btrfs: fix WARNING in btrfs_select_ref_head()
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40
41 #undef SCRAMBLE_DELAYED_REFS
42
43 /*
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
56 */
57 enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
61 };
62
63 static int update_block_group(struct btrfs_trans_handle *trans,
64 struct btrfs_root *root, u64 bytenr,
65 u64 num_bytes, int alloc);
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_root *root,
68 struct btrfs_delayed_ref_node *node, u64 parent,
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
71 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
84 int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 struct btrfs_root *extent_root, u64 flags,
87 int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
91 int dump_block_groups);
92 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
93 u64 ram_bytes, u64 num_bytes, int delalloc);
94 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 num_bytes, int delalloc);
96 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
97 u64 num_bytes);
98 int btrfs_pin_extent(struct btrfs_root *root,
99 u64 bytenr, u64 num_bytes, int reserved);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 struct btrfs_space_info *space_info,
106 u64 num_bytes);
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_space_info *space_info,
109 u64 num_bytes);
110
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 smp_mb();
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
117 }
118
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 return (cache->flags & bits) == bits;
122 }
123
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 atomic_inc(&cache->count);
127 }
128
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
134 kfree(cache->free_space_ctl);
135 kfree(cache);
136 }
137 }
138
139 /*
140 * this adds the block group to the fs_info rb tree for the block group
141 * cache
142 */
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 struct btrfs_block_group_cache *block_group)
145 {
146 struct rb_node **p;
147 struct rb_node *parent = NULL;
148 struct btrfs_block_group_cache *cache;
149
150 spin_lock(&info->block_group_cache_lock);
151 p = &info->block_group_cache_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 cache = rb_entry(parent, struct btrfs_block_group_cache,
156 cache_node);
157 if (block_group->key.objectid < cache->key.objectid) {
158 p = &(*p)->rb_left;
159 } else if (block_group->key.objectid > cache->key.objectid) {
160 p = &(*p)->rb_right;
161 } else {
162 spin_unlock(&info->block_group_cache_lock);
163 return -EEXIST;
164 }
165 }
166
167 rb_link_node(&block_group->cache_node, parent, p);
168 rb_insert_color(&block_group->cache_node,
169 &info->block_group_cache_tree);
170
171 if (info->first_logical_byte > block_group->key.objectid)
172 info->first_logical_byte = block_group->key.objectid;
173
174 spin_unlock(&info->block_group_cache_lock);
175
176 return 0;
177 }
178
179 /*
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
182 */
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 int contains)
186 {
187 struct btrfs_block_group_cache *cache, *ret = NULL;
188 struct rb_node *n;
189 u64 end, start;
190
191 spin_lock(&info->block_group_cache_lock);
192 n = info->block_group_cache_tree.rb_node;
193
194 while (n) {
195 cache = rb_entry(n, struct btrfs_block_group_cache,
196 cache_node);
197 end = cache->key.objectid + cache->key.offset - 1;
198 start = cache->key.objectid;
199
200 if (bytenr < start) {
201 if (!contains && (!ret || start < ret->key.objectid))
202 ret = cache;
203 n = n->rb_left;
204 } else if (bytenr > start) {
205 if (contains && bytenr <= end) {
206 ret = cache;
207 break;
208 }
209 n = n->rb_right;
210 } else {
211 ret = cache;
212 break;
213 }
214 }
215 if (ret) {
216 btrfs_get_block_group(ret);
217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 info->first_logical_byte = ret->key.objectid;
219 }
220 spin_unlock(&info->block_group_cache_lock);
221
222 return ret;
223 }
224
225 static int add_excluded_extent(struct btrfs_root *root,
226 u64 start, u64 num_bytes)
227 {
228 u64 end = start + num_bytes - 1;
229 set_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE);
231 set_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE);
233 return 0;
234 }
235
236 static void free_excluded_extents(struct btrfs_root *root,
237 struct btrfs_block_group_cache *cache)
238 {
239 u64 start, end;
240
241 start = cache->key.objectid;
242 end = start + cache->key.offset - 1;
243
244 clear_extent_bits(&root->fs_info->freed_extents[0],
245 start, end, EXTENT_UPTODATE);
246 clear_extent_bits(&root->fs_info->freed_extents[1],
247 start, end, EXTENT_UPTODATE);
248 }
249
250 static int exclude_super_stripes(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
252 {
253 u64 bytenr;
254 u64 *logical;
255 int stripe_len;
256 int i, nr, ret;
257
258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 cache->bytes_super += stripe_len;
261 ret = add_excluded_extent(root, cache->key.objectid,
262 stripe_len);
263 if (ret)
264 return ret;
265 }
266
267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 bytenr = btrfs_sb_offset(i);
269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 cache->key.objectid, bytenr,
271 0, &logical, &nr, &stripe_len);
272 if (ret)
273 return ret;
274
275 while (nr--) {
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
301 }
302
303 kfree(logical);
304 }
305 return 0;
306 }
307
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
320 atomic_inc(&ctl->count);
321 spin_unlock(&cache->lock);
322 return ctl;
323 }
324
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 if (atomic_dec_and_test(&ctl->count))
328 kfree(ctl);
329 }
330
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_root *root,
333 struct btrfs_block_group_cache *block_group)
334 {
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 root->nodesize : root->sectorsize;
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349 }
350 #endif
351
352 /*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 u64 extent_start, extent_end, size, total_added = 0;
361 int ret;
362
363 while (start < end) {
364 ret = find_first_extent_bit(info->pinned_extents, start,
365 &extent_start, &extent_end,
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
368 if (ret)
369 break;
370
371 if (extent_start <= start) {
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
375 total_added += size;
376 ret = btrfs_add_free_space(block_group, start,
377 size);
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
387 total_added += size;
388 ret = btrfs_add_free_space(block_group, start, size);
389 BUG_ON(ret); /* -ENOMEM or logic error */
390 }
391
392 return total_added;
393 }
394
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 struct btrfs_block_group_cache *block_group;
398 struct btrfs_fs_info *fs_info;
399 struct btrfs_root *extent_root;
400 struct btrfs_path *path;
401 struct extent_buffer *leaf;
402 struct btrfs_key key;
403 u64 total_found = 0;
404 u64 last = 0;
405 u32 nritems;
406 int ret;
407 bool wakeup = true;
408
409 block_group = caching_ctl->block_group;
410 fs_info = block_group->fs_info;
411 extent_root = fs_info->extent_root;
412
413 path = btrfs_alloc_path();
414 if (!path)
415 return -ENOMEM;
416
417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
418
419 #ifdef CONFIG_BTRFS_DEBUG
420 /*
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
423 * the free space.
424 */
425 if (btrfs_should_fragment_free_space(extent_root, block_group))
426 wakeup = false;
427 #endif
428 /*
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
433 */
434 path->skip_locking = 1;
435 path->search_commit_root = 1;
436 path->reada = READA_FORWARD;
437
438 key.objectid = last;
439 key.offset = 0;
440 key.type = BTRFS_EXTENT_ITEM_KEY;
441
442 next:
443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
444 if (ret < 0)
445 goto out;
446
447 leaf = path->nodes[0];
448 nritems = btrfs_header_nritems(leaf);
449
450 while (1) {
451 if (btrfs_fs_closing(fs_info) > 1) {
452 last = (u64)-1;
453 break;
454 }
455
456 if (path->slots[0] < nritems) {
457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
458 } else {
459 ret = find_next_key(path, 0, &key);
460 if (ret)
461 break;
462
463 if (need_resched() ||
464 rwsem_is_contended(&fs_info->commit_root_sem)) {
465 if (wakeup)
466 caching_ctl->progress = last;
467 btrfs_release_path(path);
468 up_read(&fs_info->commit_root_sem);
469 mutex_unlock(&caching_ctl->mutex);
470 cond_resched();
471 mutex_lock(&caching_ctl->mutex);
472 down_read(&fs_info->commit_root_sem);
473 goto next;
474 }
475
476 ret = btrfs_next_leaf(extent_root, path);
477 if (ret < 0)
478 goto out;
479 if (ret)
480 break;
481 leaf = path->nodes[0];
482 nritems = btrfs_header_nritems(leaf);
483 continue;
484 }
485
486 if (key.objectid < last) {
487 key.objectid = last;
488 key.offset = 0;
489 key.type = BTRFS_EXTENT_ITEM_KEY;
490
491 if (wakeup)
492 caching_ctl->progress = last;
493 btrfs_release_path(path);
494 goto next;
495 }
496
497 if (key.objectid < block_group->key.objectid) {
498 path->slots[0]++;
499 continue;
500 }
501
502 if (key.objectid >= block_group->key.objectid +
503 block_group->key.offset)
504 break;
505
506 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 key.type == BTRFS_METADATA_ITEM_KEY) {
508 total_found += add_new_free_space(block_group,
509 fs_info, last,
510 key.objectid);
511 if (key.type == BTRFS_METADATA_ITEM_KEY)
512 last = key.objectid +
513 fs_info->tree_root->nodesize;
514 else
515 last = key.objectid + key.offset;
516
517 if (total_found > CACHING_CTL_WAKE_UP) {
518 total_found = 0;
519 if (wakeup)
520 wake_up(&caching_ctl->wait);
521 }
522 }
523 path->slots[0]++;
524 }
525 ret = 0;
526
527 total_found += add_new_free_space(block_group, fs_info, last,
528 block_group->key.objectid +
529 block_group->key.offset);
530 caching_ctl->progress = (u64)-1;
531
532 out:
533 btrfs_free_path(path);
534 return ret;
535 }
536
537 static noinline void caching_thread(struct btrfs_work *work)
538 {
539 struct btrfs_block_group_cache *block_group;
540 struct btrfs_fs_info *fs_info;
541 struct btrfs_caching_control *caching_ctl;
542 struct btrfs_root *extent_root;
543 int ret;
544
545 caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 block_group = caching_ctl->block_group;
547 fs_info = block_group->fs_info;
548 extent_root = fs_info->extent_root;
549
550 mutex_lock(&caching_ctl->mutex);
551 down_read(&fs_info->commit_root_sem);
552
553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 ret = load_free_space_tree(caching_ctl);
555 else
556 ret = load_extent_tree_free(caching_ctl);
557
558 spin_lock(&block_group->lock);
559 block_group->caching_ctl = NULL;
560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
561 spin_unlock(&block_group->lock);
562
563 #ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
565 u64 bytes_used;
566
567 spin_lock(&block_group->space_info->lock);
568 spin_lock(&block_group->lock);
569 bytes_used = block_group->key.offset -
570 btrfs_block_group_used(&block_group->item);
571 block_group->space_info->bytes_used += bytes_used >> 1;
572 spin_unlock(&block_group->lock);
573 spin_unlock(&block_group->space_info->lock);
574 fragment_free_space(extent_root, block_group);
575 }
576 #endif
577
578 caching_ctl->progress = (u64)-1;
579
580 up_read(&fs_info->commit_root_sem);
581 free_excluded_extents(fs_info->extent_root, block_group);
582 mutex_unlock(&caching_ctl->mutex);
583
584 wake_up(&caching_ctl->wait);
585
586 put_caching_control(caching_ctl);
587 btrfs_put_block_group(block_group);
588 }
589
590 static int cache_block_group(struct btrfs_block_group_cache *cache,
591 int load_cache_only)
592 {
593 DEFINE_WAIT(wait);
594 struct btrfs_fs_info *fs_info = cache->fs_info;
595 struct btrfs_caching_control *caching_ctl;
596 int ret = 0;
597
598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
599 if (!caching_ctl)
600 return -ENOMEM;
601
602 INIT_LIST_HEAD(&caching_ctl->list);
603 mutex_init(&caching_ctl->mutex);
604 init_waitqueue_head(&caching_ctl->wait);
605 caching_ctl->block_group = cache;
606 caching_ctl->progress = cache->key.objectid;
607 atomic_set(&caching_ctl->count, 1);
608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 caching_thread, NULL, NULL);
610
611 spin_lock(&cache->lock);
612 /*
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
622 * another.
623 */
624 while (cache->cached == BTRFS_CACHE_FAST) {
625 struct btrfs_caching_control *ctl;
626
627 ctl = cache->caching_ctl;
628 atomic_inc(&ctl->count);
629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 spin_unlock(&cache->lock);
631
632 schedule();
633
634 finish_wait(&ctl->wait, &wait);
635 put_caching_control(ctl);
636 spin_lock(&cache->lock);
637 }
638
639 if (cache->cached != BTRFS_CACHE_NO) {
640 spin_unlock(&cache->lock);
641 kfree(caching_ctl);
642 return 0;
643 }
644 WARN_ON(cache->caching_ctl);
645 cache->caching_ctl = caching_ctl;
646 cache->cached = BTRFS_CACHE_FAST;
647 spin_unlock(&cache->lock);
648
649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
650 mutex_lock(&caching_ctl->mutex);
651 ret = load_free_space_cache(fs_info, cache);
652
653 spin_lock(&cache->lock);
654 if (ret == 1) {
655 cache->caching_ctl = NULL;
656 cache->cached = BTRFS_CACHE_FINISHED;
657 cache->last_byte_to_unpin = (u64)-1;
658 caching_ctl->progress = (u64)-1;
659 } else {
660 if (load_cache_only) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_NO;
663 } else {
664 cache->cached = BTRFS_CACHE_STARTED;
665 cache->has_caching_ctl = 1;
666 }
667 }
668 spin_unlock(&cache->lock);
669 #ifdef CONFIG_BTRFS_DEBUG
670 if (ret == 1 &&
671 btrfs_should_fragment_free_space(fs_info->extent_root,
672 cache)) {
673 u64 bytes_used;
674
675 spin_lock(&cache->space_info->lock);
676 spin_lock(&cache->lock);
677 bytes_used = cache->key.offset -
678 btrfs_block_group_used(&cache->item);
679 cache->space_info->bytes_used += bytes_used >> 1;
680 spin_unlock(&cache->lock);
681 spin_unlock(&cache->space_info->lock);
682 fragment_free_space(fs_info->extent_root, cache);
683 }
684 #endif
685 mutex_unlock(&caching_ctl->mutex);
686
687 wake_up(&caching_ctl->wait);
688 if (ret == 1) {
689 put_caching_control(caching_ctl);
690 free_excluded_extents(fs_info->extent_root, cache);
691 return 0;
692 }
693 } else {
694 /*
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
697 */
698 spin_lock(&cache->lock);
699 if (load_cache_only) {
700 cache->caching_ctl = NULL;
701 cache->cached = BTRFS_CACHE_NO;
702 } else {
703 cache->cached = BTRFS_CACHE_STARTED;
704 cache->has_caching_ctl = 1;
705 }
706 spin_unlock(&cache->lock);
707 wake_up(&caching_ctl->wait);
708 }
709
710 if (load_cache_only) {
711 put_caching_control(caching_ctl);
712 return 0;
713 }
714
715 down_write(&fs_info->commit_root_sem);
716 atomic_inc(&caching_ctl->count);
717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
718 up_write(&fs_info->commit_root_sem);
719
720 btrfs_get_block_group(cache);
721
722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
723
724 return ret;
725 }
726
727 /*
728 * return the block group that starts at or after bytenr
729 */
730 static struct btrfs_block_group_cache *
731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
732 {
733 struct btrfs_block_group_cache *cache;
734
735 cache = block_group_cache_tree_search(info, bytenr, 0);
736
737 return cache;
738 }
739
740 /*
741 * return the block group that contains the given bytenr
742 */
743 struct btrfs_block_group_cache *btrfs_lookup_block_group(
744 struct btrfs_fs_info *info,
745 u64 bytenr)
746 {
747 struct btrfs_block_group_cache *cache;
748
749 cache = block_group_cache_tree_search(info, bytenr, 1);
750
751 return cache;
752 }
753
754 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
755 u64 flags)
756 {
757 struct list_head *head = &info->space_info;
758 struct btrfs_space_info *found;
759
760 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
761
762 rcu_read_lock();
763 list_for_each_entry_rcu(found, head, list) {
764 if (found->flags & flags) {
765 rcu_read_unlock();
766 return found;
767 }
768 }
769 rcu_read_unlock();
770 return NULL;
771 }
772
773 /*
774 * after adding space to the filesystem, we need to clear the full flags
775 * on all the space infos.
776 */
777 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
778 {
779 struct list_head *head = &info->space_info;
780 struct btrfs_space_info *found;
781
782 rcu_read_lock();
783 list_for_each_entry_rcu(found, head, list)
784 found->full = 0;
785 rcu_read_unlock();
786 }
787
788 /* simple helper to search for an existing data extent at a given offset */
789 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
790 {
791 int ret;
792 struct btrfs_key key;
793 struct btrfs_path *path;
794
795 path = btrfs_alloc_path();
796 if (!path)
797 return -ENOMEM;
798
799 key.objectid = start;
800 key.offset = len;
801 key.type = BTRFS_EXTENT_ITEM_KEY;
802 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
803 0, 0);
804 btrfs_free_path(path);
805 return ret;
806 }
807
808 /*
809 * helper function to lookup reference count and flags of a tree block.
810 *
811 * the head node for delayed ref is used to store the sum of all the
812 * reference count modifications queued up in the rbtree. the head
813 * node may also store the extent flags to set. This way you can check
814 * to see what the reference count and extent flags would be if all of
815 * the delayed refs are not processed.
816 */
817 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
818 struct btrfs_root *root, u64 bytenr,
819 u64 offset, int metadata, u64 *refs, u64 *flags)
820 {
821 struct btrfs_delayed_ref_head *head;
822 struct btrfs_delayed_ref_root *delayed_refs;
823 struct btrfs_path *path;
824 struct btrfs_extent_item *ei;
825 struct extent_buffer *leaf;
826 struct btrfs_key key;
827 u32 item_size;
828 u64 num_refs;
829 u64 extent_flags;
830 int ret;
831
832 /*
833 * If we don't have skinny metadata, don't bother doing anything
834 * different
835 */
836 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
837 offset = root->nodesize;
838 metadata = 0;
839 }
840
841 path = btrfs_alloc_path();
842 if (!path)
843 return -ENOMEM;
844
845 if (!trans) {
846 path->skip_locking = 1;
847 path->search_commit_root = 1;
848 }
849
850 search_again:
851 key.objectid = bytenr;
852 key.offset = offset;
853 if (metadata)
854 key.type = BTRFS_METADATA_ITEM_KEY;
855 else
856 key.type = BTRFS_EXTENT_ITEM_KEY;
857
858 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
859 &key, path, 0, 0);
860 if (ret < 0)
861 goto out_free;
862
863 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
864 if (path->slots[0]) {
865 path->slots[0]--;
866 btrfs_item_key_to_cpu(path->nodes[0], &key,
867 path->slots[0]);
868 if (key.objectid == bytenr &&
869 key.type == BTRFS_EXTENT_ITEM_KEY &&
870 key.offset == root->nodesize)
871 ret = 0;
872 }
873 }
874
875 if (ret == 0) {
876 leaf = path->nodes[0];
877 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
878 if (item_size >= sizeof(*ei)) {
879 ei = btrfs_item_ptr(leaf, path->slots[0],
880 struct btrfs_extent_item);
881 num_refs = btrfs_extent_refs(leaf, ei);
882 extent_flags = btrfs_extent_flags(leaf, ei);
883 } else {
884 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
885 struct btrfs_extent_item_v0 *ei0;
886 BUG_ON(item_size != sizeof(*ei0));
887 ei0 = btrfs_item_ptr(leaf, path->slots[0],
888 struct btrfs_extent_item_v0);
889 num_refs = btrfs_extent_refs_v0(leaf, ei0);
890 /* FIXME: this isn't correct for data */
891 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
892 #else
893 BUG();
894 #endif
895 }
896 BUG_ON(num_refs == 0);
897 } else {
898 num_refs = 0;
899 extent_flags = 0;
900 ret = 0;
901 }
902
903 if (!trans)
904 goto out;
905
906 delayed_refs = &trans->transaction->delayed_refs;
907 spin_lock(&delayed_refs->lock);
908 head = btrfs_find_delayed_ref_head(trans, bytenr);
909 if (head) {
910 if (!mutex_trylock(&head->mutex)) {
911 atomic_inc(&head->node.refs);
912 spin_unlock(&delayed_refs->lock);
913
914 btrfs_release_path(path);
915
916 /*
917 * Mutex was contended, block until it's released and try
918 * again
919 */
920 mutex_lock(&head->mutex);
921 mutex_unlock(&head->mutex);
922 btrfs_put_delayed_ref(&head->node);
923 goto search_again;
924 }
925 spin_lock(&head->lock);
926 if (head->extent_op && head->extent_op->update_flags)
927 extent_flags |= head->extent_op->flags_to_set;
928 else
929 BUG_ON(num_refs == 0);
930
931 num_refs += head->node.ref_mod;
932 spin_unlock(&head->lock);
933 mutex_unlock(&head->mutex);
934 }
935 spin_unlock(&delayed_refs->lock);
936 out:
937 WARN_ON(num_refs == 0);
938 if (refs)
939 *refs = num_refs;
940 if (flags)
941 *flags = extent_flags;
942 out_free:
943 btrfs_free_path(path);
944 return ret;
945 }
946
947 /*
948 * Back reference rules. Back refs have three main goals:
949 *
950 * 1) differentiate between all holders of references to an extent so that
951 * when a reference is dropped we can make sure it was a valid reference
952 * before freeing the extent.
953 *
954 * 2) Provide enough information to quickly find the holders of an extent
955 * if we notice a given block is corrupted or bad.
956 *
957 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
958 * maintenance. This is actually the same as #2, but with a slightly
959 * different use case.
960 *
961 * There are two kinds of back refs. The implicit back refs is optimized
962 * for pointers in non-shared tree blocks. For a given pointer in a block,
963 * back refs of this kind provide information about the block's owner tree
964 * and the pointer's key. These information allow us to find the block by
965 * b-tree searching. The full back refs is for pointers in tree blocks not
966 * referenced by their owner trees. The location of tree block is recorded
967 * in the back refs. Actually the full back refs is generic, and can be
968 * used in all cases the implicit back refs is used. The major shortcoming
969 * of the full back refs is its overhead. Every time a tree block gets
970 * COWed, we have to update back refs entry for all pointers in it.
971 *
972 * For a newly allocated tree block, we use implicit back refs for
973 * pointers in it. This means most tree related operations only involve
974 * implicit back refs. For a tree block created in old transaction, the
975 * only way to drop a reference to it is COW it. So we can detect the
976 * event that tree block loses its owner tree's reference and do the
977 * back refs conversion.
978 *
979 * When a tree block is COWed through a tree, there are four cases:
980 *
981 * The reference count of the block is one and the tree is the block's
982 * owner tree. Nothing to do in this case.
983 *
984 * The reference count of the block is one and the tree is not the
985 * block's owner tree. In this case, full back refs is used for pointers
986 * in the block. Remove these full back refs, add implicit back refs for
987 * every pointers in the new block.
988 *
989 * The reference count of the block is greater than one and the tree is
990 * the block's owner tree. In this case, implicit back refs is used for
991 * pointers in the block. Add full back refs for every pointers in the
992 * block, increase lower level extents' reference counts. The original
993 * implicit back refs are entailed to the new block.
994 *
995 * The reference count of the block is greater than one and the tree is
996 * not the block's owner tree. Add implicit back refs for every pointer in
997 * the new block, increase lower level extents' reference count.
998 *
999 * Back Reference Key composing:
1000 *
1001 * The key objectid corresponds to the first byte in the extent,
1002 * The key type is used to differentiate between types of back refs.
1003 * There are different meanings of the key offset for different types
1004 * of back refs.
1005 *
1006 * File extents can be referenced by:
1007 *
1008 * - multiple snapshots, subvolumes, or different generations in one subvol
1009 * - different files inside a single subvolume
1010 * - different offsets inside a file (bookend extents in file.c)
1011 *
1012 * The extent ref structure for the implicit back refs has fields for:
1013 *
1014 * - Objectid of the subvolume root
1015 * - objectid of the file holding the reference
1016 * - original offset in the file
1017 * - how many bookend extents
1018 *
1019 * The key offset for the implicit back refs is hash of the first
1020 * three fields.
1021 *
1022 * The extent ref structure for the full back refs has field for:
1023 *
1024 * - number of pointers in the tree leaf
1025 *
1026 * The key offset for the implicit back refs is the first byte of
1027 * the tree leaf
1028 *
1029 * When a file extent is allocated, The implicit back refs is used.
1030 * the fields are filled in:
1031 *
1032 * (root_key.objectid, inode objectid, offset in file, 1)
1033 *
1034 * When a file extent is removed file truncation, we find the
1035 * corresponding implicit back refs and check the following fields:
1036 *
1037 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1038 *
1039 * Btree extents can be referenced by:
1040 *
1041 * - Different subvolumes
1042 *
1043 * Both the implicit back refs and the full back refs for tree blocks
1044 * only consist of key. The key offset for the implicit back refs is
1045 * objectid of block's owner tree. The key offset for the full back refs
1046 * is the first byte of parent block.
1047 *
1048 * When implicit back refs is used, information about the lowest key and
1049 * level of the tree block are required. These information are stored in
1050 * tree block info structure.
1051 */
1052
1053 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1054 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1055 struct btrfs_root *root,
1056 struct btrfs_path *path,
1057 u64 owner, u32 extra_size)
1058 {
1059 struct btrfs_extent_item *item;
1060 struct btrfs_extent_item_v0 *ei0;
1061 struct btrfs_extent_ref_v0 *ref0;
1062 struct btrfs_tree_block_info *bi;
1063 struct extent_buffer *leaf;
1064 struct btrfs_key key;
1065 struct btrfs_key found_key;
1066 u32 new_size = sizeof(*item);
1067 u64 refs;
1068 int ret;
1069
1070 leaf = path->nodes[0];
1071 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1072
1073 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1074 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_extent_item_v0);
1076 refs = btrfs_extent_refs_v0(leaf, ei0);
1077
1078 if (owner == (u64)-1) {
1079 while (1) {
1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 return ret;
1084 BUG_ON(ret > 0); /* Corruption */
1085 leaf = path->nodes[0];
1086 }
1087 btrfs_item_key_to_cpu(leaf, &found_key,
1088 path->slots[0]);
1089 BUG_ON(key.objectid != found_key.objectid);
1090 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1091 path->slots[0]++;
1092 continue;
1093 }
1094 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1095 struct btrfs_extent_ref_v0);
1096 owner = btrfs_ref_objectid_v0(leaf, ref0);
1097 break;
1098 }
1099 }
1100 btrfs_release_path(path);
1101
1102 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1103 new_size += sizeof(*bi);
1104
1105 new_size -= sizeof(*ei0);
1106 ret = btrfs_search_slot(trans, root, &key, path,
1107 new_size + extra_size, 1);
1108 if (ret < 0)
1109 return ret;
1110 BUG_ON(ret); /* Corruption */
1111
1112 btrfs_extend_item(root, path, new_size);
1113
1114 leaf = path->nodes[0];
1115 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1116 btrfs_set_extent_refs(leaf, item, refs);
1117 /* FIXME: get real generation */
1118 btrfs_set_extent_generation(leaf, item, 0);
1119 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1120 btrfs_set_extent_flags(leaf, item,
1121 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1122 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1123 bi = (struct btrfs_tree_block_info *)(item + 1);
1124 /* FIXME: get first key of the block */
1125 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1126 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1127 } else {
1128 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1129 }
1130 btrfs_mark_buffer_dirty(leaf);
1131 return 0;
1132 }
1133 #endif
1134
1135 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1136 {
1137 u32 high_crc = ~(u32)0;
1138 u32 low_crc = ~(u32)0;
1139 __le64 lenum;
1140
1141 lenum = cpu_to_le64(root_objectid);
1142 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1143 lenum = cpu_to_le64(owner);
1144 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1145 lenum = cpu_to_le64(offset);
1146 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1147
1148 return ((u64)high_crc << 31) ^ (u64)low_crc;
1149 }
1150
1151 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1152 struct btrfs_extent_data_ref *ref)
1153 {
1154 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1155 btrfs_extent_data_ref_objectid(leaf, ref),
1156 btrfs_extent_data_ref_offset(leaf, ref));
1157 }
1158
1159 static int match_extent_data_ref(struct extent_buffer *leaf,
1160 struct btrfs_extent_data_ref *ref,
1161 u64 root_objectid, u64 owner, u64 offset)
1162 {
1163 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1164 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1165 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1166 return 0;
1167 return 1;
1168 }
1169
1170 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1171 struct btrfs_root *root,
1172 struct btrfs_path *path,
1173 u64 bytenr, u64 parent,
1174 u64 root_objectid,
1175 u64 owner, u64 offset)
1176 {
1177 struct btrfs_key key;
1178 struct btrfs_extent_data_ref *ref;
1179 struct extent_buffer *leaf;
1180 u32 nritems;
1181 int ret;
1182 int recow;
1183 int err = -ENOENT;
1184
1185 key.objectid = bytenr;
1186 if (parent) {
1187 key.type = BTRFS_SHARED_DATA_REF_KEY;
1188 key.offset = parent;
1189 } else {
1190 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1191 key.offset = hash_extent_data_ref(root_objectid,
1192 owner, offset);
1193 }
1194 again:
1195 recow = 0;
1196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197 if (ret < 0) {
1198 err = ret;
1199 goto fail;
1200 }
1201
1202 if (parent) {
1203 if (!ret)
1204 return 0;
1205 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1206 key.type = BTRFS_EXTENT_REF_V0_KEY;
1207 btrfs_release_path(path);
1208 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1209 if (ret < 0) {
1210 err = ret;
1211 goto fail;
1212 }
1213 if (!ret)
1214 return 0;
1215 #endif
1216 goto fail;
1217 }
1218
1219 leaf = path->nodes[0];
1220 nritems = btrfs_header_nritems(leaf);
1221 while (1) {
1222 if (path->slots[0] >= nritems) {
1223 ret = btrfs_next_leaf(root, path);
1224 if (ret < 0)
1225 err = ret;
1226 if (ret)
1227 goto fail;
1228
1229 leaf = path->nodes[0];
1230 nritems = btrfs_header_nritems(leaf);
1231 recow = 1;
1232 }
1233
1234 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1235 if (key.objectid != bytenr ||
1236 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1237 goto fail;
1238
1239 ref = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_extent_data_ref);
1241
1242 if (match_extent_data_ref(leaf, ref, root_objectid,
1243 owner, offset)) {
1244 if (recow) {
1245 btrfs_release_path(path);
1246 goto again;
1247 }
1248 err = 0;
1249 break;
1250 }
1251 path->slots[0]++;
1252 }
1253 fail:
1254 return err;
1255 }
1256
1257 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1258 struct btrfs_root *root,
1259 struct btrfs_path *path,
1260 u64 bytenr, u64 parent,
1261 u64 root_objectid, u64 owner,
1262 u64 offset, int refs_to_add)
1263 {
1264 struct btrfs_key key;
1265 struct extent_buffer *leaf;
1266 u32 size;
1267 u32 num_refs;
1268 int ret;
1269
1270 key.objectid = bytenr;
1271 if (parent) {
1272 key.type = BTRFS_SHARED_DATA_REF_KEY;
1273 key.offset = parent;
1274 size = sizeof(struct btrfs_shared_data_ref);
1275 } else {
1276 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1277 key.offset = hash_extent_data_ref(root_objectid,
1278 owner, offset);
1279 size = sizeof(struct btrfs_extent_data_ref);
1280 }
1281
1282 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1283 if (ret && ret != -EEXIST)
1284 goto fail;
1285
1286 leaf = path->nodes[0];
1287 if (parent) {
1288 struct btrfs_shared_data_ref *ref;
1289 ref = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_shared_data_ref);
1291 if (ret == 0) {
1292 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1293 } else {
1294 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1295 num_refs += refs_to_add;
1296 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1297 }
1298 } else {
1299 struct btrfs_extent_data_ref *ref;
1300 while (ret == -EEXIST) {
1301 ref = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 if (match_extent_data_ref(leaf, ref, root_objectid,
1304 owner, offset))
1305 break;
1306 btrfs_release_path(path);
1307 key.offset++;
1308 ret = btrfs_insert_empty_item(trans, root, path, &key,
1309 size);
1310 if (ret && ret != -EEXIST)
1311 goto fail;
1312
1313 leaf = path->nodes[0];
1314 }
1315 ref = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 if (ret == 0) {
1318 btrfs_set_extent_data_ref_root(leaf, ref,
1319 root_objectid);
1320 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1321 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1322 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1323 } else {
1324 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1325 num_refs += refs_to_add;
1326 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1327 }
1328 }
1329 btrfs_mark_buffer_dirty(leaf);
1330 ret = 0;
1331 fail:
1332 btrfs_release_path(path);
1333 return ret;
1334 }
1335
1336 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1337 struct btrfs_root *root,
1338 struct btrfs_path *path,
1339 int refs_to_drop, int *last_ref)
1340 {
1341 struct btrfs_key key;
1342 struct btrfs_extent_data_ref *ref1 = NULL;
1343 struct btrfs_shared_data_ref *ref2 = NULL;
1344 struct extent_buffer *leaf;
1345 u32 num_refs = 0;
1346 int ret = 0;
1347
1348 leaf = path->nodes[0];
1349 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1350
1351 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1352 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_data_ref);
1354 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1355 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1356 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_shared_data_ref);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1360 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1361 struct btrfs_extent_ref_v0 *ref0;
1362 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_extent_ref_v0);
1364 num_refs = btrfs_ref_count_v0(leaf, ref0);
1365 #endif
1366 } else {
1367 BUG();
1368 }
1369
1370 BUG_ON(num_refs < refs_to_drop);
1371 num_refs -= refs_to_drop;
1372
1373 if (num_refs == 0) {
1374 ret = btrfs_del_item(trans, root, path);
1375 *last_ref = 1;
1376 } else {
1377 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1378 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1379 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1380 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 else {
1383 struct btrfs_extent_ref_v0 *ref0;
1384 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1385 struct btrfs_extent_ref_v0);
1386 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1387 }
1388 #endif
1389 btrfs_mark_buffer_dirty(leaf);
1390 }
1391 return ret;
1392 }
1393
1394 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1395 struct btrfs_extent_inline_ref *iref)
1396 {
1397 struct btrfs_key key;
1398 struct extent_buffer *leaf;
1399 struct btrfs_extent_data_ref *ref1;
1400 struct btrfs_shared_data_ref *ref2;
1401 u32 num_refs = 0;
1402
1403 leaf = path->nodes[0];
1404 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1405 if (iref) {
1406 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1407 BTRFS_EXTENT_DATA_REF_KEY) {
1408 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1410 } else {
1411 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1412 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1413 }
1414 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1415 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1416 struct btrfs_extent_data_ref);
1417 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1418 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1419 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_shared_data_ref);
1421 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1422 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1423 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1424 struct btrfs_extent_ref_v0 *ref0;
1425 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1426 struct btrfs_extent_ref_v0);
1427 num_refs = btrfs_ref_count_v0(leaf, ref0);
1428 #endif
1429 } else {
1430 WARN_ON(1);
1431 }
1432 return num_refs;
1433 }
1434
1435 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1436 struct btrfs_root *root,
1437 struct btrfs_path *path,
1438 u64 bytenr, u64 parent,
1439 u64 root_objectid)
1440 {
1441 struct btrfs_key key;
1442 int ret;
1443
1444 key.objectid = bytenr;
1445 if (parent) {
1446 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1447 key.offset = parent;
1448 } else {
1449 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1450 key.offset = root_objectid;
1451 }
1452
1453 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1454 if (ret > 0)
1455 ret = -ENOENT;
1456 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1457 if (ret == -ENOENT && parent) {
1458 btrfs_release_path(path);
1459 key.type = BTRFS_EXTENT_REF_V0_KEY;
1460 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1461 if (ret > 0)
1462 ret = -ENOENT;
1463 }
1464 #endif
1465 return ret;
1466 }
1467
1468 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 u64 bytenr, u64 parent,
1472 u64 root_objectid)
1473 {
1474 struct btrfs_key key;
1475 int ret;
1476
1477 key.objectid = bytenr;
1478 if (parent) {
1479 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1480 key.offset = parent;
1481 } else {
1482 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1483 key.offset = root_objectid;
1484 }
1485
1486 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1487 btrfs_release_path(path);
1488 return ret;
1489 }
1490
1491 static inline int extent_ref_type(u64 parent, u64 owner)
1492 {
1493 int type;
1494 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1495 if (parent > 0)
1496 type = BTRFS_SHARED_BLOCK_REF_KEY;
1497 else
1498 type = BTRFS_TREE_BLOCK_REF_KEY;
1499 } else {
1500 if (parent > 0)
1501 type = BTRFS_SHARED_DATA_REF_KEY;
1502 else
1503 type = BTRFS_EXTENT_DATA_REF_KEY;
1504 }
1505 return type;
1506 }
1507
1508 static int find_next_key(struct btrfs_path *path, int level,
1509 struct btrfs_key *key)
1510
1511 {
1512 for (; level < BTRFS_MAX_LEVEL; level++) {
1513 if (!path->nodes[level])
1514 break;
1515 if (path->slots[level] + 1 >=
1516 btrfs_header_nritems(path->nodes[level]))
1517 continue;
1518 if (level == 0)
1519 btrfs_item_key_to_cpu(path->nodes[level], key,
1520 path->slots[level] + 1);
1521 else
1522 btrfs_node_key_to_cpu(path->nodes[level], key,
1523 path->slots[level] + 1);
1524 return 0;
1525 }
1526 return 1;
1527 }
1528
1529 /*
1530 * look for inline back ref. if back ref is found, *ref_ret is set
1531 * to the address of inline back ref, and 0 is returned.
1532 *
1533 * if back ref isn't found, *ref_ret is set to the address where it
1534 * should be inserted, and -ENOENT is returned.
1535 *
1536 * if insert is true and there are too many inline back refs, the path
1537 * points to the extent item, and -EAGAIN is returned.
1538 *
1539 * NOTE: inline back refs are ordered in the same way that back ref
1540 * items in the tree are ordered.
1541 */
1542 static noinline_for_stack
1543 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root,
1545 struct btrfs_path *path,
1546 struct btrfs_extent_inline_ref **ref_ret,
1547 u64 bytenr, u64 num_bytes,
1548 u64 parent, u64 root_objectid,
1549 u64 owner, u64 offset, int insert)
1550 {
1551 struct btrfs_key key;
1552 struct extent_buffer *leaf;
1553 struct btrfs_extent_item *ei;
1554 struct btrfs_extent_inline_ref *iref;
1555 u64 flags;
1556 u64 item_size;
1557 unsigned long ptr;
1558 unsigned long end;
1559 int extra_size;
1560 int type;
1561 int want;
1562 int ret;
1563 int err = 0;
1564 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1565 SKINNY_METADATA);
1566
1567 key.objectid = bytenr;
1568 key.type = BTRFS_EXTENT_ITEM_KEY;
1569 key.offset = num_bytes;
1570
1571 want = extent_ref_type(parent, owner);
1572 if (insert) {
1573 extra_size = btrfs_extent_inline_ref_size(want);
1574 path->keep_locks = 1;
1575 } else
1576 extra_size = -1;
1577
1578 /*
1579 * Owner is our parent level, so we can just add one to get the level
1580 * for the block we are interested in.
1581 */
1582 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1583 key.type = BTRFS_METADATA_ITEM_KEY;
1584 key.offset = owner;
1585 }
1586
1587 again:
1588 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1589 if (ret < 0) {
1590 err = ret;
1591 goto out;
1592 }
1593
1594 /*
1595 * We may be a newly converted file system which still has the old fat
1596 * extent entries for metadata, so try and see if we have one of those.
1597 */
1598 if (ret > 0 && skinny_metadata) {
1599 skinny_metadata = false;
1600 if (path->slots[0]) {
1601 path->slots[0]--;
1602 btrfs_item_key_to_cpu(path->nodes[0], &key,
1603 path->slots[0]);
1604 if (key.objectid == bytenr &&
1605 key.type == BTRFS_EXTENT_ITEM_KEY &&
1606 key.offset == num_bytes)
1607 ret = 0;
1608 }
1609 if (ret) {
1610 key.objectid = bytenr;
1611 key.type = BTRFS_EXTENT_ITEM_KEY;
1612 key.offset = num_bytes;
1613 btrfs_release_path(path);
1614 goto again;
1615 }
1616 }
1617
1618 if (ret && !insert) {
1619 err = -ENOENT;
1620 goto out;
1621 } else if (WARN_ON(ret)) {
1622 err = -EIO;
1623 goto out;
1624 }
1625
1626 leaf = path->nodes[0];
1627 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1628 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1629 if (item_size < sizeof(*ei)) {
1630 if (!insert) {
1631 err = -ENOENT;
1632 goto out;
1633 }
1634 ret = convert_extent_item_v0(trans, root, path, owner,
1635 extra_size);
1636 if (ret < 0) {
1637 err = ret;
1638 goto out;
1639 }
1640 leaf = path->nodes[0];
1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642 }
1643 #endif
1644 BUG_ON(item_size < sizeof(*ei));
1645
1646 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1647 flags = btrfs_extent_flags(leaf, ei);
1648
1649 ptr = (unsigned long)(ei + 1);
1650 end = (unsigned long)ei + item_size;
1651
1652 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1653 ptr += sizeof(struct btrfs_tree_block_info);
1654 BUG_ON(ptr > end);
1655 }
1656
1657 err = -ENOENT;
1658 while (1) {
1659 if (ptr >= end) {
1660 WARN_ON(ptr > end);
1661 break;
1662 }
1663 iref = (struct btrfs_extent_inline_ref *)ptr;
1664 type = btrfs_extent_inline_ref_type(leaf, iref);
1665 if (want < type)
1666 break;
1667 if (want > type) {
1668 ptr += btrfs_extent_inline_ref_size(type);
1669 continue;
1670 }
1671
1672 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1673 struct btrfs_extent_data_ref *dref;
1674 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1675 if (match_extent_data_ref(leaf, dref, root_objectid,
1676 owner, offset)) {
1677 err = 0;
1678 break;
1679 }
1680 if (hash_extent_data_ref_item(leaf, dref) <
1681 hash_extent_data_ref(root_objectid, owner, offset))
1682 break;
1683 } else {
1684 u64 ref_offset;
1685 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1686 if (parent > 0) {
1687 if (parent == ref_offset) {
1688 err = 0;
1689 break;
1690 }
1691 if (ref_offset < parent)
1692 break;
1693 } else {
1694 if (root_objectid == ref_offset) {
1695 err = 0;
1696 break;
1697 }
1698 if (ref_offset < root_objectid)
1699 break;
1700 }
1701 }
1702 ptr += btrfs_extent_inline_ref_size(type);
1703 }
1704 if (err == -ENOENT && insert) {
1705 if (item_size + extra_size >=
1706 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1707 err = -EAGAIN;
1708 goto out;
1709 }
1710 /*
1711 * To add new inline back ref, we have to make sure
1712 * there is no corresponding back ref item.
1713 * For simplicity, we just do not add new inline back
1714 * ref if there is any kind of item for this block
1715 */
1716 if (find_next_key(path, 0, &key) == 0 &&
1717 key.objectid == bytenr &&
1718 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1719 err = -EAGAIN;
1720 goto out;
1721 }
1722 }
1723 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1724 out:
1725 if (insert) {
1726 path->keep_locks = 0;
1727 btrfs_unlock_up_safe(path, 1);
1728 }
1729 return err;
1730 }
1731
1732 /*
1733 * helper to add new inline back ref
1734 */
1735 static noinline_for_stack
1736 void setup_inline_extent_backref(struct btrfs_root *root,
1737 struct btrfs_path *path,
1738 struct btrfs_extent_inline_ref *iref,
1739 u64 parent, u64 root_objectid,
1740 u64 owner, u64 offset, int refs_to_add,
1741 struct btrfs_delayed_extent_op *extent_op)
1742 {
1743 struct extent_buffer *leaf;
1744 struct btrfs_extent_item *ei;
1745 unsigned long ptr;
1746 unsigned long end;
1747 unsigned long item_offset;
1748 u64 refs;
1749 int size;
1750 int type;
1751
1752 leaf = path->nodes[0];
1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 item_offset = (unsigned long)iref - (unsigned long)ei;
1755
1756 type = extent_ref_type(parent, owner);
1757 size = btrfs_extent_inline_ref_size(type);
1758
1759 btrfs_extend_item(root, path, size);
1760
1761 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1762 refs = btrfs_extent_refs(leaf, ei);
1763 refs += refs_to_add;
1764 btrfs_set_extent_refs(leaf, ei, refs);
1765 if (extent_op)
1766 __run_delayed_extent_op(extent_op, leaf, ei);
1767
1768 ptr = (unsigned long)ei + item_offset;
1769 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1770 if (ptr < end - size)
1771 memmove_extent_buffer(leaf, ptr + size, ptr,
1772 end - size - ptr);
1773
1774 iref = (struct btrfs_extent_inline_ref *)ptr;
1775 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1776 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1777 struct btrfs_extent_data_ref *dref;
1778 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1779 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1780 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1781 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1782 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1783 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1784 struct btrfs_shared_data_ref *sref;
1785 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1786 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1787 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1788 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1789 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1790 } else {
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1792 }
1793 btrfs_mark_buffer_dirty(leaf);
1794 }
1795
1796 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1797 struct btrfs_root *root,
1798 struct btrfs_path *path,
1799 struct btrfs_extent_inline_ref **ref_ret,
1800 u64 bytenr, u64 num_bytes, u64 parent,
1801 u64 root_objectid, u64 owner, u64 offset)
1802 {
1803 int ret;
1804
1805 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1806 bytenr, num_bytes, parent,
1807 root_objectid, owner, offset, 0);
1808 if (ret != -ENOENT)
1809 return ret;
1810
1811 btrfs_release_path(path);
1812 *ref_ret = NULL;
1813
1814 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1815 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1816 root_objectid);
1817 } else {
1818 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1819 root_objectid, owner, offset);
1820 }
1821 return ret;
1822 }
1823
1824 /*
1825 * helper to update/remove inline back ref
1826 */
1827 static noinline_for_stack
1828 void update_inline_extent_backref(struct btrfs_root *root,
1829 struct btrfs_path *path,
1830 struct btrfs_extent_inline_ref *iref,
1831 int refs_to_mod,
1832 struct btrfs_delayed_extent_op *extent_op,
1833 int *last_ref)
1834 {
1835 struct extent_buffer *leaf;
1836 struct btrfs_extent_item *ei;
1837 struct btrfs_extent_data_ref *dref = NULL;
1838 struct btrfs_shared_data_ref *sref = NULL;
1839 unsigned long ptr;
1840 unsigned long end;
1841 u32 item_size;
1842 int size;
1843 int type;
1844 u64 refs;
1845
1846 leaf = path->nodes[0];
1847 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848 refs = btrfs_extent_refs(leaf, ei);
1849 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850 refs += refs_to_mod;
1851 btrfs_set_extent_refs(leaf, ei, refs);
1852 if (extent_op)
1853 __run_delayed_extent_op(extent_op, leaf, ei);
1854
1855 type = btrfs_extent_inline_ref_type(leaf, iref);
1856
1857 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859 refs = btrfs_extent_data_ref_count(leaf, dref);
1860 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862 refs = btrfs_shared_data_ref_count(leaf, sref);
1863 } else {
1864 refs = 1;
1865 BUG_ON(refs_to_mod != -1);
1866 }
1867
1868 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869 refs += refs_to_mod;
1870
1871 if (refs > 0) {
1872 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1874 else
1875 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1876 } else {
1877 *last_ref = 1;
1878 size = btrfs_extent_inline_ref_size(type);
1879 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880 ptr = (unsigned long)iref;
1881 end = (unsigned long)ei + item_size;
1882 if (ptr + size < end)
1883 memmove_extent_buffer(leaf, ptr, ptr + size,
1884 end - ptr - size);
1885 item_size -= size;
1886 btrfs_truncate_item(root, path, item_size, 1);
1887 }
1888 btrfs_mark_buffer_dirty(leaf);
1889 }
1890
1891 static noinline_for_stack
1892 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *root,
1894 struct btrfs_path *path,
1895 u64 bytenr, u64 num_bytes, u64 parent,
1896 u64 root_objectid, u64 owner,
1897 u64 offset, int refs_to_add,
1898 struct btrfs_delayed_extent_op *extent_op)
1899 {
1900 struct btrfs_extent_inline_ref *iref;
1901 int ret;
1902
1903 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1904 bytenr, num_bytes, parent,
1905 root_objectid, owner, offset, 1);
1906 if (ret == 0) {
1907 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1908 update_inline_extent_backref(root, path, iref,
1909 refs_to_add, extent_op, NULL);
1910 } else if (ret == -ENOENT) {
1911 setup_inline_extent_backref(root, path, iref, parent,
1912 root_objectid, owner, offset,
1913 refs_to_add, extent_op);
1914 ret = 0;
1915 }
1916 return ret;
1917 }
1918
1919 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1920 struct btrfs_root *root,
1921 struct btrfs_path *path,
1922 u64 bytenr, u64 parent, u64 root_objectid,
1923 u64 owner, u64 offset, int refs_to_add)
1924 {
1925 int ret;
1926 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927 BUG_ON(refs_to_add != 1);
1928 ret = insert_tree_block_ref(trans, root, path, bytenr,
1929 parent, root_objectid);
1930 } else {
1931 ret = insert_extent_data_ref(trans, root, path, bytenr,
1932 parent, root_objectid,
1933 owner, offset, refs_to_add);
1934 }
1935 return ret;
1936 }
1937
1938 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1939 struct btrfs_root *root,
1940 struct btrfs_path *path,
1941 struct btrfs_extent_inline_ref *iref,
1942 int refs_to_drop, int is_data, int *last_ref)
1943 {
1944 int ret = 0;
1945
1946 BUG_ON(!is_data && refs_to_drop != 1);
1947 if (iref) {
1948 update_inline_extent_backref(root, path, iref,
1949 -refs_to_drop, NULL, last_ref);
1950 } else if (is_data) {
1951 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1952 last_ref);
1953 } else {
1954 *last_ref = 1;
1955 ret = btrfs_del_item(trans, root, path);
1956 }
1957 return ret;
1958 }
1959
1960 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1961 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962 u64 *discarded_bytes)
1963 {
1964 int j, ret = 0;
1965 u64 bytes_left, end;
1966 u64 aligned_start = ALIGN(start, 1 << 9);
1967
1968 if (WARN_ON(start != aligned_start)) {
1969 len -= aligned_start - start;
1970 len = round_down(len, 1 << 9);
1971 start = aligned_start;
1972 }
1973
1974 *discarded_bytes = 0;
1975
1976 if (!len)
1977 return 0;
1978
1979 end = start + len;
1980 bytes_left = len;
1981
1982 /* Skip any superblocks on this device. */
1983 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984 u64 sb_start = btrfs_sb_offset(j);
1985 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986 u64 size = sb_start - start;
1987
1988 if (!in_range(sb_start, start, bytes_left) &&
1989 !in_range(sb_end, start, bytes_left) &&
1990 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1991 continue;
1992
1993 /*
1994 * Superblock spans beginning of range. Adjust start and
1995 * try again.
1996 */
1997 if (sb_start <= start) {
1998 start += sb_end - start;
1999 if (start > end) {
2000 bytes_left = 0;
2001 break;
2002 }
2003 bytes_left = end - start;
2004 continue;
2005 }
2006
2007 if (size) {
2008 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2009 GFP_NOFS, 0);
2010 if (!ret)
2011 *discarded_bytes += size;
2012 else if (ret != -EOPNOTSUPP)
2013 return ret;
2014 }
2015
2016 start = sb_end;
2017 if (start > end) {
2018 bytes_left = 0;
2019 break;
2020 }
2021 bytes_left = end - start;
2022 }
2023
2024 if (bytes_left) {
2025 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2026 GFP_NOFS, 0);
2027 if (!ret)
2028 *discarded_bytes += bytes_left;
2029 }
2030 return ret;
2031 }
2032
2033 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2034 u64 num_bytes, u64 *actual_bytes)
2035 {
2036 int ret;
2037 u64 discarded_bytes = 0;
2038 struct btrfs_bio *bbio = NULL;
2039
2040
2041 /*
2042 * Avoid races with device replace and make sure our bbio has devices
2043 * associated to its stripes that don't go away while we are discarding.
2044 */
2045 btrfs_bio_counter_inc_blocked(root->fs_info);
2046 /* Tell the block device(s) that the sectors can be discarded */
2047 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
2048 bytenr, &num_bytes, &bbio, 0);
2049 /* Error condition is -ENOMEM */
2050 if (!ret) {
2051 struct btrfs_bio_stripe *stripe = bbio->stripes;
2052 int i;
2053
2054
2055 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2056 u64 bytes;
2057 if (!stripe->dev->can_discard)
2058 continue;
2059
2060 ret = btrfs_issue_discard(stripe->dev->bdev,
2061 stripe->physical,
2062 stripe->length,
2063 &bytes);
2064 if (!ret)
2065 discarded_bytes += bytes;
2066 else if (ret != -EOPNOTSUPP)
2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2068
2069 /*
2070 * Just in case we get back EOPNOTSUPP for some reason,
2071 * just ignore the return value so we don't screw up
2072 * people calling discard_extent.
2073 */
2074 ret = 0;
2075 }
2076 btrfs_put_bbio(bbio);
2077 }
2078 btrfs_bio_counter_dec(root->fs_info);
2079
2080 if (actual_bytes)
2081 *actual_bytes = discarded_bytes;
2082
2083
2084 if (ret == -EOPNOTSUPP)
2085 ret = 0;
2086 return ret;
2087 }
2088
2089 /* Can return -ENOMEM */
2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 u64 bytenr, u64 num_bytes, u64 parent,
2093 u64 root_objectid, u64 owner, u64 offset)
2094 {
2095 int ret;
2096 struct btrfs_fs_info *fs_info = root->fs_info;
2097
2098 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2099 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2100
2101 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2102 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2103 num_bytes,
2104 parent, root_objectid, (int)owner,
2105 BTRFS_ADD_DELAYED_REF, NULL);
2106 } else {
2107 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2108 num_bytes, parent, root_objectid,
2109 owner, offset, 0,
2110 BTRFS_ADD_DELAYED_REF, NULL);
2111 }
2112 return ret;
2113 }
2114
2115 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2116 struct btrfs_root *root,
2117 struct btrfs_delayed_ref_node *node,
2118 u64 parent, u64 root_objectid,
2119 u64 owner, u64 offset, int refs_to_add,
2120 struct btrfs_delayed_extent_op *extent_op)
2121 {
2122 struct btrfs_fs_info *fs_info = root->fs_info;
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 struct btrfs_extent_item *item;
2126 struct btrfs_key key;
2127 u64 bytenr = node->bytenr;
2128 u64 num_bytes = node->num_bytes;
2129 u64 refs;
2130 int ret;
2131
2132 path = btrfs_alloc_path();
2133 if (!path)
2134 return -ENOMEM;
2135
2136 path->reada = READA_FORWARD;
2137 path->leave_spinning = 1;
2138 /* this will setup the path even if it fails to insert the back ref */
2139 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2140 bytenr, num_bytes, parent,
2141 root_objectid, owner, offset,
2142 refs_to_add, extent_op);
2143 if ((ret < 0 && ret != -EAGAIN) || !ret)
2144 goto out;
2145
2146 /*
2147 * Ok we had -EAGAIN which means we didn't have space to insert and
2148 * inline extent ref, so just update the reference count and add a
2149 * normal backref.
2150 */
2151 leaf = path->nodes[0];
2152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2153 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2154 refs = btrfs_extent_refs(leaf, item);
2155 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2156 if (extent_op)
2157 __run_delayed_extent_op(extent_op, leaf, item);
2158
2159 btrfs_mark_buffer_dirty(leaf);
2160 btrfs_release_path(path);
2161
2162 path->reada = READA_FORWARD;
2163 path->leave_spinning = 1;
2164 /* now insert the actual backref */
2165 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2166 path, bytenr, parent, root_objectid,
2167 owner, offset, refs_to_add);
2168 if (ret)
2169 btrfs_abort_transaction(trans, ret);
2170 out:
2171 btrfs_free_path(path);
2172 return ret;
2173 }
2174
2175 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root,
2177 struct btrfs_delayed_ref_node *node,
2178 struct btrfs_delayed_extent_op *extent_op,
2179 int insert_reserved)
2180 {
2181 int ret = 0;
2182 struct btrfs_delayed_data_ref *ref;
2183 struct btrfs_key ins;
2184 u64 parent = 0;
2185 u64 ref_root = 0;
2186 u64 flags = 0;
2187
2188 ins.objectid = node->bytenr;
2189 ins.offset = node->num_bytes;
2190 ins.type = BTRFS_EXTENT_ITEM_KEY;
2191
2192 ref = btrfs_delayed_node_to_data_ref(node);
2193 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
2194
2195 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2196 parent = ref->parent;
2197 ref_root = ref->root;
2198
2199 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2200 if (extent_op)
2201 flags |= extent_op->flags_to_set;
2202 ret = alloc_reserved_file_extent(trans, root,
2203 parent, ref_root, flags,
2204 ref->objectid, ref->offset,
2205 &ins, node->ref_mod);
2206 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2207 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2208 ref_root, ref->objectid,
2209 ref->offset, node->ref_mod,
2210 extent_op);
2211 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2212 ret = __btrfs_free_extent(trans, root, node, parent,
2213 ref_root, ref->objectid,
2214 ref->offset, node->ref_mod,
2215 extent_op);
2216 } else {
2217 BUG();
2218 }
2219 return ret;
2220 }
2221
2222 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2223 struct extent_buffer *leaf,
2224 struct btrfs_extent_item *ei)
2225 {
2226 u64 flags = btrfs_extent_flags(leaf, ei);
2227 if (extent_op->update_flags) {
2228 flags |= extent_op->flags_to_set;
2229 btrfs_set_extent_flags(leaf, ei, flags);
2230 }
2231
2232 if (extent_op->update_key) {
2233 struct btrfs_tree_block_info *bi;
2234 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2235 bi = (struct btrfs_tree_block_info *)(ei + 1);
2236 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2237 }
2238 }
2239
2240 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2241 struct btrfs_root *root,
2242 struct btrfs_delayed_ref_node *node,
2243 struct btrfs_delayed_extent_op *extent_op)
2244 {
2245 struct btrfs_key key;
2246 struct btrfs_path *path;
2247 struct btrfs_extent_item *ei;
2248 struct extent_buffer *leaf;
2249 u32 item_size;
2250 int ret;
2251 int err = 0;
2252 int metadata = !extent_op->is_data;
2253
2254 if (trans->aborted)
2255 return 0;
2256
2257 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2258 metadata = 0;
2259
2260 path = btrfs_alloc_path();
2261 if (!path)
2262 return -ENOMEM;
2263
2264 key.objectid = node->bytenr;
2265
2266 if (metadata) {
2267 key.type = BTRFS_METADATA_ITEM_KEY;
2268 key.offset = extent_op->level;
2269 } else {
2270 key.type = BTRFS_EXTENT_ITEM_KEY;
2271 key.offset = node->num_bytes;
2272 }
2273
2274 again:
2275 path->reada = READA_FORWARD;
2276 path->leave_spinning = 1;
2277 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2278 path, 0, 1);
2279 if (ret < 0) {
2280 err = ret;
2281 goto out;
2282 }
2283 if (ret > 0) {
2284 if (metadata) {
2285 if (path->slots[0] > 0) {
2286 path->slots[0]--;
2287 btrfs_item_key_to_cpu(path->nodes[0], &key,
2288 path->slots[0]);
2289 if (key.objectid == node->bytenr &&
2290 key.type == BTRFS_EXTENT_ITEM_KEY &&
2291 key.offset == node->num_bytes)
2292 ret = 0;
2293 }
2294 if (ret > 0) {
2295 btrfs_release_path(path);
2296 metadata = 0;
2297
2298 key.objectid = node->bytenr;
2299 key.offset = node->num_bytes;
2300 key.type = BTRFS_EXTENT_ITEM_KEY;
2301 goto again;
2302 }
2303 } else {
2304 err = -EIO;
2305 goto out;
2306 }
2307 }
2308
2309 leaf = path->nodes[0];
2310 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2311 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2312 if (item_size < sizeof(*ei)) {
2313 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2314 path, (u64)-1, 0);
2315 if (ret < 0) {
2316 err = ret;
2317 goto out;
2318 }
2319 leaf = path->nodes[0];
2320 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2321 }
2322 #endif
2323 BUG_ON(item_size < sizeof(*ei));
2324 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2325 __run_delayed_extent_op(extent_op, leaf, ei);
2326
2327 btrfs_mark_buffer_dirty(leaf);
2328 out:
2329 btrfs_free_path(path);
2330 return err;
2331 }
2332
2333 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2334 struct btrfs_root *root,
2335 struct btrfs_delayed_ref_node *node,
2336 struct btrfs_delayed_extent_op *extent_op,
2337 int insert_reserved)
2338 {
2339 int ret = 0;
2340 struct btrfs_delayed_tree_ref *ref;
2341 struct btrfs_key ins;
2342 u64 parent = 0;
2343 u64 ref_root = 0;
2344 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2345 SKINNY_METADATA);
2346
2347 ref = btrfs_delayed_node_to_tree_ref(node);
2348 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
2349
2350 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2351 parent = ref->parent;
2352 ref_root = ref->root;
2353
2354 ins.objectid = node->bytenr;
2355 if (skinny_metadata) {
2356 ins.offset = ref->level;
2357 ins.type = BTRFS_METADATA_ITEM_KEY;
2358 } else {
2359 ins.offset = node->num_bytes;
2360 ins.type = BTRFS_EXTENT_ITEM_KEY;
2361 }
2362
2363 BUG_ON(node->ref_mod != 1);
2364 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2365 BUG_ON(!extent_op || !extent_op->update_flags);
2366 ret = alloc_reserved_tree_block(trans, root,
2367 parent, ref_root,
2368 extent_op->flags_to_set,
2369 &extent_op->key,
2370 ref->level, &ins);
2371 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2372 ret = __btrfs_inc_extent_ref(trans, root, node,
2373 parent, ref_root,
2374 ref->level, 0, 1,
2375 extent_op);
2376 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2377 ret = __btrfs_free_extent(trans, root, node,
2378 parent, ref_root,
2379 ref->level, 0, 1, extent_op);
2380 } else {
2381 BUG();
2382 }
2383 return ret;
2384 }
2385
2386 /* helper function to actually process a single delayed ref entry */
2387 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2388 struct btrfs_root *root,
2389 struct btrfs_delayed_ref_node *node,
2390 struct btrfs_delayed_extent_op *extent_op,
2391 int insert_reserved)
2392 {
2393 int ret = 0;
2394
2395 if (trans->aborted) {
2396 if (insert_reserved)
2397 btrfs_pin_extent(root, node->bytenr,
2398 node->num_bytes, 1);
2399 return 0;
2400 }
2401
2402 if (btrfs_delayed_ref_is_head(node)) {
2403 struct btrfs_delayed_ref_head *head;
2404 /*
2405 * we've hit the end of the chain and we were supposed
2406 * to insert this extent into the tree. But, it got
2407 * deleted before we ever needed to insert it, so all
2408 * we have to do is clean up the accounting
2409 */
2410 BUG_ON(extent_op);
2411 head = btrfs_delayed_node_to_head(node);
2412 trace_run_delayed_ref_head(root->fs_info, node, head,
2413 node->action);
2414
2415 if (insert_reserved) {
2416 btrfs_pin_extent(root, node->bytenr,
2417 node->num_bytes, 1);
2418 if (head->is_data) {
2419 ret = btrfs_del_csums(trans, root,
2420 node->bytenr,
2421 node->num_bytes);
2422 }
2423 }
2424
2425 /* Also free its reserved qgroup space */
2426 btrfs_qgroup_free_delayed_ref(root->fs_info,
2427 head->qgroup_ref_root,
2428 head->qgroup_reserved);
2429 return ret;
2430 }
2431
2432 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2433 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2434 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2435 insert_reserved);
2436 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2437 node->type == BTRFS_SHARED_DATA_REF_KEY)
2438 ret = run_delayed_data_ref(trans, root, node, extent_op,
2439 insert_reserved);
2440 else
2441 BUG();
2442 return ret;
2443 }
2444
2445 static inline struct btrfs_delayed_ref_node *
2446 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2447 {
2448 struct btrfs_delayed_ref_node *ref;
2449
2450 if (list_empty(&head->ref_list))
2451 return NULL;
2452
2453 /*
2454 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2455 * This is to prevent a ref count from going down to zero, which deletes
2456 * the extent item from the extent tree, when there still are references
2457 * to add, which would fail because they would not find the extent item.
2458 */
2459 list_for_each_entry(ref, &head->ref_list, list) {
2460 if (ref->action == BTRFS_ADD_DELAYED_REF)
2461 return ref;
2462 }
2463
2464 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2465 list);
2466 }
2467
2468 /*
2469 * Returns 0 on success or if called with an already aborted transaction.
2470 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2471 */
2472 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2473 struct btrfs_root *root,
2474 unsigned long nr)
2475 {
2476 struct btrfs_delayed_ref_root *delayed_refs;
2477 struct btrfs_delayed_ref_node *ref;
2478 struct btrfs_delayed_ref_head *locked_ref = NULL;
2479 struct btrfs_delayed_extent_op *extent_op;
2480 struct btrfs_fs_info *fs_info = root->fs_info;
2481 ktime_t start = ktime_get();
2482 int ret;
2483 unsigned long count = 0;
2484 unsigned long actual_count = 0;
2485 int must_insert_reserved = 0;
2486
2487 delayed_refs = &trans->transaction->delayed_refs;
2488 while (1) {
2489 if (!locked_ref) {
2490 if (count >= nr)
2491 break;
2492
2493 spin_lock(&delayed_refs->lock);
2494 locked_ref = btrfs_select_ref_head(trans);
2495 if (!locked_ref) {
2496 spin_unlock(&delayed_refs->lock);
2497 break;
2498 }
2499
2500 /* grab the lock that says we are going to process
2501 * all the refs for this head */
2502 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2503 spin_unlock(&delayed_refs->lock);
2504 /*
2505 * we may have dropped the spin lock to get the head
2506 * mutex lock, and that might have given someone else
2507 * time to free the head. If that's true, it has been
2508 * removed from our list and we can move on.
2509 */
2510 if (ret == -EAGAIN) {
2511 locked_ref = NULL;
2512 count++;
2513 continue;
2514 }
2515 }
2516
2517 /*
2518 * We need to try and merge add/drops of the same ref since we
2519 * can run into issues with relocate dropping the implicit ref
2520 * and then it being added back again before the drop can
2521 * finish. If we merged anything we need to re-loop so we can
2522 * get a good ref.
2523 * Or we can get node references of the same type that weren't
2524 * merged when created due to bumps in the tree mod seq, and
2525 * we need to merge them to prevent adding an inline extent
2526 * backref before dropping it (triggering a BUG_ON at
2527 * insert_inline_extent_backref()).
2528 */
2529 spin_lock(&locked_ref->lock);
2530 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2531 locked_ref);
2532
2533 /*
2534 * locked_ref is the head node, so we have to go one
2535 * node back for any delayed ref updates
2536 */
2537 ref = select_delayed_ref(locked_ref);
2538
2539 if (ref && ref->seq &&
2540 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2541 spin_unlock(&locked_ref->lock);
2542 btrfs_delayed_ref_unlock(locked_ref);
2543 spin_lock(&delayed_refs->lock);
2544 locked_ref->processing = 0;
2545 delayed_refs->num_heads_ready++;
2546 spin_unlock(&delayed_refs->lock);
2547 locked_ref = NULL;
2548 cond_resched();
2549 count++;
2550 continue;
2551 }
2552
2553 /*
2554 * record the must insert reserved flag before we
2555 * drop the spin lock.
2556 */
2557 must_insert_reserved = locked_ref->must_insert_reserved;
2558 locked_ref->must_insert_reserved = 0;
2559
2560 extent_op = locked_ref->extent_op;
2561 locked_ref->extent_op = NULL;
2562
2563 if (!ref) {
2564
2565
2566 /* All delayed refs have been processed, Go ahead
2567 * and send the head node to run_one_delayed_ref,
2568 * so that any accounting fixes can happen
2569 */
2570 ref = &locked_ref->node;
2571
2572 if (extent_op && must_insert_reserved) {
2573 btrfs_free_delayed_extent_op(extent_op);
2574 extent_op = NULL;
2575 }
2576
2577 if (extent_op) {
2578 spin_unlock(&locked_ref->lock);
2579 ret = run_delayed_extent_op(trans, root,
2580 ref, extent_op);
2581 btrfs_free_delayed_extent_op(extent_op);
2582
2583 if (ret) {
2584 /*
2585 * Need to reset must_insert_reserved if
2586 * there was an error so the abort stuff
2587 * can cleanup the reserved space
2588 * properly.
2589 */
2590 if (must_insert_reserved)
2591 locked_ref->must_insert_reserved = 1;
2592 locked_ref->processing = 0;
2593 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2594 btrfs_delayed_ref_unlock(locked_ref);
2595 return ret;
2596 }
2597 continue;
2598 }
2599
2600 /*
2601 * Need to drop our head ref lock and re-acquire the
2602 * delayed ref lock and then re-check to make sure
2603 * nobody got added.
2604 */
2605 spin_unlock(&locked_ref->lock);
2606 spin_lock(&delayed_refs->lock);
2607 spin_lock(&locked_ref->lock);
2608 if (!list_empty(&locked_ref->ref_list) ||
2609 locked_ref->extent_op) {
2610 spin_unlock(&locked_ref->lock);
2611 spin_unlock(&delayed_refs->lock);
2612 continue;
2613 }
2614 ref->in_tree = 0;
2615 delayed_refs->num_heads--;
2616 rb_erase(&locked_ref->href_node,
2617 &delayed_refs->href_root);
2618 spin_unlock(&delayed_refs->lock);
2619 } else {
2620 actual_count++;
2621 ref->in_tree = 0;
2622 list_del(&ref->list);
2623 }
2624 atomic_dec(&delayed_refs->num_entries);
2625
2626 if (!btrfs_delayed_ref_is_head(ref)) {
2627 /*
2628 * when we play the delayed ref, also correct the
2629 * ref_mod on head
2630 */
2631 switch (ref->action) {
2632 case BTRFS_ADD_DELAYED_REF:
2633 case BTRFS_ADD_DELAYED_EXTENT:
2634 locked_ref->node.ref_mod -= ref->ref_mod;
2635 break;
2636 case BTRFS_DROP_DELAYED_REF:
2637 locked_ref->node.ref_mod += ref->ref_mod;
2638 break;
2639 default:
2640 WARN_ON(1);
2641 }
2642 }
2643 spin_unlock(&locked_ref->lock);
2644
2645 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2646 must_insert_reserved);
2647
2648 btrfs_free_delayed_extent_op(extent_op);
2649 if (ret) {
2650 spin_lock(&delayed_refs->lock);
2651 locked_ref->processing = 0;
2652 delayed_refs->num_heads_ready++;
2653 spin_unlock(&delayed_refs->lock);
2654 btrfs_delayed_ref_unlock(locked_ref);
2655 btrfs_put_delayed_ref(ref);
2656 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2657 return ret;
2658 }
2659
2660 /*
2661 * If this node is a head, that means all the refs in this head
2662 * have been dealt with, and we will pick the next head to deal
2663 * with, so we must unlock the head and drop it from the cluster
2664 * list before we release it.
2665 */
2666 if (btrfs_delayed_ref_is_head(ref)) {
2667 if (locked_ref->is_data &&
2668 locked_ref->total_ref_mod < 0) {
2669 spin_lock(&delayed_refs->lock);
2670 delayed_refs->pending_csums -= ref->num_bytes;
2671 spin_unlock(&delayed_refs->lock);
2672 }
2673 btrfs_delayed_ref_unlock(locked_ref);
2674 locked_ref = NULL;
2675 }
2676 btrfs_put_delayed_ref(ref);
2677 count++;
2678 cond_resched();
2679 }
2680
2681 /*
2682 * We don't want to include ref heads since we can have empty ref heads
2683 * and those will drastically skew our runtime down since we just do
2684 * accounting, no actual extent tree updates.
2685 */
2686 if (actual_count > 0) {
2687 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688 u64 avg;
2689
2690 /*
2691 * We weigh the current average higher than our current runtime
2692 * to avoid large swings in the average.
2693 */
2694 spin_lock(&delayed_refs->lock);
2695 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2696 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2697 spin_unlock(&delayed_refs->lock);
2698 }
2699 return 0;
2700 }
2701
2702 #ifdef SCRAMBLE_DELAYED_REFS
2703 /*
2704 * Normally delayed refs get processed in ascending bytenr order. This
2705 * correlates in most cases to the order added. To expose dependencies on this
2706 * order, we start to process the tree in the middle instead of the beginning
2707 */
2708 static u64 find_middle(struct rb_root *root)
2709 {
2710 struct rb_node *n = root->rb_node;
2711 struct btrfs_delayed_ref_node *entry;
2712 int alt = 1;
2713 u64 middle;
2714 u64 first = 0, last = 0;
2715
2716 n = rb_first(root);
2717 if (n) {
2718 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 first = entry->bytenr;
2720 }
2721 n = rb_last(root);
2722 if (n) {
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 last = entry->bytenr;
2725 }
2726 n = root->rb_node;
2727
2728 while (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 WARN_ON(!entry->in_tree);
2731
2732 middle = entry->bytenr;
2733
2734 if (alt)
2735 n = n->rb_left;
2736 else
2737 n = n->rb_right;
2738
2739 alt = 1 - alt;
2740 }
2741 return middle;
2742 }
2743 #endif
2744
2745 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746 {
2747 u64 num_bytes;
2748
2749 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750 sizeof(struct btrfs_extent_inline_ref));
2751 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2753
2754 /*
2755 * We don't ever fill up leaves all the way so multiply by 2 just to be
2756 * closer to what we're really going to want to use.
2757 */
2758 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2759 }
2760
2761 /*
2762 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763 * would require to store the csums for that many bytes.
2764 */
2765 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2766 {
2767 u64 csum_size;
2768 u64 num_csums_per_leaf;
2769 u64 num_csums;
2770
2771 csum_size = BTRFS_MAX_ITEM_SIZE(root);
2772 num_csums_per_leaf = div64_u64(csum_size,
2773 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774 num_csums = div64_u64(csum_bytes, root->sectorsize);
2775 num_csums += num_csums_per_leaf - 1;
2776 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777 return num_csums;
2778 }
2779
2780 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2781 struct btrfs_root *root)
2782 {
2783 struct btrfs_block_rsv *global_rsv;
2784 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2785 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2786 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787 u64 num_bytes, num_dirty_bgs_bytes;
2788 int ret = 0;
2789
2790 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791 num_heads = heads_to_leaves(root, num_heads);
2792 if (num_heads > 1)
2793 num_bytes += (num_heads - 1) * root->nodesize;
2794 num_bytes <<= 1;
2795 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2796 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2797 num_dirty_bgs);
2798 global_rsv = &root->fs_info->global_block_rsv;
2799
2800 /*
2801 * If we can't allocate any more chunks lets make sure we have _lots_ of
2802 * wiggle room since running delayed refs can create more delayed refs.
2803 */
2804 if (global_rsv->space_info->full) {
2805 num_dirty_bgs_bytes <<= 1;
2806 num_bytes <<= 1;
2807 }
2808
2809 spin_lock(&global_rsv->lock);
2810 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2811 ret = 1;
2812 spin_unlock(&global_rsv->lock);
2813 return ret;
2814 }
2815
2816 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817 struct btrfs_root *root)
2818 {
2819 struct btrfs_fs_info *fs_info = root->fs_info;
2820 u64 num_entries =
2821 atomic_read(&trans->transaction->delayed_refs.num_entries);
2822 u64 avg_runtime;
2823 u64 val;
2824
2825 smp_mb();
2826 avg_runtime = fs_info->avg_delayed_ref_runtime;
2827 val = num_entries * avg_runtime;
2828 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2829 return 1;
2830 if (val >= NSEC_PER_SEC / 2)
2831 return 2;
2832
2833 return btrfs_check_space_for_delayed_refs(trans, root);
2834 }
2835
2836 struct async_delayed_refs {
2837 struct btrfs_root *root;
2838 u64 transid;
2839 int count;
2840 int error;
2841 int sync;
2842 struct completion wait;
2843 struct btrfs_work work;
2844 };
2845
2846 static void delayed_ref_async_start(struct btrfs_work *work)
2847 {
2848 struct async_delayed_refs *async;
2849 struct btrfs_trans_handle *trans;
2850 int ret;
2851
2852 async = container_of(work, struct async_delayed_refs, work);
2853
2854 /* if the commit is already started, we don't need to wait here */
2855 if (btrfs_transaction_blocked(async->root->fs_info))
2856 goto done;
2857
2858 trans = btrfs_join_transaction(async->root);
2859 if (IS_ERR(trans)) {
2860 async->error = PTR_ERR(trans);
2861 goto done;
2862 }
2863
2864 /*
2865 * trans->sync means that when we call end_transaction, we won't
2866 * wait on delayed refs
2867 */
2868 trans->sync = true;
2869
2870 /* Don't bother flushing if we got into a different transaction */
2871 if (trans->transid > async->transid)
2872 goto end;
2873
2874 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2875 if (ret)
2876 async->error = ret;
2877 end:
2878 ret = btrfs_end_transaction(trans, async->root);
2879 if (ret && !async->error)
2880 async->error = ret;
2881 done:
2882 if (async->sync)
2883 complete(&async->wait);
2884 else
2885 kfree(async);
2886 }
2887
2888 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2889 unsigned long count, u64 transid, int wait)
2890 {
2891 struct async_delayed_refs *async;
2892 int ret;
2893
2894 async = kmalloc(sizeof(*async), GFP_NOFS);
2895 if (!async)
2896 return -ENOMEM;
2897
2898 async->root = root->fs_info->tree_root;
2899 async->count = count;
2900 async->error = 0;
2901 async->transid = transid;
2902 if (wait)
2903 async->sync = 1;
2904 else
2905 async->sync = 0;
2906 init_completion(&async->wait);
2907
2908 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2909 delayed_ref_async_start, NULL, NULL);
2910
2911 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2912
2913 if (wait) {
2914 wait_for_completion(&async->wait);
2915 ret = async->error;
2916 kfree(async);
2917 return ret;
2918 }
2919 return 0;
2920 }
2921
2922 /*
2923 * this starts processing the delayed reference count updates and
2924 * extent insertions we have queued up so far. count can be
2925 * 0, which means to process everything in the tree at the start
2926 * of the run (but not newly added entries), or it can be some target
2927 * number you'd like to process.
2928 *
2929 * Returns 0 on success or if called with an aborted transaction
2930 * Returns <0 on error and aborts the transaction
2931 */
2932 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root, unsigned long count)
2934 {
2935 struct rb_node *node;
2936 struct btrfs_delayed_ref_root *delayed_refs;
2937 struct btrfs_delayed_ref_head *head;
2938 int ret;
2939 int run_all = count == (unsigned long)-1;
2940 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2941
2942 /* We'll clean this up in btrfs_cleanup_transaction */
2943 if (trans->aborted)
2944 return 0;
2945
2946 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &root->fs_info->flags))
2947 return 0;
2948
2949 if (root == root->fs_info->extent_root)
2950 root = root->fs_info->tree_root;
2951
2952 delayed_refs = &trans->transaction->delayed_refs;
2953 if (count == 0)
2954 count = atomic_read(&delayed_refs->num_entries) * 2;
2955
2956 again:
2957 #ifdef SCRAMBLE_DELAYED_REFS
2958 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2959 #endif
2960 trans->can_flush_pending_bgs = false;
2961 ret = __btrfs_run_delayed_refs(trans, root, count);
2962 if (ret < 0) {
2963 btrfs_abort_transaction(trans, ret);
2964 return ret;
2965 }
2966
2967 if (run_all) {
2968 if (!list_empty(&trans->new_bgs))
2969 btrfs_create_pending_block_groups(trans, root);
2970
2971 spin_lock(&delayed_refs->lock);
2972 node = rb_first(&delayed_refs->href_root);
2973 if (!node) {
2974 spin_unlock(&delayed_refs->lock);
2975 goto out;
2976 }
2977 count = (unsigned long)-1;
2978
2979 while (node) {
2980 head = rb_entry(node, struct btrfs_delayed_ref_head,
2981 href_node);
2982 if (btrfs_delayed_ref_is_head(&head->node)) {
2983 struct btrfs_delayed_ref_node *ref;
2984
2985 ref = &head->node;
2986 atomic_inc(&ref->refs);
2987
2988 spin_unlock(&delayed_refs->lock);
2989 /*
2990 * Mutex was contended, block until it's
2991 * released and try again
2992 */
2993 mutex_lock(&head->mutex);
2994 mutex_unlock(&head->mutex);
2995
2996 btrfs_put_delayed_ref(ref);
2997 cond_resched();
2998 goto again;
2999 } else {
3000 WARN_ON(1);
3001 }
3002 node = rb_next(node);
3003 }
3004 spin_unlock(&delayed_refs->lock);
3005 cond_resched();
3006 goto again;
3007 }
3008 out:
3009 assert_qgroups_uptodate(trans);
3010 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3011 return 0;
3012 }
3013
3014 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3015 struct btrfs_root *root,
3016 u64 bytenr, u64 num_bytes, u64 flags,
3017 int level, int is_data)
3018 {
3019 struct btrfs_delayed_extent_op *extent_op;
3020 int ret;
3021
3022 extent_op = btrfs_alloc_delayed_extent_op();
3023 if (!extent_op)
3024 return -ENOMEM;
3025
3026 extent_op->flags_to_set = flags;
3027 extent_op->update_flags = true;
3028 extent_op->update_key = false;
3029 extent_op->is_data = is_data ? true : false;
3030 extent_op->level = level;
3031
3032 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3033 num_bytes, extent_op);
3034 if (ret)
3035 btrfs_free_delayed_extent_op(extent_op);
3036 return ret;
3037 }
3038
3039 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3040 struct btrfs_root *root,
3041 struct btrfs_path *path,
3042 u64 objectid, u64 offset, u64 bytenr)
3043 {
3044 struct btrfs_delayed_ref_head *head;
3045 struct btrfs_delayed_ref_node *ref;
3046 struct btrfs_delayed_data_ref *data_ref;
3047 struct btrfs_delayed_ref_root *delayed_refs;
3048 int ret = 0;
3049
3050 delayed_refs = &trans->transaction->delayed_refs;
3051 spin_lock(&delayed_refs->lock);
3052 head = btrfs_find_delayed_ref_head(trans, bytenr);
3053 if (!head) {
3054 spin_unlock(&delayed_refs->lock);
3055 return 0;
3056 }
3057
3058 if (!mutex_trylock(&head->mutex)) {
3059 atomic_inc(&head->node.refs);
3060 spin_unlock(&delayed_refs->lock);
3061
3062 btrfs_release_path(path);
3063
3064 /*
3065 * Mutex was contended, block until it's released and let
3066 * caller try again
3067 */
3068 mutex_lock(&head->mutex);
3069 mutex_unlock(&head->mutex);
3070 btrfs_put_delayed_ref(&head->node);
3071 return -EAGAIN;
3072 }
3073 spin_unlock(&delayed_refs->lock);
3074
3075 spin_lock(&head->lock);
3076 list_for_each_entry(ref, &head->ref_list, list) {
3077 /* If it's a shared ref we know a cross reference exists */
3078 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3079 ret = 1;
3080 break;
3081 }
3082
3083 data_ref = btrfs_delayed_node_to_data_ref(ref);
3084
3085 /*
3086 * If our ref doesn't match the one we're currently looking at
3087 * then we have a cross reference.
3088 */
3089 if (data_ref->root != root->root_key.objectid ||
3090 data_ref->objectid != objectid ||
3091 data_ref->offset != offset) {
3092 ret = 1;
3093 break;
3094 }
3095 }
3096 spin_unlock(&head->lock);
3097 mutex_unlock(&head->mutex);
3098 return ret;
3099 }
3100
3101 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3102 struct btrfs_root *root,
3103 struct btrfs_path *path,
3104 u64 objectid, u64 offset, u64 bytenr)
3105 {
3106 struct btrfs_root *extent_root = root->fs_info->extent_root;
3107 struct extent_buffer *leaf;
3108 struct btrfs_extent_data_ref *ref;
3109 struct btrfs_extent_inline_ref *iref;
3110 struct btrfs_extent_item *ei;
3111 struct btrfs_key key;
3112 u32 item_size;
3113 int ret;
3114
3115 key.objectid = bytenr;
3116 key.offset = (u64)-1;
3117 key.type = BTRFS_EXTENT_ITEM_KEY;
3118
3119 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3120 if (ret < 0)
3121 goto out;
3122 BUG_ON(ret == 0); /* Corruption */
3123
3124 ret = -ENOENT;
3125 if (path->slots[0] == 0)
3126 goto out;
3127
3128 path->slots[0]--;
3129 leaf = path->nodes[0];
3130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3131
3132 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3133 goto out;
3134
3135 ret = 1;
3136 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138 if (item_size < sizeof(*ei)) {
3139 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140 goto out;
3141 }
3142 #endif
3143 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3144
3145 if (item_size != sizeof(*ei) +
3146 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3147 goto out;
3148
3149 if (btrfs_extent_generation(leaf, ei) <=
3150 btrfs_root_last_snapshot(&root->root_item))
3151 goto out;
3152
3153 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155 BTRFS_EXTENT_DATA_REF_KEY)
3156 goto out;
3157
3158 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159 if (btrfs_extent_refs(leaf, ei) !=
3160 btrfs_extent_data_ref_count(leaf, ref) ||
3161 btrfs_extent_data_ref_root(leaf, ref) !=
3162 root->root_key.objectid ||
3163 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3165 goto out;
3166
3167 ret = 0;
3168 out:
3169 return ret;
3170 }
3171
3172 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3173 struct btrfs_root *root,
3174 u64 objectid, u64 offset, u64 bytenr)
3175 {
3176 struct btrfs_path *path;
3177 int ret;
3178 int ret2;
3179
3180 path = btrfs_alloc_path();
3181 if (!path)
3182 return -ENOENT;
3183
3184 do {
3185 ret = check_committed_ref(trans, root, path, objectid,
3186 offset, bytenr);
3187 if (ret && ret != -ENOENT)
3188 goto out;
3189
3190 ret2 = check_delayed_ref(trans, root, path, objectid,
3191 offset, bytenr);
3192 } while (ret2 == -EAGAIN);
3193
3194 if (ret2 && ret2 != -ENOENT) {
3195 ret = ret2;
3196 goto out;
3197 }
3198
3199 if (ret != -ENOENT || ret2 != -ENOENT)
3200 ret = 0;
3201 out:
3202 btrfs_free_path(path);
3203 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3204 WARN_ON(ret > 0);
3205 return ret;
3206 }
3207
3208 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3209 struct btrfs_root *root,
3210 struct extent_buffer *buf,
3211 int full_backref, int inc)
3212 {
3213 u64 bytenr;
3214 u64 num_bytes;
3215 u64 parent;
3216 u64 ref_root;
3217 u32 nritems;
3218 struct btrfs_key key;
3219 struct btrfs_file_extent_item *fi;
3220 int i;
3221 int level;
3222 int ret = 0;
3223 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3224 u64, u64, u64, u64, u64, u64);
3225
3226
3227 if (btrfs_is_testing(root->fs_info))
3228 return 0;
3229
3230 ref_root = btrfs_header_owner(buf);
3231 nritems = btrfs_header_nritems(buf);
3232 level = btrfs_header_level(buf);
3233
3234 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3235 return 0;
3236
3237 if (inc)
3238 process_func = btrfs_inc_extent_ref;
3239 else
3240 process_func = btrfs_free_extent;
3241
3242 if (full_backref)
3243 parent = buf->start;
3244 else
3245 parent = 0;
3246
3247 for (i = 0; i < nritems; i++) {
3248 if (level == 0) {
3249 btrfs_item_key_to_cpu(buf, &key, i);
3250 if (key.type != BTRFS_EXTENT_DATA_KEY)
3251 continue;
3252 fi = btrfs_item_ptr(buf, i,
3253 struct btrfs_file_extent_item);
3254 if (btrfs_file_extent_type(buf, fi) ==
3255 BTRFS_FILE_EXTENT_INLINE)
3256 continue;
3257 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3258 if (bytenr == 0)
3259 continue;
3260
3261 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3262 key.offset -= btrfs_file_extent_offset(buf, fi);
3263 ret = process_func(trans, root, bytenr, num_bytes,
3264 parent, ref_root, key.objectid,
3265 key.offset);
3266 if (ret)
3267 goto fail;
3268 } else {
3269 bytenr = btrfs_node_blockptr(buf, i);
3270 num_bytes = root->nodesize;
3271 ret = process_func(trans, root, bytenr, num_bytes,
3272 parent, ref_root, level - 1, 0);
3273 if (ret)
3274 goto fail;
3275 }
3276 }
3277 return 0;
3278 fail:
3279 return ret;
3280 }
3281
3282 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3283 struct extent_buffer *buf, int full_backref)
3284 {
3285 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3286 }
3287
3288 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3289 struct extent_buffer *buf, int full_backref)
3290 {
3291 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3292 }
3293
3294 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3295 struct btrfs_root *root,
3296 struct btrfs_path *path,
3297 struct btrfs_block_group_cache *cache)
3298 {
3299 int ret;
3300 struct btrfs_root *extent_root = root->fs_info->extent_root;
3301 unsigned long bi;
3302 struct extent_buffer *leaf;
3303
3304 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3305 if (ret) {
3306 if (ret > 0)
3307 ret = -ENOENT;
3308 goto fail;
3309 }
3310
3311 leaf = path->nodes[0];
3312 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3313 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3314 btrfs_mark_buffer_dirty(leaf);
3315 fail:
3316 btrfs_release_path(path);
3317 return ret;
3318
3319 }
3320
3321 static struct btrfs_block_group_cache *
3322 next_block_group(struct btrfs_root *root,
3323 struct btrfs_block_group_cache *cache)
3324 {
3325 struct rb_node *node;
3326
3327 spin_lock(&root->fs_info->block_group_cache_lock);
3328
3329 /* If our block group was removed, we need a full search. */
3330 if (RB_EMPTY_NODE(&cache->cache_node)) {
3331 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3332
3333 spin_unlock(&root->fs_info->block_group_cache_lock);
3334 btrfs_put_block_group(cache);
3335 cache = btrfs_lookup_first_block_group(root->fs_info,
3336 next_bytenr);
3337 return cache;
3338 }
3339 node = rb_next(&cache->cache_node);
3340 btrfs_put_block_group(cache);
3341 if (node) {
3342 cache = rb_entry(node, struct btrfs_block_group_cache,
3343 cache_node);
3344 btrfs_get_block_group(cache);
3345 } else
3346 cache = NULL;
3347 spin_unlock(&root->fs_info->block_group_cache_lock);
3348 return cache;
3349 }
3350
3351 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3352 struct btrfs_trans_handle *trans,
3353 struct btrfs_path *path)
3354 {
3355 struct btrfs_root *root = block_group->fs_info->tree_root;
3356 struct inode *inode = NULL;
3357 u64 alloc_hint = 0;
3358 int dcs = BTRFS_DC_ERROR;
3359 u64 num_pages = 0;
3360 int retries = 0;
3361 int ret = 0;
3362
3363 /*
3364 * If this block group is smaller than 100 megs don't bother caching the
3365 * block group.
3366 */
3367 if (block_group->key.offset < (100 * SZ_1M)) {
3368 spin_lock(&block_group->lock);
3369 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3370 spin_unlock(&block_group->lock);
3371 return 0;
3372 }
3373
3374 if (trans->aborted)
3375 return 0;
3376 again:
3377 inode = lookup_free_space_inode(root, block_group, path);
3378 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3379 ret = PTR_ERR(inode);
3380 btrfs_release_path(path);
3381 goto out;
3382 }
3383
3384 if (IS_ERR(inode)) {
3385 BUG_ON(retries);
3386 retries++;
3387
3388 if (block_group->ro)
3389 goto out_free;
3390
3391 ret = create_free_space_inode(root, trans, block_group, path);
3392 if (ret)
3393 goto out_free;
3394 goto again;
3395 }
3396
3397 /* We've already setup this transaction, go ahead and exit */
3398 if (block_group->cache_generation == trans->transid &&
3399 i_size_read(inode)) {
3400 dcs = BTRFS_DC_SETUP;
3401 goto out_put;
3402 }
3403
3404 /*
3405 * We want to set the generation to 0, that way if anything goes wrong
3406 * from here on out we know not to trust this cache when we load up next
3407 * time.
3408 */
3409 BTRFS_I(inode)->generation = 0;
3410 ret = btrfs_update_inode(trans, root, inode);
3411 if (ret) {
3412 /*
3413 * So theoretically we could recover from this, simply set the
3414 * super cache generation to 0 so we know to invalidate the
3415 * cache, but then we'd have to keep track of the block groups
3416 * that fail this way so we know we _have_ to reset this cache
3417 * before the next commit or risk reading stale cache. So to
3418 * limit our exposure to horrible edge cases lets just abort the
3419 * transaction, this only happens in really bad situations
3420 * anyway.
3421 */
3422 btrfs_abort_transaction(trans, ret);
3423 goto out_put;
3424 }
3425 WARN_ON(ret);
3426
3427 if (i_size_read(inode) > 0) {
3428 ret = btrfs_check_trunc_cache_free_space(root,
3429 &root->fs_info->global_block_rsv);
3430 if (ret)
3431 goto out_put;
3432
3433 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3434 if (ret)
3435 goto out_put;
3436 }
3437
3438 spin_lock(&block_group->lock);
3439 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3440 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
3441 /*
3442 * don't bother trying to write stuff out _if_
3443 * a) we're not cached,
3444 * b) we're with nospace_cache mount option.
3445 */
3446 dcs = BTRFS_DC_WRITTEN;
3447 spin_unlock(&block_group->lock);
3448 goto out_put;
3449 }
3450 spin_unlock(&block_group->lock);
3451
3452 /*
3453 * We hit an ENOSPC when setting up the cache in this transaction, just
3454 * skip doing the setup, we've already cleared the cache so we're safe.
3455 */
3456 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3457 ret = -ENOSPC;
3458 goto out_put;
3459 }
3460
3461 /*
3462 * Try to preallocate enough space based on how big the block group is.
3463 * Keep in mind this has to include any pinned space which could end up
3464 * taking up quite a bit since it's not folded into the other space
3465 * cache.
3466 */
3467 num_pages = div_u64(block_group->key.offset, SZ_256M);
3468 if (!num_pages)
3469 num_pages = 1;
3470
3471 num_pages *= 16;
3472 num_pages *= PAGE_SIZE;
3473
3474 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3475 if (ret)
3476 goto out_put;
3477
3478 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3479 num_pages, num_pages,
3480 &alloc_hint);
3481 /*
3482 * Our cache requires contiguous chunks so that we don't modify a bunch
3483 * of metadata or split extents when writing the cache out, which means
3484 * we can enospc if we are heavily fragmented in addition to just normal
3485 * out of space conditions. So if we hit this just skip setting up any
3486 * other block groups for this transaction, maybe we'll unpin enough
3487 * space the next time around.
3488 */
3489 if (!ret)
3490 dcs = BTRFS_DC_SETUP;
3491 else if (ret == -ENOSPC)
3492 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3493
3494 out_put:
3495 iput(inode);
3496 out_free:
3497 btrfs_release_path(path);
3498 out:
3499 spin_lock(&block_group->lock);
3500 if (!ret && dcs == BTRFS_DC_SETUP)
3501 block_group->cache_generation = trans->transid;
3502 block_group->disk_cache_state = dcs;
3503 spin_unlock(&block_group->lock);
3504
3505 return ret;
3506 }
3507
3508 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3509 struct btrfs_root *root)
3510 {
3511 struct btrfs_block_group_cache *cache, *tmp;
3512 struct btrfs_transaction *cur_trans = trans->transaction;
3513 struct btrfs_path *path;
3514
3515 if (list_empty(&cur_trans->dirty_bgs) ||
3516 !btrfs_test_opt(root->fs_info, SPACE_CACHE))
3517 return 0;
3518
3519 path = btrfs_alloc_path();
3520 if (!path)
3521 return -ENOMEM;
3522
3523 /* Could add new block groups, use _safe just in case */
3524 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3525 dirty_list) {
3526 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3527 cache_save_setup(cache, trans, path);
3528 }
3529
3530 btrfs_free_path(path);
3531 return 0;
3532 }
3533
3534 /*
3535 * transaction commit does final block group cache writeback during a
3536 * critical section where nothing is allowed to change the FS. This is
3537 * required in order for the cache to actually match the block group,
3538 * but can introduce a lot of latency into the commit.
3539 *
3540 * So, btrfs_start_dirty_block_groups is here to kick off block group
3541 * cache IO. There's a chance we'll have to redo some of it if the
3542 * block group changes again during the commit, but it greatly reduces
3543 * the commit latency by getting rid of the easy block groups while
3544 * we're still allowing others to join the commit.
3545 */
3546 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3547 struct btrfs_root *root)
3548 {
3549 struct btrfs_block_group_cache *cache;
3550 struct btrfs_transaction *cur_trans = trans->transaction;
3551 int ret = 0;
3552 int should_put;
3553 struct btrfs_path *path = NULL;
3554 LIST_HEAD(dirty);
3555 struct list_head *io = &cur_trans->io_bgs;
3556 int num_started = 0;
3557 int loops = 0;
3558
3559 spin_lock(&cur_trans->dirty_bgs_lock);
3560 if (list_empty(&cur_trans->dirty_bgs)) {
3561 spin_unlock(&cur_trans->dirty_bgs_lock);
3562 return 0;
3563 }
3564 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3565 spin_unlock(&cur_trans->dirty_bgs_lock);
3566
3567 again:
3568 /*
3569 * make sure all the block groups on our dirty list actually
3570 * exist
3571 */
3572 btrfs_create_pending_block_groups(trans, root);
3573
3574 if (!path) {
3575 path = btrfs_alloc_path();
3576 if (!path)
3577 return -ENOMEM;
3578 }
3579
3580 /*
3581 * cache_write_mutex is here only to save us from balance or automatic
3582 * removal of empty block groups deleting this block group while we are
3583 * writing out the cache
3584 */
3585 mutex_lock(&trans->transaction->cache_write_mutex);
3586 while (!list_empty(&dirty)) {
3587 cache = list_first_entry(&dirty,
3588 struct btrfs_block_group_cache,
3589 dirty_list);
3590 /*
3591 * this can happen if something re-dirties a block
3592 * group that is already under IO. Just wait for it to
3593 * finish and then do it all again
3594 */
3595 if (!list_empty(&cache->io_list)) {
3596 list_del_init(&cache->io_list);
3597 btrfs_wait_cache_io(root, trans, cache,
3598 &cache->io_ctl, path,
3599 cache->key.objectid);
3600 btrfs_put_block_group(cache);
3601 }
3602
3603
3604 /*
3605 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3606 * if it should update the cache_state. Don't delete
3607 * until after we wait.
3608 *
3609 * Since we're not running in the commit critical section
3610 * we need the dirty_bgs_lock to protect from update_block_group
3611 */
3612 spin_lock(&cur_trans->dirty_bgs_lock);
3613 list_del_init(&cache->dirty_list);
3614 spin_unlock(&cur_trans->dirty_bgs_lock);
3615
3616 should_put = 1;
3617
3618 cache_save_setup(cache, trans, path);
3619
3620 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3621 cache->io_ctl.inode = NULL;
3622 ret = btrfs_write_out_cache(root, trans, cache, path);
3623 if (ret == 0 && cache->io_ctl.inode) {
3624 num_started++;
3625 should_put = 0;
3626
3627 /*
3628 * the cache_write_mutex is protecting
3629 * the io_list
3630 */
3631 list_add_tail(&cache->io_list, io);
3632 } else {
3633 /*
3634 * if we failed to write the cache, the
3635 * generation will be bad and life goes on
3636 */
3637 ret = 0;
3638 }
3639 }
3640 if (!ret) {
3641 ret = write_one_cache_group(trans, root, path, cache);
3642 /*
3643 * Our block group might still be attached to the list
3644 * of new block groups in the transaction handle of some
3645 * other task (struct btrfs_trans_handle->new_bgs). This
3646 * means its block group item isn't yet in the extent
3647 * tree. If this happens ignore the error, as we will
3648 * try again later in the critical section of the
3649 * transaction commit.
3650 */
3651 if (ret == -ENOENT) {
3652 ret = 0;
3653 spin_lock(&cur_trans->dirty_bgs_lock);
3654 if (list_empty(&cache->dirty_list)) {
3655 list_add_tail(&cache->dirty_list,
3656 &cur_trans->dirty_bgs);
3657 btrfs_get_block_group(cache);
3658 }
3659 spin_unlock(&cur_trans->dirty_bgs_lock);
3660 } else if (ret) {
3661 btrfs_abort_transaction(trans, ret);
3662 }
3663 }
3664
3665 /* if its not on the io list, we need to put the block group */
3666 if (should_put)
3667 btrfs_put_block_group(cache);
3668
3669 if (ret)
3670 break;
3671
3672 /*
3673 * Avoid blocking other tasks for too long. It might even save
3674 * us from writing caches for block groups that are going to be
3675 * removed.
3676 */
3677 mutex_unlock(&trans->transaction->cache_write_mutex);
3678 mutex_lock(&trans->transaction->cache_write_mutex);
3679 }
3680 mutex_unlock(&trans->transaction->cache_write_mutex);
3681
3682 /*
3683 * go through delayed refs for all the stuff we've just kicked off
3684 * and then loop back (just once)
3685 */
3686 ret = btrfs_run_delayed_refs(trans, root, 0);
3687 if (!ret && loops == 0) {
3688 loops++;
3689 spin_lock(&cur_trans->dirty_bgs_lock);
3690 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3691 /*
3692 * dirty_bgs_lock protects us from concurrent block group
3693 * deletes too (not just cache_write_mutex).
3694 */
3695 if (!list_empty(&dirty)) {
3696 spin_unlock(&cur_trans->dirty_bgs_lock);
3697 goto again;
3698 }
3699 spin_unlock(&cur_trans->dirty_bgs_lock);
3700 } else if (ret < 0) {
3701 btrfs_cleanup_dirty_bgs(cur_trans, root);
3702 }
3703
3704 btrfs_free_path(path);
3705 return ret;
3706 }
3707
3708 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3709 struct btrfs_root *root)
3710 {
3711 struct btrfs_block_group_cache *cache;
3712 struct btrfs_transaction *cur_trans = trans->transaction;
3713 int ret = 0;
3714 int should_put;
3715 struct btrfs_path *path;
3716 struct list_head *io = &cur_trans->io_bgs;
3717 int num_started = 0;
3718
3719 path = btrfs_alloc_path();
3720 if (!path)
3721 return -ENOMEM;
3722
3723 /*
3724 * Even though we are in the critical section of the transaction commit,
3725 * we can still have concurrent tasks adding elements to this
3726 * transaction's list of dirty block groups. These tasks correspond to
3727 * endio free space workers started when writeback finishes for a
3728 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3729 * allocate new block groups as a result of COWing nodes of the root
3730 * tree when updating the free space inode. The writeback for the space
3731 * caches is triggered by an earlier call to
3732 * btrfs_start_dirty_block_groups() and iterations of the following
3733 * loop.
3734 * Also we want to do the cache_save_setup first and then run the
3735 * delayed refs to make sure we have the best chance at doing this all
3736 * in one shot.
3737 */
3738 spin_lock(&cur_trans->dirty_bgs_lock);
3739 while (!list_empty(&cur_trans->dirty_bgs)) {
3740 cache = list_first_entry(&cur_trans->dirty_bgs,
3741 struct btrfs_block_group_cache,
3742 dirty_list);
3743
3744 /*
3745 * this can happen if cache_save_setup re-dirties a block
3746 * group that is already under IO. Just wait for it to
3747 * finish and then do it all again
3748 */
3749 if (!list_empty(&cache->io_list)) {
3750 spin_unlock(&cur_trans->dirty_bgs_lock);
3751 list_del_init(&cache->io_list);
3752 btrfs_wait_cache_io(root, trans, cache,
3753 &cache->io_ctl, path,
3754 cache->key.objectid);
3755 btrfs_put_block_group(cache);
3756 spin_lock(&cur_trans->dirty_bgs_lock);
3757 }
3758
3759 /*
3760 * don't remove from the dirty list until after we've waited
3761 * on any pending IO
3762 */
3763 list_del_init(&cache->dirty_list);
3764 spin_unlock(&cur_trans->dirty_bgs_lock);
3765 should_put = 1;
3766
3767 cache_save_setup(cache, trans, path);
3768
3769 if (!ret)
3770 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3771
3772 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3773 cache->io_ctl.inode = NULL;
3774 ret = btrfs_write_out_cache(root, trans, cache, path);
3775 if (ret == 0 && cache->io_ctl.inode) {
3776 num_started++;
3777 should_put = 0;
3778 list_add_tail(&cache->io_list, io);
3779 } else {
3780 /*
3781 * if we failed to write the cache, the
3782 * generation will be bad and life goes on
3783 */
3784 ret = 0;
3785 }
3786 }
3787 if (!ret) {
3788 ret = write_one_cache_group(trans, root, path, cache);
3789 /*
3790 * One of the free space endio workers might have
3791 * created a new block group while updating a free space
3792 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3793 * and hasn't released its transaction handle yet, in
3794 * which case the new block group is still attached to
3795 * its transaction handle and its creation has not
3796 * finished yet (no block group item in the extent tree
3797 * yet, etc). If this is the case, wait for all free
3798 * space endio workers to finish and retry. This is a
3799 * a very rare case so no need for a more efficient and
3800 * complex approach.
3801 */
3802 if (ret == -ENOENT) {
3803 wait_event(cur_trans->writer_wait,
3804 atomic_read(&cur_trans->num_writers) == 1);
3805 ret = write_one_cache_group(trans, root, path,
3806 cache);
3807 }
3808 if (ret)
3809 btrfs_abort_transaction(trans, ret);
3810 }
3811
3812 /* if its not on the io list, we need to put the block group */
3813 if (should_put)
3814 btrfs_put_block_group(cache);
3815 spin_lock(&cur_trans->dirty_bgs_lock);
3816 }
3817 spin_unlock(&cur_trans->dirty_bgs_lock);
3818
3819 while (!list_empty(io)) {
3820 cache = list_first_entry(io, struct btrfs_block_group_cache,
3821 io_list);
3822 list_del_init(&cache->io_list);
3823 btrfs_wait_cache_io(root, trans, cache,
3824 &cache->io_ctl, path, cache->key.objectid);
3825 btrfs_put_block_group(cache);
3826 }
3827
3828 btrfs_free_path(path);
3829 return ret;
3830 }
3831
3832 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3833 {
3834 struct btrfs_block_group_cache *block_group;
3835 int readonly = 0;
3836
3837 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3838 if (!block_group || block_group->ro)
3839 readonly = 1;
3840 if (block_group)
3841 btrfs_put_block_group(block_group);
3842 return readonly;
3843 }
3844
3845 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3846 {
3847 struct btrfs_block_group_cache *bg;
3848 bool ret = true;
3849
3850 bg = btrfs_lookup_block_group(fs_info, bytenr);
3851 if (!bg)
3852 return false;
3853
3854 spin_lock(&bg->lock);
3855 if (bg->ro)
3856 ret = false;
3857 else
3858 atomic_inc(&bg->nocow_writers);
3859 spin_unlock(&bg->lock);
3860
3861 /* no put on block group, done by btrfs_dec_nocow_writers */
3862 if (!ret)
3863 btrfs_put_block_group(bg);
3864
3865 return ret;
3866
3867 }
3868
3869 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3870 {
3871 struct btrfs_block_group_cache *bg;
3872
3873 bg = btrfs_lookup_block_group(fs_info, bytenr);
3874 ASSERT(bg);
3875 if (atomic_dec_and_test(&bg->nocow_writers))
3876 wake_up_atomic_t(&bg->nocow_writers);
3877 /*
3878 * Once for our lookup and once for the lookup done by a previous call
3879 * to btrfs_inc_nocow_writers()
3880 */
3881 btrfs_put_block_group(bg);
3882 btrfs_put_block_group(bg);
3883 }
3884
3885 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3886 {
3887 schedule();
3888 return 0;
3889 }
3890
3891 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3892 {
3893 wait_on_atomic_t(&bg->nocow_writers,
3894 btrfs_wait_nocow_writers_atomic_t,
3895 TASK_UNINTERRUPTIBLE);
3896 }
3897
3898 static const char *alloc_name(u64 flags)
3899 {
3900 switch (flags) {
3901 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3902 return "mixed";
3903 case BTRFS_BLOCK_GROUP_METADATA:
3904 return "metadata";
3905 case BTRFS_BLOCK_GROUP_DATA:
3906 return "data";
3907 case BTRFS_BLOCK_GROUP_SYSTEM:
3908 return "system";
3909 default:
3910 WARN_ON(1);
3911 return "invalid-combination";
3912 };
3913 }
3914
3915 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3916 u64 total_bytes, u64 bytes_used,
3917 u64 bytes_readonly,
3918 struct btrfs_space_info **space_info)
3919 {
3920 struct btrfs_space_info *found;
3921 int i;
3922 int factor;
3923 int ret;
3924
3925 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3926 BTRFS_BLOCK_GROUP_RAID10))
3927 factor = 2;
3928 else
3929 factor = 1;
3930
3931 found = __find_space_info(info, flags);
3932 if (found) {
3933 spin_lock(&found->lock);
3934 found->total_bytes += total_bytes;
3935 found->disk_total += total_bytes * factor;
3936 found->bytes_used += bytes_used;
3937 found->disk_used += bytes_used * factor;
3938 found->bytes_readonly += bytes_readonly;
3939 if (total_bytes > 0)
3940 found->full = 0;
3941 space_info_add_new_bytes(info, found, total_bytes -
3942 bytes_used - bytes_readonly);
3943 spin_unlock(&found->lock);
3944 *space_info = found;
3945 return 0;
3946 }
3947 found = kzalloc(sizeof(*found), GFP_NOFS);
3948 if (!found)
3949 return -ENOMEM;
3950
3951 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3952 if (ret) {
3953 kfree(found);
3954 return ret;
3955 }
3956
3957 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3958 INIT_LIST_HEAD(&found->block_groups[i]);
3959 init_rwsem(&found->groups_sem);
3960 spin_lock_init(&found->lock);
3961 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3962 found->total_bytes = total_bytes;
3963 found->disk_total = total_bytes * factor;
3964 found->bytes_used = bytes_used;
3965 found->disk_used = bytes_used * factor;
3966 found->bytes_pinned = 0;
3967 found->bytes_reserved = 0;
3968 found->bytes_readonly = bytes_readonly;
3969 found->bytes_may_use = 0;
3970 found->full = 0;
3971 found->max_extent_size = 0;
3972 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3973 found->chunk_alloc = 0;
3974 found->flush = 0;
3975 init_waitqueue_head(&found->wait);
3976 INIT_LIST_HEAD(&found->ro_bgs);
3977 INIT_LIST_HEAD(&found->tickets);
3978 INIT_LIST_HEAD(&found->priority_tickets);
3979
3980 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3981 info->space_info_kobj, "%s",
3982 alloc_name(found->flags));
3983 if (ret) {
3984 kfree(found);
3985 return ret;
3986 }
3987
3988 *space_info = found;
3989 list_add_rcu(&found->list, &info->space_info);
3990 if (flags & BTRFS_BLOCK_GROUP_DATA)
3991 info->data_sinfo = found;
3992
3993 return ret;
3994 }
3995
3996 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3997 {
3998 u64 extra_flags = chunk_to_extended(flags) &
3999 BTRFS_EXTENDED_PROFILE_MASK;
4000
4001 write_seqlock(&fs_info->profiles_lock);
4002 if (flags & BTRFS_BLOCK_GROUP_DATA)
4003 fs_info->avail_data_alloc_bits |= extra_flags;
4004 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4005 fs_info->avail_metadata_alloc_bits |= extra_flags;
4006 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4007 fs_info->avail_system_alloc_bits |= extra_flags;
4008 write_sequnlock(&fs_info->profiles_lock);
4009 }
4010
4011 /*
4012 * returns target flags in extended format or 0 if restripe for this
4013 * chunk_type is not in progress
4014 *
4015 * should be called with either volume_mutex or balance_lock held
4016 */
4017 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4018 {
4019 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4020 u64 target = 0;
4021
4022 if (!bctl)
4023 return 0;
4024
4025 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4026 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4027 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4028 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4029 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4030 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4031 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4032 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4033 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4034 }
4035
4036 return target;
4037 }
4038
4039 /*
4040 * @flags: available profiles in extended format (see ctree.h)
4041 *
4042 * Returns reduced profile in chunk format. If profile changing is in
4043 * progress (either running or paused) picks the target profile (if it's
4044 * already available), otherwise falls back to plain reducing.
4045 */
4046 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4047 {
4048 u64 num_devices = root->fs_info->fs_devices->rw_devices;
4049 u64 target;
4050 u64 raid_type;
4051 u64 allowed = 0;
4052
4053 /*
4054 * see if restripe for this chunk_type is in progress, if so
4055 * try to reduce to the target profile
4056 */
4057 spin_lock(&root->fs_info->balance_lock);
4058 target = get_restripe_target(root->fs_info, flags);
4059 if (target) {
4060 /* pick target profile only if it's already available */
4061 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4062 spin_unlock(&root->fs_info->balance_lock);
4063 return extended_to_chunk(target);
4064 }
4065 }
4066 spin_unlock(&root->fs_info->balance_lock);
4067
4068 /* First, mask out the RAID levels which aren't possible */
4069 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4070 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4071 allowed |= btrfs_raid_group[raid_type];
4072 }
4073 allowed &= flags;
4074
4075 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4076 allowed = BTRFS_BLOCK_GROUP_RAID6;
4077 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4078 allowed = BTRFS_BLOCK_GROUP_RAID5;
4079 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4080 allowed = BTRFS_BLOCK_GROUP_RAID10;
4081 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4082 allowed = BTRFS_BLOCK_GROUP_RAID1;
4083 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4084 allowed = BTRFS_BLOCK_GROUP_RAID0;
4085
4086 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4087
4088 return extended_to_chunk(flags | allowed);
4089 }
4090
4091 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4092 {
4093 unsigned seq;
4094 u64 flags;
4095
4096 do {
4097 flags = orig_flags;
4098 seq = read_seqbegin(&root->fs_info->profiles_lock);
4099
4100 if (flags & BTRFS_BLOCK_GROUP_DATA)
4101 flags |= root->fs_info->avail_data_alloc_bits;
4102 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4103 flags |= root->fs_info->avail_system_alloc_bits;
4104 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4105 flags |= root->fs_info->avail_metadata_alloc_bits;
4106 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4107
4108 return btrfs_reduce_alloc_profile(root, flags);
4109 }
4110
4111 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4112 {
4113 u64 flags;
4114 u64 ret;
4115
4116 if (data)
4117 flags = BTRFS_BLOCK_GROUP_DATA;
4118 else if (root == root->fs_info->chunk_root)
4119 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4120 else
4121 flags = BTRFS_BLOCK_GROUP_METADATA;
4122
4123 ret = get_alloc_profile(root, flags);
4124 return ret;
4125 }
4126
4127 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4128 {
4129 struct btrfs_space_info *data_sinfo;
4130 struct btrfs_root *root = BTRFS_I(inode)->root;
4131 struct btrfs_fs_info *fs_info = root->fs_info;
4132 u64 used;
4133 int ret = 0;
4134 int need_commit = 2;
4135 int have_pinned_space;
4136
4137 /* make sure bytes are sectorsize aligned */
4138 bytes = ALIGN(bytes, root->sectorsize);
4139
4140 if (btrfs_is_free_space_inode(inode)) {
4141 need_commit = 0;
4142 ASSERT(current->journal_info);
4143 }
4144
4145 data_sinfo = fs_info->data_sinfo;
4146 if (!data_sinfo)
4147 goto alloc;
4148
4149 again:
4150 /* make sure we have enough space to handle the data first */
4151 spin_lock(&data_sinfo->lock);
4152 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4153 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4154 data_sinfo->bytes_may_use;
4155
4156 if (used + bytes > data_sinfo->total_bytes) {
4157 struct btrfs_trans_handle *trans;
4158
4159 /*
4160 * if we don't have enough free bytes in this space then we need
4161 * to alloc a new chunk.
4162 */
4163 if (!data_sinfo->full) {
4164 u64 alloc_target;
4165
4166 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4167 spin_unlock(&data_sinfo->lock);
4168 alloc:
4169 alloc_target = btrfs_get_alloc_profile(root, 1);
4170 /*
4171 * It is ugly that we don't call nolock join
4172 * transaction for the free space inode case here.
4173 * But it is safe because we only do the data space
4174 * reservation for the free space cache in the
4175 * transaction context, the common join transaction
4176 * just increase the counter of the current transaction
4177 * handler, doesn't try to acquire the trans_lock of
4178 * the fs.
4179 */
4180 trans = btrfs_join_transaction(root);
4181 if (IS_ERR(trans))
4182 return PTR_ERR(trans);
4183
4184 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4185 alloc_target,
4186 CHUNK_ALLOC_NO_FORCE);
4187 btrfs_end_transaction(trans, root);
4188 if (ret < 0) {
4189 if (ret != -ENOSPC)
4190 return ret;
4191 else {
4192 have_pinned_space = 1;
4193 goto commit_trans;
4194 }
4195 }
4196
4197 if (!data_sinfo)
4198 data_sinfo = fs_info->data_sinfo;
4199
4200 goto again;
4201 }
4202
4203 /*
4204 * If we don't have enough pinned space to deal with this
4205 * allocation, and no removed chunk in current transaction,
4206 * don't bother committing the transaction.
4207 */
4208 have_pinned_space = percpu_counter_compare(
4209 &data_sinfo->total_bytes_pinned,
4210 used + bytes - data_sinfo->total_bytes);
4211 spin_unlock(&data_sinfo->lock);
4212
4213 /* commit the current transaction and try again */
4214 commit_trans:
4215 if (need_commit &&
4216 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4217 need_commit--;
4218
4219 if (need_commit > 0) {
4220 btrfs_start_delalloc_roots(fs_info, 0, -1);
4221 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4222 }
4223
4224 trans = btrfs_join_transaction(root);
4225 if (IS_ERR(trans))
4226 return PTR_ERR(trans);
4227 if (have_pinned_space >= 0 ||
4228 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4229 &trans->transaction->flags) ||
4230 need_commit > 0) {
4231 ret = btrfs_commit_transaction(trans, root);
4232 if (ret)
4233 return ret;
4234 /*
4235 * The cleaner kthread might still be doing iput
4236 * operations. Wait for it to finish so that
4237 * more space is released.
4238 */
4239 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4240 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4241 goto again;
4242 } else {
4243 btrfs_end_transaction(trans, root);
4244 }
4245 }
4246
4247 trace_btrfs_space_reservation(root->fs_info,
4248 "space_info:enospc",
4249 data_sinfo->flags, bytes, 1);
4250 return -ENOSPC;
4251 }
4252 data_sinfo->bytes_may_use += bytes;
4253 trace_btrfs_space_reservation(root->fs_info, "space_info",
4254 data_sinfo->flags, bytes, 1);
4255 spin_unlock(&data_sinfo->lock);
4256
4257 return ret;
4258 }
4259
4260 /*
4261 * New check_data_free_space() with ability for precious data reservation
4262 * Will replace old btrfs_check_data_free_space(), but for patch split,
4263 * add a new function first and then replace it.
4264 */
4265 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4266 {
4267 struct btrfs_root *root = BTRFS_I(inode)->root;
4268 int ret;
4269
4270 /* align the range */
4271 len = round_up(start + len, root->sectorsize) -
4272 round_down(start, root->sectorsize);
4273 start = round_down(start, root->sectorsize);
4274
4275 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4276 if (ret < 0)
4277 return ret;
4278
4279 /*
4280 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4281 *
4282 * TODO: Find a good method to avoid reserve data space for NOCOW
4283 * range, but don't impact performance on quota disable case.
4284 */
4285 ret = btrfs_qgroup_reserve_data(inode, start, len);
4286 return ret;
4287 }
4288
4289 /*
4290 * Called if we need to clear a data reservation for this inode
4291 * Normally in a error case.
4292 *
4293 * This one will *NOT* use accurate qgroup reserved space API, just for case
4294 * which we can't sleep and is sure it won't affect qgroup reserved space.
4295 * Like clear_bit_hook().
4296 */
4297 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4298 u64 len)
4299 {
4300 struct btrfs_root *root = BTRFS_I(inode)->root;
4301 struct btrfs_space_info *data_sinfo;
4302
4303 /* Make sure the range is aligned to sectorsize */
4304 len = round_up(start + len, root->sectorsize) -
4305 round_down(start, root->sectorsize);
4306 start = round_down(start, root->sectorsize);
4307
4308 data_sinfo = root->fs_info->data_sinfo;
4309 spin_lock(&data_sinfo->lock);
4310 if (WARN_ON(data_sinfo->bytes_may_use < len))
4311 data_sinfo->bytes_may_use = 0;
4312 else
4313 data_sinfo->bytes_may_use -= len;
4314 trace_btrfs_space_reservation(root->fs_info, "space_info",
4315 data_sinfo->flags, len, 0);
4316 spin_unlock(&data_sinfo->lock);
4317 }
4318
4319 /*
4320 * Called if we need to clear a data reservation for this inode
4321 * Normally in a error case.
4322 *
4323 * This one will handle the per-inode data rsv map for accurate reserved
4324 * space framework.
4325 */
4326 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4327 {
4328 btrfs_free_reserved_data_space_noquota(inode, start, len);
4329 btrfs_qgroup_free_data(inode, start, len);
4330 }
4331
4332 static void force_metadata_allocation(struct btrfs_fs_info *info)
4333 {
4334 struct list_head *head = &info->space_info;
4335 struct btrfs_space_info *found;
4336
4337 rcu_read_lock();
4338 list_for_each_entry_rcu(found, head, list) {
4339 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4340 found->force_alloc = CHUNK_ALLOC_FORCE;
4341 }
4342 rcu_read_unlock();
4343 }
4344
4345 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4346 {
4347 return (global->size << 1);
4348 }
4349
4350 static int should_alloc_chunk(struct btrfs_root *root,
4351 struct btrfs_space_info *sinfo, int force)
4352 {
4353 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4354 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4355 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4356 u64 thresh;
4357
4358 if (force == CHUNK_ALLOC_FORCE)
4359 return 1;
4360
4361 /*
4362 * We need to take into account the global rsv because for all intents
4363 * and purposes it's used space. Don't worry about locking the
4364 * global_rsv, it doesn't change except when the transaction commits.
4365 */
4366 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4367 num_allocated += calc_global_rsv_need_space(global_rsv);
4368
4369 /*
4370 * in limited mode, we want to have some free space up to
4371 * about 1% of the FS size.
4372 */
4373 if (force == CHUNK_ALLOC_LIMITED) {
4374 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4375 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4376
4377 if (num_bytes - num_allocated < thresh)
4378 return 1;
4379 }
4380
4381 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4382 return 0;
4383 return 1;
4384 }
4385
4386 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4387 {
4388 u64 num_dev;
4389
4390 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4391 BTRFS_BLOCK_GROUP_RAID0 |
4392 BTRFS_BLOCK_GROUP_RAID5 |
4393 BTRFS_BLOCK_GROUP_RAID6))
4394 num_dev = root->fs_info->fs_devices->rw_devices;
4395 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4396 num_dev = 2;
4397 else
4398 num_dev = 1; /* DUP or single */
4399
4400 return num_dev;
4401 }
4402
4403 /*
4404 * If @is_allocation is true, reserve space in the system space info necessary
4405 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4406 * removing a chunk.
4407 */
4408 void check_system_chunk(struct btrfs_trans_handle *trans,
4409 struct btrfs_root *root,
4410 u64 type)
4411 {
4412 struct btrfs_space_info *info;
4413 u64 left;
4414 u64 thresh;
4415 int ret = 0;
4416 u64 num_devs;
4417
4418 /*
4419 * Needed because we can end up allocating a system chunk and for an
4420 * atomic and race free space reservation in the chunk block reserve.
4421 */
4422 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4423
4424 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4425 spin_lock(&info->lock);
4426 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4427 info->bytes_reserved - info->bytes_readonly -
4428 info->bytes_may_use;
4429 spin_unlock(&info->lock);
4430
4431 num_devs = get_profile_num_devs(root, type);
4432
4433 /* num_devs device items to update and 1 chunk item to add or remove */
4434 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4435 btrfs_calc_trans_metadata_size(root, 1);
4436
4437 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
4438 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4439 left, thresh, type);
4440 dump_space_info(info, 0, 0);
4441 }
4442
4443 if (left < thresh) {
4444 u64 flags;
4445
4446 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4447 /*
4448 * Ignore failure to create system chunk. We might end up not
4449 * needing it, as we might not need to COW all nodes/leafs from
4450 * the paths we visit in the chunk tree (they were already COWed
4451 * or created in the current transaction for example).
4452 */
4453 ret = btrfs_alloc_chunk(trans, root, flags);
4454 }
4455
4456 if (!ret) {
4457 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4458 &root->fs_info->chunk_block_rsv,
4459 thresh, BTRFS_RESERVE_NO_FLUSH);
4460 if (!ret)
4461 trans->chunk_bytes_reserved += thresh;
4462 }
4463 }
4464
4465 /*
4466 * If force is CHUNK_ALLOC_FORCE:
4467 * - return 1 if it successfully allocates a chunk,
4468 * - return errors including -ENOSPC otherwise.
4469 * If force is NOT CHUNK_ALLOC_FORCE:
4470 * - return 0 if it doesn't need to allocate a new chunk,
4471 * - return 1 if it successfully allocates a chunk,
4472 * - return errors including -ENOSPC otherwise.
4473 */
4474 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4475 struct btrfs_root *extent_root, u64 flags, int force)
4476 {
4477 struct btrfs_space_info *space_info;
4478 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4479 int wait_for_alloc = 0;
4480 int ret = 0;
4481
4482 /* Don't re-enter if we're already allocating a chunk */
4483 if (trans->allocating_chunk)
4484 return -ENOSPC;
4485
4486 space_info = __find_space_info(extent_root->fs_info, flags);
4487 if (!space_info) {
4488 ret = update_space_info(extent_root->fs_info, flags,
4489 0, 0, 0, &space_info);
4490 BUG_ON(ret); /* -ENOMEM */
4491 }
4492 BUG_ON(!space_info); /* Logic error */
4493
4494 again:
4495 spin_lock(&space_info->lock);
4496 if (force < space_info->force_alloc)
4497 force = space_info->force_alloc;
4498 if (space_info->full) {
4499 if (should_alloc_chunk(extent_root, space_info, force))
4500 ret = -ENOSPC;
4501 else
4502 ret = 0;
4503 spin_unlock(&space_info->lock);
4504 return ret;
4505 }
4506
4507 if (!should_alloc_chunk(extent_root, space_info, force)) {
4508 spin_unlock(&space_info->lock);
4509 return 0;
4510 } else if (space_info->chunk_alloc) {
4511 wait_for_alloc = 1;
4512 } else {
4513 space_info->chunk_alloc = 1;
4514 }
4515
4516 spin_unlock(&space_info->lock);
4517
4518 mutex_lock(&fs_info->chunk_mutex);
4519
4520 /*
4521 * The chunk_mutex is held throughout the entirety of a chunk
4522 * allocation, so once we've acquired the chunk_mutex we know that the
4523 * other guy is done and we need to recheck and see if we should
4524 * allocate.
4525 */
4526 if (wait_for_alloc) {
4527 mutex_unlock(&fs_info->chunk_mutex);
4528 wait_for_alloc = 0;
4529 goto again;
4530 }
4531
4532 trans->allocating_chunk = true;
4533
4534 /*
4535 * If we have mixed data/metadata chunks we want to make sure we keep
4536 * allocating mixed chunks instead of individual chunks.
4537 */
4538 if (btrfs_mixed_space_info(space_info))
4539 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4540
4541 /*
4542 * if we're doing a data chunk, go ahead and make sure that
4543 * we keep a reasonable number of metadata chunks allocated in the
4544 * FS as well.
4545 */
4546 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4547 fs_info->data_chunk_allocations++;
4548 if (!(fs_info->data_chunk_allocations %
4549 fs_info->metadata_ratio))
4550 force_metadata_allocation(fs_info);
4551 }
4552
4553 /*
4554 * Check if we have enough space in SYSTEM chunk because we may need
4555 * to update devices.
4556 */
4557 check_system_chunk(trans, extent_root, flags);
4558
4559 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4560 trans->allocating_chunk = false;
4561
4562 spin_lock(&space_info->lock);
4563 if (ret < 0 && ret != -ENOSPC)
4564 goto out;
4565 if (ret)
4566 space_info->full = 1;
4567 else
4568 ret = 1;
4569
4570 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4571 out:
4572 space_info->chunk_alloc = 0;
4573 spin_unlock(&space_info->lock);
4574 mutex_unlock(&fs_info->chunk_mutex);
4575 /*
4576 * When we allocate a new chunk we reserve space in the chunk block
4577 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4578 * add new nodes/leafs to it if we end up needing to do it when
4579 * inserting the chunk item and updating device items as part of the
4580 * second phase of chunk allocation, performed by
4581 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4582 * large number of new block groups to create in our transaction
4583 * handle's new_bgs list to avoid exhausting the chunk block reserve
4584 * in extreme cases - like having a single transaction create many new
4585 * block groups when starting to write out the free space caches of all
4586 * the block groups that were made dirty during the lifetime of the
4587 * transaction.
4588 */
4589 if (trans->can_flush_pending_bgs &&
4590 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4591 btrfs_create_pending_block_groups(trans, extent_root);
4592 btrfs_trans_release_chunk_metadata(trans);
4593 }
4594 return ret;
4595 }
4596
4597 static int can_overcommit(struct btrfs_root *root,
4598 struct btrfs_space_info *space_info, u64 bytes,
4599 enum btrfs_reserve_flush_enum flush)
4600 {
4601 struct btrfs_block_rsv *global_rsv;
4602 u64 profile;
4603 u64 space_size;
4604 u64 avail;
4605 u64 used;
4606
4607 /* Don't overcommit when in mixed mode. */
4608 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4609 return 0;
4610
4611 BUG_ON(root->fs_info == NULL);
4612 global_rsv = &root->fs_info->global_block_rsv;
4613 profile = btrfs_get_alloc_profile(root, 0);
4614 used = space_info->bytes_used + space_info->bytes_reserved +
4615 space_info->bytes_pinned + space_info->bytes_readonly;
4616
4617 /*
4618 * We only want to allow over committing if we have lots of actual space
4619 * free, but if we don't have enough space to handle the global reserve
4620 * space then we could end up having a real enospc problem when trying
4621 * to allocate a chunk or some other such important allocation.
4622 */
4623 spin_lock(&global_rsv->lock);
4624 space_size = calc_global_rsv_need_space(global_rsv);
4625 spin_unlock(&global_rsv->lock);
4626 if (used + space_size >= space_info->total_bytes)
4627 return 0;
4628
4629 used += space_info->bytes_may_use;
4630
4631 spin_lock(&root->fs_info->free_chunk_lock);
4632 avail = root->fs_info->free_chunk_space;
4633 spin_unlock(&root->fs_info->free_chunk_lock);
4634
4635 /*
4636 * If we have dup, raid1 or raid10 then only half of the free
4637 * space is actually useable. For raid56, the space info used
4638 * doesn't include the parity drive, so we don't have to
4639 * change the math
4640 */
4641 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4642 BTRFS_BLOCK_GROUP_RAID1 |
4643 BTRFS_BLOCK_GROUP_RAID10))
4644 avail >>= 1;
4645
4646 /*
4647 * If we aren't flushing all things, let us overcommit up to
4648 * 1/2th of the space. If we can flush, don't let us overcommit
4649 * too much, let it overcommit up to 1/8 of the space.
4650 */
4651 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4652 avail >>= 3;
4653 else
4654 avail >>= 1;
4655
4656 if (used + bytes < space_info->total_bytes + avail)
4657 return 1;
4658 return 0;
4659 }
4660
4661 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4662 unsigned long nr_pages, int nr_items)
4663 {
4664 struct super_block *sb = root->fs_info->sb;
4665
4666 if (down_read_trylock(&sb->s_umount)) {
4667 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4668 up_read(&sb->s_umount);
4669 } else {
4670 /*
4671 * We needn't worry the filesystem going from r/w to r/o though
4672 * we don't acquire ->s_umount mutex, because the filesystem
4673 * should guarantee the delalloc inodes list be empty after
4674 * the filesystem is readonly(all dirty pages are written to
4675 * the disk).
4676 */
4677 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4678 if (!current->journal_info)
4679 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4680 0, (u64)-1);
4681 }
4682 }
4683
4684 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4685 {
4686 u64 bytes;
4687 int nr;
4688
4689 bytes = btrfs_calc_trans_metadata_size(root, 1);
4690 nr = (int)div64_u64(to_reclaim, bytes);
4691 if (!nr)
4692 nr = 1;
4693 return nr;
4694 }
4695
4696 #define EXTENT_SIZE_PER_ITEM SZ_256K
4697
4698 /*
4699 * shrink metadata reservation for delalloc
4700 */
4701 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4702 bool wait_ordered)
4703 {
4704 struct btrfs_block_rsv *block_rsv;
4705 struct btrfs_space_info *space_info;
4706 struct btrfs_trans_handle *trans;
4707 u64 delalloc_bytes;
4708 u64 max_reclaim;
4709 long time_left;
4710 unsigned long nr_pages;
4711 int loops;
4712 int items;
4713 enum btrfs_reserve_flush_enum flush;
4714
4715 /* Calc the number of the pages we need flush for space reservation */
4716 items = calc_reclaim_items_nr(root, to_reclaim);
4717 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4718
4719 trans = (struct btrfs_trans_handle *)current->journal_info;
4720 block_rsv = &root->fs_info->delalloc_block_rsv;
4721 space_info = block_rsv->space_info;
4722
4723 delalloc_bytes = percpu_counter_sum_positive(
4724 &root->fs_info->delalloc_bytes);
4725 if (delalloc_bytes == 0) {
4726 if (trans)
4727 return;
4728 if (wait_ordered)
4729 btrfs_wait_ordered_roots(root->fs_info, items,
4730 0, (u64)-1);
4731 return;
4732 }
4733
4734 loops = 0;
4735 while (delalloc_bytes && loops < 3) {
4736 max_reclaim = min(delalloc_bytes, to_reclaim);
4737 nr_pages = max_reclaim >> PAGE_SHIFT;
4738 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4739 /*
4740 * We need to wait for the async pages to actually start before
4741 * we do anything.
4742 */
4743 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4744 if (!max_reclaim)
4745 goto skip_async;
4746
4747 if (max_reclaim <= nr_pages)
4748 max_reclaim = 0;
4749 else
4750 max_reclaim -= nr_pages;
4751
4752 wait_event(root->fs_info->async_submit_wait,
4753 atomic_read(&root->fs_info->async_delalloc_pages) <=
4754 (int)max_reclaim);
4755 skip_async:
4756 if (!trans)
4757 flush = BTRFS_RESERVE_FLUSH_ALL;
4758 else
4759 flush = BTRFS_RESERVE_NO_FLUSH;
4760 spin_lock(&space_info->lock);
4761 if (can_overcommit(root, space_info, orig, flush)) {
4762 spin_unlock(&space_info->lock);
4763 break;
4764 }
4765 if (list_empty(&space_info->tickets) &&
4766 list_empty(&space_info->priority_tickets)) {
4767 spin_unlock(&space_info->lock);
4768 break;
4769 }
4770 spin_unlock(&space_info->lock);
4771
4772 loops++;
4773 if (wait_ordered && !trans) {
4774 btrfs_wait_ordered_roots(root->fs_info, items,
4775 0, (u64)-1);
4776 } else {
4777 time_left = schedule_timeout_killable(1);
4778 if (time_left)
4779 break;
4780 }
4781 delalloc_bytes = percpu_counter_sum_positive(
4782 &root->fs_info->delalloc_bytes);
4783 }
4784 }
4785
4786 /**
4787 * maybe_commit_transaction - possibly commit the transaction if its ok to
4788 * @root - the root we're allocating for
4789 * @bytes - the number of bytes we want to reserve
4790 * @force - force the commit
4791 *
4792 * This will check to make sure that committing the transaction will actually
4793 * get us somewhere and then commit the transaction if it does. Otherwise it
4794 * will return -ENOSPC.
4795 */
4796 static int may_commit_transaction(struct btrfs_root *root,
4797 struct btrfs_space_info *space_info,
4798 u64 bytes, int force)
4799 {
4800 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4801 struct btrfs_trans_handle *trans;
4802
4803 trans = (struct btrfs_trans_handle *)current->journal_info;
4804 if (trans)
4805 return -EAGAIN;
4806
4807 if (force)
4808 goto commit;
4809
4810 /* See if there is enough pinned space to make this reservation */
4811 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4812 bytes) >= 0)
4813 goto commit;
4814
4815 /*
4816 * See if there is some space in the delayed insertion reservation for
4817 * this reservation.
4818 */
4819 if (space_info != delayed_rsv->space_info)
4820 return -ENOSPC;
4821
4822 spin_lock(&delayed_rsv->lock);
4823 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4824 bytes - delayed_rsv->size) >= 0) {
4825 spin_unlock(&delayed_rsv->lock);
4826 return -ENOSPC;
4827 }
4828 spin_unlock(&delayed_rsv->lock);
4829
4830 commit:
4831 trans = btrfs_join_transaction(root);
4832 if (IS_ERR(trans))
4833 return -ENOSPC;
4834
4835 return btrfs_commit_transaction(trans, root);
4836 }
4837
4838 struct reserve_ticket {
4839 u64 bytes;
4840 int error;
4841 struct list_head list;
4842 wait_queue_head_t wait;
4843 };
4844
4845 static int flush_space(struct btrfs_root *root,
4846 struct btrfs_space_info *space_info, u64 num_bytes,
4847 u64 orig_bytes, int state)
4848 {
4849 struct btrfs_trans_handle *trans;
4850 int nr;
4851 int ret = 0;
4852
4853 switch (state) {
4854 case FLUSH_DELAYED_ITEMS_NR:
4855 case FLUSH_DELAYED_ITEMS:
4856 if (state == FLUSH_DELAYED_ITEMS_NR)
4857 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4858 else
4859 nr = -1;
4860
4861 trans = btrfs_join_transaction(root);
4862 if (IS_ERR(trans)) {
4863 ret = PTR_ERR(trans);
4864 break;
4865 }
4866 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4867 btrfs_end_transaction(trans, root);
4868 break;
4869 case FLUSH_DELALLOC:
4870 case FLUSH_DELALLOC_WAIT:
4871 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4872 state == FLUSH_DELALLOC_WAIT);
4873 break;
4874 case ALLOC_CHUNK:
4875 trans = btrfs_join_transaction(root);
4876 if (IS_ERR(trans)) {
4877 ret = PTR_ERR(trans);
4878 break;
4879 }
4880 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4881 btrfs_get_alloc_profile(root, 0),
4882 CHUNK_ALLOC_NO_FORCE);
4883 btrfs_end_transaction(trans, root);
4884 if (ret > 0 || ret == -ENOSPC)
4885 ret = 0;
4886 break;
4887 case COMMIT_TRANS:
4888 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4889 break;
4890 default:
4891 ret = -ENOSPC;
4892 break;
4893 }
4894
4895 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4896 orig_bytes, state, ret);
4897 return ret;
4898 }
4899
4900 static inline u64
4901 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4902 struct btrfs_space_info *space_info)
4903 {
4904 struct reserve_ticket *ticket;
4905 u64 used;
4906 u64 expected;
4907 u64 to_reclaim = 0;
4908
4909 list_for_each_entry(ticket, &space_info->tickets, list)
4910 to_reclaim += ticket->bytes;
4911 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4912 to_reclaim += ticket->bytes;
4913 if (to_reclaim)
4914 return to_reclaim;
4915
4916 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4917 if (can_overcommit(root, space_info, to_reclaim,
4918 BTRFS_RESERVE_FLUSH_ALL))
4919 return 0;
4920
4921 used = space_info->bytes_used + space_info->bytes_reserved +
4922 space_info->bytes_pinned + space_info->bytes_readonly +
4923 space_info->bytes_may_use;
4924 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4925 expected = div_factor_fine(space_info->total_bytes, 95);
4926 else
4927 expected = div_factor_fine(space_info->total_bytes, 90);
4928
4929 if (used > expected)
4930 to_reclaim = used - expected;
4931 else
4932 to_reclaim = 0;
4933 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4934 space_info->bytes_reserved);
4935 return to_reclaim;
4936 }
4937
4938 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4939 struct btrfs_root *root, u64 used)
4940 {
4941 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4942
4943 /* If we're just plain full then async reclaim just slows us down. */
4944 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4945 return 0;
4946
4947 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4948 return 0;
4949
4950 return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4951 !test_bit(BTRFS_FS_STATE_REMOUNTING,
4952 &root->fs_info->fs_state));
4953 }
4954
4955 static void wake_all_tickets(struct list_head *head)
4956 {
4957 struct reserve_ticket *ticket;
4958
4959 while (!list_empty(head)) {
4960 ticket = list_first_entry(head, struct reserve_ticket, list);
4961 list_del_init(&ticket->list);
4962 ticket->error = -ENOSPC;
4963 wake_up(&ticket->wait);
4964 }
4965 }
4966
4967 /*
4968 * This is for normal flushers, we can wait all goddamned day if we want to. We
4969 * will loop and continuously try to flush as long as we are making progress.
4970 * We count progress as clearing off tickets each time we have to loop.
4971 */
4972 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4973 {
4974 struct reserve_ticket *last_ticket = NULL;
4975 struct btrfs_fs_info *fs_info;
4976 struct btrfs_space_info *space_info;
4977 u64 to_reclaim;
4978 int flush_state;
4979 int commit_cycles = 0;
4980
4981 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4982 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4983
4984 spin_lock(&space_info->lock);
4985 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4986 space_info);
4987 if (!to_reclaim) {
4988 space_info->flush = 0;
4989 spin_unlock(&space_info->lock);
4990 return;
4991 }
4992 last_ticket = list_first_entry(&space_info->tickets,
4993 struct reserve_ticket, list);
4994 spin_unlock(&space_info->lock);
4995
4996 flush_state = FLUSH_DELAYED_ITEMS_NR;
4997 do {
4998 struct reserve_ticket *ticket;
4999 int ret;
5000
5001 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
5002 to_reclaim, flush_state);
5003 spin_lock(&space_info->lock);
5004 if (list_empty(&space_info->tickets)) {
5005 space_info->flush = 0;
5006 spin_unlock(&space_info->lock);
5007 return;
5008 }
5009 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5010 space_info);
5011 ticket = list_first_entry(&space_info->tickets,
5012 struct reserve_ticket, list);
5013 if (last_ticket == ticket) {
5014 flush_state++;
5015 } else {
5016 last_ticket = ticket;
5017 flush_state = FLUSH_DELAYED_ITEMS_NR;
5018 if (commit_cycles)
5019 commit_cycles--;
5020 }
5021
5022 if (flush_state > COMMIT_TRANS) {
5023 commit_cycles++;
5024 if (commit_cycles > 2) {
5025 wake_all_tickets(&space_info->tickets);
5026 space_info->flush = 0;
5027 } else {
5028 flush_state = FLUSH_DELAYED_ITEMS_NR;
5029 }
5030 }
5031 spin_unlock(&space_info->lock);
5032 } while (flush_state <= COMMIT_TRANS);
5033 }
5034
5035 void btrfs_init_async_reclaim_work(struct work_struct *work)
5036 {
5037 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5038 }
5039
5040 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5041 struct btrfs_space_info *space_info,
5042 struct reserve_ticket *ticket)
5043 {
5044 u64 to_reclaim;
5045 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5046
5047 spin_lock(&space_info->lock);
5048 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5049 space_info);
5050 if (!to_reclaim) {
5051 spin_unlock(&space_info->lock);
5052 return;
5053 }
5054 spin_unlock(&space_info->lock);
5055
5056 do {
5057 flush_space(fs_info->fs_root, space_info, to_reclaim,
5058 to_reclaim, flush_state);
5059 flush_state++;
5060 spin_lock(&space_info->lock);
5061 if (ticket->bytes == 0) {
5062 spin_unlock(&space_info->lock);
5063 return;
5064 }
5065 spin_unlock(&space_info->lock);
5066
5067 /*
5068 * Priority flushers can't wait on delalloc without
5069 * deadlocking.
5070 */
5071 if (flush_state == FLUSH_DELALLOC ||
5072 flush_state == FLUSH_DELALLOC_WAIT)
5073 flush_state = ALLOC_CHUNK;
5074 } while (flush_state < COMMIT_TRANS);
5075 }
5076
5077 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5078 struct btrfs_space_info *space_info,
5079 struct reserve_ticket *ticket, u64 orig_bytes)
5080
5081 {
5082 DEFINE_WAIT(wait);
5083 int ret = 0;
5084
5085 spin_lock(&space_info->lock);
5086 while (ticket->bytes > 0 && ticket->error == 0) {
5087 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5088 if (ret) {
5089 ret = -EINTR;
5090 break;
5091 }
5092 spin_unlock(&space_info->lock);
5093
5094 schedule();
5095
5096 finish_wait(&ticket->wait, &wait);
5097 spin_lock(&space_info->lock);
5098 }
5099 if (!ret)
5100 ret = ticket->error;
5101 if (!list_empty(&ticket->list))
5102 list_del_init(&ticket->list);
5103 if (ticket->bytes && ticket->bytes < orig_bytes) {
5104 u64 num_bytes = orig_bytes - ticket->bytes;
5105 space_info->bytes_may_use -= num_bytes;
5106 trace_btrfs_space_reservation(fs_info, "space_info",
5107 space_info->flags, num_bytes, 0);
5108 }
5109 spin_unlock(&space_info->lock);
5110
5111 return ret;
5112 }
5113
5114 /**
5115 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5116 * @root - the root we're allocating for
5117 * @space_info - the space info we want to allocate from
5118 * @orig_bytes - the number of bytes we want
5119 * @flush - whether or not we can flush to make our reservation
5120 *
5121 * This will reserve orig_bytes number of bytes from the space info associated
5122 * with the block_rsv. If there is not enough space it will make an attempt to
5123 * flush out space to make room. It will do this by flushing delalloc if
5124 * possible or committing the transaction. If flush is 0 then no attempts to
5125 * regain reservations will be made and this will fail if there is not enough
5126 * space already.
5127 */
5128 static int __reserve_metadata_bytes(struct btrfs_root *root,
5129 struct btrfs_space_info *space_info,
5130 u64 orig_bytes,
5131 enum btrfs_reserve_flush_enum flush)
5132 {
5133 struct reserve_ticket ticket;
5134 u64 used;
5135 int ret = 0;
5136
5137 ASSERT(orig_bytes);
5138 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5139
5140 spin_lock(&space_info->lock);
5141 ret = -ENOSPC;
5142 used = space_info->bytes_used + space_info->bytes_reserved +
5143 space_info->bytes_pinned + space_info->bytes_readonly +
5144 space_info->bytes_may_use;
5145
5146 /*
5147 * If we have enough space then hooray, make our reservation and carry
5148 * on. If not see if we can overcommit, and if we can, hooray carry on.
5149 * If not things get more complicated.
5150 */
5151 if (used + orig_bytes <= space_info->total_bytes) {
5152 space_info->bytes_may_use += orig_bytes;
5153 trace_btrfs_space_reservation(root->fs_info, "space_info",
5154 space_info->flags, orig_bytes,
5155 1);
5156 ret = 0;
5157 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5158 space_info->bytes_may_use += orig_bytes;
5159 trace_btrfs_space_reservation(root->fs_info, "space_info",
5160 space_info->flags, orig_bytes,
5161 1);
5162 ret = 0;
5163 }
5164
5165 /*
5166 * If we couldn't make a reservation then setup our reservation ticket
5167 * and kick the async worker if it's not already running.
5168 *
5169 * If we are a priority flusher then we just need to add our ticket to
5170 * the list and we will do our own flushing further down.
5171 */
5172 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5173 ticket.bytes = orig_bytes;
5174 ticket.error = 0;
5175 init_waitqueue_head(&ticket.wait);
5176 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5177 list_add_tail(&ticket.list, &space_info->tickets);
5178 if (!space_info->flush) {
5179 space_info->flush = 1;
5180 trace_btrfs_trigger_flush(root->fs_info,
5181 space_info->flags,
5182 orig_bytes, flush,
5183 "enospc");
5184 queue_work(system_unbound_wq,
5185 &root->fs_info->async_reclaim_work);
5186 }
5187 } else {
5188 list_add_tail(&ticket.list,
5189 &space_info->priority_tickets);
5190 }
5191 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5192 used += orig_bytes;
5193 /*
5194 * We will do the space reservation dance during log replay,
5195 * which means we won't have fs_info->fs_root set, so don't do
5196 * the async reclaim as we will panic.
5197 */
5198 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags) &&
5199 need_do_async_reclaim(space_info, root, used) &&
5200 !work_busy(&root->fs_info->async_reclaim_work)) {
5201 trace_btrfs_trigger_flush(root->fs_info,
5202 space_info->flags,
5203 orig_bytes, flush,
5204 "preempt");
5205 queue_work(system_unbound_wq,
5206 &root->fs_info->async_reclaim_work);
5207 }
5208 }
5209 spin_unlock(&space_info->lock);
5210 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5211 return ret;
5212
5213 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5214 return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5215 orig_bytes);
5216
5217 ret = 0;
5218 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5219 spin_lock(&space_info->lock);
5220 if (ticket.bytes) {
5221 if (ticket.bytes < orig_bytes) {
5222 u64 num_bytes = orig_bytes - ticket.bytes;
5223 space_info->bytes_may_use -= num_bytes;
5224 trace_btrfs_space_reservation(root->fs_info,
5225 "space_info", space_info->flags,
5226 num_bytes, 0);
5227
5228 }
5229 list_del_init(&ticket.list);
5230 ret = -ENOSPC;
5231 }
5232 spin_unlock(&space_info->lock);
5233 ASSERT(list_empty(&ticket.list));
5234 return ret;
5235 }
5236
5237 /**
5238 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5239 * @root - the root we're allocating for
5240 * @block_rsv - the block_rsv we're allocating for
5241 * @orig_bytes - the number of bytes we want
5242 * @flush - whether or not we can flush to make our reservation
5243 *
5244 * This will reserve orgi_bytes number of bytes from the space info associated
5245 * with the block_rsv. If there is not enough space it will make an attempt to
5246 * flush out space to make room. It will do this by flushing delalloc if
5247 * possible or committing the transaction. If flush is 0 then no attempts to
5248 * regain reservations will be made and this will fail if there is not enough
5249 * space already.
5250 */
5251 static int reserve_metadata_bytes(struct btrfs_root *root,
5252 struct btrfs_block_rsv *block_rsv,
5253 u64 orig_bytes,
5254 enum btrfs_reserve_flush_enum flush)
5255 {
5256 int ret;
5257
5258 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5259 flush);
5260 if (ret == -ENOSPC &&
5261 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5262 struct btrfs_block_rsv *global_rsv =
5263 &root->fs_info->global_block_rsv;
5264
5265 if (block_rsv != global_rsv &&
5266 !block_rsv_use_bytes(global_rsv, orig_bytes))
5267 ret = 0;
5268 }
5269 if (ret == -ENOSPC)
5270 trace_btrfs_space_reservation(root->fs_info,
5271 "space_info:enospc",
5272 block_rsv->space_info->flags,
5273 orig_bytes, 1);
5274 return ret;
5275 }
5276
5277 static struct btrfs_block_rsv *get_block_rsv(
5278 const struct btrfs_trans_handle *trans,
5279 const struct btrfs_root *root)
5280 {
5281 struct btrfs_block_rsv *block_rsv = NULL;
5282
5283 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5284 (root == root->fs_info->csum_root && trans->adding_csums) ||
5285 (root == root->fs_info->uuid_root))
5286 block_rsv = trans->block_rsv;
5287
5288 if (!block_rsv)
5289 block_rsv = root->block_rsv;
5290
5291 if (!block_rsv)
5292 block_rsv = &root->fs_info->empty_block_rsv;
5293
5294 return block_rsv;
5295 }
5296
5297 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5298 u64 num_bytes)
5299 {
5300 int ret = -ENOSPC;
5301 spin_lock(&block_rsv->lock);
5302 if (block_rsv->reserved >= num_bytes) {
5303 block_rsv->reserved -= num_bytes;
5304 if (block_rsv->reserved < block_rsv->size)
5305 block_rsv->full = 0;
5306 ret = 0;
5307 }
5308 spin_unlock(&block_rsv->lock);
5309 return ret;
5310 }
5311
5312 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5313 u64 num_bytes, int update_size)
5314 {
5315 spin_lock(&block_rsv->lock);
5316 block_rsv->reserved += num_bytes;
5317 if (update_size)
5318 block_rsv->size += num_bytes;
5319 else if (block_rsv->reserved >= block_rsv->size)
5320 block_rsv->full = 1;
5321 spin_unlock(&block_rsv->lock);
5322 }
5323
5324 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5325 struct btrfs_block_rsv *dest, u64 num_bytes,
5326 int min_factor)
5327 {
5328 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5329 u64 min_bytes;
5330
5331 if (global_rsv->space_info != dest->space_info)
5332 return -ENOSPC;
5333
5334 spin_lock(&global_rsv->lock);
5335 min_bytes = div_factor(global_rsv->size, min_factor);
5336 if (global_rsv->reserved < min_bytes + num_bytes) {
5337 spin_unlock(&global_rsv->lock);
5338 return -ENOSPC;
5339 }
5340 global_rsv->reserved -= num_bytes;
5341 if (global_rsv->reserved < global_rsv->size)
5342 global_rsv->full = 0;
5343 spin_unlock(&global_rsv->lock);
5344
5345 block_rsv_add_bytes(dest, num_bytes, 1);
5346 return 0;
5347 }
5348
5349 /*
5350 * This is for space we already have accounted in space_info->bytes_may_use, so
5351 * basically when we're returning space from block_rsv's.
5352 */
5353 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5354 struct btrfs_space_info *space_info,
5355 u64 num_bytes)
5356 {
5357 struct reserve_ticket *ticket;
5358 struct list_head *head;
5359 u64 used;
5360 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5361 bool check_overcommit = false;
5362
5363 spin_lock(&space_info->lock);
5364 head = &space_info->priority_tickets;
5365
5366 /*
5367 * If we are over our limit then we need to check and see if we can
5368 * overcommit, and if we can't then we just need to free up our space
5369 * and not satisfy any requests.
5370 */
5371 used = space_info->bytes_used + space_info->bytes_reserved +
5372 space_info->bytes_pinned + space_info->bytes_readonly +
5373 space_info->bytes_may_use;
5374 if (used - num_bytes >= space_info->total_bytes)
5375 check_overcommit = true;
5376 again:
5377 while (!list_empty(head) && num_bytes) {
5378 ticket = list_first_entry(head, struct reserve_ticket,
5379 list);
5380 /*
5381 * We use 0 bytes because this space is already reserved, so
5382 * adding the ticket space would be a double count.
5383 */
5384 if (check_overcommit &&
5385 !can_overcommit(fs_info->extent_root, space_info, 0,
5386 flush))
5387 break;
5388 if (num_bytes >= ticket->bytes) {
5389 list_del_init(&ticket->list);
5390 num_bytes -= ticket->bytes;
5391 ticket->bytes = 0;
5392 wake_up(&ticket->wait);
5393 } else {
5394 ticket->bytes -= num_bytes;
5395 num_bytes = 0;
5396 }
5397 }
5398
5399 if (num_bytes && head == &space_info->priority_tickets) {
5400 head = &space_info->tickets;
5401 flush = BTRFS_RESERVE_FLUSH_ALL;
5402 goto again;
5403 }
5404 space_info->bytes_may_use -= num_bytes;
5405 trace_btrfs_space_reservation(fs_info, "space_info",
5406 space_info->flags, num_bytes, 0);
5407 spin_unlock(&space_info->lock);
5408 }
5409
5410 /*
5411 * This is for newly allocated space that isn't accounted in
5412 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5413 * we use this helper.
5414 */
5415 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5416 struct btrfs_space_info *space_info,
5417 u64 num_bytes)
5418 {
5419 struct reserve_ticket *ticket;
5420 struct list_head *head = &space_info->priority_tickets;
5421
5422 again:
5423 while (!list_empty(head) && num_bytes) {
5424 ticket = list_first_entry(head, struct reserve_ticket,
5425 list);
5426 if (num_bytes >= ticket->bytes) {
5427 trace_btrfs_space_reservation(fs_info, "space_info",
5428 space_info->flags,
5429 ticket->bytes, 1);
5430 list_del_init(&ticket->list);
5431 num_bytes -= ticket->bytes;
5432 space_info->bytes_may_use += ticket->bytes;
5433 ticket->bytes = 0;
5434 wake_up(&ticket->wait);
5435 } else {
5436 trace_btrfs_space_reservation(fs_info, "space_info",
5437 space_info->flags,
5438 num_bytes, 1);
5439 space_info->bytes_may_use += num_bytes;
5440 ticket->bytes -= num_bytes;
5441 num_bytes = 0;
5442 }
5443 }
5444
5445 if (num_bytes && head == &space_info->priority_tickets) {
5446 head = &space_info->tickets;
5447 goto again;
5448 }
5449 }
5450
5451 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5452 struct btrfs_block_rsv *block_rsv,
5453 struct btrfs_block_rsv *dest, u64 num_bytes)
5454 {
5455 struct btrfs_space_info *space_info = block_rsv->space_info;
5456
5457 spin_lock(&block_rsv->lock);
5458 if (num_bytes == (u64)-1)
5459 num_bytes = block_rsv->size;
5460 block_rsv->size -= num_bytes;
5461 if (block_rsv->reserved >= block_rsv->size) {
5462 num_bytes = block_rsv->reserved - block_rsv->size;
5463 block_rsv->reserved = block_rsv->size;
5464 block_rsv->full = 1;
5465 } else {
5466 num_bytes = 0;
5467 }
5468 spin_unlock(&block_rsv->lock);
5469
5470 if (num_bytes > 0) {
5471 if (dest) {
5472 spin_lock(&dest->lock);
5473 if (!dest->full) {
5474 u64 bytes_to_add;
5475
5476 bytes_to_add = dest->size - dest->reserved;
5477 bytes_to_add = min(num_bytes, bytes_to_add);
5478 dest->reserved += bytes_to_add;
5479 if (dest->reserved >= dest->size)
5480 dest->full = 1;
5481 num_bytes -= bytes_to_add;
5482 }
5483 spin_unlock(&dest->lock);
5484 }
5485 if (num_bytes)
5486 space_info_add_old_bytes(fs_info, space_info,
5487 num_bytes);
5488 }
5489 }
5490
5491 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5492 struct btrfs_block_rsv *dst, u64 num_bytes,
5493 int update_size)
5494 {
5495 int ret;
5496
5497 ret = block_rsv_use_bytes(src, num_bytes);
5498 if (ret)
5499 return ret;
5500
5501 block_rsv_add_bytes(dst, num_bytes, update_size);
5502 return 0;
5503 }
5504
5505 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5506 {
5507 memset(rsv, 0, sizeof(*rsv));
5508 spin_lock_init(&rsv->lock);
5509 rsv->type = type;
5510 }
5511
5512 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5513 unsigned short type)
5514 {
5515 struct btrfs_block_rsv *block_rsv;
5516 struct btrfs_fs_info *fs_info = root->fs_info;
5517
5518 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5519 if (!block_rsv)
5520 return NULL;
5521
5522 btrfs_init_block_rsv(block_rsv, type);
5523 block_rsv->space_info = __find_space_info(fs_info,
5524 BTRFS_BLOCK_GROUP_METADATA);
5525 return block_rsv;
5526 }
5527
5528 void btrfs_free_block_rsv(struct btrfs_root *root,
5529 struct btrfs_block_rsv *rsv)
5530 {
5531 if (!rsv)
5532 return;
5533 btrfs_block_rsv_release(root, rsv, (u64)-1);
5534 kfree(rsv);
5535 }
5536
5537 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5538 {
5539 kfree(rsv);
5540 }
5541
5542 int btrfs_block_rsv_add(struct btrfs_root *root,
5543 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5544 enum btrfs_reserve_flush_enum flush)
5545 {
5546 int ret;
5547
5548 if (num_bytes == 0)
5549 return 0;
5550
5551 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5552 if (!ret) {
5553 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5554 return 0;
5555 }
5556
5557 return ret;
5558 }
5559
5560 int btrfs_block_rsv_check(struct btrfs_root *root,
5561 struct btrfs_block_rsv *block_rsv, int min_factor)
5562 {
5563 u64 num_bytes = 0;
5564 int ret = -ENOSPC;
5565
5566 if (!block_rsv)
5567 return 0;
5568
5569 spin_lock(&block_rsv->lock);
5570 num_bytes = div_factor(block_rsv->size, min_factor);
5571 if (block_rsv->reserved >= num_bytes)
5572 ret = 0;
5573 spin_unlock(&block_rsv->lock);
5574
5575 return ret;
5576 }
5577
5578 int btrfs_block_rsv_refill(struct btrfs_root *root,
5579 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5580 enum btrfs_reserve_flush_enum flush)
5581 {
5582 u64 num_bytes = 0;
5583 int ret = -ENOSPC;
5584
5585 if (!block_rsv)
5586 return 0;
5587
5588 spin_lock(&block_rsv->lock);
5589 num_bytes = min_reserved;
5590 if (block_rsv->reserved >= num_bytes)
5591 ret = 0;
5592 else
5593 num_bytes -= block_rsv->reserved;
5594 spin_unlock(&block_rsv->lock);
5595
5596 if (!ret)
5597 return 0;
5598
5599 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5600 if (!ret) {
5601 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5602 return 0;
5603 }
5604
5605 return ret;
5606 }
5607
5608 void btrfs_block_rsv_release(struct btrfs_root *root,
5609 struct btrfs_block_rsv *block_rsv,
5610 u64 num_bytes)
5611 {
5612 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5613 if (global_rsv == block_rsv ||
5614 block_rsv->space_info != global_rsv->space_info)
5615 global_rsv = NULL;
5616 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5617 num_bytes);
5618 }
5619
5620 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5621 {
5622 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5623 struct btrfs_space_info *sinfo = block_rsv->space_info;
5624 u64 num_bytes;
5625
5626 /*
5627 * The global block rsv is based on the size of the extent tree, the
5628 * checksum tree and the root tree. If the fs is empty we want to set
5629 * it to a minimal amount for safety.
5630 */
5631 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5632 btrfs_root_used(&fs_info->csum_root->root_item) +
5633 btrfs_root_used(&fs_info->tree_root->root_item);
5634 num_bytes = max_t(u64, num_bytes, SZ_16M);
5635
5636 spin_lock(&sinfo->lock);
5637 spin_lock(&block_rsv->lock);
5638
5639 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5640
5641 if (block_rsv->reserved < block_rsv->size) {
5642 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5643 sinfo->bytes_reserved + sinfo->bytes_readonly +
5644 sinfo->bytes_may_use;
5645 if (sinfo->total_bytes > num_bytes) {
5646 num_bytes = sinfo->total_bytes - num_bytes;
5647 num_bytes = min(num_bytes,
5648 block_rsv->size - block_rsv->reserved);
5649 block_rsv->reserved += num_bytes;
5650 sinfo->bytes_may_use += num_bytes;
5651 trace_btrfs_space_reservation(fs_info, "space_info",
5652 sinfo->flags, num_bytes,
5653 1);
5654 }
5655 } else if (block_rsv->reserved > block_rsv->size) {
5656 num_bytes = block_rsv->reserved - block_rsv->size;
5657 sinfo->bytes_may_use -= num_bytes;
5658 trace_btrfs_space_reservation(fs_info, "space_info",
5659 sinfo->flags, num_bytes, 0);
5660 block_rsv->reserved = block_rsv->size;
5661 }
5662
5663 if (block_rsv->reserved == block_rsv->size)
5664 block_rsv->full = 1;
5665 else
5666 block_rsv->full = 0;
5667
5668 spin_unlock(&block_rsv->lock);
5669 spin_unlock(&sinfo->lock);
5670 }
5671
5672 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5673 {
5674 struct btrfs_space_info *space_info;
5675
5676 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5677 fs_info->chunk_block_rsv.space_info = space_info;
5678
5679 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5680 fs_info->global_block_rsv.space_info = space_info;
5681 fs_info->delalloc_block_rsv.space_info = space_info;
5682 fs_info->trans_block_rsv.space_info = space_info;
5683 fs_info->empty_block_rsv.space_info = space_info;
5684 fs_info->delayed_block_rsv.space_info = space_info;
5685
5686 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5687 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5688 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5689 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5690 if (fs_info->quota_root)
5691 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5692 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5693
5694 update_global_block_rsv(fs_info);
5695 }
5696
5697 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5698 {
5699 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5700 (u64)-1);
5701 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5702 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5703 WARN_ON(fs_info->trans_block_rsv.size > 0);
5704 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5705 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5706 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5707 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5708 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5709 }
5710
5711 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5712 struct btrfs_root *root)
5713 {
5714 if (!trans->block_rsv)
5715 return;
5716
5717 if (!trans->bytes_reserved)
5718 return;
5719
5720 trace_btrfs_space_reservation(root->fs_info, "transaction",
5721 trans->transid, trans->bytes_reserved, 0);
5722 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5723 trans->bytes_reserved = 0;
5724 }
5725
5726 /*
5727 * To be called after all the new block groups attached to the transaction
5728 * handle have been created (btrfs_create_pending_block_groups()).
5729 */
5730 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5731 {
5732 struct btrfs_fs_info *fs_info = trans->fs_info;
5733
5734 if (!trans->chunk_bytes_reserved)
5735 return;
5736
5737 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5738
5739 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5740 trans->chunk_bytes_reserved);
5741 trans->chunk_bytes_reserved = 0;
5742 }
5743
5744 /* Can only return 0 or -ENOSPC */
5745 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5746 struct inode *inode)
5747 {
5748 struct btrfs_root *root = BTRFS_I(inode)->root;
5749 /*
5750 * We always use trans->block_rsv here as we will have reserved space
5751 * for our orphan when starting the transaction, using get_block_rsv()
5752 * here will sometimes make us choose the wrong block rsv as we could be
5753 * doing a reloc inode for a non refcounted root.
5754 */
5755 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5756 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5757
5758 /*
5759 * We need to hold space in order to delete our orphan item once we've
5760 * added it, so this takes the reservation so we can release it later
5761 * when we are truly done with the orphan item.
5762 */
5763 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5764 trace_btrfs_space_reservation(root->fs_info, "orphan",
5765 btrfs_ino(inode), num_bytes, 1);
5766 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5767 }
5768
5769 void btrfs_orphan_release_metadata(struct inode *inode)
5770 {
5771 struct btrfs_root *root = BTRFS_I(inode)->root;
5772 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5773 trace_btrfs_space_reservation(root->fs_info, "orphan",
5774 btrfs_ino(inode), num_bytes, 0);
5775 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5776 }
5777
5778 /*
5779 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5780 * root: the root of the parent directory
5781 * rsv: block reservation
5782 * items: the number of items that we need do reservation
5783 * qgroup_reserved: used to return the reserved size in qgroup
5784 *
5785 * This function is used to reserve the space for snapshot/subvolume
5786 * creation and deletion. Those operations are different with the
5787 * common file/directory operations, they change two fs/file trees
5788 * and root tree, the number of items that the qgroup reserves is
5789 * different with the free space reservation. So we can not use
5790 * the space reservation mechanism in start_transaction().
5791 */
5792 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5793 struct btrfs_block_rsv *rsv,
5794 int items,
5795 u64 *qgroup_reserved,
5796 bool use_global_rsv)
5797 {
5798 u64 num_bytes;
5799 int ret;
5800 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5801
5802 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
5803 /* One for parent inode, two for dir entries */
5804 num_bytes = 3 * root->nodesize;
5805 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5806 if (ret)
5807 return ret;
5808 } else {
5809 num_bytes = 0;
5810 }
5811
5812 *qgroup_reserved = num_bytes;
5813
5814 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5815 rsv->space_info = __find_space_info(root->fs_info,
5816 BTRFS_BLOCK_GROUP_METADATA);
5817 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5818 BTRFS_RESERVE_FLUSH_ALL);
5819
5820 if (ret == -ENOSPC && use_global_rsv)
5821 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5822
5823 if (ret && *qgroup_reserved)
5824 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5825
5826 return ret;
5827 }
5828
5829 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5830 struct btrfs_block_rsv *rsv,
5831 u64 qgroup_reserved)
5832 {
5833 btrfs_block_rsv_release(root, rsv, (u64)-1);
5834 }
5835
5836 /**
5837 * drop_outstanding_extent - drop an outstanding extent
5838 * @inode: the inode we're dropping the extent for
5839 * @num_bytes: the number of bytes we're releasing.
5840 *
5841 * This is called when we are freeing up an outstanding extent, either called
5842 * after an error or after an extent is written. This will return the number of
5843 * reserved extents that need to be freed. This must be called with
5844 * BTRFS_I(inode)->lock held.
5845 */
5846 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5847 {
5848 unsigned drop_inode_space = 0;
5849 unsigned dropped_extents = 0;
5850 unsigned num_extents = 0;
5851
5852 num_extents = (unsigned)div64_u64(num_bytes +
5853 BTRFS_MAX_EXTENT_SIZE - 1,
5854 BTRFS_MAX_EXTENT_SIZE);
5855 ASSERT(num_extents);
5856 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5857 BTRFS_I(inode)->outstanding_extents -= num_extents;
5858
5859 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5860 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5861 &BTRFS_I(inode)->runtime_flags))
5862 drop_inode_space = 1;
5863
5864 /*
5865 * If we have more or the same amount of outstanding extents than we have
5866 * reserved then we need to leave the reserved extents count alone.
5867 */
5868 if (BTRFS_I(inode)->outstanding_extents >=
5869 BTRFS_I(inode)->reserved_extents)
5870 return drop_inode_space;
5871
5872 dropped_extents = BTRFS_I(inode)->reserved_extents -
5873 BTRFS_I(inode)->outstanding_extents;
5874 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5875 return dropped_extents + drop_inode_space;
5876 }
5877
5878 /**
5879 * calc_csum_metadata_size - return the amount of metadata space that must be
5880 * reserved/freed for the given bytes.
5881 * @inode: the inode we're manipulating
5882 * @num_bytes: the number of bytes in question
5883 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5884 *
5885 * This adjusts the number of csum_bytes in the inode and then returns the
5886 * correct amount of metadata that must either be reserved or freed. We
5887 * calculate how many checksums we can fit into one leaf and then divide the
5888 * number of bytes that will need to be checksumed by this value to figure out
5889 * how many checksums will be required. If we are adding bytes then the number
5890 * may go up and we will return the number of additional bytes that must be
5891 * reserved. If it is going down we will return the number of bytes that must
5892 * be freed.
5893 *
5894 * This must be called with BTRFS_I(inode)->lock held.
5895 */
5896 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5897 int reserve)
5898 {
5899 struct btrfs_root *root = BTRFS_I(inode)->root;
5900 u64 old_csums, num_csums;
5901
5902 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5903 BTRFS_I(inode)->csum_bytes == 0)
5904 return 0;
5905
5906 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5907 if (reserve)
5908 BTRFS_I(inode)->csum_bytes += num_bytes;
5909 else
5910 BTRFS_I(inode)->csum_bytes -= num_bytes;
5911 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5912
5913 /* No change, no need to reserve more */
5914 if (old_csums == num_csums)
5915 return 0;
5916
5917 if (reserve)
5918 return btrfs_calc_trans_metadata_size(root,
5919 num_csums - old_csums);
5920
5921 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5922 }
5923
5924 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5925 {
5926 struct btrfs_root *root = BTRFS_I(inode)->root;
5927 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5928 u64 to_reserve = 0;
5929 u64 csum_bytes;
5930 unsigned nr_extents = 0;
5931 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5932 int ret = 0;
5933 bool delalloc_lock = true;
5934 u64 to_free = 0;
5935 unsigned dropped;
5936 bool release_extra = false;
5937
5938 /* If we are a free space inode we need to not flush since we will be in
5939 * the middle of a transaction commit. We also don't need the delalloc
5940 * mutex since we won't race with anybody. We need this mostly to make
5941 * lockdep shut its filthy mouth.
5942 *
5943 * If we have a transaction open (can happen if we call truncate_block
5944 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5945 */
5946 if (btrfs_is_free_space_inode(inode)) {
5947 flush = BTRFS_RESERVE_NO_FLUSH;
5948 delalloc_lock = false;
5949 } else if (current->journal_info) {
5950 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5951 }
5952
5953 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5954 btrfs_transaction_in_commit(root->fs_info))
5955 schedule_timeout(1);
5956
5957 if (delalloc_lock)
5958 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5959
5960 num_bytes = ALIGN(num_bytes, root->sectorsize);
5961
5962 spin_lock(&BTRFS_I(inode)->lock);
5963 nr_extents = (unsigned)div64_u64(num_bytes +
5964 BTRFS_MAX_EXTENT_SIZE - 1,
5965 BTRFS_MAX_EXTENT_SIZE);
5966 BTRFS_I(inode)->outstanding_extents += nr_extents;
5967
5968 nr_extents = 0;
5969 if (BTRFS_I(inode)->outstanding_extents >
5970 BTRFS_I(inode)->reserved_extents)
5971 nr_extents += BTRFS_I(inode)->outstanding_extents -
5972 BTRFS_I(inode)->reserved_extents;
5973
5974 /* We always want to reserve a slot for updating the inode. */
5975 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
5976 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5977 csum_bytes = BTRFS_I(inode)->csum_bytes;
5978 spin_unlock(&BTRFS_I(inode)->lock);
5979
5980 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
5981 ret = btrfs_qgroup_reserve_meta(root,
5982 nr_extents * root->nodesize);
5983 if (ret)
5984 goto out_fail;
5985 }
5986
5987 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5988 if (unlikely(ret)) {
5989 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5990 goto out_fail;
5991 }
5992
5993 spin_lock(&BTRFS_I(inode)->lock);
5994 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5995 &BTRFS_I(inode)->runtime_flags)) {
5996 to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
5997 release_extra = true;
5998 }
5999 BTRFS_I(inode)->reserved_extents += nr_extents;
6000 spin_unlock(&BTRFS_I(inode)->lock);
6001
6002 if (delalloc_lock)
6003 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6004
6005 if (to_reserve)
6006 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6007 btrfs_ino(inode), to_reserve, 1);
6008 if (release_extra)
6009 btrfs_block_rsv_release(root, block_rsv,
6010 btrfs_calc_trans_metadata_size(root,
6011 1));
6012 return 0;
6013
6014 out_fail:
6015 spin_lock(&BTRFS_I(inode)->lock);
6016 dropped = drop_outstanding_extent(inode, num_bytes);
6017 /*
6018 * If the inodes csum_bytes is the same as the original
6019 * csum_bytes then we know we haven't raced with any free()ers
6020 * so we can just reduce our inodes csum bytes and carry on.
6021 */
6022 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
6023 calc_csum_metadata_size(inode, num_bytes, 0);
6024 } else {
6025 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6026 u64 bytes;
6027
6028 /*
6029 * This is tricky, but first we need to figure out how much we
6030 * freed from any free-ers that occurred during this
6031 * reservation, so we reset ->csum_bytes to the csum_bytes
6032 * before we dropped our lock, and then call the free for the
6033 * number of bytes that were freed while we were trying our
6034 * reservation.
6035 */
6036 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6037 BTRFS_I(inode)->csum_bytes = csum_bytes;
6038 to_free = calc_csum_metadata_size(inode, bytes, 0);
6039
6040
6041 /*
6042 * Now we need to see how much we would have freed had we not
6043 * been making this reservation and our ->csum_bytes were not
6044 * artificially inflated.
6045 */
6046 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6047 bytes = csum_bytes - orig_csum_bytes;
6048 bytes = calc_csum_metadata_size(inode, bytes, 0);
6049
6050 /*
6051 * Now reset ->csum_bytes to what it should be. If bytes is
6052 * more than to_free then we would have freed more space had we
6053 * not had an artificially high ->csum_bytes, so we need to free
6054 * the remainder. If bytes is the same or less then we don't
6055 * need to do anything, the other free-ers did the correct
6056 * thing.
6057 */
6058 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6059 if (bytes > to_free)
6060 to_free = bytes - to_free;
6061 else
6062 to_free = 0;
6063 }
6064 spin_unlock(&BTRFS_I(inode)->lock);
6065 if (dropped)
6066 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6067
6068 if (to_free) {
6069 btrfs_block_rsv_release(root, block_rsv, to_free);
6070 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6071 btrfs_ino(inode), to_free, 0);
6072 }
6073 if (delalloc_lock)
6074 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6075 return ret;
6076 }
6077
6078 /**
6079 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6080 * @inode: the inode to release the reservation for
6081 * @num_bytes: the number of bytes we're releasing
6082 *
6083 * This will release the metadata reservation for an inode. This can be called
6084 * once we complete IO for a given set of bytes to release their metadata
6085 * reservations.
6086 */
6087 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6088 {
6089 struct btrfs_root *root = BTRFS_I(inode)->root;
6090 u64 to_free = 0;
6091 unsigned dropped;
6092
6093 num_bytes = ALIGN(num_bytes, root->sectorsize);
6094 spin_lock(&BTRFS_I(inode)->lock);
6095 dropped = drop_outstanding_extent(inode, num_bytes);
6096
6097 if (num_bytes)
6098 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6099 spin_unlock(&BTRFS_I(inode)->lock);
6100 if (dropped > 0)
6101 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6102
6103 if (btrfs_is_testing(root->fs_info))
6104 return;
6105
6106 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6107 btrfs_ino(inode), to_free, 0);
6108
6109 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6110 to_free);
6111 }
6112
6113 /**
6114 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6115 * delalloc
6116 * @inode: inode we're writing to
6117 * @start: start range we are writing to
6118 * @len: how long the range we are writing to
6119 *
6120 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6121 *
6122 * This will do the following things
6123 *
6124 * o reserve space in data space info for num bytes
6125 * and reserve precious corresponding qgroup space
6126 * (Done in check_data_free_space)
6127 *
6128 * o reserve space for metadata space, based on the number of outstanding
6129 * extents and how much csums will be needed
6130 * also reserve metadata space in a per root over-reserve method.
6131 * o add to the inodes->delalloc_bytes
6132 * o add it to the fs_info's delalloc inodes list.
6133 * (Above 3 all done in delalloc_reserve_metadata)
6134 *
6135 * Return 0 for success
6136 * Return <0 for error(-ENOSPC or -EQUOT)
6137 */
6138 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6139 {
6140 int ret;
6141
6142 ret = btrfs_check_data_free_space(inode, start, len);
6143 if (ret < 0)
6144 return ret;
6145 ret = btrfs_delalloc_reserve_metadata(inode, len);
6146 if (ret < 0)
6147 btrfs_free_reserved_data_space(inode, start, len);
6148 return ret;
6149 }
6150
6151 /**
6152 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6153 * @inode: inode we're releasing space for
6154 * @start: start position of the space already reserved
6155 * @len: the len of the space already reserved
6156 *
6157 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6158 * called in the case that we don't need the metadata AND data reservations
6159 * anymore. So if there is an error or we insert an inline extent.
6160 *
6161 * This function will release the metadata space that was not used and will
6162 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6163 * list if there are no delalloc bytes left.
6164 * Also it will handle the qgroup reserved space.
6165 */
6166 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6167 {
6168 btrfs_delalloc_release_metadata(inode, len);
6169 btrfs_free_reserved_data_space(inode, start, len);
6170 }
6171
6172 static int update_block_group(struct btrfs_trans_handle *trans,
6173 struct btrfs_root *root, u64 bytenr,
6174 u64 num_bytes, int alloc)
6175 {
6176 struct btrfs_block_group_cache *cache = NULL;
6177 struct btrfs_fs_info *info = root->fs_info;
6178 u64 total = num_bytes;
6179 u64 old_val;
6180 u64 byte_in_group;
6181 int factor;
6182
6183 /* block accounting for super block */
6184 spin_lock(&info->delalloc_root_lock);
6185 old_val = btrfs_super_bytes_used(info->super_copy);
6186 if (alloc)
6187 old_val += num_bytes;
6188 else
6189 old_val -= num_bytes;
6190 btrfs_set_super_bytes_used(info->super_copy, old_val);
6191 spin_unlock(&info->delalloc_root_lock);
6192
6193 while (total) {
6194 cache = btrfs_lookup_block_group(info, bytenr);
6195 if (!cache)
6196 return -ENOENT;
6197 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6198 BTRFS_BLOCK_GROUP_RAID1 |
6199 BTRFS_BLOCK_GROUP_RAID10))
6200 factor = 2;
6201 else
6202 factor = 1;
6203 /*
6204 * If this block group has free space cache written out, we
6205 * need to make sure to load it if we are removing space. This
6206 * is because we need the unpinning stage to actually add the
6207 * space back to the block group, otherwise we will leak space.
6208 */
6209 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6210 cache_block_group(cache, 1);
6211
6212 byte_in_group = bytenr - cache->key.objectid;
6213 WARN_ON(byte_in_group > cache->key.offset);
6214
6215 spin_lock(&cache->space_info->lock);
6216 spin_lock(&cache->lock);
6217
6218 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6219 cache->disk_cache_state < BTRFS_DC_CLEAR)
6220 cache->disk_cache_state = BTRFS_DC_CLEAR;
6221
6222 old_val = btrfs_block_group_used(&cache->item);
6223 num_bytes = min(total, cache->key.offset - byte_in_group);
6224 if (alloc) {
6225 old_val += num_bytes;
6226 btrfs_set_block_group_used(&cache->item, old_val);
6227 cache->reserved -= num_bytes;
6228 cache->space_info->bytes_reserved -= num_bytes;
6229 cache->space_info->bytes_used += num_bytes;
6230 cache->space_info->disk_used += num_bytes * factor;
6231 spin_unlock(&cache->lock);
6232 spin_unlock(&cache->space_info->lock);
6233 } else {
6234 old_val -= num_bytes;
6235 btrfs_set_block_group_used(&cache->item, old_val);
6236 cache->pinned += num_bytes;
6237 cache->space_info->bytes_pinned += num_bytes;
6238 cache->space_info->bytes_used -= num_bytes;
6239 cache->space_info->disk_used -= num_bytes * factor;
6240 spin_unlock(&cache->lock);
6241 spin_unlock(&cache->space_info->lock);
6242
6243 trace_btrfs_space_reservation(root->fs_info, "pinned",
6244 cache->space_info->flags,
6245 num_bytes, 1);
6246 set_extent_dirty(info->pinned_extents,
6247 bytenr, bytenr + num_bytes - 1,
6248 GFP_NOFS | __GFP_NOFAIL);
6249 }
6250
6251 spin_lock(&trans->transaction->dirty_bgs_lock);
6252 if (list_empty(&cache->dirty_list)) {
6253 list_add_tail(&cache->dirty_list,
6254 &trans->transaction->dirty_bgs);
6255 trans->transaction->num_dirty_bgs++;
6256 btrfs_get_block_group(cache);
6257 }
6258 spin_unlock(&trans->transaction->dirty_bgs_lock);
6259
6260 /*
6261 * No longer have used bytes in this block group, queue it for
6262 * deletion. We do this after adding the block group to the
6263 * dirty list to avoid races between cleaner kthread and space
6264 * cache writeout.
6265 */
6266 if (!alloc && old_val == 0) {
6267 spin_lock(&info->unused_bgs_lock);
6268 if (list_empty(&cache->bg_list)) {
6269 btrfs_get_block_group(cache);
6270 list_add_tail(&cache->bg_list,
6271 &info->unused_bgs);
6272 }
6273 spin_unlock(&info->unused_bgs_lock);
6274 }
6275
6276 btrfs_put_block_group(cache);
6277 total -= num_bytes;
6278 bytenr += num_bytes;
6279 }
6280 return 0;
6281 }
6282
6283 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6284 {
6285 struct btrfs_block_group_cache *cache;
6286 u64 bytenr;
6287
6288 spin_lock(&root->fs_info->block_group_cache_lock);
6289 bytenr = root->fs_info->first_logical_byte;
6290 spin_unlock(&root->fs_info->block_group_cache_lock);
6291
6292 if (bytenr < (u64)-1)
6293 return bytenr;
6294
6295 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6296 if (!cache)
6297 return 0;
6298
6299 bytenr = cache->key.objectid;
6300 btrfs_put_block_group(cache);
6301
6302 return bytenr;
6303 }
6304
6305 static int pin_down_extent(struct btrfs_root *root,
6306 struct btrfs_block_group_cache *cache,
6307 u64 bytenr, u64 num_bytes, int reserved)
6308 {
6309 spin_lock(&cache->space_info->lock);
6310 spin_lock(&cache->lock);
6311 cache->pinned += num_bytes;
6312 cache->space_info->bytes_pinned += num_bytes;
6313 if (reserved) {
6314 cache->reserved -= num_bytes;
6315 cache->space_info->bytes_reserved -= num_bytes;
6316 }
6317 spin_unlock(&cache->lock);
6318 spin_unlock(&cache->space_info->lock);
6319
6320 trace_btrfs_space_reservation(root->fs_info, "pinned",
6321 cache->space_info->flags, num_bytes, 1);
6322 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6323 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6324 return 0;
6325 }
6326
6327 /*
6328 * this function must be called within transaction
6329 */
6330 int btrfs_pin_extent(struct btrfs_root *root,
6331 u64 bytenr, u64 num_bytes, int reserved)
6332 {
6333 struct btrfs_block_group_cache *cache;
6334
6335 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6336 BUG_ON(!cache); /* Logic error */
6337
6338 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6339
6340 btrfs_put_block_group(cache);
6341 return 0;
6342 }
6343
6344 /*
6345 * this function must be called within transaction
6346 */
6347 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6348 u64 bytenr, u64 num_bytes)
6349 {
6350 struct btrfs_block_group_cache *cache;
6351 int ret;
6352
6353 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6354 if (!cache)
6355 return -EINVAL;
6356
6357 /*
6358 * pull in the free space cache (if any) so that our pin
6359 * removes the free space from the cache. We have load_only set
6360 * to one because the slow code to read in the free extents does check
6361 * the pinned extents.
6362 */
6363 cache_block_group(cache, 1);
6364
6365 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6366
6367 /* remove us from the free space cache (if we're there at all) */
6368 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6369 btrfs_put_block_group(cache);
6370 return ret;
6371 }
6372
6373 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6374 {
6375 int ret;
6376 struct btrfs_block_group_cache *block_group;
6377 struct btrfs_caching_control *caching_ctl;
6378
6379 block_group = btrfs_lookup_block_group(root->fs_info, start);
6380 if (!block_group)
6381 return -EINVAL;
6382
6383 cache_block_group(block_group, 0);
6384 caching_ctl = get_caching_control(block_group);
6385
6386 if (!caching_ctl) {
6387 /* Logic error */
6388 BUG_ON(!block_group_cache_done(block_group));
6389 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6390 } else {
6391 mutex_lock(&caching_ctl->mutex);
6392
6393 if (start >= caching_ctl->progress) {
6394 ret = add_excluded_extent(root, start, num_bytes);
6395 } else if (start + num_bytes <= caching_ctl->progress) {
6396 ret = btrfs_remove_free_space(block_group,
6397 start, num_bytes);
6398 } else {
6399 num_bytes = caching_ctl->progress - start;
6400 ret = btrfs_remove_free_space(block_group,
6401 start, num_bytes);
6402 if (ret)
6403 goto out_lock;
6404
6405 num_bytes = (start + num_bytes) -
6406 caching_ctl->progress;
6407 start = caching_ctl->progress;
6408 ret = add_excluded_extent(root, start, num_bytes);
6409 }
6410 out_lock:
6411 mutex_unlock(&caching_ctl->mutex);
6412 put_caching_control(caching_ctl);
6413 }
6414 btrfs_put_block_group(block_group);
6415 return ret;
6416 }
6417
6418 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6419 struct extent_buffer *eb)
6420 {
6421 struct btrfs_file_extent_item *item;
6422 struct btrfs_key key;
6423 int found_type;
6424 int i;
6425
6426 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6427 return 0;
6428
6429 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6430 btrfs_item_key_to_cpu(eb, &key, i);
6431 if (key.type != BTRFS_EXTENT_DATA_KEY)
6432 continue;
6433 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6434 found_type = btrfs_file_extent_type(eb, item);
6435 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6436 continue;
6437 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6438 continue;
6439 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6440 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6441 __exclude_logged_extent(log, key.objectid, key.offset);
6442 }
6443
6444 return 0;
6445 }
6446
6447 static void
6448 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6449 {
6450 atomic_inc(&bg->reservations);
6451 }
6452
6453 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6454 const u64 start)
6455 {
6456 struct btrfs_block_group_cache *bg;
6457
6458 bg = btrfs_lookup_block_group(fs_info, start);
6459 ASSERT(bg);
6460 if (atomic_dec_and_test(&bg->reservations))
6461 wake_up_atomic_t(&bg->reservations);
6462 btrfs_put_block_group(bg);
6463 }
6464
6465 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6466 {
6467 schedule();
6468 return 0;
6469 }
6470
6471 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6472 {
6473 struct btrfs_space_info *space_info = bg->space_info;
6474
6475 ASSERT(bg->ro);
6476
6477 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6478 return;
6479
6480 /*
6481 * Our block group is read only but before we set it to read only,
6482 * some task might have had allocated an extent from it already, but it
6483 * has not yet created a respective ordered extent (and added it to a
6484 * root's list of ordered extents).
6485 * Therefore wait for any task currently allocating extents, since the
6486 * block group's reservations counter is incremented while a read lock
6487 * on the groups' semaphore is held and decremented after releasing
6488 * the read access on that semaphore and creating the ordered extent.
6489 */
6490 down_write(&space_info->groups_sem);
6491 up_write(&space_info->groups_sem);
6492
6493 wait_on_atomic_t(&bg->reservations,
6494 btrfs_wait_bg_reservations_atomic_t,
6495 TASK_UNINTERRUPTIBLE);
6496 }
6497
6498 /**
6499 * btrfs_add_reserved_bytes - update the block_group and space info counters
6500 * @cache: The cache we are manipulating
6501 * @ram_bytes: The number of bytes of file content, and will be same to
6502 * @num_bytes except for the compress path.
6503 * @num_bytes: The number of bytes in question
6504 * @delalloc: The blocks are allocated for the delalloc write
6505 *
6506 * This is called by the allocator when it reserves space. Metadata
6507 * reservations should be called with RESERVE_ALLOC so we do the proper
6508 * ENOSPC accounting. For data we handle the reservation through clearing the
6509 * delalloc bits in the io_tree. We have to do this since we could end up
6510 * allocating less disk space for the amount of data we have reserved in the
6511 * case of compression.
6512 *
6513 * If this is a reservation and the block group has become read only we cannot
6514 * make the reservation and return -EAGAIN, otherwise this function always
6515 * succeeds.
6516 */
6517 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6518 u64 ram_bytes, u64 num_bytes, int delalloc)
6519 {
6520 struct btrfs_space_info *space_info = cache->space_info;
6521 int ret = 0;
6522
6523 spin_lock(&space_info->lock);
6524 spin_lock(&cache->lock);
6525 if (cache->ro) {
6526 ret = -EAGAIN;
6527 } else {
6528 cache->reserved += num_bytes;
6529 space_info->bytes_reserved += num_bytes;
6530
6531 trace_btrfs_space_reservation(cache->fs_info,
6532 "space_info", space_info->flags,
6533 ram_bytes, 0);
6534 space_info->bytes_may_use -= ram_bytes;
6535 if (delalloc)
6536 cache->delalloc_bytes += num_bytes;
6537 }
6538 spin_unlock(&cache->lock);
6539 spin_unlock(&space_info->lock);
6540 return ret;
6541 }
6542
6543 /**
6544 * btrfs_free_reserved_bytes - update the block_group and space info counters
6545 * @cache: The cache we are manipulating
6546 * @num_bytes: The number of bytes in question
6547 * @delalloc: The blocks are allocated for the delalloc write
6548 *
6549 * This is called by somebody who is freeing space that was never actually used
6550 * on disk. For example if you reserve some space for a new leaf in transaction
6551 * A and before transaction A commits you free that leaf, you call this with
6552 * reserve set to 0 in order to clear the reservation.
6553 */
6554
6555 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6556 u64 num_bytes, int delalloc)
6557 {
6558 struct btrfs_space_info *space_info = cache->space_info;
6559 int ret = 0;
6560
6561 spin_lock(&space_info->lock);
6562 spin_lock(&cache->lock);
6563 if (cache->ro)
6564 space_info->bytes_readonly += num_bytes;
6565 cache->reserved -= num_bytes;
6566 space_info->bytes_reserved -= num_bytes;
6567
6568 if (delalloc)
6569 cache->delalloc_bytes -= num_bytes;
6570 spin_unlock(&cache->lock);
6571 spin_unlock(&space_info->lock);
6572 return ret;
6573 }
6574 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6575 struct btrfs_root *root)
6576 {
6577 struct btrfs_fs_info *fs_info = root->fs_info;
6578 struct btrfs_caching_control *next;
6579 struct btrfs_caching_control *caching_ctl;
6580 struct btrfs_block_group_cache *cache;
6581
6582 down_write(&fs_info->commit_root_sem);
6583
6584 list_for_each_entry_safe(caching_ctl, next,
6585 &fs_info->caching_block_groups, list) {
6586 cache = caching_ctl->block_group;
6587 if (block_group_cache_done(cache)) {
6588 cache->last_byte_to_unpin = (u64)-1;
6589 list_del_init(&caching_ctl->list);
6590 put_caching_control(caching_ctl);
6591 } else {
6592 cache->last_byte_to_unpin = caching_ctl->progress;
6593 }
6594 }
6595
6596 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6597 fs_info->pinned_extents = &fs_info->freed_extents[1];
6598 else
6599 fs_info->pinned_extents = &fs_info->freed_extents[0];
6600
6601 up_write(&fs_info->commit_root_sem);
6602
6603 update_global_block_rsv(fs_info);
6604 }
6605
6606 /*
6607 * Returns the free cluster for the given space info and sets empty_cluster to
6608 * what it should be based on the mount options.
6609 */
6610 static struct btrfs_free_cluster *
6611 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6612 u64 *empty_cluster)
6613 {
6614 struct btrfs_free_cluster *ret = NULL;
6615 bool ssd = btrfs_test_opt(root->fs_info, SSD);
6616
6617 *empty_cluster = 0;
6618 if (btrfs_mixed_space_info(space_info))
6619 return ret;
6620
6621 if (ssd)
6622 *empty_cluster = SZ_2M;
6623 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6624 ret = &root->fs_info->meta_alloc_cluster;
6625 if (!ssd)
6626 *empty_cluster = SZ_64K;
6627 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6628 ret = &root->fs_info->data_alloc_cluster;
6629 }
6630
6631 return ret;
6632 }
6633
6634 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6635 const bool return_free_space)
6636 {
6637 struct btrfs_fs_info *fs_info = root->fs_info;
6638 struct btrfs_block_group_cache *cache = NULL;
6639 struct btrfs_space_info *space_info;
6640 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6641 struct btrfs_free_cluster *cluster = NULL;
6642 u64 len;
6643 u64 total_unpinned = 0;
6644 u64 empty_cluster = 0;
6645 bool readonly;
6646
6647 while (start <= end) {
6648 readonly = false;
6649 if (!cache ||
6650 start >= cache->key.objectid + cache->key.offset) {
6651 if (cache)
6652 btrfs_put_block_group(cache);
6653 total_unpinned = 0;
6654 cache = btrfs_lookup_block_group(fs_info, start);
6655 BUG_ON(!cache); /* Logic error */
6656
6657 cluster = fetch_cluster_info(root,
6658 cache->space_info,
6659 &empty_cluster);
6660 empty_cluster <<= 1;
6661 }
6662
6663 len = cache->key.objectid + cache->key.offset - start;
6664 len = min(len, end + 1 - start);
6665
6666 if (start < cache->last_byte_to_unpin) {
6667 len = min(len, cache->last_byte_to_unpin - start);
6668 if (return_free_space)
6669 btrfs_add_free_space(cache, start, len);
6670 }
6671
6672 start += len;
6673 total_unpinned += len;
6674 space_info = cache->space_info;
6675
6676 /*
6677 * If this space cluster has been marked as fragmented and we've
6678 * unpinned enough in this block group to potentially allow a
6679 * cluster to be created inside of it go ahead and clear the
6680 * fragmented check.
6681 */
6682 if (cluster && cluster->fragmented &&
6683 total_unpinned > empty_cluster) {
6684 spin_lock(&cluster->lock);
6685 cluster->fragmented = 0;
6686 spin_unlock(&cluster->lock);
6687 }
6688
6689 spin_lock(&space_info->lock);
6690 spin_lock(&cache->lock);
6691 cache->pinned -= len;
6692 space_info->bytes_pinned -= len;
6693
6694 trace_btrfs_space_reservation(fs_info, "pinned",
6695 space_info->flags, len, 0);
6696 space_info->max_extent_size = 0;
6697 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6698 if (cache->ro) {
6699 space_info->bytes_readonly += len;
6700 readonly = true;
6701 }
6702 spin_unlock(&cache->lock);
6703 if (!readonly && return_free_space &&
6704 global_rsv->space_info == space_info) {
6705 u64 to_add = len;
6706 WARN_ON(!return_free_space);
6707 spin_lock(&global_rsv->lock);
6708 if (!global_rsv->full) {
6709 to_add = min(len, global_rsv->size -
6710 global_rsv->reserved);
6711 global_rsv->reserved += to_add;
6712 space_info->bytes_may_use += to_add;
6713 if (global_rsv->reserved >= global_rsv->size)
6714 global_rsv->full = 1;
6715 trace_btrfs_space_reservation(fs_info,
6716 "space_info",
6717 space_info->flags,
6718 to_add, 1);
6719 len -= to_add;
6720 }
6721 spin_unlock(&global_rsv->lock);
6722 /* Add to any tickets we may have */
6723 if (len)
6724 space_info_add_new_bytes(fs_info, space_info,
6725 len);
6726 }
6727 spin_unlock(&space_info->lock);
6728 }
6729
6730 if (cache)
6731 btrfs_put_block_group(cache);
6732 return 0;
6733 }
6734
6735 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6736 struct btrfs_root *root)
6737 {
6738 struct btrfs_fs_info *fs_info = root->fs_info;
6739 struct btrfs_block_group_cache *block_group, *tmp;
6740 struct list_head *deleted_bgs;
6741 struct extent_io_tree *unpin;
6742 u64 start;
6743 u64 end;
6744 int ret;
6745
6746 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6747 unpin = &fs_info->freed_extents[1];
6748 else
6749 unpin = &fs_info->freed_extents[0];
6750
6751 while (!trans->aborted) {
6752 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6753 ret = find_first_extent_bit(unpin, 0, &start, &end,
6754 EXTENT_DIRTY, NULL);
6755 if (ret) {
6756 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6757 break;
6758 }
6759
6760 if (btrfs_test_opt(root->fs_info, DISCARD))
6761 ret = btrfs_discard_extent(root, start,
6762 end + 1 - start, NULL);
6763
6764 clear_extent_dirty(unpin, start, end);
6765 unpin_extent_range(root, start, end, true);
6766 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6767 cond_resched();
6768 }
6769
6770 /*
6771 * Transaction is finished. We don't need the lock anymore. We
6772 * do need to clean up the block groups in case of a transaction
6773 * abort.
6774 */
6775 deleted_bgs = &trans->transaction->deleted_bgs;
6776 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6777 u64 trimmed = 0;
6778
6779 ret = -EROFS;
6780 if (!trans->aborted)
6781 ret = btrfs_discard_extent(root,
6782 block_group->key.objectid,
6783 block_group->key.offset,
6784 &trimmed);
6785
6786 list_del_init(&block_group->bg_list);
6787 btrfs_put_block_group_trimming(block_group);
6788 btrfs_put_block_group(block_group);
6789
6790 if (ret) {
6791 const char *errstr = btrfs_decode_error(ret);
6792 btrfs_warn(fs_info,
6793 "Discard failed while removing blockgroup: errno=%d %s\n",
6794 ret, errstr);
6795 }
6796 }
6797
6798 return 0;
6799 }
6800
6801 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6802 u64 owner, u64 root_objectid)
6803 {
6804 struct btrfs_space_info *space_info;
6805 u64 flags;
6806
6807 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6808 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6809 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6810 else
6811 flags = BTRFS_BLOCK_GROUP_METADATA;
6812 } else {
6813 flags = BTRFS_BLOCK_GROUP_DATA;
6814 }
6815
6816 space_info = __find_space_info(fs_info, flags);
6817 BUG_ON(!space_info); /* Logic bug */
6818 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6819 }
6820
6821
6822 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6823 struct btrfs_root *root,
6824 struct btrfs_delayed_ref_node *node, u64 parent,
6825 u64 root_objectid, u64 owner_objectid,
6826 u64 owner_offset, int refs_to_drop,
6827 struct btrfs_delayed_extent_op *extent_op)
6828 {
6829 struct btrfs_key key;
6830 struct btrfs_path *path;
6831 struct btrfs_fs_info *info = root->fs_info;
6832 struct btrfs_root *extent_root = info->extent_root;
6833 struct extent_buffer *leaf;
6834 struct btrfs_extent_item *ei;
6835 struct btrfs_extent_inline_ref *iref;
6836 int ret;
6837 int is_data;
6838 int extent_slot = 0;
6839 int found_extent = 0;
6840 int num_to_del = 1;
6841 u32 item_size;
6842 u64 refs;
6843 u64 bytenr = node->bytenr;
6844 u64 num_bytes = node->num_bytes;
6845 int last_ref = 0;
6846 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6847 SKINNY_METADATA);
6848
6849 path = btrfs_alloc_path();
6850 if (!path)
6851 return -ENOMEM;
6852
6853 path->reada = READA_FORWARD;
6854 path->leave_spinning = 1;
6855
6856 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6857 BUG_ON(!is_data && refs_to_drop != 1);
6858
6859 if (is_data)
6860 skinny_metadata = 0;
6861
6862 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6863 bytenr, num_bytes, parent,
6864 root_objectid, owner_objectid,
6865 owner_offset);
6866 if (ret == 0) {
6867 extent_slot = path->slots[0];
6868 while (extent_slot >= 0) {
6869 btrfs_item_key_to_cpu(path->nodes[0], &key,
6870 extent_slot);
6871 if (key.objectid != bytenr)
6872 break;
6873 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6874 key.offset == num_bytes) {
6875 found_extent = 1;
6876 break;
6877 }
6878 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6879 key.offset == owner_objectid) {
6880 found_extent = 1;
6881 break;
6882 }
6883 if (path->slots[0] - extent_slot > 5)
6884 break;
6885 extent_slot--;
6886 }
6887 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6888 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6889 if (found_extent && item_size < sizeof(*ei))
6890 found_extent = 0;
6891 #endif
6892 if (!found_extent) {
6893 BUG_ON(iref);
6894 ret = remove_extent_backref(trans, extent_root, path,
6895 NULL, refs_to_drop,
6896 is_data, &last_ref);
6897 if (ret) {
6898 btrfs_abort_transaction(trans, ret);
6899 goto out;
6900 }
6901 btrfs_release_path(path);
6902 path->leave_spinning = 1;
6903
6904 key.objectid = bytenr;
6905 key.type = BTRFS_EXTENT_ITEM_KEY;
6906 key.offset = num_bytes;
6907
6908 if (!is_data && skinny_metadata) {
6909 key.type = BTRFS_METADATA_ITEM_KEY;
6910 key.offset = owner_objectid;
6911 }
6912
6913 ret = btrfs_search_slot(trans, extent_root,
6914 &key, path, -1, 1);
6915 if (ret > 0 && skinny_metadata && path->slots[0]) {
6916 /*
6917 * Couldn't find our skinny metadata item,
6918 * see if we have ye olde extent item.
6919 */
6920 path->slots[0]--;
6921 btrfs_item_key_to_cpu(path->nodes[0], &key,
6922 path->slots[0]);
6923 if (key.objectid == bytenr &&
6924 key.type == BTRFS_EXTENT_ITEM_KEY &&
6925 key.offset == num_bytes)
6926 ret = 0;
6927 }
6928
6929 if (ret > 0 && skinny_metadata) {
6930 skinny_metadata = false;
6931 key.objectid = bytenr;
6932 key.type = BTRFS_EXTENT_ITEM_KEY;
6933 key.offset = num_bytes;
6934 btrfs_release_path(path);
6935 ret = btrfs_search_slot(trans, extent_root,
6936 &key, path, -1, 1);
6937 }
6938
6939 if (ret) {
6940 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6941 ret, bytenr);
6942 if (ret > 0)
6943 btrfs_print_leaf(extent_root,
6944 path->nodes[0]);
6945 }
6946 if (ret < 0) {
6947 btrfs_abort_transaction(trans, ret);
6948 goto out;
6949 }
6950 extent_slot = path->slots[0];
6951 }
6952 } else if (WARN_ON(ret == -ENOENT)) {
6953 btrfs_print_leaf(extent_root, path->nodes[0]);
6954 btrfs_err(info,
6955 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6956 bytenr, parent, root_objectid, owner_objectid,
6957 owner_offset);
6958 btrfs_abort_transaction(trans, ret);
6959 goto out;
6960 } else {
6961 btrfs_abort_transaction(trans, ret);
6962 goto out;
6963 }
6964
6965 leaf = path->nodes[0];
6966 item_size = btrfs_item_size_nr(leaf, extent_slot);
6967 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6968 if (item_size < sizeof(*ei)) {
6969 BUG_ON(found_extent || extent_slot != path->slots[0]);
6970 ret = convert_extent_item_v0(trans, extent_root, path,
6971 owner_objectid, 0);
6972 if (ret < 0) {
6973 btrfs_abort_transaction(trans, ret);
6974 goto out;
6975 }
6976
6977 btrfs_release_path(path);
6978 path->leave_spinning = 1;
6979
6980 key.objectid = bytenr;
6981 key.type = BTRFS_EXTENT_ITEM_KEY;
6982 key.offset = num_bytes;
6983
6984 ret = btrfs_search_slot(trans, extent_root, &key, path,
6985 -1, 1);
6986 if (ret) {
6987 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6988 ret, bytenr);
6989 btrfs_print_leaf(extent_root, path->nodes[0]);
6990 }
6991 if (ret < 0) {
6992 btrfs_abort_transaction(trans, ret);
6993 goto out;
6994 }
6995
6996 extent_slot = path->slots[0];
6997 leaf = path->nodes[0];
6998 item_size = btrfs_item_size_nr(leaf, extent_slot);
6999 }
7000 #endif
7001 BUG_ON(item_size < sizeof(*ei));
7002 ei = btrfs_item_ptr(leaf, extent_slot,
7003 struct btrfs_extent_item);
7004 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7005 key.type == BTRFS_EXTENT_ITEM_KEY) {
7006 struct btrfs_tree_block_info *bi;
7007 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7008 bi = (struct btrfs_tree_block_info *)(ei + 1);
7009 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7010 }
7011
7012 refs = btrfs_extent_refs(leaf, ei);
7013 if (refs < refs_to_drop) {
7014 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
7015 "for bytenr %Lu", refs_to_drop, refs, bytenr);
7016 ret = -EINVAL;
7017 btrfs_abort_transaction(trans, ret);
7018 goto out;
7019 }
7020 refs -= refs_to_drop;
7021
7022 if (refs > 0) {
7023 if (extent_op)
7024 __run_delayed_extent_op(extent_op, leaf, ei);
7025 /*
7026 * In the case of inline back ref, reference count will
7027 * be updated by remove_extent_backref
7028 */
7029 if (iref) {
7030 BUG_ON(!found_extent);
7031 } else {
7032 btrfs_set_extent_refs(leaf, ei, refs);
7033 btrfs_mark_buffer_dirty(leaf);
7034 }
7035 if (found_extent) {
7036 ret = remove_extent_backref(trans, extent_root, path,
7037 iref, refs_to_drop,
7038 is_data, &last_ref);
7039 if (ret) {
7040 btrfs_abort_transaction(trans, ret);
7041 goto out;
7042 }
7043 }
7044 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7045 root_objectid);
7046 } else {
7047 if (found_extent) {
7048 BUG_ON(is_data && refs_to_drop !=
7049 extent_data_ref_count(path, iref));
7050 if (iref) {
7051 BUG_ON(path->slots[0] != extent_slot);
7052 } else {
7053 BUG_ON(path->slots[0] != extent_slot + 1);
7054 path->slots[0] = extent_slot;
7055 num_to_del = 2;
7056 }
7057 }
7058
7059 last_ref = 1;
7060 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7061 num_to_del);
7062 if (ret) {
7063 btrfs_abort_transaction(trans, ret);
7064 goto out;
7065 }
7066 btrfs_release_path(path);
7067
7068 if (is_data) {
7069 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
7070 if (ret) {
7071 btrfs_abort_transaction(trans, ret);
7072 goto out;
7073 }
7074 }
7075
7076 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7077 num_bytes);
7078 if (ret) {
7079 btrfs_abort_transaction(trans, ret);
7080 goto out;
7081 }
7082
7083 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
7084 if (ret) {
7085 btrfs_abort_transaction(trans, ret);
7086 goto out;
7087 }
7088 }
7089 btrfs_release_path(path);
7090
7091 out:
7092 btrfs_free_path(path);
7093 return ret;
7094 }
7095
7096 /*
7097 * when we free an block, it is possible (and likely) that we free the last
7098 * delayed ref for that extent as well. This searches the delayed ref tree for
7099 * a given extent, and if there are no other delayed refs to be processed, it
7100 * removes it from the tree.
7101 */
7102 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7103 struct btrfs_root *root, u64 bytenr)
7104 {
7105 struct btrfs_delayed_ref_head *head;
7106 struct btrfs_delayed_ref_root *delayed_refs;
7107 int ret = 0;
7108
7109 delayed_refs = &trans->transaction->delayed_refs;
7110 spin_lock(&delayed_refs->lock);
7111 head = btrfs_find_delayed_ref_head(trans, bytenr);
7112 if (!head)
7113 goto out_delayed_unlock;
7114
7115 spin_lock(&head->lock);
7116 if (!list_empty(&head->ref_list))
7117 goto out;
7118
7119 if (head->extent_op) {
7120 if (!head->must_insert_reserved)
7121 goto out;
7122 btrfs_free_delayed_extent_op(head->extent_op);
7123 head->extent_op = NULL;
7124 }
7125
7126 /*
7127 * waiting for the lock here would deadlock. If someone else has it
7128 * locked they are already in the process of dropping it anyway
7129 */
7130 if (!mutex_trylock(&head->mutex))
7131 goto out;
7132
7133 /*
7134 * at this point we have a head with no other entries. Go
7135 * ahead and process it.
7136 */
7137 head->node.in_tree = 0;
7138 rb_erase(&head->href_node, &delayed_refs->href_root);
7139
7140 atomic_dec(&delayed_refs->num_entries);
7141
7142 /*
7143 * we don't take a ref on the node because we're removing it from the
7144 * tree, so we just steal the ref the tree was holding.
7145 */
7146 delayed_refs->num_heads--;
7147 if (head->processing == 0)
7148 delayed_refs->num_heads_ready--;
7149 head->processing = 0;
7150 spin_unlock(&head->lock);
7151 spin_unlock(&delayed_refs->lock);
7152
7153 BUG_ON(head->extent_op);
7154 if (head->must_insert_reserved)
7155 ret = 1;
7156
7157 mutex_unlock(&head->mutex);
7158 btrfs_put_delayed_ref(&head->node);
7159 return ret;
7160 out:
7161 spin_unlock(&head->lock);
7162
7163 out_delayed_unlock:
7164 spin_unlock(&delayed_refs->lock);
7165 return 0;
7166 }
7167
7168 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7169 struct btrfs_root *root,
7170 struct extent_buffer *buf,
7171 u64 parent, int last_ref)
7172 {
7173 int pin = 1;
7174 int ret;
7175
7176 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7177 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7178 buf->start, buf->len,
7179 parent, root->root_key.objectid,
7180 btrfs_header_level(buf),
7181 BTRFS_DROP_DELAYED_REF, NULL);
7182 BUG_ON(ret); /* -ENOMEM */
7183 }
7184
7185 if (!last_ref)
7186 return;
7187
7188 if (btrfs_header_generation(buf) == trans->transid) {
7189 struct btrfs_block_group_cache *cache;
7190
7191 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7192 ret = check_ref_cleanup(trans, root, buf->start);
7193 if (!ret)
7194 goto out;
7195 }
7196
7197 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7198
7199 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7200 pin_down_extent(root, cache, buf->start, buf->len, 1);
7201 btrfs_put_block_group(cache);
7202 goto out;
7203 }
7204
7205 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7206
7207 btrfs_add_free_space(cache, buf->start, buf->len);
7208 btrfs_free_reserved_bytes(cache, buf->len, 0);
7209 btrfs_put_block_group(cache);
7210 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
7211 pin = 0;
7212 }
7213 out:
7214 if (pin)
7215 add_pinned_bytes(root->fs_info, buf->len,
7216 btrfs_header_level(buf),
7217 root->root_key.objectid);
7218
7219 /*
7220 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7221 * anymore.
7222 */
7223 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7224 }
7225
7226 /* Can return -ENOMEM */
7227 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7228 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7229 u64 owner, u64 offset)
7230 {
7231 int ret;
7232 struct btrfs_fs_info *fs_info = root->fs_info;
7233
7234 if (btrfs_is_testing(fs_info))
7235 return 0;
7236
7237 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7238
7239 /*
7240 * tree log blocks never actually go into the extent allocation
7241 * tree, just update pinning info and exit early.
7242 */
7243 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7244 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7245 /* unlocks the pinned mutex */
7246 btrfs_pin_extent(root, bytenr, num_bytes, 1);
7247 ret = 0;
7248 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7249 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7250 num_bytes,
7251 parent, root_objectid, (int)owner,
7252 BTRFS_DROP_DELAYED_REF, NULL);
7253 } else {
7254 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7255 num_bytes,
7256 parent, root_objectid, owner,
7257 offset, 0,
7258 BTRFS_DROP_DELAYED_REF, NULL);
7259 }
7260 return ret;
7261 }
7262
7263 /*
7264 * when we wait for progress in the block group caching, its because
7265 * our allocation attempt failed at least once. So, we must sleep
7266 * and let some progress happen before we try again.
7267 *
7268 * This function will sleep at least once waiting for new free space to
7269 * show up, and then it will check the block group free space numbers
7270 * for our min num_bytes. Another option is to have it go ahead
7271 * and look in the rbtree for a free extent of a given size, but this
7272 * is a good start.
7273 *
7274 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7275 * any of the information in this block group.
7276 */
7277 static noinline void
7278 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7279 u64 num_bytes)
7280 {
7281 struct btrfs_caching_control *caching_ctl;
7282
7283 caching_ctl = get_caching_control(cache);
7284 if (!caching_ctl)
7285 return;
7286
7287 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7288 (cache->free_space_ctl->free_space >= num_bytes));
7289
7290 put_caching_control(caching_ctl);
7291 }
7292
7293 static noinline int
7294 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7295 {
7296 struct btrfs_caching_control *caching_ctl;
7297 int ret = 0;
7298
7299 caching_ctl = get_caching_control(cache);
7300 if (!caching_ctl)
7301 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7302
7303 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7304 if (cache->cached == BTRFS_CACHE_ERROR)
7305 ret = -EIO;
7306 put_caching_control(caching_ctl);
7307 return ret;
7308 }
7309
7310 int __get_raid_index(u64 flags)
7311 {
7312 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7313 return BTRFS_RAID_RAID10;
7314 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7315 return BTRFS_RAID_RAID1;
7316 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7317 return BTRFS_RAID_DUP;
7318 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7319 return BTRFS_RAID_RAID0;
7320 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7321 return BTRFS_RAID_RAID5;
7322 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7323 return BTRFS_RAID_RAID6;
7324
7325 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7326 }
7327
7328 int get_block_group_index(struct btrfs_block_group_cache *cache)
7329 {
7330 return __get_raid_index(cache->flags);
7331 }
7332
7333 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7334 [BTRFS_RAID_RAID10] = "raid10",
7335 [BTRFS_RAID_RAID1] = "raid1",
7336 [BTRFS_RAID_DUP] = "dup",
7337 [BTRFS_RAID_RAID0] = "raid0",
7338 [BTRFS_RAID_SINGLE] = "single",
7339 [BTRFS_RAID_RAID5] = "raid5",
7340 [BTRFS_RAID_RAID6] = "raid6",
7341 };
7342
7343 static const char *get_raid_name(enum btrfs_raid_types type)
7344 {
7345 if (type >= BTRFS_NR_RAID_TYPES)
7346 return NULL;
7347
7348 return btrfs_raid_type_names[type];
7349 }
7350
7351 enum btrfs_loop_type {
7352 LOOP_CACHING_NOWAIT = 0,
7353 LOOP_CACHING_WAIT = 1,
7354 LOOP_ALLOC_CHUNK = 2,
7355 LOOP_NO_EMPTY_SIZE = 3,
7356 };
7357
7358 static inline void
7359 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7360 int delalloc)
7361 {
7362 if (delalloc)
7363 down_read(&cache->data_rwsem);
7364 }
7365
7366 static inline void
7367 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7368 int delalloc)
7369 {
7370 btrfs_get_block_group(cache);
7371 if (delalloc)
7372 down_read(&cache->data_rwsem);
7373 }
7374
7375 static struct btrfs_block_group_cache *
7376 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7377 struct btrfs_free_cluster *cluster,
7378 int delalloc)
7379 {
7380 struct btrfs_block_group_cache *used_bg = NULL;
7381
7382 spin_lock(&cluster->refill_lock);
7383 while (1) {
7384 used_bg = cluster->block_group;
7385 if (!used_bg)
7386 return NULL;
7387
7388 if (used_bg == block_group)
7389 return used_bg;
7390
7391 btrfs_get_block_group(used_bg);
7392
7393 if (!delalloc)
7394 return used_bg;
7395
7396 if (down_read_trylock(&used_bg->data_rwsem))
7397 return used_bg;
7398
7399 spin_unlock(&cluster->refill_lock);
7400
7401 down_read(&used_bg->data_rwsem);
7402
7403 spin_lock(&cluster->refill_lock);
7404 if (used_bg == cluster->block_group)
7405 return used_bg;
7406
7407 up_read(&used_bg->data_rwsem);
7408 btrfs_put_block_group(used_bg);
7409 }
7410 }
7411
7412 static inline void
7413 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7414 int delalloc)
7415 {
7416 if (delalloc)
7417 up_read(&cache->data_rwsem);
7418 btrfs_put_block_group(cache);
7419 }
7420
7421 /*
7422 * walks the btree of allocated extents and find a hole of a given size.
7423 * The key ins is changed to record the hole:
7424 * ins->objectid == start position
7425 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7426 * ins->offset == the size of the hole.
7427 * Any available blocks before search_start are skipped.
7428 *
7429 * If there is no suitable free space, we will record the max size of
7430 * the free space extent currently.
7431 */
7432 static noinline int find_free_extent(struct btrfs_root *orig_root,
7433 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7434 u64 hint_byte, struct btrfs_key *ins,
7435 u64 flags, int delalloc)
7436 {
7437 int ret = 0;
7438 struct btrfs_root *root = orig_root->fs_info->extent_root;
7439 struct btrfs_free_cluster *last_ptr = NULL;
7440 struct btrfs_block_group_cache *block_group = NULL;
7441 u64 search_start = 0;
7442 u64 max_extent_size = 0;
7443 u64 empty_cluster = 0;
7444 struct btrfs_space_info *space_info;
7445 int loop = 0;
7446 int index = __get_raid_index(flags);
7447 bool failed_cluster_refill = false;
7448 bool failed_alloc = false;
7449 bool use_cluster = true;
7450 bool have_caching_bg = false;
7451 bool orig_have_caching_bg = false;
7452 bool full_search = false;
7453
7454 WARN_ON(num_bytes < root->sectorsize);
7455 ins->type = BTRFS_EXTENT_ITEM_KEY;
7456 ins->objectid = 0;
7457 ins->offset = 0;
7458
7459 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7460
7461 space_info = __find_space_info(root->fs_info, flags);
7462 if (!space_info) {
7463 btrfs_err(root->fs_info, "No space info for %llu", flags);
7464 return -ENOSPC;
7465 }
7466
7467 /*
7468 * If our free space is heavily fragmented we may not be able to make
7469 * big contiguous allocations, so instead of doing the expensive search
7470 * for free space, simply return ENOSPC with our max_extent_size so we
7471 * can go ahead and search for a more manageable chunk.
7472 *
7473 * If our max_extent_size is large enough for our allocation simply
7474 * disable clustering since we will likely not be able to find enough
7475 * space to create a cluster and induce latency trying.
7476 */
7477 if (unlikely(space_info->max_extent_size)) {
7478 spin_lock(&space_info->lock);
7479 if (space_info->max_extent_size &&
7480 num_bytes > space_info->max_extent_size) {
7481 ins->offset = space_info->max_extent_size;
7482 spin_unlock(&space_info->lock);
7483 return -ENOSPC;
7484 } else if (space_info->max_extent_size) {
7485 use_cluster = false;
7486 }
7487 spin_unlock(&space_info->lock);
7488 }
7489
7490 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7491 if (last_ptr) {
7492 spin_lock(&last_ptr->lock);
7493 if (last_ptr->block_group)
7494 hint_byte = last_ptr->window_start;
7495 if (last_ptr->fragmented) {
7496 /*
7497 * We still set window_start so we can keep track of the
7498 * last place we found an allocation to try and save
7499 * some time.
7500 */
7501 hint_byte = last_ptr->window_start;
7502 use_cluster = false;
7503 }
7504 spin_unlock(&last_ptr->lock);
7505 }
7506
7507 search_start = max(search_start, first_logical_byte(root, 0));
7508 search_start = max(search_start, hint_byte);
7509 if (search_start == hint_byte) {
7510 block_group = btrfs_lookup_block_group(root->fs_info,
7511 search_start);
7512 /*
7513 * we don't want to use the block group if it doesn't match our
7514 * allocation bits, or if its not cached.
7515 *
7516 * However if we are re-searching with an ideal block group
7517 * picked out then we don't care that the block group is cached.
7518 */
7519 if (block_group && block_group_bits(block_group, flags) &&
7520 block_group->cached != BTRFS_CACHE_NO) {
7521 down_read(&space_info->groups_sem);
7522 if (list_empty(&block_group->list) ||
7523 block_group->ro) {
7524 /*
7525 * someone is removing this block group,
7526 * we can't jump into the have_block_group
7527 * target because our list pointers are not
7528 * valid
7529 */
7530 btrfs_put_block_group(block_group);
7531 up_read(&space_info->groups_sem);
7532 } else {
7533 index = get_block_group_index(block_group);
7534 btrfs_lock_block_group(block_group, delalloc);
7535 goto have_block_group;
7536 }
7537 } else if (block_group) {
7538 btrfs_put_block_group(block_group);
7539 }
7540 }
7541 search:
7542 have_caching_bg = false;
7543 if (index == 0 || index == __get_raid_index(flags))
7544 full_search = true;
7545 down_read(&space_info->groups_sem);
7546 list_for_each_entry(block_group, &space_info->block_groups[index],
7547 list) {
7548 u64 offset;
7549 int cached;
7550
7551 btrfs_grab_block_group(block_group, delalloc);
7552 search_start = block_group->key.objectid;
7553
7554 /*
7555 * this can happen if we end up cycling through all the
7556 * raid types, but we want to make sure we only allocate
7557 * for the proper type.
7558 */
7559 if (!block_group_bits(block_group, flags)) {
7560 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7561 BTRFS_BLOCK_GROUP_RAID1 |
7562 BTRFS_BLOCK_GROUP_RAID5 |
7563 BTRFS_BLOCK_GROUP_RAID6 |
7564 BTRFS_BLOCK_GROUP_RAID10;
7565
7566 /*
7567 * if they asked for extra copies and this block group
7568 * doesn't provide them, bail. This does allow us to
7569 * fill raid0 from raid1.
7570 */
7571 if ((flags & extra) && !(block_group->flags & extra))
7572 goto loop;
7573 }
7574
7575 have_block_group:
7576 cached = block_group_cache_done(block_group);
7577 if (unlikely(!cached)) {
7578 have_caching_bg = true;
7579 ret = cache_block_group(block_group, 0);
7580 BUG_ON(ret < 0);
7581 ret = 0;
7582 }
7583
7584 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7585 goto loop;
7586 if (unlikely(block_group->ro))
7587 goto loop;
7588
7589 /*
7590 * Ok we want to try and use the cluster allocator, so
7591 * lets look there
7592 */
7593 if (last_ptr && use_cluster) {
7594 struct btrfs_block_group_cache *used_block_group;
7595 unsigned long aligned_cluster;
7596 /*
7597 * the refill lock keeps out other
7598 * people trying to start a new cluster
7599 */
7600 used_block_group = btrfs_lock_cluster(block_group,
7601 last_ptr,
7602 delalloc);
7603 if (!used_block_group)
7604 goto refill_cluster;
7605
7606 if (used_block_group != block_group &&
7607 (used_block_group->ro ||
7608 !block_group_bits(used_block_group, flags)))
7609 goto release_cluster;
7610
7611 offset = btrfs_alloc_from_cluster(used_block_group,
7612 last_ptr,
7613 num_bytes,
7614 used_block_group->key.objectid,
7615 &max_extent_size);
7616 if (offset) {
7617 /* we have a block, we're done */
7618 spin_unlock(&last_ptr->refill_lock);
7619 trace_btrfs_reserve_extent_cluster(root,
7620 used_block_group,
7621 search_start, num_bytes);
7622 if (used_block_group != block_group) {
7623 btrfs_release_block_group(block_group,
7624 delalloc);
7625 block_group = used_block_group;
7626 }
7627 goto checks;
7628 }
7629
7630 WARN_ON(last_ptr->block_group != used_block_group);
7631 release_cluster:
7632 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7633 * set up a new clusters, so lets just skip it
7634 * and let the allocator find whatever block
7635 * it can find. If we reach this point, we
7636 * will have tried the cluster allocator
7637 * plenty of times and not have found
7638 * anything, so we are likely way too
7639 * fragmented for the clustering stuff to find
7640 * anything.
7641 *
7642 * However, if the cluster is taken from the
7643 * current block group, release the cluster
7644 * first, so that we stand a better chance of
7645 * succeeding in the unclustered
7646 * allocation. */
7647 if (loop >= LOOP_NO_EMPTY_SIZE &&
7648 used_block_group != block_group) {
7649 spin_unlock(&last_ptr->refill_lock);
7650 btrfs_release_block_group(used_block_group,
7651 delalloc);
7652 goto unclustered_alloc;
7653 }
7654
7655 /*
7656 * this cluster didn't work out, free it and
7657 * start over
7658 */
7659 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7660
7661 if (used_block_group != block_group)
7662 btrfs_release_block_group(used_block_group,
7663 delalloc);
7664 refill_cluster:
7665 if (loop >= LOOP_NO_EMPTY_SIZE) {
7666 spin_unlock(&last_ptr->refill_lock);
7667 goto unclustered_alloc;
7668 }
7669
7670 aligned_cluster = max_t(unsigned long,
7671 empty_cluster + empty_size,
7672 block_group->full_stripe_len);
7673
7674 /* allocate a cluster in this block group */
7675 ret = btrfs_find_space_cluster(root, block_group,
7676 last_ptr, search_start,
7677 num_bytes,
7678 aligned_cluster);
7679 if (ret == 0) {
7680 /*
7681 * now pull our allocation out of this
7682 * cluster
7683 */
7684 offset = btrfs_alloc_from_cluster(block_group,
7685 last_ptr,
7686 num_bytes,
7687 search_start,
7688 &max_extent_size);
7689 if (offset) {
7690 /* we found one, proceed */
7691 spin_unlock(&last_ptr->refill_lock);
7692 trace_btrfs_reserve_extent_cluster(root,
7693 block_group, search_start,
7694 num_bytes);
7695 goto checks;
7696 }
7697 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7698 && !failed_cluster_refill) {
7699 spin_unlock(&last_ptr->refill_lock);
7700
7701 failed_cluster_refill = true;
7702 wait_block_group_cache_progress(block_group,
7703 num_bytes + empty_cluster + empty_size);
7704 goto have_block_group;
7705 }
7706
7707 /*
7708 * at this point we either didn't find a cluster
7709 * or we weren't able to allocate a block from our
7710 * cluster. Free the cluster we've been trying
7711 * to use, and go to the next block group
7712 */
7713 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7714 spin_unlock(&last_ptr->refill_lock);
7715 goto loop;
7716 }
7717
7718 unclustered_alloc:
7719 /*
7720 * We are doing an unclustered alloc, set the fragmented flag so
7721 * we don't bother trying to setup a cluster again until we get
7722 * more space.
7723 */
7724 if (unlikely(last_ptr)) {
7725 spin_lock(&last_ptr->lock);
7726 last_ptr->fragmented = 1;
7727 spin_unlock(&last_ptr->lock);
7728 }
7729 spin_lock(&block_group->free_space_ctl->tree_lock);
7730 if (cached &&
7731 block_group->free_space_ctl->free_space <
7732 num_bytes + empty_cluster + empty_size) {
7733 if (block_group->free_space_ctl->free_space >
7734 max_extent_size)
7735 max_extent_size =
7736 block_group->free_space_ctl->free_space;
7737 spin_unlock(&block_group->free_space_ctl->tree_lock);
7738 goto loop;
7739 }
7740 spin_unlock(&block_group->free_space_ctl->tree_lock);
7741
7742 offset = btrfs_find_space_for_alloc(block_group, search_start,
7743 num_bytes, empty_size,
7744 &max_extent_size);
7745 /*
7746 * If we didn't find a chunk, and we haven't failed on this
7747 * block group before, and this block group is in the middle of
7748 * caching and we are ok with waiting, then go ahead and wait
7749 * for progress to be made, and set failed_alloc to true.
7750 *
7751 * If failed_alloc is true then we've already waited on this
7752 * block group once and should move on to the next block group.
7753 */
7754 if (!offset && !failed_alloc && !cached &&
7755 loop > LOOP_CACHING_NOWAIT) {
7756 wait_block_group_cache_progress(block_group,
7757 num_bytes + empty_size);
7758 failed_alloc = true;
7759 goto have_block_group;
7760 } else if (!offset) {
7761 goto loop;
7762 }
7763 checks:
7764 search_start = ALIGN(offset, root->stripesize);
7765
7766 /* move on to the next group */
7767 if (search_start + num_bytes >
7768 block_group->key.objectid + block_group->key.offset) {
7769 btrfs_add_free_space(block_group, offset, num_bytes);
7770 goto loop;
7771 }
7772
7773 if (offset < search_start)
7774 btrfs_add_free_space(block_group, offset,
7775 search_start - offset);
7776 BUG_ON(offset > search_start);
7777
7778 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7779 num_bytes, delalloc);
7780 if (ret == -EAGAIN) {
7781 btrfs_add_free_space(block_group, offset, num_bytes);
7782 goto loop;
7783 }
7784 btrfs_inc_block_group_reservations(block_group);
7785
7786 /* we are all good, lets return */
7787 ins->objectid = search_start;
7788 ins->offset = num_bytes;
7789
7790 trace_btrfs_reserve_extent(orig_root, block_group,
7791 search_start, num_bytes);
7792 btrfs_release_block_group(block_group, delalloc);
7793 break;
7794 loop:
7795 failed_cluster_refill = false;
7796 failed_alloc = false;
7797 BUG_ON(index != get_block_group_index(block_group));
7798 btrfs_release_block_group(block_group, delalloc);
7799 }
7800 up_read(&space_info->groups_sem);
7801
7802 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7803 && !orig_have_caching_bg)
7804 orig_have_caching_bg = true;
7805
7806 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7807 goto search;
7808
7809 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7810 goto search;
7811
7812 /*
7813 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7814 * caching kthreads as we move along
7815 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7816 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7817 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7818 * again
7819 */
7820 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7821 index = 0;
7822 if (loop == LOOP_CACHING_NOWAIT) {
7823 /*
7824 * We want to skip the LOOP_CACHING_WAIT step if we
7825 * don't have any uncached bgs and we've already done a
7826 * full search through.
7827 */
7828 if (orig_have_caching_bg || !full_search)
7829 loop = LOOP_CACHING_WAIT;
7830 else
7831 loop = LOOP_ALLOC_CHUNK;
7832 } else {
7833 loop++;
7834 }
7835
7836 if (loop == LOOP_ALLOC_CHUNK) {
7837 struct btrfs_trans_handle *trans;
7838 int exist = 0;
7839
7840 trans = current->journal_info;
7841 if (trans)
7842 exist = 1;
7843 else
7844 trans = btrfs_join_transaction(root);
7845
7846 if (IS_ERR(trans)) {
7847 ret = PTR_ERR(trans);
7848 goto out;
7849 }
7850
7851 ret = do_chunk_alloc(trans, root, flags,
7852 CHUNK_ALLOC_FORCE);
7853
7854 /*
7855 * If we can't allocate a new chunk we've already looped
7856 * through at least once, move on to the NO_EMPTY_SIZE
7857 * case.
7858 */
7859 if (ret == -ENOSPC)
7860 loop = LOOP_NO_EMPTY_SIZE;
7861
7862 /*
7863 * Do not bail out on ENOSPC since we
7864 * can do more things.
7865 */
7866 if (ret < 0 && ret != -ENOSPC)
7867 btrfs_abort_transaction(trans, ret);
7868 else
7869 ret = 0;
7870 if (!exist)
7871 btrfs_end_transaction(trans, root);
7872 if (ret)
7873 goto out;
7874 }
7875
7876 if (loop == LOOP_NO_EMPTY_SIZE) {
7877 /*
7878 * Don't loop again if we already have no empty_size and
7879 * no empty_cluster.
7880 */
7881 if (empty_size == 0 &&
7882 empty_cluster == 0) {
7883 ret = -ENOSPC;
7884 goto out;
7885 }
7886 empty_size = 0;
7887 empty_cluster = 0;
7888 }
7889
7890 goto search;
7891 } else if (!ins->objectid) {
7892 ret = -ENOSPC;
7893 } else if (ins->objectid) {
7894 if (!use_cluster && last_ptr) {
7895 spin_lock(&last_ptr->lock);
7896 last_ptr->window_start = ins->objectid;
7897 spin_unlock(&last_ptr->lock);
7898 }
7899 ret = 0;
7900 }
7901 out:
7902 if (ret == -ENOSPC) {
7903 spin_lock(&space_info->lock);
7904 space_info->max_extent_size = max_extent_size;
7905 spin_unlock(&space_info->lock);
7906 ins->offset = max_extent_size;
7907 }
7908 return ret;
7909 }
7910
7911 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7912 int dump_block_groups)
7913 {
7914 struct btrfs_block_group_cache *cache;
7915 int index = 0;
7916
7917 spin_lock(&info->lock);
7918 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7919 info->flags,
7920 info->total_bytes - info->bytes_used - info->bytes_pinned -
7921 info->bytes_reserved - info->bytes_readonly -
7922 info->bytes_may_use, (info->full) ? "" : "not ");
7923 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7924 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7925 info->total_bytes, info->bytes_used, info->bytes_pinned,
7926 info->bytes_reserved, info->bytes_may_use,
7927 info->bytes_readonly);
7928 spin_unlock(&info->lock);
7929
7930 if (!dump_block_groups)
7931 return;
7932
7933 down_read(&info->groups_sem);
7934 again:
7935 list_for_each_entry(cache, &info->block_groups[index], list) {
7936 spin_lock(&cache->lock);
7937 printk(KERN_INFO "BTRFS: "
7938 "block group %llu has %llu bytes, "
7939 "%llu used %llu pinned %llu reserved %s\n",
7940 cache->key.objectid, cache->key.offset,
7941 btrfs_block_group_used(&cache->item), cache->pinned,
7942 cache->reserved, cache->ro ? "[readonly]" : "");
7943 btrfs_dump_free_space(cache, bytes);
7944 spin_unlock(&cache->lock);
7945 }
7946 if (++index < BTRFS_NR_RAID_TYPES)
7947 goto again;
7948 up_read(&info->groups_sem);
7949 }
7950
7951 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7952 u64 num_bytes, u64 min_alloc_size,
7953 u64 empty_size, u64 hint_byte,
7954 struct btrfs_key *ins, int is_data, int delalloc)
7955 {
7956 bool final_tried = num_bytes == min_alloc_size;
7957 u64 flags;
7958 int ret;
7959
7960 flags = btrfs_get_alloc_profile(root, is_data);
7961 again:
7962 WARN_ON(num_bytes < root->sectorsize);
7963 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7964 hint_byte, ins, flags, delalloc);
7965 if (!ret && !is_data) {
7966 btrfs_dec_block_group_reservations(root->fs_info,
7967 ins->objectid);
7968 } else if (ret == -ENOSPC) {
7969 if (!final_tried && ins->offset) {
7970 num_bytes = min(num_bytes >> 1, ins->offset);
7971 num_bytes = round_down(num_bytes, root->sectorsize);
7972 num_bytes = max(num_bytes, min_alloc_size);
7973 ram_bytes = num_bytes;
7974 if (num_bytes == min_alloc_size)
7975 final_tried = true;
7976 goto again;
7977 } else if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
7978 struct btrfs_space_info *sinfo;
7979
7980 sinfo = __find_space_info(root->fs_info, flags);
7981 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7982 flags, num_bytes);
7983 if (sinfo)
7984 dump_space_info(sinfo, num_bytes, 1);
7985 }
7986 }
7987
7988 return ret;
7989 }
7990
7991 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7992 u64 start, u64 len,
7993 int pin, int delalloc)
7994 {
7995 struct btrfs_block_group_cache *cache;
7996 int ret = 0;
7997
7998 cache = btrfs_lookup_block_group(root->fs_info, start);
7999 if (!cache) {
8000 btrfs_err(root->fs_info, "Unable to find block group for %llu",
8001 start);
8002 return -ENOSPC;
8003 }
8004
8005 if (pin)
8006 pin_down_extent(root, cache, start, len, 1);
8007 else {
8008 if (btrfs_test_opt(root->fs_info, DISCARD))
8009 ret = btrfs_discard_extent(root, start, len, NULL);
8010 btrfs_add_free_space(cache, start, len);
8011 btrfs_free_reserved_bytes(cache, len, delalloc);
8012 trace_btrfs_reserved_extent_free(root, start, len);
8013 }
8014
8015 btrfs_put_block_group(cache);
8016 return ret;
8017 }
8018
8019 int btrfs_free_reserved_extent(struct btrfs_root *root,
8020 u64 start, u64 len, int delalloc)
8021 {
8022 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
8023 }
8024
8025 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8026 u64 start, u64 len)
8027 {
8028 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
8029 }
8030
8031 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8032 struct btrfs_root *root,
8033 u64 parent, u64 root_objectid,
8034 u64 flags, u64 owner, u64 offset,
8035 struct btrfs_key *ins, int ref_mod)
8036 {
8037 int ret;
8038 struct btrfs_fs_info *fs_info = root->fs_info;
8039 struct btrfs_extent_item *extent_item;
8040 struct btrfs_extent_inline_ref *iref;
8041 struct btrfs_path *path;
8042 struct extent_buffer *leaf;
8043 int type;
8044 u32 size;
8045
8046 if (parent > 0)
8047 type = BTRFS_SHARED_DATA_REF_KEY;
8048 else
8049 type = BTRFS_EXTENT_DATA_REF_KEY;
8050
8051 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8052
8053 path = btrfs_alloc_path();
8054 if (!path)
8055 return -ENOMEM;
8056
8057 path->leave_spinning = 1;
8058 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8059 ins, size);
8060 if (ret) {
8061 btrfs_free_path(path);
8062 return ret;
8063 }
8064
8065 leaf = path->nodes[0];
8066 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8067 struct btrfs_extent_item);
8068 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8069 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8070 btrfs_set_extent_flags(leaf, extent_item,
8071 flags | BTRFS_EXTENT_FLAG_DATA);
8072
8073 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8074 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8075 if (parent > 0) {
8076 struct btrfs_shared_data_ref *ref;
8077 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8078 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8079 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8080 } else {
8081 struct btrfs_extent_data_ref *ref;
8082 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8083 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8084 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8085 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8086 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8087 }
8088
8089 btrfs_mark_buffer_dirty(path->nodes[0]);
8090 btrfs_free_path(path);
8091
8092 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8093 ins->offset);
8094 if (ret)
8095 return ret;
8096
8097 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
8098 if (ret) { /* -ENOENT, logic error */
8099 btrfs_err(fs_info, "update block group failed for %llu %llu",
8100 ins->objectid, ins->offset);
8101 BUG();
8102 }
8103 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
8104 return ret;
8105 }
8106
8107 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8108 struct btrfs_root *root,
8109 u64 parent, u64 root_objectid,
8110 u64 flags, struct btrfs_disk_key *key,
8111 int level, struct btrfs_key *ins)
8112 {
8113 int ret;
8114 struct btrfs_fs_info *fs_info = root->fs_info;
8115 struct btrfs_extent_item *extent_item;
8116 struct btrfs_tree_block_info *block_info;
8117 struct btrfs_extent_inline_ref *iref;
8118 struct btrfs_path *path;
8119 struct extent_buffer *leaf;
8120 u32 size = sizeof(*extent_item) + sizeof(*iref);
8121 u64 num_bytes = ins->offset;
8122 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8123 SKINNY_METADATA);
8124
8125 if (!skinny_metadata)
8126 size += sizeof(*block_info);
8127
8128 path = btrfs_alloc_path();
8129 if (!path) {
8130 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8131 root->nodesize);
8132 return -ENOMEM;
8133 }
8134
8135 path->leave_spinning = 1;
8136 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8137 ins, size);
8138 if (ret) {
8139 btrfs_free_path(path);
8140 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8141 root->nodesize);
8142 return ret;
8143 }
8144
8145 leaf = path->nodes[0];
8146 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8147 struct btrfs_extent_item);
8148 btrfs_set_extent_refs(leaf, extent_item, 1);
8149 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8150 btrfs_set_extent_flags(leaf, extent_item,
8151 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8152
8153 if (skinny_metadata) {
8154 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8155 num_bytes = root->nodesize;
8156 } else {
8157 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8158 btrfs_set_tree_block_key(leaf, block_info, key);
8159 btrfs_set_tree_block_level(leaf, block_info, level);
8160 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8161 }
8162
8163 if (parent > 0) {
8164 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8165 btrfs_set_extent_inline_ref_type(leaf, iref,
8166 BTRFS_SHARED_BLOCK_REF_KEY);
8167 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8168 } else {
8169 btrfs_set_extent_inline_ref_type(leaf, iref,
8170 BTRFS_TREE_BLOCK_REF_KEY);
8171 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8172 }
8173
8174 btrfs_mark_buffer_dirty(leaf);
8175 btrfs_free_path(path);
8176
8177 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8178 num_bytes);
8179 if (ret)
8180 return ret;
8181
8182 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8183 1);
8184 if (ret) { /* -ENOENT, logic error */
8185 btrfs_err(fs_info, "update block group failed for %llu %llu",
8186 ins->objectid, ins->offset);
8187 BUG();
8188 }
8189
8190 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
8191 return ret;
8192 }
8193
8194 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8195 struct btrfs_root *root,
8196 u64 root_objectid, u64 owner,
8197 u64 offset, u64 ram_bytes,
8198 struct btrfs_key *ins)
8199 {
8200 int ret;
8201
8202 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8203
8204 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8205 ins->offset, 0,
8206 root_objectid, owner, offset,
8207 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8208 NULL);
8209 return ret;
8210 }
8211
8212 /*
8213 * this is used by the tree logging recovery code. It records that
8214 * an extent has been allocated and makes sure to clear the free
8215 * space cache bits as well
8216 */
8217 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8218 struct btrfs_root *root,
8219 u64 root_objectid, u64 owner, u64 offset,
8220 struct btrfs_key *ins)
8221 {
8222 int ret;
8223 struct btrfs_block_group_cache *block_group;
8224
8225 /*
8226 * Mixed block groups will exclude before processing the log so we only
8227 * need to do the exclude dance if this fs isn't mixed.
8228 */
8229 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8230 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8231 if (ret)
8232 return ret;
8233 }
8234
8235 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8236 if (!block_group)
8237 return -EINVAL;
8238
8239 ret = btrfs_add_reserved_bytes(block_group, ins->offset,
8240 ins->offset, 0);
8241 BUG_ON(ret); /* logic error */
8242 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8243 0, owner, offset, ins, 1);
8244 btrfs_put_block_group(block_group);
8245 return ret;
8246 }
8247
8248 static struct extent_buffer *
8249 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8250 u64 bytenr, int level)
8251 {
8252 struct extent_buffer *buf;
8253
8254 buf = btrfs_find_create_tree_block(root, bytenr);
8255 if (IS_ERR(buf))
8256 return buf;
8257
8258 btrfs_set_header_generation(buf, trans->transid);
8259 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8260 btrfs_tree_lock(buf);
8261 clean_tree_block(trans, root->fs_info, buf);
8262 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8263
8264 btrfs_set_lock_blocking(buf);
8265 set_extent_buffer_uptodate(buf);
8266
8267 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8268 buf->log_index = root->log_transid % 2;
8269 /*
8270 * we allow two log transactions at a time, use different
8271 * EXENT bit to differentiate dirty pages.
8272 */
8273 if (buf->log_index == 0)
8274 set_extent_dirty(&root->dirty_log_pages, buf->start,
8275 buf->start + buf->len - 1, GFP_NOFS);
8276 else
8277 set_extent_new(&root->dirty_log_pages, buf->start,
8278 buf->start + buf->len - 1);
8279 } else {
8280 buf->log_index = -1;
8281 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8282 buf->start + buf->len - 1, GFP_NOFS);
8283 }
8284 trans->dirty = true;
8285 /* this returns a buffer locked for blocking */
8286 return buf;
8287 }
8288
8289 static struct btrfs_block_rsv *
8290 use_block_rsv(struct btrfs_trans_handle *trans,
8291 struct btrfs_root *root, u32 blocksize)
8292 {
8293 struct btrfs_block_rsv *block_rsv;
8294 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8295 int ret;
8296 bool global_updated = false;
8297
8298 block_rsv = get_block_rsv(trans, root);
8299
8300 if (unlikely(block_rsv->size == 0))
8301 goto try_reserve;
8302 again:
8303 ret = block_rsv_use_bytes(block_rsv, blocksize);
8304 if (!ret)
8305 return block_rsv;
8306
8307 if (block_rsv->failfast)
8308 return ERR_PTR(ret);
8309
8310 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8311 global_updated = true;
8312 update_global_block_rsv(root->fs_info);
8313 goto again;
8314 }
8315
8316 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
8317 static DEFINE_RATELIMIT_STATE(_rs,
8318 DEFAULT_RATELIMIT_INTERVAL * 10,
8319 /*DEFAULT_RATELIMIT_BURST*/ 1);
8320 if (__ratelimit(&_rs))
8321 WARN(1, KERN_DEBUG
8322 "BTRFS: block rsv returned %d\n", ret);
8323 }
8324 try_reserve:
8325 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8326 BTRFS_RESERVE_NO_FLUSH);
8327 if (!ret)
8328 return block_rsv;
8329 /*
8330 * If we couldn't reserve metadata bytes try and use some from
8331 * the global reserve if its space type is the same as the global
8332 * reservation.
8333 */
8334 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8335 block_rsv->space_info == global_rsv->space_info) {
8336 ret = block_rsv_use_bytes(global_rsv, blocksize);
8337 if (!ret)
8338 return global_rsv;
8339 }
8340 return ERR_PTR(ret);
8341 }
8342
8343 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8344 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8345 {
8346 block_rsv_add_bytes(block_rsv, blocksize, 0);
8347 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8348 }
8349
8350 /*
8351 * finds a free extent and does all the dirty work required for allocation
8352 * returns the tree buffer or an ERR_PTR on error.
8353 */
8354 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8355 struct btrfs_root *root,
8356 u64 parent, u64 root_objectid,
8357 struct btrfs_disk_key *key, int level,
8358 u64 hint, u64 empty_size)
8359 {
8360 struct btrfs_key ins;
8361 struct btrfs_block_rsv *block_rsv;
8362 struct extent_buffer *buf;
8363 struct btrfs_delayed_extent_op *extent_op;
8364 u64 flags = 0;
8365 int ret;
8366 u32 blocksize = root->nodesize;
8367 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8368 SKINNY_METADATA);
8369
8370 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8371 if (btrfs_is_testing(root->fs_info)) {
8372 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8373 level);
8374 if (!IS_ERR(buf))
8375 root->alloc_bytenr += blocksize;
8376 return buf;
8377 }
8378 #endif
8379
8380 block_rsv = use_block_rsv(trans, root, blocksize);
8381 if (IS_ERR(block_rsv))
8382 return ERR_CAST(block_rsv);
8383
8384 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8385 empty_size, hint, &ins, 0, 0);
8386 if (ret)
8387 goto out_unuse;
8388
8389 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8390 if (IS_ERR(buf)) {
8391 ret = PTR_ERR(buf);
8392 goto out_free_reserved;
8393 }
8394
8395 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8396 if (parent == 0)
8397 parent = ins.objectid;
8398 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8399 } else
8400 BUG_ON(parent > 0);
8401
8402 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8403 extent_op = btrfs_alloc_delayed_extent_op();
8404 if (!extent_op) {
8405 ret = -ENOMEM;
8406 goto out_free_buf;
8407 }
8408 if (key)
8409 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8410 else
8411 memset(&extent_op->key, 0, sizeof(extent_op->key));
8412 extent_op->flags_to_set = flags;
8413 extent_op->update_key = skinny_metadata ? false : true;
8414 extent_op->update_flags = true;
8415 extent_op->is_data = false;
8416 extent_op->level = level;
8417
8418 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8419 ins.objectid, ins.offset,
8420 parent, root_objectid, level,
8421 BTRFS_ADD_DELAYED_EXTENT,
8422 extent_op);
8423 if (ret)
8424 goto out_free_delayed;
8425 }
8426 return buf;
8427
8428 out_free_delayed:
8429 btrfs_free_delayed_extent_op(extent_op);
8430 out_free_buf:
8431 free_extent_buffer(buf);
8432 out_free_reserved:
8433 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8434 out_unuse:
8435 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8436 return ERR_PTR(ret);
8437 }
8438
8439 struct walk_control {
8440 u64 refs[BTRFS_MAX_LEVEL];
8441 u64 flags[BTRFS_MAX_LEVEL];
8442 struct btrfs_key update_progress;
8443 int stage;
8444 int level;
8445 int shared_level;
8446 int update_ref;
8447 int keep_locks;
8448 int reada_slot;
8449 int reada_count;
8450 int for_reloc;
8451 };
8452
8453 #define DROP_REFERENCE 1
8454 #define UPDATE_BACKREF 2
8455
8456 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8457 struct btrfs_root *root,
8458 struct walk_control *wc,
8459 struct btrfs_path *path)
8460 {
8461 u64 bytenr;
8462 u64 generation;
8463 u64 refs;
8464 u64 flags;
8465 u32 nritems;
8466 struct btrfs_key key;
8467 struct extent_buffer *eb;
8468 int ret;
8469 int slot;
8470 int nread = 0;
8471
8472 if (path->slots[wc->level] < wc->reada_slot) {
8473 wc->reada_count = wc->reada_count * 2 / 3;
8474 wc->reada_count = max(wc->reada_count, 2);
8475 } else {
8476 wc->reada_count = wc->reada_count * 3 / 2;
8477 wc->reada_count = min_t(int, wc->reada_count,
8478 BTRFS_NODEPTRS_PER_BLOCK(root));
8479 }
8480
8481 eb = path->nodes[wc->level];
8482 nritems = btrfs_header_nritems(eb);
8483
8484 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8485 if (nread >= wc->reada_count)
8486 break;
8487
8488 cond_resched();
8489 bytenr = btrfs_node_blockptr(eb, slot);
8490 generation = btrfs_node_ptr_generation(eb, slot);
8491
8492 if (slot == path->slots[wc->level])
8493 goto reada;
8494
8495 if (wc->stage == UPDATE_BACKREF &&
8496 generation <= root->root_key.offset)
8497 continue;
8498
8499 /* We don't lock the tree block, it's OK to be racy here */
8500 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8501 wc->level - 1, 1, &refs,
8502 &flags);
8503 /* We don't care about errors in readahead. */
8504 if (ret < 0)
8505 continue;
8506 BUG_ON(refs == 0);
8507
8508 if (wc->stage == DROP_REFERENCE) {
8509 if (refs == 1)
8510 goto reada;
8511
8512 if (wc->level == 1 &&
8513 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8514 continue;
8515 if (!wc->update_ref ||
8516 generation <= root->root_key.offset)
8517 continue;
8518 btrfs_node_key_to_cpu(eb, &key, slot);
8519 ret = btrfs_comp_cpu_keys(&key,
8520 &wc->update_progress);
8521 if (ret < 0)
8522 continue;
8523 } else {
8524 if (wc->level == 1 &&
8525 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8526 continue;
8527 }
8528 reada:
8529 readahead_tree_block(root, bytenr);
8530 nread++;
8531 }
8532 wc->reada_slot = slot;
8533 }
8534
8535 static int account_leaf_items(struct btrfs_trans_handle *trans,
8536 struct btrfs_root *root,
8537 struct extent_buffer *eb)
8538 {
8539 int nr = btrfs_header_nritems(eb);
8540 int i, extent_type, ret;
8541 struct btrfs_key key;
8542 struct btrfs_file_extent_item *fi;
8543 u64 bytenr, num_bytes;
8544
8545 /* We can be called directly from walk_up_proc() */
8546 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags))
8547 return 0;
8548
8549 for (i = 0; i < nr; i++) {
8550 btrfs_item_key_to_cpu(eb, &key, i);
8551
8552 if (key.type != BTRFS_EXTENT_DATA_KEY)
8553 continue;
8554
8555 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8556 /* filter out non qgroup-accountable extents */
8557 extent_type = btrfs_file_extent_type(eb, fi);
8558
8559 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8560 continue;
8561
8562 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8563 if (!bytenr)
8564 continue;
8565
8566 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8567
8568 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
8569 bytenr, num_bytes, GFP_NOFS);
8570 if (ret)
8571 return ret;
8572 }
8573 return 0;
8574 }
8575
8576 /*
8577 * Walk up the tree from the bottom, freeing leaves and any interior
8578 * nodes which have had all slots visited. If a node (leaf or
8579 * interior) is freed, the node above it will have it's slot
8580 * incremented. The root node will never be freed.
8581 *
8582 * At the end of this function, we should have a path which has all
8583 * slots incremented to the next position for a search. If we need to
8584 * read a new node it will be NULL and the node above it will have the
8585 * correct slot selected for a later read.
8586 *
8587 * If we increment the root nodes slot counter past the number of
8588 * elements, 1 is returned to signal completion of the search.
8589 */
8590 static int adjust_slots_upwards(struct btrfs_root *root,
8591 struct btrfs_path *path, int root_level)
8592 {
8593 int level = 0;
8594 int nr, slot;
8595 struct extent_buffer *eb;
8596
8597 if (root_level == 0)
8598 return 1;
8599
8600 while (level <= root_level) {
8601 eb = path->nodes[level];
8602 nr = btrfs_header_nritems(eb);
8603 path->slots[level]++;
8604 slot = path->slots[level];
8605 if (slot >= nr || level == 0) {
8606 /*
8607 * Don't free the root - we will detect this
8608 * condition after our loop and return a
8609 * positive value for caller to stop walking the tree.
8610 */
8611 if (level != root_level) {
8612 btrfs_tree_unlock_rw(eb, path->locks[level]);
8613 path->locks[level] = 0;
8614
8615 free_extent_buffer(eb);
8616 path->nodes[level] = NULL;
8617 path->slots[level] = 0;
8618 }
8619 } else {
8620 /*
8621 * We have a valid slot to walk back down
8622 * from. Stop here so caller can process these
8623 * new nodes.
8624 */
8625 break;
8626 }
8627
8628 level++;
8629 }
8630
8631 eb = path->nodes[root_level];
8632 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8633 return 1;
8634
8635 return 0;
8636 }
8637
8638 /*
8639 * root_eb is the subtree root and is locked before this function is called.
8640 */
8641 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8642 struct btrfs_root *root,
8643 struct extent_buffer *root_eb,
8644 u64 root_gen,
8645 int root_level)
8646 {
8647 int ret = 0;
8648 int level;
8649 struct extent_buffer *eb = root_eb;
8650 struct btrfs_path *path = NULL;
8651
8652 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8653 BUG_ON(root_eb == NULL);
8654
8655 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags))
8656 return 0;
8657
8658 if (!extent_buffer_uptodate(root_eb)) {
8659 ret = btrfs_read_buffer(root_eb, root_gen);
8660 if (ret)
8661 goto out;
8662 }
8663
8664 if (root_level == 0) {
8665 ret = account_leaf_items(trans, root, root_eb);
8666 goto out;
8667 }
8668
8669 path = btrfs_alloc_path();
8670 if (!path)
8671 return -ENOMEM;
8672
8673 /*
8674 * Walk down the tree. Missing extent blocks are filled in as
8675 * we go. Metadata is accounted every time we read a new
8676 * extent block.
8677 *
8678 * When we reach a leaf, we account for file extent items in it,
8679 * walk back up the tree (adjusting slot pointers as we go)
8680 * and restart the search process.
8681 */
8682 extent_buffer_get(root_eb); /* For path */
8683 path->nodes[root_level] = root_eb;
8684 path->slots[root_level] = 0;
8685 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8686 walk_down:
8687 level = root_level;
8688 while (level >= 0) {
8689 if (path->nodes[level] == NULL) {
8690 int parent_slot;
8691 u64 child_gen;
8692 u64 child_bytenr;
8693
8694 /* We need to get child blockptr/gen from
8695 * parent before we can read it. */
8696 eb = path->nodes[level + 1];
8697 parent_slot = path->slots[level + 1];
8698 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8699 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8700
8701 eb = read_tree_block(root, child_bytenr, child_gen);
8702 if (IS_ERR(eb)) {
8703 ret = PTR_ERR(eb);
8704 goto out;
8705 } else if (!extent_buffer_uptodate(eb)) {
8706 free_extent_buffer(eb);
8707 ret = -EIO;
8708 goto out;
8709 }
8710
8711 path->nodes[level] = eb;
8712 path->slots[level] = 0;
8713
8714 btrfs_tree_read_lock(eb);
8715 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8716 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8717
8718 ret = btrfs_qgroup_insert_dirty_extent(trans,
8719 root->fs_info, child_bytenr,
8720 root->nodesize, GFP_NOFS);
8721 if (ret)
8722 goto out;
8723 }
8724
8725 if (level == 0) {
8726 ret = account_leaf_items(trans, root, path->nodes[level]);
8727 if (ret)
8728 goto out;
8729
8730 /* Nonzero return here means we completed our search */
8731 ret = adjust_slots_upwards(root, path, root_level);
8732 if (ret)
8733 break;
8734
8735 /* Restart search with new slots */
8736 goto walk_down;
8737 }
8738
8739 level--;
8740 }
8741
8742 ret = 0;
8743 out:
8744 btrfs_free_path(path);
8745
8746 return ret;
8747 }
8748
8749 /*
8750 * helper to process tree block while walking down the tree.
8751 *
8752 * when wc->stage == UPDATE_BACKREF, this function updates
8753 * back refs for pointers in the block.
8754 *
8755 * NOTE: return value 1 means we should stop walking down.
8756 */
8757 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8758 struct btrfs_root *root,
8759 struct btrfs_path *path,
8760 struct walk_control *wc, int lookup_info)
8761 {
8762 int level = wc->level;
8763 struct extent_buffer *eb = path->nodes[level];
8764 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8765 int ret;
8766
8767 if (wc->stage == UPDATE_BACKREF &&
8768 btrfs_header_owner(eb) != root->root_key.objectid)
8769 return 1;
8770
8771 /*
8772 * when reference count of tree block is 1, it won't increase
8773 * again. once full backref flag is set, we never clear it.
8774 */
8775 if (lookup_info &&
8776 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8777 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8778 BUG_ON(!path->locks[level]);
8779 ret = btrfs_lookup_extent_info(trans, root,
8780 eb->start, level, 1,
8781 &wc->refs[level],
8782 &wc->flags[level]);
8783 BUG_ON(ret == -ENOMEM);
8784 if (ret)
8785 return ret;
8786 BUG_ON(wc->refs[level] == 0);
8787 }
8788
8789 if (wc->stage == DROP_REFERENCE) {
8790 if (wc->refs[level] > 1)
8791 return 1;
8792
8793 if (path->locks[level] && !wc->keep_locks) {
8794 btrfs_tree_unlock_rw(eb, path->locks[level]);
8795 path->locks[level] = 0;
8796 }
8797 return 0;
8798 }
8799
8800 /* wc->stage == UPDATE_BACKREF */
8801 if (!(wc->flags[level] & flag)) {
8802 BUG_ON(!path->locks[level]);
8803 ret = btrfs_inc_ref(trans, root, eb, 1);
8804 BUG_ON(ret); /* -ENOMEM */
8805 ret = btrfs_dec_ref(trans, root, eb, 0);
8806 BUG_ON(ret); /* -ENOMEM */
8807 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8808 eb->len, flag,
8809 btrfs_header_level(eb), 0);
8810 BUG_ON(ret); /* -ENOMEM */
8811 wc->flags[level] |= flag;
8812 }
8813
8814 /*
8815 * the block is shared by multiple trees, so it's not good to
8816 * keep the tree lock
8817 */
8818 if (path->locks[level] && level > 0) {
8819 btrfs_tree_unlock_rw(eb, path->locks[level]);
8820 path->locks[level] = 0;
8821 }
8822 return 0;
8823 }
8824
8825 /*
8826 * helper to process tree block pointer.
8827 *
8828 * when wc->stage == DROP_REFERENCE, this function checks
8829 * reference count of the block pointed to. if the block
8830 * is shared and we need update back refs for the subtree
8831 * rooted at the block, this function changes wc->stage to
8832 * UPDATE_BACKREF. if the block is shared and there is no
8833 * need to update back, this function drops the reference
8834 * to the block.
8835 *
8836 * NOTE: return value 1 means we should stop walking down.
8837 */
8838 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8839 struct btrfs_root *root,
8840 struct btrfs_path *path,
8841 struct walk_control *wc, int *lookup_info)
8842 {
8843 u64 bytenr;
8844 u64 generation;
8845 u64 parent;
8846 u32 blocksize;
8847 struct btrfs_key key;
8848 struct extent_buffer *next;
8849 int level = wc->level;
8850 int reada = 0;
8851 int ret = 0;
8852 bool need_account = false;
8853
8854 generation = btrfs_node_ptr_generation(path->nodes[level],
8855 path->slots[level]);
8856 /*
8857 * if the lower level block was created before the snapshot
8858 * was created, we know there is no need to update back refs
8859 * for the subtree
8860 */
8861 if (wc->stage == UPDATE_BACKREF &&
8862 generation <= root->root_key.offset) {
8863 *lookup_info = 1;
8864 return 1;
8865 }
8866
8867 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8868 blocksize = root->nodesize;
8869
8870 next = btrfs_find_tree_block(root->fs_info, bytenr);
8871 if (!next) {
8872 next = btrfs_find_create_tree_block(root, bytenr);
8873 if (IS_ERR(next))
8874 return PTR_ERR(next);
8875
8876 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8877 level - 1);
8878 reada = 1;
8879 }
8880 btrfs_tree_lock(next);
8881 btrfs_set_lock_blocking(next);
8882
8883 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8884 &wc->refs[level - 1],
8885 &wc->flags[level - 1]);
8886 if (ret < 0) {
8887 btrfs_tree_unlock(next);
8888 return ret;
8889 }
8890
8891 if (unlikely(wc->refs[level - 1] == 0)) {
8892 btrfs_err(root->fs_info, "Missing references.");
8893 BUG();
8894 }
8895 *lookup_info = 0;
8896
8897 if (wc->stage == DROP_REFERENCE) {
8898 if (wc->refs[level - 1] > 1) {
8899 need_account = true;
8900 if (level == 1 &&
8901 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8902 goto skip;
8903
8904 if (!wc->update_ref ||
8905 generation <= root->root_key.offset)
8906 goto skip;
8907
8908 btrfs_node_key_to_cpu(path->nodes[level], &key,
8909 path->slots[level]);
8910 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8911 if (ret < 0)
8912 goto skip;
8913
8914 wc->stage = UPDATE_BACKREF;
8915 wc->shared_level = level - 1;
8916 }
8917 } else {
8918 if (level == 1 &&
8919 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8920 goto skip;
8921 }
8922
8923 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8924 btrfs_tree_unlock(next);
8925 free_extent_buffer(next);
8926 next = NULL;
8927 *lookup_info = 1;
8928 }
8929
8930 if (!next) {
8931 if (reada && level == 1)
8932 reada_walk_down(trans, root, wc, path);
8933 next = read_tree_block(root, bytenr, generation);
8934 if (IS_ERR(next)) {
8935 return PTR_ERR(next);
8936 } else if (!extent_buffer_uptodate(next)) {
8937 free_extent_buffer(next);
8938 return -EIO;
8939 }
8940 btrfs_tree_lock(next);
8941 btrfs_set_lock_blocking(next);
8942 }
8943
8944 level--;
8945 BUG_ON(level != btrfs_header_level(next));
8946 path->nodes[level] = next;
8947 path->slots[level] = 0;
8948 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8949 wc->level = level;
8950 if (wc->level == 1)
8951 wc->reada_slot = 0;
8952 return 0;
8953 skip:
8954 wc->refs[level - 1] = 0;
8955 wc->flags[level - 1] = 0;
8956 if (wc->stage == DROP_REFERENCE) {
8957 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8958 parent = path->nodes[level]->start;
8959 } else {
8960 BUG_ON(root->root_key.objectid !=
8961 btrfs_header_owner(path->nodes[level]));
8962 parent = 0;
8963 }
8964
8965 if (need_account) {
8966 ret = account_shared_subtree(trans, root, next,
8967 generation, level - 1);
8968 if (ret) {
8969 btrfs_err_rl(root->fs_info,
8970 "Error "
8971 "%d accounting shared subtree. Quota "
8972 "is out of sync, rescan required.",
8973 ret);
8974 }
8975 }
8976 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8977 root->root_key.objectid, level - 1, 0);
8978 BUG_ON(ret); /* -ENOMEM */
8979 }
8980 btrfs_tree_unlock(next);
8981 free_extent_buffer(next);
8982 *lookup_info = 1;
8983 return 1;
8984 }
8985
8986 /*
8987 * helper to process tree block while walking up the tree.
8988 *
8989 * when wc->stage == DROP_REFERENCE, this function drops
8990 * reference count on the block.
8991 *
8992 * when wc->stage == UPDATE_BACKREF, this function changes
8993 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8994 * to UPDATE_BACKREF previously while processing the block.
8995 *
8996 * NOTE: return value 1 means we should stop walking up.
8997 */
8998 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8999 struct btrfs_root *root,
9000 struct btrfs_path *path,
9001 struct walk_control *wc)
9002 {
9003 int ret;
9004 int level = wc->level;
9005 struct extent_buffer *eb = path->nodes[level];
9006 u64 parent = 0;
9007
9008 if (wc->stage == UPDATE_BACKREF) {
9009 BUG_ON(wc->shared_level < level);
9010 if (level < wc->shared_level)
9011 goto out;
9012
9013 ret = find_next_key(path, level + 1, &wc->update_progress);
9014 if (ret > 0)
9015 wc->update_ref = 0;
9016
9017 wc->stage = DROP_REFERENCE;
9018 wc->shared_level = -1;
9019 path->slots[level] = 0;
9020
9021 /*
9022 * check reference count again if the block isn't locked.
9023 * we should start walking down the tree again if reference
9024 * count is one.
9025 */
9026 if (!path->locks[level]) {
9027 BUG_ON(level == 0);
9028 btrfs_tree_lock(eb);
9029 btrfs_set_lock_blocking(eb);
9030 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9031
9032 ret = btrfs_lookup_extent_info(trans, root,
9033 eb->start, level, 1,
9034 &wc->refs[level],
9035 &wc->flags[level]);
9036 if (ret < 0) {
9037 btrfs_tree_unlock_rw(eb, path->locks[level]);
9038 path->locks[level] = 0;
9039 return ret;
9040 }
9041 BUG_ON(wc->refs[level] == 0);
9042 if (wc->refs[level] == 1) {
9043 btrfs_tree_unlock_rw(eb, path->locks[level]);
9044 path->locks[level] = 0;
9045 return 1;
9046 }
9047 }
9048 }
9049
9050 /* wc->stage == DROP_REFERENCE */
9051 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9052
9053 if (wc->refs[level] == 1) {
9054 if (level == 0) {
9055 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9056 ret = btrfs_dec_ref(trans, root, eb, 1);
9057 else
9058 ret = btrfs_dec_ref(trans, root, eb, 0);
9059 BUG_ON(ret); /* -ENOMEM */
9060 ret = account_leaf_items(trans, root, eb);
9061 if (ret) {
9062 btrfs_err_rl(root->fs_info,
9063 "error "
9064 "%d accounting leaf items. Quota "
9065 "is out of sync, rescan required.",
9066 ret);
9067 }
9068 }
9069 /* make block locked assertion in clean_tree_block happy */
9070 if (!path->locks[level] &&
9071 btrfs_header_generation(eb) == trans->transid) {
9072 btrfs_tree_lock(eb);
9073 btrfs_set_lock_blocking(eb);
9074 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9075 }
9076 clean_tree_block(trans, root->fs_info, eb);
9077 }
9078
9079 if (eb == root->node) {
9080 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9081 parent = eb->start;
9082 else
9083 BUG_ON(root->root_key.objectid !=
9084 btrfs_header_owner(eb));
9085 } else {
9086 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9087 parent = path->nodes[level + 1]->start;
9088 else
9089 BUG_ON(root->root_key.objectid !=
9090 btrfs_header_owner(path->nodes[level + 1]));
9091 }
9092
9093 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9094 out:
9095 wc->refs[level] = 0;
9096 wc->flags[level] = 0;
9097 return 0;
9098 }
9099
9100 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9101 struct btrfs_root *root,
9102 struct btrfs_path *path,
9103 struct walk_control *wc)
9104 {
9105 int level = wc->level;
9106 int lookup_info = 1;
9107 int ret;
9108
9109 while (level >= 0) {
9110 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9111 if (ret > 0)
9112 break;
9113
9114 if (level == 0)
9115 break;
9116
9117 if (path->slots[level] >=
9118 btrfs_header_nritems(path->nodes[level]))
9119 break;
9120
9121 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9122 if (ret > 0) {
9123 path->slots[level]++;
9124 continue;
9125 } else if (ret < 0)
9126 return ret;
9127 level = wc->level;
9128 }
9129 return 0;
9130 }
9131
9132 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9133 struct btrfs_root *root,
9134 struct btrfs_path *path,
9135 struct walk_control *wc, int max_level)
9136 {
9137 int level = wc->level;
9138 int ret;
9139
9140 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9141 while (level < max_level && path->nodes[level]) {
9142 wc->level = level;
9143 if (path->slots[level] + 1 <
9144 btrfs_header_nritems(path->nodes[level])) {
9145 path->slots[level]++;
9146 return 0;
9147 } else {
9148 ret = walk_up_proc(trans, root, path, wc);
9149 if (ret > 0)
9150 return 0;
9151
9152 if (path->locks[level]) {
9153 btrfs_tree_unlock_rw(path->nodes[level],
9154 path->locks[level]);
9155 path->locks[level] = 0;
9156 }
9157 free_extent_buffer(path->nodes[level]);
9158 path->nodes[level] = NULL;
9159 level++;
9160 }
9161 }
9162 return 1;
9163 }
9164
9165 /*
9166 * drop a subvolume tree.
9167 *
9168 * this function traverses the tree freeing any blocks that only
9169 * referenced by the tree.
9170 *
9171 * when a shared tree block is found. this function decreases its
9172 * reference count by one. if update_ref is true, this function
9173 * also make sure backrefs for the shared block and all lower level
9174 * blocks are properly updated.
9175 *
9176 * If called with for_reloc == 0, may exit early with -EAGAIN
9177 */
9178 int btrfs_drop_snapshot(struct btrfs_root *root,
9179 struct btrfs_block_rsv *block_rsv, int update_ref,
9180 int for_reloc)
9181 {
9182 struct btrfs_path *path;
9183 struct btrfs_trans_handle *trans;
9184 struct btrfs_root *tree_root = root->fs_info->tree_root;
9185 struct btrfs_root_item *root_item = &root->root_item;
9186 struct walk_control *wc;
9187 struct btrfs_key key;
9188 int err = 0;
9189 int ret;
9190 int level;
9191 bool root_dropped = false;
9192
9193 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
9194
9195 path = btrfs_alloc_path();
9196 if (!path) {
9197 err = -ENOMEM;
9198 goto out;
9199 }
9200
9201 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9202 if (!wc) {
9203 btrfs_free_path(path);
9204 err = -ENOMEM;
9205 goto out;
9206 }
9207
9208 trans = btrfs_start_transaction(tree_root, 0);
9209 if (IS_ERR(trans)) {
9210 err = PTR_ERR(trans);
9211 goto out_free;
9212 }
9213
9214 if (block_rsv)
9215 trans->block_rsv = block_rsv;
9216
9217 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9218 level = btrfs_header_level(root->node);
9219 path->nodes[level] = btrfs_lock_root_node(root);
9220 btrfs_set_lock_blocking(path->nodes[level]);
9221 path->slots[level] = 0;
9222 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9223 memset(&wc->update_progress, 0,
9224 sizeof(wc->update_progress));
9225 } else {
9226 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9227 memcpy(&wc->update_progress, &key,
9228 sizeof(wc->update_progress));
9229
9230 level = root_item->drop_level;
9231 BUG_ON(level == 0);
9232 path->lowest_level = level;
9233 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9234 path->lowest_level = 0;
9235 if (ret < 0) {
9236 err = ret;
9237 goto out_end_trans;
9238 }
9239 WARN_ON(ret > 0);
9240
9241 /*
9242 * unlock our path, this is safe because only this
9243 * function is allowed to delete this snapshot
9244 */
9245 btrfs_unlock_up_safe(path, 0);
9246
9247 level = btrfs_header_level(root->node);
9248 while (1) {
9249 btrfs_tree_lock(path->nodes[level]);
9250 btrfs_set_lock_blocking(path->nodes[level]);
9251 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9252
9253 ret = btrfs_lookup_extent_info(trans, root,
9254 path->nodes[level]->start,
9255 level, 1, &wc->refs[level],
9256 &wc->flags[level]);
9257 if (ret < 0) {
9258 err = ret;
9259 goto out_end_trans;
9260 }
9261 BUG_ON(wc->refs[level] == 0);
9262
9263 if (level == root_item->drop_level)
9264 break;
9265
9266 btrfs_tree_unlock(path->nodes[level]);
9267 path->locks[level] = 0;
9268 WARN_ON(wc->refs[level] != 1);
9269 level--;
9270 }
9271 }
9272
9273 wc->level = level;
9274 wc->shared_level = -1;
9275 wc->stage = DROP_REFERENCE;
9276 wc->update_ref = update_ref;
9277 wc->keep_locks = 0;
9278 wc->for_reloc = for_reloc;
9279 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9280
9281 while (1) {
9282
9283 ret = walk_down_tree(trans, root, path, wc);
9284 if (ret < 0) {
9285 err = ret;
9286 break;
9287 }
9288
9289 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9290 if (ret < 0) {
9291 err = ret;
9292 break;
9293 }
9294
9295 if (ret > 0) {
9296 BUG_ON(wc->stage != DROP_REFERENCE);
9297 break;
9298 }
9299
9300 if (wc->stage == DROP_REFERENCE) {
9301 level = wc->level;
9302 btrfs_node_key(path->nodes[level],
9303 &root_item->drop_progress,
9304 path->slots[level]);
9305 root_item->drop_level = level;
9306 }
9307
9308 BUG_ON(wc->level == 0);
9309 if (btrfs_should_end_transaction(trans, tree_root) ||
9310 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9311 ret = btrfs_update_root(trans, tree_root,
9312 &root->root_key,
9313 root_item);
9314 if (ret) {
9315 btrfs_abort_transaction(trans, ret);
9316 err = ret;
9317 goto out_end_trans;
9318 }
9319
9320 btrfs_end_transaction_throttle(trans, tree_root);
9321 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9322 pr_debug("BTRFS: drop snapshot early exit\n");
9323 err = -EAGAIN;
9324 goto out_free;
9325 }
9326
9327 trans = btrfs_start_transaction(tree_root, 0);
9328 if (IS_ERR(trans)) {
9329 err = PTR_ERR(trans);
9330 goto out_free;
9331 }
9332 if (block_rsv)
9333 trans->block_rsv = block_rsv;
9334 }
9335 }
9336 btrfs_release_path(path);
9337 if (err)
9338 goto out_end_trans;
9339
9340 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9341 if (ret) {
9342 btrfs_abort_transaction(trans, ret);
9343 goto out_end_trans;
9344 }
9345
9346 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9347 ret = btrfs_find_root(tree_root, &root->root_key, path,
9348 NULL, NULL);
9349 if (ret < 0) {
9350 btrfs_abort_transaction(trans, ret);
9351 err = ret;
9352 goto out_end_trans;
9353 } else if (ret > 0) {
9354 /* if we fail to delete the orphan item this time
9355 * around, it'll get picked up the next time.
9356 *
9357 * The most common failure here is just -ENOENT.
9358 */
9359 btrfs_del_orphan_item(trans, tree_root,
9360 root->root_key.objectid);
9361 }
9362 }
9363
9364 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9365 btrfs_add_dropped_root(trans, root);
9366 } else {
9367 free_extent_buffer(root->node);
9368 free_extent_buffer(root->commit_root);
9369 btrfs_put_fs_root(root);
9370 }
9371 root_dropped = true;
9372 out_end_trans:
9373 btrfs_end_transaction_throttle(trans, tree_root);
9374 out_free:
9375 kfree(wc);
9376 btrfs_free_path(path);
9377 out:
9378 /*
9379 * So if we need to stop dropping the snapshot for whatever reason we
9380 * need to make sure to add it back to the dead root list so that we
9381 * keep trying to do the work later. This also cleans up roots if we
9382 * don't have it in the radix (like when we recover after a power fail
9383 * or unmount) so we don't leak memory.
9384 */
9385 if (!for_reloc && root_dropped == false)
9386 btrfs_add_dead_root(root);
9387 if (err && err != -EAGAIN)
9388 btrfs_handle_fs_error(root->fs_info, err, NULL);
9389 return err;
9390 }
9391
9392 /*
9393 * drop subtree rooted at tree block 'node'.
9394 *
9395 * NOTE: this function will unlock and release tree block 'node'
9396 * only used by relocation code
9397 */
9398 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9399 struct btrfs_root *root,
9400 struct extent_buffer *node,
9401 struct extent_buffer *parent)
9402 {
9403 struct btrfs_path *path;
9404 struct walk_control *wc;
9405 int level;
9406 int parent_level;
9407 int ret = 0;
9408 int wret;
9409
9410 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9411
9412 path = btrfs_alloc_path();
9413 if (!path)
9414 return -ENOMEM;
9415
9416 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9417 if (!wc) {
9418 btrfs_free_path(path);
9419 return -ENOMEM;
9420 }
9421
9422 btrfs_assert_tree_locked(parent);
9423 parent_level = btrfs_header_level(parent);
9424 extent_buffer_get(parent);
9425 path->nodes[parent_level] = parent;
9426 path->slots[parent_level] = btrfs_header_nritems(parent);
9427
9428 btrfs_assert_tree_locked(node);
9429 level = btrfs_header_level(node);
9430 path->nodes[level] = node;
9431 path->slots[level] = 0;
9432 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9433
9434 wc->refs[parent_level] = 1;
9435 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9436 wc->level = level;
9437 wc->shared_level = -1;
9438 wc->stage = DROP_REFERENCE;
9439 wc->update_ref = 0;
9440 wc->keep_locks = 1;
9441 wc->for_reloc = 1;
9442 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9443
9444 while (1) {
9445 wret = walk_down_tree(trans, root, path, wc);
9446 if (wret < 0) {
9447 ret = wret;
9448 break;
9449 }
9450
9451 wret = walk_up_tree(trans, root, path, wc, parent_level);
9452 if (wret < 0)
9453 ret = wret;
9454 if (wret != 0)
9455 break;
9456 }
9457
9458 kfree(wc);
9459 btrfs_free_path(path);
9460 return ret;
9461 }
9462
9463 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9464 {
9465 u64 num_devices;
9466 u64 stripped;
9467
9468 /*
9469 * if restripe for this chunk_type is on pick target profile and
9470 * return, otherwise do the usual balance
9471 */
9472 stripped = get_restripe_target(root->fs_info, flags);
9473 if (stripped)
9474 return extended_to_chunk(stripped);
9475
9476 num_devices = root->fs_info->fs_devices->rw_devices;
9477
9478 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9479 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9480 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9481
9482 if (num_devices == 1) {
9483 stripped |= BTRFS_BLOCK_GROUP_DUP;
9484 stripped = flags & ~stripped;
9485
9486 /* turn raid0 into single device chunks */
9487 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9488 return stripped;
9489
9490 /* turn mirroring into duplication */
9491 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9492 BTRFS_BLOCK_GROUP_RAID10))
9493 return stripped | BTRFS_BLOCK_GROUP_DUP;
9494 } else {
9495 /* they already had raid on here, just return */
9496 if (flags & stripped)
9497 return flags;
9498
9499 stripped |= BTRFS_BLOCK_GROUP_DUP;
9500 stripped = flags & ~stripped;
9501
9502 /* switch duplicated blocks with raid1 */
9503 if (flags & BTRFS_BLOCK_GROUP_DUP)
9504 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9505
9506 /* this is drive concat, leave it alone */
9507 }
9508
9509 return flags;
9510 }
9511
9512 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9513 {
9514 struct btrfs_space_info *sinfo = cache->space_info;
9515 u64 num_bytes;
9516 u64 min_allocable_bytes;
9517 int ret = -ENOSPC;
9518
9519 /*
9520 * We need some metadata space and system metadata space for
9521 * allocating chunks in some corner cases until we force to set
9522 * it to be readonly.
9523 */
9524 if ((sinfo->flags &
9525 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9526 !force)
9527 min_allocable_bytes = SZ_1M;
9528 else
9529 min_allocable_bytes = 0;
9530
9531 spin_lock(&sinfo->lock);
9532 spin_lock(&cache->lock);
9533
9534 if (cache->ro) {
9535 cache->ro++;
9536 ret = 0;
9537 goto out;
9538 }
9539
9540 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9541 cache->bytes_super - btrfs_block_group_used(&cache->item);
9542
9543 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9544 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9545 min_allocable_bytes <= sinfo->total_bytes) {
9546 sinfo->bytes_readonly += num_bytes;
9547 cache->ro++;
9548 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9549 ret = 0;
9550 }
9551 out:
9552 spin_unlock(&cache->lock);
9553 spin_unlock(&sinfo->lock);
9554 return ret;
9555 }
9556
9557 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9558 struct btrfs_block_group_cache *cache)
9559
9560 {
9561 struct btrfs_trans_handle *trans;
9562 u64 alloc_flags;
9563 int ret;
9564
9565 again:
9566 trans = btrfs_join_transaction(root);
9567 if (IS_ERR(trans))
9568 return PTR_ERR(trans);
9569
9570 /*
9571 * we're not allowed to set block groups readonly after the dirty
9572 * block groups cache has started writing. If it already started,
9573 * back off and let this transaction commit
9574 */
9575 mutex_lock(&root->fs_info->ro_block_group_mutex);
9576 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9577 u64 transid = trans->transid;
9578
9579 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9580 btrfs_end_transaction(trans, root);
9581
9582 ret = btrfs_wait_for_commit(root, transid);
9583 if (ret)
9584 return ret;
9585 goto again;
9586 }
9587
9588 /*
9589 * if we are changing raid levels, try to allocate a corresponding
9590 * block group with the new raid level.
9591 */
9592 alloc_flags = update_block_group_flags(root, cache->flags);
9593 if (alloc_flags != cache->flags) {
9594 ret = do_chunk_alloc(trans, root, alloc_flags,
9595 CHUNK_ALLOC_FORCE);
9596 /*
9597 * ENOSPC is allowed here, we may have enough space
9598 * already allocated at the new raid level to
9599 * carry on
9600 */
9601 if (ret == -ENOSPC)
9602 ret = 0;
9603 if (ret < 0)
9604 goto out;
9605 }
9606
9607 ret = inc_block_group_ro(cache, 0);
9608 if (!ret)
9609 goto out;
9610 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9611 ret = do_chunk_alloc(trans, root, alloc_flags,
9612 CHUNK_ALLOC_FORCE);
9613 if (ret < 0)
9614 goto out;
9615 ret = inc_block_group_ro(cache, 0);
9616 out:
9617 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9618 alloc_flags = update_block_group_flags(root, cache->flags);
9619 lock_chunks(root->fs_info->chunk_root);
9620 check_system_chunk(trans, root, alloc_flags);
9621 unlock_chunks(root->fs_info->chunk_root);
9622 }
9623 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9624
9625 btrfs_end_transaction(trans, root);
9626 return ret;
9627 }
9628
9629 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9630 struct btrfs_root *root, u64 type)
9631 {
9632 u64 alloc_flags = get_alloc_profile(root, type);
9633 return do_chunk_alloc(trans, root, alloc_flags,
9634 CHUNK_ALLOC_FORCE);
9635 }
9636
9637 /*
9638 * helper to account the unused space of all the readonly block group in the
9639 * space_info. takes mirrors into account.
9640 */
9641 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9642 {
9643 struct btrfs_block_group_cache *block_group;
9644 u64 free_bytes = 0;
9645 int factor;
9646
9647 /* It's df, we don't care if it's racy */
9648 if (list_empty(&sinfo->ro_bgs))
9649 return 0;
9650
9651 spin_lock(&sinfo->lock);
9652 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9653 spin_lock(&block_group->lock);
9654
9655 if (!block_group->ro) {
9656 spin_unlock(&block_group->lock);
9657 continue;
9658 }
9659
9660 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9661 BTRFS_BLOCK_GROUP_RAID10 |
9662 BTRFS_BLOCK_GROUP_DUP))
9663 factor = 2;
9664 else
9665 factor = 1;
9666
9667 free_bytes += (block_group->key.offset -
9668 btrfs_block_group_used(&block_group->item)) *
9669 factor;
9670
9671 spin_unlock(&block_group->lock);
9672 }
9673 spin_unlock(&sinfo->lock);
9674
9675 return free_bytes;
9676 }
9677
9678 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9679 struct btrfs_block_group_cache *cache)
9680 {
9681 struct btrfs_space_info *sinfo = cache->space_info;
9682 u64 num_bytes;
9683
9684 BUG_ON(!cache->ro);
9685
9686 spin_lock(&sinfo->lock);
9687 spin_lock(&cache->lock);
9688 if (!--cache->ro) {
9689 num_bytes = cache->key.offset - cache->reserved -
9690 cache->pinned - cache->bytes_super -
9691 btrfs_block_group_used(&cache->item);
9692 sinfo->bytes_readonly -= num_bytes;
9693 list_del_init(&cache->ro_list);
9694 }
9695 spin_unlock(&cache->lock);
9696 spin_unlock(&sinfo->lock);
9697 }
9698
9699 /*
9700 * checks to see if its even possible to relocate this block group.
9701 *
9702 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9703 * ok to go ahead and try.
9704 */
9705 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9706 {
9707 struct btrfs_block_group_cache *block_group;
9708 struct btrfs_space_info *space_info;
9709 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9710 struct btrfs_device *device;
9711 struct btrfs_trans_handle *trans;
9712 u64 min_free;
9713 u64 dev_min = 1;
9714 u64 dev_nr = 0;
9715 u64 target;
9716 int debug;
9717 int index;
9718 int full = 0;
9719 int ret = 0;
9720
9721 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
9722
9723 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9724
9725 /* odd, couldn't find the block group, leave it alone */
9726 if (!block_group) {
9727 if (debug)
9728 btrfs_warn(root->fs_info,
9729 "can't find block group for bytenr %llu",
9730 bytenr);
9731 return -1;
9732 }
9733
9734 min_free = btrfs_block_group_used(&block_group->item);
9735
9736 /* no bytes used, we're good */
9737 if (!min_free)
9738 goto out;
9739
9740 space_info = block_group->space_info;
9741 spin_lock(&space_info->lock);
9742
9743 full = space_info->full;
9744
9745 /*
9746 * if this is the last block group we have in this space, we can't
9747 * relocate it unless we're able to allocate a new chunk below.
9748 *
9749 * Otherwise, we need to make sure we have room in the space to handle
9750 * all of the extents from this block group. If we can, we're good
9751 */
9752 if ((space_info->total_bytes != block_group->key.offset) &&
9753 (space_info->bytes_used + space_info->bytes_reserved +
9754 space_info->bytes_pinned + space_info->bytes_readonly +
9755 min_free < space_info->total_bytes)) {
9756 spin_unlock(&space_info->lock);
9757 goto out;
9758 }
9759 spin_unlock(&space_info->lock);
9760
9761 /*
9762 * ok we don't have enough space, but maybe we have free space on our
9763 * devices to allocate new chunks for relocation, so loop through our
9764 * alloc devices and guess if we have enough space. if this block
9765 * group is going to be restriped, run checks against the target
9766 * profile instead of the current one.
9767 */
9768 ret = -1;
9769
9770 /*
9771 * index:
9772 * 0: raid10
9773 * 1: raid1
9774 * 2: dup
9775 * 3: raid0
9776 * 4: single
9777 */
9778 target = get_restripe_target(root->fs_info, block_group->flags);
9779 if (target) {
9780 index = __get_raid_index(extended_to_chunk(target));
9781 } else {
9782 /*
9783 * this is just a balance, so if we were marked as full
9784 * we know there is no space for a new chunk
9785 */
9786 if (full) {
9787 if (debug)
9788 btrfs_warn(root->fs_info,
9789 "no space to alloc new chunk for block group %llu",
9790 block_group->key.objectid);
9791 goto out;
9792 }
9793
9794 index = get_block_group_index(block_group);
9795 }
9796
9797 if (index == BTRFS_RAID_RAID10) {
9798 dev_min = 4;
9799 /* Divide by 2 */
9800 min_free >>= 1;
9801 } else if (index == BTRFS_RAID_RAID1) {
9802 dev_min = 2;
9803 } else if (index == BTRFS_RAID_DUP) {
9804 /* Multiply by 2 */
9805 min_free <<= 1;
9806 } else if (index == BTRFS_RAID_RAID0) {
9807 dev_min = fs_devices->rw_devices;
9808 min_free = div64_u64(min_free, dev_min);
9809 }
9810
9811 /* We need to do this so that we can look at pending chunks */
9812 trans = btrfs_join_transaction(root);
9813 if (IS_ERR(trans)) {
9814 ret = PTR_ERR(trans);
9815 goto out;
9816 }
9817
9818 mutex_lock(&root->fs_info->chunk_mutex);
9819 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9820 u64 dev_offset;
9821
9822 /*
9823 * check to make sure we can actually find a chunk with enough
9824 * space to fit our block group in.
9825 */
9826 if (device->total_bytes > device->bytes_used + min_free &&
9827 !device->is_tgtdev_for_dev_replace) {
9828 ret = find_free_dev_extent(trans, device, min_free,
9829 &dev_offset, NULL);
9830 if (!ret)
9831 dev_nr++;
9832
9833 if (dev_nr >= dev_min)
9834 break;
9835
9836 ret = -1;
9837 }
9838 }
9839 if (debug && ret == -1)
9840 btrfs_warn(root->fs_info,
9841 "no space to allocate a new chunk for block group %llu",
9842 block_group->key.objectid);
9843 mutex_unlock(&root->fs_info->chunk_mutex);
9844 btrfs_end_transaction(trans, root);
9845 out:
9846 btrfs_put_block_group(block_group);
9847 return ret;
9848 }
9849
9850 static int find_first_block_group(struct btrfs_root *root,
9851 struct btrfs_path *path, struct btrfs_key *key)
9852 {
9853 int ret = 0;
9854 struct btrfs_key found_key;
9855 struct extent_buffer *leaf;
9856 int slot;
9857
9858 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9859 if (ret < 0)
9860 goto out;
9861
9862 while (1) {
9863 slot = path->slots[0];
9864 leaf = path->nodes[0];
9865 if (slot >= btrfs_header_nritems(leaf)) {
9866 ret = btrfs_next_leaf(root, path);
9867 if (ret == 0)
9868 continue;
9869 if (ret < 0)
9870 goto out;
9871 break;
9872 }
9873 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9874
9875 if (found_key.objectid >= key->objectid &&
9876 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9877 struct extent_map_tree *em_tree;
9878 struct extent_map *em;
9879
9880 em_tree = &root->fs_info->mapping_tree.map_tree;
9881 read_lock(&em_tree->lock);
9882 em = lookup_extent_mapping(em_tree, found_key.objectid,
9883 found_key.offset);
9884 read_unlock(&em_tree->lock);
9885 if (!em) {
9886 btrfs_err(root->fs_info,
9887 "logical %llu len %llu found bg but no related chunk",
9888 found_key.objectid, found_key.offset);
9889 ret = -ENOENT;
9890 } else {
9891 ret = 0;
9892 }
9893 free_extent_map(em);
9894 goto out;
9895 }
9896 path->slots[0]++;
9897 }
9898 out:
9899 return ret;
9900 }
9901
9902 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9903 {
9904 struct btrfs_block_group_cache *block_group;
9905 u64 last = 0;
9906
9907 while (1) {
9908 struct inode *inode;
9909
9910 block_group = btrfs_lookup_first_block_group(info, last);
9911 while (block_group) {
9912 spin_lock(&block_group->lock);
9913 if (block_group->iref)
9914 break;
9915 spin_unlock(&block_group->lock);
9916 block_group = next_block_group(info->tree_root,
9917 block_group);
9918 }
9919 if (!block_group) {
9920 if (last == 0)
9921 break;
9922 last = 0;
9923 continue;
9924 }
9925
9926 inode = block_group->inode;
9927 block_group->iref = 0;
9928 block_group->inode = NULL;
9929 spin_unlock(&block_group->lock);
9930 ASSERT(block_group->io_ctl.inode == NULL);
9931 iput(inode);
9932 last = block_group->key.objectid + block_group->key.offset;
9933 btrfs_put_block_group(block_group);
9934 }
9935 }
9936
9937 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9938 {
9939 struct btrfs_block_group_cache *block_group;
9940 struct btrfs_space_info *space_info;
9941 struct btrfs_caching_control *caching_ctl;
9942 struct rb_node *n;
9943
9944 down_write(&info->commit_root_sem);
9945 while (!list_empty(&info->caching_block_groups)) {
9946 caching_ctl = list_entry(info->caching_block_groups.next,
9947 struct btrfs_caching_control, list);
9948 list_del(&caching_ctl->list);
9949 put_caching_control(caching_ctl);
9950 }
9951 up_write(&info->commit_root_sem);
9952
9953 spin_lock(&info->unused_bgs_lock);
9954 while (!list_empty(&info->unused_bgs)) {
9955 block_group = list_first_entry(&info->unused_bgs,
9956 struct btrfs_block_group_cache,
9957 bg_list);
9958 list_del_init(&block_group->bg_list);
9959 btrfs_put_block_group(block_group);
9960 }
9961 spin_unlock(&info->unused_bgs_lock);
9962
9963 spin_lock(&info->block_group_cache_lock);
9964 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9965 block_group = rb_entry(n, struct btrfs_block_group_cache,
9966 cache_node);
9967 rb_erase(&block_group->cache_node,
9968 &info->block_group_cache_tree);
9969 RB_CLEAR_NODE(&block_group->cache_node);
9970 spin_unlock(&info->block_group_cache_lock);
9971
9972 down_write(&block_group->space_info->groups_sem);
9973 list_del(&block_group->list);
9974 up_write(&block_group->space_info->groups_sem);
9975
9976 if (block_group->cached == BTRFS_CACHE_STARTED)
9977 wait_block_group_cache_done(block_group);
9978
9979 /*
9980 * We haven't cached this block group, which means we could
9981 * possibly have excluded extents on this block group.
9982 */
9983 if (block_group->cached == BTRFS_CACHE_NO ||
9984 block_group->cached == BTRFS_CACHE_ERROR)
9985 free_excluded_extents(info->extent_root, block_group);
9986
9987 btrfs_remove_free_space_cache(block_group);
9988 ASSERT(list_empty(&block_group->dirty_list));
9989 ASSERT(list_empty(&block_group->io_list));
9990 ASSERT(list_empty(&block_group->bg_list));
9991 ASSERT(atomic_read(&block_group->count) == 1);
9992 btrfs_put_block_group(block_group);
9993
9994 spin_lock(&info->block_group_cache_lock);
9995 }
9996 spin_unlock(&info->block_group_cache_lock);
9997
9998 /* now that all the block groups are freed, go through and
9999 * free all the space_info structs. This is only called during
10000 * the final stages of unmount, and so we know nobody is
10001 * using them. We call synchronize_rcu() once before we start,
10002 * just to be on the safe side.
10003 */
10004 synchronize_rcu();
10005
10006 release_global_block_rsv(info);
10007
10008 while (!list_empty(&info->space_info)) {
10009 int i;
10010
10011 space_info = list_entry(info->space_info.next,
10012 struct btrfs_space_info,
10013 list);
10014
10015 /*
10016 * Do not hide this behind enospc_debug, this is actually
10017 * important and indicates a real bug if this happens.
10018 */
10019 if (WARN_ON(space_info->bytes_pinned > 0 ||
10020 space_info->bytes_reserved > 0 ||
10021 space_info->bytes_may_use > 0))
10022 dump_space_info(space_info, 0, 0);
10023 list_del(&space_info->list);
10024 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10025 struct kobject *kobj;
10026 kobj = space_info->block_group_kobjs[i];
10027 space_info->block_group_kobjs[i] = NULL;
10028 if (kobj) {
10029 kobject_del(kobj);
10030 kobject_put(kobj);
10031 }
10032 }
10033 kobject_del(&space_info->kobj);
10034 kobject_put(&space_info->kobj);
10035 }
10036 return 0;
10037 }
10038
10039 static void __link_block_group(struct btrfs_space_info *space_info,
10040 struct btrfs_block_group_cache *cache)
10041 {
10042 int index = get_block_group_index(cache);
10043 bool first = false;
10044
10045 down_write(&space_info->groups_sem);
10046 if (list_empty(&space_info->block_groups[index]))
10047 first = true;
10048 list_add_tail(&cache->list, &space_info->block_groups[index]);
10049 up_write(&space_info->groups_sem);
10050
10051 if (first) {
10052 struct raid_kobject *rkobj;
10053 int ret;
10054
10055 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10056 if (!rkobj)
10057 goto out_err;
10058 rkobj->raid_type = index;
10059 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10060 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10061 "%s", get_raid_name(index));
10062 if (ret) {
10063 kobject_put(&rkobj->kobj);
10064 goto out_err;
10065 }
10066 space_info->block_group_kobjs[index] = &rkobj->kobj;
10067 }
10068
10069 return;
10070 out_err:
10071 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
10072 }
10073
10074 static struct btrfs_block_group_cache *
10075 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10076 {
10077 struct btrfs_block_group_cache *cache;
10078
10079 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10080 if (!cache)
10081 return NULL;
10082
10083 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10084 GFP_NOFS);
10085 if (!cache->free_space_ctl) {
10086 kfree(cache);
10087 return NULL;
10088 }
10089
10090 cache->key.objectid = start;
10091 cache->key.offset = size;
10092 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10093
10094 cache->sectorsize = root->sectorsize;
10095 cache->fs_info = root->fs_info;
10096 cache->full_stripe_len = btrfs_full_stripe_len(root,
10097 &root->fs_info->mapping_tree,
10098 start);
10099 set_free_space_tree_thresholds(cache);
10100
10101 atomic_set(&cache->count, 1);
10102 spin_lock_init(&cache->lock);
10103 init_rwsem(&cache->data_rwsem);
10104 INIT_LIST_HEAD(&cache->list);
10105 INIT_LIST_HEAD(&cache->cluster_list);
10106 INIT_LIST_HEAD(&cache->bg_list);
10107 INIT_LIST_HEAD(&cache->ro_list);
10108 INIT_LIST_HEAD(&cache->dirty_list);
10109 INIT_LIST_HEAD(&cache->io_list);
10110 btrfs_init_free_space_ctl(cache);
10111 atomic_set(&cache->trimming, 0);
10112 mutex_init(&cache->free_space_lock);
10113
10114 return cache;
10115 }
10116
10117 int btrfs_read_block_groups(struct btrfs_root *root)
10118 {
10119 struct btrfs_path *path;
10120 int ret;
10121 struct btrfs_block_group_cache *cache;
10122 struct btrfs_fs_info *info = root->fs_info;
10123 struct btrfs_space_info *space_info;
10124 struct btrfs_key key;
10125 struct btrfs_key found_key;
10126 struct extent_buffer *leaf;
10127 int need_clear = 0;
10128 u64 cache_gen;
10129 u64 feature;
10130 int mixed;
10131
10132 feature = btrfs_super_incompat_flags(info->super_copy);
10133 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10134
10135 root = info->extent_root;
10136 key.objectid = 0;
10137 key.offset = 0;
10138 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10139 path = btrfs_alloc_path();
10140 if (!path)
10141 return -ENOMEM;
10142 path->reada = READA_FORWARD;
10143
10144 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
10145 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
10146 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
10147 need_clear = 1;
10148 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
10149 need_clear = 1;
10150
10151 while (1) {
10152 ret = find_first_block_group(root, path, &key);
10153 if (ret > 0)
10154 break;
10155 if (ret != 0)
10156 goto error;
10157
10158 leaf = path->nodes[0];
10159 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10160
10161 cache = btrfs_create_block_group_cache(root, found_key.objectid,
10162 found_key.offset);
10163 if (!cache) {
10164 ret = -ENOMEM;
10165 goto error;
10166 }
10167
10168 if (need_clear) {
10169 /*
10170 * When we mount with old space cache, we need to
10171 * set BTRFS_DC_CLEAR and set dirty flag.
10172 *
10173 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10174 * truncate the old free space cache inode and
10175 * setup a new one.
10176 * b) Setting 'dirty flag' makes sure that we flush
10177 * the new space cache info onto disk.
10178 */
10179 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
10180 cache->disk_cache_state = BTRFS_DC_CLEAR;
10181 }
10182
10183 read_extent_buffer(leaf, &cache->item,
10184 btrfs_item_ptr_offset(leaf, path->slots[0]),
10185 sizeof(cache->item));
10186 cache->flags = btrfs_block_group_flags(&cache->item);
10187 if (!mixed &&
10188 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10189 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10190 btrfs_err(info,
10191 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10192 cache->key.objectid);
10193 ret = -EINVAL;
10194 goto error;
10195 }
10196
10197 key.objectid = found_key.objectid + found_key.offset;
10198 btrfs_release_path(path);
10199
10200 /*
10201 * We need to exclude the super stripes now so that the space
10202 * info has super bytes accounted for, otherwise we'll think
10203 * we have more space than we actually do.
10204 */
10205 ret = exclude_super_stripes(root, cache);
10206 if (ret) {
10207 /*
10208 * We may have excluded something, so call this just in
10209 * case.
10210 */
10211 free_excluded_extents(root, cache);
10212 btrfs_put_block_group(cache);
10213 goto error;
10214 }
10215
10216 /*
10217 * check for two cases, either we are full, and therefore
10218 * don't need to bother with the caching work since we won't
10219 * find any space, or we are empty, and we can just add all
10220 * the space in and be done with it. This saves us _alot_ of
10221 * time, particularly in the full case.
10222 */
10223 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10224 cache->last_byte_to_unpin = (u64)-1;
10225 cache->cached = BTRFS_CACHE_FINISHED;
10226 free_excluded_extents(root, cache);
10227 } else if (btrfs_block_group_used(&cache->item) == 0) {
10228 cache->last_byte_to_unpin = (u64)-1;
10229 cache->cached = BTRFS_CACHE_FINISHED;
10230 add_new_free_space(cache, root->fs_info,
10231 found_key.objectid,
10232 found_key.objectid +
10233 found_key.offset);
10234 free_excluded_extents(root, cache);
10235 }
10236
10237 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10238 if (ret) {
10239 btrfs_remove_free_space_cache(cache);
10240 btrfs_put_block_group(cache);
10241 goto error;
10242 }
10243
10244 trace_btrfs_add_block_group(root->fs_info, cache, 0);
10245 ret = update_space_info(info, cache->flags, found_key.offset,
10246 btrfs_block_group_used(&cache->item),
10247 cache->bytes_super, &space_info);
10248 if (ret) {
10249 btrfs_remove_free_space_cache(cache);
10250 spin_lock(&info->block_group_cache_lock);
10251 rb_erase(&cache->cache_node,
10252 &info->block_group_cache_tree);
10253 RB_CLEAR_NODE(&cache->cache_node);
10254 spin_unlock(&info->block_group_cache_lock);
10255 btrfs_put_block_group(cache);
10256 goto error;
10257 }
10258
10259 cache->space_info = space_info;
10260
10261 __link_block_group(space_info, cache);
10262
10263 set_avail_alloc_bits(root->fs_info, cache->flags);
10264 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10265 inc_block_group_ro(cache, 1);
10266 } else if (btrfs_block_group_used(&cache->item) == 0) {
10267 spin_lock(&info->unused_bgs_lock);
10268 /* Should always be true but just in case. */
10269 if (list_empty(&cache->bg_list)) {
10270 btrfs_get_block_group(cache);
10271 list_add_tail(&cache->bg_list,
10272 &info->unused_bgs);
10273 }
10274 spin_unlock(&info->unused_bgs_lock);
10275 }
10276 }
10277
10278 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10279 if (!(get_alloc_profile(root, space_info->flags) &
10280 (BTRFS_BLOCK_GROUP_RAID10 |
10281 BTRFS_BLOCK_GROUP_RAID1 |
10282 BTRFS_BLOCK_GROUP_RAID5 |
10283 BTRFS_BLOCK_GROUP_RAID6 |
10284 BTRFS_BLOCK_GROUP_DUP)))
10285 continue;
10286 /*
10287 * avoid allocating from un-mirrored block group if there are
10288 * mirrored block groups.
10289 */
10290 list_for_each_entry(cache,
10291 &space_info->block_groups[BTRFS_RAID_RAID0],
10292 list)
10293 inc_block_group_ro(cache, 1);
10294 list_for_each_entry(cache,
10295 &space_info->block_groups[BTRFS_RAID_SINGLE],
10296 list)
10297 inc_block_group_ro(cache, 1);
10298 }
10299
10300 init_global_block_rsv(info);
10301 ret = 0;
10302 error:
10303 btrfs_free_path(path);
10304 return ret;
10305 }
10306
10307 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10308 struct btrfs_root *root)
10309 {
10310 struct btrfs_block_group_cache *block_group, *tmp;
10311 struct btrfs_root *extent_root = root->fs_info->extent_root;
10312 struct btrfs_block_group_item item;
10313 struct btrfs_key key;
10314 int ret = 0;
10315 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10316
10317 trans->can_flush_pending_bgs = false;
10318 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10319 if (ret)
10320 goto next;
10321
10322 spin_lock(&block_group->lock);
10323 memcpy(&item, &block_group->item, sizeof(item));
10324 memcpy(&key, &block_group->key, sizeof(key));
10325 spin_unlock(&block_group->lock);
10326
10327 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10328 sizeof(item));
10329 if (ret)
10330 btrfs_abort_transaction(trans, ret);
10331 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10332 key.objectid, key.offset);
10333 if (ret)
10334 btrfs_abort_transaction(trans, ret);
10335 add_block_group_free_space(trans, root->fs_info, block_group);
10336 /* already aborted the transaction if it failed. */
10337 next:
10338 list_del_init(&block_group->bg_list);
10339 }
10340 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10341 }
10342
10343 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10344 struct btrfs_root *root, u64 bytes_used,
10345 u64 type, u64 chunk_objectid, u64 chunk_offset,
10346 u64 size)
10347 {
10348 int ret;
10349 struct btrfs_root *extent_root;
10350 struct btrfs_block_group_cache *cache;
10351 extent_root = root->fs_info->extent_root;
10352
10353 btrfs_set_log_full_commit(root->fs_info, trans);
10354
10355 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10356 if (!cache)
10357 return -ENOMEM;
10358
10359 btrfs_set_block_group_used(&cache->item, bytes_used);
10360 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10361 btrfs_set_block_group_flags(&cache->item, type);
10362
10363 cache->flags = type;
10364 cache->last_byte_to_unpin = (u64)-1;
10365 cache->cached = BTRFS_CACHE_FINISHED;
10366 cache->needs_free_space = 1;
10367 ret = exclude_super_stripes(root, cache);
10368 if (ret) {
10369 /*
10370 * We may have excluded something, so call this just in
10371 * case.
10372 */
10373 free_excluded_extents(root, cache);
10374 btrfs_put_block_group(cache);
10375 return ret;
10376 }
10377
10378 add_new_free_space(cache, root->fs_info, chunk_offset,
10379 chunk_offset + size);
10380
10381 free_excluded_extents(root, cache);
10382
10383 #ifdef CONFIG_BTRFS_DEBUG
10384 if (btrfs_should_fragment_free_space(root, cache)) {
10385 u64 new_bytes_used = size - bytes_used;
10386
10387 bytes_used += new_bytes_used >> 1;
10388 fragment_free_space(root, cache);
10389 }
10390 #endif
10391 /*
10392 * Call to ensure the corresponding space_info object is created and
10393 * assigned to our block group, but don't update its counters just yet.
10394 * We want our bg to be added to the rbtree with its ->space_info set.
10395 */
10396 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
10397 &cache->space_info);
10398 if (ret) {
10399 btrfs_remove_free_space_cache(cache);
10400 btrfs_put_block_group(cache);
10401 return ret;
10402 }
10403
10404 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10405 if (ret) {
10406 btrfs_remove_free_space_cache(cache);
10407 btrfs_put_block_group(cache);
10408 return ret;
10409 }
10410
10411 /*
10412 * Now that our block group has its ->space_info set and is inserted in
10413 * the rbtree, update the space info's counters.
10414 */
10415 trace_btrfs_add_block_group(root->fs_info, cache, 1);
10416 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10417 cache->bytes_super, &cache->space_info);
10418 if (ret) {
10419 btrfs_remove_free_space_cache(cache);
10420 spin_lock(&root->fs_info->block_group_cache_lock);
10421 rb_erase(&cache->cache_node,
10422 &root->fs_info->block_group_cache_tree);
10423 RB_CLEAR_NODE(&cache->cache_node);
10424 spin_unlock(&root->fs_info->block_group_cache_lock);
10425 btrfs_put_block_group(cache);
10426 return ret;
10427 }
10428 update_global_block_rsv(root->fs_info);
10429
10430 __link_block_group(cache->space_info, cache);
10431
10432 list_add_tail(&cache->bg_list, &trans->new_bgs);
10433
10434 set_avail_alloc_bits(extent_root->fs_info, type);
10435 return 0;
10436 }
10437
10438 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10439 {
10440 u64 extra_flags = chunk_to_extended(flags) &
10441 BTRFS_EXTENDED_PROFILE_MASK;
10442
10443 write_seqlock(&fs_info->profiles_lock);
10444 if (flags & BTRFS_BLOCK_GROUP_DATA)
10445 fs_info->avail_data_alloc_bits &= ~extra_flags;
10446 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10447 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10448 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10449 fs_info->avail_system_alloc_bits &= ~extra_flags;
10450 write_sequnlock(&fs_info->profiles_lock);
10451 }
10452
10453 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10454 struct btrfs_root *root, u64 group_start,
10455 struct extent_map *em)
10456 {
10457 struct btrfs_path *path;
10458 struct btrfs_block_group_cache *block_group;
10459 struct btrfs_free_cluster *cluster;
10460 struct btrfs_root *tree_root = root->fs_info->tree_root;
10461 struct btrfs_key key;
10462 struct inode *inode;
10463 struct kobject *kobj = NULL;
10464 int ret;
10465 int index;
10466 int factor;
10467 struct btrfs_caching_control *caching_ctl = NULL;
10468 bool remove_em;
10469
10470 root = root->fs_info->extent_root;
10471
10472 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10473 BUG_ON(!block_group);
10474 BUG_ON(!block_group->ro);
10475
10476 /*
10477 * Free the reserved super bytes from this block group before
10478 * remove it.
10479 */
10480 free_excluded_extents(root, block_group);
10481
10482 memcpy(&key, &block_group->key, sizeof(key));
10483 index = get_block_group_index(block_group);
10484 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10485 BTRFS_BLOCK_GROUP_RAID1 |
10486 BTRFS_BLOCK_GROUP_RAID10))
10487 factor = 2;
10488 else
10489 factor = 1;
10490
10491 /* make sure this block group isn't part of an allocation cluster */
10492 cluster = &root->fs_info->data_alloc_cluster;
10493 spin_lock(&cluster->refill_lock);
10494 btrfs_return_cluster_to_free_space(block_group, cluster);
10495 spin_unlock(&cluster->refill_lock);
10496
10497 /*
10498 * make sure this block group isn't part of a metadata
10499 * allocation cluster
10500 */
10501 cluster = &root->fs_info->meta_alloc_cluster;
10502 spin_lock(&cluster->refill_lock);
10503 btrfs_return_cluster_to_free_space(block_group, cluster);
10504 spin_unlock(&cluster->refill_lock);
10505
10506 path = btrfs_alloc_path();
10507 if (!path) {
10508 ret = -ENOMEM;
10509 goto out;
10510 }
10511
10512 /*
10513 * get the inode first so any iput calls done for the io_list
10514 * aren't the final iput (no unlinks allowed now)
10515 */
10516 inode = lookup_free_space_inode(tree_root, block_group, path);
10517
10518 mutex_lock(&trans->transaction->cache_write_mutex);
10519 /*
10520 * make sure our free spache cache IO is done before remove the
10521 * free space inode
10522 */
10523 spin_lock(&trans->transaction->dirty_bgs_lock);
10524 if (!list_empty(&block_group->io_list)) {
10525 list_del_init(&block_group->io_list);
10526
10527 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10528
10529 spin_unlock(&trans->transaction->dirty_bgs_lock);
10530 btrfs_wait_cache_io(root, trans, block_group,
10531 &block_group->io_ctl, path,
10532 block_group->key.objectid);
10533 btrfs_put_block_group(block_group);
10534 spin_lock(&trans->transaction->dirty_bgs_lock);
10535 }
10536
10537 if (!list_empty(&block_group->dirty_list)) {
10538 list_del_init(&block_group->dirty_list);
10539 btrfs_put_block_group(block_group);
10540 }
10541 spin_unlock(&trans->transaction->dirty_bgs_lock);
10542 mutex_unlock(&trans->transaction->cache_write_mutex);
10543
10544 if (!IS_ERR(inode)) {
10545 ret = btrfs_orphan_add(trans, inode);
10546 if (ret) {
10547 btrfs_add_delayed_iput(inode);
10548 goto out;
10549 }
10550 clear_nlink(inode);
10551 /* One for the block groups ref */
10552 spin_lock(&block_group->lock);
10553 if (block_group->iref) {
10554 block_group->iref = 0;
10555 block_group->inode = NULL;
10556 spin_unlock(&block_group->lock);
10557 iput(inode);
10558 } else {
10559 spin_unlock(&block_group->lock);
10560 }
10561 /* One for our lookup ref */
10562 btrfs_add_delayed_iput(inode);
10563 }
10564
10565 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10566 key.offset = block_group->key.objectid;
10567 key.type = 0;
10568
10569 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10570 if (ret < 0)
10571 goto out;
10572 if (ret > 0)
10573 btrfs_release_path(path);
10574 if (ret == 0) {
10575 ret = btrfs_del_item(trans, tree_root, path);
10576 if (ret)
10577 goto out;
10578 btrfs_release_path(path);
10579 }
10580
10581 spin_lock(&root->fs_info->block_group_cache_lock);
10582 rb_erase(&block_group->cache_node,
10583 &root->fs_info->block_group_cache_tree);
10584 RB_CLEAR_NODE(&block_group->cache_node);
10585
10586 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10587 root->fs_info->first_logical_byte = (u64)-1;
10588 spin_unlock(&root->fs_info->block_group_cache_lock);
10589
10590 down_write(&block_group->space_info->groups_sem);
10591 /*
10592 * we must use list_del_init so people can check to see if they
10593 * are still on the list after taking the semaphore
10594 */
10595 list_del_init(&block_group->list);
10596 if (list_empty(&block_group->space_info->block_groups[index])) {
10597 kobj = block_group->space_info->block_group_kobjs[index];
10598 block_group->space_info->block_group_kobjs[index] = NULL;
10599 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10600 }
10601 up_write(&block_group->space_info->groups_sem);
10602 if (kobj) {
10603 kobject_del(kobj);
10604 kobject_put(kobj);
10605 }
10606
10607 if (block_group->has_caching_ctl)
10608 caching_ctl = get_caching_control(block_group);
10609 if (block_group->cached == BTRFS_CACHE_STARTED)
10610 wait_block_group_cache_done(block_group);
10611 if (block_group->has_caching_ctl) {
10612 down_write(&root->fs_info->commit_root_sem);
10613 if (!caching_ctl) {
10614 struct btrfs_caching_control *ctl;
10615
10616 list_for_each_entry(ctl,
10617 &root->fs_info->caching_block_groups, list)
10618 if (ctl->block_group == block_group) {
10619 caching_ctl = ctl;
10620 atomic_inc(&caching_ctl->count);
10621 break;
10622 }
10623 }
10624 if (caching_ctl)
10625 list_del_init(&caching_ctl->list);
10626 up_write(&root->fs_info->commit_root_sem);
10627 if (caching_ctl) {
10628 /* Once for the caching bgs list and once for us. */
10629 put_caching_control(caching_ctl);
10630 put_caching_control(caching_ctl);
10631 }
10632 }
10633
10634 spin_lock(&trans->transaction->dirty_bgs_lock);
10635 if (!list_empty(&block_group->dirty_list)) {
10636 WARN_ON(1);
10637 }
10638 if (!list_empty(&block_group->io_list)) {
10639 WARN_ON(1);
10640 }
10641 spin_unlock(&trans->transaction->dirty_bgs_lock);
10642 btrfs_remove_free_space_cache(block_group);
10643
10644 spin_lock(&block_group->space_info->lock);
10645 list_del_init(&block_group->ro_list);
10646
10647 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
10648 WARN_ON(block_group->space_info->total_bytes
10649 < block_group->key.offset);
10650 WARN_ON(block_group->space_info->bytes_readonly
10651 < block_group->key.offset);
10652 WARN_ON(block_group->space_info->disk_total
10653 < block_group->key.offset * factor);
10654 }
10655 block_group->space_info->total_bytes -= block_group->key.offset;
10656 block_group->space_info->bytes_readonly -= block_group->key.offset;
10657 block_group->space_info->disk_total -= block_group->key.offset * factor;
10658
10659 spin_unlock(&block_group->space_info->lock);
10660
10661 memcpy(&key, &block_group->key, sizeof(key));
10662
10663 lock_chunks(root);
10664 if (!list_empty(&em->list)) {
10665 /* We're in the transaction->pending_chunks list. */
10666 free_extent_map(em);
10667 }
10668 spin_lock(&block_group->lock);
10669 block_group->removed = 1;
10670 /*
10671 * At this point trimming can't start on this block group, because we
10672 * removed the block group from the tree fs_info->block_group_cache_tree
10673 * so no one can't find it anymore and even if someone already got this
10674 * block group before we removed it from the rbtree, they have already
10675 * incremented block_group->trimming - if they didn't, they won't find
10676 * any free space entries because we already removed them all when we
10677 * called btrfs_remove_free_space_cache().
10678 *
10679 * And we must not remove the extent map from the fs_info->mapping_tree
10680 * to prevent the same logical address range and physical device space
10681 * ranges from being reused for a new block group. This is because our
10682 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10683 * completely transactionless, so while it is trimming a range the
10684 * currently running transaction might finish and a new one start,
10685 * allowing for new block groups to be created that can reuse the same
10686 * physical device locations unless we take this special care.
10687 *
10688 * There may also be an implicit trim operation if the file system
10689 * is mounted with -odiscard. The same protections must remain
10690 * in place until the extents have been discarded completely when
10691 * the transaction commit has completed.
10692 */
10693 remove_em = (atomic_read(&block_group->trimming) == 0);
10694 /*
10695 * Make sure a trimmer task always sees the em in the pinned_chunks list
10696 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10697 * before checking block_group->removed).
10698 */
10699 if (!remove_em) {
10700 /*
10701 * Our em might be in trans->transaction->pending_chunks which
10702 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10703 * and so is the fs_info->pinned_chunks list.
10704 *
10705 * So at this point we must be holding the chunk_mutex to avoid
10706 * any races with chunk allocation (more specifically at
10707 * volumes.c:contains_pending_extent()), to ensure it always
10708 * sees the em, either in the pending_chunks list or in the
10709 * pinned_chunks list.
10710 */
10711 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10712 }
10713 spin_unlock(&block_group->lock);
10714
10715 if (remove_em) {
10716 struct extent_map_tree *em_tree;
10717
10718 em_tree = &root->fs_info->mapping_tree.map_tree;
10719 write_lock(&em_tree->lock);
10720 /*
10721 * The em might be in the pending_chunks list, so make sure the
10722 * chunk mutex is locked, since remove_extent_mapping() will
10723 * delete us from that list.
10724 */
10725 remove_extent_mapping(em_tree, em);
10726 write_unlock(&em_tree->lock);
10727 /* once for the tree */
10728 free_extent_map(em);
10729 }
10730
10731 unlock_chunks(root);
10732
10733 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10734 if (ret)
10735 goto out;
10736
10737 btrfs_put_block_group(block_group);
10738 btrfs_put_block_group(block_group);
10739
10740 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10741 if (ret > 0)
10742 ret = -EIO;
10743 if (ret < 0)
10744 goto out;
10745
10746 ret = btrfs_del_item(trans, root, path);
10747 out:
10748 btrfs_free_path(path);
10749 return ret;
10750 }
10751
10752 struct btrfs_trans_handle *
10753 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10754 const u64 chunk_offset)
10755 {
10756 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10757 struct extent_map *em;
10758 struct map_lookup *map;
10759 unsigned int num_items;
10760
10761 read_lock(&em_tree->lock);
10762 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10763 read_unlock(&em_tree->lock);
10764 ASSERT(em && em->start == chunk_offset);
10765
10766 /*
10767 * We need to reserve 3 + N units from the metadata space info in order
10768 * to remove a block group (done at btrfs_remove_chunk() and at
10769 * btrfs_remove_block_group()), which are used for:
10770 *
10771 * 1 unit for adding the free space inode's orphan (located in the tree
10772 * of tree roots).
10773 * 1 unit for deleting the block group item (located in the extent
10774 * tree).
10775 * 1 unit for deleting the free space item (located in tree of tree
10776 * roots).
10777 * N units for deleting N device extent items corresponding to each
10778 * stripe (located in the device tree).
10779 *
10780 * In order to remove a block group we also need to reserve units in the
10781 * system space info in order to update the chunk tree (update one or
10782 * more device items and remove one chunk item), but this is done at
10783 * btrfs_remove_chunk() through a call to check_system_chunk().
10784 */
10785 map = em->map_lookup;
10786 num_items = 3 + map->num_stripes;
10787 free_extent_map(em);
10788
10789 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10790 num_items, 1);
10791 }
10792
10793 /*
10794 * Process the unused_bgs list and remove any that don't have any allocated
10795 * space inside of them.
10796 */
10797 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10798 {
10799 struct btrfs_block_group_cache *block_group;
10800 struct btrfs_space_info *space_info;
10801 struct btrfs_root *root = fs_info->extent_root;
10802 struct btrfs_trans_handle *trans;
10803 int ret = 0;
10804
10805 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10806 return;
10807
10808 spin_lock(&fs_info->unused_bgs_lock);
10809 while (!list_empty(&fs_info->unused_bgs)) {
10810 u64 start, end;
10811 int trimming;
10812
10813 block_group = list_first_entry(&fs_info->unused_bgs,
10814 struct btrfs_block_group_cache,
10815 bg_list);
10816 list_del_init(&block_group->bg_list);
10817
10818 space_info = block_group->space_info;
10819
10820 if (ret || btrfs_mixed_space_info(space_info)) {
10821 btrfs_put_block_group(block_group);
10822 continue;
10823 }
10824 spin_unlock(&fs_info->unused_bgs_lock);
10825
10826 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10827
10828 /* Don't want to race with allocators so take the groups_sem */
10829 down_write(&space_info->groups_sem);
10830 spin_lock(&block_group->lock);
10831 if (block_group->reserved ||
10832 btrfs_block_group_used(&block_group->item) ||
10833 (block_group->ro && !block_group->removed) ||
10834 list_is_singular(&block_group->list)) {
10835 /*
10836 * We want to bail if we made new allocations or have
10837 * outstanding allocations in this block group. We do
10838 * the ro check in case balance is currently acting on
10839 * this block group.
10840 */
10841 spin_unlock(&block_group->lock);
10842 up_write(&space_info->groups_sem);
10843 goto next;
10844 }
10845 spin_unlock(&block_group->lock);
10846
10847 /* We don't want to force the issue, only flip if it's ok. */
10848 ret = inc_block_group_ro(block_group, 0);
10849 up_write(&space_info->groups_sem);
10850 if (ret < 0) {
10851 ret = 0;
10852 goto next;
10853 }
10854
10855 /*
10856 * Want to do this before we do anything else so we can recover
10857 * properly if we fail to join the transaction.
10858 */
10859 trans = btrfs_start_trans_remove_block_group(fs_info,
10860 block_group->key.objectid);
10861 if (IS_ERR(trans)) {
10862 btrfs_dec_block_group_ro(root, block_group);
10863 ret = PTR_ERR(trans);
10864 goto next;
10865 }
10866
10867 /*
10868 * We could have pending pinned extents for this block group,
10869 * just delete them, we don't care about them anymore.
10870 */
10871 start = block_group->key.objectid;
10872 end = start + block_group->key.offset - 1;
10873 /*
10874 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10875 * btrfs_finish_extent_commit(). If we are at transaction N,
10876 * another task might be running finish_extent_commit() for the
10877 * previous transaction N - 1, and have seen a range belonging
10878 * to the block group in freed_extents[] before we were able to
10879 * clear the whole block group range from freed_extents[]. This
10880 * means that task can lookup for the block group after we
10881 * unpinned it from freed_extents[] and removed it, leading to
10882 * a BUG_ON() at btrfs_unpin_extent_range().
10883 */
10884 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10885 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10886 EXTENT_DIRTY);
10887 if (ret) {
10888 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10889 btrfs_dec_block_group_ro(root, block_group);
10890 goto end_trans;
10891 }
10892 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10893 EXTENT_DIRTY);
10894 if (ret) {
10895 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10896 btrfs_dec_block_group_ro(root, block_group);
10897 goto end_trans;
10898 }
10899 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10900
10901 /* Reset pinned so btrfs_put_block_group doesn't complain */
10902 spin_lock(&space_info->lock);
10903 spin_lock(&block_group->lock);
10904
10905 space_info->bytes_pinned -= block_group->pinned;
10906 space_info->bytes_readonly += block_group->pinned;
10907 percpu_counter_add(&space_info->total_bytes_pinned,
10908 -block_group->pinned);
10909 block_group->pinned = 0;
10910
10911 spin_unlock(&block_group->lock);
10912 spin_unlock(&space_info->lock);
10913
10914 /* DISCARD can flip during remount */
10915 trimming = btrfs_test_opt(root->fs_info, DISCARD);
10916
10917 /* Implicit trim during transaction commit. */
10918 if (trimming)
10919 btrfs_get_block_group_trimming(block_group);
10920
10921 /*
10922 * Btrfs_remove_chunk will abort the transaction if things go
10923 * horribly wrong.
10924 */
10925 ret = btrfs_remove_chunk(trans, root,
10926 block_group->key.objectid);
10927
10928 if (ret) {
10929 if (trimming)
10930 btrfs_put_block_group_trimming(block_group);
10931 goto end_trans;
10932 }
10933
10934 /*
10935 * If we're not mounted with -odiscard, we can just forget
10936 * about this block group. Otherwise we'll need to wait
10937 * until transaction commit to do the actual discard.
10938 */
10939 if (trimming) {
10940 spin_lock(&fs_info->unused_bgs_lock);
10941 /*
10942 * A concurrent scrub might have added us to the list
10943 * fs_info->unused_bgs, so use a list_move operation
10944 * to add the block group to the deleted_bgs list.
10945 */
10946 list_move(&block_group->bg_list,
10947 &trans->transaction->deleted_bgs);
10948 spin_unlock(&fs_info->unused_bgs_lock);
10949 btrfs_get_block_group(block_group);
10950 }
10951 end_trans:
10952 btrfs_end_transaction(trans, root);
10953 next:
10954 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10955 btrfs_put_block_group(block_group);
10956 spin_lock(&fs_info->unused_bgs_lock);
10957 }
10958 spin_unlock(&fs_info->unused_bgs_lock);
10959 }
10960
10961 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10962 {
10963 struct btrfs_space_info *space_info;
10964 struct btrfs_super_block *disk_super;
10965 u64 features;
10966 u64 flags;
10967 int mixed = 0;
10968 int ret;
10969
10970 disk_super = fs_info->super_copy;
10971 if (!btrfs_super_root(disk_super))
10972 return -EINVAL;
10973
10974 features = btrfs_super_incompat_flags(disk_super);
10975 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10976 mixed = 1;
10977
10978 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10979 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10980 if (ret)
10981 goto out;
10982
10983 if (mixed) {
10984 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10985 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10986 } else {
10987 flags = BTRFS_BLOCK_GROUP_METADATA;
10988 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10989 if (ret)
10990 goto out;
10991
10992 flags = BTRFS_BLOCK_GROUP_DATA;
10993 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10994 }
10995 out:
10996 return ret;
10997 }
10998
10999 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
11000 {
11001 return unpin_extent_range(root, start, end, false);
11002 }
11003
11004 /*
11005 * It used to be that old block groups would be left around forever.
11006 * Iterating over them would be enough to trim unused space. Since we
11007 * now automatically remove them, we also need to iterate over unallocated
11008 * space.
11009 *
11010 * We don't want a transaction for this since the discard may take a
11011 * substantial amount of time. We don't require that a transaction be
11012 * running, but we do need to take a running transaction into account
11013 * to ensure that we're not discarding chunks that were released in
11014 * the current transaction.
11015 *
11016 * Holding the chunks lock will prevent other threads from allocating
11017 * or releasing chunks, but it won't prevent a running transaction
11018 * from committing and releasing the memory that the pending chunks
11019 * list head uses. For that, we need to take a reference to the
11020 * transaction.
11021 */
11022 static int btrfs_trim_free_extents(struct btrfs_device *device,
11023 u64 minlen, u64 *trimmed)
11024 {
11025 u64 start = 0, len = 0;
11026 int ret;
11027
11028 *trimmed = 0;
11029
11030 /* Not writeable = nothing to do. */
11031 if (!device->writeable)
11032 return 0;
11033
11034 /* No free space = nothing to do. */
11035 if (device->total_bytes <= device->bytes_used)
11036 return 0;
11037
11038 ret = 0;
11039
11040 while (1) {
11041 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11042 struct btrfs_transaction *trans;
11043 u64 bytes;
11044
11045 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11046 if (ret)
11047 return ret;
11048
11049 down_read(&fs_info->commit_root_sem);
11050
11051 spin_lock(&fs_info->trans_lock);
11052 trans = fs_info->running_transaction;
11053 if (trans)
11054 atomic_inc(&trans->use_count);
11055 spin_unlock(&fs_info->trans_lock);
11056
11057 ret = find_free_dev_extent_start(trans, device, minlen, start,
11058 &start, &len);
11059 if (trans)
11060 btrfs_put_transaction(trans);
11061
11062 if (ret) {
11063 up_read(&fs_info->commit_root_sem);
11064 mutex_unlock(&fs_info->chunk_mutex);
11065 if (ret == -ENOSPC)
11066 ret = 0;
11067 break;
11068 }
11069
11070 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11071 up_read(&fs_info->commit_root_sem);
11072 mutex_unlock(&fs_info->chunk_mutex);
11073
11074 if (ret)
11075 break;
11076
11077 start += len;
11078 *trimmed += bytes;
11079
11080 if (fatal_signal_pending(current)) {
11081 ret = -ERESTARTSYS;
11082 break;
11083 }
11084
11085 cond_resched();
11086 }
11087
11088 return ret;
11089 }
11090
11091 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11092 {
11093 struct btrfs_fs_info *fs_info = root->fs_info;
11094 struct btrfs_block_group_cache *cache = NULL;
11095 struct btrfs_device *device;
11096 struct list_head *devices;
11097 u64 group_trimmed;
11098 u64 start;
11099 u64 end;
11100 u64 trimmed = 0;
11101 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11102 int ret = 0;
11103
11104 /*
11105 * try to trim all FS space, our block group may start from non-zero.
11106 */
11107 if (range->len == total_bytes)
11108 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11109 else
11110 cache = btrfs_lookup_block_group(fs_info, range->start);
11111
11112 while (cache) {
11113 if (cache->key.objectid >= (range->start + range->len)) {
11114 btrfs_put_block_group(cache);
11115 break;
11116 }
11117
11118 start = max(range->start, cache->key.objectid);
11119 end = min(range->start + range->len,
11120 cache->key.objectid + cache->key.offset);
11121
11122 if (end - start >= range->minlen) {
11123 if (!block_group_cache_done(cache)) {
11124 ret = cache_block_group(cache, 0);
11125 if (ret) {
11126 btrfs_put_block_group(cache);
11127 break;
11128 }
11129 ret = wait_block_group_cache_done(cache);
11130 if (ret) {
11131 btrfs_put_block_group(cache);
11132 break;
11133 }
11134 }
11135 ret = btrfs_trim_block_group(cache,
11136 &group_trimmed,
11137 start,
11138 end,
11139 range->minlen);
11140
11141 trimmed += group_trimmed;
11142 if (ret) {
11143 btrfs_put_block_group(cache);
11144 break;
11145 }
11146 }
11147
11148 cache = next_block_group(fs_info->tree_root, cache);
11149 }
11150
11151 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11152 devices = &root->fs_info->fs_devices->alloc_list;
11153 list_for_each_entry(device, devices, dev_alloc_list) {
11154 ret = btrfs_trim_free_extents(device, range->minlen,
11155 &group_trimmed);
11156 if (ret)
11157 break;
11158
11159 trimmed += group_trimmed;
11160 }
11161 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11162
11163 range->len = trimmed;
11164 return ret;
11165 }
11166
11167 /*
11168 * btrfs_{start,end}_write_no_snapshoting() are similar to
11169 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11170 * data into the page cache through nocow before the subvolume is snapshoted,
11171 * but flush the data into disk after the snapshot creation, or to prevent
11172 * operations while snapshoting is ongoing and that cause the snapshot to be
11173 * inconsistent (writes followed by expanding truncates for example).
11174 */
11175 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11176 {
11177 percpu_counter_dec(&root->subv_writers->counter);
11178 /*
11179 * Make sure counter is updated before we wake up waiters.
11180 */
11181 smp_mb();
11182 if (waitqueue_active(&root->subv_writers->wait))
11183 wake_up(&root->subv_writers->wait);
11184 }
11185
11186 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11187 {
11188 if (atomic_read(&root->will_be_snapshoted))
11189 return 0;
11190
11191 percpu_counter_inc(&root->subv_writers->counter);
11192 /*
11193 * Make sure counter is updated before we check for snapshot creation.
11194 */
11195 smp_mb();
11196 if (atomic_read(&root->will_be_snapshoted)) {
11197 btrfs_end_write_no_snapshoting(root);
11198 return 0;
11199 }
11200 return 1;
11201 }
11202
11203 static int wait_snapshoting_atomic_t(atomic_t *a)
11204 {
11205 schedule();
11206 return 0;
11207 }
11208
11209 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11210 {
11211 while (true) {
11212 int ret;
11213
11214 ret = btrfs_start_write_no_snapshoting(root);
11215 if (ret)
11216 break;
11217 wait_on_atomic_t(&root->will_be_snapshoted,
11218 wait_snapshoting_atomic_t,
11219 TASK_UNINTERRUPTIBLE);
11220 }
11221 }
This page took 0.427258 seconds and 5 git commands to generate.