Merge tag 'writeback-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg...
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37
38 #undef SCRAMBLE_DELAYED_REFS
39
40 /*
41 * control flags for do_chunk_alloc's force field
42 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
43 * if we really need one.
44 *
45 * CHUNK_ALLOC_LIMITED means to only try and allocate one
46 * if we have very few chunks already allocated. This is
47 * used as part of the clustering code to help make sure
48 * we have a good pool of storage to cluster in, without
49 * filling the FS with empty chunks
50 *
51 * CHUNK_ALLOC_FORCE means it must try to allocate one
52 *
53 */
54 enum {
55 CHUNK_ALLOC_NO_FORCE = 0,
56 CHUNK_ALLOC_LIMITED = 1,
57 CHUNK_ALLOC_FORCE = 2,
58 };
59
60 /*
61 * Control how reservations are dealt with.
62 *
63 * RESERVE_FREE - freeing a reservation.
64 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
65 * ENOSPC accounting
66 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
67 * bytes_may_use as the ENOSPC accounting is done elsewhere
68 */
69 enum {
70 RESERVE_FREE = 0,
71 RESERVE_ALLOC = 1,
72 RESERVE_ALLOC_NO_ACCOUNT = 2,
73 };
74
75 static int update_block_group(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 u64 bytenr, u64 num_bytes, u64 parent,
81 u64 root_objectid, u64 owner_objectid,
82 u64 owner_offset, int refs_to_drop,
83 struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 struct extent_buffer *leaf,
86 struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, u64 owner, u64 offset,
91 struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 struct btrfs_root *root,
94 u64 parent, u64 root_objectid,
95 u64 flags, struct btrfs_disk_key *key,
96 int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 struct btrfs_root *extent_root, u64 flags,
99 int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 u64 num_bytes, int reserve);
106
107 static noinline int
108 block_group_cache_done(struct btrfs_block_group_cache *cache)
109 {
110 smp_mb();
111 return cache->cached == BTRFS_CACHE_FINISHED;
112 }
113
114 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
115 {
116 return (cache->flags & bits) == bits;
117 }
118
119 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
120 {
121 atomic_inc(&cache->count);
122 }
123
124 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
125 {
126 if (atomic_dec_and_test(&cache->count)) {
127 WARN_ON(cache->pinned > 0);
128 WARN_ON(cache->reserved > 0);
129 kfree(cache->free_space_ctl);
130 kfree(cache);
131 }
132 }
133
134 /*
135 * this adds the block group to the fs_info rb tree for the block group
136 * cache
137 */
138 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
139 struct btrfs_block_group_cache *block_group)
140 {
141 struct rb_node **p;
142 struct rb_node *parent = NULL;
143 struct btrfs_block_group_cache *cache;
144
145 spin_lock(&info->block_group_cache_lock);
146 p = &info->block_group_cache_tree.rb_node;
147
148 while (*p) {
149 parent = *p;
150 cache = rb_entry(parent, struct btrfs_block_group_cache,
151 cache_node);
152 if (block_group->key.objectid < cache->key.objectid) {
153 p = &(*p)->rb_left;
154 } else if (block_group->key.objectid > cache->key.objectid) {
155 p = &(*p)->rb_right;
156 } else {
157 spin_unlock(&info->block_group_cache_lock);
158 return -EEXIST;
159 }
160 }
161
162 rb_link_node(&block_group->cache_node, parent, p);
163 rb_insert_color(&block_group->cache_node,
164 &info->block_group_cache_tree);
165 spin_unlock(&info->block_group_cache_lock);
166
167 return 0;
168 }
169
170 /*
171 * This will return the block group at or after bytenr if contains is 0, else
172 * it will return the block group that contains the bytenr
173 */
174 static struct btrfs_block_group_cache *
175 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
176 int contains)
177 {
178 struct btrfs_block_group_cache *cache, *ret = NULL;
179 struct rb_node *n;
180 u64 end, start;
181
182 spin_lock(&info->block_group_cache_lock);
183 n = info->block_group_cache_tree.rb_node;
184
185 while (n) {
186 cache = rb_entry(n, struct btrfs_block_group_cache,
187 cache_node);
188 end = cache->key.objectid + cache->key.offset - 1;
189 start = cache->key.objectid;
190
191 if (bytenr < start) {
192 if (!contains && (!ret || start < ret->key.objectid))
193 ret = cache;
194 n = n->rb_left;
195 } else if (bytenr > start) {
196 if (contains && bytenr <= end) {
197 ret = cache;
198 break;
199 }
200 n = n->rb_right;
201 } else {
202 ret = cache;
203 break;
204 }
205 }
206 if (ret)
207 btrfs_get_block_group(ret);
208 spin_unlock(&info->block_group_cache_lock);
209
210 return ret;
211 }
212
213 static int add_excluded_extent(struct btrfs_root *root,
214 u64 start, u64 num_bytes)
215 {
216 u64 end = start + num_bytes - 1;
217 set_extent_bits(&root->fs_info->freed_extents[0],
218 start, end, EXTENT_UPTODATE, GFP_NOFS);
219 set_extent_bits(&root->fs_info->freed_extents[1],
220 start, end, EXTENT_UPTODATE, GFP_NOFS);
221 return 0;
222 }
223
224 static void free_excluded_extents(struct btrfs_root *root,
225 struct btrfs_block_group_cache *cache)
226 {
227 u64 start, end;
228
229 start = cache->key.objectid;
230 end = start + cache->key.offset - 1;
231
232 clear_extent_bits(&root->fs_info->freed_extents[0],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 clear_extent_bits(&root->fs_info->freed_extents[1],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 }
237
238 static int exclude_super_stripes(struct btrfs_root *root,
239 struct btrfs_block_group_cache *cache)
240 {
241 u64 bytenr;
242 u64 *logical;
243 int stripe_len;
244 int i, nr, ret;
245
246 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
247 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
248 cache->bytes_super += stripe_len;
249 ret = add_excluded_extent(root, cache->key.objectid,
250 stripe_len);
251 BUG_ON(ret); /* -ENOMEM */
252 }
253
254 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
255 bytenr = btrfs_sb_offset(i);
256 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
257 cache->key.objectid, bytenr,
258 0, &logical, &nr, &stripe_len);
259 BUG_ON(ret); /* -ENOMEM */
260
261 while (nr--) {
262 cache->bytes_super += stripe_len;
263 ret = add_excluded_extent(root, logical[nr],
264 stripe_len);
265 BUG_ON(ret); /* -ENOMEM */
266 }
267
268 kfree(logical);
269 }
270 return 0;
271 }
272
273 static struct btrfs_caching_control *
274 get_caching_control(struct btrfs_block_group_cache *cache)
275 {
276 struct btrfs_caching_control *ctl;
277
278 spin_lock(&cache->lock);
279 if (cache->cached != BTRFS_CACHE_STARTED) {
280 spin_unlock(&cache->lock);
281 return NULL;
282 }
283
284 /* We're loading it the fast way, so we don't have a caching_ctl. */
285 if (!cache->caching_ctl) {
286 spin_unlock(&cache->lock);
287 return NULL;
288 }
289
290 ctl = cache->caching_ctl;
291 atomic_inc(&ctl->count);
292 spin_unlock(&cache->lock);
293 return ctl;
294 }
295
296 static void put_caching_control(struct btrfs_caching_control *ctl)
297 {
298 if (atomic_dec_and_test(&ctl->count))
299 kfree(ctl);
300 }
301
302 /*
303 * this is only called by cache_block_group, since we could have freed extents
304 * we need to check the pinned_extents for any extents that can't be used yet
305 * since their free space will be released as soon as the transaction commits.
306 */
307 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
308 struct btrfs_fs_info *info, u64 start, u64 end)
309 {
310 u64 extent_start, extent_end, size, total_added = 0;
311 int ret;
312
313 while (start < end) {
314 ret = find_first_extent_bit(info->pinned_extents, start,
315 &extent_start, &extent_end,
316 EXTENT_DIRTY | EXTENT_UPTODATE,
317 NULL);
318 if (ret)
319 break;
320
321 if (extent_start <= start) {
322 start = extent_end + 1;
323 } else if (extent_start > start && extent_start < end) {
324 size = extent_start - start;
325 total_added += size;
326 ret = btrfs_add_free_space(block_group, start,
327 size);
328 BUG_ON(ret); /* -ENOMEM or logic error */
329 start = extent_end + 1;
330 } else {
331 break;
332 }
333 }
334
335 if (start < end) {
336 size = end - start;
337 total_added += size;
338 ret = btrfs_add_free_space(block_group, start, size);
339 BUG_ON(ret); /* -ENOMEM or logic error */
340 }
341
342 return total_added;
343 }
344
345 static noinline void caching_thread(struct btrfs_work *work)
346 {
347 struct btrfs_block_group_cache *block_group;
348 struct btrfs_fs_info *fs_info;
349 struct btrfs_caching_control *caching_ctl;
350 struct btrfs_root *extent_root;
351 struct btrfs_path *path;
352 struct extent_buffer *leaf;
353 struct btrfs_key key;
354 u64 total_found = 0;
355 u64 last = 0;
356 u32 nritems;
357 int ret = 0;
358
359 caching_ctl = container_of(work, struct btrfs_caching_control, work);
360 block_group = caching_ctl->block_group;
361 fs_info = block_group->fs_info;
362 extent_root = fs_info->extent_root;
363
364 path = btrfs_alloc_path();
365 if (!path)
366 goto out;
367
368 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
369
370 /*
371 * We don't want to deadlock with somebody trying to allocate a new
372 * extent for the extent root while also trying to search the extent
373 * root to add free space. So we skip locking and search the commit
374 * root, since its read-only
375 */
376 path->skip_locking = 1;
377 path->search_commit_root = 1;
378 path->reada = 1;
379
380 key.objectid = last;
381 key.offset = 0;
382 key.type = BTRFS_EXTENT_ITEM_KEY;
383 again:
384 mutex_lock(&caching_ctl->mutex);
385 /* need to make sure the commit_root doesn't disappear */
386 down_read(&fs_info->extent_commit_sem);
387
388 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
389 if (ret < 0)
390 goto err;
391
392 leaf = path->nodes[0];
393 nritems = btrfs_header_nritems(leaf);
394
395 while (1) {
396 if (btrfs_fs_closing(fs_info) > 1) {
397 last = (u64)-1;
398 break;
399 }
400
401 if (path->slots[0] < nritems) {
402 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
403 } else {
404 ret = find_next_key(path, 0, &key);
405 if (ret)
406 break;
407
408 if (need_resched() ||
409 btrfs_next_leaf(extent_root, path)) {
410 caching_ctl->progress = last;
411 btrfs_release_path(path);
412 up_read(&fs_info->extent_commit_sem);
413 mutex_unlock(&caching_ctl->mutex);
414 cond_resched();
415 goto again;
416 }
417 leaf = path->nodes[0];
418 nritems = btrfs_header_nritems(leaf);
419 continue;
420 }
421
422 if (key.objectid < block_group->key.objectid) {
423 path->slots[0]++;
424 continue;
425 }
426
427 if (key.objectid >= block_group->key.objectid +
428 block_group->key.offset)
429 break;
430
431 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
432 total_found += add_new_free_space(block_group,
433 fs_info, last,
434 key.objectid);
435 last = key.objectid + key.offset;
436
437 if (total_found > (1024 * 1024 * 2)) {
438 total_found = 0;
439 wake_up(&caching_ctl->wait);
440 }
441 }
442 path->slots[0]++;
443 }
444 ret = 0;
445
446 total_found += add_new_free_space(block_group, fs_info, last,
447 block_group->key.objectid +
448 block_group->key.offset);
449 caching_ctl->progress = (u64)-1;
450
451 spin_lock(&block_group->lock);
452 block_group->caching_ctl = NULL;
453 block_group->cached = BTRFS_CACHE_FINISHED;
454 spin_unlock(&block_group->lock);
455
456 err:
457 btrfs_free_path(path);
458 up_read(&fs_info->extent_commit_sem);
459
460 free_excluded_extents(extent_root, block_group);
461
462 mutex_unlock(&caching_ctl->mutex);
463 out:
464 wake_up(&caching_ctl->wait);
465
466 put_caching_control(caching_ctl);
467 btrfs_put_block_group(block_group);
468 }
469
470 static int cache_block_group(struct btrfs_block_group_cache *cache,
471 struct btrfs_trans_handle *trans,
472 struct btrfs_root *root,
473 int load_cache_only)
474 {
475 DEFINE_WAIT(wait);
476 struct btrfs_fs_info *fs_info = cache->fs_info;
477 struct btrfs_caching_control *caching_ctl;
478 int ret = 0;
479
480 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
481 if (!caching_ctl)
482 return -ENOMEM;
483
484 INIT_LIST_HEAD(&caching_ctl->list);
485 mutex_init(&caching_ctl->mutex);
486 init_waitqueue_head(&caching_ctl->wait);
487 caching_ctl->block_group = cache;
488 caching_ctl->progress = cache->key.objectid;
489 atomic_set(&caching_ctl->count, 1);
490 caching_ctl->work.func = caching_thread;
491
492 spin_lock(&cache->lock);
493 /*
494 * This should be a rare occasion, but this could happen I think in the
495 * case where one thread starts to load the space cache info, and then
496 * some other thread starts a transaction commit which tries to do an
497 * allocation while the other thread is still loading the space cache
498 * info. The previous loop should have kept us from choosing this block
499 * group, but if we've moved to the state where we will wait on caching
500 * block groups we need to first check if we're doing a fast load here,
501 * so we can wait for it to finish, otherwise we could end up allocating
502 * from a block group who's cache gets evicted for one reason or
503 * another.
504 */
505 while (cache->cached == BTRFS_CACHE_FAST) {
506 struct btrfs_caching_control *ctl;
507
508 ctl = cache->caching_ctl;
509 atomic_inc(&ctl->count);
510 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
511 spin_unlock(&cache->lock);
512
513 schedule();
514
515 finish_wait(&ctl->wait, &wait);
516 put_caching_control(ctl);
517 spin_lock(&cache->lock);
518 }
519
520 if (cache->cached != BTRFS_CACHE_NO) {
521 spin_unlock(&cache->lock);
522 kfree(caching_ctl);
523 return 0;
524 }
525 WARN_ON(cache->caching_ctl);
526 cache->caching_ctl = caching_ctl;
527 cache->cached = BTRFS_CACHE_FAST;
528 spin_unlock(&cache->lock);
529
530 /*
531 * We can't do the read from on-disk cache during a commit since we need
532 * to have the normal tree locking. Also if we are currently trying to
533 * allocate blocks for the tree root we can't do the fast caching since
534 * we likely hold important locks.
535 */
536 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
537 ret = load_free_space_cache(fs_info, cache);
538
539 spin_lock(&cache->lock);
540 if (ret == 1) {
541 cache->caching_ctl = NULL;
542 cache->cached = BTRFS_CACHE_FINISHED;
543 cache->last_byte_to_unpin = (u64)-1;
544 } else {
545 if (load_cache_only) {
546 cache->caching_ctl = NULL;
547 cache->cached = BTRFS_CACHE_NO;
548 } else {
549 cache->cached = BTRFS_CACHE_STARTED;
550 }
551 }
552 spin_unlock(&cache->lock);
553 wake_up(&caching_ctl->wait);
554 if (ret == 1) {
555 put_caching_control(caching_ctl);
556 free_excluded_extents(fs_info->extent_root, cache);
557 return 0;
558 }
559 } else {
560 /*
561 * We are not going to do the fast caching, set cached to the
562 * appropriate value and wakeup any waiters.
563 */
564 spin_lock(&cache->lock);
565 if (load_cache_only) {
566 cache->caching_ctl = NULL;
567 cache->cached = BTRFS_CACHE_NO;
568 } else {
569 cache->cached = BTRFS_CACHE_STARTED;
570 }
571 spin_unlock(&cache->lock);
572 wake_up(&caching_ctl->wait);
573 }
574
575 if (load_cache_only) {
576 put_caching_control(caching_ctl);
577 return 0;
578 }
579
580 down_write(&fs_info->extent_commit_sem);
581 atomic_inc(&caching_ctl->count);
582 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
583 up_write(&fs_info->extent_commit_sem);
584
585 btrfs_get_block_group(cache);
586
587 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
588
589 return ret;
590 }
591
592 /*
593 * return the block group that starts at or after bytenr
594 */
595 static struct btrfs_block_group_cache *
596 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
597 {
598 struct btrfs_block_group_cache *cache;
599
600 cache = block_group_cache_tree_search(info, bytenr, 0);
601
602 return cache;
603 }
604
605 /*
606 * return the block group that contains the given bytenr
607 */
608 struct btrfs_block_group_cache *btrfs_lookup_block_group(
609 struct btrfs_fs_info *info,
610 u64 bytenr)
611 {
612 struct btrfs_block_group_cache *cache;
613
614 cache = block_group_cache_tree_search(info, bytenr, 1);
615
616 return cache;
617 }
618
619 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
620 u64 flags)
621 {
622 struct list_head *head = &info->space_info;
623 struct btrfs_space_info *found;
624
625 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
626
627 rcu_read_lock();
628 list_for_each_entry_rcu(found, head, list) {
629 if (found->flags & flags) {
630 rcu_read_unlock();
631 return found;
632 }
633 }
634 rcu_read_unlock();
635 return NULL;
636 }
637
638 /*
639 * after adding space to the filesystem, we need to clear the full flags
640 * on all the space infos.
641 */
642 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
643 {
644 struct list_head *head = &info->space_info;
645 struct btrfs_space_info *found;
646
647 rcu_read_lock();
648 list_for_each_entry_rcu(found, head, list)
649 found->full = 0;
650 rcu_read_unlock();
651 }
652
653 u64 btrfs_find_block_group(struct btrfs_root *root,
654 u64 search_start, u64 search_hint, int owner)
655 {
656 struct btrfs_block_group_cache *cache;
657 u64 used;
658 u64 last = max(search_hint, search_start);
659 u64 group_start = 0;
660 int full_search = 0;
661 int factor = 9;
662 int wrapped = 0;
663 again:
664 while (1) {
665 cache = btrfs_lookup_first_block_group(root->fs_info, last);
666 if (!cache)
667 break;
668
669 spin_lock(&cache->lock);
670 last = cache->key.objectid + cache->key.offset;
671 used = btrfs_block_group_used(&cache->item);
672
673 if ((full_search || !cache->ro) &&
674 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
675 if (used + cache->pinned + cache->reserved <
676 div_factor(cache->key.offset, factor)) {
677 group_start = cache->key.objectid;
678 spin_unlock(&cache->lock);
679 btrfs_put_block_group(cache);
680 goto found;
681 }
682 }
683 spin_unlock(&cache->lock);
684 btrfs_put_block_group(cache);
685 cond_resched();
686 }
687 if (!wrapped) {
688 last = search_start;
689 wrapped = 1;
690 goto again;
691 }
692 if (!full_search && factor < 10) {
693 last = search_start;
694 full_search = 1;
695 factor = 10;
696 goto again;
697 }
698 found:
699 return group_start;
700 }
701
702 /* simple helper to search for an existing extent at a given offset */
703 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
704 {
705 int ret;
706 struct btrfs_key key;
707 struct btrfs_path *path;
708
709 path = btrfs_alloc_path();
710 if (!path)
711 return -ENOMEM;
712
713 key.objectid = start;
714 key.offset = len;
715 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
716 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
717 0, 0);
718 btrfs_free_path(path);
719 return ret;
720 }
721
722 /*
723 * helper function to lookup reference count and flags of extent.
724 *
725 * the head node for delayed ref is used to store the sum of all the
726 * reference count modifications queued up in the rbtree. the head
727 * node may also store the extent flags to set. This way you can check
728 * to see what the reference count and extent flags would be if all of
729 * the delayed refs are not processed.
730 */
731 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
732 struct btrfs_root *root, u64 bytenr,
733 u64 num_bytes, u64 *refs, u64 *flags)
734 {
735 struct btrfs_delayed_ref_head *head;
736 struct btrfs_delayed_ref_root *delayed_refs;
737 struct btrfs_path *path;
738 struct btrfs_extent_item *ei;
739 struct extent_buffer *leaf;
740 struct btrfs_key key;
741 u32 item_size;
742 u64 num_refs;
743 u64 extent_flags;
744 int ret;
745
746 path = btrfs_alloc_path();
747 if (!path)
748 return -ENOMEM;
749
750 key.objectid = bytenr;
751 key.type = BTRFS_EXTENT_ITEM_KEY;
752 key.offset = num_bytes;
753 if (!trans) {
754 path->skip_locking = 1;
755 path->search_commit_root = 1;
756 }
757 again:
758 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
759 &key, path, 0, 0);
760 if (ret < 0)
761 goto out_free;
762
763 if (ret == 0) {
764 leaf = path->nodes[0];
765 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
766 if (item_size >= sizeof(*ei)) {
767 ei = btrfs_item_ptr(leaf, path->slots[0],
768 struct btrfs_extent_item);
769 num_refs = btrfs_extent_refs(leaf, ei);
770 extent_flags = btrfs_extent_flags(leaf, ei);
771 } else {
772 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
773 struct btrfs_extent_item_v0 *ei0;
774 BUG_ON(item_size != sizeof(*ei0));
775 ei0 = btrfs_item_ptr(leaf, path->slots[0],
776 struct btrfs_extent_item_v0);
777 num_refs = btrfs_extent_refs_v0(leaf, ei0);
778 /* FIXME: this isn't correct for data */
779 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
780 #else
781 BUG();
782 #endif
783 }
784 BUG_ON(num_refs == 0);
785 } else {
786 num_refs = 0;
787 extent_flags = 0;
788 ret = 0;
789 }
790
791 if (!trans)
792 goto out;
793
794 delayed_refs = &trans->transaction->delayed_refs;
795 spin_lock(&delayed_refs->lock);
796 head = btrfs_find_delayed_ref_head(trans, bytenr);
797 if (head) {
798 if (!mutex_trylock(&head->mutex)) {
799 atomic_inc(&head->node.refs);
800 spin_unlock(&delayed_refs->lock);
801
802 btrfs_release_path(path);
803
804 /*
805 * Mutex was contended, block until it's released and try
806 * again
807 */
808 mutex_lock(&head->mutex);
809 mutex_unlock(&head->mutex);
810 btrfs_put_delayed_ref(&head->node);
811 goto again;
812 }
813 if (head->extent_op && head->extent_op->update_flags)
814 extent_flags |= head->extent_op->flags_to_set;
815 else
816 BUG_ON(num_refs == 0);
817
818 num_refs += head->node.ref_mod;
819 mutex_unlock(&head->mutex);
820 }
821 spin_unlock(&delayed_refs->lock);
822 out:
823 WARN_ON(num_refs == 0);
824 if (refs)
825 *refs = num_refs;
826 if (flags)
827 *flags = extent_flags;
828 out_free:
829 btrfs_free_path(path);
830 return ret;
831 }
832
833 /*
834 * Back reference rules. Back refs have three main goals:
835 *
836 * 1) differentiate between all holders of references to an extent so that
837 * when a reference is dropped we can make sure it was a valid reference
838 * before freeing the extent.
839 *
840 * 2) Provide enough information to quickly find the holders of an extent
841 * if we notice a given block is corrupted or bad.
842 *
843 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
844 * maintenance. This is actually the same as #2, but with a slightly
845 * different use case.
846 *
847 * There are two kinds of back refs. The implicit back refs is optimized
848 * for pointers in non-shared tree blocks. For a given pointer in a block,
849 * back refs of this kind provide information about the block's owner tree
850 * and the pointer's key. These information allow us to find the block by
851 * b-tree searching. The full back refs is for pointers in tree blocks not
852 * referenced by their owner trees. The location of tree block is recorded
853 * in the back refs. Actually the full back refs is generic, and can be
854 * used in all cases the implicit back refs is used. The major shortcoming
855 * of the full back refs is its overhead. Every time a tree block gets
856 * COWed, we have to update back refs entry for all pointers in it.
857 *
858 * For a newly allocated tree block, we use implicit back refs for
859 * pointers in it. This means most tree related operations only involve
860 * implicit back refs. For a tree block created in old transaction, the
861 * only way to drop a reference to it is COW it. So we can detect the
862 * event that tree block loses its owner tree's reference and do the
863 * back refs conversion.
864 *
865 * When a tree block is COW'd through a tree, there are four cases:
866 *
867 * The reference count of the block is one and the tree is the block's
868 * owner tree. Nothing to do in this case.
869 *
870 * The reference count of the block is one and the tree is not the
871 * block's owner tree. In this case, full back refs is used for pointers
872 * in the block. Remove these full back refs, add implicit back refs for
873 * every pointers in the new block.
874 *
875 * The reference count of the block is greater than one and the tree is
876 * the block's owner tree. In this case, implicit back refs is used for
877 * pointers in the block. Add full back refs for every pointers in the
878 * block, increase lower level extents' reference counts. The original
879 * implicit back refs are entailed to the new block.
880 *
881 * The reference count of the block is greater than one and the tree is
882 * not the block's owner tree. Add implicit back refs for every pointer in
883 * the new block, increase lower level extents' reference count.
884 *
885 * Back Reference Key composing:
886 *
887 * The key objectid corresponds to the first byte in the extent,
888 * The key type is used to differentiate between types of back refs.
889 * There are different meanings of the key offset for different types
890 * of back refs.
891 *
892 * File extents can be referenced by:
893 *
894 * - multiple snapshots, subvolumes, or different generations in one subvol
895 * - different files inside a single subvolume
896 * - different offsets inside a file (bookend extents in file.c)
897 *
898 * The extent ref structure for the implicit back refs has fields for:
899 *
900 * - Objectid of the subvolume root
901 * - objectid of the file holding the reference
902 * - original offset in the file
903 * - how many bookend extents
904 *
905 * The key offset for the implicit back refs is hash of the first
906 * three fields.
907 *
908 * The extent ref structure for the full back refs has field for:
909 *
910 * - number of pointers in the tree leaf
911 *
912 * The key offset for the implicit back refs is the first byte of
913 * the tree leaf
914 *
915 * When a file extent is allocated, The implicit back refs is used.
916 * the fields are filled in:
917 *
918 * (root_key.objectid, inode objectid, offset in file, 1)
919 *
920 * When a file extent is removed file truncation, we find the
921 * corresponding implicit back refs and check the following fields:
922 *
923 * (btrfs_header_owner(leaf), inode objectid, offset in file)
924 *
925 * Btree extents can be referenced by:
926 *
927 * - Different subvolumes
928 *
929 * Both the implicit back refs and the full back refs for tree blocks
930 * only consist of key. The key offset for the implicit back refs is
931 * objectid of block's owner tree. The key offset for the full back refs
932 * is the first byte of parent block.
933 *
934 * When implicit back refs is used, information about the lowest key and
935 * level of the tree block are required. These information are stored in
936 * tree block info structure.
937 */
938
939 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
940 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
941 struct btrfs_root *root,
942 struct btrfs_path *path,
943 u64 owner, u32 extra_size)
944 {
945 struct btrfs_extent_item *item;
946 struct btrfs_extent_item_v0 *ei0;
947 struct btrfs_extent_ref_v0 *ref0;
948 struct btrfs_tree_block_info *bi;
949 struct extent_buffer *leaf;
950 struct btrfs_key key;
951 struct btrfs_key found_key;
952 u32 new_size = sizeof(*item);
953 u64 refs;
954 int ret;
955
956 leaf = path->nodes[0];
957 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
958
959 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
960 ei0 = btrfs_item_ptr(leaf, path->slots[0],
961 struct btrfs_extent_item_v0);
962 refs = btrfs_extent_refs_v0(leaf, ei0);
963
964 if (owner == (u64)-1) {
965 while (1) {
966 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
967 ret = btrfs_next_leaf(root, path);
968 if (ret < 0)
969 return ret;
970 BUG_ON(ret > 0); /* Corruption */
971 leaf = path->nodes[0];
972 }
973 btrfs_item_key_to_cpu(leaf, &found_key,
974 path->slots[0]);
975 BUG_ON(key.objectid != found_key.objectid);
976 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
977 path->slots[0]++;
978 continue;
979 }
980 ref0 = btrfs_item_ptr(leaf, path->slots[0],
981 struct btrfs_extent_ref_v0);
982 owner = btrfs_ref_objectid_v0(leaf, ref0);
983 break;
984 }
985 }
986 btrfs_release_path(path);
987
988 if (owner < BTRFS_FIRST_FREE_OBJECTID)
989 new_size += sizeof(*bi);
990
991 new_size -= sizeof(*ei0);
992 ret = btrfs_search_slot(trans, root, &key, path,
993 new_size + extra_size, 1);
994 if (ret < 0)
995 return ret;
996 BUG_ON(ret); /* Corruption */
997
998 btrfs_extend_item(trans, root, path, new_size);
999
1000 leaf = path->nodes[0];
1001 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1002 btrfs_set_extent_refs(leaf, item, refs);
1003 /* FIXME: get real generation */
1004 btrfs_set_extent_generation(leaf, item, 0);
1005 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1006 btrfs_set_extent_flags(leaf, item,
1007 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1008 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1009 bi = (struct btrfs_tree_block_info *)(item + 1);
1010 /* FIXME: get first key of the block */
1011 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1012 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1013 } else {
1014 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1015 }
1016 btrfs_mark_buffer_dirty(leaf);
1017 return 0;
1018 }
1019 #endif
1020
1021 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1022 {
1023 u32 high_crc = ~(u32)0;
1024 u32 low_crc = ~(u32)0;
1025 __le64 lenum;
1026
1027 lenum = cpu_to_le64(root_objectid);
1028 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1029 lenum = cpu_to_le64(owner);
1030 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1031 lenum = cpu_to_le64(offset);
1032 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1033
1034 return ((u64)high_crc << 31) ^ (u64)low_crc;
1035 }
1036
1037 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1038 struct btrfs_extent_data_ref *ref)
1039 {
1040 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1041 btrfs_extent_data_ref_objectid(leaf, ref),
1042 btrfs_extent_data_ref_offset(leaf, ref));
1043 }
1044
1045 static int match_extent_data_ref(struct extent_buffer *leaf,
1046 struct btrfs_extent_data_ref *ref,
1047 u64 root_objectid, u64 owner, u64 offset)
1048 {
1049 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1050 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1051 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1052 return 0;
1053 return 1;
1054 }
1055
1056 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1057 struct btrfs_root *root,
1058 struct btrfs_path *path,
1059 u64 bytenr, u64 parent,
1060 u64 root_objectid,
1061 u64 owner, u64 offset)
1062 {
1063 struct btrfs_key key;
1064 struct btrfs_extent_data_ref *ref;
1065 struct extent_buffer *leaf;
1066 u32 nritems;
1067 int ret;
1068 int recow;
1069 int err = -ENOENT;
1070
1071 key.objectid = bytenr;
1072 if (parent) {
1073 key.type = BTRFS_SHARED_DATA_REF_KEY;
1074 key.offset = parent;
1075 } else {
1076 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1077 key.offset = hash_extent_data_ref(root_objectid,
1078 owner, offset);
1079 }
1080 again:
1081 recow = 0;
1082 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1083 if (ret < 0) {
1084 err = ret;
1085 goto fail;
1086 }
1087
1088 if (parent) {
1089 if (!ret)
1090 return 0;
1091 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1092 key.type = BTRFS_EXTENT_REF_V0_KEY;
1093 btrfs_release_path(path);
1094 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1095 if (ret < 0) {
1096 err = ret;
1097 goto fail;
1098 }
1099 if (!ret)
1100 return 0;
1101 #endif
1102 goto fail;
1103 }
1104
1105 leaf = path->nodes[0];
1106 nritems = btrfs_header_nritems(leaf);
1107 while (1) {
1108 if (path->slots[0] >= nritems) {
1109 ret = btrfs_next_leaf(root, path);
1110 if (ret < 0)
1111 err = ret;
1112 if (ret)
1113 goto fail;
1114
1115 leaf = path->nodes[0];
1116 nritems = btrfs_header_nritems(leaf);
1117 recow = 1;
1118 }
1119
1120 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1121 if (key.objectid != bytenr ||
1122 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1123 goto fail;
1124
1125 ref = btrfs_item_ptr(leaf, path->slots[0],
1126 struct btrfs_extent_data_ref);
1127
1128 if (match_extent_data_ref(leaf, ref, root_objectid,
1129 owner, offset)) {
1130 if (recow) {
1131 btrfs_release_path(path);
1132 goto again;
1133 }
1134 err = 0;
1135 break;
1136 }
1137 path->slots[0]++;
1138 }
1139 fail:
1140 return err;
1141 }
1142
1143 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1144 struct btrfs_root *root,
1145 struct btrfs_path *path,
1146 u64 bytenr, u64 parent,
1147 u64 root_objectid, u64 owner,
1148 u64 offset, int refs_to_add)
1149 {
1150 struct btrfs_key key;
1151 struct extent_buffer *leaf;
1152 u32 size;
1153 u32 num_refs;
1154 int ret;
1155
1156 key.objectid = bytenr;
1157 if (parent) {
1158 key.type = BTRFS_SHARED_DATA_REF_KEY;
1159 key.offset = parent;
1160 size = sizeof(struct btrfs_shared_data_ref);
1161 } else {
1162 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1163 key.offset = hash_extent_data_ref(root_objectid,
1164 owner, offset);
1165 size = sizeof(struct btrfs_extent_data_ref);
1166 }
1167
1168 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1169 if (ret && ret != -EEXIST)
1170 goto fail;
1171
1172 leaf = path->nodes[0];
1173 if (parent) {
1174 struct btrfs_shared_data_ref *ref;
1175 ref = btrfs_item_ptr(leaf, path->slots[0],
1176 struct btrfs_shared_data_ref);
1177 if (ret == 0) {
1178 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1179 } else {
1180 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1181 num_refs += refs_to_add;
1182 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1183 }
1184 } else {
1185 struct btrfs_extent_data_ref *ref;
1186 while (ret == -EEXIST) {
1187 ref = btrfs_item_ptr(leaf, path->slots[0],
1188 struct btrfs_extent_data_ref);
1189 if (match_extent_data_ref(leaf, ref, root_objectid,
1190 owner, offset))
1191 break;
1192 btrfs_release_path(path);
1193 key.offset++;
1194 ret = btrfs_insert_empty_item(trans, root, path, &key,
1195 size);
1196 if (ret && ret != -EEXIST)
1197 goto fail;
1198
1199 leaf = path->nodes[0];
1200 }
1201 ref = btrfs_item_ptr(leaf, path->slots[0],
1202 struct btrfs_extent_data_ref);
1203 if (ret == 0) {
1204 btrfs_set_extent_data_ref_root(leaf, ref,
1205 root_objectid);
1206 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1207 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1208 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1209 } else {
1210 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1211 num_refs += refs_to_add;
1212 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1213 }
1214 }
1215 btrfs_mark_buffer_dirty(leaf);
1216 ret = 0;
1217 fail:
1218 btrfs_release_path(path);
1219 return ret;
1220 }
1221
1222 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1223 struct btrfs_root *root,
1224 struct btrfs_path *path,
1225 int refs_to_drop)
1226 {
1227 struct btrfs_key key;
1228 struct btrfs_extent_data_ref *ref1 = NULL;
1229 struct btrfs_shared_data_ref *ref2 = NULL;
1230 struct extent_buffer *leaf;
1231 u32 num_refs = 0;
1232 int ret = 0;
1233
1234 leaf = path->nodes[0];
1235 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1236
1237 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1238 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_extent_data_ref);
1240 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1241 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1242 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1243 struct btrfs_shared_data_ref);
1244 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1245 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1246 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1247 struct btrfs_extent_ref_v0 *ref0;
1248 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1249 struct btrfs_extent_ref_v0);
1250 num_refs = btrfs_ref_count_v0(leaf, ref0);
1251 #endif
1252 } else {
1253 BUG();
1254 }
1255
1256 BUG_ON(num_refs < refs_to_drop);
1257 num_refs -= refs_to_drop;
1258
1259 if (num_refs == 0) {
1260 ret = btrfs_del_item(trans, root, path);
1261 } else {
1262 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1263 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1264 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1265 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1267 else {
1268 struct btrfs_extent_ref_v0 *ref0;
1269 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_extent_ref_v0);
1271 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1272 }
1273 #endif
1274 btrfs_mark_buffer_dirty(leaf);
1275 }
1276 return ret;
1277 }
1278
1279 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1280 struct btrfs_path *path,
1281 struct btrfs_extent_inline_ref *iref)
1282 {
1283 struct btrfs_key key;
1284 struct extent_buffer *leaf;
1285 struct btrfs_extent_data_ref *ref1;
1286 struct btrfs_shared_data_ref *ref2;
1287 u32 num_refs = 0;
1288
1289 leaf = path->nodes[0];
1290 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1291 if (iref) {
1292 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1293 BTRFS_EXTENT_DATA_REF_KEY) {
1294 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1295 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1296 } else {
1297 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1299 }
1300 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_shared_data_ref);
1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1309 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1310 struct btrfs_extent_ref_v0 *ref0;
1311 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1312 struct btrfs_extent_ref_v0);
1313 num_refs = btrfs_ref_count_v0(leaf, ref0);
1314 #endif
1315 } else {
1316 WARN_ON(1);
1317 }
1318 return num_refs;
1319 }
1320
1321 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1322 struct btrfs_root *root,
1323 struct btrfs_path *path,
1324 u64 bytenr, u64 parent,
1325 u64 root_objectid)
1326 {
1327 struct btrfs_key key;
1328 int ret;
1329
1330 key.objectid = bytenr;
1331 if (parent) {
1332 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1333 key.offset = parent;
1334 } else {
1335 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1336 key.offset = root_objectid;
1337 }
1338
1339 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1340 if (ret > 0)
1341 ret = -ENOENT;
1342 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1343 if (ret == -ENOENT && parent) {
1344 btrfs_release_path(path);
1345 key.type = BTRFS_EXTENT_REF_V0_KEY;
1346 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1347 if (ret > 0)
1348 ret = -ENOENT;
1349 }
1350 #endif
1351 return ret;
1352 }
1353
1354 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1355 struct btrfs_root *root,
1356 struct btrfs_path *path,
1357 u64 bytenr, u64 parent,
1358 u64 root_objectid)
1359 {
1360 struct btrfs_key key;
1361 int ret;
1362
1363 key.objectid = bytenr;
1364 if (parent) {
1365 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1366 key.offset = parent;
1367 } else {
1368 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1369 key.offset = root_objectid;
1370 }
1371
1372 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1373 btrfs_release_path(path);
1374 return ret;
1375 }
1376
1377 static inline int extent_ref_type(u64 parent, u64 owner)
1378 {
1379 int type;
1380 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1381 if (parent > 0)
1382 type = BTRFS_SHARED_BLOCK_REF_KEY;
1383 else
1384 type = BTRFS_TREE_BLOCK_REF_KEY;
1385 } else {
1386 if (parent > 0)
1387 type = BTRFS_SHARED_DATA_REF_KEY;
1388 else
1389 type = BTRFS_EXTENT_DATA_REF_KEY;
1390 }
1391 return type;
1392 }
1393
1394 static int find_next_key(struct btrfs_path *path, int level,
1395 struct btrfs_key *key)
1396
1397 {
1398 for (; level < BTRFS_MAX_LEVEL; level++) {
1399 if (!path->nodes[level])
1400 break;
1401 if (path->slots[level] + 1 >=
1402 btrfs_header_nritems(path->nodes[level]))
1403 continue;
1404 if (level == 0)
1405 btrfs_item_key_to_cpu(path->nodes[level], key,
1406 path->slots[level] + 1);
1407 else
1408 btrfs_node_key_to_cpu(path->nodes[level], key,
1409 path->slots[level] + 1);
1410 return 0;
1411 }
1412 return 1;
1413 }
1414
1415 /*
1416 * look for inline back ref. if back ref is found, *ref_ret is set
1417 * to the address of inline back ref, and 0 is returned.
1418 *
1419 * if back ref isn't found, *ref_ret is set to the address where it
1420 * should be inserted, and -ENOENT is returned.
1421 *
1422 * if insert is true and there are too many inline back refs, the path
1423 * points to the extent item, and -EAGAIN is returned.
1424 *
1425 * NOTE: inline back refs are ordered in the same way that back ref
1426 * items in the tree are ordered.
1427 */
1428 static noinline_for_stack
1429 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1430 struct btrfs_root *root,
1431 struct btrfs_path *path,
1432 struct btrfs_extent_inline_ref **ref_ret,
1433 u64 bytenr, u64 num_bytes,
1434 u64 parent, u64 root_objectid,
1435 u64 owner, u64 offset, int insert)
1436 {
1437 struct btrfs_key key;
1438 struct extent_buffer *leaf;
1439 struct btrfs_extent_item *ei;
1440 struct btrfs_extent_inline_ref *iref;
1441 u64 flags;
1442 u64 item_size;
1443 unsigned long ptr;
1444 unsigned long end;
1445 int extra_size;
1446 int type;
1447 int want;
1448 int ret;
1449 int err = 0;
1450
1451 key.objectid = bytenr;
1452 key.type = BTRFS_EXTENT_ITEM_KEY;
1453 key.offset = num_bytes;
1454
1455 want = extent_ref_type(parent, owner);
1456 if (insert) {
1457 extra_size = btrfs_extent_inline_ref_size(want);
1458 path->keep_locks = 1;
1459 } else
1460 extra_size = -1;
1461 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1462 if (ret < 0) {
1463 err = ret;
1464 goto out;
1465 }
1466 if (ret && !insert) {
1467 err = -ENOENT;
1468 goto out;
1469 }
1470 BUG_ON(ret); /* Corruption */
1471
1472 leaf = path->nodes[0];
1473 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1474 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1475 if (item_size < sizeof(*ei)) {
1476 if (!insert) {
1477 err = -ENOENT;
1478 goto out;
1479 }
1480 ret = convert_extent_item_v0(trans, root, path, owner,
1481 extra_size);
1482 if (ret < 0) {
1483 err = ret;
1484 goto out;
1485 }
1486 leaf = path->nodes[0];
1487 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1488 }
1489 #endif
1490 BUG_ON(item_size < sizeof(*ei));
1491
1492 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1493 flags = btrfs_extent_flags(leaf, ei);
1494
1495 ptr = (unsigned long)(ei + 1);
1496 end = (unsigned long)ei + item_size;
1497
1498 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1499 ptr += sizeof(struct btrfs_tree_block_info);
1500 BUG_ON(ptr > end);
1501 } else {
1502 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1503 }
1504
1505 err = -ENOENT;
1506 while (1) {
1507 if (ptr >= end) {
1508 WARN_ON(ptr > end);
1509 break;
1510 }
1511 iref = (struct btrfs_extent_inline_ref *)ptr;
1512 type = btrfs_extent_inline_ref_type(leaf, iref);
1513 if (want < type)
1514 break;
1515 if (want > type) {
1516 ptr += btrfs_extent_inline_ref_size(type);
1517 continue;
1518 }
1519
1520 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1521 struct btrfs_extent_data_ref *dref;
1522 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1523 if (match_extent_data_ref(leaf, dref, root_objectid,
1524 owner, offset)) {
1525 err = 0;
1526 break;
1527 }
1528 if (hash_extent_data_ref_item(leaf, dref) <
1529 hash_extent_data_ref(root_objectid, owner, offset))
1530 break;
1531 } else {
1532 u64 ref_offset;
1533 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1534 if (parent > 0) {
1535 if (parent == ref_offset) {
1536 err = 0;
1537 break;
1538 }
1539 if (ref_offset < parent)
1540 break;
1541 } else {
1542 if (root_objectid == ref_offset) {
1543 err = 0;
1544 break;
1545 }
1546 if (ref_offset < root_objectid)
1547 break;
1548 }
1549 }
1550 ptr += btrfs_extent_inline_ref_size(type);
1551 }
1552 if (err == -ENOENT && insert) {
1553 if (item_size + extra_size >=
1554 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1555 err = -EAGAIN;
1556 goto out;
1557 }
1558 /*
1559 * To add new inline back ref, we have to make sure
1560 * there is no corresponding back ref item.
1561 * For simplicity, we just do not add new inline back
1562 * ref if there is any kind of item for this block
1563 */
1564 if (find_next_key(path, 0, &key) == 0 &&
1565 key.objectid == bytenr &&
1566 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1567 err = -EAGAIN;
1568 goto out;
1569 }
1570 }
1571 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1572 out:
1573 if (insert) {
1574 path->keep_locks = 0;
1575 btrfs_unlock_up_safe(path, 1);
1576 }
1577 return err;
1578 }
1579
1580 /*
1581 * helper to add new inline back ref
1582 */
1583 static noinline_for_stack
1584 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1585 struct btrfs_root *root,
1586 struct btrfs_path *path,
1587 struct btrfs_extent_inline_ref *iref,
1588 u64 parent, u64 root_objectid,
1589 u64 owner, u64 offset, int refs_to_add,
1590 struct btrfs_delayed_extent_op *extent_op)
1591 {
1592 struct extent_buffer *leaf;
1593 struct btrfs_extent_item *ei;
1594 unsigned long ptr;
1595 unsigned long end;
1596 unsigned long item_offset;
1597 u64 refs;
1598 int size;
1599 int type;
1600
1601 leaf = path->nodes[0];
1602 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1603 item_offset = (unsigned long)iref - (unsigned long)ei;
1604
1605 type = extent_ref_type(parent, owner);
1606 size = btrfs_extent_inline_ref_size(type);
1607
1608 btrfs_extend_item(trans, root, path, size);
1609
1610 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1611 refs = btrfs_extent_refs(leaf, ei);
1612 refs += refs_to_add;
1613 btrfs_set_extent_refs(leaf, ei, refs);
1614 if (extent_op)
1615 __run_delayed_extent_op(extent_op, leaf, ei);
1616
1617 ptr = (unsigned long)ei + item_offset;
1618 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1619 if (ptr < end - size)
1620 memmove_extent_buffer(leaf, ptr + size, ptr,
1621 end - size - ptr);
1622
1623 iref = (struct btrfs_extent_inline_ref *)ptr;
1624 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1625 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1626 struct btrfs_extent_data_ref *dref;
1627 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1628 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1629 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1630 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1631 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1632 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1633 struct btrfs_shared_data_ref *sref;
1634 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1635 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1636 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1637 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1638 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1639 } else {
1640 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1641 }
1642 btrfs_mark_buffer_dirty(leaf);
1643 }
1644
1645 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1646 struct btrfs_root *root,
1647 struct btrfs_path *path,
1648 struct btrfs_extent_inline_ref **ref_ret,
1649 u64 bytenr, u64 num_bytes, u64 parent,
1650 u64 root_objectid, u64 owner, u64 offset)
1651 {
1652 int ret;
1653
1654 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1655 bytenr, num_bytes, parent,
1656 root_objectid, owner, offset, 0);
1657 if (ret != -ENOENT)
1658 return ret;
1659
1660 btrfs_release_path(path);
1661 *ref_ret = NULL;
1662
1663 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1664 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1665 root_objectid);
1666 } else {
1667 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1668 root_objectid, owner, offset);
1669 }
1670 return ret;
1671 }
1672
1673 /*
1674 * helper to update/remove inline back ref
1675 */
1676 static noinline_for_stack
1677 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1678 struct btrfs_root *root,
1679 struct btrfs_path *path,
1680 struct btrfs_extent_inline_ref *iref,
1681 int refs_to_mod,
1682 struct btrfs_delayed_extent_op *extent_op)
1683 {
1684 struct extent_buffer *leaf;
1685 struct btrfs_extent_item *ei;
1686 struct btrfs_extent_data_ref *dref = NULL;
1687 struct btrfs_shared_data_ref *sref = NULL;
1688 unsigned long ptr;
1689 unsigned long end;
1690 u32 item_size;
1691 int size;
1692 int type;
1693 u64 refs;
1694
1695 leaf = path->nodes[0];
1696 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1697 refs = btrfs_extent_refs(leaf, ei);
1698 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1699 refs += refs_to_mod;
1700 btrfs_set_extent_refs(leaf, ei, refs);
1701 if (extent_op)
1702 __run_delayed_extent_op(extent_op, leaf, ei);
1703
1704 type = btrfs_extent_inline_ref_type(leaf, iref);
1705
1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1708 refs = btrfs_extent_data_ref_count(leaf, dref);
1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 refs = btrfs_shared_data_ref_count(leaf, sref);
1712 } else {
1713 refs = 1;
1714 BUG_ON(refs_to_mod != -1);
1715 }
1716
1717 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1718 refs += refs_to_mod;
1719
1720 if (refs > 0) {
1721 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1722 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1723 else
1724 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1725 } else {
1726 size = btrfs_extent_inline_ref_size(type);
1727 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1728 ptr = (unsigned long)iref;
1729 end = (unsigned long)ei + item_size;
1730 if (ptr + size < end)
1731 memmove_extent_buffer(leaf, ptr, ptr + size,
1732 end - ptr - size);
1733 item_size -= size;
1734 btrfs_truncate_item(trans, root, path, item_size, 1);
1735 }
1736 btrfs_mark_buffer_dirty(leaf);
1737 }
1738
1739 static noinline_for_stack
1740 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1741 struct btrfs_root *root,
1742 struct btrfs_path *path,
1743 u64 bytenr, u64 num_bytes, u64 parent,
1744 u64 root_objectid, u64 owner,
1745 u64 offset, int refs_to_add,
1746 struct btrfs_delayed_extent_op *extent_op)
1747 {
1748 struct btrfs_extent_inline_ref *iref;
1749 int ret;
1750
1751 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1752 bytenr, num_bytes, parent,
1753 root_objectid, owner, offset, 1);
1754 if (ret == 0) {
1755 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1756 update_inline_extent_backref(trans, root, path, iref,
1757 refs_to_add, extent_op);
1758 } else if (ret == -ENOENT) {
1759 setup_inline_extent_backref(trans, root, path, iref, parent,
1760 root_objectid, owner, offset,
1761 refs_to_add, extent_op);
1762 ret = 0;
1763 }
1764 return ret;
1765 }
1766
1767 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1768 struct btrfs_root *root,
1769 struct btrfs_path *path,
1770 u64 bytenr, u64 parent, u64 root_objectid,
1771 u64 owner, u64 offset, int refs_to_add)
1772 {
1773 int ret;
1774 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1775 BUG_ON(refs_to_add != 1);
1776 ret = insert_tree_block_ref(trans, root, path, bytenr,
1777 parent, root_objectid);
1778 } else {
1779 ret = insert_extent_data_ref(trans, root, path, bytenr,
1780 parent, root_objectid,
1781 owner, offset, refs_to_add);
1782 }
1783 return ret;
1784 }
1785
1786 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1787 struct btrfs_root *root,
1788 struct btrfs_path *path,
1789 struct btrfs_extent_inline_ref *iref,
1790 int refs_to_drop, int is_data)
1791 {
1792 int ret = 0;
1793
1794 BUG_ON(!is_data && refs_to_drop != 1);
1795 if (iref) {
1796 update_inline_extent_backref(trans, root, path, iref,
1797 -refs_to_drop, NULL);
1798 } else if (is_data) {
1799 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1800 } else {
1801 ret = btrfs_del_item(trans, root, path);
1802 }
1803 return ret;
1804 }
1805
1806 static int btrfs_issue_discard(struct block_device *bdev,
1807 u64 start, u64 len)
1808 {
1809 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1810 }
1811
1812 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1813 u64 num_bytes, u64 *actual_bytes)
1814 {
1815 int ret;
1816 u64 discarded_bytes = 0;
1817 struct btrfs_bio *bbio = NULL;
1818
1819
1820 /* Tell the block device(s) that the sectors can be discarded */
1821 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1822 bytenr, &num_bytes, &bbio, 0);
1823 /* Error condition is -ENOMEM */
1824 if (!ret) {
1825 struct btrfs_bio_stripe *stripe = bbio->stripes;
1826 int i;
1827
1828
1829 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1830 if (!stripe->dev->can_discard)
1831 continue;
1832
1833 ret = btrfs_issue_discard(stripe->dev->bdev,
1834 stripe->physical,
1835 stripe->length);
1836 if (!ret)
1837 discarded_bytes += stripe->length;
1838 else if (ret != -EOPNOTSUPP)
1839 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1840
1841 /*
1842 * Just in case we get back EOPNOTSUPP for some reason,
1843 * just ignore the return value so we don't screw up
1844 * people calling discard_extent.
1845 */
1846 ret = 0;
1847 }
1848 kfree(bbio);
1849 }
1850
1851 if (actual_bytes)
1852 *actual_bytes = discarded_bytes;
1853
1854
1855 return ret;
1856 }
1857
1858 /* Can return -ENOMEM */
1859 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1860 struct btrfs_root *root,
1861 u64 bytenr, u64 num_bytes, u64 parent,
1862 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1863 {
1864 int ret;
1865 struct btrfs_fs_info *fs_info = root->fs_info;
1866
1867 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1868 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1869
1870 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1871 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1872 num_bytes,
1873 parent, root_objectid, (int)owner,
1874 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1875 } else {
1876 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1877 num_bytes,
1878 parent, root_objectid, owner, offset,
1879 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1880 }
1881 return ret;
1882 }
1883
1884 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1885 struct btrfs_root *root,
1886 u64 bytenr, u64 num_bytes,
1887 u64 parent, u64 root_objectid,
1888 u64 owner, u64 offset, int refs_to_add,
1889 struct btrfs_delayed_extent_op *extent_op)
1890 {
1891 struct btrfs_path *path;
1892 struct extent_buffer *leaf;
1893 struct btrfs_extent_item *item;
1894 u64 refs;
1895 int ret;
1896 int err = 0;
1897
1898 path = btrfs_alloc_path();
1899 if (!path)
1900 return -ENOMEM;
1901
1902 path->reada = 1;
1903 path->leave_spinning = 1;
1904 /* this will setup the path even if it fails to insert the back ref */
1905 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1906 path, bytenr, num_bytes, parent,
1907 root_objectid, owner, offset,
1908 refs_to_add, extent_op);
1909 if (ret == 0)
1910 goto out;
1911
1912 if (ret != -EAGAIN) {
1913 err = ret;
1914 goto out;
1915 }
1916
1917 leaf = path->nodes[0];
1918 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1919 refs = btrfs_extent_refs(leaf, item);
1920 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1921 if (extent_op)
1922 __run_delayed_extent_op(extent_op, leaf, item);
1923
1924 btrfs_mark_buffer_dirty(leaf);
1925 btrfs_release_path(path);
1926
1927 path->reada = 1;
1928 path->leave_spinning = 1;
1929
1930 /* now insert the actual backref */
1931 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1932 path, bytenr, parent, root_objectid,
1933 owner, offset, refs_to_add);
1934 if (ret)
1935 btrfs_abort_transaction(trans, root, ret);
1936 out:
1937 btrfs_free_path(path);
1938 return err;
1939 }
1940
1941 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 struct btrfs_delayed_ref_node *node,
1944 struct btrfs_delayed_extent_op *extent_op,
1945 int insert_reserved)
1946 {
1947 int ret = 0;
1948 struct btrfs_delayed_data_ref *ref;
1949 struct btrfs_key ins;
1950 u64 parent = 0;
1951 u64 ref_root = 0;
1952 u64 flags = 0;
1953
1954 ins.objectid = node->bytenr;
1955 ins.offset = node->num_bytes;
1956 ins.type = BTRFS_EXTENT_ITEM_KEY;
1957
1958 ref = btrfs_delayed_node_to_data_ref(node);
1959 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1960 parent = ref->parent;
1961 else
1962 ref_root = ref->root;
1963
1964 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1965 if (extent_op) {
1966 BUG_ON(extent_op->update_key);
1967 flags |= extent_op->flags_to_set;
1968 }
1969 ret = alloc_reserved_file_extent(trans, root,
1970 parent, ref_root, flags,
1971 ref->objectid, ref->offset,
1972 &ins, node->ref_mod);
1973 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1974 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1975 node->num_bytes, parent,
1976 ref_root, ref->objectid,
1977 ref->offset, node->ref_mod,
1978 extent_op);
1979 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1980 ret = __btrfs_free_extent(trans, root, node->bytenr,
1981 node->num_bytes, parent,
1982 ref_root, ref->objectid,
1983 ref->offset, node->ref_mod,
1984 extent_op);
1985 } else {
1986 BUG();
1987 }
1988 return ret;
1989 }
1990
1991 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1992 struct extent_buffer *leaf,
1993 struct btrfs_extent_item *ei)
1994 {
1995 u64 flags = btrfs_extent_flags(leaf, ei);
1996 if (extent_op->update_flags) {
1997 flags |= extent_op->flags_to_set;
1998 btrfs_set_extent_flags(leaf, ei, flags);
1999 }
2000
2001 if (extent_op->update_key) {
2002 struct btrfs_tree_block_info *bi;
2003 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2004 bi = (struct btrfs_tree_block_info *)(ei + 1);
2005 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2006 }
2007 }
2008
2009 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 struct btrfs_delayed_ref_node *node,
2012 struct btrfs_delayed_extent_op *extent_op)
2013 {
2014 struct btrfs_key key;
2015 struct btrfs_path *path;
2016 struct btrfs_extent_item *ei;
2017 struct extent_buffer *leaf;
2018 u32 item_size;
2019 int ret;
2020 int err = 0;
2021
2022 if (trans->aborted)
2023 return 0;
2024
2025 path = btrfs_alloc_path();
2026 if (!path)
2027 return -ENOMEM;
2028
2029 key.objectid = node->bytenr;
2030 key.type = BTRFS_EXTENT_ITEM_KEY;
2031 key.offset = node->num_bytes;
2032
2033 path->reada = 1;
2034 path->leave_spinning = 1;
2035 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2036 path, 0, 1);
2037 if (ret < 0) {
2038 err = ret;
2039 goto out;
2040 }
2041 if (ret > 0) {
2042 err = -EIO;
2043 goto out;
2044 }
2045
2046 leaf = path->nodes[0];
2047 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2048 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2049 if (item_size < sizeof(*ei)) {
2050 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2051 path, (u64)-1, 0);
2052 if (ret < 0) {
2053 err = ret;
2054 goto out;
2055 }
2056 leaf = path->nodes[0];
2057 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2058 }
2059 #endif
2060 BUG_ON(item_size < sizeof(*ei));
2061 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2062 __run_delayed_extent_op(extent_op, leaf, ei);
2063
2064 btrfs_mark_buffer_dirty(leaf);
2065 out:
2066 btrfs_free_path(path);
2067 return err;
2068 }
2069
2070 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2071 struct btrfs_root *root,
2072 struct btrfs_delayed_ref_node *node,
2073 struct btrfs_delayed_extent_op *extent_op,
2074 int insert_reserved)
2075 {
2076 int ret = 0;
2077 struct btrfs_delayed_tree_ref *ref;
2078 struct btrfs_key ins;
2079 u64 parent = 0;
2080 u64 ref_root = 0;
2081
2082 ins.objectid = node->bytenr;
2083 ins.offset = node->num_bytes;
2084 ins.type = BTRFS_EXTENT_ITEM_KEY;
2085
2086 ref = btrfs_delayed_node_to_tree_ref(node);
2087 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2088 parent = ref->parent;
2089 else
2090 ref_root = ref->root;
2091
2092 BUG_ON(node->ref_mod != 1);
2093 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2094 BUG_ON(!extent_op || !extent_op->update_flags ||
2095 !extent_op->update_key);
2096 ret = alloc_reserved_tree_block(trans, root,
2097 parent, ref_root,
2098 extent_op->flags_to_set,
2099 &extent_op->key,
2100 ref->level, &ins);
2101 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2102 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2103 node->num_bytes, parent, ref_root,
2104 ref->level, 0, 1, extent_op);
2105 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2106 ret = __btrfs_free_extent(trans, root, node->bytenr,
2107 node->num_bytes, parent, ref_root,
2108 ref->level, 0, 1, extent_op);
2109 } else {
2110 BUG();
2111 }
2112 return ret;
2113 }
2114
2115 /* helper function to actually process a single delayed ref entry */
2116 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2117 struct btrfs_root *root,
2118 struct btrfs_delayed_ref_node *node,
2119 struct btrfs_delayed_extent_op *extent_op,
2120 int insert_reserved)
2121 {
2122 int ret = 0;
2123
2124 if (trans->aborted)
2125 return 0;
2126
2127 if (btrfs_delayed_ref_is_head(node)) {
2128 struct btrfs_delayed_ref_head *head;
2129 /*
2130 * we've hit the end of the chain and we were supposed
2131 * to insert this extent into the tree. But, it got
2132 * deleted before we ever needed to insert it, so all
2133 * we have to do is clean up the accounting
2134 */
2135 BUG_ON(extent_op);
2136 head = btrfs_delayed_node_to_head(node);
2137 if (insert_reserved) {
2138 btrfs_pin_extent(root, node->bytenr,
2139 node->num_bytes, 1);
2140 if (head->is_data) {
2141 ret = btrfs_del_csums(trans, root,
2142 node->bytenr,
2143 node->num_bytes);
2144 }
2145 }
2146 mutex_unlock(&head->mutex);
2147 return ret;
2148 }
2149
2150 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2151 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2152 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2153 insert_reserved);
2154 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2155 node->type == BTRFS_SHARED_DATA_REF_KEY)
2156 ret = run_delayed_data_ref(trans, root, node, extent_op,
2157 insert_reserved);
2158 else
2159 BUG();
2160 return ret;
2161 }
2162
2163 static noinline struct btrfs_delayed_ref_node *
2164 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2165 {
2166 struct rb_node *node;
2167 struct btrfs_delayed_ref_node *ref;
2168 int action = BTRFS_ADD_DELAYED_REF;
2169 again:
2170 /*
2171 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2172 * this prevents ref count from going down to zero when
2173 * there still are pending delayed ref.
2174 */
2175 node = rb_prev(&head->node.rb_node);
2176 while (1) {
2177 if (!node)
2178 break;
2179 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2180 rb_node);
2181 if (ref->bytenr != head->node.bytenr)
2182 break;
2183 if (ref->action == action)
2184 return ref;
2185 node = rb_prev(node);
2186 }
2187 if (action == BTRFS_ADD_DELAYED_REF) {
2188 action = BTRFS_DROP_DELAYED_REF;
2189 goto again;
2190 }
2191 return NULL;
2192 }
2193
2194 /*
2195 * Returns 0 on success or if called with an already aborted transaction.
2196 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2197 */
2198 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2199 struct btrfs_root *root,
2200 struct list_head *cluster)
2201 {
2202 struct btrfs_delayed_ref_root *delayed_refs;
2203 struct btrfs_delayed_ref_node *ref;
2204 struct btrfs_delayed_ref_head *locked_ref = NULL;
2205 struct btrfs_delayed_extent_op *extent_op;
2206 struct btrfs_fs_info *fs_info = root->fs_info;
2207 int ret;
2208 int count = 0;
2209 int must_insert_reserved = 0;
2210
2211 delayed_refs = &trans->transaction->delayed_refs;
2212 while (1) {
2213 if (!locked_ref) {
2214 /* pick a new head ref from the cluster list */
2215 if (list_empty(cluster))
2216 break;
2217
2218 locked_ref = list_entry(cluster->next,
2219 struct btrfs_delayed_ref_head, cluster);
2220
2221 /* grab the lock that says we are going to process
2222 * all the refs for this head */
2223 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2224
2225 /*
2226 * we may have dropped the spin lock to get the head
2227 * mutex lock, and that might have given someone else
2228 * time to free the head. If that's true, it has been
2229 * removed from our list and we can move on.
2230 */
2231 if (ret == -EAGAIN) {
2232 locked_ref = NULL;
2233 count++;
2234 continue;
2235 }
2236 }
2237
2238 /*
2239 * We need to try and merge add/drops of the same ref since we
2240 * can run into issues with relocate dropping the implicit ref
2241 * and then it being added back again before the drop can
2242 * finish. If we merged anything we need to re-loop so we can
2243 * get a good ref.
2244 */
2245 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2246 locked_ref);
2247
2248 /*
2249 * locked_ref is the head node, so we have to go one
2250 * node back for any delayed ref updates
2251 */
2252 ref = select_delayed_ref(locked_ref);
2253
2254 if (ref && ref->seq &&
2255 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2256 /*
2257 * there are still refs with lower seq numbers in the
2258 * process of being added. Don't run this ref yet.
2259 */
2260 list_del_init(&locked_ref->cluster);
2261 mutex_unlock(&locked_ref->mutex);
2262 locked_ref = NULL;
2263 delayed_refs->num_heads_ready++;
2264 spin_unlock(&delayed_refs->lock);
2265 cond_resched();
2266 spin_lock(&delayed_refs->lock);
2267 continue;
2268 }
2269
2270 /*
2271 * record the must insert reserved flag before we
2272 * drop the spin lock.
2273 */
2274 must_insert_reserved = locked_ref->must_insert_reserved;
2275 locked_ref->must_insert_reserved = 0;
2276
2277 extent_op = locked_ref->extent_op;
2278 locked_ref->extent_op = NULL;
2279
2280 if (!ref) {
2281 /* All delayed refs have been processed, Go ahead
2282 * and send the head node to run_one_delayed_ref,
2283 * so that any accounting fixes can happen
2284 */
2285 ref = &locked_ref->node;
2286
2287 if (extent_op && must_insert_reserved) {
2288 kfree(extent_op);
2289 extent_op = NULL;
2290 }
2291
2292 if (extent_op) {
2293 spin_unlock(&delayed_refs->lock);
2294
2295 ret = run_delayed_extent_op(trans, root,
2296 ref, extent_op);
2297 kfree(extent_op);
2298
2299 if (ret) {
2300 list_del_init(&locked_ref->cluster);
2301 mutex_unlock(&locked_ref->mutex);
2302
2303 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2304 spin_lock(&delayed_refs->lock);
2305 return ret;
2306 }
2307
2308 goto next;
2309 }
2310
2311 list_del_init(&locked_ref->cluster);
2312 locked_ref = NULL;
2313 }
2314
2315 ref->in_tree = 0;
2316 rb_erase(&ref->rb_node, &delayed_refs->root);
2317 delayed_refs->num_entries--;
2318 if (locked_ref) {
2319 /*
2320 * when we play the delayed ref, also correct the
2321 * ref_mod on head
2322 */
2323 switch (ref->action) {
2324 case BTRFS_ADD_DELAYED_REF:
2325 case BTRFS_ADD_DELAYED_EXTENT:
2326 locked_ref->node.ref_mod -= ref->ref_mod;
2327 break;
2328 case BTRFS_DROP_DELAYED_REF:
2329 locked_ref->node.ref_mod += ref->ref_mod;
2330 break;
2331 default:
2332 WARN_ON(1);
2333 }
2334 }
2335 spin_unlock(&delayed_refs->lock);
2336
2337 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2338 must_insert_reserved);
2339
2340 btrfs_put_delayed_ref(ref);
2341 kfree(extent_op);
2342 count++;
2343
2344 if (ret) {
2345 if (locked_ref) {
2346 list_del_init(&locked_ref->cluster);
2347 mutex_unlock(&locked_ref->mutex);
2348 }
2349 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2350 spin_lock(&delayed_refs->lock);
2351 return ret;
2352 }
2353
2354 next:
2355 cond_resched();
2356 spin_lock(&delayed_refs->lock);
2357 }
2358 return count;
2359 }
2360
2361 #ifdef SCRAMBLE_DELAYED_REFS
2362 /*
2363 * Normally delayed refs get processed in ascending bytenr order. This
2364 * correlates in most cases to the order added. To expose dependencies on this
2365 * order, we start to process the tree in the middle instead of the beginning
2366 */
2367 static u64 find_middle(struct rb_root *root)
2368 {
2369 struct rb_node *n = root->rb_node;
2370 struct btrfs_delayed_ref_node *entry;
2371 int alt = 1;
2372 u64 middle;
2373 u64 first = 0, last = 0;
2374
2375 n = rb_first(root);
2376 if (n) {
2377 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2378 first = entry->bytenr;
2379 }
2380 n = rb_last(root);
2381 if (n) {
2382 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2383 last = entry->bytenr;
2384 }
2385 n = root->rb_node;
2386
2387 while (n) {
2388 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2389 WARN_ON(!entry->in_tree);
2390
2391 middle = entry->bytenr;
2392
2393 if (alt)
2394 n = n->rb_left;
2395 else
2396 n = n->rb_right;
2397
2398 alt = 1 - alt;
2399 }
2400 return middle;
2401 }
2402 #endif
2403
2404 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2405 struct btrfs_fs_info *fs_info)
2406 {
2407 struct qgroup_update *qgroup_update;
2408 int ret = 0;
2409
2410 if (list_empty(&trans->qgroup_ref_list) !=
2411 !trans->delayed_ref_elem.seq) {
2412 /* list without seq or seq without list */
2413 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2414 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2415 trans->delayed_ref_elem.seq);
2416 BUG();
2417 }
2418
2419 if (!trans->delayed_ref_elem.seq)
2420 return 0;
2421
2422 while (!list_empty(&trans->qgroup_ref_list)) {
2423 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2424 struct qgroup_update, list);
2425 list_del(&qgroup_update->list);
2426 if (!ret)
2427 ret = btrfs_qgroup_account_ref(
2428 trans, fs_info, qgroup_update->node,
2429 qgroup_update->extent_op);
2430 kfree(qgroup_update);
2431 }
2432
2433 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2434
2435 return ret;
2436 }
2437
2438 /*
2439 * this starts processing the delayed reference count updates and
2440 * extent insertions we have queued up so far. count can be
2441 * 0, which means to process everything in the tree at the start
2442 * of the run (but not newly added entries), or it can be some target
2443 * number you'd like to process.
2444 *
2445 * Returns 0 on success or if called with an aborted transaction
2446 * Returns <0 on error and aborts the transaction
2447 */
2448 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2449 struct btrfs_root *root, unsigned long count)
2450 {
2451 struct rb_node *node;
2452 struct btrfs_delayed_ref_root *delayed_refs;
2453 struct btrfs_delayed_ref_node *ref;
2454 struct list_head cluster;
2455 int ret;
2456 u64 delayed_start;
2457 int run_all = count == (unsigned long)-1;
2458 int run_most = 0;
2459 int loops;
2460
2461 /* We'll clean this up in btrfs_cleanup_transaction */
2462 if (trans->aborted)
2463 return 0;
2464
2465 if (root == root->fs_info->extent_root)
2466 root = root->fs_info->tree_root;
2467
2468 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2469
2470 delayed_refs = &trans->transaction->delayed_refs;
2471 INIT_LIST_HEAD(&cluster);
2472 again:
2473 loops = 0;
2474 spin_lock(&delayed_refs->lock);
2475
2476 #ifdef SCRAMBLE_DELAYED_REFS
2477 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2478 #endif
2479
2480 if (count == 0) {
2481 count = delayed_refs->num_entries * 2;
2482 run_most = 1;
2483 }
2484 while (1) {
2485 if (!(run_all || run_most) &&
2486 delayed_refs->num_heads_ready < 64)
2487 break;
2488
2489 /*
2490 * go find something we can process in the rbtree. We start at
2491 * the beginning of the tree, and then build a cluster
2492 * of refs to process starting at the first one we are able to
2493 * lock
2494 */
2495 delayed_start = delayed_refs->run_delayed_start;
2496 ret = btrfs_find_ref_cluster(trans, &cluster,
2497 delayed_refs->run_delayed_start);
2498 if (ret)
2499 break;
2500
2501 ret = run_clustered_refs(trans, root, &cluster);
2502 if (ret < 0) {
2503 spin_unlock(&delayed_refs->lock);
2504 btrfs_abort_transaction(trans, root, ret);
2505 return ret;
2506 }
2507
2508 count -= min_t(unsigned long, ret, count);
2509
2510 if (count == 0)
2511 break;
2512
2513 if (delayed_start >= delayed_refs->run_delayed_start) {
2514 if (loops == 0) {
2515 /*
2516 * btrfs_find_ref_cluster looped. let's do one
2517 * more cycle. if we don't run any delayed ref
2518 * during that cycle (because we can't because
2519 * all of them are blocked), bail out.
2520 */
2521 loops = 1;
2522 } else {
2523 /*
2524 * no runnable refs left, stop trying
2525 */
2526 BUG_ON(run_all);
2527 break;
2528 }
2529 }
2530 if (ret) {
2531 /* refs were run, let's reset staleness detection */
2532 loops = 0;
2533 }
2534 }
2535
2536 if (run_all) {
2537 if (!list_empty(&trans->new_bgs)) {
2538 spin_unlock(&delayed_refs->lock);
2539 btrfs_create_pending_block_groups(trans, root);
2540 spin_lock(&delayed_refs->lock);
2541 }
2542
2543 node = rb_first(&delayed_refs->root);
2544 if (!node)
2545 goto out;
2546 count = (unsigned long)-1;
2547
2548 while (node) {
2549 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2550 rb_node);
2551 if (btrfs_delayed_ref_is_head(ref)) {
2552 struct btrfs_delayed_ref_head *head;
2553
2554 head = btrfs_delayed_node_to_head(ref);
2555 atomic_inc(&ref->refs);
2556
2557 spin_unlock(&delayed_refs->lock);
2558 /*
2559 * Mutex was contended, block until it's
2560 * released and try again
2561 */
2562 mutex_lock(&head->mutex);
2563 mutex_unlock(&head->mutex);
2564
2565 btrfs_put_delayed_ref(ref);
2566 cond_resched();
2567 goto again;
2568 }
2569 node = rb_next(node);
2570 }
2571 spin_unlock(&delayed_refs->lock);
2572 schedule_timeout(1);
2573 goto again;
2574 }
2575 out:
2576 spin_unlock(&delayed_refs->lock);
2577 assert_qgroups_uptodate(trans);
2578 return 0;
2579 }
2580
2581 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2582 struct btrfs_root *root,
2583 u64 bytenr, u64 num_bytes, u64 flags,
2584 int is_data)
2585 {
2586 struct btrfs_delayed_extent_op *extent_op;
2587 int ret;
2588
2589 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2590 if (!extent_op)
2591 return -ENOMEM;
2592
2593 extent_op->flags_to_set = flags;
2594 extent_op->update_flags = 1;
2595 extent_op->update_key = 0;
2596 extent_op->is_data = is_data ? 1 : 0;
2597
2598 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2599 num_bytes, extent_op);
2600 if (ret)
2601 kfree(extent_op);
2602 return ret;
2603 }
2604
2605 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2606 struct btrfs_root *root,
2607 struct btrfs_path *path,
2608 u64 objectid, u64 offset, u64 bytenr)
2609 {
2610 struct btrfs_delayed_ref_head *head;
2611 struct btrfs_delayed_ref_node *ref;
2612 struct btrfs_delayed_data_ref *data_ref;
2613 struct btrfs_delayed_ref_root *delayed_refs;
2614 struct rb_node *node;
2615 int ret = 0;
2616
2617 ret = -ENOENT;
2618 delayed_refs = &trans->transaction->delayed_refs;
2619 spin_lock(&delayed_refs->lock);
2620 head = btrfs_find_delayed_ref_head(trans, bytenr);
2621 if (!head)
2622 goto out;
2623
2624 if (!mutex_trylock(&head->mutex)) {
2625 atomic_inc(&head->node.refs);
2626 spin_unlock(&delayed_refs->lock);
2627
2628 btrfs_release_path(path);
2629
2630 /*
2631 * Mutex was contended, block until it's released and let
2632 * caller try again
2633 */
2634 mutex_lock(&head->mutex);
2635 mutex_unlock(&head->mutex);
2636 btrfs_put_delayed_ref(&head->node);
2637 return -EAGAIN;
2638 }
2639
2640 node = rb_prev(&head->node.rb_node);
2641 if (!node)
2642 goto out_unlock;
2643
2644 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2645
2646 if (ref->bytenr != bytenr)
2647 goto out_unlock;
2648
2649 ret = 1;
2650 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2651 goto out_unlock;
2652
2653 data_ref = btrfs_delayed_node_to_data_ref(ref);
2654
2655 node = rb_prev(node);
2656 if (node) {
2657 int seq = ref->seq;
2658
2659 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2660 if (ref->bytenr == bytenr && ref->seq == seq)
2661 goto out_unlock;
2662 }
2663
2664 if (data_ref->root != root->root_key.objectid ||
2665 data_ref->objectid != objectid || data_ref->offset != offset)
2666 goto out_unlock;
2667
2668 ret = 0;
2669 out_unlock:
2670 mutex_unlock(&head->mutex);
2671 out:
2672 spin_unlock(&delayed_refs->lock);
2673 return ret;
2674 }
2675
2676 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2677 struct btrfs_root *root,
2678 struct btrfs_path *path,
2679 u64 objectid, u64 offset, u64 bytenr)
2680 {
2681 struct btrfs_root *extent_root = root->fs_info->extent_root;
2682 struct extent_buffer *leaf;
2683 struct btrfs_extent_data_ref *ref;
2684 struct btrfs_extent_inline_ref *iref;
2685 struct btrfs_extent_item *ei;
2686 struct btrfs_key key;
2687 u32 item_size;
2688 int ret;
2689
2690 key.objectid = bytenr;
2691 key.offset = (u64)-1;
2692 key.type = BTRFS_EXTENT_ITEM_KEY;
2693
2694 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2695 if (ret < 0)
2696 goto out;
2697 BUG_ON(ret == 0); /* Corruption */
2698
2699 ret = -ENOENT;
2700 if (path->slots[0] == 0)
2701 goto out;
2702
2703 path->slots[0]--;
2704 leaf = path->nodes[0];
2705 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2706
2707 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2708 goto out;
2709
2710 ret = 1;
2711 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2712 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2713 if (item_size < sizeof(*ei)) {
2714 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2715 goto out;
2716 }
2717 #endif
2718 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2719
2720 if (item_size != sizeof(*ei) +
2721 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2722 goto out;
2723
2724 if (btrfs_extent_generation(leaf, ei) <=
2725 btrfs_root_last_snapshot(&root->root_item))
2726 goto out;
2727
2728 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2729 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2730 BTRFS_EXTENT_DATA_REF_KEY)
2731 goto out;
2732
2733 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2734 if (btrfs_extent_refs(leaf, ei) !=
2735 btrfs_extent_data_ref_count(leaf, ref) ||
2736 btrfs_extent_data_ref_root(leaf, ref) !=
2737 root->root_key.objectid ||
2738 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2739 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2740 goto out;
2741
2742 ret = 0;
2743 out:
2744 return ret;
2745 }
2746
2747 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2748 struct btrfs_root *root,
2749 u64 objectid, u64 offset, u64 bytenr)
2750 {
2751 struct btrfs_path *path;
2752 int ret;
2753 int ret2;
2754
2755 path = btrfs_alloc_path();
2756 if (!path)
2757 return -ENOENT;
2758
2759 do {
2760 ret = check_committed_ref(trans, root, path, objectid,
2761 offset, bytenr);
2762 if (ret && ret != -ENOENT)
2763 goto out;
2764
2765 ret2 = check_delayed_ref(trans, root, path, objectid,
2766 offset, bytenr);
2767 } while (ret2 == -EAGAIN);
2768
2769 if (ret2 && ret2 != -ENOENT) {
2770 ret = ret2;
2771 goto out;
2772 }
2773
2774 if (ret != -ENOENT || ret2 != -ENOENT)
2775 ret = 0;
2776 out:
2777 btrfs_free_path(path);
2778 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2779 WARN_ON(ret > 0);
2780 return ret;
2781 }
2782
2783 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2784 struct btrfs_root *root,
2785 struct extent_buffer *buf,
2786 int full_backref, int inc, int for_cow)
2787 {
2788 u64 bytenr;
2789 u64 num_bytes;
2790 u64 parent;
2791 u64 ref_root;
2792 u32 nritems;
2793 struct btrfs_key key;
2794 struct btrfs_file_extent_item *fi;
2795 int i;
2796 int level;
2797 int ret = 0;
2798 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2799 u64, u64, u64, u64, u64, u64, int);
2800
2801 ref_root = btrfs_header_owner(buf);
2802 nritems = btrfs_header_nritems(buf);
2803 level = btrfs_header_level(buf);
2804
2805 if (!root->ref_cows && level == 0)
2806 return 0;
2807
2808 if (inc)
2809 process_func = btrfs_inc_extent_ref;
2810 else
2811 process_func = btrfs_free_extent;
2812
2813 if (full_backref)
2814 parent = buf->start;
2815 else
2816 parent = 0;
2817
2818 for (i = 0; i < nritems; i++) {
2819 if (level == 0) {
2820 btrfs_item_key_to_cpu(buf, &key, i);
2821 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2822 continue;
2823 fi = btrfs_item_ptr(buf, i,
2824 struct btrfs_file_extent_item);
2825 if (btrfs_file_extent_type(buf, fi) ==
2826 BTRFS_FILE_EXTENT_INLINE)
2827 continue;
2828 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2829 if (bytenr == 0)
2830 continue;
2831
2832 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2833 key.offset -= btrfs_file_extent_offset(buf, fi);
2834 ret = process_func(trans, root, bytenr, num_bytes,
2835 parent, ref_root, key.objectid,
2836 key.offset, for_cow);
2837 if (ret)
2838 goto fail;
2839 } else {
2840 bytenr = btrfs_node_blockptr(buf, i);
2841 num_bytes = btrfs_level_size(root, level - 1);
2842 ret = process_func(trans, root, bytenr, num_bytes,
2843 parent, ref_root, level - 1, 0,
2844 for_cow);
2845 if (ret)
2846 goto fail;
2847 }
2848 }
2849 return 0;
2850 fail:
2851 return ret;
2852 }
2853
2854 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2855 struct extent_buffer *buf, int full_backref, int for_cow)
2856 {
2857 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2858 }
2859
2860 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2861 struct extent_buffer *buf, int full_backref, int for_cow)
2862 {
2863 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2864 }
2865
2866 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2867 struct btrfs_root *root,
2868 struct btrfs_path *path,
2869 struct btrfs_block_group_cache *cache)
2870 {
2871 int ret;
2872 struct btrfs_root *extent_root = root->fs_info->extent_root;
2873 unsigned long bi;
2874 struct extent_buffer *leaf;
2875
2876 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2877 if (ret < 0)
2878 goto fail;
2879 BUG_ON(ret); /* Corruption */
2880
2881 leaf = path->nodes[0];
2882 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2883 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2884 btrfs_mark_buffer_dirty(leaf);
2885 btrfs_release_path(path);
2886 fail:
2887 if (ret) {
2888 btrfs_abort_transaction(trans, root, ret);
2889 return ret;
2890 }
2891 return 0;
2892
2893 }
2894
2895 static struct btrfs_block_group_cache *
2896 next_block_group(struct btrfs_root *root,
2897 struct btrfs_block_group_cache *cache)
2898 {
2899 struct rb_node *node;
2900 spin_lock(&root->fs_info->block_group_cache_lock);
2901 node = rb_next(&cache->cache_node);
2902 btrfs_put_block_group(cache);
2903 if (node) {
2904 cache = rb_entry(node, struct btrfs_block_group_cache,
2905 cache_node);
2906 btrfs_get_block_group(cache);
2907 } else
2908 cache = NULL;
2909 spin_unlock(&root->fs_info->block_group_cache_lock);
2910 return cache;
2911 }
2912
2913 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2914 struct btrfs_trans_handle *trans,
2915 struct btrfs_path *path)
2916 {
2917 struct btrfs_root *root = block_group->fs_info->tree_root;
2918 struct inode *inode = NULL;
2919 u64 alloc_hint = 0;
2920 int dcs = BTRFS_DC_ERROR;
2921 int num_pages = 0;
2922 int retries = 0;
2923 int ret = 0;
2924
2925 /*
2926 * If this block group is smaller than 100 megs don't bother caching the
2927 * block group.
2928 */
2929 if (block_group->key.offset < (100 * 1024 * 1024)) {
2930 spin_lock(&block_group->lock);
2931 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2932 spin_unlock(&block_group->lock);
2933 return 0;
2934 }
2935
2936 again:
2937 inode = lookup_free_space_inode(root, block_group, path);
2938 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2939 ret = PTR_ERR(inode);
2940 btrfs_release_path(path);
2941 goto out;
2942 }
2943
2944 if (IS_ERR(inode)) {
2945 BUG_ON(retries);
2946 retries++;
2947
2948 if (block_group->ro)
2949 goto out_free;
2950
2951 ret = create_free_space_inode(root, trans, block_group, path);
2952 if (ret)
2953 goto out_free;
2954 goto again;
2955 }
2956
2957 /* We've already setup this transaction, go ahead and exit */
2958 if (block_group->cache_generation == trans->transid &&
2959 i_size_read(inode)) {
2960 dcs = BTRFS_DC_SETUP;
2961 goto out_put;
2962 }
2963
2964 /*
2965 * We want to set the generation to 0, that way if anything goes wrong
2966 * from here on out we know not to trust this cache when we load up next
2967 * time.
2968 */
2969 BTRFS_I(inode)->generation = 0;
2970 ret = btrfs_update_inode(trans, root, inode);
2971 WARN_ON(ret);
2972
2973 if (i_size_read(inode) > 0) {
2974 ret = btrfs_truncate_free_space_cache(root, trans, path,
2975 inode);
2976 if (ret)
2977 goto out_put;
2978 }
2979
2980 spin_lock(&block_group->lock);
2981 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2982 !btrfs_test_opt(root, SPACE_CACHE)) {
2983 /*
2984 * don't bother trying to write stuff out _if_
2985 * a) we're not cached,
2986 * b) we're with nospace_cache mount option.
2987 */
2988 dcs = BTRFS_DC_WRITTEN;
2989 spin_unlock(&block_group->lock);
2990 goto out_put;
2991 }
2992 spin_unlock(&block_group->lock);
2993
2994 /*
2995 * Try to preallocate enough space based on how big the block group is.
2996 * Keep in mind this has to include any pinned space which could end up
2997 * taking up quite a bit since it's not folded into the other space
2998 * cache.
2999 */
3000 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3001 if (!num_pages)
3002 num_pages = 1;
3003
3004 num_pages *= 16;
3005 num_pages *= PAGE_CACHE_SIZE;
3006
3007 ret = btrfs_check_data_free_space(inode, num_pages);
3008 if (ret)
3009 goto out_put;
3010
3011 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3012 num_pages, num_pages,
3013 &alloc_hint);
3014 if (!ret)
3015 dcs = BTRFS_DC_SETUP;
3016 btrfs_free_reserved_data_space(inode, num_pages);
3017
3018 out_put:
3019 iput(inode);
3020 out_free:
3021 btrfs_release_path(path);
3022 out:
3023 spin_lock(&block_group->lock);
3024 if (!ret && dcs == BTRFS_DC_SETUP)
3025 block_group->cache_generation = trans->transid;
3026 block_group->disk_cache_state = dcs;
3027 spin_unlock(&block_group->lock);
3028
3029 return ret;
3030 }
3031
3032 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3033 struct btrfs_root *root)
3034 {
3035 struct btrfs_block_group_cache *cache;
3036 int err = 0;
3037 struct btrfs_path *path;
3038 u64 last = 0;
3039
3040 path = btrfs_alloc_path();
3041 if (!path)
3042 return -ENOMEM;
3043
3044 again:
3045 while (1) {
3046 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3047 while (cache) {
3048 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3049 break;
3050 cache = next_block_group(root, cache);
3051 }
3052 if (!cache) {
3053 if (last == 0)
3054 break;
3055 last = 0;
3056 continue;
3057 }
3058 err = cache_save_setup(cache, trans, path);
3059 last = cache->key.objectid + cache->key.offset;
3060 btrfs_put_block_group(cache);
3061 }
3062
3063 while (1) {
3064 if (last == 0) {
3065 err = btrfs_run_delayed_refs(trans, root,
3066 (unsigned long)-1);
3067 if (err) /* File system offline */
3068 goto out;
3069 }
3070
3071 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3072 while (cache) {
3073 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3074 btrfs_put_block_group(cache);
3075 goto again;
3076 }
3077
3078 if (cache->dirty)
3079 break;
3080 cache = next_block_group(root, cache);
3081 }
3082 if (!cache) {
3083 if (last == 0)
3084 break;
3085 last = 0;
3086 continue;
3087 }
3088
3089 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3090 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3091 cache->dirty = 0;
3092 last = cache->key.objectid + cache->key.offset;
3093
3094 err = write_one_cache_group(trans, root, path, cache);
3095 if (err) /* File system offline */
3096 goto out;
3097
3098 btrfs_put_block_group(cache);
3099 }
3100
3101 while (1) {
3102 /*
3103 * I don't think this is needed since we're just marking our
3104 * preallocated extent as written, but just in case it can't
3105 * hurt.
3106 */
3107 if (last == 0) {
3108 err = btrfs_run_delayed_refs(trans, root,
3109 (unsigned long)-1);
3110 if (err) /* File system offline */
3111 goto out;
3112 }
3113
3114 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3115 while (cache) {
3116 /*
3117 * Really this shouldn't happen, but it could if we
3118 * couldn't write the entire preallocated extent and
3119 * splitting the extent resulted in a new block.
3120 */
3121 if (cache->dirty) {
3122 btrfs_put_block_group(cache);
3123 goto again;
3124 }
3125 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3126 break;
3127 cache = next_block_group(root, cache);
3128 }
3129 if (!cache) {
3130 if (last == 0)
3131 break;
3132 last = 0;
3133 continue;
3134 }
3135
3136 err = btrfs_write_out_cache(root, trans, cache, path);
3137
3138 /*
3139 * If we didn't have an error then the cache state is still
3140 * NEED_WRITE, so we can set it to WRITTEN.
3141 */
3142 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3143 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3144 last = cache->key.objectid + cache->key.offset;
3145 btrfs_put_block_group(cache);
3146 }
3147 out:
3148
3149 btrfs_free_path(path);
3150 return err;
3151 }
3152
3153 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3154 {
3155 struct btrfs_block_group_cache *block_group;
3156 int readonly = 0;
3157
3158 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3159 if (!block_group || block_group->ro)
3160 readonly = 1;
3161 if (block_group)
3162 btrfs_put_block_group(block_group);
3163 return readonly;
3164 }
3165
3166 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3167 u64 total_bytes, u64 bytes_used,
3168 struct btrfs_space_info **space_info)
3169 {
3170 struct btrfs_space_info *found;
3171 int i;
3172 int factor;
3173
3174 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3175 BTRFS_BLOCK_GROUP_RAID10))
3176 factor = 2;
3177 else
3178 factor = 1;
3179
3180 found = __find_space_info(info, flags);
3181 if (found) {
3182 spin_lock(&found->lock);
3183 found->total_bytes += total_bytes;
3184 found->disk_total += total_bytes * factor;
3185 found->bytes_used += bytes_used;
3186 found->disk_used += bytes_used * factor;
3187 found->full = 0;
3188 spin_unlock(&found->lock);
3189 *space_info = found;
3190 return 0;
3191 }
3192 found = kzalloc(sizeof(*found), GFP_NOFS);
3193 if (!found)
3194 return -ENOMEM;
3195
3196 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3197 INIT_LIST_HEAD(&found->block_groups[i]);
3198 init_rwsem(&found->groups_sem);
3199 spin_lock_init(&found->lock);
3200 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3201 found->total_bytes = total_bytes;
3202 found->disk_total = total_bytes * factor;
3203 found->bytes_used = bytes_used;
3204 found->disk_used = bytes_used * factor;
3205 found->bytes_pinned = 0;
3206 found->bytes_reserved = 0;
3207 found->bytes_readonly = 0;
3208 found->bytes_may_use = 0;
3209 found->full = 0;
3210 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3211 found->chunk_alloc = 0;
3212 found->flush = 0;
3213 init_waitqueue_head(&found->wait);
3214 *space_info = found;
3215 list_add_rcu(&found->list, &info->space_info);
3216 if (flags & BTRFS_BLOCK_GROUP_DATA)
3217 info->data_sinfo = found;
3218 return 0;
3219 }
3220
3221 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3222 {
3223 u64 extra_flags = chunk_to_extended(flags) &
3224 BTRFS_EXTENDED_PROFILE_MASK;
3225
3226 if (flags & BTRFS_BLOCK_GROUP_DATA)
3227 fs_info->avail_data_alloc_bits |= extra_flags;
3228 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3229 fs_info->avail_metadata_alloc_bits |= extra_flags;
3230 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3231 fs_info->avail_system_alloc_bits |= extra_flags;
3232 }
3233
3234 /*
3235 * returns target flags in extended format or 0 if restripe for this
3236 * chunk_type is not in progress
3237 *
3238 * should be called with either volume_mutex or balance_lock held
3239 */
3240 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3241 {
3242 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3243 u64 target = 0;
3244
3245 if (!bctl)
3246 return 0;
3247
3248 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3249 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3250 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3251 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3252 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3253 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3254 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3255 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3256 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3257 }
3258
3259 return target;
3260 }
3261
3262 /*
3263 * @flags: available profiles in extended format (see ctree.h)
3264 *
3265 * Returns reduced profile in chunk format. If profile changing is in
3266 * progress (either running or paused) picks the target profile (if it's
3267 * already available), otherwise falls back to plain reducing.
3268 */
3269 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3270 {
3271 /*
3272 * we add in the count of missing devices because we want
3273 * to make sure that any RAID levels on a degraded FS
3274 * continue to be honored.
3275 */
3276 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3277 root->fs_info->fs_devices->missing_devices;
3278 u64 target;
3279
3280 /*
3281 * see if restripe for this chunk_type is in progress, if so
3282 * try to reduce to the target profile
3283 */
3284 spin_lock(&root->fs_info->balance_lock);
3285 target = get_restripe_target(root->fs_info, flags);
3286 if (target) {
3287 /* pick target profile only if it's already available */
3288 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3289 spin_unlock(&root->fs_info->balance_lock);
3290 return extended_to_chunk(target);
3291 }
3292 }
3293 spin_unlock(&root->fs_info->balance_lock);
3294
3295 if (num_devices == 1)
3296 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3297 if (num_devices < 4)
3298 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3299
3300 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3301 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3302 BTRFS_BLOCK_GROUP_RAID10))) {
3303 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3304 }
3305
3306 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3307 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3308 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3309 }
3310
3311 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3312 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3313 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3314 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3315 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3316 }
3317
3318 return extended_to_chunk(flags);
3319 }
3320
3321 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3322 {
3323 if (flags & BTRFS_BLOCK_GROUP_DATA)
3324 flags |= root->fs_info->avail_data_alloc_bits;
3325 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3326 flags |= root->fs_info->avail_system_alloc_bits;
3327 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3328 flags |= root->fs_info->avail_metadata_alloc_bits;
3329
3330 return btrfs_reduce_alloc_profile(root, flags);
3331 }
3332
3333 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3334 {
3335 u64 flags;
3336
3337 if (data)
3338 flags = BTRFS_BLOCK_GROUP_DATA;
3339 else if (root == root->fs_info->chunk_root)
3340 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3341 else
3342 flags = BTRFS_BLOCK_GROUP_METADATA;
3343
3344 return get_alloc_profile(root, flags);
3345 }
3346
3347 /*
3348 * This will check the space that the inode allocates from to make sure we have
3349 * enough space for bytes.
3350 */
3351 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3352 {
3353 struct btrfs_space_info *data_sinfo;
3354 struct btrfs_root *root = BTRFS_I(inode)->root;
3355 struct btrfs_fs_info *fs_info = root->fs_info;
3356 u64 used;
3357 int ret = 0, committed = 0, alloc_chunk = 1;
3358
3359 /* make sure bytes are sectorsize aligned */
3360 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3361
3362 if (root == root->fs_info->tree_root ||
3363 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3364 alloc_chunk = 0;
3365 committed = 1;
3366 }
3367
3368 data_sinfo = fs_info->data_sinfo;
3369 if (!data_sinfo)
3370 goto alloc;
3371
3372 again:
3373 /* make sure we have enough space to handle the data first */
3374 spin_lock(&data_sinfo->lock);
3375 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3376 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3377 data_sinfo->bytes_may_use;
3378
3379 if (used + bytes > data_sinfo->total_bytes) {
3380 struct btrfs_trans_handle *trans;
3381
3382 /*
3383 * if we don't have enough free bytes in this space then we need
3384 * to alloc a new chunk.
3385 */
3386 if (!data_sinfo->full && alloc_chunk) {
3387 u64 alloc_target;
3388
3389 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3390 spin_unlock(&data_sinfo->lock);
3391 alloc:
3392 alloc_target = btrfs_get_alloc_profile(root, 1);
3393 trans = btrfs_join_transaction(root);
3394 if (IS_ERR(trans))
3395 return PTR_ERR(trans);
3396
3397 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3398 alloc_target,
3399 CHUNK_ALLOC_NO_FORCE);
3400 btrfs_end_transaction(trans, root);
3401 if (ret < 0) {
3402 if (ret != -ENOSPC)
3403 return ret;
3404 else
3405 goto commit_trans;
3406 }
3407
3408 if (!data_sinfo)
3409 data_sinfo = fs_info->data_sinfo;
3410
3411 goto again;
3412 }
3413
3414 /*
3415 * If we have less pinned bytes than we want to allocate then
3416 * don't bother committing the transaction, it won't help us.
3417 */
3418 if (data_sinfo->bytes_pinned < bytes)
3419 committed = 1;
3420 spin_unlock(&data_sinfo->lock);
3421
3422 /* commit the current transaction and try again */
3423 commit_trans:
3424 if (!committed &&
3425 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3426 committed = 1;
3427 trans = btrfs_join_transaction(root);
3428 if (IS_ERR(trans))
3429 return PTR_ERR(trans);
3430 ret = btrfs_commit_transaction(trans, root);
3431 if (ret)
3432 return ret;
3433 goto again;
3434 }
3435
3436 return -ENOSPC;
3437 }
3438 data_sinfo->bytes_may_use += bytes;
3439 trace_btrfs_space_reservation(root->fs_info, "space_info",
3440 data_sinfo->flags, bytes, 1);
3441 spin_unlock(&data_sinfo->lock);
3442
3443 return 0;
3444 }
3445
3446 /*
3447 * Called if we need to clear a data reservation for this inode.
3448 */
3449 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3450 {
3451 struct btrfs_root *root = BTRFS_I(inode)->root;
3452 struct btrfs_space_info *data_sinfo;
3453
3454 /* make sure bytes are sectorsize aligned */
3455 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3456
3457 data_sinfo = root->fs_info->data_sinfo;
3458 spin_lock(&data_sinfo->lock);
3459 data_sinfo->bytes_may_use -= bytes;
3460 trace_btrfs_space_reservation(root->fs_info, "space_info",
3461 data_sinfo->flags, bytes, 0);
3462 spin_unlock(&data_sinfo->lock);
3463 }
3464
3465 static void force_metadata_allocation(struct btrfs_fs_info *info)
3466 {
3467 struct list_head *head = &info->space_info;
3468 struct btrfs_space_info *found;
3469
3470 rcu_read_lock();
3471 list_for_each_entry_rcu(found, head, list) {
3472 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3473 found->force_alloc = CHUNK_ALLOC_FORCE;
3474 }
3475 rcu_read_unlock();
3476 }
3477
3478 static int should_alloc_chunk(struct btrfs_root *root,
3479 struct btrfs_space_info *sinfo, int force)
3480 {
3481 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3482 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3483 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3484 u64 thresh;
3485
3486 if (force == CHUNK_ALLOC_FORCE)
3487 return 1;
3488
3489 /*
3490 * We need to take into account the global rsv because for all intents
3491 * and purposes it's used space. Don't worry about locking the
3492 * global_rsv, it doesn't change except when the transaction commits.
3493 */
3494 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3495 num_allocated += global_rsv->size;
3496
3497 /*
3498 * in limited mode, we want to have some free space up to
3499 * about 1% of the FS size.
3500 */
3501 if (force == CHUNK_ALLOC_LIMITED) {
3502 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3503 thresh = max_t(u64, 64 * 1024 * 1024,
3504 div_factor_fine(thresh, 1));
3505
3506 if (num_bytes - num_allocated < thresh)
3507 return 1;
3508 }
3509
3510 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3511 return 0;
3512 return 1;
3513 }
3514
3515 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3516 {
3517 u64 num_dev;
3518
3519 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3520 type & BTRFS_BLOCK_GROUP_RAID0)
3521 num_dev = root->fs_info->fs_devices->rw_devices;
3522 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3523 num_dev = 2;
3524 else
3525 num_dev = 1; /* DUP or single */
3526
3527 /* metadata for updaing devices and chunk tree */
3528 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3529 }
3530
3531 static void check_system_chunk(struct btrfs_trans_handle *trans,
3532 struct btrfs_root *root, u64 type)
3533 {
3534 struct btrfs_space_info *info;
3535 u64 left;
3536 u64 thresh;
3537
3538 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3539 spin_lock(&info->lock);
3540 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3541 info->bytes_reserved - info->bytes_readonly;
3542 spin_unlock(&info->lock);
3543
3544 thresh = get_system_chunk_thresh(root, type);
3545 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3546 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3547 left, thresh, type);
3548 dump_space_info(info, 0, 0);
3549 }
3550
3551 if (left < thresh) {
3552 u64 flags;
3553
3554 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3555 btrfs_alloc_chunk(trans, root, flags);
3556 }
3557 }
3558
3559 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3560 struct btrfs_root *extent_root, u64 flags, int force)
3561 {
3562 struct btrfs_space_info *space_info;
3563 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3564 int wait_for_alloc = 0;
3565 int ret = 0;
3566
3567 space_info = __find_space_info(extent_root->fs_info, flags);
3568 if (!space_info) {
3569 ret = update_space_info(extent_root->fs_info, flags,
3570 0, 0, &space_info);
3571 BUG_ON(ret); /* -ENOMEM */
3572 }
3573 BUG_ON(!space_info); /* Logic error */
3574
3575 again:
3576 spin_lock(&space_info->lock);
3577 if (force < space_info->force_alloc)
3578 force = space_info->force_alloc;
3579 if (space_info->full) {
3580 spin_unlock(&space_info->lock);
3581 return 0;
3582 }
3583
3584 if (!should_alloc_chunk(extent_root, space_info, force)) {
3585 spin_unlock(&space_info->lock);
3586 return 0;
3587 } else if (space_info->chunk_alloc) {
3588 wait_for_alloc = 1;
3589 } else {
3590 space_info->chunk_alloc = 1;
3591 }
3592
3593 spin_unlock(&space_info->lock);
3594
3595 mutex_lock(&fs_info->chunk_mutex);
3596
3597 /*
3598 * The chunk_mutex is held throughout the entirety of a chunk
3599 * allocation, so once we've acquired the chunk_mutex we know that the
3600 * other guy is done and we need to recheck and see if we should
3601 * allocate.
3602 */
3603 if (wait_for_alloc) {
3604 mutex_unlock(&fs_info->chunk_mutex);
3605 wait_for_alloc = 0;
3606 goto again;
3607 }
3608
3609 /*
3610 * If we have mixed data/metadata chunks we want to make sure we keep
3611 * allocating mixed chunks instead of individual chunks.
3612 */
3613 if (btrfs_mixed_space_info(space_info))
3614 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3615
3616 /*
3617 * if we're doing a data chunk, go ahead and make sure that
3618 * we keep a reasonable number of metadata chunks allocated in the
3619 * FS as well.
3620 */
3621 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3622 fs_info->data_chunk_allocations++;
3623 if (!(fs_info->data_chunk_allocations %
3624 fs_info->metadata_ratio))
3625 force_metadata_allocation(fs_info);
3626 }
3627
3628 /*
3629 * Check if we have enough space in SYSTEM chunk because we may need
3630 * to update devices.
3631 */
3632 check_system_chunk(trans, extent_root, flags);
3633
3634 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3635 if (ret < 0 && ret != -ENOSPC)
3636 goto out;
3637
3638 spin_lock(&space_info->lock);
3639 if (ret)
3640 space_info->full = 1;
3641 else
3642 ret = 1;
3643
3644 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3645 space_info->chunk_alloc = 0;
3646 spin_unlock(&space_info->lock);
3647 out:
3648 mutex_unlock(&fs_info->chunk_mutex);
3649 return ret;
3650 }
3651
3652 static int can_overcommit(struct btrfs_root *root,
3653 struct btrfs_space_info *space_info, u64 bytes,
3654 enum btrfs_reserve_flush_enum flush)
3655 {
3656 u64 profile = btrfs_get_alloc_profile(root, 0);
3657 u64 avail;
3658 u64 used;
3659
3660 used = space_info->bytes_used + space_info->bytes_reserved +
3661 space_info->bytes_pinned + space_info->bytes_readonly +
3662 space_info->bytes_may_use;
3663
3664 spin_lock(&root->fs_info->free_chunk_lock);
3665 avail = root->fs_info->free_chunk_space;
3666 spin_unlock(&root->fs_info->free_chunk_lock);
3667
3668 /*
3669 * If we have dup, raid1 or raid10 then only half of the free
3670 * space is actually useable.
3671 */
3672 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3673 BTRFS_BLOCK_GROUP_RAID1 |
3674 BTRFS_BLOCK_GROUP_RAID10))
3675 avail >>= 1;
3676
3677 /*
3678 * If we aren't flushing all things, let us overcommit up to
3679 * 1/2th of the space. If we can flush, don't let us overcommit
3680 * too much, let it overcommit up to 1/8 of the space.
3681 */
3682 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3683 avail >>= 3;
3684 else
3685 avail >>= 1;
3686
3687 if (used + bytes < space_info->total_bytes + avail)
3688 return 1;
3689 return 0;
3690 }
3691
3692 /*
3693 * shrink metadata reservation for delalloc
3694 */
3695 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3696 bool wait_ordered)
3697 {
3698 struct btrfs_block_rsv *block_rsv;
3699 struct btrfs_space_info *space_info;
3700 struct btrfs_trans_handle *trans;
3701 u64 delalloc_bytes;
3702 u64 max_reclaim;
3703 long time_left;
3704 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3705 int loops = 0;
3706 enum btrfs_reserve_flush_enum flush;
3707
3708 trans = (struct btrfs_trans_handle *)current->journal_info;
3709 block_rsv = &root->fs_info->delalloc_block_rsv;
3710 space_info = block_rsv->space_info;
3711
3712 smp_mb();
3713 delalloc_bytes = root->fs_info->delalloc_bytes;
3714 if (delalloc_bytes == 0) {
3715 if (trans)
3716 return;
3717 btrfs_wait_ordered_extents(root, 0);
3718 return;
3719 }
3720
3721 while (delalloc_bytes && loops < 3) {
3722 max_reclaim = min(delalloc_bytes, to_reclaim);
3723 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3724 try_to_writeback_inodes_sb_nr(root->fs_info->sb,
3725 nr_pages,
3726 WB_REASON_FS_FREE_SPACE);
3727
3728 /*
3729 * We need to wait for the async pages to actually start before
3730 * we do anything.
3731 */
3732 wait_event(root->fs_info->async_submit_wait,
3733 !atomic_read(&root->fs_info->async_delalloc_pages));
3734
3735 if (!trans)
3736 flush = BTRFS_RESERVE_FLUSH_ALL;
3737 else
3738 flush = BTRFS_RESERVE_NO_FLUSH;
3739 spin_lock(&space_info->lock);
3740 if (can_overcommit(root, space_info, orig, flush)) {
3741 spin_unlock(&space_info->lock);
3742 break;
3743 }
3744 spin_unlock(&space_info->lock);
3745
3746 loops++;
3747 if (wait_ordered && !trans) {
3748 btrfs_wait_ordered_extents(root, 0);
3749 } else {
3750 time_left = schedule_timeout_killable(1);
3751 if (time_left)
3752 break;
3753 }
3754 smp_mb();
3755 delalloc_bytes = root->fs_info->delalloc_bytes;
3756 }
3757 }
3758
3759 /**
3760 * maybe_commit_transaction - possibly commit the transaction if its ok to
3761 * @root - the root we're allocating for
3762 * @bytes - the number of bytes we want to reserve
3763 * @force - force the commit
3764 *
3765 * This will check to make sure that committing the transaction will actually
3766 * get us somewhere and then commit the transaction if it does. Otherwise it
3767 * will return -ENOSPC.
3768 */
3769 static int may_commit_transaction(struct btrfs_root *root,
3770 struct btrfs_space_info *space_info,
3771 u64 bytes, int force)
3772 {
3773 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3774 struct btrfs_trans_handle *trans;
3775
3776 trans = (struct btrfs_trans_handle *)current->journal_info;
3777 if (trans)
3778 return -EAGAIN;
3779
3780 if (force)
3781 goto commit;
3782
3783 /* See if there is enough pinned space to make this reservation */
3784 spin_lock(&space_info->lock);
3785 if (space_info->bytes_pinned >= bytes) {
3786 spin_unlock(&space_info->lock);
3787 goto commit;
3788 }
3789 spin_unlock(&space_info->lock);
3790
3791 /*
3792 * See if there is some space in the delayed insertion reservation for
3793 * this reservation.
3794 */
3795 if (space_info != delayed_rsv->space_info)
3796 return -ENOSPC;
3797
3798 spin_lock(&space_info->lock);
3799 spin_lock(&delayed_rsv->lock);
3800 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3801 spin_unlock(&delayed_rsv->lock);
3802 spin_unlock(&space_info->lock);
3803 return -ENOSPC;
3804 }
3805 spin_unlock(&delayed_rsv->lock);
3806 spin_unlock(&space_info->lock);
3807
3808 commit:
3809 trans = btrfs_join_transaction(root);
3810 if (IS_ERR(trans))
3811 return -ENOSPC;
3812
3813 return btrfs_commit_transaction(trans, root);
3814 }
3815
3816 enum flush_state {
3817 FLUSH_DELAYED_ITEMS_NR = 1,
3818 FLUSH_DELAYED_ITEMS = 2,
3819 FLUSH_DELALLOC = 3,
3820 FLUSH_DELALLOC_WAIT = 4,
3821 ALLOC_CHUNK = 5,
3822 COMMIT_TRANS = 6,
3823 };
3824
3825 static int flush_space(struct btrfs_root *root,
3826 struct btrfs_space_info *space_info, u64 num_bytes,
3827 u64 orig_bytes, int state)
3828 {
3829 struct btrfs_trans_handle *trans;
3830 int nr;
3831 int ret = 0;
3832
3833 switch (state) {
3834 case FLUSH_DELAYED_ITEMS_NR:
3835 case FLUSH_DELAYED_ITEMS:
3836 if (state == FLUSH_DELAYED_ITEMS_NR) {
3837 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3838
3839 nr = (int)div64_u64(num_bytes, bytes);
3840 if (!nr)
3841 nr = 1;
3842 nr *= 2;
3843 } else {
3844 nr = -1;
3845 }
3846 trans = btrfs_join_transaction(root);
3847 if (IS_ERR(trans)) {
3848 ret = PTR_ERR(trans);
3849 break;
3850 }
3851 ret = btrfs_run_delayed_items_nr(trans, root, nr);
3852 btrfs_end_transaction(trans, root);
3853 break;
3854 case FLUSH_DELALLOC:
3855 case FLUSH_DELALLOC_WAIT:
3856 shrink_delalloc(root, num_bytes, orig_bytes,
3857 state == FLUSH_DELALLOC_WAIT);
3858 break;
3859 case ALLOC_CHUNK:
3860 trans = btrfs_join_transaction(root);
3861 if (IS_ERR(trans)) {
3862 ret = PTR_ERR(trans);
3863 break;
3864 }
3865 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3866 btrfs_get_alloc_profile(root, 0),
3867 CHUNK_ALLOC_NO_FORCE);
3868 btrfs_end_transaction(trans, root);
3869 if (ret == -ENOSPC)
3870 ret = 0;
3871 break;
3872 case COMMIT_TRANS:
3873 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3874 break;
3875 default:
3876 ret = -ENOSPC;
3877 break;
3878 }
3879
3880 return ret;
3881 }
3882 /**
3883 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3884 * @root - the root we're allocating for
3885 * @block_rsv - the block_rsv we're allocating for
3886 * @orig_bytes - the number of bytes we want
3887 * @flush - whether or not we can flush to make our reservation
3888 *
3889 * This will reserve orgi_bytes number of bytes from the space info associated
3890 * with the block_rsv. If there is not enough space it will make an attempt to
3891 * flush out space to make room. It will do this by flushing delalloc if
3892 * possible or committing the transaction. If flush is 0 then no attempts to
3893 * regain reservations will be made and this will fail if there is not enough
3894 * space already.
3895 */
3896 static int reserve_metadata_bytes(struct btrfs_root *root,
3897 struct btrfs_block_rsv *block_rsv,
3898 u64 orig_bytes,
3899 enum btrfs_reserve_flush_enum flush)
3900 {
3901 struct btrfs_space_info *space_info = block_rsv->space_info;
3902 u64 used;
3903 u64 num_bytes = orig_bytes;
3904 int flush_state = FLUSH_DELAYED_ITEMS_NR;
3905 int ret = 0;
3906 bool flushing = false;
3907
3908 again:
3909 ret = 0;
3910 spin_lock(&space_info->lock);
3911 /*
3912 * We only want to wait if somebody other than us is flushing and we
3913 * are actually allowed to flush all things.
3914 */
3915 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
3916 space_info->flush) {
3917 spin_unlock(&space_info->lock);
3918 /*
3919 * If we have a trans handle we can't wait because the flusher
3920 * may have to commit the transaction, which would mean we would
3921 * deadlock since we are waiting for the flusher to finish, but
3922 * hold the current transaction open.
3923 */
3924 if (current->journal_info)
3925 return -EAGAIN;
3926 ret = wait_event_killable(space_info->wait, !space_info->flush);
3927 /* Must have been killed, return */
3928 if (ret)
3929 return -EINTR;
3930
3931 spin_lock(&space_info->lock);
3932 }
3933
3934 ret = -ENOSPC;
3935 used = space_info->bytes_used + space_info->bytes_reserved +
3936 space_info->bytes_pinned + space_info->bytes_readonly +
3937 space_info->bytes_may_use;
3938
3939 /*
3940 * The idea here is that we've not already over-reserved the block group
3941 * then we can go ahead and save our reservation first and then start
3942 * flushing if we need to. Otherwise if we've already overcommitted
3943 * lets start flushing stuff first and then come back and try to make
3944 * our reservation.
3945 */
3946 if (used <= space_info->total_bytes) {
3947 if (used + orig_bytes <= space_info->total_bytes) {
3948 space_info->bytes_may_use += orig_bytes;
3949 trace_btrfs_space_reservation(root->fs_info,
3950 "space_info", space_info->flags, orig_bytes, 1);
3951 ret = 0;
3952 } else {
3953 /*
3954 * Ok set num_bytes to orig_bytes since we aren't
3955 * overocmmitted, this way we only try and reclaim what
3956 * we need.
3957 */
3958 num_bytes = orig_bytes;
3959 }
3960 } else {
3961 /*
3962 * Ok we're over committed, set num_bytes to the overcommitted
3963 * amount plus the amount of bytes that we need for this
3964 * reservation.
3965 */
3966 num_bytes = used - space_info->total_bytes +
3967 (orig_bytes * 2);
3968 }
3969
3970 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
3971 space_info->bytes_may_use += orig_bytes;
3972 trace_btrfs_space_reservation(root->fs_info, "space_info",
3973 space_info->flags, orig_bytes,
3974 1);
3975 ret = 0;
3976 }
3977
3978 /*
3979 * Couldn't make our reservation, save our place so while we're trying
3980 * to reclaim space we can actually use it instead of somebody else
3981 * stealing it from us.
3982 *
3983 * We make the other tasks wait for the flush only when we can flush
3984 * all things.
3985 */
3986 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
3987 flushing = true;
3988 space_info->flush = 1;
3989 }
3990
3991 spin_unlock(&space_info->lock);
3992
3993 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
3994 goto out;
3995
3996 ret = flush_space(root, space_info, num_bytes, orig_bytes,
3997 flush_state);
3998 flush_state++;
3999
4000 /*
4001 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4002 * would happen. So skip delalloc flush.
4003 */
4004 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4005 (flush_state == FLUSH_DELALLOC ||
4006 flush_state == FLUSH_DELALLOC_WAIT))
4007 flush_state = ALLOC_CHUNK;
4008
4009 if (!ret)
4010 goto again;
4011 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4012 flush_state < COMMIT_TRANS)
4013 goto again;
4014 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4015 flush_state <= COMMIT_TRANS)
4016 goto again;
4017
4018 out:
4019 if (flushing) {
4020 spin_lock(&space_info->lock);
4021 space_info->flush = 0;
4022 wake_up_all(&space_info->wait);
4023 spin_unlock(&space_info->lock);
4024 }
4025 return ret;
4026 }
4027
4028 static struct btrfs_block_rsv *get_block_rsv(
4029 const struct btrfs_trans_handle *trans,
4030 const struct btrfs_root *root)
4031 {
4032 struct btrfs_block_rsv *block_rsv = NULL;
4033
4034 if (root->ref_cows)
4035 block_rsv = trans->block_rsv;
4036
4037 if (root == root->fs_info->csum_root && trans->adding_csums)
4038 block_rsv = trans->block_rsv;
4039
4040 if (!block_rsv)
4041 block_rsv = root->block_rsv;
4042
4043 if (!block_rsv)
4044 block_rsv = &root->fs_info->empty_block_rsv;
4045
4046 return block_rsv;
4047 }
4048
4049 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4050 u64 num_bytes)
4051 {
4052 int ret = -ENOSPC;
4053 spin_lock(&block_rsv->lock);
4054 if (block_rsv->reserved >= num_bytes) {
4055 block_rsv->reserved -= num_bytes;
4056 if (block_rsv->reserved < block_rsv->size)
4057 block_rsv->full = 0;
4058 ret = 0;
4059 }
4060 spin_unlock(&block_rsv->lock);
4061 return ret;
4062 }
4063
4064 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4065 u64 num_bytes, int update_size)
4066 {
4067 spin_lock(&block_rsv->lock);
4068 block_rsv->reserved += num_bytes;
4069 if (update_size)
4070 block_rsv->size += num_bytes;
4071 else if (block_rsv->reserved >= block_rsv->size)
4072 block_rsv->full = 1;
4073 spin_unlock(&block_rsv->lock);
4074 }
4075
4076 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4077 struct btrfs_block_rsv *block_rsv,
4078 struct btrfs_block_rsv *dest, u64 num_bytes)
4079 {
4080 struct btrfs_space_info *space_info = block_rsv->space_info;
4081
4082 spin_lock(&block_rsv->lock);
4083 if (num_bytes == (u64)-1)
4084 num_bytes = block_rsv->size;
4085 block_rsv->size -= num_bytes;
4086 if (block_rsv->reserved >= block_rsv->size) {
4087 num_bytes = block_rsv->reserved - block_rsv->size;
4088 block_rsv->reserved = block_rsv->size;
4089 block_rsv->full = 1;
4090 } else {
4091 num_bytes = 0;
4092 }
4093 spin_unlock(&block_rsv->lock);
4094
4095 if (num_bytes > 0) {
4096 if (dest) {
4097 spin_lock(&dest->lock);
4098 if (!dest->full) {
4099 u64 bytes_to_add;
4100
4101 bytes_to_add = dest->size - dest->reserved;
4102 bytes_to_add = min(num_bytes, bytes_to_add);
4103 dest->reserved += bytes_to_add;
4104 if (dest->reserved >= dest->size)
4105 dest->full = 1;
4106 num_bytes -= bytes_to_add;
4107 }
4108 spin_unlock(&dest->lock);
4109 }
4110 if (num_bytes) {
4111 spin_lock(&space_info->lock);
4112 space_info->bytes_may_use -= num_bytes;
4113 trace_btrfs_space_reservation(fs_info, "space_info",
4114 space_info->flags, num_bytes, 0);
4115 space_info->reservation_progress++;
4116 spin_unlock(&space_info->lock);
4117 }
4118 }
4119 }
4120
4121 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4122 struct btrfs_block_rsv *dst, u64 num_bytes)
4123 {
4124 int ret;
4125
4126 ret = block_rsv_use_bytes(src, num_bytes);
4127 if (ret)
4128 return ret;
4129
4130 block_rsv_add_bytes(dst, num_bytes, 1);
4131 return 0;
4132 }
4133
4134 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4135 {
4136 memset(rsv, 0, sizeof(*rsv));
4137 spin_lock_init(&rsv->lock);
4138 rsv->type = type;
4139 }
4140
4141 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4142 unsigned short type)
4143 {
4144 struct btrfs_block_rsv *block_rsv;
4145 struct btrfs_fs_info *fs_info = root->fs_info;
4146
4147 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4148 if (!block_rsv)
4149 return NULL;
4150
4151 btrfs_init_block_rsv(block_rsv, type);
4152 block_rsv->space_info = __find_space_info(fs_info,
4153 BTRFS_BLOCK_GROUP_METADATA);
4154 return block_rsv;
4155 }
4156
4157 void btrfs_free_block_rsv(struct btrfs_root *root,
4158 struct btrfs_block_rsv *rsv)
4159 {
4160 if (!rsv)
4161 return;
4162 btrfs_block_rsv_release(root, rsv, (u64)-1);
4163 kfree(rsv);
4164 }
4165
4166 int btrfs_block_rsv_add(struct btrfs_root *root,
4167 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4168 enum btrfs_reserve_flush_enum flush)
4169 {
4170 int ret;
4171
4172 if (num_bytes == 0)
4173 return 0;
4174
4175 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4176 if (!ret) {
4177 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4178 return 0;
4179 }
4180
4181 return ret;
4182 }
4183
4184 int btrfs_block_rsv_check(struct btrfs_root *root,
4185 struct btrfs_block_rsv *block_rsv, int min_factor)
4186 {
4187 u64 num_bytes = 0;
4188 int ret = -ENOSPC;
4189
4190 if (!block_rsv)
4191 return 0;
4192
4193 spin_lock(&block_rsv->lock);
4194 num_bytes = div_factor(block_rsv->size, min_factor);
4195 if (block_rsv->reserved >= num_bytes)
4196 ret = 0;
4197 spin_unlock(&block_rsv->lock);
4198
4199 return ret;
4200 }
4201
4202 int btrfs_block_rsv_refill(struct btrfs_root *root,
4203 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4204 enum btrfs_reserve_flush_enum flush)
4205 {
4206 u64 num_bytes = 0;
4207 int ret = -ENOSPC;
4208
4209 if (!block_rsv)
4210 return 0;
4211
4212 spin_lock(&block_rsv->lock);
4213 num_bytes = min_reserved;
4214 if (block_rsv->reserved >= num_bytes)
4215 ret = 0;
4216 else
4217 num_bytes -= block_rsv->reserved;
4218 spin_unlock(&block_rsv->lock);
4219
4220 if (!ret)
4221 return 0;
4222
4223 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4224 if (!ret) {
4225 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4226 return 0;
4227 }
4228
4229 return ret;
4230 }
4231
4232 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4233 struct btrfs_block_rsv *dst_rsv,
4234 u64 num_bytes)
4235 {
4236 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4237 }
4238
4239 void btrfs_block_rsv_release(struct btrfs_root *root,
4240 struct btrfs_block_rsv *block_rsv,
4241 u64 num_bytes)
4242 {
4243 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4244 if (global_rsv->full || global_rsv == block_rsv ||
4245 block_rsv->space_info != global_rsv->space_info)
4246 global_rsv = NULL;
4247 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4248 num_bytes);
4249 }
4250
4251 /*
4252 * helper to calculate size of global block reservation.
4253 * the desired value is sum of space used by extent tree,
4254 * checksum tree and root tree
4255 */
4256 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4257 {
4258 struct btrfs_space_info *sinfo;
4259 u64 num_bytes;
4260 u64 meta_used;
4261 u64 data_used;
4262 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4263
4264 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4265 spin_lock(&sinfo->lock);
4266 data_used = sinfo->bytes_used;
4267 spin_unlock(&sinfo->lock);
4268
4269 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4270 spin_lock(&sinfo->lock);
4271 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4272 data_used = 0;
4273 meta_used = sinfo->bytes_used;
4274 spin_unlock(&sinfo->lock);
4275
4276 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4277 csum_size * 2;
4278 num_bytes += div64_u64(data_used + meta_used, 50);
4279
4280 if (num_bytes * 3 > meta_used)
4281 num_bytes = div64_u64(meta_used, 3);
4282
4283 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4284 }
4285
4286 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4287 {
4288 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4289 struct btrfs_space_info *sinfo = block_rsv->space_info;
4290 u64 num_bytes;
4291
4292 num_bytes = calc_global_metadata_size(fs_info);
4293
4294 spin_lock(&sinfo->lock);
4295 spin_lock(&block_rsv->lock);
4296
4297 block_rsv->size = num_bytes;
4298
4299 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4300 sinfo->bytes_reserved + sinfo->bytes_readonly +
4301 sinfo->bytes_may_use;
4302
4303 if (sinfo->total_bytes > num_bytes) {
4304 num_bytes = sinfo->total_bytes - num_bytes;
4305 block_rsv->reserved += num_bytes;
4306 sinfo->bytes_may_use += num_bytes;
4307 trace_btrfs_space_reservation(fs_info, "space_info",
4308 sinfo->flags, num_bytes, 1);
4309 }
4310
4311 if (block_rsv->reserved >= block_rsv->size) {
4312 num_bytes = block_rsv->reserved - block_rsv->size;
4313 sinfo->bytes_may_use -= num_bytes;
4314 trace_btrfs_space_reservation(fs_info, "space_info",
4315 sinfo->flags, num_bytes, 0);
4316 sinfo->reservation_progress++;
4317 block_rsv->reserved = block_rsv->size;
4318 block_rsv->full = 1;
4319 }
4320
4321 spin_unlock(&block_rsv->lock);
4322 spin_unlock(&sinfo->lock);
4323 }
4324
4325 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4326 {
4327 struct btrfs_space_info *space_info;
4328
4329 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4330 fs_info->chunk_block_rsv.space_info = space_info;
4331
4332 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4333 fs_info->global_block_rsv.space_info = space_info;
4334 fs_info->delalloc_block_rsv.space_info = space_info;
4335 fs_info->trans_block_rsv.space_info = space_info;
4336 fs_info->empty_block_rsv.space_info = space_info;
4337 fs_info->delayed_block_rsv.space_info = space_info;
4338
4339 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4340 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4341 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4342 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4343 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4344
4345 update_global_block_rsv(fs_info);
4346 }
4347
4348 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4349 {
4350 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4351 (u64)-1);
4352 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4353 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4354 WARN_ON(fs_info->trans_block_rsv.size > 0);
4355 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4356 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4357 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4358 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4359 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4360 }
4361
4362 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4363 struct btrfs_root *root)
4364 {
4365 if (!trans->block_rsv)
4366 return;
4367
4368 if (!trans->bytes_reserved)
4369 return;
4370
4371 trace_btrfs_space_reservation(root->fs_info, "transaction",
4372 trans->transid, trans->bytes_reserved, 0);
4373 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4374 trans->bytes_reserved = 0;
4375 }
4376
4377 /* Can only return 0 or -ENOSPC */
4378 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4379 struct inode *inode)
4380 {
4381 struct btrfs_root *root = BTRFS_I(inode)->root;
4382 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4383 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4384
4385 /*
4386 * We need to hold space in order to delete our orphan item once we've
4387 * added it, so this takes the reservation so we can release it later
4388 * when we are truly done with the orphan item.
4389 */
4390 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4391 trace_btrfs_space_reservation(root->fs_info, "orphan",
4392 btrfs_ino(inode), num_bytes, 1);
4393 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4394 }
4395
4396 void btrfs_orphan_release_metadata(struct inode *inode)
4397 {
4398 struct btrfs_root *root = BTRFS_I(inode)->root;
4399 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4400 trace_btrfs_space_reservation(root->fs_info, "orphan",
4401 btrfs_ino(inode), num_bytes, 0);
4402 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4403 }
4404
4405 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4406 struct btrfs_pending_snapshot *pending)
4407 {
4408 struct btrfs_root *root = pending->root;
4409 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4410 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4411 /*
4412 * two for root back/forward refs, two for directory entries,
4413 * one for root of the snapshot and one for parent inode.
4414 */
4415 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 6);
4416 dst_rsv->space_info = src_rsv->space_info;
4417 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4418 }
4419
4420 /**
4421 * drop_outstanding_extent - drop an outstanding extent
4422 * @inode: the inode we're dropping the extent for
4423 *
4424 * This is called when we are freeing up an outstanding extent, either called
4425 * after an error or after an extent is written. This will return the number of
4426 * reserved extents that need to be freed. This must be called with
4427 * BTRFS_I(inode)->lock held.
4428 */
4429 static unsigned drop_outstanding_extent(struct inode *inode)
4430 {
4431 unsigned drop_inode_space = 0;
4432 unsigned dropped_extents = 0;
4433
4434 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4435 BTRFS_I(inode)->outstanding_extents--;
4436
4437 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4438 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4439 &BTRFS_I(inode)->runtime_flags))
4440 drop_inode_space = 1;
4441
4442 /*
4443 * If we have more or the same amount of outsanding extents than we have
4444 * reserved then we need to leave the reserved extents count alone.
4445 */
4446 if (BTRFS_I(inode)->outstanding_extents >=
4447 BTRFS_I(inode)->reserved_extents)
4448 return drop_inode_space;
4449
4450 dropped_extents = BTRFS_I(inode)->reserved_extents -
4451 BTRFS_I(inode)->outstanding_extents;
4452 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4453 return dropped_extents + drop_inode_space;
4454 }
4455
4456 /**
4457 * calc_csum_metadata_size - return the amount of metada space that must be
4458 * reserved/free'd for the given bytes.
4459 * @inode: the inode we're manipulating
4460 * @num_bytes: the number of bytes in question
4461 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4462 *
4463 * This adjusts the number of csum_bytes in the inode and then returns the
4464 * correct amount of metadata that must either be reserved or freed. We
4465 * calculate how many checksums we can fit into one leaf and then divide the
4466 * number of bytes that will need to be checksumed by this value to figure out
4467 * how many checksums will be required. If we are adding bytes then the number
4468 * may go up and we will return the number of additional bytes that must be
4469 * reserved. If it is going down we will return the number of bytes that must
4470 * be freed.
4471 *
4472 * This must be called with BTRFS_I(inode)->lock held.
4473 */
4474 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4475 int reserve)
4476 {
4477 struct btrfs_root *root = BTRFS_I(inode)->root;
4478 u64 csum_size;
4479 int num_csums_per_leaf;
4480 int num_csums;
4481 int old_csums;
4482
4483 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4484 BTRFS_I(inode)->csum_bytes == 0)
4485 return 0;
4486
4487 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4488 if (reserve)
4489 BTRFS_I(inode)->csum_bytes += num_bytes;
4490 else
4491 BTRFS_I(inode)->csum_bytes -= num_bytes;
4492 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4493 num_csums_per_leaf = (int)div64_u64(csum_size,
4494 sizeof(struct btrfs_csum_item) +
4495 sizeof(struct btrfs_disk_key));
4496 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4497 num_csums = num_csums + num_csums_per_leaf - 1;
4498 num_csums = num_csums / num_csums_per_leaf;
4499
4500 old_csums = old_csums + num_csums_per_leaf - 1;
4501 old_csums = old_csums / num_csums_per_leaf;
4502
4503 /* No change, no need to reserve more */
4504 if (old_csums == num_csums)
4505 return 0;
4506
4507 if (reserve)
4508 return btrfs_calc_trans_metadata_size(root,
4509 num_csums - old_csums);
4510
4511 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4512 }
4513
4514 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4515 {
4516 struct btrfs_root *root = BTRFS_I(inode)->root;
4517 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4518 u64 to_reserve = 0;
4519 u64 csum_bytes;
4520 unsigned nr_extents = 0;
4521 int extra_reserve = 0;
4522 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4523 int ret = 0;
4524 bool delalloc_lock = true;
4525
4526 /* If we are a free space inode we need to not flush since we will be in
4527 * the middle of a transaction commit. We also don't need the delalloc
4528 * mutex since we won't race with anybody. We need this mostly to make
4529 * lockdep shut its filthy mouth.
4530 */
4531 if (btrfs_is_free_space_inode(inode)) {
4532 flush = BTRFS_RESERVE_NO_FLUSH;
4533 delalloc_lock = false;
4534 }
4535
4536 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4537 btrfs_transaction_in_commit(root->fs_info))
4538 schedule_timeout(1);
4539
4540 if (delalloc_lock)
4541 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4542
4543 num_bytes = ALIGN(num_bytes, root->sectorsize);
4544
4545 spin_lock(&BTRFS_I(inode)->lock);
4546 BTRFS_I(inode)->outstanding_extents++;
4547
4548 if (BTRFS_I(inode)->outstanding_extents >
4549 BTRFS_I(inode)->reserved_extents)
4550 nr_extents = BTRFS_I(inode)->outstanding_extents -
4551 BTRFS_I(inode)->reserved_extents;
4552
4553 /*
4554 * Add an item to reserve for updating the inode when we complete the
4555 * delalloc io.
4556 */
4557 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4558 &BTRFS_I(inode)->runtime_flags)) {
4559 nr_extents++;
4560 extra_reserve = 1;
4561 }
4562
4563 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4564 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4565 csum_bytes = BTRFS_I(inode)->csum_bytes;
4566 spin_unlock(&BTRFS_I(inode)->lock);
4567
4568 if (root->fs_info->quota_enabled)
4569 ret = btrfs_qgroup_reserve(root, num_bytes +
4570 nr_extents * root->leafsize);
4571
4572 /*
4573 * ret != 0 here means the qgroup reservation failed, we go straight to
4574 * the shared error handling then.
4575 */
4576 if (ret == 0)
4577 ret = reserve_metadata_bytes(root, block_rsv,
4578 to_reserve, flush);
4579
4580 if (ret) {
4581 u64 to_free = 0;
4582 unsigned dropped;
4583
4584 spin_lock(&BTRFS_I(inode)->lock);
4585 dropped = drop_outstanding_extent(inode);
4586 /*
4587 * If the inodes csum_bytes is the same as the original
4588 * csum_bytes then we know we haven't raced with any free()ers
4589 * so we can just reduce our inodes csum bytes and carry on.
4590 * Otherwise we have to do the normal free thing to account for
4591 * the case that the free side didn't free up its reserve
4592 * because of this outstanding reservation.
4593 */
4594 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4595 calc_csum_metadata_size(inode, num_bytes, 0);
4596 else
4597 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4598 spin_unlock(&BTRFS_I(inode)->lock);
4599 if (dropped)
4600 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4601
4602 if (to_free) {
4603 btrfs_block_rsv_release(root, block_rsv, to_free);
4604 trace_btrfs_space_reservation(root->fs_info,
4605 "delalloc",
4606 btrfs_ino(inode),
4607 to_free, 0);
4608 }
4609 if (root->fs_info->quota_enabled) {
4610 btrfs_qgroup_free(root, num_bytes +
4611 nr_extents * root->leafsize);
4612 }
4613 if (delalloc_lock)
4614 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4615 return ret;
4616 }
4617
4618 spin_lock(&BTRFS_I(inode)->lock);
4619 if (extra_reserve) {
4620 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4621 &BTRFS_I(inode)->runtime_flags);
4622 nr_extents--;
4623 }
4624 BTRFS_I(inode)->reserved_extents += nr_extents;
4625 spin_unlock(&BTRFS_I(inode)->lock);
4626
4627 if (delalloc_lock)
4628 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4629
4630 if (to_reserve)
4631 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4632 btrfs_ino(inode), to_reserve, 1);
4633 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4634
4635 return 0;
4636 }
4637
4638 /**
4639 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4640 * @inode: the inode to release the reservation for
4641 * @num_bytes: the number of bytes we're releasing
4642 *
4643 * This will release the metadata reservation for an inode. This can be called
4644 * once we complete IO for a given set of bytes to release their metadata
4645 * reservations.
4646 */
4647 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4648 {
4649 struct btrfs_root *root = BTRFS_I(inode)->root;
4650 u64 to_free = 0;
4651 unsigned dropped;
4652
4653 num_bytes = ALIGN(num_bytes, root->sectorsize);
4654 spin_lock(&BTRFS_I(inode)->lock);
4655 dropped = drop_outstanding_extent(inode);
4656
4657 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4658 spin_unlock(&BTRFS_I(inode)->lock);
4659 if (dropped > 0)
4660 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4661
4662 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4663 btrfs_ino(inode), to_free, 0);
4664 if (root->fs_info->quota_enabled) {
4665 btrfs_qgroup_free(root, num_bytes +
4666 dropped * root->leafsize);
4667 }
4668
4669 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4670 to_free);
4671 }
4672
4673 /**
4674 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4675 * @inode: inode we're writing to
4676 * @num_bytes: the number of bytes we want to allocate
4677 *
4678 * This will do the following things
4679 *
4680 * o reserve space in the data space info for num_bytes
4681 * o reserve space in the metadata space info based on number of outstanding
4682 * extents and how much csums will be needed
4683 * o add to the inodes ->delalloc_bytes
4684 * o add it to the fs_info's delalloc inodes list.
4685 *
4686 * This will return 0 for success and -ENOSPC if there is no space left.
4687 */
4688 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4689 {
4690 int ret;
4691
4692 ret = btrfs_check_data_free_space(inode, num_bytes);
4693 if (ret)
4694 return ret;
4695
4696 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4697 if (ret) {
4698 btrfs_free_reserved_data_space(inode, num_bytes);
4699 return ret;
4700 }
4701
4702 return 0;
4703 }
4704
4705 /**
4706 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4707 * @inode: inode we're releasing space for
4708 * @num_bytes: the number of bytes we want to free up
4709 *
4710 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4711 * called in the case that we don't need the metadata AND data reservations
4712 * anymore. So if there is an error or we insert an inline extent.
4713 *
4714 * This function will release the metadata space that was not used and will
4715 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4716 * list if there are no delalloc bytes left.
4717 */
4718 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4719 {
4720 btrfs_delalloc_release_metadata(inode, num_bytes);
4721 btrfs_free_reserved_data_space(inode, num_bytes);
4722 }
4723
4724 static int update_block_group(struct btrfs_trans_handle *trans,
4725 struct btrfs_root *root,
4726 u64 bytenr, u64 num_bytes, int alloc)
4727 {
4728 struct btrfs_block_group_cache *cache = NULL;
4729 struct btrfs_fs_info *info = root->fs_info;
4730 u64 total = num_bytes;
4731 u64 old_val;
4732 u64 byte_in_group;
4733 int factor;
4734
4735 /* block accounting for super block */
4736 spin_lock(&info->delalloc_lock);
4737 old_val = btrfs_super_bytes_used(info->super_copy);
4738 if (alloc)
4739 old_val += num_bytes;
4740 else
4741 old_val -= num_bytes;
4742 btrfs_set_super_bytes_used(info->super_copy, old_val);
4743 spin_unlock(&info->delalloc_lock);
4744
4745 while (total) {
4746 cache = btrfs_lookup_block_group(info, bytenr);
4747 if (!cache)
4748 return -ENOENT;
4749 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4750 BTRFS_BLOCK_GROUP_RAID1 |
4751 BTRFS_BLOCK_GROUP_RAID10))
4752 factor = 2;
4753 else
4754 factor = 1;
4755 /*
4756 * If this block group has free space cache written out, we
4757 * need to make sure to load it if we are removing space. This
4758 * is because we need the unpinning stage to actually add the
4759 * space back to the block group, otherwise we will leak space.
4760 */
4761 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4762 cache_block_group(cache, trans, NULL, 1);
4763
4764 byte_in_group = bytenr - cache->key.objectid;
4765 WARN_ON(byte_in_group > cache->key.offset);
4766
4767 spin_lock(&cache->space_info->lock);
4768 spin_lock(&cache->lock);
4769
4770 if (btrfs_test_opt(root, SPACE_CACHE) &&
4771 cache->disk_cache_state < BTRFS_DC_CLEAR)
4772 cache->disk_cache_state = BTRFS_DC_CLEAR;
4773
4774 cache->dirty = 1;
4775 old_val = btrfs_block_group_used(&cache->item);
4776 num_bytes = min(total, cache->key.offset - byte_in_group);
4777 if (alloc) {
4778 old_val += num_bytes;
4779 btrfs_set_block_group_used(&cache->item, old_val);
4780 cache->reserved -= num_bytes;
4781 cache->space_info->bytes_reserved -= num_bytes;
4782 cache->space_info->bytes_used += num_bytes;
4783 cache->space_info->disk_used += num_bytes * factor;
4784 spin_unlock(&cache->lock);
4785 spin_unlock(&cache->space_info->lock);
4786 } else {
4787 old_val -= num_bytes;
4788 btrfs_set_block_group_used(&cache->item, old_val);
4789 cache->pinned += num_bytes;
4790 cache->space_info->bytes_pinned += num_bytes;
4791 cache->space_info->bytes_used -= num_bytes;
4792 cache->space_info->disk_used -= num_bytes * factor;
4793 spin_unlock(&cache->lock);
4794 spin_unlock(&cache->space_info->lock);
4795
4796 set_extent_dirty(info->pinned_extents,
4797 bytenr, bytenr + num_bytes - 1,
4798 GFP_NOFS | __GFP_NOFAIL);
4799 }
4800 btrfs_put_block_group(cache);
4801 total -= num_bytes;
4802 bytenr += num_bytes;
4803 }
4804 return 0;
4805 }
4806
4807 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4808 {
4809 struct btrfs_block_group_cache *cache;
4810 u64 bytenr;
4811
4812 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4813 if (!cache)
4814 return 0;
4815
4816 bytenr = cache->key.objectid;
4817 btrfs_put_block_group(cache);
4818
4819 return bytenr;
4820 }
4821
4822 static int pin_down_extent(struct btrfs_root *root,
4823 struct btrfs_block_group_cache *cache,
4824 u64 bytenr, u64 num_bytes, int reserved)
4825 {
4826 spin_lock(&cache->space_info->lock);
4827 spin_lock(&cache->lock);
4828 cache->pinned += num_bytes;
4829 cache->space_info->bytes_pinned += num_bytes;
4830 if (reserved) {
4831 cache->reserved -= num_bytes;
4832 cache->space_info->bytes_reserved -= num_bytes;
4833 }
4834 spin_unlock(&cache->lock);
4835 spin_unlock(&cache->space_info->lock);
4836
4837 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4838 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4839 return 0;
4840 }
4841
4842 /*
4843 * this function must be called within transaction
4844 */
4845 int btrfs_pin_extent(struct btrfs_root *root,
4846 u64 bytenr, u64 num_bytes, int reserved)
4847 {
4848 struct btrfs_block_group_cache *cache;
4849
4850 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4851 BUG_ON(!cache); /* Logic error */
4852
4853 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4854
4855 btrfs_put_block_group(cache);
4856 return 0;
4857 }
4858
4859 /*
4860 * this function must be called within transaction
4861 */
4862 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4863 struct btrfs_root *root,
4864 u64 bytenr, u64 num_bytes)
4865 {
4866 struct btrfs_block_group_cache *cache;
4867
4868 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4869 BUG_ON(!cache); /* Logic error */
4870
4871 /*
4872 * pull in the free space cache (if any) so that our pin
4873 * removes the free space from the cache. We have load_only set
4874 * to one because the slow code to read in the free extents does check
4875 * the pinned extents.
4876 */
4877 cache_block_group(cache, trans, root, 1);
4878
4879 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4880
4881 /* remove us from the free space cache (if we're there at all) */
4882 btrfs_remove_free_space(cache, bytenr, num_bytes);
4883 btrfs_put_block_group(cache);
4884 return 0;
4885 }
4886
4887 /**
4888 * btrfs_update_reserved_bytes - update the block_group and space info counters
4889 * @cache: The cache we are manipulating
4890 * @num_bytes: The number of bytes in question
4891 * @reserve: One of the reservation enums
4892 *
4893 * This is called by the allocator when it reserves space, or by somebody who is
4894 * freeing space that was never actually used on disk. For example if you
4895 * reserve some space for a new leaf in transaction A and before transaction A
4896 * commits you free that leaf, you call this with reserve set to 0 in order to
4897 * clear the reservation.
4898 *
4899 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4900 * ENOSPC accounting. For data we handle the reservation through clearing the
4901 * delalloc bits in the io_tree. We have to do this since we could end up
4902 * allocating less disk space for the amount of data we have reserved in the
4903 * case of compression.
4904 *
4905 * If this is a reservation and the block group has become read only we cannot
4906 * make the reservation and return -EAGAIN, otherwise this function always
4907 * succeeds.
4908 */
4909 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4910 u64 num_bytes, int reserve)
4911 {
4912 struct btrfs_space_info *space_info = cache->space_info;
4913 int ret = 0;
4914
4915 spin_lock(&space_info->lock);
4916 spin_lock(&cache->lock);
4917 if (reserve != RESERVE_FREE) {
4918 if (cache->ro) {
4919 ret = -EAGAIN;
4920 } else {
4921 cache->reserved += num_bytes;
4922 space_info->bytes_reserved += num_bytes;
4923 if (reserve == RESERVE_ALLOC) {
4924 trace_btrfs_space_reservation(cache->fs_info,
4925 "space_info", space_info->flags,
4926 num_bytes, 0);
4927 space_info->bytes_may_use -= num_bytes;
4928 }
4929 }
4930 } else {
4931 if (cache->ro)
4932 space_info->bytes_readonly += num_bytes;
4933 cache->reserved -= num_bytes;
4934 space_info->bytes_reserved -= num_bytes;
4935 space_info->reservation_progress++;
4936 }
4937 spin_unlock(&cache->lock);
4938 spin_unlock(&space_info->lock);
4939 return ret;
4940 }
4941
4942 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4943 struct btrfs_root *root)
4944 {
4945 struct btrfs_fs_info *fs_info = root->fs_info;
4946 struct btrfs_caching_control *next;
4947 struct btrfs_caching_control *caching_ctl;
4948 struct btrfs_block_group_cache *cache;
4949
4950 down_write(&fs_info->extent_commit_sem);
4951
4952 list_for_each_entry_safe(caching_ctl, next,
4953 &fs_info->caching_block_groups, list) {
4954 cache = caching_ctl->block_group;
4955 if (block_group_cache_done(cache)) {
4956 cache->last_byte_to_unpin = (u64)-1;
4957 list_del_init(&caching_ctl->list);
4958 put_caching_control(caching_ctl);
4959 } else {
4960 cache->last_byte_to_unpin = caching_ctl->progress;
4961 }
4962 }
4963
4964 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4965 fs_info->pinned_extents = &fs_info->freed_extents[1];
4966 else
4967 fs_info->pinned_extents = &fs_info->freed_extents[0];
4968
4969 up_write(&fs_info->extent_commit_sem);
4970
4971 update_global_block_rsv(fs_info);
4972 }
4973
4974 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4975 {
4976 struct btrfs_fs_info *fs_info = root->fs_info;
4977 struct btrfs_block_group_cache *cache = NULL;
4978 struct btrfs_space_info *space_info;
4979 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4980 u64 len;
4981 bool readonly;
4982
4983 while (start <= end) {
4984 readonly = false;
4985 if (!cache ||
4986 start >= cache->key.objectid + cache->key.offset) {
4987 if (cache)
4988 btrfs_put_block_group(cache);
4989 cache = btrfs_lookup_block_group(fs_info, start);
4990 BUG_ON(!cache); /* Logic error */
4991 }
4992
4993 len = cache->key.objectid + cache->key.offset - start;
4994 len = min(len, end + 1 - start);
4995
4996 if (start < cache->last_byte_to_unpin) {
4997 len = min(len, cache->last_byte_to_unpin - start);
4998 btrfs_add_free_space(cache, start, len);
4999 }
5000
5001 start += len;
5002 space_info = cache->space_info;
5003
5004 spin_lock(&space_info->lock);
5005 spin_lock(&cache->lock);
5006 cache->pinned -= len;
5007 space_info->bytes_pinned -= len;
5008 if (cache->ro) {
5009 space_info->bytes_readonly += len;
5010 readonly = true;
5011 }
5012 spin_unlock(&cache->lock);
5013 if (!readonly && global_rsv->space_info == space_info) {
5014 spin_lock(&global_rsv->lock);
5015 if (!global_rsv->full) {
5016 len = min(len, global_rsv->size -
5017 global_rsv->reserved);
5018 global_rsv->reserved += len;
5019 space_info->bytes_may_use += len;
5020 if (global_rsv->reserved >= global_rsv->size)
5021 global_rsv->full = 1;
5022 }
5023 spin_unlock(&global_rsv->lock);
5024 }
5025 spin_unlock(&space_info->lock);
5026 }
5027
5028 if (cache)
5029 btrfs_put_block_group(cache);
5030 return 0;
5031 }
5032
5033 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5034 struct btrfs_root *root)
5035 {
5036 struct btrfs_fs_info *fs_info = root->fs_info;
5037 struct extent_io_tree *unpin;
5038 u64 start;
5039 u64 end;
5040 int ret;
5041
5042 if (trans->aborted)
5043 return 0;
5044
5045 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5046 unpin = &fs_info->freed_extents[1];
5047 else
5048 unpin = &fs_info->freed_extents[0];
5049
5050 while (1) {
5051 ret = find_first_extent_bit(unpin, 0, &start, &end,
5052 EXTENT_DIRTY, NULL);
5053 if (ret)
5054 break;
5055
5056 if (btrfs_test_opt(root, DISCARD))
5057 ret = btrfs_discard_extent(root, start,
5058 end + 1 - start, NULL);
5059
5060 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5061 unpin_extent_range(root, start, end);
5062 cond_resched();
5063 }
5064
5065 return 0;
5066 }
5067
5068 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5069 struct btrfs_root *root,
5070 u64 bytenr, u64 num_bytes, u64 parent,
5071 u64 root_objectid, u64 owner_objectid,
5072 u64 owner_offset, int refs_to_drop,
5073 struct btrfs_delayed_extent_op *extent_op)
5074 {
5075 struct btrfs_key key;
5076 struct btrfs_path *path;
5077 struct btrfs_fs_info *info = root->fs_info;
5078 struct btrfs_root *extent_root = info->extent_root;
5079 struct extent_buffer *leaf;
5080 struct btrfs_extent_item *ei;
5081 struct btrfs_extent_inline_ref *iref;
5082 int ret;
5083 int is_data;
5084 int extent_slot = 0;
5085 int found_extent = 0;
5086 int num_to_del = 1;
5087 u32 item_size;
5088 u64 refs;
5089
5090 path = btrfs_alloc_path();
5091 if (!path)
5092 return -ENOMEM;
5093
5094 path->reada = 1;
5095 path->leave_spinning = 1;
5096
5097 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5098 BUG_ON(!is_data && refs_to_drop != 1);
5099
5100 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5101 bytenr, num_bytes, parent,
5102 root_objectid, owner_objectid,
5103 owner_offset);
5104 if (ret == 0) {
5105 extent_slot = path->slots[0];
5106 while (extent_slot >= 0) {
5107 btrfs_item_key_to_cpu(path->nodes[0], &key,
5108 extent_slot);
5109 if (key.objectid != bytenr)
5110 break;
5111 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5112 key.offset == num_bytes) {
5113 found_extent = 1;
5114 break;
5115 }
5116 if (path->slots[0] - extent_slot > 5)
5117 break;
5118 extent_slot--;
5119 }
5120 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5121 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5122 if (found_extent && item_size < sizeof(*ei))
5123 found_extent = 0;
5124 #endif
5125 if (!found_extent) {
5126 BUG_ON(iref);
5127 ret = remove_extent_backref(trans, extent_root, path,
5128 NULL, refs_to_drop,
5129 is_data);
5130 if (ret) {
5131 btrfs_abort_transaction(trans, extent_root, ret);
5132 goto out;
5133 }
5134 btrfs_release_path(path);
5135 path->leave_spinning = 1;
5136
5137 key.objectid = bytenr;
5138 key.type = BTRFS_EXTENT_ITEM_KEY;
5139 key.offset = num_bytes;
5140
5141 ret = btrfs_search_slot(trans, extent_root,
5142 &key, path, -1, 1);
5143 if (ret) {
5144 printk(KERN_ERR "umm, got %d back from search"
5145 ", was looking for %llu\n", ret,
5146 (unsigned long long)bytenr);
5147 if (ret > 0)
5148 btrfs_print_leaf(extent_root,
5149 path->nodes[0]);
5150 }
5151 if (ret < 0) {
5152 btrfs_abort_transaction(trans, extent_root, ret);
5153 goto out;
5154 }
5155 extent_slot = path->slots[0];
5156 }
5157 } else if (ret == -ENOENT) {
5158 btrfs_print_leaf(extent_root, path->nodes[0]);
5159 WARN_ON(1);
5160 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5161 "parent %llu root %llu owner %llu offset %llu\n",
5162 (unsigned long long)bytenr,
5163 (unsigned long long)parent,
5164 (unsigned long long)root_objectid,
5165 (unsigned long long)owner_objectid,
5166 (unsigned long long)owner_offset);
5167 } else {
5168 btrfs_abort_transaction(trans, extent_root, ret);
5169 goto out;
5170 }
5171
5172 leaf = path->nodes[0];
5173 item_size = btrfs_item_size_nr(leaf, extent_slot);
5174 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5175 if (item_size < sizeof(*ei)) {
5176 BUG_ON(found_extent || extent_slot != path->slots[0]);
5177 ret = convert_extent_item_v0(trans, extent_root, path,
5178 owner_objectid, 0);
5179 if (ret < 0) {
5180 btrfs_abort_transaction(trans, extent_root, ret);
5181 goto out;
5182 }
5183
5184 btrfs_release_path(path);
5185 path->leave_spinning = 1;
5186
5187 key.objectid = bytenr;
5188 key.type = BTRFS_EXTENT_ITEM_KEY;
5189 key.offset = num_bytes;
5190
5191 ret = btrfs_search_slot(trans, extent_root, &key, path,
5192 -1, 1);
5193 if (ret) {
5194 printk(KERN_ERR "umm, got %d back from search"
5195 ", was looking for %llu\n", ret,
5196 (unsigned long long)bytenr);
5197 btrfs_print_leaf(extent_root, path->nodes[0]);
5198 }
5199 if (ret < 0) {
5200 btrfs_abort_transaction(trans, extent_root, ret);
5201 goto out;
5202 }
5203
5204 extent_slot = path->slots[0];
5205 leaf = path->nodes[0];
5206 item_size = btrfs_item_size_nr(leaf, extent_slot);
5207 }
5208 #endif
5209 BUG_ON(item_size < sizeof(*ei));
5210 ei = btrfs_item_ptr(leaf, extent_slot,
5211 struct btrfs_extent_item);
5212 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5213 struct btrfs_tree_block_info *bi;
5214 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5215 bi = (struct btrfs_tree_block_info *)(ei + 1);
5216 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5217 }
5218
5219 refs = btrfs_extent_refs(leaf, ei);
5220 BUG_ON(refs < refs_to_drop);
5221 refs -= refs_to_drop;
5222
5223 if (refs > 0) {
5224 if (extent_op)
5225 __run_delayed_extent_op(extent_op, leaf, ei);
5226 /*
5227 * In the case of inline back ref, reference count will
5228 * be updated by remove_extent_backref
5229 */
5230 if (iref) {
5231 BUG_ON(!found_extent);
5232 } else {
5233 btrfs_set_extent_refs(leaf, ei, refs);
5234 btrfs_mark_buffer_dirty(leaf);
5235 }
5236 if (found_extent) {
5237 ret = remove_extent_backref(trans, extent_root, path,
5238 iref, refs_to_drop,
5239 is_data);
5240 if (ret) {
5241 btrfs_abort_transaction(trans, extent_root, ret);
5242 goto out;
5243 }
5244 }
5245 } else {
5246 if (found_extent) {
5247 BUG_ON(is_data && refs_to_drop !=
5248 extent_data_ref_count(root, path, iref));
5249 if (iref) {
5250 BUG_ON(path->slots[0] != extent_slot);
5251 } else {
5252 BUG_ON(path->slots[0] != extent_slot + 1);
5253 path->slots[0] = extent_slot;
5254 num_to_del = 2;
5255 }
5256 }
5257
5258 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5259 num_to_del);
5260 if (ret) {
5261 btrfs_abort_transaction(trans, extent_root, ret);
5262 goto out;
5263 }
5264 btrfs_release_path(path);
5265
5266 if (is_data) {
5267 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5268 if (ret) {
5269 btrfs_abort_transaction(trans, extent_root, ret);
5270 goto out;
5271 }
5272 }
5273
5274 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5275 if (ret) {
5276 btrfs_abort_transaction(trans, extent_root, ret);
5277 goto out;
5278 }
5279 }
5280 out:
5281 btrfs_free_path(path);
5282 return ret;
5283 }
5284
5285 /*
5286 * when we free an block, it is possible (and likely) that we free the last
5287 * delayed ref for that extent as well. This searches the delayed ref tree for
5288 * a given extent, and if there are no other delayed refs to be processed, it
5289 * removes it from the tree.
5290 */
5291 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5292 struct btrfs_root *root, u64 bytenr)
5293 {
5294 struct btrfs_delayed_ref_head *head;
5295 struct btrfs_delayed_ref_root *delayed_refs;
5296 struct btrfs_delayed_ref_node *ref;
5297 struct rb_node *node;
5298 int ret = 0;
5299
5300 delayed_refs = &trans->transaction->delayed_refs;
5301 spin_lock(&delayed_refs->lock);
5302 head = btrfs_find_delayed_ref_head(trans, bytenr);
5303 if (!head)
5304 goto out;
5305
5306 node = rb_prev(&head->node.rb_node);
5307 if (!node)
5308 goto out;
5309
5310 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5311
5312 /* there are still entries for this ref, we can't drop it */
5313 if (ref->bytenr == bytenr)
5314 goto out;
5315
5316 if (head->extent_op) {
5317 if (!head->must_insert_reserved)
5318 goto out;
5319 kfree(head->extent_op);
5320 head->extent_op = NULL;
5321 }
5322
5323 /*
5324 * waiting for the lock here would deadlock. If someone else has it
5325 * locked they are already in the process of dropping it anyway
5326 */
5327 if (!mutex_trylock(&head->mutex))
5328 goto out;
5329
5330 /*
5331 * at this point we have a head with no other entries. Go
5332 * ahead and process it.
5333 */
5334 head->node.in_tree = 0;
5335 rb_erase(&head->node.rb_node, &delayed_refs->root);
5336
5337 delayed_refs->num_entries--;
5338
5339 /*
5340 * we don't take a ref on the node because we're removing it from the
5341 * tree, so we just steal the ref the tree was holding.
5342 */
5343 delayed_refs->num_heads--;
5344 if (list_empty(&head->cluster))
5345 delayed_refs->num_heads_ready--;
5346
5347 list_del_init(&head->cluster);
5348 spin_unlock(&delayed_refs->lock);
5349
5350 BUG_ON(head->extent_op);
5351 if (head->must_insert_reserved)
5352 ret = 1;
5353
5354 mutex_unlock(&head->mutex);
5355 btrfs_put_delayed_ref(&head->node);
5356 return ret;
5357 out:
5358 spin_unlock(&delayed_refs->lock);
5359 return 0;
5360 }
5361
5362 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5363 struct btrfs_root *root,
5364 struct extent_buffer *buf,
5365 u64 parent, int last_ref)
5366 {
5367 struct btrfs_block_group_cache *cache = NULL;
5368 int ret;
5369
5370 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5371 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5372 buf->start, buf->len,
5373 parent, root->root_key.objectid,
5374 btrfs_header_level(buf),
5375 BTRFS_DROP_DELAYED_REF, NULL, 0);
5376 BUG_ON(ret); /* -ENOMEM */
5377 }
5378
5379 if (!last_ref)
5380 return;
5381
5382 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5383
5384 if (btrfs_header_generation(buf) == trans->transid) {
5385 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5386 ret = check_ref_cleanup(trans, root, buf->start);
5387 if (!ret)
5388 goto out;
5389 }
5390
5391 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5392 pin_down_extent(root, cache, buf->start, buf->len, 1);
5393 goto out;
5394 }
5395
5396 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5397
5398 btrfs_add_free_space(cache, buf->start, buf->len);
5399 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5400 }
5401 out:
5402 /*
5403 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5404 * anymore.
5405 */
5406 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5407 btrfs_put_block_group(cache);
5408 }
5409
5410 /* Can return -ENOMEM */
5411 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5412 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5413 u64 owner, u64 offset, int for_cow)
5414 {
5415 int ret;
5416 struct btrfs_fs_info *fs_info = root->fs_info;
5417
5418 /*
5419 * tree log blocks never actually go into the extent allocation
5420 * tree, just update pinning info and exit early.
5421 */
5422 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5423 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5424 /* unlocks the pinned mutex */
5425 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5426 ret = 0;
5427 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5428 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5429 num_bytes,
5430 parent, root_objectid, (int)owner,
5431 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5432 } else {
5433 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5434 num_bytes,
5435 parent, root_objectid, owner,
5436 offset, BTRFS_DROP_DELAYED_REF,
5437 NULL, for_cow);
5438 }
5439 return ret;
5440 }
5441
5442 static u64 stripe_align(struct btrfs_root *root, u64 val)
5443 {
5444 u64 mask = ((u64)root->stripesize - 1);
5445 u64 ret = (val + mask) & ~mask;
5446 return ret;
5447 }
5448
5449 /*
5450 * when we wait for progress in the block group caching, its because
5451 * our allocation attempt failed at least once. So, we must sleep
5452 * and let some progress happen before we try again.
5453 *
5454 * This function will sleep at least once waiting for new free space to
5455 * show up, and then it will check the block group free space numbers
5456 * for our min num_bytes. Another option is to have it go ahead
5457 * and look in the rbtree for a free extent of a given size, but this
5458 * is a good start.
5459 */
5460 static noinline int
5461 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5462 u64 num_bytes)
5463 {
5464 struct btrfs_caching_control *caching_ctl;
5465 DEFINE_WAIT(wait);
5466
5467 caching_ctl = get_caching_control(cache);
5468 if (!caching_ctl)
5469 return 0;
5470
5471 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5472 (cache->free_space_ctl->free_space >= num_bytes));
5473
5474 put_caching_control(caching_ctl);
5475 return 0;
5476 }
5477
5478 static noinline int
5479 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5480 {
5481 struct btrfs_caching_control *caching_ctl;
5482 DEFINE_WAIT(wait);
5483
5484 caching_ctl = get_caching_control(cache);
5485 if (!caching_ctl)
5486 return 0;
5487
5488 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5489
5490 put_caching_control(caching_ctl);
5491 return 0;
5492 }
5493
5494 int __get_raid_index(u64 flags)
5495 {
5496 int index;
5497
5498 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5499 index = 0;
5500 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5501 index = 1;
5502 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5503 index = 2;
5504 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5505 index = 3;
5506 else
5507 index = 4;
5508
5509 return index;
5510 }
5511
5512 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5513 {
5514 return __get_raid_index(cache->flags);
5515 }
5516
5517 enum btrfs_loop_type {
5518 LOOP_CACHING_NOWAIT = 0,
5519 LOOP_CACHING_WAIT = 1,
5520 LOOP_ALLOC_CHUNK = 2,
5521 LOOP_NO_EMPTY_SIZE = 3,
5522 };
5523
5524 /*
5525 * walks the btree of allocated extents and find a hole of a given size.
5526 * The key ins is changed to record the hole:
5527 * ins->objectid == block start
5528 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5529 * ins->offset == number of blocks
5530 * Any available blocks before search_start are skipped.
5531 */
5532 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5533 struct btrfs_root *orig_root,
5534 u64 num_bytes, u64 empty_size,
5535 u64 hint_byte, struct btrfs_key *ins,
5536 u64 data)
5537 {
5538 int ret = 0;
5539 struct btrfs_root *root = orig_root->fs_info->extent_root;
5540 struct btrfs_free_cluster *last_ptr = NULL;
5541 struct btrfs_block_group_cache *block_group = NULL;
5542 struct btrfs_block_group_cache *used_block_group;
5543 u64 search_start = 0;
5544 int empty_cluster = 2 * 1024 * 1024;
5545 struct btrfs_space_info *space_info;
5546 int loop = 0;
5547 int index = __get_raid_index(data);
5548 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5549 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5550 bool found_uncached_bg = false;
5551 bool failed_cluster_refill = false;
5552 bool failed_alloc = false;
5553 bool use_cluster = true;
5554 bool have_caching_bg = false;
5555
5556 WARN_ON(num_bytes < root->sectorsize);
5557 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5558 ins->objectid = 0;
5559 ins->offset = 0;
5560
5561 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5562
5563 space_info = __find_space_info(root->fs_info, data);
5564 if (!space_info) {
5565 printk(KERN_ERR "No space info for %llu\n", data);
5566 return -ENOSPC;
5567 }
5568
5569 /*
5570 * If the space info is for both data and metadata it means we have a
5571 * small filesystem and we can't use the clustering stuff.
5572 */
5573 if (btrfs_mixed_space_info(space_info))
5574 use_cluster = false;
5575
5576 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5577 last_ptr = &root->fs_info->meta_alloc_cluster;
5578 if (!btrfs_test_opt(root, SSD))
5579 empty_cluster = 64 * 1024;
5580 }
5581
5582 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5583 btrfs_test_opt(root, SSD)) {
5584 last_ptr = &root->fs_info->data_alloc_cluster;
5585 }
5586
5587 if (last_ptr) {
5588 spin_lock(&last_ptr->lock);
5589 if (last_ptr->block_group)
5590 hint_byte = last_ptr->window_start;
5591 spin_unlock(&last_ptr->lock);
5592 }
5593
5594 search_start = max(search_start, first_logical_byte(root, 0));
5595 search_start = max(search_start, hint_byte);
5596
5597 if (!last_ptr)
5598 empty_cluster = 0;
5599
5600 if (search_start == hint_byte) {
5601 block_group = btrfs_lookup_block_group(root->fs_info,
5602 search_start);
5603 used_block_group = block_group;
5604 /*
5605 * we don't want to use the block group if it doesn't match our
5606 * allocation bits, or if its not cached.
5607 *
5608 * However if we are re-searching with an ideal block group
5609 * picked out then we don't care that the block group is cached.
5610 */
5611 if (block_group && block_group_bits(block_group, data) &&
5612 block_group->cached != BTRFS_CACHE_NO) {
5613 down_read(&space_info->groups_sem);
5614 if (list_empty(&block_group->list) ||
5615 block_group->ro) {
5616 /*
5617 * someone is removing this block group,
5618 * we can't jump into the have_block_group
5619 * target because our list pointers are not
5620 * valid
5621 */
5622 btrfs_put_block_group(block_group);
5623 up_read(&space_info->groups_sem);
5624 } else {
5625 index = get_block_group_index(block_group);
5626 goto have_block_group;
5627 }
5628 } else if (block_group) {
5629 btrfs_put_block_group(block_group);
5630 }
5631 }
5632 search:
5633 have_caching_bg = false;
5634 down_read(&space_info->groups_sem);
5635 list_for_each_entry(block_group, &space_info->block_groups[index],
5636 list) {
5637 u64 offset;
5638 int cached;
5639
5640 used_block_group = block_group;
5641 btrfs_get_block_group(block_group);
5642 search_start = block_group->key.objectid;
5643
5644 /*
5645 * this can happen if we end up cycling through all the
5646 * raid types, but we want to make sure we only allocate
5647 * for the proper type.
5648 */
5649 if (!block_group_bits(block_group, data)) {
5650 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5651 BTRFS_BLOCK_GROUP_RAID1 |
5652 BTRFS_BLOCK_GROUP_RAID10;
5653
5654 /*
5655 * if they asked for extra copies and this block group
5656 * doesn't provide them, bail. This does allow us to
5657 * fill raid0 from raid1.
5658 */
5659 if ((data & extra) && !(block_group->flags & extra))
5660 goto loop;
5661 }
5662
5663 have_block_group:
5664 cached = block_group_cache_done(block_group);
5665 if (unlikely(!cached)) {
5666 found_uncached_bg = true;
5667 ret = cache_block_group(block_group, trans,
5668 orig_root, 0);
5669 BUG_ON(ret < 0);
5670 ret = 0;
5671 }
5672
5673 if (unlikely(block_group->ro))
5674 goto loop;
5675
5676 /*
5677 * Ok we want to try and use the cluster allocator, so
5678 * lets look there
5679 */
5680 if (last_ptr) {
5681 /*
5682 * the refill lock keeps out other
5683 * people trying to start a new cluster
5684 */
5685 spin_lock(&last_ptr->refill_lock);
5686 used_block_group = last_ptr->block_group;
5687 if (used_block_group != block_group &&
5688 (!used_block_group ||
5689 used_block_group->ro ||
5690 !block_group_bits(used_block_group, data))) {
5691 used_block_group = block_group;
5692 goto refill_cluster;
5693 }
5694
5695 if (used_block_group != block_group)
5696 btrfs_get_block_group(used_block_group);
5697
5698 offset = btrfs_alloc_from_cluster(used_block_group,
5699 last_ptr, num_bytes, used_block_group->key.objectid);
5700 if (offset) {
5701 /* we have a block, we're done */
5702 spin_unlock(&last_ptr->refill_lock);
5703 trace_btrfs_reserve_extent_cluster(root,
5704 block_group, search_start, num_bytes);
5705 goto checks;
5706 }
5707
5708 WARN_ON(last_ptr->block_group != used_block_group);
5709 if (used_block_group != block_group) {
5710 btrfs_put_block_group(used_block_group);
5711 used_block_group = block_group;
5712 }
5713 refill_cluster:
5714 BUG_ON(used_block_group != block_group);
5715 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5716 * set up a new clusters, so lets just skip it
5717 * and let the allocator find whatever block
5718 * it can find. If we reach this point, we
5719 * will have tried the cluster allocator
5720 * plenty of times and not have found
5721 * anything, so we are likely way too
5722 * fragmented for the clustering stuff to find
5723 * anything.
5724 *
5725 * However, if the cluster is taken from the
5726 * current block group, release the cluster
5727 * first, so that we stand a better chance of
5728 * succeeding in the unclustered
5729 * allocation. */
5730 if (loop >= LOOP_NO_EMPTY_SIZE &&
5731 last_ptr->block_group != block_group) {
5732 spin_unlock(&last_ptr->refill_lock);
5733 goto unclustered_alloc;
5734 }
5735
5736 /*
5737 * this cluster didn't work out, free it and
5738 * start over
5739 */
5740 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5741
5742 if (loop >= LOOP_NO_EMPTY_SIZE) {
5743 spin_unlock(&last_ptr->refill_lock);
5744 goto unclustered_alloc;
5745 }
5746
5747 /* allocate a cluster in this block group */
5748 ret = btrfs_find_space_cluster(trans, root,
5749 block_group, last_ptr,
5750 search_start, num_bytes,
5751 empty_cluster + empty_size);
5752 if (ret == 0) {
5753 /*
5754 * now pull our allocation out of this
5755 * cluster
5756 */
5757 offset = btrfs_alloc_from_cluster(block_group,
5758 last_ptr, num_bytes,
5759 search_start);
5760 if (offset) {
5761 /* we found one, proceed */
5762 spin_unlock(&last_ptr->refill_lock);
5763 trace_btrfs_reserve_extent_cluster(root,
5764 block_group, search_start,
5765 num_bytes);
5766 goto checks;
5767 }
5768 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5769 && !failed_cluster_refill) {
5770 spin_unlock(&last_ptr->refill_lock);
5771
5772 failed_cluster_refill = true;
5773 wait_block_group_cache_progress(block_group,
5774 num_bytes + empty_cluster + empty_size);
5775 goto have_block_group;
5776 }
5777
5778 /*
5779 * at this point we either didn't find a cluster
5780 * or we weren't able to allocate a block from our
5781 * cluster. Free the cluster we've been trying
5782 * to use, and go to the next block group
5783 */
5784 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5785 spin_unlock(&last_ptr->refill_lock);
5786 goto loop;
5787 }
5788
5789 unclustered_alloc:
5790 spin_lock(&block_group->free_space_ctl->tree_lock);
5791 if (cached &&
5792 block_group->free_space_ctl->free_space <
5793 num_bytes + empty_cluster + empty_size) {
5794 spin_unlock(&block_group->free_space_ctl->tree_lock);
5795 goto loop;
5796 }
5797 spin_unlock(&block_group->free_space_ctl->tree_lock);
5798
5799 offset = btrfs_find_space_for_alloc(block_group, search_start,
5800 num_bytes, empty_size);
5801 /*
5802 * If we didn't find a chunk, and we haven't failed on this
5803 * block group before, and this block group is in the middle of
5804 * caching and we are ok with waiting, then go ahead and wait
5805 * for progress to be made, and set failed_alloc to true.
5806 *
5807 * If failed_alloc is true then we've already waited on this
5808 * block group once and should move on to the next block group.
5809 */
5810 if (!offset && !failed_alloc && !cached &&
5811 loop > LOOP_CACHING_NOWAIT) {
5812 wait_block_group_cache_progress(block_group,
5813 num_bytes + empty_size);
5814 failed_alloc = true;
5815 goto have_block_group;
5816 } else if (!offset) {
5817 if (!cached)
5818 have_caching_bg = true;
5819 goto loop;
5820 }
5821 checks:
5822 search_start = stripe_align(root, offset);
5823
5824 /* move on to the next group */
5825 if (search_start + num_bytes >
5826 used_block_group->key.objectid + used_block_group->key.offset) {
5827 btrfs_add_free_space(used_block_group, offset, num_bytes);
5828 goto loop;
5829 }
5830
5831 if (offset < search_start)
5832 btrfs_add_free_space(used_block_group, offset,
5833 search_start - offset);
5834 BUG_ON(offset > search_start);
5835
5836 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5837 alloc_type);
5838 if (ret == -EAGAIN) {
5839 btrfs_add_free_space(used_block_group, offset, num_bytes);
5840 goto loop;
5841 }
5842
5843 /* we are all good, lets return */
5844 ins->objectid = search_start;
5845 ins->offset = num_bytes;
5846
5847 trace_btrfs_reserve_extent(orig_root, block_group,
5848 search_start, num_bytes);
5849 if (used_block_group != block_group)
5850 btrfs_put_block_group(used_block_group);
5851 btrfs_put_block_group(block_group);
5852 break;
5853 loop:
5854 failed_cluster_refill = false;
5855 failed_alloc = false;
5856 BUG_ON(index != get_block_group_index(block_group));
5857 if (used_block_group != block_group)
5858 btrfs_put_block_group(used_block_group);
5859 btrfs_put_block_group(block_group);
5860 }
5861 up_read(&space_info->groups_sem);
5862
5863 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5864 goto search;
5865
5866 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5867 goto search;
5868
5869 /*
5870 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5871 * caching kthreads as we move along
5872 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5873 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5874 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5875 * again
5876 */
5877 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5878 index = 0;
5879 loop++;
5880 if (loop == LOOP_ALLOC_CHUNK) {
5881 ret = do_chunk_alloc(trans, root, data,
5882 CHUNK_ALLOC_FORCE);
5883 /*
5884 * Do not bail out on ENOSPC since we
5885 * can do more things.
5886 */
5887 if (ret < 0 && ret != -ENOSPC) {
5888 btrfs_abort_transaction(trans,
5889 root, ret);
5890 goto out;
5891 }
5892 }
5893
5894 if (loop == LOOP_NO_EMPTY_SIZE) {
5895 empty_size = 0;
5896 empty_cluster = 0;
5897 }
5898
5899 goto search;
5900 } else if (!ins->objectid) {
5901 ret = -ENOSPC;
5902 } else if (ins->objectid) {
5903 ret = 0;
5904 }
5905 out:
5906
5907 return ret;
5908 }
5909
5910 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5911 int dump_block_groups)
5912 {
5913 struct btrfs_block_group_cache *cache;
5914 int index = 0;
5915
5916 spin_lock(&info->lock);
5917 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5918 (unsigned long long)info->flags,
5919 (unsigned long long)(info->total_bytes - info->bytes_used -
5920 info->bytes_pinned - info->bytes_reserved -
5921 info->bytes_readonly),
5922 (info->full) ? "" : "not ");
5923 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5924 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5925 (unsigned long long)info->total_bytes,
5926 (unsigned long long)info->bytes_used,
5927 (unsigned long long)info->bytes_pinned,
5928 (unsigned long long)info->bytes_reserved,
5929 (unsigned long long)info->bytes_may_use,
5930 (unsigned long long)info->bytes_readonly);
5931 spin_unlock(&info->lock);
5932
5933 if (!dump_block_groups)
5934 return;
5935
5936 down_read(&info->groups_sem);
5937 again:
5938 list_for_each_entry(cache, &info->block_groups[index], list) {
5939 spin_lock(&cache->lock);
5940 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
5941 (unsigned long long)cache->key.objectid,
5942 (unsigned long long)cache->key.offset,
5943 (unsigned long long)btrfs_block_group_used(&cache->item),
5944 (unsigned long long)cache->pinned,
5945 (unsigned long long)cache->reserved,
5946 cache->ro ? "[readonly]" : "");
5947 btrfs_dump_free_space(cache, bytes);
5948 spin_unlock(&cache->lock);
5949 }
5950 if (++index < BTRFS_NR_RAID_TYPES)
5951 goto again;
5952 up_read(&info->groups_sem);
5953 }
5954
5955 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5956 struct btrfs_root *root,
5957 u64 num_bytes, u64 min_alloc_size,
5958 u64 empty_size, u64 hint_byte,
5959 struct btrfs_key *ins, u64 data)
5960 {
5961 bool final_tried = false;
5962 int ret;
5963
5964 data = btrfs_get_alloc_profile(root, data);
5965 again:
5966 WARN_ON(num_bytes < root->sectorsize);
5967 ret = find_free_extent(trans, root, num_bytes, empty_size,
5968 hint_byte, ins, data);
5969
5970 if (ret == -ENOSPC) {
5971 if (!final_tried) {
5972 num_bytes = num_bytes >> 1;
5973 num_bytes = num_bytes & ~(root->sectorsize - 1);
5974 num_bytes = max(num_bytes, min_alloc_size);
5975 if (num_bytes == min_alloc_size)
5976 final_tried = true;
5977 goto again;
5978 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5979 struct btrfs_space_info *sinfo;
5980
5981 sinfo = __find_space_info(root->fs_info, data);
5982 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5983 "wanted %llu\n", (unsigned long long)data,
5984 (unsigned long long)num_bytes);
5985 if (sinfo)
5986 dump_space_info(sinfo, num_bytes, 1);
5987 }
5988 }
5989
5990 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5991
5992 return ret;
5993 }
5994
5995 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5996 u64 start, u64 len, int pin)
5997 {
5998 struct btrfs_block_group_cache *cache;
5999 int ret = 0;
6000
6001 cache = btrfs_lookup_block_group(root->fs_info, start);
6002 if (!cache) {
6003 printk(KERN_ERR "Unable to find block group for %llu\n",
6004 (unsigned long long)start);
6005 return -ENOSPC;
6006 }
6007
6008 if (btrfs_test_opt(root, DISCARD))
6009 ret = btrfs_discard_extent(root, start, len, NULL);
6010
6011 if (pin)
6012 pin_down_extent(root, cache, start, len, 1);
6013 else {
6014 btrfs_add_free_space(cache, start, len);
6015 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6016 }
6017 btrfs_put_block_group(cache);
6018
6019 trace_btrfs_reserved_extent_free(root, start, len);
6020
6021 return ret;
6022 }
6023
6024 int btrfs_free_reserved_extent(struct btrfs_root *root,
6025 u64 start, u64 len)
6026 {
6027 return __btrfs_free_reserved_extent(root, start, len, 0);
6028 }
6029
6030 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6031 u64 start, u64 len)
6032 {
6033 return __btrfs_free_reserved_extent(root, start, len, 1);
6034 }
6035
6036 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6037 struct btrfs_root *root,
6038 u64 parent, u64 root_objectid,
6039 u64 flags, u64 owner, u64 offset,
6040 struct btrfs_key *ins, int ref_mod)
6041 {
6042 int ret;
6043 struct btrfs_fs_info *fs_info = root->fs_info;
6044 struct btrfs_extent_item *extent_item;
6045 struct btrfs_extent_inline_ref *iref;
6046 struct btrfs_path *path;
6047 struct extent_buffer *leaf;
6048 int type;
6049 u32 size;
6050
6051 if (parent > 0)
6052 type = BTRFS_SHARED_DATA_REF_KEY;
6053 else
6054 type = BTRFS_EXTENT_DATA_REF_KEY;
6055
6056 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6057
6058 path = btrfs_alloc_path();
6059 if (!path)
6060 return -ENOMEM;
6061
6062 path->leave_spinning = 1;
6063 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6064 ins, size);
6065 if (ret) {
6066 btrfs_free_path(path);
6067 return ret;
6068 }
6069
6070 leaf = path->nodes[0];
6071 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6072 struct btrfs_extent_item);
6073 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6074 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6075 btrfs_set_extent_flags(leaf, extent_item,
6076 flags | BTRFS_EXTENT_FLAG_DATA);
6077
6078 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6079 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6080 if (parent > 0) {
6081 struct btrfs_shared_data_ref *ref;
6082 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6083 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6084 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6085 } else {
6086 struct btrfs_extent_data_ref *ref;
6087 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6088 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6089 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6090 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6091 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6092 }
6093
6094 btrfs_mark_buffer_dirty(path->nodes[0]);
6095 btrfs_free_path(path);
6096
6097 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6098 if (ret) { /* -ENOENT, logic error */
6099 printk(KERN_ERR "btrfs update block group failed for %llu "
6100 "%llu\n", (unsigned long long)ins->objectid,
6101 (unsigned long long)ins->offset);
6102 BUG();
6103 }
6104 return ret;
6105 }
6106
6107 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6108 struct btrfs_root *root,
6109 u64 parent, u64 root_objectid,
6110 u64 flags, struct btrfs_disk_key *key,
6111 int level, struct btrfs_key *ins)
6112 {
6113 int ret;
6114 struct btrfs_fs_info *fs_info = root->fs_info;
6115 struct btrfs_extent_item *extent_item;
6116 struct btrfs_tree_block_info *block_info;
6117 struct btrfs_extent_inline_ref *iref;
6118 struct btrfs_path *path;
6119 struct extent_buffer *leaf;
6120 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6121
6122 path = btrfs_alloc_path();
6123 if (!path)
6124 return -ENOMEM;
6125
6126 path->leave_spinning = 1;
6127 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6128 ins, size);
6129 if (ret) {
6130 btrfs_free_path(path);
6131 return ret;
6132 }
6133
6134 leaf = path->nodes[0];
6135 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6136 struct btrfs_extent_item);
6137 btrfs_set_extent_refs(leaf, extent_item, 1);
6138 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6139 btrfs_set_extent_flags(leaf, extent_item,
6140 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6141 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6142
6143 btrfs_set_tree_block_key(leaf, block_info, key);
6144 btrfs_set_tree_block_level(leaf, block_info, level);
6145
6146 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6147 if (parent > 0) {
6148 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6149 btrfs_set_extent_inline_ref_type(leaf, iref,
6150 BTRFS_SHARED_BLOCK_REF_KEY);
6151 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6152 } else {
6153 btrfs_set_extent_inline_ref_type(leaf, iref,
6154 BTRFS_TREE_BLOCK_REF_KEY);
6155 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6156 }
6157
6158 btrfs_mark_buffer_dirty(leaf);
6159 btrfs_free_path(path);
6160
6161 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6162 if (ret) { /* -ENOENT, logic error */
6163 printk(KERN_ERR "btrfs update block group failed for %llu "
6164 "%llu\n", (unsigned long long)ins->objectid,
6165 (unsigned long long)ins->offset);
6166 BUG();
6167 }
6168 return ret;
6169 }
6170
6171 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6172 struct btrfs_root *root,
6173 u64 root_objectid, u64 owner,
6174 u64 offset, struct btrfs_key *ins)
6175 {
6176 int ret;
6177
6178 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6179
6180 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6181 ins->offset, 0,
6182 root_objectid, owner, offset,
6183 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6184 return ret;
6185 }
6186
6187 /*
6188 * this is used by the tree logging recovery code. It records that
6189 * an extent has been allocated and makes sure to clear the free
6190 * space cache bits as well
6191 */
6192 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6193 struct btrfs_root *root,
6194 u64 root_objectid, u64 owner, u64 offset,
6195 struct btrfs_key *ins)
6196 {
6197 int ret;
6198 struct btrfs_block_group_cache *block_group;
6199 struct btrfs_caching_control *caching_ctl;
6200 u64 start = ins->objectid;
6201 u64 num_bytes = ins->offset;
6202
6203 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6204 cache_block_group(block_group, trans, NULL, 0);
6205 caching_ctl = get_caching_control(block_group);
6206
6207 if (!caching_ctl) {
6208 BUG_ON(!block_group_cache_done(block_group));
6209 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6210 BUG_ON(ret); /* -ENOMEM */
6211 } else {
6212 mutex_lock(&caching_ctl->mutex);
6213
6214 if (start >= caching_ctl->progress) {
6215 ret = add_excluded_extent(root, start, num_bytes);
6216 BUG_ON(ret); /* -ENOMEM */
6217 } else if (start + num_bytes <= caching_ctl->progress) {
6218 ret = btrfs_remove_free_space(block_group,
6219 start, num_bytes);
6220 BUG_ON(ret); /* -ENOMEM */
6221 } else {
6222 num_bytes = caching_ctl->progress - start;
6223 ret = btrfs_remove_free_space(block_group,
6224 start, num_bytes);
6225 BUG_ON(ret); /* -ENOMEM */
6226
6227 start = caching_ctl->progress;
6228 num_bytes = ins->objectid + ins->offset -
6229 caching_ctl->progress;
6230 ret = add_excluded_extent(root, start, num_bytes);
6231 BUG_ON(ret); /* -ENOMEM */
6232 }
6233
6234 mutex_unlock(&caching_ctl->mutex);
6235 put_caching_control(caching_ctl);
6236 }
6237
6238 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6239 RESERVE_ALLOC_NO_ACCOUNT);
6240 BUG_ON(ret); /* logic error */
6241 btrfs_put_block_group(block_group);
6242 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6243 0, owner, offset, ins, 1);
6244 return ret;
6245 }
6246
6247 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6248 struct btrfs_root *root,
6249 u64 bytenr, u32 blocksize,
6250 int level)
6251 {
6252 struct extent_buffer *buf;
6253
6254 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6255 if (!buf)
6256 return ERR_PTR(-ENOMEM);
6257 btrfs_set_header_generation(buf, trans->transid);
6258 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6259 btrfs_tree_lock(buf);
6260 clean_tree_block(trans, root, buf);
6261 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6262
6263 btrfs_set_lock_blocking(buf);
6264 btrfs_set_buffer_uptodate(buf);
6265
6266 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6267 /*
6268 * we allow two log transactions at a time, use different
6269 * EXENT bit to differentiate dirty pages.
6270 */
6271 if (root->log_transid % 2 == 0)
6272 set_extent_dirty(&root->dirty_log_pages, buf->start,
6273 buf->start + buf->len - 1, GFP_NOFS);
6274 else
6275 set_extent_new(&root->dirty_log_pages, buf->start,
6276 buf->start + buf->len - 1, GFP_NOFS);
6277 } else {
6278 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6279 buf->start + buf->len - 1, GFP_NOFS);
6280 }
6281 trans->blocks_used++;
6282 /* this returns a buffer locked for blocking */
6283 return buf;
6284 }
6285
6286 static struct btrfs_block_rsv *
6287 use_block_rsv(struct btrfs_trans_handle *trans,
6288 struct btrfs_root *root, u32 blocksize)
6289 {
6290 struct btrfs_block_rsv *block_rsv;
6291 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6292 int ret;
6293
6294 block_rsv = get_block_rsv(trans, root);
6295
6296 if (block_rsv->size == 0) {
6297 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6298 BTRFS_RESERVE_NO_FLUSH);
6299 /*
6300 * If we couldn't reserve metadata bytes try and use some from
6301 * the global reserve.
6302 */
6303 if (ret && block_rsv != global_rsv) {
6304 ret = block_rsv_use_bytes(global_rsv, blocksize);
6305 if (!ret)
6306 return global_rsv;
6307 return ERR_PTR(ret);
6308 } else if (ret) {
6309 return ERR_PTR(ret);
6310 }
6311 return block_rsv;
6312 }
6313
6314 ret = block_rsv_use_bytes(block_rsv, blocksize);
6315 if (!ret)
6316 return block_rsv;
6317 if (ret && !block_rsv->failfast) {
6318 static DEFINE_RATELIMIT_STATE(_rs,
6319 DEFAULT_RATELIMIT_INTERVAL,
6320 /*DEFAULT_RATELIMIT_BURST*/ 2);
6321 if (__ratelimit(&_rs))
6322 WARN(1, KERN_DEBUG "btrfs: block rsv returned %d\n",
6323 ret);
6324 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6325 BTRFS_RESERVE_NO_FLUSH);
6326 if (!ret) {
6327 return block_rsv;
6328 } else if (ret && block_rsv != global_rsv) {
6329 ret = block_rsv_use_bytes(global_rsv, blocksize);
6330 if (!ret)
6331 return global_rsv;
6332 }
6333 }
6334
6335 return ERR_PTR(-ENOSPC);
6336 }
6337
6338 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6339 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6340 {
6341 block_rsv_add_bytes(block_rsv, blocksize, 0);
6342 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6343 }
6344
6345 /*
6346 * finds a free extent and does all the dirty work required for allocation
6347 * returns the key for the extent through ins, and a tree buffer for
6348 * the first block of the extent through buf.
6349 *
6350 * returns the tree buffer or NULL.
6351 */
6352 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6353 struct btrfs_root *root, u32 blocksize,
6354 u64 parent, u64 root_objectid,
6355 struct btrfs_disk_key *key, int level,
6356 u64 hint, u64 empty_size)
6357 {
6358 struct btrfs_key ins;
6359 struct btrfs_block_rsv *block_rsv;
6360 struct extent_buffer *buf;
6361 u64 flags = 0;
6362 int ret;
6363
6364
6365 block_rsv = use_block_rsv(trans, root, blocksize);
6366 if (IS_ERR(block_rsv))
6367 return ERR_CAST(block_rsv);
6368
6369 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6370 empty_size, hint, &ins, 0);
6371 if (ret) {
6372 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6373 return ERR_PTR(ret);
6374 }
6375
6376 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6377 blocksize, level);
6378 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6379
6380 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6381 if (parent == 0)
6382 parent = ins.objectid;
6383 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6384 } else
6385 BUG_ON(parent > 0);
6386
6387 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6388 struct btrfs_delayed_extent_op *extent_op;
6389 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6390 BUG_ON(!extent_op); /* -ENOMEM */
6391 if (key)
6392 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6393 else
6394 memset(&extent_op->key, 0, sizeof(extent_op->key));
6395 extent_op->flags_to_set = flags;
6396 extent_op->update_key = 1;
6397 extent_op->update_flags = 1;
6398 extent_op->is_data = 0;
6399
6400 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6401 ins.objectid,
6402 ins.offset, parent, root_objectid,
6403 level, BTRFS_ADD_DELAYED_EXTENT,
6404 extent_op, 0);
6405 BUG_ON(ret); /* -ENOMEM */
6406 }
6407 return buf;
6408 }
6409
6410 struct walk_control {
6411 u64 refs[BTRFS_MAX_LEVEL];
6412 u64 flags[BTRFS_MAX_LEVEL];
6413 struct btrfs_key update_progress;
6414 int stage;
6415 int level;
6416 int shared_level;
6417 int update_ref;
6418 int keep_locks;
6419 int reada_slot;
6420 int reada_count;
6421 int for_reloc;
6422 };
6423
6424 #define DROP_REFERENCE 1
6425 #define UPDATE_BACKREF 2
6426
6427 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6428 struct btrfs_root *root,
6429 struct walk_control *wc,
6430 struct btrfs_path *path)
6431 {
6432 u64 bytenr;
6433 u64 generation;
6434 u64 refs;
6435 u64 flags;
6436 u32 nritems;
6437 u32 blocksize;
6438 struct btrfs_key key;
6439 struct extent_buffer *eb;
6440 int ret;
6441 int slot;
6442 int nread = 0;
6443
6444 if (path->slots[wc->level] < wc->reada_slot) {
6445 wc->reada_count = wc->reada_count * 2 / 3;
6446 wc->reada_count = max(wc->reada_count, 2);
6447 } else {
6448 wc->reada_count = wc->reada_count * 3 / 2;
6449 wc->reada_count = min_t(int, wc->reada_count,
6450 BTRFS_NODEPTRS_PER_BLOCK(root));
6451 }
6452
6453 eb = path->nodes[wc->level];
6454 nritems = btrfs_header_nritems(eb);
6455 blocksize = btrfs_level_size(root, wc->level - 1);
6456
6457 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6458 if (nread >= wc->reada_count)
6459 break;
6460
6461 cond_resched();
6462 bytenr = btrfs_node_blockptr(eb, slot);
6463 generation = btrfs_node_ptr_generation(eb, slot);
6464
6465 if (slot == path->slots[wc->level])
6466 goto reada;
6467
6468 if (wc->stage == UPDATE_BACKREF &&
6469 generation <= root->root_key.offset)
6470 continue;
6471
6472 /* We don't lock the tree block, it's OK to be racy here */
6473 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6474 &refs, &flags);
6475 /* We don't care about errors in readahead. */
6476 if (ret < 0)
6477 continue;
6478 BUG_ON(refs == 0);
6479
6480 if (wc->stage == DROP_REFERENCE) {
6481 if (refs == 1)
6482 goto reada;
6483
6484 if (wc->level == 1 &&
6485 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6486 continue;
6487 if (!wc->update_ref ||
6488 generation <= root->root_key.offset)
6489 continue;
6490 btrfs_node_key_to_cpu(eb, &key, slot);
6491 ret = btrfs_comp_cpu_keys(&key,
6492 &wc->update_progress);
6493 if (ret < 0)
6494 continue;
6495 } else {
6496 if (wc->level == 1 &&
6497 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6498 continue;
6499 }
6500 reada:
6501 ret = readahead_tree_block(root, bytenr, blocksize,
6502 generation);
6503 if (ret)
6504 break;
6505 nread++;
6506 }
6507 wc->reada_slot = slot;
6508 }
6509
6510 /*
6511 * helper to process tree block while walking down the tree.
6512 *
6513 * when wc->stage == UPDATE_BACKREF, this function updates
6514 * back refs for pointers in the block.
6515 *
6516 * NOTE: return value 1 means we should stop walking down.
6517 */
6518 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6519 struct btrfs_root *root,
6520 struct btrfs_path *path,
6521 struct walk_control *wc, int lookup_info)
6522 {
6523 int level = wc->level;
6524 struct extent_buffer *eb = path->nodes[level];
6525 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6526 int ret;
6527
6528 if (wc->stage == UPDATE_BACKREF &&
6529 btrfs_header_owner(eb) != root->root_key.objectid)
6530 return 1;
6531
6532 /*
6533 * when reference count of tree block is 1, it won't increase
6534 * again. once full backref flag is set, we never clear it.
6535 */
6536 if (lookup_info &&
6537 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6538 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6539 BUG_ON(!path->locks[level]);
6540 ret = btrfs_lookup_extent_info(trans, root,
6541 eb->start, eb->len,
6542 &wc->refs[level],
6543 &wc->flags[level]);
6544 BUG_ON(ret == -ENOMEM);
6545 if (ret)
6546 return ret;
6547 BUG_ON(wc->refs[level] == 0);
6548 }
6549
6550 if (wc->stage == DROP_REFERENCE) {
6551 if (wc->refs[level] > 1)
6552 return 1;
6553
6554 if (path->locks[level] && !wc->keep_locks) {
6555 btrfs_tree_unlock_rw(eb, path->locks[level]);
6556 path->locks[level] = 0;
6557 }
6558 return 0;
6559 }
6560
6561 /* wc->stage == UPDATE_BACKREF */
6562 if (!(wc->flags[level] & flag)) {
6563 BUG_ON(!path->locks[level]);
6564 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6565 BUG_ON(ret); /* -ENOMEM */
6566 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6567 BUG_ON(ret); /* -ENOMEM */
6568 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6569 eb->len, flag, 0);
6570 BUG_ON(ret); /* -ENOMEM */
6571 wc->flags[level] |= flag;
6572 }
6573
6574 /*
6575 * the block is shared by multiple trees, so it's not good to
6576 * keep the tree lock
6577 */
6578 if (path->locks[level] && level > 0) {
6579 btrfs_tree_unlock_rw(eb, path->locks[level]);
6580 path->locks[level] = 0;
6581 }
6582 return 0;
6583 }
6584
6585 /*
6586 * helper to process tree block pointer.
6587 *
6588 * when wc->stage == DROP_REFERENCE, this function checks
6589 * reference count of the block pointed to. if the block
6590 * is shared and we need update back refs for the subtree
6591 * rooted at the block, this function changes wc->stage to
6592 * UPDATE_BACKREF. if the block is shared and there is no
6593 * need to update back, this function drops the reference
6594 * to the block.
6595 *
6596 * NOTE: return value 1 means we should stop walking down.
6597 */
6598 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6599 struct btrfs_root *root,
6600 struct btrfs_path *path,
6601 struct walk_control *wc, int *lookup_info)
6602 {
6603 u64 bytenr;
6604 u64 generation;
6605 u64 parent;
6606 u32 blocksize;
6607 struct btrfs_key key;
6608 struct extent_buffer *next;
6609 int level = wc->level;
6610 int reada = 0;
6611 int ret = 0;
6612
6613 generation = btrfs_node_ptr_generation(path->nodes[level],
6614 path->slots[level]);
6615 /*
6616 * if the lower level block was created before the snapshot
6617 * was created, we know there is no need to update back refs
6618 * for the subtree
6619 */
6620 if (wc->stage == UPDATE_BACKREF &&
6621 generation <= root->root_key.offset) {
6622 *lookup_info = 1;
6623 return 1;
6624 }
6625
6626 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6627 blocksize = btrfs_level_size(root, level - 1);
6628
6629 next = btrfs_find_tree_block(root, bytenr, blocksize);
6630 if (!next) {
6631 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6632 if (!next)
6633 return -ENOMEM;
6634 reada = 1;
6635 }
6636 btrfs_tree_lock(next);
6637 btrfs_set_lock_blocking(next);
6638
6639 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6640 &wc->refs[level - 1],
6641 &wc->flags[level - 1]);
6642 if (ret < 0) {
6643 btrfs_tree_unlock(next);
6644 return ret;
6645 }
6646
6647 BUG_ON(wc->refs[level - 1] == 0);
6648 *lookup_info = 0;
6649
6650 if (wc->stage == DROP_REFERENCE) {
6651 if (wc->refs[level - 1] > 1) {
6652 if (level == 1 &&
6653 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6654 goto skip;
6655
6656 if (!wc->update_ref ||
6657 generation <= root->root_key.offset)
6658 goto skip;
6659
6660 btrfs_node_key_to_cpu(path->nodes[level], &key,
6661 path->slots[level]);
6662 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6663 if (ret < 0)
6664 goto skip;
6665
6666 wc->stage = UPDATE_BACKREF;
6667 wc->shared_level = level - 1;
6668 }
6669 } else {
6670 if (level == 1 &&
6671 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6672 goto skip;
6673 }
6674
6675 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6676 btrfs_tree_unlock(next);
6677 free_extent_buffer(next);
6678 next = NULL;
6679 *lookup_info = 1;
6680 }
6681
6682 if (!next) {
6683 if (reada && level == 1)
6684 reada_walk_down(trans, root, wc, path);
6685 next = read_tree_block(root, bytenr, blocksize, generation);
6686 if (!next)
6687 return -EIO;
6688 btrfs_tree_lock(next);
6689 btrfs_set_lock_blocking(next);
6690 }
6691
6692 level--;
6693 BUG_ON(level != btrfs_header_level(next));
6694 path->nodes[level] = next;
6695 path->slots[level] = 0;
6696 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6697 wc->level = level;
6698 if (wc->level == 1)
6699 wc->reada_slot = 0;
6700 return 0;
6701 skip:
6702 wc->refs[level - 1] = 0;
6703 wc->flags[level - 1] = 0;
6704 if (wc->stage == DROP_REFERENCE) {
6705 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6706 parent = path->nodes[level]->start;
6707 } else {
6708 BUG_ON(root->root_key.objectid !=
6709 btrfs_header_owner(path->nodes[level]));
6710 parent = 0;
6711 }
6712
6713 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6714 root->root_key.objectid, level - 1, 0, 0);
6715 BUG_ON(ret); /* -ENOMEM */
6716 }
6717 btrfs_tree_unlock(next);
6718 free_extent_buffer(next);
6719 *lookup_info = 1;
6720 return 1;
6721 }
6722
6723 /*
6724 * helper to process tree block while walking up the tree.
6725 *
6726 * when wc->stage == DROP_REFERENCE, this function drops
6727 * reference count on the block.
6728 *
6729 * when wc->stage == UPDATE_BACKREF, this function changes
6730 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6731 * to UPDATE_BACKREF previously while processing the block.
6732 *
6733 * NOTE: return value 1 means we should stop walking up.
6734 */
6735 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6736 struct btrfs_root *root,
6737 struct btrfs_path *path,
6738 struct walk_control *wc)
6739 {
6740 int ret;
6741 int level = wc->level;
6742 struct extent_buffer *eb = path->nodes[level];
6743 u64 parent = 0;
6744
6745 if (wc->stage == UPDATE_BACKREF) {
6746 BUG_ON(wc->shared_level < level);
6747 if (level < wc->shared_level)
6748 goto out;
6749
6750 ret = find_next_key(path, level + 1, &wc->update_progress);
6751 if (ret > 0)
6752 wc->update_ref = 0;
6753
6754 wc->stage = DROP_REFERENCE;
6755 wc->shared_level = -1;
6756 path->slots[level] = 0;
6757
6758 /*
6759 * check reference count again if the block isn't locked.
6760 * we should start walking down the tree again if reference
6761 * count is one.
6762 */
6763 if (!path->locks[level]) {
6764 BUG_ON(level == 0);
6765 btrfs_tree_lock(eb);
6766 btrfs_set_lock_blocking(eb);
6767 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6768
6769 ret = btrfs_lookup_extent_info(trans, root,
6770 eb->start, eb->len,
6771 &wc->refs[level],
6772 &wc->flags[level]);
6773 if (ret < 0) {
6774 btrfs_tree_unlock_rw(eb, path->locks[level]);
6775 path->locks[level] = 0;
6776 return ret;
6777 }
6778 BUG_ON(wc->refs[level] == 0);
6779 if (wc->refs[level] == 1) {
6780 btrfs_tree_unlock_rw(eb, path->locks[level]);
6781 path->locks[level] = 0;
6782 return 1;
6783 }
6784 }
6785 }
6786
6787 /* wc->stage == DROP_REFERENCE */
6788 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6789
6790 if (wc->refs[level] == 1) {
6791 if (level == 0) {
6792 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6793 ret = btrfs_dec_ref(trans, root, eb, 1,
6794 wc->for_reloc);
6795 else
6796 ret = btrfs_dec_ref(trans, root, eb, 0,
6797 wc->for_reloc);
6798 BUG_ON(ret); /* -ENOMEM */
6799 }
6800 /* make block locked assertion in clean_tree_block happy */
6801 if (!path->locks[level] &&
6802 btrfs_header_generation(eb) == trans->transid) {
6803 btrfs_tree_lock(eb);
6804 btrfs_set_lock_blocking(eb);
6805 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6806 }
6807 clean_tree_block(trans, root, eb);
6808 }
6809
6810 if (eb == root->node) {
6811 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6812 parent = eb->start;
6813 else
6814 BUG_ON(root->root_key.objectid !=
6815 btrfs_header_owner(eb));
6816 } else {
6817 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6818 parent = path->nodes[level + 1]->start;
6819 else
6820 BUG_ON(root->root_key.objectid !=
6821 btrfs_header_owner(path->nodes[level + 1]));
6822 }
6823
6824 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6825 out:
6826 wc->refs[level] = 0;
6827 wc->flags[level] = 0;
6828 return 0;
6829 }
6830
6831 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6832 struct btrfs_root *root,
6833 struct btrfs_path *path,
6834 struct walk_control *wc)
6835 {
6836 int level = wc->level;
6837 int lookup_info = 1;
6838 int ret;
6839
6840 while (level >= 0) {
6841 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6842 if (ret > 0)
6843 break;
6844
6845 if (level == 0)
6846 break;
6847
6848 if (path->slots[level] >=
6849 btrfs_header_nritems(path->nodes[level]))
6850 break;
6851
6852 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6853 if (ret > 0) {
6854 path->slots[level]++;
6855 continue;
6856 } else if (ret < 0)
6857 return ret;
6858 level = wc->level;
6859 }
6860 return 0;
6861 }
6862
6863 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6864 struct btrfs_root *root,
6865 struct btrfs_path *path,
6866 struct walk_control *wc, int max_level)
6867 {
6868 int level = wc->level;
6869 int ret;
6870
6871 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6872 while (level < max_level && path->nodes[level]) {
6873 wc->level = level;
6874 if (path->slots[level] + 1 <
6875 btrfs_header_nritems(path->nodes[level])) {
6876 path->slots[level]++;
6877 return 0;
6878 } else {
6879 ret = walk_up_proc(trans, root, path, wc);
6880 if (ret > 0)
6881 return 0;
6882
6883 if (path->locks[level]) {
6884 btrfs_tree_unlock_rw(path->nodes[level],
6885 path->locks[level]);
6886 path->locks[level] = 0;
6887 }
6888 free_extent_buffer(path->nodes[level]);
6889 path->nodes[level] = NULL;
6890 level++;
6891 }
6892 }
6893 return 1;
6894 }
6895
6896 /*
6897 * drop a subvolume tree.
6898 *
6899 * this function traverses the tree freeing any blocks that only
6900 * referenced by the tree.
6901 *
6902 * when a shared tree block is found. this function decreases its
6903 * reference count by one. if update_ref is true, this function
6904 * also make sure backrefs for the shared block and all lower level
6905 * blocks are properly updated.
6906 */
6907 int btrfs_drop_snapshot(struct btrfs_root *root,
6908 struct btrfs_block_rsv *block_rsv, int update_ref,
6909 int for_reloc)
6910 {
6911 struct btrfs_path *path;
6912 struct btrfs_trans_handle *trans;
6913 struct btrfs_root *tree_root = root->fs_info->tree_root;
6914 struct btrfs_root_item *root_item = &root->root_item;
6915 struct walk_control *wc;
6916 struct btrfs_key key;
6917 int err = 0;
6918 int ret;
6919 int level;
6920
6921 path = btrfs_alloc_path();
6922 if (!path) {
6923 err = -ENOMEM;
6924 goto out;
6925 }
6926
6927 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6928 if (!wc) {
6929 btrfs_free_path(path);
6930 err = -ENOMEM;
6931 goto out;
6932 }
6933
6934 trans = btrfs_start_transaction(tree_root, 0);
6935 if (IS_ERR(trans)) {
6936 err = PTR_ERR(trans);
6937 goto out_free;
6938 }
6939
6940 if (block_rsv)
6941 trans->block_rsv = block_rsv;
6942
6943 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6944 level = btrfs_header_level(root->node);
6945 path->nodes[level] = btrfs_lock_root_node(root);
6946 btrfs_set_lock_blocking(path->nodes[level]);
6947 path->slots[level] = 0;
6948 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6949 memset(&wc->update_progress, 0,
6950 sizeof(wc->update_progress));
6951 } else {
6952 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6953 memcpy(&wc->update_progress, &key,
6954 sizeof(wc->update_progress));
6955
6956 level = root_item->drop_level;
6957 BUG_ON(level == 0);
6958 path->lowest_level = level;
6959 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6960 path->lowest_level = 0;
6961 if (ret < 0) {
6962 err = ret;
6963 goto out_end_trans;
6964 }
6965 WARN_ON(ret > 0);
6966
6967 /*
6968 * unlock our path, this is safe because only this
6969 * function is allowed to delete this snapshot
6970 */
6971 btrfs_unlock_up_safe(path, 0);
6972
6973 level = btrfs_header_level(root->node);
6974 while (1) {
6975 btrfs_tree_lock(path->nodes[level]);
6976 btrfs_set_lock_blocking(path->nodes[level]);
6977
6978 ret = btrfs_lookup_extent_info(trans, root,
6979 path->nodes[level]->start,
6980 path->nodes[level]->len,
6981 &wc->refs[level],
6982 &wc->flags[level]);
6983 if (ret < 0) {
6984 err = ret;
6985 goto out_end_trans;
6986 }
6987 BUG_ON(wc->refs[level] == 0);
6988
6989 if (level == root_item->drop_level)
6990 break;
6991
6992 btrfs_tree_unlock(path->nodes[level]);
6993 WARN_ON(wc->refs[level] != 1);
6994 level--;
6995 }
6996 }
6997
6998 wc->level = level;
6999 wc->shared_level = -1;
7000 wc->stage = DROP_REFERENCE;
7001 wc->update_ref = update_ref;
7002 wc->keep_locks = 0;
7003 wc->for_reloc = for_reloc;
7004 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7005
7006 while (1) {
7007 ret = walk_down_tree(trans, root, path, wc);
7008 if (ret < 0) {
7009 err = ret;
7010 break;
7011 }
7012
7013 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7014 if (ret < 0) {
7015 err = ret;
7016 break;
7017 }
7018
7019 if (ret > 0) {
7020 BUG_ON(wc->stage != DROP_REFERENCE);
7021 break;
7022 }
7023
7024 if (wc->stage == DROP_REFERENCE) {
7025 level = wc->level;
7026 btrfs_node_key(path->nodes[level],
7027 &root_item->drop_progress,
7028 path->slots[level]);
7029 root_item->drop_level = level;
7030 }
7031
7032 BUG_ON(wc->level == 0);
7033 if (btrfs_should_end_transaction(trans, tree_root)) {
7034 ret = btrfs_update_root(trans, tree_root,
7035 &root->root_key,
7036 root_item);
7037 if (ret) {
7038 btrfs_abort_transaction(trans, tree_root, ret);
7039 err = ret;
7040 goto out_end_trans;
7041 }
7042
7043 btrfs_end_transaction_throttle(trans, tree_root);
7044 trans = btrfs_start_transaction(tree_root, 0);
7045 if (IS_ERR(trans)) {
7046 err = PTR_ERR(trans);
7047 goto out_free;
7048 }
7049 if (block_rsv)
7050 trans->block_rsv = block_rsv;
7051 }
7052 }
7053 btrfs_release_path(path);
7054 if (err)
7055 goto out_end_trans;
7056
7057 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7058 if (ret) {
7059 btrfs_abort_transaction(trans, tree_root, ret);
7060 goto out_end_trans;
7061 }
7062
7063 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7064 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7065 NULL, NULL);
7066 if (ret < 0) {
7067 btrfs_abort_transaction(trans, tree_root, ret);
7068 err = ret;
7069 goto out_end_trans;
7070 } else if (ret > 0) {
7071 /* if we fail to delete the orphan item this time
7072 * around, it'll get picked up the next time.
7073 *
7074 * The most common failure here is just -ENOENT.
7075 */
7076 btrfs_del_orphan_item(trans, tree_root,
7077 root->root_key.objectid);
7078 }
7079 }
7080
7081 if (root->in_radix) {
7082 btrfs_free_fs_root(tree_root->fs_info, root);
7083 } else {
7084 free_extent_buffer(root->node);
7085 free_extent_buffer(root->commit_root);
7086 kfree(root);
7087 }
7088 out_end_trans:
7089 btrfs_end_transaction_throttle(trans, tree_root);
7090 out_free:
7091 kfree(wc);
7092 btrfs_free_path(path);
7093 out:
7094 if (err)
7095 btrfs_std_error(root->fs_info, err);
7096 return err;
7097 }
7098
7099 /*
7100 * drop subtree rooted at tree block 'node'.
7101 *
7102 * NOTE: this function will unlock and release tree block 'node'
7103 * only used by relocation code
7104 */
7105 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7106 struct btrfs_root *root,
7107 struct extent_buffer *node,
7108 struct extent_buffer *parent)
7109 {
7110 struct btrfs_path *path;
7111 struct walk_control *wc;
7112 int level;
7113 int parent_level;
7114 int ret = 0;
7115 int wret;
7116
7117 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7118
7119 path = btrfs_alloc_path();
7120 if (!path)
7121 return -ENOMEM;
7122
7123 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7124 if (!wc) {
7125 btrfs_free_path(path);
7126 return -ENOMEM;
7127 }
7128
7129 btrfs_assert_tree_locked(parent);
7130 parent_level = btrfs_header_level(parent);
7131 extent_buffer_get(parent);
7132 path->nodes[parent_level] = parent;
7133 path->slots[parent_level] = btrfs_header_nritems(parent);
7134
7135 btrfs_assert_tree_locked(node);
7136 level = btrfs_header_level(node);
7137 path->nodes[level] = node;
7138 path->slots[level] = 0;
7139 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7140
7141 wc->refs[parent_level] = 1;
7142 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7143 wc->level = level;
7144 wc->shared_level = -1;
7145 wc->stage = DROP_REFERENCE;
7146 wc->update_ref = 0;
7147 wc->keep_locks = 1;
7148 wc->for_reloc = 1;
7149 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7150
7151 while (1) {
7152 wret = walk_down_tree(trans, root, path, wc);
7153 if (wret < 0) {
7154 ret = wret;
7155 break;
7156 }
7157
7158 wret = walk_up_tree(trans, root, path, wc, parent_level);
7159 if (wret < 0)
7160 ret = wret;
7161 if (wret != 0)
7162 break;
7163 }
7164
7165 kfree(wc);
7166 btrfs_free_path(path);
7167 return ret;
7168 }
7169
7170 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7171 {
7172 u64 num_devices;
7173 u64 stripped;
7174
7175 /*
7176 * if restripe for this chunk_type is on pick target profile and
7177 * return, otherwise do the usual balance
7178 */
7179 stripped = get_restripe_target(root->fs_info, flags);
7180 if (stripped)
7181 return extended_to_chunk(stripped);
7182
7183 /*
7184 * we add in the count of missing devices because we want
7185 * to make sure that any RAID levels on a degraded FS
7186 * continue to be honored.
7187 */
7188 num_devices = root->fs_info->fs_devices->rw_devices +
7189 root->fs_info->fs_devices->missing_devices;
7190
7191 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7192 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7193
7194 if (num_devices == 1) {
7195 stripped |= BTRFS_BLOCK_GROUP_DUP;
7196 stripped = flags & ~stripped;
7197
7198 /* turn raid0 into single device chunks */
7199 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7200 return stripped;
7201
7202 /* turn mirroring into duplication */
7203 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7204 BTRFS_BLOCK_GROUP_RAID10))
7205 return stripped | BTRFS_BLOCK_GROUP_DUP;
7206 } else {
7207 /* they already had raid on here, just return */
7208 if (flags & stripped)
7209 return flags;
7210
7211 stripped |= BTRFS_BLOCK_GROUP_DUP;
7212 stripped = flags & ~stripped;
7213
7214 /* switch duplicated blocks with raid1 */
7215 if (flags & BTRFS_BLOCK_GROUP_DUP)
7216 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7217
7218 /* this is drive concat, leave it alone */
7219 }
7220
7221 return flags;
7222 }
7223
7224 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7225 {
7226 struct btrfs_space_info *sinfo = cache->space_info;
7227 u64 num_bytes;
7228 u64 min_allocable_bytes;
7229 int ret = -ENOSPC;
7230
7231
7232 /*
7233 * We need some metadata space and system metadata space for
7234 * allocating chunks in some corner cases until we force to set
7235 * it to be readonly.
7236 */
7237 if ((sinfo->flags &
7238 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7239 !force)
7240 min_allocable_bytes = 1 * 1024 * 1024;
7241 else
7242 min_allocable_bytes = 0;
7243
7244 spin_lock(&sinfo->lock);
7245 spin_lock(&cache->lock);
7246
7247 if (cache->ro) {
7248 ret = 0;
7249 goto out;
7250 }
7251
7252 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7253 cache->bytes_super - btrfs_block_group_used(&cache->item);
7254
7255 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7256 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7257 min_allocable_bytes <= sinfo->total_bytes) {
7258 sinfo->bytes_readonly += num_bytes;
7259 cache->ro = 1;
7260 ret = 0;
7261 }
7262 out:
7263 spin_unlock(&cache->lock);
7264 spin_unlock(&sinfo->lock);
7265 return ret;
7266 }
7267
7268 int btrfs_set_block_group_ro(struct btrfs_root *root,
7269 struct btrfs_block_group_cache *cache)
7270
7271 {
7272 struct btrfs_trans_handle *trans;
7273 u64 alloc_flags;
7274 int ret;
7275
7276 BUG_ON(cache->ro);
7277
7278 trans = btrfs_join_transaction(root);
7279 if (IS_ERR(trans))
7280 return PTR_ERR(trans);
7281
7282 alloc_flags = update_block_group_flags(root, cache->flags);
7283 if (alloc_flags != cache->flags) {
7284 ret = do_chunk_alloc(trans, root, alloc_flags,
7285 CHUNK_ALLOC_FORCE);
7286 if (ret < 0)
7287 goto out;
7288 }
7289
7290 ret = set_block_group_ro(cache, 0);
7291 if (!ret)
7292 goto out;
7293 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7294 ret = do_chunk_alloc(trans, root, alloc_flags,
7295 CHUNK_ALLOC_FORCE);
7296 if (ret < 0)
7297 goto out;
7298 ret = set_block_group_ro(cache, 0);
7299 out:
7300 btrfs_end_transaction(trans, root);
7301 return ret;
7302 }
7303
7304 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7305 struct btrfs_root *root, u64 type)
7306 {
7307 u64 alloc_flags = get_alloc_profile(root, type);
7308 return do_chunk_alloc(trans, root, alloc_flags,
7309 CHUNK_ALLOC_FORCE);
7310 }
7311
7312 /*
7313 * helper to account the unused space of all the readonly block group in the
7314 * list. takes mirrors into account.
7315 */
7316 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7317 {
7318 struct btrfs_block_group_cache *block_group;
7319 u64 free_bytes = 0;
7320 int factor;
7321
7322 list_for_each_entry(block_group, groups_list, list) {
7323 spin_lock(&block_group->lock);
7324
7325 if (!block_group->ro) {
7326 spin_unlock(&block_group->lock);
7327 continue;
7328 }
7329
7330 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7331 BTRFS_BLOCK_GROUP_RAID10 |
7332 BTRFS_BLOCK_GROUP_DUP))
7333 factor = 2;
7334 else
7335 factor = 1;
7336
7337 free_bytes += (block_group->key.offset -
7338 btrfs_block_group_used(&block_group->item)) *
7339 factor;
7340
7341 spin_unlock(&block_group->lock);
7342 }
7343
7344 return free_bytes;
7345 }
7346
7347 /*
7348 * helper to account the unused space of all the readonly block group in the
7349 * space_info. takes mirrors into account.
7350 */
7351 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7352 {
7353 int i;
7354 u64 free_bytes = 0;
7355
7356 spin_lock(&sinfo->lock);
7357
7358 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7359 if (!list_empty(&sinfo->block_groups[i]))
7360 free_bytes += __btrfs_get_ro_block_group_free_space(
7361 &sinfo->block_groups[i]);
7362
7363 spin_unlock(&sinfo->lock);
7364
7365 return free_bytes;
7366 }
7367
7368 void btrfs_set_block_group_rw(struct btrfs_root *root,
7369 struct btrfs_block_group_cache *cache)
7370 {
7371 struct btrfs_space_info *sinfo = cache->space_info;
7372 u64 num_bytes;
7373
7374 BUG_ON(!cache->ro);
7375
7376 spin_lock(&sinfo->lock);
7377 spin_lock(&cache->lock);
7378 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7379 cache->bytes_super - btrfs_block_group_used(&cache->item);
7380 sinfo->bytes_readonly -= num_bytes;
7381 cache->ro = 0;
7382 spin_unlock(&cache->lock);
7383 spin_unlock(&sinfo->lock);
7384 }
7385
7386 /*
7387 * checks to see if its even possible to relocate this block group.
7388 *
7389 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7390 * ok to go ahead and try.
7391 */
7392 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7393 {
7394 struct btrfs_block_group_cache *block_group;
7395 struct btrfs_space_info *space_info;
7396 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7397 struct btrfs_device *device;
7398 u64 min_free;
7399 u64 dev_min = 1;
7400 u64 dev_nr = 0;
7401 u64 target;
7402 int index;
7403 int full = 0;
7404 int ret = 0;
7405
7406 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7407
7408 /* odd, couldn't find the block group, leave it alone */
7409 if (!block_group)
7410 return -1;
7411
7412 min_free = btrfs_block_group_used(&block_group->item);
7413
7414 /* no bytes used, we're good */
7415 if (!min_free)
7416 goto out;
7417
7418 space_info = block_group->space_info;
7419 spin_lock(&space_info->lock);
7420
7421 full = space_info->full;
7422
7423 /*
7424 * if this is the last block group we have in this space, we can't
7425 * relocate it unless we're able to allocate a new chunk below.
7426 *
7427 * Otherwise, we need to make sure we have room in the space to handle
7428 * all of the extents from this block group. If we can, we're good
7429 */
7430 if ((space_info->total_bytes != block_group->key.offset) &&
7431 (space_info->bytes_used + space_info->bytes_reserved +
7432 space_info->bytes_pinned + space_info->bytes_readonly +
7433 min_free < space_info->total_bytes)) {
7434 spin_unlock(&space_info->lock);
7435 goto out;
7436 }
7437 spin_unlock(&space_info->lock);
7438
7439 /*
7440 * ok we don't have enough space, but maybe we have free space on our
7441 * devices to allocate new chunks for relocation, so loop through our
7442 * alloc devices and guess if we have enough space. if this block
7443 * group is going to be restriped, run checks against the target
7444 * profile instead of the current one.
7445 */
7446 ret = -1;
7447
7448 /*
7449 * index:
7450 * 0: raid10
7451 * 1: raid1
7452 * 2: dup
7453 * 3: raid0
7454 * 4: single
7455 */
7456 target = get_restripe_target(root->fs_info, block_group->flags);
7457 if (target) {
7458 index = __get_raid_index(extended_to_chunk(target));
7459 } else {
7460 /*
7461 * this is just a balance, so if we were marked as full
7462 * we know there is no space for a new chunk
7463 */
7464 if (full)
7465 goto out;
7466
7467 index = get_block_group_index(block_group);
7468 }
7469
7470 if (index == 0) {
7471 dev_min = 4;
7472 /* Divide by 2 */
7473 min_free >>= 1;
7474 } else if (index == 1) {
7475 dev_min = 2;
7476 } else if (index == 2) {
7477 /* Multiply by 2 */
7478 min_free <<= 1;
7479 } else if (index == 3) {
7480 dev_min = fs_devices->rw_devices;
7481 do_div(min_free, dev_min);
7482 }
7483
7484 mutex_lock(&root->fs_info->chunk_mutex);
7485 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7486 u64 dev_offset;
7487
7488 /*
7489 * check to make sure we can actually find a chunk with enough
7490 * space to fit our block group in.
7491 */
7492 if (device->total_bytes > device->bytes_used + min_free &&
7493 !device->is_tgtdev_for_dev_replace) {
7494 ret = find_free_dev_extent(device, min_free,
7495 &dev_offset, NULL);
7496 if (!ret)
7497 dev_nr++;
7498
7499 if (dev_nr >= dev_min)
7500 break;
7501
7502 ret = -1;
7503 }
7504 }
7505 mutex_unlock(&root->fs_info->chunk_mutex);
7506 out:
7507 btrfs_put_block_group(block_group);
7508 return ret;
7509 }
7510
7511 static int find_first_block_group(struct btrfs_root *root,
7512 struct btrfs_path *path, struct btrfs_key *key)
7513 {
7514 int ret = 0;
7515 struct btrfs_key found_key;
7516 struct extent_buffer *leaf;
7517 int slot;
7518
7519 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7520 if (ret < 0)
7521 goto out;
7522
7523 while (1) {
7524 slot = path->slots[0];
7525 leaf = path->nodes[0];
7526 if (slot >= btrfs_header_nritems(leaf)) {
7527 ret = btrfs_next_leaf(root, path);
7528 if (ret == 0)
7529 continue;
7530 if (ret < 0)
7531 goto out;
7532 break;
7533 }
7534 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7535
7536 if (found_key.objectid >= key->objectid &&
7537 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7538 ret = 0;
7539 goto out;
7540 }
7541 path->slots[0]++;
7542 }
7543 out:
7544 return ret;
7545 }
7546
7547 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7548 {
7549 struct btrfs_block_group_cache *block_group;
7550 u64 last = 0;
7551
7552 while (1) {
7553 struct inode *inode;
7554
7555 block_group = btrfs_lookup_first_block_group(info, last);
7556 while (block_group) {
7557 spin_lock(&block_group->lock);
7558 if (block_group->iref)
7559 break;
7560 spin_unlock(&block_group->lock);
7561 block_group = next_block_group(info->tree_root,
7562 block_group);
7563 }
7564 if (!block_group) {
7565 if (last == 0)
7566 break;
7567 last = 0;
7568 continue;
7569 }
7570
7571 inode = block_group->inode;
7572 block_group->iref = 0;
7573 block_group->inode = NULL;
7574 spin_unlock(&block_group->lock);
7575 iput(inode);
7576 last = block_group->key.objectid + block_group->key.offset;
7577 btrfs_put_block_group(block_group);
7578 }
7579 }
7580
7581 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7582 {
7583 struct btrfs_block_group_cache *block_group;
7584 struct btrfs_space_info *space_info;
7585 struct btrfs_caching_control *caching_ctl;
7586 struct rb_node *n;
7587
7588 down_write(&info->extent_commit_sem);
7589 while (!list_empty(&info->caching_block_groups)) {
7590 caching_ctl = list_entry(info->caching_block_groups.next,
7591 struct btrfs_caching_control, list);
7592 list_del(&caching_ctl->list);
7593 put_caching_control(caching_ctl);
7594 }
7595 up_write(&info->extent_commit_sem);
7596
7597 spin_lock(&info->block_group_cache_lock);
7598 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7599 block_group = rb_entry(n, struct btrfs_block_group_cache,
7600 cache_node);
7601 rb_erase(&block_group->cache_node,
7602 &info->block_group_cache_tree);
7603 spin_unlock(&info->block_group_cache_lock);
7604
7605 down_write(&block_group->space_info->groups_sem);
7606 list_del(&block_group->list);
7607 up_write(&block_group->space_info->groups_sem);
7608
7609 if (block_group->cached == BTRFS_CACHE_STARTED)
7610 wait_block_group_cache_done(block_group);
7611
7612 /*
7613 * We haven't cached this block group, which means we could
7614 * possibly have excluded extents on this block group.
7615 */
7616 if (block_group->cached == BTRFS_CACHE_NO)
7617 free_excluded_extents(info->extent_root, block_group);
7618
7619 btrfs_remove_free_space_cache(block_group);
7620 btrfs_put_block_group(block_group);
7621
7622 spin_lock(&info->block_group_cache_lock);
7623 }
7624 spin_unlock(&info->block_group_cache_lock);
7625
7626 /* now that all the block groups are freed, go through and
7627 * free all the space_info structs. This is only called during
7628 * the final stages of unmount, and so we know nobody is
7629 * using them. We call synchronize_rcu() once before we start,
7630 * just to be on the safe side.
7631 */
7632 synchronize_rcu();
7633
7634 release_global_block_rsv(info);
7635
7636 while(!list_empty(&info->space_info)) {
7637 space_info = list_entry(info->space_info.next,
7638 struct btrfs_space_info,
7639 list);
7640 if (space_info->bytes_pinned > 0 ||
7641 space_info->bytes_reserved > 0 ||
7642 space_info->bytes_may_use > 0) {
7643 WARN_ON(1);
7644 dump_space_info(space_info, 0, 0);
7645 }
7646 list_del(&space_info->list);
7647 kfree(space_info);
7648 }
7649 return 0;
7650 }
7651
7652 static void __link_block_group(struct btrfs_space_info *space_info,
7653 struct btrfs_block_group_cache *cache)
7654 {
7655 int index = get_block_group_index(cache);
7656
7657 down_write(&space_info->groups_sem);
7658 list_add_tail(&cache->list, &space_info->block_groups[index]);
7659 up_write(&space_info->groups_sem);
7660 }
7661
7662 int btrfs_read_block_groups(struct btrfs_root *root)
7663 {
7664 struct btrfs_path *path;
7665 int ret;
7666 struct btrfs_block_group_cache *cache;
7667 struct btrfs_fs_info *info = root->fs_info;
7668 struct btrfs_space_info *space_info;
7669 struct btrfs_key key;
7670 struct btrfs_key found_key;
7671 struct extent_buffer *leaf;
7672 int need_clear = 0;
7673 u64 cache_gen;
7674
7675 root = info->extent_root;
7676 key.objectid = 0;
7677 key.offset = 0;
7678 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7679 path = btrfs_alloc_path();
7680 if (!path)
7681 return -ENOMEM;
7682 path->reada = 1;
7683
7684 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7685 if (btrfs_test_opt(root, SPACE_CACHE) &&
7686 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7687 need_clear = 1;
7688 if (btrfs_test_opt(root, CLEAR_CACHE))
7689 need_clear = 1;
7690
7691 while (1) {
7692 ret = find_first_block_group(root, path, &key);
7693 if (ret > 0)
7694 break;
7695 if (ret != 0)
7696 goto error;
7697 leaf = path->nodes[0];
7698 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7699 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7700 if (!cache) {
7701 ret = -ENOMEM;
7702 goto error;
7703 }
7704 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7705 GFP_NOFS);
7706 if (!cache->free_space_ctl) {
7707 kfree(cache);
7708 ret = -ENOMEM;
7709 goto error;
7710 }
7711
7712 atomic_set(&cache->count, 1);
7713 spin_lock_init(&cache->lock);
7714 cache->fs_info = info;
7715 INIT_LIST_HEAD(&cache->list);
7716 INIT_LIST_HEAD(&cache->cluster_list);
7717
7718 if (need_clear) {
7719 /*
7720 * When we mount with old space cache, we need to
7721 * set BTRFS_DC_CLEAR and set dirty flag.
7722 *
7723 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7724 * truncate the old free space cache inode and
7725 * setup a new one.
7726 * b) Setting 'dirty flag' makes sure that we flush
7727 * the new space cache info onto disk.
7728 */
7729 cache->disk_cache_state = BTRFS_DC_CLEAR;
7730 if (btrfs_test_opt(root, SPACE_CACHE))
7731 cache->dirty = 1;
7732 }
7733
7734 read_extent_buffer(leaf, &cache->item,
7735 btrfs_item_ptr_offset(leaf, path->slots[0]),
7736 sizeof(cache->item));
7737 memcpy(&cache->key, &found_key, sizeof(found_key));
7738
7739 key.objectid = found_key.objectid + found_key.offset;
7740 btrfs_release_path(path);
7741 cache->flags = btrfs_block_group_flags(&cache->item);
7742 cache->sectorsize = root->sectorsize;
7743
7744 btrfs_init_free_space_ctl(cache);
7745
7746 /*
7747 * We need to exclude the super stripes now so that the space
7748 * info has super bytes accounted for, otherwise we'll think
7749 * we have more space than we actually do.
7750 */
7751 exclude_super_stripes(root, cache);
7752
7753 /*
7754 * check for two cases, either we are full, and therefore
7755 * don't need to bother with the caching work since we won't
7756 * find any space, or we are empty, and we can just add all
7757 * the space in and be done with it. This saves us _alot_ of
7758 * time, particularly in the full case.
7759 */
7760 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7761 cache->last_byte_to_unpin = (u64)-1;
7762 cache->cached = BTRFS_CACHE_FINISHED;
7763 free_excluded_extents(root, cache);
7764 } else if (btrfs_block_group_used(&cache->item) == 0) {
7765 cache->last_byte_to_unpin = (u64)-1;
7766 cache->cached = BTRFS_CACHE_FINISHED;
7767 add_new_free_space(cache, root->fs_info,
7768 found_key.objectid,
7769 found_key.objectid +
7770 found_key.offset);
7771 free_excluded_extents(root, cache);
7772 }
7773
7774 ret = update_space_info(info, cache->flags, found_key.offset,
7775 btrfs_block_group_used(&cache->item),
7776 &space_info);
7777 BUG_ON(ret); /* -ENOMEM */
7778 cache->space_info = space_info;
7779 spin_lock(&cache->space_info->lock);
7780 cache->space_info->bytes_readonly += cache->bytes_super;
7781 spin_unlock(&cache->space_info->lock);
7782
7783 __link_block_group(space_info, cache);
7784
7785 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7786 BUG_ON(ret); /* Logic error */
7787
7788 set_avail_alloc_bits(root->fs_info, cache->flags);
7789 if (btrfs_chunk_readonly(root, cache->key.objectid))
7790 set_block_group_ro(cache, 1);
7791 }
7792
7793 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7794 if (!(get_alloc_profile(root, space_info->flags) &
7795 (BTRFS_BLOCK_GROUP_RAID10 |
7796 BTRFS_BLOCK_GROUP_RAID1 |
7797 BTRFS_BLOCK_GROUP_DUP)))
7798 continue;
7799 /*
7800 * avoid allocating from un-mirrored block group if there are
7801 * mirrored block groups.
7802 */
7803 list_for_each_entry(cache, &space_info->block_groups[3], list)
7804 set_block_group_ro(cache, 1);
7805 list_for_each_entry(cache, &space_info->block_groups[4], list)
7806 set_block_group_ro(cache, 1);
7807 }
7808
7809 init_global_block_rsv(info);
7810 ret = 0;
7811 error:
7812 btrfs_free_path(path);
7813 return ret;
7814 }
7815
7816 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
7817 struct btrfs_root *root)
7818 {
7819 struct btrfs_block_group_cache *block_group, *tmp;
7820 struct btrfs_root *extent_root = root->fs_info->extent_root;
7821 struct btrfs_block_group_item item;
7822 struct btrfs_key key;
7823 int ret = 0;
7824
7825 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
7826 new_bg_list) {
7827 list_del_init(&block_group->new_bg_list);
7828
7829 if (ret)
7830 continue;
7831
7832 spin_lock(&block_group->lock);
7833 memcpy(&item, &block_group->item, sizeof(item));
7834 memcpy(&key, &block_group->key, sizeof(key));
7835 spin_unlock(&block_group->lock);
7836
7837 ret = btrfs_insert_item(trans, extent_root, &key, &item,
7838 sizeof(item));
7839 if (ret)
7840 btrfs_abort_transaction(trans, extent_root, ret);
7841 }
7842 }
7843
7844 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7845 struct btrfs_root *root, u64 bytes_used,
7846 u64 type, u64 chunk_objectid, u64 chunk_offset,
7847 u64 size)
7848 {
7849 int ret;
7850 struct btrfs_root *extent_root;
7851 struct btrfs_block_group_cache *cache;
7852
7853 extent_root = root->fs_info->extent_root;
7854
7855 root->fs_info->last_trans_log_full_commit = trans->transid;
7856
7857 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7858 if (!cache)
7859 return -ENOMEM;
7860 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7861 GFP_NOFS);
7862 if (!cache->free_space_ctl) {
7863 kfree(cache);
7864 return -ENOMEM;
7865 }
7866
7867 cache->key.objectid = chunk_offset;
7868 cache->key.offset = size;
7869 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7870 cache->sectorsize = root->sectorsize;
7871 cache->fs_info = root->fs_info;
7872
7873 atomic_set(&cache->count, 1);
7874 spin_lock_init(&cache->lock);
7875 INIT_LIST_HEAD(&cache->list);
7876 INIT_LIST_HEAD(&cache->cluster_list);
7877 INIT_LIST_HEAD(&cache->new_bg_list);
7878
7879 btrfs_init_free_space_ctl(cache);
7880
7881 btrfs_set_block_group_used(&cache->item, bytes_used);
7882 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7883 cache->flags = type;
7884 btrfs_set_block_group_flags(&cache->item, type);
7885
7886 cache->last_byte_to_unpin = (u64)-1;
7887 cache->cached = BTRFS_CACHE_FINISHED;
7888 exclude_super_stripes(root, cache);
7889
7890 add_new_free_space(cache, root->fs_info, chunk_offset,
7891 chunk_offset + size);
7892
7893 free_excluded_extents(root, cache);
7894
7895 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7896 &cache->space_info);
7897 BUG_ON(ret); /* -ENOMEM */
7898 update_global_block_rsv(root->fs_info);
7899
7900 spin_lock(&cache->space_info->lock);
7901 cache->space_info->bytes_readonly += cache->bytes_super;
7902 spin_unlock(&cache->space_info->lock);
7903
7904 __link_block_group(cache->space_info, cache);
7905
7906 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7907 BUG_ON(ret); /* Logic error */
7908
7909 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
7910
7911 set_avail_alloc_bits(extent_root->fs_info, type);
7912
7913 return 0;
7914 }
7915
7916 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7917 {
7918 u64 extra_flags = chunk_to_extended(flags) &
7919 BTRFS_EXTENDED_PROFILE_MASK;
7920
7921 if (flags & BTRFS_BLOCK_GROUP_DATA)
7922 fs_info->avail_data_alloc_bits &= ~extra_flags;
7923 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7924 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7925 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7926 fs_info->avail_system_alloc_bits &= ~extra_flags;
7927 }
7928
7929 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7930 struct btrfs_root *root, u64 group_start)
7931 {
7932 struct btrfs_path *path;
7933 struct btrfs_block_group_cache *block_group;
7934 struct btrfs_free_cluster *cluster;
7935 struct btrfs_root *tree_root = root->fs_info->tree_root;
7936 struct btrfs_key key;
7937 struct inode *inode;
7938 int ret;
7939 int index;
7940 int factor;
7941
7942 root = root->fs_info->extent_root;
7943
7944 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7945 BUG_ON(!block_group);
7946 BUG_ON(!block_group->ro);
7947
7948 /*
7949 * Free the reserved super bytes from this block group before
7950 * remove it.
7951 */
7952 free_excluded_extents(root, block_group);
7953
7954 memcpy(&key, &block_group->key, sizeof(key));
7955 index = get_block_group_index(block_group);
7956 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7957 BTRFS_BLOCK_GROUP_RAID1 |
7958 BTRFS_BLOCK_GROUP_RAID10))
7959 factor = 2;
7960 else
7961 factor = 1;
7962
7963 /* make sure this block group isn't part of an allocation cluster */
7964 cluster = &root->fs_info->data_alloc_cluster;
7965 spin_lock(&cluster->refill_lock);
7966 btrfs_return_cluster_to_free_space(block_group, cluster);
7967 spin_unlock(&cluster->refill_lock);
7968
7969 /*
7970 * make sure this block group isn't part of a metadata
7971 * allocation cluster
7972 */
7973 cluster = &root->fs_info->meta_alloc_cluster;
7974 spin_lock(&cluster->refill_lock);
7975 btrfs_return_cluster_to_free_space(block_group, cluster);
7976 spin_unlock(&cluster->refill_lock);
7977
7978 path = btrfs_alloc_path();
7979 if (!path) {
7980 ret = -ENOMEM;
7981 goto out;
7982 }
7983
7984 inode = lookup_free_space_inode(tree_root, block_group, path);
7985 if (!IS_ERR(inode)) {
7986 ret = btrfs_orphan_add(trans, inode);
7987 if (ret) {
7988 btrfs_add_delayed_iput(inode);
7989 goto out;
7990 }
7991 clear_nlink(inode);
7992 /* One for the block groups ref */
7993 spin_lock(&block_group->lock);
7994 if (block_group->iref) {
7995 block_group->iref = 0;
7996 block_group->inode = NULL;
7997 spin_unlock(&block_group->lock);
7998 iput(inode);
7999 } else {
8000 spin_unlock(&block_group->lock);
8001 }
8002 /* One for our lookup ref */
8003 btrfs_add_delayed_iput(inode);
8004 }
8005
8006 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8007 key.offset = block_group->key.objectid;
8008 key.type = 0;
8009
8010 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8011 if (ret < 0)
8012 goto out;
8013 if (ret > 0)
8014 btrfs_release_path(path);
8015 if (ret == 0) {
8016 ret = btrfs_del_item(trans, tree_root, path);
8017 if (ret)
8018 goto out;
8019 btrfs_release_path(path);
8020 }
8021
8022 spin_lock(&root->fs_info->block_group_cache_lock);
8023 rb_erase(&block_group->cache_node,
8024 &root->fs_info->block_group_cache_tree);
8025 spin_unlock(&root->fs_info->block_group_cache_lock);
8026
8027 down_write(&block_group->space_info->groups_sem);
8028 /*
8029 * we must use list_del_init so people can check to see if they
8030 * are still on the list after taking the semaphore
8031 */
8032 list_del_init(&block_group->list);
8033 if (list_empty(&block_group->space_info->block_groups[index]))
8034 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8035 up_write(&block_group->space_info->groups_sem);
8036
8037 if (block_group->cached == BTRFS_CACHE_STARTED)
8038 wait_block_group_cache_done(block_group);
8039
8040 btrfs_remove_free_space_cache(block_group);
8041
8042 spin_lock(&block_group->space_info->lock);
8043 block_group->space_info->total_bytes -= block_group->key.offset;
8044 block_group->space_info->bytes_readonly -= block_group->key.offset;
8045 block_group->space_info->disk_total -= block_group->key.offset * factor;
8046 spin_unlock(&block_group->space_info->lock);
8047
8048 memcpy(&key, &block_group->key, sizeof(key));
8049
8050 btrfs_clear_space_info_full(root->fs_info);
8051
8052 btrfs_put_block_group(block_group);
8053 btrfs_put_block_group(block_group);
8054
8055 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8056 if (ret > 0)
8057 ret = -EIO;
8058 if (ret < 0)
8059 goto out;
8060
8061 ret = btrfs_del_item(trans, root, path);
8062 out:
8063 btrfs_free_path(path);
8064 return ret;
8065 }
8066
8067 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8068 {
8069 struct btrfs_space_info *space_info;
8070 struct btrfs_super_block *disk_super;
8071 u64 features;
8072 u64 flags;
8073 int mixed = 0;
8074 int ret;
8075
8076 disk_super = fs_info->super_copy;
8077 if (!btrfs_super_root(disk_super))
8078 return 1;
8079
8080 features = btrfs_super_incompat_flags(disk_super);
8081 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8082 mixed = 1;
8083
8084 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8085 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8086 if (ret)
8087 goto out;
8088
8089 if (mixed) {
8090 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8091 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8092 } else {
8093 flags = BTRFS_BLOCK_GROUP_METADATA;
8094 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8095 if (ret)
8096 goto out;
8097
8098 flags = BTRFS_BLOCK_GROUP_DATA;
8099 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8100 }
8101 out:
8102 return ret;
8103 }
8104
8105 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8106 {
8107 return unpin_extent_range(root, start, end);
8108 }
8109
8110 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8111 u64 num_bytes, u64 *actual_bytes)
8112 {
8113 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8114 }
8115
8116 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8117 {
8118 struct btrfs_fs_info *fs_info = root->fs_info;
8119 struct btrfs_block_group_cache *cache = NULL;
8120 u64 group_trimmed;
8121 u64 start;
8122 u64 end;
8123 u64 trimmed = 0;
8124 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8125 int ret = 0;
8126
8127 /*
8128 * try to trim all FS space, our block group may start from non-zero.
8129 */
8130 if (range->len == total_bytes)
8131 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8132 else
8133 cache = btrfs_lookup_block_group(fs_info, range->start);
8134
8135 while (cache) {
8136 if (cache->key.objectid >= (range->start + range->len)) {
8137 btrfs_put_block_group(cache);
8138 break;
8139 }
8140
8141 start = max(range->start, cache->key.objectid);
8142 end = min(range->start + range->len,
8143 cache->key.objectid + cache->key.offset);
8144
8145 if (end - start >= range->minlen) {
8146 if (!block_group_cache_done(cache)) {
8147 ret = cache_block_group(cache, NULL, root, 0);
8148 if (!ret)
8149 wait_block_group_cache_done(cache);
8150 }
8151 ret = btrfs_trim_block_group(cache,
8152 &group_trimmed,
8153 start,
8154 end,
8155 range->minlen);
8156
8157 trimmed += group_trimmed;
8158 if (ret) {
8159 btrfs_put_block_group(cache);
8160 break;
8161 }
8162 }
8163
8164 cache = next_block_group(fs_info->tree_root, cache);
8165 }
8166
8167 range->len = trimmed;
8168 return ret;
8169 }
This page took 0.206086 seconds and 5 git commands to generate.