans->allocating_chunk)
3824 return -ENOSPC;
3825
3826 space_info = __find_space_info(extent_root->fs_info, flags);
3827 if (!space_info) {
3828 ret = update_space_info(extent_root->fs_info, flags,
3829 0, 0, &space_info);
3830 BUG_ON(ret); /* -ENOMEM */
3831 }
3832 BUG_ON(!space_info); /* Logic error */
3833
3834 again:
3835 spin_lock(&space_info->lock);
3836 if (force < space_info->force_alloc)
3837 force = space_info->force_alloc;
3838 if (space_info->full) {
3839 if (should_alloc_chunk(extent_root, space_info, force))
3840 ret = -ENOSPC;
3841 else
3842 ret = 0;
3843 spin_unlock(&space_info->lock);
3844 return ret;
3845 }
3846
3847 if (!should_alloc_chunk(extent_root, space_info, force)) {
3848 spin_unlock(&space_info->lock);
3849 return 0;
3850 } else if (space_info->chunk_alloc) {
3851 wait_for_alloc = 1;
3852 } else {
3853 space_info->chunk_alloc = 1;
3854 }
3855
3856 spin_unlock(&space_info->lock);
3857
3858 mutex_lock(&fs_info->chunk_mutex);
3859
3860 /*
3861 * The chunk_mutex is held throughout the entirety of a chunk
3862 * allocation, so once we've acquired the chunk_mutex we know that the
3863 * other guy is done and we need to recheck and see if we should
3864 * allocate.
3865 */
3866 if (wait_for_alloc) {
3867 mutex_unlock(&fs_info->chunk_mutex);
3868 wait_for_alloc = 0;
3869 goto again;
3870 }
3871
3872 trans->allocating_chunk = true;
3873
3874 /*
3875 * If we have mixed data/metadata chunks we want to make sure we keep
3876 * allocating mixed chunks instead of individual chunks.
3877 */
3878 if (btrfs_mixed_space_info(space_info))
3879 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3880
3881 /*
3882 * if we're doing a data chunk, go ahead and make sure that
3883 * we keep a reasonable number of metadata chunks allocated in the
3884 * FS as well.
3885 */
3886 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3887 fs_info->data_chunk_allocations++;
3888 if (!(fs_info->data_chunk_allocations %
3889 fs_info->metadata_ratio))
3890 force_metadata_allocation(fs_info);
3891 }
3892
3893 /*
3894 * Check if we have enough space in SYSTEM chunk because we may need
3895 * to update devices.
3896 */
3897 check_system_chunk(trans, extent_root, flags);
3898
3899 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3900 trans->allocating_chunk = false;
3901
3902 spin_lock(&space_info->lock);
3903 if (ret < 0 && ret != -ENOSPC)
3904 goto out;
3905 if (ret)
3906 space_info->full = 1;
3907 else
3908 ret = 1;
3909
3910 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3911 out:
3912 space_info->chunk_alloc = 0;
3913 spin_unlock(&space_info->lock);
3914 mutex_unlock(&fs_info->chunk_mutex);
3915 return ret;
3916 }
3917
3918 static int can_overcommit(struct btrfs_root *root,
3919 struct btrfs_space_info *space_info, u64 bytes,
3920 enum btrfs_reserve_flush_enum flush)
3921 {
3922 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3923 u64 profile = btrfs_get_alloc_profile(root, 0);
3924 u64 space_size;
3925 u64 avail;
3926 u64 used;
3927 u64 to_add;
3928
3929 used = space_info->bytes_used + space_info->bytes_reserved +
3930 space_info->bytes_pinned + space_info->bytes_readonly;
3931
3932 /*
3933 * We only want to allow over committing if we have lots of actual space
3934 * free, but if we don't have enough space to handle the global reserve
3935 * space then we could end up having a real enospc problem when trying
3936 * to allocate a chunk or some other such important allocation.
3937 */
3938 spin_lock(&global_rsv->lock);
3939 space_size = calc_global_rsv_need_space(global_rsv);
3940 spin_unlock(&global_rsv->lock);
3941 if (used + space_size >= space_info->total_bytes)
3942 return 0;
3943
3944 used += space_info->bytes_may_use;
3945
3946 spin_lock(&root->fs_info->free_chunk_lock);
3947 avail = root->fs_info->free_chunk_space;
3948 spin_unlock(&root->fs_info->free_chunk_lock);
3949
3950 /*
3951 * If we have dup, raid1 or raid10 then only half of the free
3952 * space is actually useable. For raid56, the space info used
3953 * doesn't include the parity drive, so we don't have to
3954 * change the math
3955 */
3956 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3957 BTRFS_BLOCK_GROUP_RAID1 |
3958 BTRFS_BLOCK_GROUP_RAID10))
3959 avail >>= 1;
3960
3961 to_add = space_info->total_bytes;
3962
3963 /*
3964 * If we aren't flushing all things, let us overcommit up to
3965 * 1/2th of the space. If we can flush, don't let us overcommit
3966 * too much, let it overcommit up to 1/8 of the space.
3967 */
3968 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3969 to_add >>= 3;
3970 else
3971 to_add >>= 1;
3972
3973 /*
3974 * Limit the overcommit to the amount of free space we could possibly
3975 * allocate for chunks.
3976 */
3977 to_add = min(avail, to_add);
3978
3979 if (used + bytes < space_info->total_bytes + to_add)
3980 return 1;
3981 return 0;
3982 }
3983
3984 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3985 unsigned long nr_pages)
3986 {
3987 struct super_block *sb = root->fs_info->sb;
3988
3989 if (down_read_trylock(&sb->s_umount)) {
3990 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3991 up_read(&sb->s_umount);
3992 } else {
3993 /*
3994 * We needn't worry the filesystem going from r/w to r/o though
3995 * we don't acquire ->s_umount mutex, because the filesystem
3996 * should guarantee the delalloc inodes list be empty after
3997 * the filesystem is readonly(all dirty pages are written to
3998 * the disk).
3999 */
4000 btrfs_start_all_delalloc_inodes(root->fs_info, 0);
4001 if (!current->journal_info)
4002 btrfs_wait_all_ordered_extents(root->fs_info, 0);
4003 }
4004 }
4005
4006 /*
4007 * shrink metadata reservation for delalloc
4008 */
4009 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4010 bool wait_ordered)
4011 {
4012 struct btrfs_block_rsv *block_rsv;
4013 struct btrfs_space_info *space_info;
4014 struct btrfs_trans_handle *trans;
4015 u64 delalloc_bytes;
4016 u64 max_reclaim;
4017 long time_left;
4018 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
4019 int loops = 0;
4020 enum btrfs_reserve_flush_enum flush;
4021
4022 trans = (struct btrfs_trans_handle *)current->journal_info;
4023 block_rsv = &root->fs_info->delalloc_block_rsv;
4024 space_info = block_rsv->space_info;
4025
4026 smp_mb();
4027 delalloc_bytes = percpu_counter_sum_positive(
4028 &root->fs_info->delalloc_bytes);
4029 if (delalloc_bytes == 0) {
4030 if (trans)
4031 return;
4032 btrfs_wait_all_ordered_extents(root->fs_info, 0);
4033 return;
4034 }
4035
4036 while (delalloc_bytes && loops < 3) {
4037 max_reclaim = min(delalloc_bytes, to_reclaim);
4038 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4039 btrfs_writeback_inodes_sb_nr(root, nr_pages);
4040 /*
4041 * We need to wait for the async pages to actually start before
4042 * we do anything.
4043 */
4044 wait_event(root->fs_info->async_submit_wait,
4045 !atomic_read(&root->fs_info->async_delalloc_pages));
4046
4047 if (!trans)
4048 flush = BTRFS_RESERVE_FLUSH_ALL;
4049 else
4050 flush = BTRFS_RESERVE_NO_FLUSH;
4051 spin_lock(&space_info->lock);
4052 if (can_overcommit(root, space_info, orig, flush)) {
4053 spin_unlock(&space_info->lock);
4054 break;
4055 }
4056 spin_unlock(&space_info->lock);
4057
4058 loops++;
4059 if (wait_ordered && !trans) {
4060 btrfs_wait_all_ordered_extents(root->fs_info, 0);
4061 } else {
4062 time_left = schedule_timeout_killable(1);
4063 if (time_left)
4064 break;
4065 }
4066 smp_mb();
4067 delalloc_bytes = percpu_counter_sum_positive(
4068 &root->fs_info->delalloc_bytes);
4069 }
4070 }
4071
4072 /**
4073 * maybe_commit_transaction - possibly commit the transaction if its ok to
4074 * @root - the root we're allocating for
4075 * @bytes - the number of bytes we want to reserve
4076 * @force - force the commit
4077 *
4078 * This will check to make sure that committing the transaction will actually
4079 * get us somewhere and then commit the transaction if it does. Otherwise it
4080 * will return -ENOSPC.
4081 */
4082 static int may_commit_transaction(struct btrfs_root *root,
4083 struct btrfs_space_info *space_info,
4084 u64 bytes, int force)
4085 {
4086 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4087 struct btrfs_trans_handle *trans;
4088
4089 trans = (struct btrfs_trans_handle *)current->journal_info;
4090 if (trans)
4091 return -EAGAIN;
4092
4093 if (force)
4094 goto commit;
4095
4096 /* See if there is enough pinned space to make this reservation */
4097 spin_lock(&space_info->lock);
4098 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4099 bytes) >= 0) {
4100 spin_unlock(&space_info->lock);
4101 goto commit;
4102 }
4103 spin_unlock(&space_info->lock);
4104
4105 /*
4106 * See if there is some space in the delayed insertion reservation for
4107 * this reservation.
4108 */
4109 if (space_info != delayed_rsv->space_info)
4110 return -ENOSPC;
4111
4112 spin_lock(&space_info->lock);
4113 spin_lock(&delayed_rsv->lock);
4114 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4115 bytes - delayed_rsv->size) >= 0) {
4116 spin_unlock(&delayed_rsv->lock);
4117 spin_unlock(&space_info->lock);
4118 return -ENOSPC;
4119 }
4120 spin_unlock(&delayed_rsv->lock);
4121 spin_unlock(&space_info->lock);
4122
4123 commit:
4124 trans = btrfs_join_transaction(root);
4125 if (IS_ERR(trans))
4126 return -ENOSPC;
4127
4128 return btrfs_commit_transaction(trans, root);
4129 }
4130
4131 enum flush_state {
4132 FLUSH_DELAYED_ITEMS_NR = 1,
4133 FLUSH_DELAYED_ITEMS = 2,
4134 FLUSH_DELALLOC = 3,
4135 FLUSH_DELALLOC_WAIT = 4,
4136 ALLOC_CHUNK = 5,
4137 COMMIT_TRANS = 6,
4138 };
4139
4140 static int flush_space(struct btrfs_root *root,
4141 struct btrfs_space_info *space_info, u64 num_bytes,
4142 u64 orig_bytes, int state)
4143 {
4144 struct btrfs_trans_handle *trans;
4145 int nr;
4146 int ret = 0;
4147
4148 switch (state) {
4149 case FLUSH_DELAYED_ITEMS_NR:
4150 case FLUSH_DELAYED_ITEMS:
4151 if (state == FLUSH_DELAYED_ITEMS_NR) {
4152 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4153
4154 nr = (int)div64_u64(num_bytes, bytes);
4155 if (!nr)
4156 nr = 1;
4157 nr *= 2;
4158 } else {
4159 nr = -1;
4160 }
4161 trans = btrfs_join_transaction(root);
4162 if (IS_ERR(trans)) {
4163 ret = PTR_ERR(trans);
4164 break;
4165 }
4166 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4167 btrfs_end_transaction(trans, root);
4168 break;
4169 case FLUSH_DELALLOC:
4170 case FLUSH_DELALLOC_WAIT:
4171 shrink_delalloc(root, num_bytes, orig_bytes,
4172 state == FLUSH_DELALLOC_WAIT);
4173 break;
4174 case ALLOC_CHUNK:
4175 trans = btrfs_join_transaction(root);
4176 if (IS_ERR(trans)) {
4177 ret = PTR_ERR(trans);
4178 break;
4179 }
4180 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4181 btrfs_get_alloc_profile(root, 0),
4182 CHUNK_ALLOC_NO_FORCE);
4183 btrfs_end_transaction(trans, root);
4184 if (ret == -ENOSPC)
4185 ret = 0;
4186 break;
4187 case COMMIT_TRANS:
4188 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4189 break;
4190 default:
4191 ret = -ENOSPC;
4192 break;
4193 }
4194
4195 return ret;
4196 }
4197 /**
4198 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4199 * @root - the root we're allocating for
4200 * @block_rsv - the block_rsv we're allocating for
4201 * @orig_bytes - the number of bytes we want
4202 * @flush - whether or not we can flush to make our reservation
4203 *
4204 * This will reserve orgi_bytes number of bytes from the space info associated
4205 * with the block_rsv. If there is not enough space it will make an attempt to
4206 * flush out space to make room. It will do this by flushing delalloc if
4207 * possible or committing the transaction. If flush is 0 then no attempts to
4208 * regain reservations will be made and this will fail if there is not enough
4209 * space already.
4210 */
4211 static int reserve_metadata_bytes(struct btrfs_root *root,
4212 struct btrfs_block_rsv *block_rsv,
4213 u64 orig_bytes,
4214 enum btrfs_reserve_flush_enum flush)
4215 {
4216 struct btrfs_space_info *space_info = block_rsv->space_info;
4217 u64 used;
4218 u64 num_bytes = orig_bytes;
4219 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4220 int ret = 0;
4221 bool flushing = false;
4222
4223 again:
4224 ret = 0;
4225 spin_lock(&space_info->lock);
4226 /*
4227 * We only want to wait if somebody other than us is flushing and we
4228 * are actually allowed to flush all things.
4229 */
4230 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4231 space_info->flush) {
4232 spin_unlock(&space_info->lock);
4233 /*
4234 * If we have a trans handle we can't wait because the flusher
4235 * may have to commit the transaction, which would mean we would
4236 * deadlock since we are waiting for the flusher to finish, but
4237 * hold the current transaction open.
4238 */
4239 if (current->journal_info)
4240 return -EAGAIN;
4241 ret = wait_event_killable(space_info->wait, !space_info->flush);
4242 /* Must have been killed, return */
4243 if (ret)
4244 return -EINTR;
4245
4246 spin_lock(&space_info->lock);
4247 }
4248
4249 ret = -ENOSPC;
4250 used = space_info->bytes_used + space_info->bytes_reserved +
4251 space_info->bytes_pinned + space_info->bytes_readonly +
4252 space_info->bytes_may_use;
4253
4254 /*
4255 * The idea here is that we've not already over-reserved the block group
4256 * then we can go ahead and save our reservation first and then start
4257 * flushing if we need to. Otherwise if we've already overcommitted
4258 * lets start flushing stuff first and then come back and try to make
4259 * our reservation.
4260 */
4261 if (used <= space_info->total_bytes) {
4262 if (used + orig_bytes <= space_info->total_bytes) {
4263 space_info->bytes_may_use += orig_bytes;
4264 trace_btrfs_space_reservation(root->fs_info,
4265 "space_info", space_info->flags, orig_bytes, 1);
4266 ret = 0;
4267 } else {
4268 /*
4269 * Ok set num_bytes to orig_bytes since we aren't
4270 * overocmmitted, this way we only try and reclaim what
4271 * we need.
4272 */
4273 num_bytes = orig_bytes;
4274 }
4275 } else {
4276 /*
4277 * Ok we're over committed, set num_bytes to the overcommitted
4278 * amount plus the amount of bytes that we need for this
4279 * reservation.
4280 */
4281 num_bytes = used - space_info->total_bytes +
4282 (orig_bytes * 2);
4283 }
4284
4285 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4286 space_info->bytes_may_use += orig_bytes;
4287 trace_btrfs_space_reservation(root->fs_info, "space_info",
4288 space_info->flags, orig_bytes,
4289 1);
4290 ret = 0;
4291 }
4292
4293 /*
4294 * Couldn't make our reservation, save our place so while we're trying
4295 * to reclaim space we can actually use it instead of somebody else
4296 * stealing it from us.
4297 *
4298 * We make the other tasks wait for the flush only when we can flush
4299 * all things.
4300 */
4301 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4302 flushing = true;
4303 space_info->flush = 1;
4304 }
4305
4306 spin_unlock(&space_info->lock);
4307
4308 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4309 goto out;
4310
4311 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4312 flush_state);
4313 flush_state++;
4314
4315 /*
4316 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4317 * would happen. So skip delalloc flush.
4318 */
4319 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4320 (flush_state == FLUSH_DELALLOC ||
4321 flush_state == FLUSH_DELALLOC_WAIT))
4322 flush_state = ALLOC_CHUNK;
4323
4324 if (!ret)
4325 goto again;
4326 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4327 flush_state < COMMIT_TRANS)
4328 goto again;
4329 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4330 flush_state <= COMMIT_TRANS)
4331 goto again;
4332
4333 out:
4334 if (ret == -ENOSPC &&
4335 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4336 struct btrfs_block_rsv *global_rsv =
4337 &root->fs_info->global_block_rsv;
4338
4339 if (block_rsv != global_rsv &&
4340 !block_rsv_use_bytes(global_rsv, orig_bytes))
4341 ret = 0;
4342 }
4343 if (flushing) {
4344 spin_lock(&space_info->lock);
4345 space_info->flush = 0;
4346 wake_up_all(&space_info->wait);
4347 spin_unlock(&space_info->lock);
4348 }
4349 return ret;
4350 }
4351
4352 static struct btrfs_block_rsv *get_block_rsv(
4353 const struct btrfs_trans_handle *trans,
4354 const struct btrfs_root *root)
4355 {
4356 struct btrfs_block_rsv *block_rsv = NULL;
4357
4358 if (root->ref_cows)
4359 block_rsv = trans->block_rsv;
4360
4361 if (root == root->fs_info->csum_root && trans->adding_csums)
4362 block_rsv = trans->block_rsv;
4363
4364 if (root == root->fs_info->uuid_root)
4365 block_rsv = trans->block_rsv;
4366
4367 if (!block_rsv)
4368 block_rsv = root->block_rsv;
4369
4370 if (!block_rsv)
4371 block_rsv = &root->fs_info->empty_block_rsv;
4372
4373 return block_rsv;
4374 }
4375
4376 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4377 u64 num_bytes)
4378 {
4379 int ret = -ENOSPC;
4380 spin_lock(&block_rsv->lock);
4381 if (block_rsv->reserved >= num_bytes) {
4382 block_rsv->reserved -= num_bytes;
4383 if (block_rsv->reserved < block_rsv->size)
4384 block_rsv->full = 0;
4385 ret = 0;
4386 }
4387 spin_unlock(&block_rsv->lock);
4388 return ret;
4389 }
4390
4391 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4392 u64 num_bytes, int update_size)
4393 {
4394 spin_lock(&block_rsv->lock);
4395 block_rsv->reserved += num_bytes;
4396 if (update_size)
4397 block_rsv->size += num_bytes;
4398 else if (block_rsv->reserved >= block_rsv->size)
4399 block_rsv->full = 1;
4400 spin_unlock(&block_rsv->lock);
4401 }
4402
4403 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4404 struct btrfs_block_rsv *dest, u64 num_bytes,
4405 int min_factor)
4406 {
4407 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4408 u64 min_bytes;
4409
4410 if (global_rsv->space_info != dest->space_info)
4411 return -ENOSPC;
4412
4413 spin_lock(&global_rsv->lock);
4414 min_bytes = div_factor(global_rsv->size, min_factor);
4415 if (global_rsv->reserved < min_bytes + num_bytes) {
4416 spin_unlock(&global_rsv->lock);
4417 return -ENOSPC;
4418 }
4419 global_rsv->reserved -= num_bytes;
4420 if (global_rsv->reserved < global_rsv->size)
4421 global_rsv->full = 0;
4422 spin_unlock(&global_rsv->lock);
4423
4424 block_rsv_add_bytes(dest, num_bytes, 1);
4425 return 0;
4426 }
4427
4428 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4429 struct btrfs_block_rsv *block_rsv,
4430 struct btrfs_block_rsv *dest, u64 num_bytes)
4431 {
4432 struct btrfs_space_info *space_info = block_rsv->space_info;
4433
4434 spin_lock(&block_rsv->lock);
4435 if (num_bytes == (u64)-1)
4436 num_bytes = block_rsv->size;
4437 block_rsv->size -= num_bytes;
4438 if (block_rsv->reserved >= block_rsv->size) {
4439 num_bytes = block_rsv->reserved - block_rsv->size;
4440 block_rsv->reserved = block_rsv->size;
4441 block_rsv->full = 1;
4442 } else {
4443 num_bytes = 0;
4444 }
4445 spin_unlock(&block_rsv->lock);
4446
4447 if (num_bytes > 0) {
4448 if (dest) {
4449 spin_lock(&dest->lock);
4450 if (!dest->full) {
4451 u64 bytes_to_add;
4452
4453 bytes_to_add = dest->size - dest->reserved;
4454 bytes_to_add = min(num_bytes, bytes_to_add);
4455 dest->reserved += bytes_to_add;
4456 if (dest->reserved >= dest->size)
4457 dest->full = 1;
4458 num_bytes -= bytes_to_add;
4459 }
4460 spin_unlock(&dest->lock);
4461 }
4462 if (num_bytes) {
4463 spin_lock(&space_info->lock);
4464 space_info->bytes_may_use -= num_bytes;
4465 trace_btrfs_space_reservation(fs_info, "space_info",
4466 space_info->flags, num_bytes, 0);
4467 space_info->reservation_progress++;
4468 spin_unlock(&space_info->lock);
4469 }
4470 }
4471 }
4472
4473 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4474 struct btrfs_block_rsv *dst, u64 num_bytes)
4475 {
4476 int ret;
4477
4478 ret = block_rsv_use_bytes(src, num_bytes);
4479 if (ret)
4480 return ret;
4481
4482 block_rsv_add_bytes(dst, num_bytes, 1);
4483 return 0;
4484 }
4485
4486 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4487 {
4488 memset(rsv, 0, sizeof(*rsv));
4489 spin_lock_init(&rsv->lock);
4490 rsv->type = type;
4491 }
4492
4493 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4494 unsigned short type)
4495 {
4496 struct btrfs_block_rsv *block_rsv;
4497 struct btrfs_fs_info *fs_info = root->fs_info;
4498
4499 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4500 if (!block_rsv)
4501 return NULL;
4502
4503 btrfs_init_block_rsv(block_rsv, type);
4504 block_rsv->space_info = __find_space_info(fs_info,
4505 BTRFS_BLOCK_GROUP_METADATA);
4506 return block_rsv;
4507 }
4508
4509 void btrfs_free_block_rsv(struct btrfs_root *root,
4510 struct btrfs_block_rsv *rsv)
4511 {
4512 if (!rsv)
4513 return;
4514 btrfs_block_rsv_release(root, rsv, (u64)-1);
4515 kfree(rsv);
4516 }
4517
4518 int btrfs_block_rsv_add(struct btrfs_root *root,
4519 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4520 enum btrfs_reserve_flush_enum flush)
4521 {
4522 int ret;
4523
4524 if (num_bytes == 0)
4525 return 0;
4526
4527 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4528 if (!ret) {
4529 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4530 return 0;
4531 }
4532
4533 return ret;
4534 }
4535
4536 int btrfs_block_rsv_check(struct btrfs_root *root,
4537 struct btrfs_block_rsv *block_rsv, int min_factor)
4538 {
4539 u64 num_bytes = 0;
4540 int ret = -ENOSPC;
4541
4542 if (!block_rsv)
4543 return 0;
4544
4545 spin_lock(&block_rsv->lock);
4546 num_bytes = div_factor(block_rsv->size, min_factor);
4547 if (block_rsv->reserved >= num_bytes)
4548 ret = 0;
4549 spin_unlock(&block_rsv->lock);
4550
4551 return ret;
4552 }
4553
4554 int btrfs_block_rsv_refill(struct btrfs_root *root,
4555 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4556 enum btrfs_reserve_flush_enum flush)
4557 {
4558 u64 num_bytes = 0;
4559 int ret = -ENOSPC;
4560
4561 if (!block_rsv)
4562 return 0;
4563
4564 spin_lock(&block_rsv->lock);
4565 num_bytes = min_reserved;
4566 if (block_rsv->reserved >= num_bytes)
4567 ret = 0;
4568 else
4569 num_bytes -= block_rsv->reserved;
4570 spin_unlock(&block_rsv->lock);
4571
4572 if (!ret)
4573 return 0;
4574
4575 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4576 if (!ret) {
4577 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4578 return 0;
4579 }
4580
4581 return ret;
4582 }
4583
4584 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4585 struct btrfs_block_rsv *dst_rsv,
4586 u64 num_bytes)
4587 {
4588 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4589 }
4590
4591 void btrfs_block_rsv_release(struct btrfs_root *root,
4592 struct btrfs_block_rsv *block_rsv,
4593 u64 num_bytes)
4594 {
4595 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4596 if (global_rsv->full || global_rsv == block_rsv ||
4597 block_rsv->space_info != global_rsv->space_info)
4598 global_rsv = NULL;
4599 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4600 num_bytes);
4601 }
4602
4603 /*
4604 * helper to calculate size of global block reservation.
4605 * the desired value is sum of space used by extent tree,
4606 * checksum tree and root tree
4607 */
4608 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4609 {
4610 struct btrfs_space_info *sinfo;
4611 u64 num_bytes;
4612 u64 meta_used;
4613 u64 data_used;
4614 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4615
4616 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4617 spin_lock(&sinfo->lock);
4618 data_used = sinfo->bytes_used;
4619 spin_unlock(&sinfo->lock);
4620
4621 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4622 spin_lock(&sinfo->lock);
4623 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4624 data_used = 0;
4625 meta_used = sinfo->bytes_used;
4626 spin_unlock(&sinfo->lock);
4627
4628 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4629 csum_size * 2;
4630 num_bytes += div64_u64(data_used + meta_used, 50);
4631
4632 if (num_bytes * 3 > meta_used)
4633 num_bytes = div64_u64(meta_used, 3);
4634
4635 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4636 }
4637
4638 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4639 {
4640 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4641 struct btrfs_space_info *sinfo = block_rsv->space_info;
4642 u64 num_bytes;
4643
4644 num_bytes = calc_global_metadata_size(fs_info);
4645
4646 spin_lock(&sinfo->lock);
4647 spin_lock(&block_rsv->lock);
4648
4649 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4650
4651 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4652 sinfo->bytes_reserved + sinfo->bytes_readonly +
4653 sinfo->bytes_may_use;
4654
4655 if (sinfo->total_bytes > num_bytes) {
4656 num_bytes = sinfo->total_bytes - num_bytes;
4657 block_rsv->reserved += num_bytes;
4658 sinfo->bytes_may_use += num_bytes;
4659 trace_btrfs_space_reservation(fs_info, "space_info",
4660 sinfo->flags, num_bytes, 1);
4661 }
4662
4663 if (block_rsv->reserved >= block_rsv->size) {
4664 num_bytes = block_rsv->reserved - block_rsv->size;
4665 sinfo->bytes_may_use -= num_bytes;
4666 trace_btrfs_space_reservation(fs_info, "space_info",
4667 sinfo->flags, num_bytes, 0);
4668 sinfo->reservation_progress++;
4669 block_rsv->reserved = block_rsv->size;
4670 block_rsv->full = 1;
4671 }
4672
4673 spin_unlock(&block_rsv->lock);
4674 spin_unlock(&sinfo->lock);
4675 }
4676
4677 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4678 {
4679 struct btrfs_space_info *space_info;
4680
4681 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4682 fs_info->chunk_block_rsv.space_info = space_info;
4683
4684 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4685 fs_info->global_block_rsv.space_info = space_info;
4686 fs_info->delalloc_block_rsv.space_info = space_info;
4687 fs_info->trans_block_rsv.space_info = space_info;
4688 fs_info->empty_block_rsv.space_info = space_info;
4689 fs_info->delayed_block_rsv.space_info = space_info;
4690
4691 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4692 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4693 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4694 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4695 if (fs_info->quota_root)
4696 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4697 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4698
4699 update_global_block_rsv(fs_info);
4700 }
4701
4702 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4703 {
4704 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4705 (u64)-1);
4706 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4707 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4708 WARN_ON(fs_info->trans_block_rsv.size > 0);
4709 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4710 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4711 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4712 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4713 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4714 }
4715
4716 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4717 struct btrfs_root *root)
4718 {
4719 if (!trans->block_rsv)
4720 return;
4721
4722 if (!trans->bytes_reserved)
4723 return;
4724
4725 trace_btrfs_space_reservation(root->fs_info, "transaction",
4726 trans->transid, trans->bytes_reserved, 0);
4727 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4728 trans->bytes_reserved = 0;
4729 }
4730
4731 /* Can only return 0 or -ENOSPC */
4732 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4733 struct inode *inode)
4734 {
4735 struct btrfs_root *root = BTRFS_I(inode)->root;
4736 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4737 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4738
4739 /*
4740 * We need to hold space in order to delete our orphan item once we've
4741 * added it, so this takes the reservation so we can release it later
4742 * when we are truly done with the orphan item.
4743 */
4744 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4745 trace_btrfs_space_reservation(root->fs_info, "orphan",
4746 btrfs_ino(inode), num_bytes, 1);
4747 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4748 }
4749
4750 void btrfs_orphan_release_metadata(struct inode *inode)
4751 {
4752 struct btrfs_root *root = BTRFS_I(inode)->root;
4753 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4754 trace_btrfs_space_reservation(root->fs_info, "orphan",
4755 btrfs_ino(inode), num_bytes, 0);
4756 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4757 }
4758
4759 /*
4760 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4761 * root: the root of the parent directory
4762 * rsv: block reservation
4763 * items: the number of items that we need do reservation
4764 * qgroup_reserved: used to return the reserved size in qgroup
4765 *
4766 * This function is used to reserve the space for snapshot/subvolume
4767 * creation and deletion. Those operations are different with the
4768 * common file/directory operations, they change two fs/file trees
4769 * and root tree, the number of items that the qgroup reserves is
4770 * different with the free space reservation. So we can not use
4771 * the space reseravtion mechanism in start_transaction().
4772 */
4773 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4774 struct btrfs_block_rsv *rsv,
4775 int items,
4776 u64 *qgroup_reserved,
4777 bool use_global_rsv)
4778 {
4779 u64 num_bytes;
4780 int ret;
4781 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4782
4783 if (root->fs_info->quota_enabled) {
4784 /* One for parent inode, two for dir entries */
4785 num_bytes = 3 * root->leafsize;
4786 ret = btrfs_qgroup_reserve(root, num_bytes);
4787 if (ret)
4788 return ret;
4789 } else {
4790 num_bytes = 0;
4791 }
4792
4793 *qgroup_reserved = num_bytes;
4794
4795 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4796 rsv->space_info = __find_space_info(root->fs_info,
4797 BTRFS_BLOCK_GROUP_METADATA);
4798 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4799 BTRFS_RESERVE_FLUSH_ALL);
4800
4801 if (ret == -ENOSPC && use_global_rsv)
4802 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4803
4804 if (ret) {
4805 if (*qgroup_reserved)
4806 btrfs_qgroup_free(root, *qgroup_reserved);
4807 }
4808
4809 return ret;
4810 }
4811
4812 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4813 struct btrfs_block_rsv *rsv,
4814 u64 qgroup_reserved)
4815 {
4816 btrfs_block_rsv_release(root, rsv, (u64)-1);
4817 if (qgroup_reserved)
4818 btrfs_qgroup_free(root, qgroup_reserved);
4819 }
4820
4821 /**
4822 * drop_outstanding_extent - drop an outstanding extent
4823 * @inode: the inode we're dropping the extent for
4824 *
4825 * This is called when we are freeing up an outstanding extent, either called
4826 * after an error or after an extent is written. This will return the number of
4827 * reserved extents that need to be freed. This must be called with
4828 * BTRFS_I(inode)->lock held.
4829 */
4830 static unsigned drop_outstanding_extent(struct inode *inode)
4831 {
4832 unsigned drop_inode_space = 0;
4833 unsigned dropped_extents = 0;
4834
4835 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4836 BTRFS_I(inode)->outstanding_extents--;
4837
4838 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4839 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4840 &BTRFS_I(inode)->runtime_flags))
4841 drop_inode_space = 1;
4842
4843 /*
4844 * If we have more or the same amount of outsanding extents than we have
4845 * reserved then we need to leave the reserved extents count alone.
4846 */
4847 if (BTRFS_I(inode)->outstanding_extents >=
4848 BTRFS_I(inode)->reserved_extents)
4849 return drop_inode_space;
4850
4851 dropped_extents = BTRFS_I(inode)->reserved_extents -
4852 BTRFS_I(inode)->outstanding_extents;
4853 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4854 return dropped_extents + drop_inode_space;
4855 }
4856
4857 /**
4858 * calc_csum_metadata_size - return the amount of metada space that must be
4859 * reserved/free'd for the given bytes.
4860 * @inode: the inode we're manipulating
4861 * @num_bytes: the number of bytes in question
4862 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4863 *
4864 * This adjusts the number of csum_bytes in the inode and then returns the
4865 * correct amount of metadata that must either be reserved or freed. We
4866 * calculate how many checksums we can fit into one leaf and then divide the
4867 * number of bytes that will need to be checksumed by this value to figure out
4868 * how many checksums will be required. If we are adding bytes then the number
4869 * may go up and we will return the number of additional bytes that must be
4870 * reserved. If it is going down we will return the number of bytes that must
4871 * be freed.
4872 *
4873 * This must be called with BTRFS_I(inode)->lock held.
4874 */
4875 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4876 int reserve)
4877 {
4878 struct btrfs_root *root = BTRFS_I(inode)->root;
4879 u64 csum_size;
4880 int num_csums_per_leaf;
4881 int num_csums;
4882 int old_csums;
4883
4884 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4885 BTRFS_I(inode)->csum_bytes == 0)
4886 return 0;
4887
4888 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4889 if (reserve)
4890 BTRFS_I(inode)->csum_bytes += num_bytes;
4891 else
4892 BTRFS_I(inode)->csum_bytes -= num_bytes;
4893 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4894 num_csums_per_leaf = (int)div64_u64(csum_size,
4895 sizeof(struct btrfs_csum_item) +
4896 sizeof(struct btrfs_disk_key));
4897 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4898 num_csums = num_csums + num_csums_per_leaf - 1;
4899 num_csums = num_csums / num_csums_per_leaf;
4900
4901 old_csums = old_csums + num_csums_per_leaf - 1;
4902 old_csums = old_csums / num_csums_per_leaf;
4903
4904 /* No change, no need to reserve more */
4905 if (old_csums == num_csums)
4906 return 0;
4907
4908 if (reserve)
4909 return btrfs_calc_trans_metadata_size(root,
4910 num_csums - old_csums);
4911
4912 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4913 }
4914
4915 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4916 {
4917 struct btrfs_root *root = BTRFS_I(inode)->root;
4918 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4919 u64 to_reserve = 0;
4920 u64 csum_bytes;
4921 unsigned nr_extents = 0;
4922 int extra_reserve = 0;
4923 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4924 int ret = 0;
4925 bool delalloc_lock = true;
4926 u64 to_free = 0;
4927 unsigned dropped;
4928
4929 /* If we are a free space inode we need to not flush since we will be in
4930 * the middle of a transaction commit. We also don't need the delalloc
4931 * mutex since we won't race with anybody. We need this mostly to make
4932 * lockdep shut its filthy mouth.
4933 */
4934 if (btrfs_is_free_space_inode(inode)) {
4935 flush = BTRFS_RESERVE_NO_FLUSH;
4936 delalloc_lock = false;
4937 }
4938
4939 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4940 btrfs_transaction_in_commit(root->fs_info))
4941 schedule_timeout(1);
4942
4943 if (delalloc_lock)
4944 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4945
4946 num_bytes = ALIGN(num_bytes, root->sectorsize);
4947
4948 spin_lock(&BTRFS_I(inode)->lock);
4949 BTRFS_I(inode)->outstanding_extents++;
4950
4951 if (BTRFS_I(inode)->outstanding_extents >
4952 BTRFS_I(inode)->reserved_extents)
4953 nr_extents = BTRFS_I(inode)->outstanding_extents -
4954 BTRFS_I(inode)->reserved_extents;
4955
4956 /*
4957 * Add an item to reserve for updating the inode when we complete the
4958 * delalloc io.
4959 */
4960 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4961 &BTRFS_I(inode)->runtime_flags)) {
4962 nr_extents++;
4963 extra_reserve = 1;
4964 }
4965
4966 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4967 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4968 csum_bytes = BTRFS_I(inode)->csum_bytes;
4969 spin_unlock(&BTRFS_I(inode)->lock);
4970
4971 if (root->fs_info->quota_enabled) {
4972 ret = btrfs_qgroup_reserve(root, num_bytes +
4973 nr_extents * root->leafsize);
4974 if (ret)
4975 goto out_fail;
4976 }
4977
4978 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4979 if (unlikely(ret)) {
4980 if (root->fs_info->quota_enabled)
4981 btrfs_qgroup_free(root, num_bytes +
4982 nr_extents * root->leafsize);
4983 goto out_fail;
4984 }
4985
4986 spin_lock(&BTRFS_I(inode)->lock);
4987 if (extra_reserve) {
4988 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4989 &BTRFS_I(inode)->runtime_flags);
4990 nr_extents--;
4991 }
4992 BTRFS_I(inode)->reserved_extents += nr_extents;
4993 spin_unlock(&BTRFS_I(inode)->lock);
4994
4995 if (delalloc_lock)
4996 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4997
4998 if (to_reserve)
4999 trace_btrfs_space_reservation(root->fs_info,"delalloc",
5000 btrfs_ino(inode), to_reserve, 1);
5001 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5002
5003 return 0;
5004
5005 out_fail:
5006 spin_lock(&BTRFS_I(inode)->lock);
5007 dropped = drop_outstanding_extent(inode);
5008 /*
5009 * If the inodes csum_bytes is the same as the original
5010 * csum_bytes then we know we haven't raced with any free()ers
5011 * so we can just reduce our inodes csum bytes and carry on.
5012 */
5013 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5014 calc_csum_metadata_size(inode, num_bytes, 0);
5015 } else {
5016 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5017 u64 bytes;
5018
5019 /*
5020 * This is tricky, but first we need to figure out how much we
5021 * free'd from any free-ers that occured during this
5022 * reservation, so we reset ->csum_bytes to the csum_bytes
5023 * before we dropped our lock, and then call the free for the
5024 * number of bytes that were freed while we were trying our
5025 * reservation.
5026 */
5027 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5028 BTRFS_I(inode)->csum_bytes = csum_bytes;
5029 to_free = calc_csum_metadata_size(inode, bytes, 0);
5030
5031
5032 /*
5033 * Now we need to see how much we would have freed had we not
5034 * been making this reservation and our ->csum_bytes were not
5035 * artificially inflated.
5036 */
5037 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5038 bytes = csum_bytes - orig_csum_bytes;
5039 bytes = calc_csum_metadata_size(inode, bytes, 0);
5040
5041 /*
5042 * Now reset ->csum_bytes to what it should be. If bytes is
5043 * more than to_free then we would have free'd more space had we
5044 * not had an artificially high ->csum_bytes, so we need to free
5045 * the remainder. If bytes is the same or less then we don't
5046 * need to do anything, the other free-ers did the correct
5047 * thing.
5048 */
5049 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5050 if (bytes > to_free)
5051 to_free = bytes - to_free;
5052 else
5053 to_free = 0;
5054 }
5055 spin_unlock(&BTRFS_I(inode)->lock);
5056 if (dropped)
5057 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5058
5059 if (to_free) {
5060 btrfs_block_rsv_release(root, block_rsv, to_free);
5061 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5062 btrfs_ino(inode), to_free, 0);
5063 }
5064 if (delalloc_lock)
5065 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5066 return ret;
5067 }
5068
5069 /**
5070 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5071 * @inode: the inode to release the reservation for
5072 * @num_bytes: the number of bytes we're releasing
5073 *
5074 * This will release the metadata reservation for an inode. This can be called
5075 * once we complete IO for a given set of bytes to release their metadata
5076 * reservations.
5077 */
5078 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5079 {
5080 struct btrfs_root *root = BTRFS_I(inode)->root;
5081 u64 to_free = 0;
5082 unsigned dropped;
5083
5084 num_bytes = ALIGN(num_bytes, root->sectorsize);
5085 spin_lock(&BTRFS_I(inode)->lock);
5086 dropped = drop_outstanding_extent(inode);
5087
5088 if (num_bytes)
5089 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5090 spin_unlock(&BTRFS_I(inode)->lock);
5091 if (dropped > 0)
5092 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5093
5094 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5095 btrfs_ino(inode), to_free, 0);
5096 if (root->fs_info->quota_enabled) {
5097 btrfs_qgroup_free(root, num_bytes +
5098 dropped * root->leafsize);
5099 }
5100
5101 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5102 to_free);
5103 }
5104
5105 /**
5106 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5107 * @inode: inode we're writing to
5108 * @num_bytes: the number of bytes we want to allocate
5109 *
5110 * This will do the following things
5111 *
5112 * o reserve space in the data space info for num_bytes
5113 * o reserve space in the metadata space info based on number of outstanding
5114 * extents and how much csums will be needed
5115 * o add to the inodes ->delalloc_bytes
5116 * o add it to the fs_info's delalloc inodes list.
5117 *
5118 * This will return 0 for success and -ENOSPC if there is no space left.
5119 */
5120 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5121 {
5122 int ret;
5123
5124 ret = btrfs_check_data_free_space(inode, num_bytes);
5125 if (ret)
5126 return ret;
5127
5128 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5129 if (ret) {
5130 btrfs_free_reserved_data_space(inode, num_bytes);
5131 return ret;
5132 }
5133
5134 return 0;
5135 }
5136
5137 /**
5138 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5139 * @inode: inode we're releasing space for
5140 * @num_bytes: the number of bytes we want to free up
5141 *
5142 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5143 * called in the case that we don't need the metadata AND data reservations
5144 * anymore. So if there is an error or we insert an inline extent.
5145 *
5146 * This function will release the metadata space that was not used and will
5147 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5148 * list if there are no delalloc bytes left.
5149 */
5150 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5151 {
5152 btrfs_delalloc_release_metadata(inode, num_bytes);
5153 btrfs_free_reserved_data_space(inode, num_bytes);
5154 }
5155
5156 static int update_block_group(struct btrfs_root *root,
5157 u64 bytenr, u64 num_bytes, int alloc)
5158 {
5159 struct btrfs_block_group_cache *cache = NULL;
5160 struct btrfs_fs_info *info = root->fs_info;
5161 u64 total = num_bytes;
5162 u64 old_val;
5163 u64 byte_in_group;
5164 int factor;
5165
5166 /* block accounting for super block */
5167 spin_lock(&info->delalloc_root_lock);
5168 old_val = btrfs_super_bytes_used(info->super_copy);
5169 if (alloc)
5170 old_val += num_bytes;
5171 else
5172 old_val -= num_bytes;
5173 btrfs_set_super_bytes_used(info->super_copy, old_val);
5174 spin_unlock(&info->delalloc_root_lock);
5175
5176 while (total) {
5177 cache = btrfs_lookup_block_group(info, bytenr);
5178 if (!cache)
5179 return -ENOENT;
5180 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5181 BTRFS_BLOCK_GROUP_RAID1 |
5182 BTRFS_BLOCK_GROUP_RAID10))
5183 factor = 2;
5184 else
5185 factor = 1;
5186 /*
5187 * If this block group has free space cache written out, we
5188 * need to make sure to load it if we are removing space. This
5189 * is because we need the unpinning stage to actually add the
5190 * space back to the block group, otherwise we will leak space.
5191 */
5192 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5193 cache_block_group(cache, 1);
5194
5195 byte_in_group = bytenr - cache->key.objectid;
5196 WARN_ON(byte_in_group > cache->key.offset);
5197
5198 spin_lock(&cache->space_info->lock);
5199 spin_lock(&cache->lock);
5200
5201 if (btrfs_test_opt(root, SPACE_CACHE) &&
5202 cache->disk_cache_state < BTRFS_DC_CLEAR)
5203 cache->disk_cache_state = BTRFS_DC_CLEAR;
5204
5205 cache->dirty = 1;
5206 old_val = btrfs_block_group_used(&cache->item);
5207 num_bytes = min(total, cache->key.offset - byte_in_group);
5208 if (alloc) {
5209 old_val += num_bytes;
5210 btrfs_set_block_group_used(&cache->item, old_val);
5211 cache->reserved -= num_bytes;
5212 cache->space_info->bytes_reserved -= num_bytes;
5213 cache->space_info->bytes_used += num_bytes;
5214 cache->space_info->disk_used += num_bytes * factor;
5215 spin_unlock(&cache->lock);
5216 spin_unlock(&cache->space_info->lock);
5217 } else {
5218 old_val -= num_bytes;
5219 btrfs_set_block_group_used(&cache->item, old_val);
5220 cache->pinned += num_bytes;
5221 cache->space_info->bytes_pinned += num_bytes;
5222 cache->space_info->bytes_used -= num_bytes;
5223 cache->space_info->disk_used -= num_bytes * factor;
5224 spin_unlock(&cache->lock);
5225 spin_unlock(&cache->space_info->lock);
5226
5227 set_extent_dirty(info->pinned_extents,
5228 bytenr, bytenr + num_bytes - 1,
5229 GFP_NOFS | __GFP_NOFAIL);
5230 }
5231 btrfs_put_block_group(cache);
5232 total -= num_bytes;
5233 bytenr += num_bytes;
5234 }
5235 return 0;
5236 }
5237
5238 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5239 {
5240 struct btrfs_block_group_cache *cache;
5241 u64 bytenr;
5242
5243 spin_lock(&root->fs_info->block_group_cache_lock);
5244 bytenr = root->fs_info->first_logical_byte;
5245 spin_unlock(&root->fs_info->block_group_cache_lock);
5246
5247 if (bytenr < (u64)-1)
5248 return bytenr;
5249
5250 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5251 if (!cache)
5252 return 0;
5253
5254 bytenr = cache->key.objectid;
5255 btrfs_put_block_group(cache);
5256
5257 return bytenr;
5258 }
5259
5260 static int pin_down_extent(struct btrfs_root *root,
5261 struct btrfs_block_group_cache *cache,
5262 u64 bytenr, u64 num_bytes, int reserved)
5263 {
5264 spin_lock(&cache->space_info->lock);
5265 spin_lock(&cache->lock);
5266 cache->pinned += num_bytes;
5267 cache->space_info->bytes_pinned += num_bytes;
5268 if (reserved) {
5269 cache->reserved -= num_bytes;
5270 cache->space_info->bytes_reserved -= num_bytes;
5271 }
5272 spin_unlock(&cache->lock);
5273 spin_unlock(&cache->space_info->lock);
5274
5275 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5276 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5277 return 0;
5278 }
5279
5280 /*
5281 * this function must be called within transaction
5282 */
5283 int btrfs_pin_extent(struct btrfs_root *root,
5284 u64 bytenr, u64 num_bytes, int reserved)
5285 {
5286 struct btrfs_block_group_cache *cache;
5287
5288 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5289 BUG_ON(!cache); /* Logic error */
5290
5291 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5292
5293 btrfs_put_block_group(cache);
5294 return 0;
5295 }
5296
5297 /*
5298 * this function must be called within transaction
5299 */
5300 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5301 u64 bytenr, u64 num_bytes)
5302 {
5303 struct btrfs_block_group_cache *cache;
5304 int ret;
5305
5306 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5307 if (!cache)
5308 return -EINVAL;
5309
5310 /*
5311 * pull in the free space cache (if any) so that our pin
5312 * removes the free space from the cache. We have load_only set
5313 * to one because the slow code to read in the free extents does check
5314 * the pinned extents.
5315 */
5316 cache_block_group(cache, 1);
5317
5318 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5319
5320 /* remove us from the free space cache (if we're there at all) */
5321 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5322 btrfs_put_block_group(cache);
5323 return ret;
5324 }
5325
5326 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5327 {
5328 int ret;
5329 struct btrfs_block_group_cache *block_group;
5330 struct btrfs_caching_control *caching_ctl;
5331
5332 block_group = btrfs_lookup_block_group(root->fs_info, start);
5333 if (!block_group)
5334 return -EINVAL;
5335
5336 cache_block_group(block_group, 0);
5337 caching_ctl = get_caching_control(block_group);
5338
5339 if (!caching_ctl) {
5340 /* Logic error */
5341 BUG_ON(!block_group_cache_done(block_group));
5342 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5343 } else {
5344 mutex_lock(&caching_ctl->mutex);
5345
5346 if (start >= caching_ctl->progress) {
5347 ret = add_excluded_extent(root, start, num_bytes);
5348 } else if (start + num_bytes <= caching_ctl->progress) {
5349 ret = btrfs_remove_free_space(block_group,
5350 start, num_bytes);
5351 } else {
5352 num_bytes = caching_ctl->progress - start;
5353 ret = btrfs_remove_free_space(block_group,
5354 start, num_bytes);
5355 if (ret)
5356 goto out_lock;
5357
5358 num_bytes = (start + num_bytes) -
5359 caching_ctl->progress;
5360 start = caching_ctl->progress;
5361 ret = add_excluded_extent(root, start, num_bytes);
5362 }
5363 out_lock:
5364 mutex_unlock(&caching_ctl->mutex);
5365 put_caching_control(caching_ctl);
5366 }
5367 btrfs_put_block_group(block_group);
5368 return ret;
5369 }
5370
5371 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5372 struct extent_buffer *eb)
5373 {
5374 struct btrfs_file_extent_item *item;
5375 struct btrfs_key key;
5376 int found_type;
5377 int i;
5378
5379 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5380 return 0;
5381
5382 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5383 btrfs_item_key_to_cpu(eb, &key, i);
5384 if (key.type != BTRFS_EXTENT_DATA_KEY)
5385 continue;
5386 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5387 found_type = btrfs_file_extent_type(eb, item);
5388 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5389 continue;
5390 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5391 continue;
5392 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5393 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5394 __exclude_logged_extent(log, key.objectid, key.offset);
5395 }
5396
5397 return 0;
5398 }
5399
5400 /**
5401 * btrfs_update_reserved_bytes - update the block_group and space info counters
5402 * @cache: The cache we are manipulating
5403 * @num_bytes: The number of bytes in question
5404 * @reserve: One of the reservation enums
5405 *
5406 * This is called by the allocator when it reserves space, or by somebody who is
5407 * freeing space that was never actually used on disk. For example if you
5408 * reserve some space for a new leaf in transaction A and before transaction A
5409 * commits you free that leaf, you call this with reserve set to 0 in order to
5410 * clear the reservation.
5411 *
5412 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5413 * ENOSPC accounting. For data we handle the reservation through clearing the
5414 * delalloc bits in the io_tree. We have to do this since we could end up
5415 * allocating less disk space for the amount of data we have reserved in the
5416 * case of compression.
5417 *
5418 * If this is a reservation and the block group has become read only we cannot
5419 * make the reservation and return -EAGAIN, otherwise this function always
5420 * succeeds.
5421 */
5422 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5423 u64 num_bytes, int reserve)
5424 {
5425 struct btrfs_space_info *space_info = cache->space_info;
5426 int ret = 0;
5427
5428 spin_lock(&space_info->lock);
5429 spin_lock(&cache->lock);
5430 if (reserve != RESERVE_FREE) {
5431 if (cache->ro) {
5432 ret = -EAGAIN;
5433 } else {
5434 cache->reserved += num_bytes;
5435 space_info->bytes_reserved += num_bytes;
5436 if (reserve == RESERVE_ALLOC) {
5437 trace_btrfs_space_reservation(cache->fs_info,
5438 "space_info", space_info->flags,
5439 num_bytes, 0);
5440 space_info->bytes_may_use -= num_bytes;
5441 }
5442 }
5443 } else {
5444 if (cache->ro)
5445 space_info->bytes_readonly += num_bytes;
5446 cache->reserved -= num_bytes;
5447 space_info->bytes_reserved -= num_bytes;
5448 space_info->reservation_progress++;
5449 }
5450 spin_unlock(&cache->lock);
5451 spin_unlock(&space_info->lock);
5452 return ret;
5453 }
5454
5455 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5456 struct btrfs_root *root)
5457 {
5458 struct btrfs_fs_info *fs_info = root->fs_info;
5459 struct btrfs_caching_control *next;
5460 struct btrfs_caching_control *caching_ctl;
5461 struct btrfs_block_group_cache *cache;
5462 struct btrfs_space_info *space_info;
5463
5464 down_write(&fs_info->extent_commit_sem);
5465
5466 list_for_each_entry_safe(caching_ctl, next,
5467 &fs_info->caching_block_groups, list) {
5468 cache = caching_ctl->block_group;
5469 if (block_group_cache_done(cache)) {
5470 cache->last_byte_to_unpin = (u64)-1;
5471 list_del_init(&caching_ctl->list);
5472 put_caching_control(caching_ctl);
5473 } else {
5474 cache->last_byte_to_unpin = caching_ctl->progress;
5475 }
5476 }
5477
5478 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5479 fs_info->pinned_extents = &fs_info->freed_extents[1];
5480 else
5481 fs_info->pinned_extents = &fs_info->freed_extents[0];
5482
5483 up_write(&fs_info->extent_commit_sem);
5484
5485 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5486 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5487
5488 update_global_block_rsv(fs_info);
5489 }
5490
5491 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5492 {
5493 struct btrfs_fs_info *fs_info = root->fs_info;
5494 struct btrfs_block_group_cache *cache = NULL;
5495 struct btrfs_space_info *space_info;
5496 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5497 u64 len;
5498 bool readonly;
5499
5500 while (start <= end) {
5501 readonly = false;
5502 if (!cache ||
5503 start >= cache->key.objectid + cache->key.offset) {
5504 if (cache)
5505 btrfs_put_block_group(cache);
5506 cache = btrfs_lookup_block_group(fs_info, start);
5507 BUG_ON(!cache); /* Logic error */
5508 }
5509
5510 len = cache->key.objectid + cache->key.offset - start;
5511 len = min(len, end + 1 - start);
5512
5513 if (start < cache->last_byte_to_unpin) {
5514 len = min(len, cache->last_byte_to_unpin - start);
5515 btrfs_add_free_space(cache, start, len);
5516 }
5517
5518 start += len;
5519 space_info = cache->space_info;
5520
5521 spin_lock(&space_info->lock);
5522 spin_lock(&cache->lock);
5523 cache->pinned -= len;
5524 space_info->bytes_pinned -= len;
5525 if (cache->ro) {
5526 space_info->bytes_readonly += len;
5527 readonly = true;
5528 }
5529 spin_unlock(&cache->lock);
5530 if (!readonly && global_rsv->space_info == space_info) {
5531 spin_lock(&global_rsv->lock);
5532 if (!global_rsv->full) {
5533 len = min(len, global_rsv->size -
5534 global_rsv->reserved);
5535 global_rsv->reserved += len;
5536 space_info->bytes_may_use += len;
5537 if (global_rsv->reserved >= global_rsv->size)
5538 global_rsv->full = 1;
5539 }
5540 spin_unlock(&global_rsv->lock);
5541 }
5542 spin_unlock(&space_info->lock);
5543 }
5544
5545 if (cache)
5546 btrfs_put_block_group(cache);
5547 return 0;
5548 }
5549
5550 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5551 struct btrfs_root *root)
5552 {
5553 struct btrfs_fs_info *fs_info = root->fs_info;
5554 struct extent_io_tree *unpin;
5555 u64 start;
5556 u64 end;
5557 int ret;
5558
5559 if (trans->aborted)
5560 return 0;
5561
5562 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5563 unpin = &fs_info->freed_extents[1];
5564 else
5565 unpin = &fs_info->freed_extents[0];
5566
5567 while (1) {
5568 ret = find_first_extent_bit(unpin, 0, &start, &end,
5569 EXTENT_DIRTY, NULL);
5570 if (ret)
5571 break;
5572
5573 if (btrfs_test_opt(root, DISCARD))
5574 ret = btrfs_discard_extent(root, start,
5575 end + 1 - start, NULL);
5576
5577 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5578 unpin_extent_range(root, start, end);
5579 cond_resched();
5580 }
5581
5582 return 0;
5583 }
5584
5585 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5586 u64 owner, u64 root_objectid)
5587 {
5588 struct btrfs_space_info *space_info;
5589 u64 flags;
5590
5591 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5592 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5593 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5594 else
5595 flags = BTRFS_BLOCK_GROUP_METADATA;
5596 } else {
5597 flags = BTRFS_BLOCK_GROUP_DATA;
5598 }
5599
5600 space_info = __find_space_info(fs_info, flags);
5601 BUG_ON(!space_info); /* Logic bug */
5602 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5603 }
5604
5605
5606 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5607 struct btrfs_root *root,
5608 u64 bytenr, u64 num_bytes, u64 parent,
5609 u64 root_objectid, u64 owner_objectid,
5610 u64 owner_offset, int refs_to_drop,
5611 struct btrfs_delayed_extent_op *extent_op)
5612 {
5613 struct btrfs_key key;
5614 struct btrfs_path *path;
5615 struct btrfs_fs_info *info = root->fs_info;
5616 struct btrfs_root *extent_root = info->extent_root;
5617 struct extent_buffer *leaf;
5618 struct btrfs_extent_item *ei;
5619 struct btrfs_extent_inline_ref *iref;
5620 int ret;
5621 int is_data;
5622 int extent_slot = 0;
5623 int found_extent = 0;
5624 int num_to_del = 1;
5625 u32 item_size;
5626 u64 refs;
5627 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5628 SKINNY_METADATA);
5629
5630 path = btrfs_alloc_path();
5631 if (!path)
5632 return -ENOMEM;
5633
5634 path->reada = 1;
5635 path->leave_spinning = 1;
5636
5637 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5638 BUG_ON(!is_data && refs_to_drop != 1);
5639
5640 if (is_data)
5641 skinny_metadata = 0;
5642
5643 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5644 bytenr, num_bytes, parent,
5645 root_objectid, owner_objectid,
5646 owner_offset);
5647 if (ret == 0) {
5648 extent_slot = path->slots[0];
5649 while (extent_slot >= 0) {
5650 btrfs_item_key_to_cpu(path->nodes[0], &key,
5651 extent_slot);
5652 if (key.objectid != bytenr)
5653 break;
5654 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5655 key.offset == num_bytes) {
5656 found_extent = 1;
5657 break;
5658 }
5659 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5660 key.offset == owner_objectid) {
5661 found_extent = 1;
5662 break;
5663 }
5664 if (path->slots[0] - extent_slot > 5)
5665 break;
5666 extent_slot--;
5667 }
5668 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5669 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5670 if (found_extent && item_size < sizeof(*ei))
5671 found_extent = 0;
5672 #endif
5673 if (!found_extent) {
5674 BUG_ON(iref);
5675 ret = remove_extent_backref(trans, extent_root, path,
5676 NULL, refs_to_drop,
5677 is_data);
5678 if (ret) {
5679 btrfs_abort_transaction(trans, extent_root, ret);
5680 goto out;
5681 }
5682 btrfs_release_path(path);
5683 path->leave_spinning = 1;
5684
5685 key.objectid = bytenr;
5686 key.type = BTRFS_EXTENT_ITEM_KEY;
5687 key.offset = num_bytes;
5688
5689 if (!is_data && skinny_metadata) {
5690 key.type = BTRFS_METADATA_ITEM_KEY;
5691 key.offset = owner_objectid;
5692 }
5693
5694 ret = btrfs_search_slot(trans, extent_root,
5695 &key, path, -1, 1);
5696 if (ret > 0 && skinny_metadata && path->slots[0]) {
5697 /*
5698 * Couldn't find our skinny metadata item,
5699 * see if we have ye olde extent item.
5700 */
5701 path->slots[0]--;
5702 btrfs_item_key_to_cpu(path->nodes[0], &key,
5703 path->slots[0]);
5704 if (key.objectid == bytenr &&
5705 key.type == BTRFS_EXTENT_ITEM_KEY &&
5706 key.offset == num_bytes)
5707 ret = 0;
5708 }
5709
5710 if (ret > 0 && skinny_metadata) {
5711 skinny_metadata = false;
5712 key.type = BTRFS_EXTENT_ITEM_KEY;
5713 key.offset = num_bytes;
5714 btrfs_release_path(path);
5715 ret = btrfs_search_slot(trans, extent_root,
5716 &key, path, -1, 1);
5717 }
5718
5719 if (ret) {
5720 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5721 ret, bytenr);
5722 if (ret > 0)
5723 btrfs_print_leaf(extent_root,
5724 path->nodes[0]);
5725 }
5726 if (ret < 0) {
5727 btrfs_abort_transaction(trans, extent_root, ret);
5728 goto out;
5729 }
5730 extent_slot = path->slots[0];
5731 }
5732 } else if (ret == -ENOENT) {
5733 btrfs_print_leaf(extent_root, path->nodes[0]);
5734 WARN_ON(1);
5735 btrfs_err(info,
5736 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5737 bytenr, parent, root_objectid, owner_objectid,
5738 owner_offset);
5739 } else {
5740 btrfs_abort_transaction(trans, extent_root, ret);
5741 goto out;
5742 }
5743
5744 leaf = path->nodes[0];
5745 item_size = btrfs_item_size_nr(leaf, extent_slot);
5746 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5747 if (item_size < sizeof(*ei)) {
5748 BUG_ON(found_extent || extent_slot != path->slots[0]);
5749 ret = convert_extent_item_v0(trans, extent_root, path,
5750 owner_objectid, 0);
5751 if (ret < 0) {
5752 btrfs_abort_transaction(trans, extent_root, ret);
5753 goto out;
5754 }
5755
5756 btrfs_release_path(path);
5757 path->leave_spinning = 1;
5758
5759 key.objectid = bytenr;
5760 key.type = BTRFS_EXTENT_ITEM_KEY;
5761 key.offset = num_bytes;
5762
5763 ret = btrfs_search_slot(trans, extent_root, &key, path,
5764 -1, 1);
5765 if (ret) {
5766 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5767 ret, bytenr);
5768 btrfs_print_leaf(extent_root, path->nodes[0]);
5769 }
5770 if (ret < 0) {
5771 btrfs_abort_transaction(trans, extent_root, ret);
5772 goto out;
5773 }
5774
5775 extent_slot = path->slots[0];
5776 leaf = path->nodes[0];
5777 item_size = btrfs_item_size_nr(leaf, extent_slot);
5778 }
5779 #endif
5780 BUG_ON(item_size < sizeof(*ei));
5781 ei = btrfs_item_ptr(leaf, extent_slot,
5782 struct btrfs_extent_item);
5783 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5784 key.type == BTRFS_EXTENT_ITEM_KEY) {
5785 struct btrfs_tree_block_info *bi;
5786 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5787 bi = (struct btrfs_tree_block_info *)(ei + 1);
5788 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5789 }
5790
5791 refs = btrfs_extent_refs(leaf, ei);
5792 if (refs < refs_to_drop) {
5793 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5794 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5795 ret = -EINVAL;
5796 btrfs_abort_transaction(trans, extent_root, ret);
5797 goto out;
5798 }
5799 refs -= refs_to_drop;
5800
5801 if (refs > 0) {
5802 if (extent_op)
5803 __run_delayed_extent_op(extent_op, leaf, ei);
5804 /*
5805 * In the case of inline back ref, reference count will
5806 * be updated by remove_extent_backref
5807 */
5808 if (iref) {
5809 BUG_ON(!found_extent);
5810 } else {
5811 btrfs_set_extent_refs(leaf, ei, refs);
5812 btrfs_mark_buffer_dirty(leaf);
5813 }
5814 if (found_extent) {
5815 ret = remove_extent_backref(trans, extent_root, path,
5816 iref, refs_to_drop,
5817 is_data);
5818 if (ret) {
5819 btrfs_abort_transaction(trans, extent_root, ret);
5820 goto out;
5821 }
5822 }
5823 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5824 root_objectid);
5825 } else {
5826 if (found_extent) {
5827 BUG_ON(is_data && refs_to_drop !=
5828 extent_data_ref_count(root, path, iref));
5829 if (iref) {
5830 BUG_ON(path->slots[0] != extent_slot);
5831 } else {
5832 BUG_ON(path->slots[0] != extent_slot + 1);
5833 path->slots[0] = extent_slot;
5834 num_to_del = 2;
5835 }
5836 }
5837
5838 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5839 num_to_del);
5840 if (ret) {
5841 btrfs_abort_transaction(trans, extent_root, ret);
5842 goto out;
5843 }
5844 btrfs_release_path(path);
5845
5846 if (is_data) {
5847 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5848 if (ret) {
5849 btrfs_abort_transaction(trans, extent_root, ret);
5850 goto out;
5851 }
5852 }
5853
5854 ret = update_block_group(root, bytenr, num_bytes, 0);
5855 if (ret) {
5856 btrfs_abort_transaction(trans, extent_root, ret);
5857 goto out;
5858 }
5859 }
5860 out:
5861 btrfs_free_path(path);
5862 return ret;
5863 }
5864
5865 /*
5866 * when we free an block, it is possible (and likely) that we free the last
5867 * delayed ref for that extent as well. This searches the delayed ref tree for
5868 * a given extent, and if there are no other delayed refs to be processed, it
5869 * removes it from the tree.
5870 */
5871 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5872 struct btrfs_root *root, u64 bytenr)
5873 {
5874 struct btrfs_delayed_ref_head *head;
5875 struct btrfs_delayed_ref_root *delayed_refs;
5876 struct btrfs_delayed_ref_node *ref;
5877 struct rb_node *node;
5878 int ret = 0;
5879
5880 delayed_refs = &trans->transaction->delayed_refs;
5881 spin_lock(&delayed_refs->lock);
5882 head = btrfs_find_delayed_ref_head(trans, bytenr);
5883 if (!head)
5884 goto out;
5885
5886 node = rb_prev(&head->node.rb_node);
5887 if (!node)
5888 goto out;
5889
5890 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5891
5892 /* there are still entries for this ref, we can't drop it */
5893 if (ref->bytenr == bytenr)
5894 goto out;
5895
5896 if (head->extent_op) {
5897 if (!head->must_insert_reserved)
5898 goto out;
5899 btrfs_free_delayed_extent_op(head->extent_op);
5900 head->extent_op = NULL;
5901 }
5902
5903 /*
5904 * waiting for the lock here would deadlock. If someone else has it
5905 * locked they are already in the process of dropping it anyway
5906 */
5907 if (!mutex_trylock(&head->mutex))
5908 goto out;
5909
5910 /*
5911 * at this point we have a head with no other entries. Go
5912 * ahead and process it.
5913 */
5914 head->node.in_tree = 0;
5915 rb_erase(&head->node.rb_node, &delayed_refs->root);
5916
5917 delayed_refs->num_entries--;
5918
5919 /*
5920 * we don't take a ref on the node because we're removing it from the
5921 * tree, so we just steal the ref the tree was holding.
5922 */
5923 delayed_refs->num_heads--;
5924 if (list_empty(&head->cluster))
5925 delayed_refs->num_heads_ready--;
5926
5927 list_del_init(&head->cluster);
5928 spin_unlock(&delayed_refs->lock);
5929
5930 BUG_ON(head->extent_op);
5931 if (head->must_insert_reserved)
5932 ret = 1;
5933
5934 mutex_unlock(&head->mutex);
5935 btrfs_put_delayed_ref(&head->node);
5936 return ret;
5937 out:
5938 spin_unlock(&delayed_refs->lock);
5939 return 0;
5940 }
5941
5942 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5943 struct btrfs_root *root,
5944 struct extent_buffer *buf,
5945 u64 parent, int last_ref)
5946 {
5947 struct btrfs_block_group_cache *cache = NULL;
5948 int pin = 1;
5949 int ret;
5950
5951 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5952 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5953 buf->start, buf->len,
5954 parent, root->root_key.objectid,
5955 btrfs_header_level(buf),
5956 BTRFS_DROP_DELAYED_REF, NULL, 0);
5957 BUG_ON(ret); /* -ENOMEM */
5958 }
5959
5960 if (!last_ref)
5961 return;
5962
5963 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5964
5965 if (btrfs_header_generation(buf) == trans->transid) {
5966 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5967 ret = check_ref_cleanup(trans, root, buf->start);
5968 if (!ret)
5969 goto out;
5970 }
5971
5972 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5973 pin_down_extent(root, cache, buf->start, buf->len, 1);
5974 goto out;
5975 }
5976
5977 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5978
5979 btrfs_add_free_space(cache, buf->start, buf->len);
5980 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5981 pin = 0;
5982 }
5983 out:
5984 if (pin)
5985 add_pinned_bytes(root->fs_info, buf->len,
5986 btrfs_header_level(buf),
5987 root->root_key.objectid);
5988
5989 /*
5990 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5991 * anymore.
5992 */
5993 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5994 btrfs_put_block_group(cache);
5995 }
5996
5997 /* Can return -ENOMEM */
5998 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5999 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6000 u64 owner, u64 offset, int for_cow)
6001 {
6002 int ret;
6003 struct btrfs_fs_info *fs_info = root->fs_info;
6004
6005 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6006
6007 /*
6008 * tree log blocks never actually go into the extent allocation
6009 * tree, just update pinning info and exit early.
6010 */
6011 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6012 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6013 /* unlocks the pinned mutex */
6014 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6015 ret = 0;
6016 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6017 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6018 num_bytes,
6019 parent, root_objectid, (int)owner,
6020 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6021 } else {
6022 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6023 num_bytes,
6024 parent, root_objectid, owner,
6025 offset, BTRFS_DROP_DELAYED_REF,
6026 NULL, for_cow);
6027 }
6028 return ret;
6029 }
6030
6031 static u64 stripe_align(struct btrfs_root *root,
6032 struct btrfs_block_group_cache *cache,
6033 u64 val, u64 num_bytes)
6034 {
6035 u64 ret = ALIGN(val, root->stripesize);
6036 return ret;
6037 }
6038
6039 /*
6040 * when we wait for progress in the block group caching, its because
6041 * our allocation attempt failed at least once. So, we must sleep
6042 * and let some progress happen before we try again.
6043 *
6044 * This function will sleep at least once waiting for new free space to
6045 * show up, and then it will check the block group free space numbers
6046 * for our min num_bytes. Another option is to have it go ahead
6047 * and look in the rbtree for a free extent of a given size, but this
6048 * is a good start.
6049 *
6050 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6051 * any of the information in this block group.
6052 */
6053 static noinline void
6054 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6055 u64 num_bytes)
6056 {
6057 struct btrfs_caching_control *caching_ctl;
6058
6059 caching_ctl = get_caching_control(cache);
6060 if (!caching_ctl)
6061 return;
6062
6063 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6064 (cache->free_space_ctl->free_space >= num_bytes));
6065
6066 put_caching_control(caching_ctl);
6067 }
6068
6069 static noinline int
6070 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6071 {
6072 struct btrfs_caching_control *caching_ctl;
6073 int ret = 0;
6074
6075 caching_ctl = get_caching_control(cache);
6076 if (!caching_ctl)
6077 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6078
6079 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6080 if (cache->cached == BTRFS_CACHE_ERROR)
6081 ret = -EIO;
6082 put_caching_control(caching_ctl);
6083 return ret;
6084 }
6085
6086 int __get_raid_index(u64 flags)
6087 {
6088 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6089 return BTRFS_RAID_RAID10;
6090 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6091 return BTRFS_RAID_RAID1;
6092 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6093 return BTRFS_RAID_DUP;
6094 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6095 return BTRFS_RAID_RAID0;
6096 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6097 return BTRFS_RAID_RAID5;
6098 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6099 return BTRFS_RAID_RAID6;
6100
6101 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6102 }
6103
6104 static int get_block_group_index(struct btrfs_block_group_cache *cache)
6105 {
6106 return __get_raid_index(cache->flags);
6107 }
6108
6109 enum btrfs_loop_type {
6110 LOOP_CACHING_NOWAIT = 0,
6111 LOOP_CACHING_WAIT = 1,
6112 LOOP_ALLOC_CHUNK = 2,
6113 LOOP_NO_EMPTY_SIZE = 3,
6114 };
6115
6116 /*
6117 * walks the btree of allocated extents and find a hole of a given size.
6118 * The key ins is changed to record the hole:
6119 * ins->objectid == block start
6120 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6121 * ins->offset == number of blocks
6122 * Any available blocks before search_start are skipped.
6123 */
6124 static noinline int find_free_extent(struct btrfs_root *orig_root,
6125 u64 num_bytes, u64 empty_size,
6126 u64 hint_byte, struct btrfs_key *ins,
6127 u64 flags)
6128 {
6129 int ret = 0;
6130 struct btrfs_root *root = orig_root->fs_info->extent_root;
6131 struct btrfs_free_cluster *last_ptr = NULL;
6132 struct btrfs_block_group_cache *block_group = NULL;
6133 struct btrfs_block_group_cache *used_block_group;
6134 u64 search_start = 0;
6135 int empty_cluster = 2 * 1024 * 1024;
6136 struct btrfs_space_info *space_info;
6137 int loop = 0;
6138 int index = __get_raid_index(flags);
6139 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6140 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6141 bool found_uncached_bg = false;
6142 bool failed_cluster_refill = false;
6143 bool failed_alloc = false;
6144 bool use_cluster = true;
6145 bool have_caching_bg = false;
6146
6147 WARN_ON(num_bytes < root->sectorsize);
6148 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6149 ins->objectid = 0;
6150 ins->offset = 0;
6151
6152 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6153
6154 space_info = __find_space_info(root->fs_info, flags);
6155 if (!space_info) {
6156 btrfs_err(root->fs_info, "No space info for %llu", flags);
6157 return -ENOSPC;
6158 }
6159
6160 /*
6161 * If the space info is for both data and metadata it means we have a
6162 * small filesystem and we can't use the clustering stuff.
6163 */
6164 if (btrfs_mixed_space_info(space_info))
6165 use_cluster = false;
6166
6167 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6168 last_ptr = &root->fs_info->meta_alloc_cluster;
6169 if (!btrfs_test_opt(root, SSD))
6170 empty_cluster = 64 * 1024;
6171 }
6172
6173 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6174 btrfs_test_opt(root, SSD)) {
6175 last_ptr = &root->fs_info->data_alloc_cluster;
6176 }
6177
6178 if (last_ptr) {
6179 spin_lock(&last_ptr->lock);
6180 if (last_ptr->block_group)
6181 hint_byte = last_ptr->window_start;
6182 spin_unlock(&last_ptr->lock);
6183 }
6184
6185 search_start = max(search_start, first_logical_byte(root, 0));
6186 search_start = max(search_start, hint_byte);
6187
6188 if (!last_ptr)
6189 empty_cluster = 0;
6190
6191 if (search_start == hint_byte) {
6192 block_group = btrfs_lookup_block_group(root->fs_info,
6193 search_start);
6194 used_block_group = block_group;
6195 /*
6196 * we don't want to use the block group if it doesn't match our
6197 * allocation bits, or if its not cached.
6198 *
6199 * However if we are re-searching with an ideal block group
6200 * picked out then we don't care that the block group is cached.
6201 */
6202 if (block_group && block_group_bits(block_group, flags) &&
6203 block_group->cached != BTRFS_CACHE_NO) {
6204 down_read(&space_info->groups_sem);
6205 if (list_empty(&block_group->list) ||
6206 block_group->ro) {
6207 /*
6208 * someone is removing this block group,
6209 * we can't jump into the have_block_group
6210 * target because our list pointers are not
6211 * valid
6212 */
6213 btrfs_put_block_group(block_group);
6214 up_read(&space_info->groups_sem);
6215 } else {
6216 index = get_block_group_index(block_group);
6217 goto have_block_group;
6218 }
6219 } else if (block_group) {
6220 btrfs_put_block_group(block_group);
6221 }
6222 }
6223 search:
6224 have_caching_bg = false;
6225 down_read(&space_info->groups_sem);
6226 list_for_each_entry(block_group, &space_info->block_groups[index],
6227 list) {
6228 u64 offset;
6229 int cached;
6230
6231 used_block_group = block_group;
6232 btrfs_get_block_group(block_group);
6233 search_start = block_group->key.objectid;
6234
6235 /*
6236 * this can happen if we end up cycling through all the
6237 * raid types, but we want to make sure we only allocate
6238 * for the proper type.
6239 */
6240 if (!block_group_bits(block_group, flags)) {
6241 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6242 BTRFS_BLOCK_GROUP_RAID1 |
6243 BTRFS_BLOCK_GROUP_RAID5 |
6244 BTRFS_BLOCK_GROUP_RAID6 |
6245 BTRFS_BLOCK_GROUP_RAID10;
6246
6247 /*
6248 * if they asked for extra copies and this block group
6249 * doesn't provide them, bail. This does allow us to
6250 * fill raid0 from raid1.
6251 */
6252 if ((flags & extra) && !(block_group->flags & extra))
6253 goto loop;
6254 }
6255
6256 have_block_group:
6257 cached = block_group_cache_done(block_group);
6258 if (unlikely(!cached)) {
6259 found_uncached_bg = true;
6260 ret = cache_block_group(block_group, 0);
6261 BUG_ON(ret < 0);
6262 ret = 0;
6263 }
6264
6265 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6266 goto loop;
6267 if (unlikely(block_group->ro))
6268 goto loop;
6269
6270 /*
6271 * Ok we want to try and use the cluster allocator, so
6272 * lets look there
6273 */
6274 if (last_ptr) {
6275 unsigned long aligned_cluster;
6276 /*
6277 * the refill lock keeps out other
6278 * people trying to start a new cluster
6279 */
6280 spin_lock(&last_ptr->refill_lock);
6281 used_block_group = last_ptr->block_group;
6282 if (used_block_group != block_group &&
6283 (!used_block_group ||
6284 used_block_group->ro ||
6285 !block_group_bits(used_block_group, flags))) {
6286 used_block_group = block_group;
6287 goto refill_cluster;
6288 }
6289
6290 if (used_block_group != block_group)
6291 btrfs_get_block_group(used_block_group);
6292
6293 offset = btrfs_alloc_from_cluster(used_block_group,
6294 last_ptr, num_bytes, used_block_group->key.objectid);
6295 if (offset) {
6296 /* we have a block, we're done */
6297 spin_unlock(&last_ptr->refill_lock);
6298 trace_btrfs_reserve_extent_cluster(root,
6299 block_group, search_start, num_bytes);
6300 goto checks;
6301 }
6302
6303 WARN_ON(last_ptr->block_group != used_block_group);
6304 if (used_block_group != block_group) {
6305 btrfs_put_block_group(used_block_group);
6306 used_block_group = block_group;
6307 }
6308 refill_cluster:
6309 BUG_ON(used_block_group != block_group);
6310 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6311 * set up a new clusters, so lets just skip it
6312 * and let the allocator find whatever block
6313 * it can find. If we reach this point, we
6314 * will have tried the cluster allocator
6315 * plenty of times and not have found
6316 * anything, so we are likely way too
6317 * fragmented for the clustering stuff to find
6318 * anything.
6319 *
6320 * However, if the cluster is taken from the
6321 * current block group, release the cluster
6322 * first, so that we stand a better chance of
6323 * succeeding in the unclustered
6324 * allocation. */
6325 if (loop >= LOOP_NO_EMPTY_SIZE &&
6326 last_ptr->block_group != block_group) {
6327 spin_unlock(&last_ptr->refill_lock);
6328 goto unclustered_alloc;
6329 }
6330
6331 /*
6332 * this cluster didn't work out, free it and
6333 * start over
6334 */
6335 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6336
6337 if (loop >= LOOP_NO_EMPTY_SIZE) {
6338 spin_unlock(&last_ptr->refill_lock);
6339 goto unclustered_alloc;
6340 }
6341
6342 aligned_cluster = max_t(unsigned long,
6343 empty_cluster + empty_size,
6344 block_group->full_stripe_len);
6345
6346 /* allocate a cluster in this block group */
6347 ret = btrfs_find_space_cluster(root, block_group,
6348 last_ptr, search_start,
6349 num_bytes,
6350 aligned_cluster);
6351 if (ret == 0) {
6352 /*
6353 * now pull our allocation out of this
6354 * cluster
6355 */
6356 offset = btrfs_alloc_from_cluster(block_group,
6357 last_ptr, num_bytes,
6358 search_start);
6359 if (offset) {
6360 /* we found one, proceed */
6361 spin_unlock(&last_ptr->refill_lock);
6362 trace_btrfs_reserve_extent_cluster(root,
6363 block_group, search_start,
6364 num_bytes);
6365 goto checks;
6366 }
6367 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6368 && !failed_cluster_refill) {
6369 spin_unlock(&last_ptr->refill_lock);
6370
6371 failed_cluster_refill = true;
6372 wait_block_group_cache_progress(block_group,
6373 num_bytes + empty_cluster + empty_size);
6374 goto have_block_group;
6375 }
6376
6377 /*
6378 * at this point we either didn't find a cluster
6379 * or we weren't able to allocate a block from our
6380 * cluster. Free the cluster we've been trying
6381 * to use, and go to the next block group
6382 */
6383 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6384 spin_unlock(&last_ptr->refill_lock);
6385 goto loop;
6386 }
6387
6388 unclustered_alloc:
6389 spin_lock(&block_group->free_space_ctl->tree_lock);
6390 if (cached &&
6391 block_group->free_space_ctl->free_space <
6392 num_bytes + empty_cluster + empty_size) {
6393 spin_unlock(&block_group->free_space_ctl->tree_lock);
6394 goto loop;
6395 }
6396 spin_unlock(&block_group->free_space_ctl->tree_lock);
6397
6398 offset = btrfs_find_space_for_alloc(block_group, search_start,
6399 num_bytes, empty_size);
6400 /*
6401 * If we didn't find a chunk, and we haven't failed on this
6402 * block group before, and this block group is in the middle of
6403 * caching and we are ok with waiting, then go ahead and wait
6404 * for progress to be made, and set failed_alloc to true.
6405 *
6406 * If failed_alloc is true then we've already waited on this
6407 * block group once and should move on to the next block group.
6408 */
6409 if (!offset && !failed_alloc && !cached &&
6410 loop > LOOP_CACHING_NOWAIT) {
6411 wait_block_group_cache_progress(block_group,
6412 num_bytes + empty_size);
6413 failed_alloc = true;
6414 goto have_block_group;
6415 } else if (!offset) {
6416 if (!cached)
6417 have_caching_bg = true;
6418 goto loop;
6419 }
6420 checks:
6421 search_start = stripe_align(root, used_block_group,
6422 offset, num_bytes);
6423
6424 /* move on to the next group */
6425 if (search_start + num_bytes >
6426 used_block_group->key.objectid + used_block_group->key.offset) {
6427 btrfs_add_free_space(used_block_group, offset, num_bytes);
6428 goto loop;
6429 }
6430
6431 if (offset < search_start)
6432 btrfs_add_free_space(used_block_group, offset,
6433 search_start - offset);
6434 BUG_ON(offset > search_start);
6435
6436 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6437 alloc_type);
6438 if (ret == -EAGAIN) {
6439 btrfs_add_free_space(used_block_group, offset, num_bytes);
6440 goto loop;
6441 }
6442
6443 /* we are all good, lets return */
6444 ins->objectid = search_start;
6445 ins->offset = num_bytes;
6446
6447 trace_btrfs_reserve_extent(orig_root, block_group,
6448 search_start, num_bytes);
6449 if (used_block_group != block_group)
6450 btrfs_put_block_group(used_block_group);
6451 btrfs_put_block_group(block_group);
6452 break;
6453 loop:
6454 failed_cluster_refill = false;
6455 failed_alloc = false;
6456 BUG_ON(index != get_block_group_index(block_group));
6457 if (used_block_group != block_group)
6458 btrfs_put_block_group(used_block_group);
6459 btrfs_put_block_group(block_group);
6460 }
6461 up_read(&space_info->groups_sem);
6462
6463 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6464 goto search;
6465
6466 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6467 goto search;
6468
6469 /*
6470 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6471 * caching kthreads as we move along
6472 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6473 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6474 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6475 * again
6476 */
6477 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6478 index = 0;
6479 loop++;
6480 if (loop == LOOP_ALLOC_CHUNK) {
6481 struct btrfs_trans_handle *trans;
6482
6483 trans = btrfs_join_transaction(root);
6484 if (IS_ERR(trans)) {
6485 ret = PTR_ERR(trans);
6486 goto out;
6487 }
6488
6489 ret = do_chunk_alloc(trans, root, flags,
6490 CHUNK_ALLOC_FORCE);
6491 /*
6492 * Do not bail out on ENOSPC since we
6493 * can do more things.
6494 */
6495 if (ret < 0 && ret != -ENOSPC)
6496 btrfs_abort_transaction(trans,
6497 root, ret);
6498 else
6499 ret = 0;
6500 btrfs_end_transaction(trans, root);
6501 if (ret)
6502 goto out;
6503 }
6504
6505 if (loop == LOOP_NO_EMPTY_SIZE) {
6506 empty_size = 0;
6507 empty_cluster = 0;
6508 }
6509
6510 goto search;
6511 } else if (!ins->objectid) {
6512 ret = -ENOSPC;
6513 } else if (ins->objectid) {
6514 ret = 0;
6515 }
6516 out:
6517
6518 return ret;
6519 }
6520
6521 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6522 int dump_block_groups)
6523 {
6524 struct btrfs_block_group_cache *cache;
6525 int index = 0;
6526
6527 spin_lock(&info->lock);
6528 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6529 info->flags,
6530 info->total_bytes - info->bytes_used - info->bytes_pinned -
6531 info->bytes_reserved - info->bytes_readonly,
6532 (info->full) ? "" : "not ");
6533 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6534 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6535 info->total_bytes, info->bytes_used, info->bytes_pinned,
6536 info->bytes_reserved, info->bytes_may_use,
6537 info->bytes_readonly);
6538 spin_unlock(&info->lock);
6539
6540 if (!dump_block_groups)
6541 return;
6542
6543 down_read(&info->groups_sem);
6544 again:
6545 list_for_each_entry(cache, &info->block_groups[index], list) {
6546 spin_lock(&cache->lock);
6547 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6548 cache->key.objectid, cache->key.offset,
6549 btrfs_block_group_used(&cache->item), cache->pinned,
6550 cache->reserved, cache->ro ? "[readonly]" : "");
6551 btrfs_dump_free_space(cache, bytes);
6552 spin_unlock(&cache->lock);
6553 }
6554 if (++index < BTRFS_NR_RAID_TYPES)
6555 goto again;
6556 up_read(&info->groups_sem);
6557 }
6558
6559 int btrfs_reserve_extent(struct btrfs_root *root,
6560 u64 num_bytes, u64 min_alloc_size,
6561 u64 empty_size, u64 hint_byte,
6562 struct btrfs_key *ins, int is_data)
6563 {
6564 bool final_tried = false;
6565 u64 flags;
6566 int ret;
6567
6568 flags = btrfs_get_alloc_profile(root, is_data);
6569 again:
6570 WARN_ON(num_bytes < root->sectorsize);
6571 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6572 flags);
6573
6574 if (ret == -ENOSPC) {
6575 if (!final_tried) {
6576 num_bytes = num_bytes >> 1;
6577 num_bytes = round_down(num_bytes, root->sectorsize);
6578 num_bytes = max(num_bytes, min_alloc_size);
6579 if (num_bytes == min_alloc_size)
6580 final_tried = true;
6581 goto again;
6582 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6583 struct btrfs_space_info *sinfo;
6584
6585 sinfo = __find_space_info(root->fs_info, flags);
6586 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6587 flags, num_bytes);
6588 if (sinfo)
6589 dump_space_info(sinfo, num_bytes, 1);
6590 }
6591 }
6592
6593 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6594
6595 return ret;
6596 }
6597
6598 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6599 u64 start, u64 len, int pin)
6600 {
6601 struct btrfs_block_group_cache *cache;
6602 int ret = 0;
6603
6604 cache = btrfs_lookup_block_group(root->fs_info, start);
6605 if (!cache) {
6606 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6607 start);
6608 return -ENOSPC;
6609 }
6610
6611 if (btrfs_test_opt(root, DISCARD))
6612 ret = btrfs_discard_extent(root, start, len, NULL);
6613
6614 if (pin)
6615 pin_down_extent(root, cache, start, len, 1);
6616 else {
6617 btrfs_add_free_space(cache, start, len);
6618 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6619 }
6620 btrfs_put_block_group(cache);
6621
6622 trace_btrfs_reserved_extent_free(root, start, len);
6623
6624 return ret;
6625 }
6626
6627 int btrfs_free_reserved_extent(struct btrfs_root *root,
6628 u64 start, u64 len)
6629 {
6630 return __btrfs_free_reserved_extent(root, start, len, 0);
6631 }
6632
6633 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6634 u64 start, u64 len)
6635 {
6636 return __btrfs_free_reserved_extent(root, start, len, 1);
6637 }
6638
6639 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6640 struct btrfs_root *root,
6641 u64 parent, u64 root_objectid,
6642 u64 flags, u64 owner, u64 offset,
6643 struct btrfs_key *ins, int ref_mod)
6644 {
6645 int ret;
6646 struct btrfs_fs_info *fs_info = root->fs_info;
6647 struct btrfs_extent_item *extent_item;
6648 struct btrfs_extent_inline_ref *iref;
6649 struct btrfs_path *path;
6650 struct extent_buffer *leaf;
6651 int type;
6652 u32 size;
6653
6654 if (parent > 0)
6655 type = BTRFS_SHARED_DATA_REF_KEY;
6656 else
6657 type = BTRFS_EXTENT_DATA_REF_KEY;
6658
6659 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6660
6661 path = btrfs_alloc_path();
6662 if (!path)
6663 return -ENOMEM;
6664
6665 path->leave_spinning = 1;
6666 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6667 ins, size);
6668 if (ret) {
6669 btrfs_free_path(path);
6670 return ret;
6671 }
6672
6673 leaf = path->nodes[0];
6674 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6675 struct btrfs_extent_item);
6676 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6677 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6678 btrfs_set_extent_flags(leaf, extent_item,
6679 flags | BTRFS_EXTENT_FLAG_DATA);
6680
6681 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6682 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6683 if (parent > 0) {
6684 struct btrfs_shared_data_ref *ref;
6685 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6686 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6687 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6688 } else {
6689 struct btrfs_extent_data_ref *ref;
6690 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6691 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6692 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6693 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6694 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6695 }
6696
6697 btrfs_mark_buffer_dirty(path->nodes[0]);
6698 btrfs_free_path(path);
6699
6700 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6701 if (ret) { /* -ENOENT, logic error */
6702 btrfs_err(fs_info, "update block group failed for %llu %llu",
6703 ins->objectid, ins->offset);
6704 BUG();
6705 }
6706 return ret;
6707 }
6708
6709 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6710 struct btrfs_root *root,
6711 u64 parent, u64 root_objectid,
6712 u64 flags, struct btrfs_disk_key *key,
6713 int level, struct btrfs_key *ins)
6714 {
6715 int ret;
6716 struct btrfs_fs_info *fs_info = root->fs_info;
6717 struct btrfs_extent_item *extent_item;
6718 struct btrfs_tree_block_info *block_info;
6719 struct btrfs_extent_inline_ref *iref;
6720 struct btrfs_path *path;
6721 struct extent_buffer *leaf;
6722 u32 size = sizeof(*extent_item) + sizeof(*iref);
6723 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6724 SKINNY_METADATA);
6725
6726 if (!skinny_metadata)
6727 size += sizeof(*block_info);
6728
6729 path = btrfs_alloc_path();
6730 if (!path)
6731 return -ENOMEM;
6732
6733 path->leave_spinning = 1;
6734 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6735 ins, size);
6736 if (ret) {
6737 btrfs_free_path(path);
6738 return ret;
6739 }
6740
6741 leaf = path->nodes[0];
6742 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6743 struct btrfs_extent_item);
6744 btrfs_set_extent_refs(leaf, extent_item, 1);
6745 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6746 btrfs_set_extent_flags(leaf, extent_item,
6747 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6748
6749 if (skinny_metadata) {
6750 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6751 } else {
6752 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6753 btrfs_set_tree_block_key(leaf, block_info, key);
6754 btrfs_set_tree_block_level(leaf, block_info, level);
6755 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6756 }
6757
6758 if (parent > 0) {
6759 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6760 btrfs_set_extent_inline_ref_type(leaf, iref,
6761 BTRFS_SHARED_BLOCK_REF_KEY);
6762 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6763 } else {
6764 btrfs_set_extent_inline_ref_type(leaf, iref,
6765 BTRFS_TREE_BLOCK_REF_KEY);
6766 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6767 }
6768
6769 btrfs_mark_buffer_dirty(leaf);
6770 btrfs_free_path(path);
6771
6772 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6773 if (ret) { /* -ENOENT, logic error */
6774 btrfs_err(fs_info, "update block group failed for %llu %llu",
6775 ins->objectid, ins->offset);
6776 BUG();
6777 }
6778 return ret;
6779 }
6780
6781 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6782 struct btrfs_root *root,
6783 u64 root_objectid, u64 owner,
6784 u64 offset, struct btrfs_key *ins)
6785 {
6786 int ret;
6787
6788 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6789
6790 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6791 ins->offset, 0,
6792 root_objectid, owner, offset,
6793 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6794 return ret;
6795 }
6796
6797 /*
6798 * this is used by the tree logging recovery code. It records that
6799 * an extent has been allocated and makes sure to clear the free
6800 * space cache bits as well
6801 */
6802 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6803 struct btrfs_root *root,
6804 u64 root_objectid, u64 owner, u64 offset,
6805 struct btrfs_key *ins)
6806 {
6807 int ret;
6808 struct btrfs_block_group_cache *block_group;
6809
6810 /*
6811 * Mixed block groups will exclude before processing the log so we only
6812 * need to do the exlude dance if this fs isn't mixed.
6813 */
6814 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6815 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6816 if (ret)
6817 return ret;
6818 }
6819
6820 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6821 if (!block_group)
6822 return -EINVAL;
6823
6824 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6825 RESERVE_ALLOC_NO_ACCOUNT);
6826 BUG_ON(ret); /* logic error */
6827 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6828 0, owner, offset, ins, 1);
6829 btrfs_put_block_group(block_group);
6830 return ret;
6831 }
6832
6833 static struct extent_buffer *
6834 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6835 u64 bytenr, u32 blocksize, int level)
6836 {
6837 struct extent_buffer *buf;
6838
6839 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6840 if (!buf)
6841 return ERR_PTR(-ENOMEM);
6842 btrfs_set_header_generation(buf, trans->transid);
6843 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6844 btrfs_tree_lock(buf);
6845 clean_tree_block(trans, root, buf);
6846 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6847
6848 btrfs_set_lock_blocking(buf);
6849 btrfs_set_buffer_uptodate(buf);
6850
6851 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6852 /*
6853 * we allow two log transactions at a time, use different
6854 * EXENT bit to differentiate dirty pages.
6855 */
6856 if (root->log_transid % 2 == 0)
6857 set_extent_dirty(&root->dirty_log_pages, buf->start,
6858 buf->start + buf->len - 1, GFP_NOFS);
6859 else
6860 set_extent_new(&root->dirty_log_pages, buf->start,
6861 buf->start + buf->len - 1, GFP_NOFS);
6862 } else {
6863 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6864 buf->start + buf->len - 1, GFP_NOFS);
6865 }
6866 trans->blocks_used++;
6867 /* this returns a buffer locked for blocking */
6868 return buf;
6869 }
6870
6871 static struct btrfs_block_rsv *
6872 use_block_rsv(struct btrfs_trans_handle *trans,
6873 struct btrfs_root *root, u32 blocksize)
6874 {
6875 struct btrfs_block_rsv *block_rsv;
6876 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6877 int ret;
6878 bool global_updated = false;
6879
6880 block_rsv = get_block_rsv(trans, root);
6881
6882 if (unlikely(block_rsv->size == 0))
6883 goto try_reserve;
6884 again:
6885 ret = block_rsv_use_bytes(block_rsv, blocksize);
6886 if (!ret)
6887 return block_rsv;
6888
6889 if (block_rsv->failfast)
6890 return ERR_PTR(ret);
6891
6892 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6893 global_updated = true;
6894 update_global_block_rsv(root->fs_info);
6895 goto again;
6896 }
6897
6898 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6899 static DEFINE_RATELIMIT_STATE(_rs,
6900 DEFAULT_RATELIMIT_INTERVAL * 10,
6901 /*DEFAULT_RATELIMIT_BURST*/ 1);
6902 if (__ratelimit(&_rs))
6903 WARN(1, KERN_DEBUG
6904 "btrfs: block rsv returned %d\n", ret);
6905 }
6906 try_reserve:
6907 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6908 BTRFS_RESERVE_NO_FLUSH);
6909 if (!ret)
6910 return block_rsv;
6911 /*
6912 * If we couldn't reserve metadata bytes try and use some from
6913 * the global reserve if its space type is the same as the global
6914 * reservation.
6915 */
6916 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6917 block_rsv->space_info == global_rsv->space_info) {
6918 ret = block_rsv_use_bytes(global_rsv, blocksize);
6919 if (!ret)
6920 return global_rsv;
6921 }
6922 return ERR_PTR(ret);
6923 }
6924
6925 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6926 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6927 {
6928 block_rsv_add_bytes(block_rsv, blocksize, 0);
6929 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6930 }
6931
6932 /*
6933 * finds a free extent and does all the dirty work required for allocation
6934 * returns the key for the extent through ins, and a tree buffer for
6935 * the first block of the extent through buf.
6936 *
6937 * returns the tree buffer or NULL.
6938 */
6939 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6940 struct btrfs_root *root, u32 blocksize,
6941 u64 parent, u64 root_objectid,
6942 struct btrfs_disk_key *key, int level,
6943 u64 hint, u64 empty_size)
6944 {
6945 struct btrfs_key ins;
6946 struct btrfs_block_rsv *block_rsv;
6947 struct extent_buffer *buf;
6948 u64 flags = 0;
6949 int ret;
6950 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6951 SKINNY_METADATA);
6952
6953 block_rsv = use_block_rsv(trans, root, blocksize);
6954 if (IS_ERR(block_rsv))
6955 return ERR_CAST(block_rsv);
6956
6957 ret = btrfs_reserve_extent(root, blocksize, blocksize,
6958 empty_size, hint, &ins, 0);
6959 if (ret) {
6960 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6961 return ERR_PTR(ret);
6962 }
6963
6964 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6965 blocksize, level);
6966 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6967
6968 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6969 if (parent == 0)
6970 parent = ins.objectid;
6971 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6972 } else
6973 BUG_ON(parent > 0);
6974
6975 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6976 struct btrfs_delayed_extent_op *extent_op;
6977 extent_op = btrfs_alloc_delayed_extent_op();
6978 BUG_ON(!extent_op); /* -ENOMEM */
6979 if (key)
6980 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6981 else
6982 memset(&extent_op->key, 0, sizeof(extent_op->key));
6983 extent_op->flags_to_set = flags;
6984 if (skinny_metadata)
6985 extent_op->update_key = 0;
6986 else
6987 extent_op->update_key = 1;
6988 extent_op->update_flags = 1;
6989 extent_op->is_data = 0;
6990 extent_op->level = level;
6991
6992 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6993 ins.objectid,
6994 ins.offset, parent, root_objectid,
6995 level, BTRFS_ADD_DELAYED_EXTENT,
6996 extent_op, 0);
6997 BUG_ON(ret); /* -ENOMEM */
6998 }
6999 return buf;
7000 }
7001
7002 struct walk_control {
7003 u64 refs[BTRFS_MAX_LEVEL];
7004 u64 flags[BTRFS_MAX_LEVEL];
7005 struct btrfs_key update_progress;
7006 int stage;
7007 int level;
7008 int shared_level;
7009 int update_ref;
7010 int keep_locks;
7011 int reada_slot;
7012 int reada_count;
7013 int for_reloc;
7014 };
7015
7016 #define DROP_REFERENCE 1
7017 #define UPDATE_BACKREF 2
7018
7019 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7020 struct btrfs_root *root,
7021 struct walk_control *wc,
7022 struct btrfs_path *path)
7023 {
7024 u64 bytenr;
7025 u64 generation;
7026 u64 refs;
7027 u64 flags;
7028 u32 nritems;
7029 u32 blocksize;
7030 struct btrfs_key key;
7031 struct extent_buffer *eb;
7032 int ret;
7033 int slot;
7034 int nread = 0;
7035
7036 if (path->slots[wc->level] < wc->reada_slot) {
7037 wc->reada_count = wc->reada_count * 2 / 3;
7038 wc->reada_count = max(wc->reada_count, 2);
7039 } else {
7040 wc->reada_count = wc->reada_count * 3 / 2;
7041 wc->reada_count = min_t(int, wc->reada_count,
7042 BTRFS_NODEPTRS_PER_BLOCK(root));
7043 }
7044
7045 eb = path->nodes[wc->level];
7046 nritems = btrfs_header_nritems(eb);
7047 blocksize = btrfs_level_size(root, wc->level - 1);
7048
7049 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7050 if (nread >= wc->reada_count)
7051 break;
7052
7053 cond_resched();
7054 bytenr = btrfs_node_blockptr(eb, slot);
7055 generation = btrfs_node_ptr_generation(eb, slot);
7056
7057 if (slot == path->slots[wc->level])
7058 goto reada;
7059
7060 if (wc->stage == UPDATE_BACKREF &&
7061 generation <= root->root_key.offset)
7062 continue;
7063
7064 /* We don't lock the tree block, it's OK to be racy here */
7065 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7066 wc->level - 1, 1, &refs,
7067 &flags);
7068 /* We don't care about errors in readahead. */
7069 if (ret < 0)
7070 continue;
7071 BUG_ON(refs == 0);
7072
7073 if (wc->stage == DROP_REFERENCE) {
7074 if (refs == 1)
7075 goto reada;
7076
7077 if (wc->level == 1 &&
7078 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7079 continue;
7080 if (!wc->update_ref ||
7081 generation <= root->root_key.offset)
7082 continue;
7083 btrfs_node_key_to_cpu(eb, &key, slot);
7084 ret = btrfs_comp_cpu_keys(&key,
7085 &wc->update_progress);
7086 if (ret < 0)
7087 continue;
7088 } else {
7089 if (wc->level == 1 &&
7090 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7091 continue;
7092 }
7093 reada:
7094 ret = readahead_tree_block(root, bytenr, blocksize,
7095 generation);
7096 if (ret)
7097 break;
7098 nread++;
7099 }
7100 wc->reada_slot = slot;
7101 }
7102
7103 /*
7104 * helper to process tree block while walking down the tree.
7105 *
7106 * when wc->stage == UPDATE_BACKREF, this function updates
7107 * back refs for pointers in the block.
7108 *
7109 * NOTE: return value 1 means we should stop walking down.
7110 */
7111 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7112 struct btrfs_root *root,
7113 struct btrfs_path *path,
7114 struct walk_control *wc, int lookup_info)
7115 {
7116 int level = wc->level;
7117 struct extent_buffer *eb = path->nodes[level];
7118 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7119 int ret;
7120
7121 if (wc->stage == UPDATE_BACKREF &&
7122 btrfs_header_owner(eb) != root->root_key.objectid)
7123 return 1;
7124
7125 /*
7126 * when reference count of tree block is 1, it won't increase
7127 * again. once full backref flag is set, we never clear it.
7128 */
7129 if (lookup_info &&
7130 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7131 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7132 BUG_ON(!path->locks[level]);
7133 ret = btrfs_lookup_extent_info(trans, root,
7134 eb->start, level, 1,
7135 &wc->refs[level],
7136 &wc->flags[level]);
7137 BUG_ON(ret == -ENOMEM);
7138 if (ret)
7139 return ret;
7140 BUG_ON(wc->refs[level] == 0);
7141 }
7142
7143 if (wc->stage == DROP_REFERENCE) {
7144 if (wc->refs[level] > 1)
7145 return 1;
7146
7147 if (path->locks[level] && !wc->keep_locks) {
7148 btrfs_tree_unlock_rw(eb, path->locks[level]);
7149 path->locks[level] = 0;
7150 }
7151 return 0;
7152 }
7153
7154 /* wc->stage == UPDATE_BACKREF */
7155 if (!(wc->flags[level] & flag)) {
7156 BUG_ON(!path->locks[level]);
7157 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7158 BUG_ON(ret); /* -ENOMEM */
7159 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7160 BUG_ON(ret); /* -ENOMEM */
7161 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7162 eb->len, flag,
7163 btrfs_header_level(eb), 0);
7164 BUG_ON(ret); /* -ENOMEM */
7165 wc->flags[level] |= flag;
7166 }
7167
7168 /*
7169 * the block is shared by multiple trees, so it's not good to
7170 * keep the tree lock
7171 */
7172 if (path->locks[level] && level > 0) {
7173 btrfs_tree_unlock_rw(eb, path->locks[level]);
7174 path->locks[level] = 0;
7175 }
7176 return 0;
7177 }
7178
7179 /*
7180 * helper to process tree block pointer.
7181 *
7182 * when wc->stage == DROP_REFERENCE, this function checks
7183 * reference count of the block pointed to. if the block
7184 * is shared and we need update back refs for the subtree
7185 * rooted at the block, this function changes wc->stage to
7186 * UPDATE_BACKREF. if the block is shared and there is no
7187 * need to update back, this function drops the reference
7188 * to the block.
7189 *
7190 * NOTE: return value 1 means we should stop walking down.
7191 */
7192 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7193 struct btrfs_root *root,
7194 struct btrfs_path *path,
7195 struct walk_control *wc, int *lookup_info)
7196 {
7197 u64 bytenr;
7198 u64 generation;
7199 u64 parent;
7200 u32 blocksize;
7201 struct btrfs_key key;
7202 struct extent_buffer *next;
7203 int level = wc->level;
7204 int reada = 0;
7205 int ret = 0;
7206
7207 generation = btrfs_node_ptr_generation(path->nodes[level],
7208 path->slots[level]);
7209 /*
7210 * if the lower level block was created before the snapshot
7211 * was created, we know there is no need to update back refs
7212 * for the subtree
7213 */
7214 if (wc->stage == UPDATE_BACKREF &&
7215 generation <= root->root_key.offset) {
7216 *lookup_info = 1;
7217 return 1;
7218 }
7219
7220 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7221 blocksize = btrfs_level_size(root, level - 1);
7222
7223 next = btrfs_find_tree_block(root, bytenr, blocksize);
7224 if (!next) {
7225 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7226 if (!next)
7227 return -ENOMEM;
7228 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7229 level - 1);
7230 reada = 1;
7231 }
7232 btrfs_tree_lock(next);
7233 btrfs_set_lock_blocking(next);
7234
7235 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7236 &wc->refs[level - 1],
7237 &wc->flags[level - 1]);
7238 if (ret < 0) {
7239 btrfs_tree_unlock(next);
7240 return ret;
7241 }
7242
7243 if (unlikely(wc->refs[level - 1] == 0)) {
7244 btrfs_err(root->fs_info, "Missing references.");
7245 BUG();
7246 }
7247 *lookup_info = 0;
7248
7249 if (wc->stage == DROP_REFERENCE) {
7250 if (wc->refs[level - 1] > 1) {
7251 if (level == 1 &&
7252 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7253 goto skip;
7254
7255 if (!wc->update_ref ||
7256 generation <= root->root_key.offset)
7257 goto skip;
7258
7259 btrfs_node_key_to_cpu(path->nodes[level], &key,
7260 path->slots[level]);
7261 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7262 if (ret < 0)
7263 goto skip;
7264
7265 wc->stage = UPDATE_BACKREF;
7266 wc->shared_level = level - 1;
7267 }
7268 } else {
7269 if (level == 1 &&
7270 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7271 goto skip;
7272 }
7273
7274 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7275 btrfs_tree_unlock(next);
7276 free_extent_buffer(next);
7277 next = NULL;
7278 *lookup_info = 1;
7279 }
7280
7281 if (!next) {
7282 if (reada && level == 1)
7283 reada_walk_down(trans, root, wc, path);
7284 next = read_tree_block(root, bytenr, blocksize, generation);
7285 if (!next || !extent_buffer_uptodate(next)) {
7286 free_extent_buffer(next);
7287 return -EIO;
7288 }
7289 btrfs_tree_lock(next);
7290 btrfs_set_lock_blocking(next);
7291 }
7292
7293 level--;
7294 BUG_ON(level != btrfs_header_level(next));
7295 path->nodes[level] = next;
7296 path->slots[level] = 0;
7297 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7298 wc->level = level;
7299 if (wc->level == 1)
7300 wc->reada_slot = 0;
7301 return 0;
7302 skip:
7303 wc->refs[level - 1] = 0;
7304 wc->flags[level - 1] = 0;
7305 if (wc->stage == DROP_REFERENCE) {
7306 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7307 parent = path->nodes[level]->start;
7308 } else {
7309 BUG_ON(root->root_key.objectid !=
7310 btrfs_header_owner(path->nodes[level]));
7311 parent = 0;
7312 }
7313
7314 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7315 root->root_key.objectid, level - 1, 0, 0);
7316 BUG_ON(ret); /* -ENOMEM */
7317 }
7318 btrfs_tree_unlock(next);
7319 free_extent_buffer(next);
7320 *lookup_info = 1;
7321 return 1;
7322 }
7323
7324 /*
7325 * helper to process tree block while walking up the tree.
7326 *
7327 * when wc->stage == DROP_REFERENCE, this function drops
7328 * reference count on the block.
7329 *
7330 * when wc->stage == UPDATE_BACKREF, this function changes
7331 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7332 * to UPDATE_BACKREF previously while processing the block.
7333 *
7334 * NOTE: return value 1 means we should stop walking up.
7335 */
7336 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7337 struct btrfs_root *root,
7338 struct btrfs_path *path,
7339 struct walk_control *wc)
7340 {
7341 int ret;
7342 int level = wc->level;
7343 struct extent_buffer *eb = path->nodes[level];
7344 u64 parent = 0;
7345
7346 if (wc->stage == UPDATE_BACKREF) {
7347 BUG_ON(wc->shared_level < level);
7348 if (level < wc->shared_level)
7349 goto out;
7350
7351 ret = find_next_key(path, level + 1, &wc->update_progress);
7352 if (ret > 0)
7353 wc->update_ref = 0;
7354
7355 wc->stage = DROP_REFERENCE;
7356 wc->shared_level = -1;
7357 path->slots[level] = 0;
7358
7359 /*
7360 * check reference count again if the block isn't locked.
7361 * we should start walking down the tree again if reference
7362 * count is one.
7363 */
7364 if (!path->locks[level]) {
7365 BUG_ON(level == 0);
7366 btrfs_tree_lock(eb);
7367 btrfs_set_lock_blocking(eb);
7368 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7369
7370 ret = btrfs_lookup_extent_info(trans, root,
7371 eb->start, level, 1,
7372 &wc->refs[level],
7373 &wc->flags[level]);
7374 if (ret < 0) {
7375 btrfs_tree_unlock_rw(eb, path->locks[level]);
7376 path->locks[level] = 0;
7377 return ret;
7378 }
7379 BUG_ON(wc->refs[level] == 0);
7380 if (wc->refs[level] == 1) {
7381 btrfs_tree_unlock_rw(eb, path->locks[level]);
7382 path->locks[level] = 0;
7383 return 1;
7384 }
7385 }
7386 }
7387
7388 /* wc->stage == DROP_REFERENCE */
7389 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7390
7391 if (wc->refs[level] == 1) {
7392 if (level == 0) {
7393 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7394 ret = btrfs_dec_ref(trans, root, eb, 1,
7395 wc->for_reloc);
7396 else
7397 ret = btrfs_dec_ref(trans, root, eb, 0,
7398 wc->for_reloc);
7399 BUG_ON(ret); /* -ENOMEM */
7400 }
7401 /* make block locked assertion in clean_tree_block happy */
7402 if (!path->locks[level] &&
7403 btrfs_header_generation(eb) == trans->transid) {
7404 btrfs_tree_lock(eb);
7405 btrfs_set_lock_blocking(eb);
7406 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7407 }
7408 clean_tree_block(trans, root, eb);
7409 }
7410
7411 if (eb == root->node) {
7412 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7413 parent = eb->start;
7414 else
7415 BUG_ON(root->root_key.objectid !=
7416 btrfs_header_owner(eb));
7417 } else {
7418 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7419 parent = path->nodes[level + 1]->start;
7420 else
7421 BUG_ON(root->root_key.objectid !=
7422 btrfs_header_owner(path->nodes[level + 1]));
7423 }
7424
7425 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7426 out:
7427 wc->refs[level] = 0;
7428 wc->flags[level] = 0;
7429 return 0;
7430 }
7431
7432 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7433 struct btrfs_root *root,
7434 struct btrfs_path *path,
7435 struct walk_control *wc)
7436 {
7437 int level = wc->level;
7438 int lookup_info = 1;
7439 int ret;
7440
7441 while (level >= 0) {
7442 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7443 if (ret > 0)
7444 break;
7445
7446 if (level == 0)
7447 break;
7448
7449 if (path->slots[level] >=
7450 btrfs_header_nritems(path->nodes[level]))
7451 break;
7452
7453 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7454 if (ret > 0) {
7455 path->slots[level]++;
7456 continue;
7457 } else if (ret < 0)
7458 return ret;
7459 level = wc->level;
7460 }
7461 return 0;
7462 }
7463
7464 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7465 struct btrfs_root *root,
7466 struct btrfs_path *path,
7467 struct walk_control *wc, int max_level)
7468 {
7469 int level = wc->level;
7470 int ret;
7471
7472 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7473 while (level < max_level && path->nodes[level]) {
7474 wc->level = level;
7475 if (path->slots[level] + 1 <
7476 btrfs_header_nritems(path->nodes[level])) {
7477 path->slots[level]++;
7478 return 0;
7479 } else {
7480 ret = walk_up_proc(trans, root, path, wc);
7481 if (ret > 0)
7482 return 0;
7483
7484 if (path->locks[level]) {
7485 btrfs_tree_unlock_rw(path->nodes[level],
7486 path->locks[level]);
7487 path->locks[level] = 0;
7488 }
7489 free_extent_buffer(path->nodes[level]);
7490 path->nodes[level] = NULL;
7491 level++;
7492 }
7493 }
7494 return 1;
7495 }
7496
7497 /*
7498 * drop a subvolume tree.
7499 *
7500 * this function traverses the tree freeing any blocks that only
7501 * referenced by the tree.
7502 *
7503 * when a shared tree block is found. this function decreases its
7504 * reference count by one. if update_ref is true, this function
7505 * also make sure backrefs for the shared block and all lower level
7506 * blocks are properly updated.
7507 *
7508 * If called with for_reloc == 0, may exit early with -EAGAIN
7509 */
7510 int btrfs_drop_snapshot(struct btrfs_root *root,
7511 struct btrfs_block_rsv *block_rsv, int update_ref,
7512 int for_reloc)
7513 {
7514 struct btrfs_path *path;
7515 struct btrfs_trans_handle *trans;
7516 struct btrfs_root *tree_root = root->fs_info->tree_root;
7517 struct btrfs_root_item *root_item = &root->root_item;
7518 struct walk_control *wc;
7519 struct btrfs_key key;
7520 int err = 0;
7521 int ret;
7522 int level;
7523 bool root_dropped = false;
7524
7525 path = btrfs_alloc_path();
7526 if (!path) {
7527 err = -ENOMEM;
7528 goto out;
7529 }
7530
7531 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7532 if (!wc) {
7533 btrfs_free_path(path);
7534 err = -ENOMEM;
7535 goto out;
7536 }
7537
7538 trans = btrfs_start_transaction(tree_root, 0);
7539 if (IS_ERR(trans)) {
7540 err = PTR_ERR(trans);
7541 goto out_free;
7542 }
7543
7544 if (block_rsv)
7545 trans->block_rsv = block_rsv;
7546
7547 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7548 level = btrfs_header_level(root->node);
7549 path->nodes[level] = btrfs_lock_root_node(root);
7550 btrfs_set_lock_blocking(path->nodes[level]);
7551 path->slots[level] = 0;
7552 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7553 memset(&wc->update_progress, 0,
7554 sizeof(wc->update_progress));
7555 } else {
7556 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7557 memcpy(&wc->update_progress, &key,
7558 sizeof(wc->update_progress));
7559
7560 level = root_item->drop_level;
7561 BUG_ON(level == 0);
7562 path->lowest_level = level;
7563 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7564 path->lowest_level = 0;
7565 if (ret < 0) {
7566 err = ret;
7567 goto out_end_trans;
7568 }
7569 WARN_ON(ret > 0);
7570
7571 /*
7572 * unlock our path, this is safe because only this
7573 * function is allowed to delete this snapshot
7574 */
7575 btrfs_unlock_up_safe(path, 0);
7576
7577 level = btrfs_header_level(root->node);
7578 while (1) {
7579 btrfs_tree_lock(path->nodes[level]);
7580 btrfs_set_lock_blocking(path->nodes[level]);
7581 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7582
7583 ret = btrfs_lookup_extent_info(trans, root,
7584 path->nodes[level]->start,
7585 level, 1, &wc->refs[level],
7586 &wc->flags[level]);
7587 if (ret < 0) {
7588 err = ret;
7589 goto out_end_trans;
7590 }
7591 BUG_ON(wc->refs[level] == 0);
7592
7593 if (level == root_item->drop_level)
7594 break;
7595
7596 btrfs_tree_unlock(path->nodes[level]);
7597 path->locks[level] = 0;
7598 WARN_ON(wc->refs[level] != 1);
7599 level--;
7600 }
7601 }
7602
7603 wc->level = level;
7604 wc->shared_level = -1;
7605 wc->stage = DROP_REFERENCE;
7606 wc->update_ref = update_ref;
7607 wc->keep_locks = 0;
7608 wc->for_reloc = for_reloc;
7609 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7610
7611 while (1) {
7612
7613 ret = walk_down_tree(trans, root, path, wc);
7614 if (ret < 0) {
7615 err = ret;
7616 break;
7617 }
7618
7619 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7620 if (ret < 0) {
7621 err = ret;
7622 break;
7623 }
7624
7625 if (ret > 0) {
7626 BUG_ON(wc->stage != DROP_REFERENCE);
7627 break;
7628 }
7629
7630 if (wc->stage == DROP_REFERENCE) {
7631 level = wc->level;
7632 btrfs_node_key(path->nodes[level],
7633 &root_item->drop_progress,
7634 path->slots[level]);
7635 root_item->drop_level = level;
7636 }
7637
7638 BUG_ON(wc->level == 0);
7639 if (btrfs_should_end_transaction(trans, tree_root) ||
7640 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7641 ret = btrfs_update_root(trans, tree_root,
7642 &root->root_key,
7643 root_item);
7644 if (ret) {
7645 btrfs_abort_transaction(trans, tree_root, ret);
7646 err = ret;
7647 goto out_end_trans;
7648 }
7649
7650 btrfs_end_transaction_throttle(trans, tree_root);
7651 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7652 pr_debug("btrfs: drop snapshot early exit\n");
7653 err = -EAGAIN;
7654 goto out_free;
7655 }
7656
7657 trans = btrfs_start_transaction(tree_root, 0);
7658 if (IS_ERR(trans)) {
7659 err = PTR_ERR(trans);
7660 goto out_free;
7661 }
7662 if (block_rsv)
7663 trans->block_rsv = block_rsv;
7664 }
7665 }
7666 btrfs_release_path(path);
7667 if (err)
7668 goto out_end_trans;
7669
7670 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7671 if (ret) {
7672 btrfs_abort_transaction(trans, tree_root, ret);
7673 goto out_end_trans;
7674 }
7675
7676 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7677 ret = btrfs_find_root(tree_root, &root->root_key, path,
7678 NULL, NULL);
7679 if (ret < 0) {
7680 btrfs_abort_transaction(trans, tree_root, ret);
7681 err = ret;
7682 goto out_end_trans;
7683 } else if (ret > 0) {
7684 /* if we fail to delete the orphan item this time
7685 * around, it'll get picked up the next time.
7686 *
7687 * The most common failure here is just -ENOENT.
7688 */
7689 btrfs_del_orphan_item(trans, tree_root,
7690 root->root_key.objectid);
7691 }
7692 }
7693
7694 if (root->in_radix) {
7695 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7696 } else {
7697 free_extent_buffer(root->node);
7698 free_extent_buffer(root->commit_root);
7699 btrfs_put_fs_root(root);
7700 }
7701 root_dropped = true;
7702 out_end_trans:
7703 btrfs_end_transaction_throttle(trans, tree_root);
7704 out_free:
7705 kfree(wc);
7706 btrfs_free_path(path);
7707 out:
7708 /*
7709 * So if we need to stop dropping the snapshot for whatever reason we
7710 * need to make sure to add it back to the dead root list so that we
7711 * keep trying to do the work later. This also cleans up roots if we
7712 * don't have it in the radix (like when we recover after a power fail
7713 * or unmount) so we don't leak memory.
7714 */
7715 if (!for_reloc && root_dropped == false)
7716 btrfs_add_dead_root(root);
7717 if (err)
7718 btrfs_std_error(root->fs_info, err);
7719 return err;
7720 }
7721
7722 /*
7723 * drop subtree rooted at tree block 'node'.
7724 *
7725 * NOTE: this function will unlock and release tree block 'node'
7726 * only used by relocation code
7727 */
7728 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7729 struct btrfs_root *root,
7730 struct extent_buffer *node,
7731 struct extent_buffer *parent)
7732 {
7733 struct btrfs_path *path;
7734 struct walk_control *wc;
7735 int level;
7736 int parent_level;
7737 int ret = 0;
7738 int wret;
7739
7740 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7741
7742 path = btrfs_alloc_path();
7743 if (!path)
7744 return -ENOMEM;
7745
7746 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7747 if (!wc) {
7748 btrfs_free_path(path);
7749 return -ENOMEM;
7750 }
7751
7752 btrfs_assert_tree_locked(parent);
7753 parent_level = btrfs_header_level(parent);
7754 extent_buffer_get(parent);
7755 path->nodes[parent_level] = parent;
7756 path->slots[parent_level] = btrfs_header_nritems(parent);
7757
7758 btrfs_assert_tree_locked(node);
7759 level = btrfs_header_level(node);
7760 path->nodes[level] = node;
7761 path->slots[level] = 0;
7762 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7763
7764 wc->refs[parent_level] = 1;
7765 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7766 wc->level = level;
7767 wc->shared_level = -1;
7768 wc->stage = DROP_REFERENCE;
7769 wc->update_ref = 0;
7770 wc->keep_locks = 1;
7771 wc->for_reloc = 1;
7772 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7773
7774 while (1) {
7775 wret = walk_down_tree(trans, root, path, wc);
7776 if (wret < 0) {
7777 ret = wret;
7778 break;
7779 }
7780
7781 wret = walk_up_tree(trans, root, path, wc, parent_level);
7782 if (wret < 0)
7783 ret = wret;
7784 if (wret != 0)
7785 break;
7786 }
7787
7788 kfree(wc);
7789 btrfs_free_path(path);
7790 return ret;
7791 }
7792
7793 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7794 {
7795 u64 num_devices;
7796 u64 stripped;
7797
7798 /*
7799 * if restripe for this chunk_type is on pick target profile and
7800 * return, otherwise do the usual balance
7801 */
7802 stripped = get_restripe_target(root->fs_info, flags);
7803 if (stripped)
7804 return extended_to_chunk(stripped);
7805
7806 /*
7807 * we add in the count of missing devices because we want
7808 * to make sure that any RAID levels on a degraded FS
7809 * continue to be honored.
7810 */
7811 num_devices = root->fs_info->fs_devices->rw_devices +
7812 root->fs_info->fs_devices->missing_devices;
7813
7814 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7815 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7816 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7817
7818 if (num_devices == 1) {
7819 stripped |= BTRFS_BLOCK_GROUP_DUP;
7820 stripped = flags & ~stripped;
7821
7822 /* turn raid0 into single device chunks */
7823 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7824 return stripped;
7825
7826 /* turn mirroring into duplication */
7827 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7828 BTRFS_BLOCK_GROUP_RAID10))
7829 return stripped | BTRFS_BLOCK_GROUP_DUP;
7830 } else {
7831 /* they already had raid on here, just return */
7832 if (flags & stripped)
7833 return flags;
7834
7835 stripped |= BTRFS_BLOCK_GROUP_DUP;
7836 stripped = flags & ~stripped;
7837
7838 /* switch duplicated blocks with raid1 */
7839 if (flags & BTRFS_BLOCK_GROUP_DUP)
7840 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7841
7842 /* this is drive concat, leave it alone */
7843 }
7844
7845 return flags;
7846 }
7847
7848 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7849 {
7850 struct btrfs_space_info *sinfo = cache->space_info;
7851 u64 num_bytes;
7852 u64 min_allocable_bytes;
7853 int ret = -ENOSPC;
7854
7855
7856 /*
7857 * We need some metadata space and system metadata space for
7858 * allocating chunks in some corner cases until we force to set
7859 * it to be readonly.
7860 */
7861 if ((sinfo->flags &
7862 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7863 !force)
7864 min_allocable_bytes = 1 * 1024 * 1024;
7865 else
7866 min_allocable_bytes = 0;
7867
7868 spin_lock(&sinfo->lock);
7869 spin_lock(&cache->lock);
7870
7871 if (cache->ro) {
7872 ret = 0;
7873 goto out;
7874 }
7875
7876 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7877 cache->bytes_super - btrfs_block_group_used(&cache->item);
7878
7879 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7880 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7881 min_allocable_bytes <= sinfo->total_bytes) {
7882 sinfo->bytes_readonly += num_bytes;
7883 cache->ro = 1;
7884 ret = 0;
7885 }
7886 out:
7887 spin_unlock(&cache->lock);
7888 spin_unlock(&sinfo->lock);
7889 return ret;
7890 }
7891
7892 int btrfs_set_block_group_ro(struct btrfs_root *root,
7893 struct btrfs_block_group_cache *cache)
7894
7895 {
7896 struct btrfs_trans_handle *trans;
7897 u64 alloc_flags;
7898 int ret;
7899
7900 BUG_ON(cache->ro);
7901
7902 trans = btrfs_join_transaction(root);
7903 if (IS_ERR(trans))
7904 return PTR_ERR(trans);
7905
7906 alloc_flags = update_block_group_flags(root, cache->flags);
7907 if (alloc_flags != cache->flags) {
7908 ret = do_chunk_alloc(trans, root, alloc_flags,
7909 CHUNK_ALLOC_FORCE);
7910 if (ret < 0)
7911 goto out;
7912 }
7913
7914 ret = set_block_group_ro(cache, 0);
7915 if (!ret)
7916 goto out;
7917 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7918 ret = do_chunk_alloc(trans, root, alloc_flags,
7919 CHUNK_ALLOC_FORCE);
7920 if (ret < 0)
7921 goto out;
7922 ret = set_block_group_ro(cache, 0);
7923 out:
7924 btrfs_end_transaction(trans, root);
7925 return ret;
7926 }
7927
7928 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7929 struct btrfs_root *root, u64 type)
7930 {
7931 u64 alloc_flags = get_alloc_profile(root, type);
7932 return do_chunk_alloc(trans, root, alloc_flags,
7933 CHUNK_ALLOC_FORCE);
7934 }
7935
7936 /*
7937 * helper to account the unused space of all the readonly block group in the
7938 * list. takes mirrors into account.
7939 */
7940 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7941 {
7942 struct btrfs_block_group_cache *block_group;
7943 u64 free_bytes = 0;
7944 int factor;
7945
7946 list_for_each_entry(block_group, groups_list, list) {
7947 spin_lock(&block_group->lock);
7948
7949 if (!block_group->ro) {
7950 spin_unlock(&block_group->lock);
7951 continue;
7952 }
7953
7954 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7955 BTRFS_BLOCK_GROUP_RAID10 |
7956 BTRFS_BLOCK_GROUP_DUP))
7957 factor = 2;
7958 else
7959 factor = 1;
7960
7961 free_bytes += (block_group->key.offset -
7962 btrfs_block_group_used(&block_group->item)) *
7963 factor;
7964
7965 spin_unlock(&block_group->lock);
7966 }
7967
7968 return free_bytes;
7969 }
7970
7971 /*
7972 * helper to account the unused space of all the readonly block group in the
7973 * space_info. takes mirrors into account.
7974 */
7975 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7976 {
7977 int i;
7978 u64 free_bytes = 0;
7979
7980 spin_lock(&sinfo->lock);
7981
7982 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7983 if (!list_empty(&sinfo->block_groups[i]))
7984 free_bytes += __btrfs_get_ro_block_group_free_space(
7985 &sinfo->block_groups[i]);
7986
7987 spin_unlock(&sinfo->lock);
7988
7989 return free_bytes;
7990 }
7991
7992 void btrfs_set_block_group_rw(struct btrfs_root *root,
7993 struct btrfs_block_group_cache *cache)
7994 {
7995 struct btrfs_space_info *sinfo = cache->space_info;
7996 u64 num_bytes;
7997
7998 BUG_ON(!cache->ro);
7999
8000 spin_lock(&sinfo->lock);
8001 spin_lock(&cache->lock);
8002 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8003 cache->bytes_super - btrfs_block_group_used(&cache->item);
8004 sinfo->bytes_readonly -= num_bytes;
8005 cache->ro = 0;
8006 spin_unlock(&cache->lock);
8007 spin_unlock(&sinfo->lock);
8008 }
8009
8010 /*
8011 * checks to see if its even possible to relocate this block group.
8012 *
8013 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8014 * ok to go ahead and try.
8015 */
8016 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8017 {
8018 struct btrfs_block_group_cache *block_group;
8019 struct btrfs_space_info *space_info;
8020 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8021 struct btrfs_device *device;
8022 struct btrfs_trans_handle *trans;
8023 u64 min_free;
8024 u64 dev_min = 1;
8025 u64 dev_nr = 0;
8026 u64 target;
8027 int index;
8028 int full = 0;
8029 int ret = 0;
8030
8031 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8032
8033 /* odd, couldn't find the block group, leave it alone */
8034 if (!block_group)
8035 return -1;
8036
8037 min_free = btrfs_block_group_used(&block_group->item);
8038
8039 /* no bytes used, we're good */
8040 if (!min_free)
8041 goto out;
8042
8043 space_info = block_group->space_info;
8044 spin_lock(&space_info->lock);
8045
8046 full = space_info->full;
8047
8048 /*
8049 * if this is the last block group we have in this space, we can't
8050 * relocate it unless we're able to allocate a new chunk below.
8051 *
8052 * Otherwise, we need to make sure we have room in the space to handle
8053 * all of the extents from this block group. If we can, we're good
8054 */
8055 if ((space_info->total_bytes != block_group->key.offset) &&
8056 (space_info->bytes_used + space_info->bytes_reserved +
8057 space_info->bytes_pinned + space_info->bytes_readonly +
8058 min_free < space_info->total_bytes)) {
8059 spin_unlock(&space_info->lock);
8060 goto out;
8061 }
8062 spin_unlock(&space_info->lock);
8063
8064 /*
8065 * ok we don't have enough space, but maybe we have free space on our
8066 * devices to allocate new chunks for relocation, so loop through our
8067 * alloc devices and guess if we have enough space. if this block
8068 * group is going to be restriped, run checks against the target
8069 * profile instead of the current one.
8070 */
8071 ret = -1;
8072
8073 /*
8074 * index:
8075 * 0: raid10
8076 * 1: raid1
8077 * 2: dup
8078 * 3: raid0
8079 * 4: single
8080 */
8081 target = get_restripe_target(root->fs_info, block_group->flags);
8082 if (target) {
8083 index = __get_raid_index(extended_to_chunk(target));
8084 } else {
8085 /*
8086 * this is just a balance, so if we were marked as full
8087 * we know there is no space for a new chunk
8088 */
8089 if (full)
8090 goto out;
8091
8092 index = get_block_group_index(block_group);
8093 }
8094
8095 if (index == BTRFS_RAID_RAID10) {
8096 dev_min = 4;
8097 /* Divide by 2 */
8098 min_free >>= 1;
8099 } else if (index == BTRFS_RAID_RAID1) {
8100 dev_min = 2;
8101 } else if (index == BTRFS_RAID_DUP) {
8102 /* Multiply by 2 */
8103 min_free <<= 1;
8104 } else if (index == BTRFS_RAID_RAID0) {
8105 dev_min = fs_devices->rw_devices;
8106 do_div(min_free, dev_min);
8107 }
8108
8109 /* We need to do this so that we can look at pending chunks */
8110 trans = btrfs_join_transaction(root);
8111 if (IS_ERR(trans)) {
8112 ret = PTR_ERR(trans);
8113 goto out;
8114 }
8115
8116 mutex_lock(&root->fs_info->chunk_mutex);
8117 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8118 u64 dev_offset;
8119
8120 /*
8121 * check to make sure we can actually find a chunk with enough
8122 * space to fit our block group in.
8123 */
8124 if (device->total_bytes > device->bytes_used + min_free &&
8125 !device->is_tgtdev_for_dev_replace) {
8126 ret = find_free_dev_extent(trans, device, min_free,
8127 &dev_offset, NULL);
8128 if (!ret)
8129 dev_nr++;
8130
8131 if (dev_nr >= dev_min)
8132 break;
8133
8134 ret = -1;
8135 }
8136 }
8137 mutex_unlock(&root->fs_info->chunk_mutex);
8138 btrfs_end_transaction(trans, root);
8139 out:
8140 btrfs_put_block_group(block_group);
8141 return ret;
8142 }
8143
8144 static int find_first_block_group(struct btrfs_root *root,
8145 struct btrfs_path *path, struct btrfs_key *key)
8146 {
8147 int ret = 0;
8148 struct btrfs_key found_key;
8149 struct extent_buffer *leaf;
8150 int slot;
8151
8152 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8153 if (ret < 0)
8154 goto out;
8155
8156 while (1) {
8157 slot = path->slots[0];
8158 leaf = path->nodes[0];
8159 if (slot >= btrfs_header_nritems(leaf)) {
8160 ret = btrfs_next_leaf(root, path);
8161 if (ret == 0)
8162 continue;
8163 if (ret < 0)
8164 goto out;
8165 break;
8166 }
8167 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8168
8169 if (found_key.objectid >= key->objectid &&
8170 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8171 ret = 0;
8172 goto out;
8173 }
8174 path->slots[0]++;
8175 }
8176 out:
8177 return ret;
8178 }
8179
8180 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8181 {
8182 struct btrfs_block_group_cache *block_group;
8183 u64 last = 0;
8184
8185 while (1) {
8186 struct inode *inode;
8187
8188 block_group = btrfs_lookup_first_block_group(info, last);
8189 while (block_group) {
8190 spin_lock(&block_group->lock);
8191 if (block_group->iref)
8192 break;
8193 spin_unlock(&block_group->lock);
8194 block_group = next_block_group(info->tree_root,
8195 block_group);
8196 }
8197 if (!block_group) {
8198 if (last == 0)
8199 break;
8200 last = 0;
8201 continue;
8202 }
8203
8204 inode = block_group->inode;
8205 block_group->iref = 0;
8206 block_group->inode = NULL;
8207 spin_unlock(&block_group->lock);
8208 iput(inode);
8209 last = block_group->key.objectid + block_group->key.offset;
8210 btrfs_put_block_group(block_group);
8211 }
8212 }
8213
8214 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8215 {
8216 struct btrfs_block_group_cache *block_group;
8217 struct btrfs_space_info *space_info;
8218 struct btrfs_caching_control *caching_ctl;
8219 struct rb_node *n;
8220
8221 down_write(&info->extent_commit_sem);
8222 while (!list_empty(&info->caching_block_groups)) {
8223 caching_ctl = list_entry(info->caching_block_groups.next,
8224 struct btrfs_caching_control, list);
8225 list_del(&caching_ctl->list);
8226 put_caching_control(caching_ctl);
8227 }
8228 up_write(&info->extent_commit_sem);
8229
8230 spin_lock(&info->block_group_cache_lock);
8231 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8232 block_group = rb_entry(n, struct btrfs_block_group_cache,
8233 cache_node);
8234 rb_erase(&block_group->cache_node,
8235 &info->block_group_cache_tree);
8236 spin_unlock(&info->block_group_cache_lock);
8237
8238 down_write(&block_group->space_info->groups_sem);
8239 list_del(&block_group->list);
8240 up_write(&block_group->space_info->groups_sem);
8241
8242 if (block_group->cached == BTRFS_CACHE_STARTED)
8243 wait_block_group_cache_done(block_group);
8244
8245 /*
8246 * We haven't cached this block group, which means we could
8247 * possibly have excluded extents on this block group.
8248 */
8249 if (block_group->cached == BTRFS_CACHE_NO ||
8250 block_group->cached == BTRFS_CACHE_ERROR)
8251 free_excluded_extents(info->extent_root, block_group);
8252
8253 btrfs_remove_free_space_cache(block_group);
8254 btrfs_put_block_group(block_group);
8255
8256 spin_lock(&info->block_group_cache_lock);
8257 }
8258 spin_unlock(&info->block_group_cache_lock);
8259
8260 /* now that all the block groups are freed, go through and
8261 * free all the space_info structs. This is only called during
8262 * the final stages of unmount, and so we know nobody is
8263 * using them. We call synchronize_rcu() once before we start,
8264 * just to be on the safe side.
8265 */
8266 synchronize_rcu();
8267
8268 release_global_block_rsv(info);
8269
8270 while(!list_empty(&info->space_info)) {
8271 space_info = list_entry(info->space_info.next,
8272 struct btrfs_space_info,
8273 list);
8274 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8275 if (space_info->bytes_pinned > 0 ||
8276 space_info->bytes_reserved > 0 ||
8277 space_info->bytes_may_use > 0) {
8278 WARN_ON(1);
8279 dump_space_info(space_info, 0, 0);
8280 }
8281 }
8282 percpu_counter_destroy(&space_info->total_bytes_pinned);
8283 list_del(&space_info->list);
8284 kfree(space_info);
8285 }
8286 return 0;
8287 }
8288
8289 static void __link_block_group(struct btrfs_space_info *space_info,
8290 struct btrfs_block_group_cache *cache)
8291 {
8292 int index = get_block_group_index(cache);
8293
8294 down_write(&space_info->groups_sem);
8295 list_add_tail(&cache->list, &space_info->block_groups[index]);
8296 up_write(&space_info->groups_sem);
8297 }
8298
8299 int btrfs_read_block_groups(struct btrfs_root *root)
8300 {
8301 struct btrfs_path *path;
8302 int ret;
8303 struct btrfs_block_group_cache *cache;
8304 struct btrfs_fs_info *info = root->fs_info;
8305 struct btrfs_space_info *space_info;
8306 struct btrfs_key key;
8307 struct btrfs_key found_key;
8308 struct extent_buffer *leaf;
8309 int need_clear = 0;
8310 u64 cache_gen;
8311
8312 root = info->extent_root;
8313 key.objectid = 0;
8314 key.offset = 0;
8315 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8316 path = btrfs_alloc_path();
8317 if (!path)
8318 return -ENOMEM;
8319 path->reada = 1;
8320
8321 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8322 if (btrfs_test_opt(root, SPACE_CACHE) &&
8323 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8324 need_clear = 1;
8325 if (btrfs_test_opt(root, CLEAR_CACHE))
8326 need_clear = 1;
8327
8328 while (1) {
8329 ret = find_first_block_group(root, path, &key);
8330 if (ret > 0)
8331 break;
8332 if (ret != 0)
8333 goto error;
8334 leaf = path->nodes[0];
8335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8336 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8337 if (!cache) {
8338 ret = -ENOMEM;
8339 goto error;
8340 }
8341 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8342 GFP_NOFS);
8343 if (!cache->free_space_ctl) {
8344 kfree(cache);
8345 ret = -ENOMEM;
8346 goto error;
8347 }
8348
8349 atomic_set(&cache->count, 1);
8350 spin_lock_init(&cache->lock);
8351 cache->fs_info = info;
8352 INIT_LIST_HEAD(&cache->list);
8353 INIT_LIST_HEAD(&cache->cluster_list);
8354
8355 if (need_clear) {
8356 /*
8357 * When we mount with old space cache, we need to
8358 * set BTRFS_DC_CLEAR and set dirty flag.
8359 *
8360 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8361 * truncate the old free space cache inode and
8362 * setup a new one.
8363 * b) Setting 'dirty flag' makes sure that we flush
8364 * the new space cache info onto disk.
8365 */
8366 cache->disk_cache_state = BTRFS_DC_CLEAR;
8367 if (btrfs_test_opt(root, SPACE_CACHE))
8368 cache->dirty = 1;
8369 }
8370
8371 read_extent_buffer(leaf, &cache->item,
8372 btrfs_item_ptr_offset(leaf, path->slots[0]),
8373 sizeof(cache->item));
8374 memcpy(&cache->key, &found_key, sizeof(found_key));
8375
8376 key.objectid = found_key.objectid + found_key.offset;
8377 btrfs_release_path(path);
8378 cache->flags = btrfs_block_group_flags(&cache->item);
8379 cache->sectorsize = root->sectorsize;
8380 cache->full_stripe_len = btrfs_full_stripe_len(root,
8381 &root->fs_info->mapping_tree,
8382 found_key.objectid);
8383 btrfs_init_free_space_ctl(cache);
8384
8385 /*
8386 * We need to exclude the super stripes now so that the space
8387 * info has super bytes accounted for, otherwise we'll think
8388 * we have more space than we actually do.
8389 */
8390 ret = exclude_super_stripes(root, cache);
8391 if (ret) {
8392 /*
8393 * We may have excluded something, so call this just in
8394 * case.
8395 */
8396 free_excluded_extents(root, cache);
8397 kfree(cache->free_space_ctl);
8398 kfree(cache);
8399 goto error;
8400 }
8401
8402 /*
8403 * check for two cases, either we are full, and therefore
8404 * don't need to bother with the caching work since we won't
8405 * find any space, or we are empty, and we can just add all
8406 * the space in and be done with it. This saves us _alot_ of
8407 * time, particularly in the full case.
8408 */
8409 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8410 cache->last_byte_to_unpin = (u64)-1;
8411 cache->cached = BTRFS_CACHE_FINISHED;
8412 free_excluded_extents(root, cache);
8413 } else if (btrfs_block_group_used(&cache->item) == 0) {
8414 cache->last_byte_to_unpin = (u64)-1;
8415 cache->cached = BTRFS_CACHE_FINISHED;
8416 add_new_free_space(cache, root->fs_info,
8417 found_key.objectid,
8418 found_key.objectid +
8419 found_key.offset);
8420 free_excluded_extents(root, cache);
8421 }
8422
8423 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8424 if (ret) {
8425 btrfs_remove_free_space_cache(cache);
8426 btrfs_put_block_group(cache);
8427 goto error;
8428 }
8429
8430 ret = update_space_info(info, cache->flags, found_key.offset,
8431 btrfs_block_group_used(&cache->item),
8432 &space_info);
8433 if (ret) {
8434 btrfs_remove_free_space_cache(cache);
8435 spin_lock(&info->block_group_cache_lock);
8436 rb_erase(&cache->cache_node,
8437 &info->block_group_cache_tree);
8438 spin_unlock(&info->block_group_cache_lock);
8439 btrfs_put_block_group(cache);
8440 goto error;
8441 }
8442
8443 cache->space_info = space_info;
8444 spin_lock(&cache->space_info->lock);
8445 cache->space_info->bytes_readonly += cache->bytes_super;
8446 spin_unlock(&cache->space_info->lock);
8447
8448 __link_block_group(space_info, cache);
8449
8450 set_avail_alloc_bits(root->fs_info, cache->flags);
8451 if (btrfs_chunk_readonly(root, cache->key.objectid))
8452 set_block_group_ro(cache, 1);
8453 }
8454
8455 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8456 if (!(get_alloc_profile(root, space_info->flags) &
8457 (BTRFS_BLOCK_GROUP_RAID10 |
8458 BTRFS_BLOCK_GROUP_RAID1 |
8459 BTRFS_BLOCK_GROUP_RAID5 |
8460 BTRFS_BLOCK_GROUP_RAID6 |
8461 BTRFS_BLOCK_GROUP_DUP)))
8462 continue;
8463 /*
8464 * avoid allocating from un-mirrored block group if there are
8465 * mirrored block groups.
8466 */
8467 list_for_each_entry(cache,
8468 &space_info->block_groups[BTRFS_RAID_RAID0],
8469 list)
8470 set_block_group_ro(cache, 1);
8471 list_for_each_entry(cache,
8472 &space_info->block_groups[BTRFS_RAID_SINGLE],
8473 list)
8474 set_block_group_ro(cache, 1);
8475 }
8476
8477 init_global_block_rsv(info);
8478 ret = 0;
8479 error:
8480 btrfs_free_path(path);
8481 return ret;
8482 }
8483
8484 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8485 struct btrfs_root *root)
8486 {
8487 struct btrfs_block_group_cache *block_group, *tmp;
8488 struct btrfs_root *extent_root = root->fs_info->extent_root;
8489 struct btrfs_block_group_item item;
8490 struct btrfs_key key;
8491 int ret = 0;
8492
8493 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8494 new_bg_list) {
8495 list_del_init(&block_group->new_bg_list);
8496
8497 if (ret)
8498 continue;
8499
8500 spin_lock(&block_group->lock);
8501 memcpy(&item, &block_group->item, sizeof(item));
8502 memcpy(&key, &block_group->key, sizeof(key));
8503 spin_unlock(&block_group->lock);
8504
8505 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8506 sizeof(item));
8507 if (ret)
8508 btrfs_abort_transaction(trans, extent_root, ret);
8509 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8510 key.objectid, key.offset);
8511 if (ret)
8512 btrfs_abort_transaction(trans, extent_root, ret);
8513 }
8514 }
8515
8516 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8517 struct btrfs_root *root, u64 bytes_used,
8518 u64 type, u64 chunk_objectid, u64 chunk_offset,
8519 u64 size)
8520 {
8521 int ret;
8522 struct btrfs_root *extent_root;
8523 struct btrfs_block_group_cache *cache;
8524
8525 extent_root = root->fs_info->extent_root;
8526
8527 root->fs_info->last_trans_log_full_commit = trans->transid;
8528
8529 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8530 if (!cache)
8531 return -ENOMEM;
8532 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8533 GFP_NOFS);
8534 if (!cache->free_space_ctl) {
8535 kfree(cache);
8536 return -ENOMEM;
8537 }
8538
8539 cache->key.objectid = chunk_offset;
8540 cache->key.offset = size;
8541 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8542 cache->sectorsize = root->sectorsize;
8543 cache->fs_info = root->fs_info;
8544 cache->full_stripe_len = btrfs_full_stripe_len(root,
8545 &root->fs_info->mapping_tree,
8546 chunk_offset);
8547
8548 atomic_set(&cache->count, 1);
8549 spin_lock_init(&cache->lock);
8550 INIT_LIST_HEAD(&cache->list);
8551 INIT_LIST_HEAD(&cache->cluster_list);
8552 INIT_LIST_HEAD(&cache->new_bg_list);
8553
8554 btrfs_init_free_space_ctl(cache);
8555
8556 btrfs_set_block_group_used(&cache->item, bytes_used);
8557 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8558 cache->flags = type;
8559 btrfs_set_block_group_flags(&cache->item, type);
8560
8561 cache->last_byte_to_unpin = (u64)-1;
8562 cache->cached = BTRFS_CACHE_FINISHED;
8563 ret = exclude_super_stripes(root, cache);
8564 if (ret) {
8565 /*
8566 * We may have excluded something, so call this just in
8567 * case.
8568 */
8569 free_excluded_extents(root, cache);
8570 kfree(cache->free_space_ctl);
8571 kfree(cache);
8572 return ret;
8573 }
8574
8575 add_new_free_space(cache, root->fs_info, chunk_offset,
8576 chunk_offset + size);
8577
8578 free_excluded_extents(root, cache);
8579
8580 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8581 if (ret) {
8582 btrfs_remove_free_space_cache(cache);
8583 btrfs_put_block_group(cache);
8584 return ret;
8585 }
8586
8587 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8588 &cache->space_info);
8589 if (ret) {
8590 btrfs_remove_free_space_cache(cache);
8591 spin_lock(&root->fs_info->block_group_cache_lock);
8592 rb_erase(&cache->cache_node,
8593 &root->fs_info->block_group_cache_tree);
8594 spin_unlock(&root->fs_info->block_group_cache_lock);
8595 btrfs_put_block_group(cache);
8596 return ret;
8597 }
8598 update_global_block_rsv(root->fs_info);
8599
8600 spin_lock(&cache->space_info->lock);
8601 cache->space_info->bytes_readonly += cache->bytes_super;
8602 spin_unlock(&cache->space_info->lock);
8603
8604 __link_block_group(cache->space_info, cache);
8605
8606 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8607
8608 set_avail_alloc_bits(extent_root->fs_info, type);
8609
8610 return 0;
8611 }
8612
8613 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8614 {
8615 u64 extra_flags = chunk_to_extended(flags) &
8616 BTRFS_EXTENDED_PROFILE_MASK;
8617
8618 write_seqlock(&fs_info->profiles_lock);
8619 if (flags & BTRFS_BLOCK_GROUP_DATA)
8620 fs_info->avail_data_alloc_bits &= ~extra_flags;
8621 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8622 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8623 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8624 fs_info->avail_system_alloc_bits &= ~extra_flags;
8625 write_sequnlock(&fs_info->profiles_lock);
8626 }
8627
8628 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8629 struct btrfs_root *root, u64 group_start)
8630 {
8631 struct btrfs_path *path;
8632 struct btrfs_block_group_cache *block_group;
8633 struct btrfs_free_cluster *cluster;
8634 struct btrfs_root *tree_root = root->fs_info->tree_root;
8635 struct btrfs_key key;
8636 struct inode *inode;
8637 int ret;
8638 int index;
8639 int factor;
8640
8641 root = root->fs_info->extent_root;
8642
8643 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8644 BUG_ON(!block_group);
8645 BUG_ON(!block_group->ro);
8646
8647 /*
8648 * Free the reserved super bytes from this block group before
8649 * remove it.
8650 */
8651 free_excluded_extents(root, block_group);
8652
8653 memcpy(&key, &block_group->key, sizeof(key));
8654 index = get_block_group_index(block_group);
8655 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8656 BTRFS_BLOCK_GROUP_RAID1 |
8657 BTRFS_BLOCK_GROUP_RAID10))
8658 factor = 2;
8659 else
8660 factor = 1;
8661
8662 /* make sure this block group isn't part of an allocation cluster */
8663 cluster = &root->fs_info->data_alloc_cluster;
8664 spin_lock(&cluster->refill_lock);
8665 btrfs_return_cluster_to_free_space(block_group, cluster);
8666 spin_unlock(&cluster->refill_lock);
8667
8668 /*
8669 * make sure this block group isn't part of a metadata
8670 * allocation cluster
8671 */
8672 cluster = &root->fs_info->meta_alloc_cluster;
8673 spin_lock(&cluster->refill_lock);
8674 btrfs_return_cluster_to_free_space(block_group, cluster);
8675 spin_unlock(&cluster->refill_lock);
8676
8677 path = btrfs_alloc_path();
8678 if (!path) {
8679 ret = -ENOMEM;
8680 goto out;
8681 }
8682
8683 inode = lookup_free_space_inode(tree_root, block_group, path);
8684 if (!IS_ERR(inode)) {
8685 ret = btrfs_orphan_add(trans, inode);
8686 if (ret) {
8687 btrfs_add_delayed_iput(inode);
8688 goto out;
8689 }
8690 clear_nlink(inode);
8691 /* One for the block groups ref */
8692 spin_lock(&block_group->lock);
8693 if (block_group->iref) {
8694 block_group->iref = 0;
8695 block_group->inode = NULL;
8696 spin_unlock(&block_group->lock);
8697 iput(inode);
8698 } else {
8699 spin_unlock(&block_group->lock);
8700 }
8701 /* One for our lookup ref */
8702 btrfs_add_delayed_iput(inode);
8703 }
8704
8705 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8706 key.offset = block_group->key.objectid;
8707 key.type = 0;
8708
8709 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8710 if (ret < 0)
8711 goto out;
8712 if (ret > 0)
8713 btrfs_release_path(path);
8714 if (ret == 0) {
8715 ret = btrfs_del_item(trans, tree_root, path);
8716 if (ret)
8717 goto out;
8718 btrfs_release_path(path);
8719 }
8720
8721 spin_lock(&root->fs_info->block_group_cache_lock);
8722 rb_erase(&block_group->cache_node,
8723 &root->fs_info->block_group_cache_tree);
8724
8725 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8726 root->fs_info->first_logical_byte = (u64)-1;
8727 spin_unlock(&root->fs_info->block_group_cache_lock);
8728
8729 down_write(&block_group->space_info->groups_sem);
8730 /*
8731 * we must use list_del_init so people can check to see if they
8732 * are still on the list after taking the semaphore
8733 */
8734 list_del_init(&block_group->list);
8735 if (list_empty(&block_group->space_info->block_groups[index]))
8736 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8737 up_write(&block_group->space_info->groups_sem);
8738
8739 if (block_group->cached == BTRFS_CACHE_STARTED)
8740 wait_block_group_cache_done(block_group);
8741
8742 btrfs_remove_free_space_cache(block_group);
8743
8744 spin_lock(&block_group->space_info->lock);
8745 block_group->space_info->total_bytes -= block_group->key.offset;
8746 block_group->space_info->bytes_readonly -= block_group->key.offset;
8747 block_group->space_info->disk_total -= block_group->key.offset * factor;
8748 spin_unlock(&block_group->space_info->lock);
8749
8750 memcpy(&key, &block_group->key, sizeof(key));
8751
8752 btrfs_clear_space_info_full(root->fs_info);
8753
8754 btrfs_put_block_group(block_group);
8755 btrfs_put_block_group(block_group);
8756
8757 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8758 if (ret > 0)
8759 ret = -EIO;
8760 if (ret < 0)
8761 goto out;
8762
8763 ret = btrfs_del_item(trans, root, path);
8764 out:
8765 btrfs_free_path(path);
8766 return ret;
8767 }
8768
8769 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8770 {
8771 struct btrfs_space_info *space_info;
8772 struct btrfs_super_block *disk_super;
8773 u64 features;
8774 u64 flags;
8775 int mixed = 0;
8776 int ret;
8777
8778 disk_super = fs_info->super_copy;
8779 if (!btrfs_super_root(disk_super))
8780 return 1;
8781
8782 features = btrfs_super_incompat_flags(disk_super);
8783 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8784 mixed = 1;
8785
8786 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8787 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8788 if (ret)
8789 goto out;
8790
8791 if (mixed) {
8792 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8793 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8794 } else {
8795 flags = BTRFS_BLOCK_GROUP_METADATA;
8796 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8797 if (ret)
8798 goto out;
8799
8800 flags = BTRFS_BLOCK_GROUP_DATA;
8801 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8802 }
8803 out:
8804 return ret;
8805 }
8806
8807 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8808 {
8809 return unpin_extent_range(root, start, end);
8810 }
8811
8812 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8813 u64 num_bytes, u64 *actual_bytes)
8814 {
8815 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8816 }
8817
8818 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8819 {
8820 struct btrfs_fs_info *fs_info = root->fs_info;
8821 struct btrfs_block_group_cache *cache = NULL;
8822 u64 group_trimmed;
8823 u64 start;
8824 u64 end;
8825 u64 trimmed = 0;
8826 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8827 int ret = 0;
8828
8829 /*
8830 * try to trim all FS space, our block group may start from non-zero.
8831 */
8832 if (range->len == total_bytes)
8833 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8834 else
8835 cache = btrfs_lookup_block_group(fs_info, range->start);
8836
8837 while (cache) {
8838 if (cache->key.objectid >= (range->start + range->len)) {
8839 btrfs_put_block_group(cache);
8840 break;
8841 }
8842
8843 start = max(range->start, cache->key.objectid);
8844 end = min(range->start + range->len,
8845 cache->key.objectid + cache->key.offset);
8846
8847 if (end - start >= range->minlen) {
8848 if (!block_group_cache_done(cache)) {
8849 ret = cache_block_group(cache, 0);
8850 if (ret) {
8851 btrfs_put_block_group(cache);
8852 break;
8853 }
8854 ret = wait_block_group_cache_done(cache);
8855 if (ret) {
8856 btrfs_put_block_group(cache);
8857 break;
8858 }
8859 }
8860 ret = btrfs_trim_block_group(cache,
8861 &group_trimmed,
8862 start,
8863 end,
8864 range->minlen);
8865
8866 trimmed += group_trimmed;
8867 if (ret) {
8868 btrfs_put_block_group(cache);
8869 break;
8870 }
8871 }
8872
8873 cache = next_block_group(fs_info->tree_root, cache);
8874 }
8875
8876 range->len = trimmed;
8877 return ret;
8878 }
This page took 0.232286 seconds and 5 git commands to generate.