Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 #undef SCRAMBLE_DELAYED_REFS
38
39 /*
40 * control flags for do_chunk_alloc's force field
41 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
42 * if we really need one.
43 *
44 * CHUNK_ALLOC_LIMITED means to only try and allocate one
45 * if we have very few chunks already allocated. This is
46 * used as part of the clustering code to help make sure
47 * we have a good pool of storage to cluster in, without
48 * filling the FS with empty chunks
49 *
50 * CHUNK_ALLOC_FORCE means it must try to allocate one
51 *
52 */
53 enum {
54 CHUNK_ALLOC_NO_FORCE = 0,
55 CHUNK_ALLOC_LIMITED = 1,
56 CHUNK_ALLOC_FORCE = 2,
57 };
58
59 /*
60 * Control how reservations are dealt with.
61 *
62 * RESERVE_FREE - freeing a reservation.
63 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
64 * ENOSPC accounting
65 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
66 * bytes_may_use as the ENOSPC accounting is done elsewhere
67 */
68 enum {
69 RESERVE_FREE = 0,
70 RESERVE_ALLOC = 1,
71 RESERVE_ALLOC_NO_ACCOUNT = 2,
72 };
73
74 static int update_block_group(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, int alloc);
77 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root,
79 u64 bytenr, u64 num_bytes, u64 parent,
80 u64 root_objectid, u64 owner_objectid,
81 u64 owner_offset, int refs_to_drop,
82 struct btrfs_delayed_extent_op *extra_op);
83 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
84 struct extent_buffer *leaf,
85 struct btrfs_extent_item *ei);
86 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
87 struct btrfs_root *root,
88 u64 parent, u64 root_objectid,
89 u64 flags, u64 owner, u64 offset,
90 struct btrfs_key *ins, int ref_mod);
91 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
92 struct btrfs_root *root,
93 u64 parent, u64 root_objectid,
94 u64 flags, struct btrfs_disk_key *key,
95 int level, struct btrfs_key *ins);
96 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
97 struct btrfs_root *extent_root, u64 alloc_bytes,
98 u64 flags, int force);
99 static int find_next_key(struct btrfs_path *path, int level,
100 struct btrfs_key *key);
101 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
102 int dump_block_groups);
103 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
104 u64 num_bytes, int reserve);
105
106 static noinline int
107 block_group_cache_done(struct btrfs_block_group_cache *cache)
108 {
109 smp_mb();
110 return cache->cached == BTRFS_CACHE_FINISHED;
111 }
112
113 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
114 {
115 return (cache->flags & bits) == bits;
116 }
117
118 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
119 {
120 atomic_inc(&cache->count);
121 }
122
123 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
124 {
125 if (atomic_dec_and_test(&cache->count)) {
126 WARN_ON(cache->pinned > 0);
127 WARN_ON(cache->reserved > 0);
128 kfree(cache->free_space_ctl);
129 kfree(cache);
130 }
131 }
132
133 /*
134 * this adds the block group to the fs_info rb tree for the block group
135 * cache
136 */
137 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
138 struct btrfs_block_group_cache *block_group)
139 {
140 struct rb_node **p;
141 struct rb_node *parent = NULL;
142 struct btrfs_block_group_cache *cache;
143
144 spin_lock(&info->block_group_cache_lock);
145 p = &info->block_group_cache_tree.rb_node;
146
147 while (*p) {
148 parent = *p;
149 cache = rb_entry(parent, struct btrfs_block_group_cache,
150 cache_node);
151 if (block_group->key.objectid < cache->key.objectid) {
152 p = &(*p)->rb_left;
153 } else if (block_group->key.objectid > cache->key.objectid) {
154 p = &(*p)->rb_right;
155 } else {
156 spin_unlock(&info->block_group_cache_lock);
157 return -EEXIST;
158 }
159 }
160
161 rb_link_node(&block_group->cache_node, parent, p);
162 rb_insert_color(&block_group->cache_node,
163 &info->block_group_cache_tree);
164 spin_unlock(&info->block_group_cache_lock);
165
166 return 0;
167 }
168
169 /*
170 * This will return the block group at or after bytenr if contains is 0, else
171 * it will return the block group that contains the bytenr
172 */
173 static struct btrfs_block_group_cache *
174 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
175 int contains)
176 {
177 struct btrfs_block_group_cache *cache, *ret = NULL;
178 struct rb_node *n;
179 u64 end, start;
180
181 spin_lock(&info->block_group_cache_lock);
182 n = info->block_group_cache_tree.rb_node;
183
184 while (n) {
185 cache = rb_entry(n, struct btrfs_block_group_cache,
186 cache_node);
187 end = cache->key.objectid + cache->key.offset - 1;
188 start = cache->key.objectid;
189
190 if (bytenr < start) {
191 if (!contains && (!ret || start < ret->key.objectid))
192 ret = cache;
193 n = n->rb_left;
194 } else if (bytenr > start) {
195 if (contains && bytenr <= end) {
196 ret = cache;
197 break;
198 }
199 n = n->rb_right;
200 } else {
201 ret = cache;
202 break;
203 }
204 }
205 if (ret)
206 btrfs_get_block_group(ret);
207 spin_unlock(&info->block_group_cache_lock);
208
209 return ret;
210 }
211
212 static int add_excluded_extent(struct btrfs_root *root,
213 u64 start, u64 num_bytes)
214 {
215 u64 end = start + num_bytes - 1;
216 set_extent_bits(&root->fs_info->freed_extents[0],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
218 set_extent_bits(&root->fs_info->freed_extents[1],
219 start, end, EXTENT_UPTODATE, GFP_NOFS);
220 return 0;
221 }
222
223 static void free_excluded_extents(struct btrfs_root *root,
224 struct btrfs_block_group_cache *cache)
225 {
226 u64 start, end;
227
228 start = cache->key.objectid;
229 end = start + cache->key.offset - 1;
230
231 clear_extent_bits(&root->fs_info->freed_extents[0],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 clear_extent_bits(&root->fs_info->freed_extents[1],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 }
236
237 static int exclude_super_stripes(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 bytenr;
241 u64 *logical;
242 int stripe_len;
243 int i, nr, ret;
244
245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
247 cache->bytes_super += stripe_len;
248 ret = add_excluded_extent(root, cache->key.objectid,
249 stripe_len);
250 BUG_ON(ret); /* -ENOMEM */
251 }
252
253 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
254 bytenr = btrfs_sb_offset(i);
255 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
256 cache->key.objectid, bytenr,
257 0, &logical, &nr, &stripe_len);
258 BUG_ON(ret); /* -ENOMEM */
259
260 while (nr--) {
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, logical[nr],
263 stripe_len);
264 BUG_ON(ret); /* -ENOMEM */
265 }
266
267 kfree(logical);
268 }
269 return 0;
270 }
271
272 static struct btrfs_caching_control *
273 get_caching_control(struct btrfs_block_group_cache *cache)
274 {
275 struct btrfs_caching_control *ctl;
276
277 spin_lock(&cache->lock);
278 if (cache->cached != BTRFS_CACHE_STARTED) {
279 spin_unlock(&cache->lock);
280 return NULL;
281 }
282
283 /* We're loading it the fast way, so we don't have a caching_ctl. */
284 if (!cache->caching_ctl) {
285 spin_unlock(&cache->lock);
286 return NULL;
287 }
288
289 ctl = cache->caching_ctl;
290 atomic_inc(&ctl->count);
291 spin_unlock(&cache->lock);
292 return ctl;
293 }
294
295 static void put_caching_control(struct btrfs_caching_control *ctl)
296 {
297 if (atomic_dec_and_test(&ctl->count))
298 kfree(ctl);
299 }
300
301 /*
302 * this is only called by cache_block_group, since we could have freed extents
303 * we need to check the pinned_extents for any extents that can't be used yet
304 * since their free space will be released as soon as the transaction commits.
305 */
306 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
307 struct btrfs_fs_info *info, u64 start, u64 end)
308 {
309 u64 extent_start, extent_end, size, total_added = 0;
310 int ret;
311
312 while (start < end) {
313 ret = find_first_extent_bit(info->pinned_extents, start,
314 &extent_start, &extent_end,
315 EXTENT_DIRTY | EXTENT_UPTODATE);
316 if (ret)
317 break;
318
319 if (extent_start <= start) {
320 start = extent_end + 1;
321 } else if (extent_start > start && extent_start < end) {
322 size = extent_start - start;
323 total_added += size;
324 ret = btrfs_add_free_space(block_group, start,
325 size);
326 BUG_ON(ret); /* -ENOMEM or logic error */
327 start = extent_end + 1;
328 } else {
329 break;
330 }
331 }
332
333 if (start < end) {
334 size = end - start;
335 total_added += size;
336 ret = btrfs_add_free_space(block_group, start, size);
337 BUG_ON(ret); /* -ENOMEM or logic error */
338 }
339
340 return total_added;
341 }
342
343 static noinline void caching_thread(struct btrfs_work *work)
344 {
345 struct btrfs_block_group_cache *block_group;
346 struct btrfs_fs_info *fs_info;
347 struct btrfs_caching_control *caching_ctl;
348 struct btrfs_root *extent_root;
349 struct btrfs_path *path;
350 struct extent_buffer *leaf;
351 struct btrfs_key key;
352 u64 total_found = 0;
353 u64 last = 0;
354 u32 nritems;
355 int ret = 0;
356
357 caching_ctl = container_of(work, struct btrfs_caching_control, work);
358 block_group = caching_ctl->block_group;
359 fs_info = block_group->fs_info;
360 extent_root = fs_info->extent_root;
361
362 path = btrfs_alloc_path();
363 if (!path)
364 goto out;
365
366 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
367
368 /*
369 * We don't want to deadlock with somebody trying to allocate a new
370 * extent for the extent root while also trying to search the extent
371 * root to add free space. So we skip locking and search the commit
372 * root, since its read-only
373 */
374 path->skip_locking = 1;
375 path->search_commit_root = 1;
376 path->reada = 1;
377
378 key.objectid = last;
379 key.offset = 0;
380 key.type = BTRFS_EXTENT_ITEM_KEY;
381 again:
382 mutex_lock(&caching_ctl->mutex);
383 /* need to make sure the commit_root doesn't disappear */
384 down_read(&fs_info->extent_commit_sem);
385
386 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
387 if (ret < 0)
388 goto err;
389
390 leaf = path->nodes[0];
391 nritems = btrfs_header_nritems(leaf);
392
393 while (1) {
394 if (btrfs_fs_closing(fs_info) > 1) {
395 last = (u64)-1;
396 break;
397 }
398
399 if (path->slots[0] < nritems) {
400 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
401 } else {
402 ret = find_next_key(path, 0, &key);
403 if (ret)
404 break;
405
406 if (need_resched() ||
407 btrfs_next_leaf(extent_root, path)) {
408 caching_ctl->progress = last;
409 btrfs_release_path(path);
410 up_read(&fs_info->extent_commit_sem);
411 mutex_unlock(&caching_ctl->mutex);
412 cond_resched();
413 goto again;
414 }
415 leaf = path->nodes[0];
416 nritems = btrfs_header_nritems(leaf);
417 continue;
418 }
419
420 if (key.objectid < block_group->key.objectid) {
421 path->slots[0]++;
422 continue;
423 }
424
425 if (key.objectid >= block_group->key.objectid +
426 block_group->key.offset)
427 break;
428
429 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
430 total_found += add_new_free_space(block_group,
431 fs_info, last,
432 key.objectid);
433 last = key.objectid + key.offset;
434
435 if (total_found > (1024 * 1024 * 2)) {
436 total_found = 0;
437 wake_up(&caching_ctl->wait);
438 }
439 }
440 path->slots[0]++;
441 }
442 ret = 0;
443
444 total_found += add_new_free_space(block_group, fs_info, last,
445 block_group->key.objectid +
446 block_group->key.offset);
447 caching_ctl->progress = (u64)-1;
448
449 spin_lock(&block_group->lock);
450 block_group->caching_ctl = NULL;
451 block_group->cached = BTRFS_CACHE_FINISHED;
452 spin_unlock(&block_group->lock);
453
454 err:
455 btrfs_free_path(path);
456 up_read(&fs_info->extent_commit_sem);
457
458 free_excluded_extents(extent_root, block_group);
459
460 mutex_unlock(&caching_ctl->mutex);
461 out:
462 wake_up(&caching_ctl->wait);
463
464 put_caching_control(caching_ctl);
465 btrfs_put_block_group(block_group);
466 }
467
468 static int cache_block_group(struct btrfs_block_group_cache *cache,
469 struct btrfs_trans_handle *trans,
470 struct btrfs_root *root,
471 int load_cache_only)
472 {
473 DEFINE_WAIT(wait);
474 struct btrfs_fs_info *fs_info = cache->fs_info;
475 struct btrfs_caching_control *caching_ctl;
476 int ret = 0;
477
478 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
479 if (!caching_ctl)
480 return -ENOMEM;
481
482 INIT_LIST_HEAD(&caching_ctl->list);
483 mutex_init(&caching_ctl->mutex);
484 init_waitqueue_head(&caching_ctl->wait);
485 caching_ctl->block_group = cache;
486 caching_ctl->progress = cache->key.objectid;
487 atomic_set(&caching_ctl->count, 1);
488 caching_ctl->work.func = caching_thread;
489
490 spin_lock(&cache->lock);
491 /*
492 * This should be a rare occasion, but this could happen I think in the
493 * case where one thread starts to load the space cache info, and then
494 * some other thread starts a transaction commit which tries to do an
495 * allocation while the other thread is still loading the space cache
496 * info. The previous loop should have kept us from choosing this block
497 * group, but if we've moved to the state where we will wait on caching
498 * block groups we need to first check if we're doing a fast load here,
499 * so we can wait for it to finish, otherwise we could end up allocating
500 * from a block group who's cache gets evicted for one reason or
501 * another.
502 */
503 while (cache->cached == BTRFS_CACHE_FAST) {
504 struct btrfs_caching_control *ctl;
505
506 ctl = cache->caching_ctl;
507 atomic_inc(&ctl->count);
508 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
509 spin_unlock(&cache->lock);
510
511 schedule();
512
513 finish_wait(&ctl->wait, &wait);
514 put_caching_control(ctl);
515 spin_lock(&cache->lock);
516 }
517
518 if (cache->cached != BTRFS_CACHE_NO) {
519 spin_unlock(&cache->lock);
520 kfree(caching_ctl);
521 return 0;
522 }
523 WARN_ON(cache->caching_ctl);
524 cache->caching_ctl = caching_ctl;
525 cache->cached = BTRFS_CACHE_FAST;
526 spin_unlock(&cache->lock);
527
528 /*
529 * We can't do the read from on-disk cache during a commit since we need
530 * to have the normal tree locking. Also if we are currently trying to
531 * allocate blocks for the tree root we can't do the fast caching since
532 * we likely hold important locks.
533 */
534 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
535 ret = load_free_space_cache(fs_info, cache);
536
537 spin_lock(&cache->lock);
538 if (ret == 1) {
539 cache->caching_ctl = NULL;
540 cache->cached = BTRFS_CACHE_FINISHED;
541 cache->last_byte_to_unpin = (u64)-1;
542 } else {
543 if (load_cache_only) {
544 cache->caching_ctl = NULL;
545 cache->cached = BTRFS_CACHE_NO;
546 } else {
547 cache->cached = BTRFS_CACHE_STARTED;
548 }
549 }
550 spin_unlock(&cache->lock);
551 wake_up(&caching_ctl->wait);
552 if (ret == 1) {
553 put_caching_control(caching_ctl);
554 free_excluded_extents(fs_info->extent_root, cache);
555 return 0;
556 }
557 } else {
558 /*
559 * We are not going to do the fast caching, set cached to the
560 * appropriate value and wakeup any waiters.
561 */
562 spin_lock(&cache->lock);
563 if (load_cache_only) {
564 cache->caching_ctl = NULL;
565 cache->cached = BTRFS_CACHE_NO;
566 } else {
567 cache->cached = BTRFS_CACHE_STARTED;
568 }
569 spin_unlock(&cache->lock);
570 wake_up(&caching_ctl->wait);
571 }
572
573 if (load_cache_only) {
574 put_caching_control(caching_ctl);
575 return 0;
576 }
577
578 down_write(&fs_info->extent_commit_sem);
579 atomic_inc(&caching_ctl->count);
580 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
581 up_write(&fs_info->extent_commit_sem);
582
583 btrfs_get_block_group(cache);
584
585 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
586
587 return ret;
588 }
589
590 /*
591 * return the block group that starts at or after bytenr
592 */
593 static struct btrfs_block_group_cache *
594 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
595 {
596 struct btrfs_block_group_cache *cache;
597
598 cache = block_group_cache_tree_search(info, bytenr, 0);
599
600 return cache;
601 }
602
603 /*
604 * return the block group that contains the given bytenr
605 */
606 struct btrfs_block_group_cache *btrfs_lookup_block_group(
607 struct btrfs_fs_info *info,
608 u64 bytenr)
609 {
610 struct btrfs_block_group_cache *cache;
611
612 cache = block_group_cache_tree_search(info, bytenr, 1);
613
614 return cache;
615 }
616
617 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
618 u64 flags)
619 {
620 struct list_head *head = &info->space_info;
621 struct btrfs_space_info *found;
622
623 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
624
625 rcu_read_lock();
626 list_for_each_entry_rcu(found, head, list) {
627 if (found->flags & flags) {
628 rcu_read_unlock();
629 return found;
630 }
631 }
632 rcu_read_unlock();
633 return NULL;
634 }
635
636 /*
637 * after adding space to the filesystem, we need to clear the full flags
638 * on all the space infos.
639 */
640 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
641 {
642 struct list_head *head = &info->space_info;
643 struct btrfs_space_info *found;
644
645 rcu_read_lock();
646 list_for_each_entry_rcu(found, head, list)
647 found->full = 0;
648 rcu_read_unlock();
649 }
650
651 static u64 div_factor(u64 num, int factor)
652 {
653 if (factor == 10)
654 return num;
655 num *= factor;
656 do_div(num, 10);
657 return num;
658 }
659
660 static u64 div_factor_fine(u64 num, int factor)
661 {
662 if (factor == 100)
663 return num;
664 num *= factor;
665 do_div(num, 100);
666 return num;
667 }
668
669 u64 btrfs_find_block_group(struct btrfs_root *root,
670 u64 search_start, u64 search_hint, int owner)
671 {
672 struct btrfs_block_group_cache *cache;
673 u64 used;
674 u64 last = max(search_hint, search_start);
675 u64 group_start = 0;
676 int full_search = 0;
677 int factor = 9;
678 int wrapped = 0;
679 again:
680 while (1) {
681 cache = btrfs_lookup_first_block_group(root->fs_info, last);
682 if (!cache)
683 break;
684
685 spin_lock(&cache->lock);
686 last = cache->key.objectid + cache->key.offset;
687 used = btrfs_block_group_used(&cache->item);
688
689 if ((full_search || !cache->ro) &&
690 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
691 if (used + cache->pinned + cache->reserved <
692 div_factor(cache->key.offset, factor)) {
693 group_start = cache->key.objectid;
694 spin_unlock(&cache->lock);
695 btrfs_put_block_group(cache);
696 goto found;
697 }
698 }
699 spin_unlock(&cache->lock);
700 btrfs_put_block_group(cache);
701 cond_resched();
702 }
703 if (!wrapped) {
704 last = search_start;
705 wrapped = 1;
706 goto again;
707 }
708 if (!full_search && factor < 10) {
709 last = search_start;
710 full_search = 1;
711 factor = 10;
712 goto again;
713 }
714 found:
715 return group_start;
716 }
717
718 /* simple helper to search for an existing extent at a given offset */
719 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
720 {
721 int ret;
722 struct btrfs_key key;
723 struct btrfs_path *path;
724
725 path = btrfs_alloc_path();
726 if (!path)
727 return -ENOMEM;
728
729 key.objectid = start;
730 key.offset = len;
731 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
732 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
733 0, 0);
734 btrfs_free_path(path);
735 return ret;
736 }
737
738 /*
739 * helper function to lookup reference count and flags of extent.
740 *
741 * the head node for delayed ref is used to store the sum of all the
742 * reference count modifications queued up in the rbtree. the head
743 * node may also store the extent flags to set. This way you can check
744 * to see what the reference count and extent flags would be if all of
745 * the delayed refs are not processed.
746 */
747 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
748 struct btrfs_root *root, u64 bytenr,
749 u64 num_bytes, u64 *refs, u64 *flags)
750 {
751 struct btrfs_delayed_ref_head *head;
752 struct btrfs_delayed_ref_root *delayed_refs;
753 struct btrfs_path *path;
754 struct btrfs_extent_item *ei;
755 struct extent_buffer *leaf;
756 struct btrfs_key key;
757 u32 item_size;
758 u64 num_refs;
759 u64 extent_flags;
760 int ret;
761
762 path = btrfs_alloc_path();
763 if (!path)
764 return -ENOMEM;
765
766 key.objectid = bytenr;
767 key.type = BTRFS_EXTENT_ITEM_KEY;
768 key.offset = num_bytes;
769 if (!trans) {
770 path->skip_locking = 1;
771 path->search_commit_root = 1;
772 }
773 again:
774 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
775 &key, path, 0, 0);
776 if (ret < 0)
777 goto out_free;
778
779 if (ret == 0) {
780 leaf = path->nodes[0];
781 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
782 if (item_size >= sizeof(*ei)) {
783 ei = btrfs_item_ptr(leaf, path->slots[0],
784 struct btrfs_extent_item);
785 num_refs = btrfs_extent_refs(leaf, ei);
786 extent_flags = btrfs_extent_flags(leaf, ei);
787 } else {
788 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
789 struct btrfs_extent_item_v0 *ei0;
790 BUG_ON(item_size != sizeof(*ei0));
791 ei0 = btrfs_item_ptr(leaf, path->slots[0],
792 struct btrfs_extent_item_v0);
793 num_refs = btrfs_extent_refs_v0(leaf, ei0);
794 /* FIXME: this isn't correct for data */
795 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
796 #else
797 BUG();
798 #endif
799 }
800 BUG_ON(num_refs == 0);
801 } else {
802 num_refs = 0;
803 extent_flags = 0;
804 ret = 0;
805 }
806
807 if (!trans)
808 goto out;
809
810 delayed_refs = &trans->transaction->delayed_refs;
811 spin_lock(&delayed_refs->lock);
812 head = btrfs_find_delayed_ref_head(trans, bytenr);
813 if (head) {
814 if (!mutex_trylock(&head->mutex)) {
815 atomic_inc(&head->node.refs);
816 spin_unlock(&delayed_refs->lock);
817
818 btrfs_release_path(path);
819
820 /*
821 * Mutex was contended, block until it's released and try
822 * again
823 */
824 mutex_lock(&head->mutex);
825 mutex_unlock(&head->mutex);
826 btrfs_put_delayed_ref(&head->node);
827 goto again;
828 }
829 if (head->extent_op && head->extent_op->update_flags)
830 extent_flags |= head->extent_op->flags_to_set;
831 else
832 BUG_ON(num_refs == 0);
833
834 num_refs += head->node.ref_mod;
835 mutex_unlock(&head->mutex);
836 }
837 spin_unlock(&delayed_refs->lock);
838 out:
839 WARN_ON(num_refs == 0);
840 if (refs)
841 *refs = num_refs;
842 if (flags)
843 *flags = extent_flags;
844 out_free:
845 btrfs_free_path(path);
846 return ret;
847 }
848
849 /*
850 * Back reference rules. Back refs have three main goals:
851 *
852 * 1) differentiate between all holders of references to an extent so that
853 * when a reference is dropped we can make sure it was a valid reference
854 * before freeing the extent.
855 *
856 * 2) Provide enough information to quickly find the holders of an extent
857 * if we notice a given block is corrupted or bad.
858 *
859 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
860 * maintenance. This is actually the same as #2, but with a slightly
861 * different use case.
862 *
863 * There are two kinds of back refs. The implicit back refs is optimized
864 * for pointers in non-shared tree blocks. For a given pointer in a block,
865 * back refs of this kind provide information about the block's owner tree
866 * and the pointer's key. These information allow us to find the block by
867 * b-tree searching. The full back refs is for pointers in tree blocks not
868 * referenced by their owner trees. The location of tree block is recorded
869 * in the back refs. Actually the full back refs is generic, and can be
870 * used in all cases the implicit back refs is used. The major shortcoming
871 * of the full back refs is its overhead. Every time a tree block gets
872 * COWed, we have to update back refs entry for all pointers in it.
873 *
874 * For a newly allocated tree block, we use implicit back refs for
875 * pointers in it. This means most tree related operations only involve
876 * implicit back refs. For a tree block created in old transaction, the
877 * only way to drop a reference to it is COW it. So we can detect the
878 * event that tree block loses its owner tree's reference and do the
879 * back refs conversion.
880 *
881 * When a tree block is COW'd through a tree, there are four cases:
882 *
883 * The reference count of the block is one and the tree is the block's
884 * owner tree. Nothing to do in this case.
885 *
886 * The reference count of the block is one and the tree is not the
887 * block's owner tree. In this case, full back refs is used for pointers
888 * in the block. Remove these full back refs, add implicit back refs for
889 * every pointers in the new block.
890 *
891 * The reference count of the block is greater than one and the tree is
892 * the block's owner tree. In this case, implicit back refs is used for
893 * pointers in the block. Add full back refs for every pointers in the
894 * block, increase lower level extents' reference counts. The original
895 * implicit back refs are entailed to the new block.
896 *
897 * The reference count of the block is greater than one and the tree is
898 * not the block's owner tree. Add implicit back refs for every pointer in
899 * the new block, increase lower level extents' reference count.
900 *
901 * Back Reference Key composing:
902 *
903 * The key objectid corresponds to the first byte in the extent,
904 * The key type is used to differentiate between types of back refs.
905 * There are different meanings of the key offset for different types
906 * of back refs.
907 *
908 * File extents can be referenced by:
909 *
910 * - multiple snapshots, subvolumes, or different generations in one subvol
911 * - different files inside a single subvolume
912 * - different offsets inside a file (bookend extents in file.c)
913 *
914 * The extent ref structure for the implicit back refs has fields for:
915 *
916 * - Objectid of the subvolume root
917 * - objectid of the file holding the reference
918 * - original offset in the file
919 * - how many bookend extents
920 *
921 * The key offset for the implicit back refs is hash of the first
922 * three fields.
923 *
924 * The extent ref structure for the full back refs has field for:
925 *
926 * - number of pointers in the tree leaf
927 *
928 * The key offset for the implicit back refs is the first byte of
929 * the tree leaf
930 *
931 * When a file extent is allocated, The implicit back refs is used.
932 * the fields are filled in:
933 *
934 * (root_key.objectid, inode objectid, offset in file, 1)
935 *
936 * When a file extent is removed file truncation, we find the
937 * corresponding implicit back refs and check the following fields:
938 *
939 * (btrfs_header_owner(leaf), inode objectid, offset in file)
940 *
941 * Btree extents can be referenced by:
942 *
943 * - Different subvolumes
944 *
945 * Both the implicit back refs and the full back refs for tree blocks
946 * only consist of key. The key offset for the implicit back refs is
947 * objectid of block's owner tree. The key offset for the full back refs
948 * is the first byte of parent block.
949 *
950 * When implicit back refs is used, information about the lowest key and
951 * level of the tree block are required. These information are stored in
952 * tree block info structure.
953 */
954
955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
956 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
957 struct btrfs_root *root,
958 struct btrfs_path *path,
959 u64 owner, u32 extra_size)
960 {
961 struct btrfs_extent_item *item;
962 struct btrfs_extent_item_v0 *ei0;
963 struct btrfs_extent_ref_v0 *ref0;
964 struct btrfs_tree_block_info *bi;
965 struct extent_buffer *leaf;
966 struct btrfs_key key;
967 struct btrfs_key found_key;
968 u32 new_size = sizeof(*item);
969 u64 refs;
970 int ret;
971
972 leaf = path->nodes[0];
973 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
974
975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
976 ei0 = btrfs_item_ptr(leaf, path->slots[0],
977 struct btrfs_extent_item_v0);
978 refs = btrfs_extent_refs_v0(leaf, ei0);
979
980 if (owner == (u64)-1) {
981 while (1) {
982 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
983 ret = btrfs_next_leaf(root, path);
984 if (ret < 0)
985 return ret;
986 BUG_ON(ret > 0); /* Corruption */
987 leaf = path->nodes[0];
988 }
989 btrfs_item_key_to_cpu(leaf, &found_key,
990 path->slots[0]);
991 BUG_ON(key.objectid != found_key.objectid);
992 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
993 path->slots[0]++;
994 continue;
995 }
996 ref0 = btrfs_item_ptr(leaf, path->slots[0],
997 struct btrfs_extent_ref_v0);
998 owner = btrfs_ref_objectid_v0(leaf, ref0);
999 break;
1000 }
1001 }
1002 btrfs_release_path(path);
1003
1004 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1005 new_size += sizeof(*bi);
1006
1007 new_size -= sizeof(*ei0);
1008 ret = btrfs_search_slot(trans, root, &key, path,
1009 new_size + extra_size, 1);
1010 if (ret < 0)
1011 return ret;
1012 BUG_ON(ret); /* Corruption */
1013
1014 btrfs_extend_item(trans, root, path, new_size);
1015
1016 leaf = path->nodes[0];
1017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 btrfs_set_extent_refs(leaf, item, refs);
1019 /* FIXME: get real generation */
1020 btrfs_set_extent_generation(leaf, item, 0);
1021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1022 btrfs_set_extent_flags(leaf, item,
1023 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1024 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1025 bi = (struct btrfs_tree_block_info *)(item + 1);
1026 /* FIXME: get first key of the block */
1027 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1028 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1029 } else {
1030 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1031 }
1032 btrfs_mark_buffer_dirty(leaf);
1033 return 0;
1034 }
1035 #endif
1036
1037 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1038 {
1039 u32 high_crc = ~(u32)0;
1040 u32 low_crc = ~(u32)0;
1041 __le64 lenum;
1042
1043 lenum = cpu_to_le64(root_objectid);
1044 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(owner);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047 lenum = cpu_to_le64(offset);
1048 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1049
1050 return ((u64)high_crc << 31) ^ (u64)low_crc;
1051 }
1052
1053 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1054 struct btrfs_extent_data_ref *ref)
1055 {
1056 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1057 btrfs_extent_data_ref_objectid(leaf, ref),
1058 btrfs_extent_data_ref_offset(leaf, ref));
1059 }
1060
1061 static int match_extent_data_ref(struct extent_buffer *leaf,
1062 struct btrfs_extent_data_ref *ref,
1063 u64 root_objectid, u64 owner, u64 offset)
1064 {
1065 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1066 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1067 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1068 return 0;
1069 return 1;
1070 }
1071
1072 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1073 struct btrfs_root *root,
1074 struct btrfs_path *path,
1075 u64 bytenr, u64 parent,
1076 u64 root_objectid,
1077 u64 owner, u64 offset)
1078 {
1079 struct btrfs_key key;
1080 struct btrfs_extent_data_ref *ref;
1081 struct extent_buffer *leaf;
1082 u32 nritems;
1083 int ret;
1084 int recow;
1085 int err = -ENOENT;
1086
1087 key.objectid = bytenr;
1088 if (parent) {
1089 key.type = BTRFS_SHARED_DATA_REF_KEY;
1090 key.offset = parent;
1091 } else {
1092 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1093 key.offset = hash_extent_data_ref(root_objectid,
1094 owner, offset);
1095 }
1096 again:
1097 recow = 0;
1098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1099 if (ret < 0) {
1100 err = ret;
1101 goto fail;
1102 }
1103
1104 if (parent) {
1105 if (!ret)
1106 return 0;
1107 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1108 key.type = BTRFS_EXTENT_REF_V0_KEY;
1109 btrfs_release_path(path);
1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 if (ret < 0) {
1112 err = ret;
1113 goto fail;
1114 }
1115 if (!ret)
1116 return 0;
1117 #endif
1118 goto fail;
1119 }
1120
1121 leaf = path->nodes[0];
1122 nritems = btrfs_header_nritems(leaf);
1123 while (1) {
1124 if (path->slots[0] >= nritems) {
1125 ret = btrfs_next_leaf(root, path);
1126 if (ret < 0)
1127 err = ret;
1128 if (ret)
1129 goto fail;
1130
1131 leaf = path->nodes[0];
1132 nritems = btrfs_header_nritems(leaf);
1133 recow = 1;
1134 }
1135
1136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1137 if (key.objectid != bytenr ||
1138 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1139 goto fail;
1140
1141 ref = btrfs_item_ptr(leaf, path->slots[0],
1142 struct btrfs_extent_data_ref);
1143
1144 if (match_extent_data_ref(leaf, ref, root_objectid,
1145 owner, offset)) {
1146 if (recow) {
1147 btrfs_release_path(path);
1148 goto again;
1149 }
1150 err = 0;
1151 break;
1152 }
1153 path->slots[0]++;
1154 }
1155 fail:
1156 return err;
1157 }
1158
1159 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 u64 bytenr, u64 parent,
1163 u64 root_objectid, u64 owner,
1164 u64 offset, int refs_to_add)
1165 {
1166 struct btrfs_key key;
1167 struct extent_buffer *leaf;
1168 u32 size;
1169 u32 num_refs;
1170 int ret;
1171
1172 key.objectid = bytenr;
1173 if (parent) {
1174 key.type = BTRFS_SHARED_DATA_REF_KEY;
1175 key.offset = parent;
1176 size = sizeof(struct btrfs_shared_data_ref);
1177 } else {
1178 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 key.offset = hash_extent_data_ref(root_objectid,
1180 owner, offset);
1181 size = sizeof(struct btrfs_extent_data_ref);
1182 }
1183
1184 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1185 if (ret && ret != -EEXIST)
1186 goto fail;
1187
1188 leaf = path->nodes[0];
1189 if (parent) {
1190 struct btrfs_shared_data_ref *ref;
1191 ref = btrfs_item_ptr(leaf, path->slots[0],
1192 struct btrfs_shared_data_ref);
1193 if (ret == 0) {
1194 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1195 } else {
1196 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1197 num_refs += refs_to_add;
1198 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 }
1200 } else {
1201 struct btrfs_extent_data_ref *ref;
1202 while (ret == -EEXIST) {
1203 ref = btrfs_item_ptr(leaf, path->slots[0],
1204 struct btrfs_extent_data_ref);
1205 if (match_extent_data_ref(leaf, ref, root_objectid,
1206 owner, offset))
1207 break;
1208 btrfs_release_path(path);
1209 key.offset++;
1210 ret = btrfs_insert_empty_item(trans, root, path, &key,
1211 size);
1212 if (ret && ret != -EEXIST)
1213 goto fail;
1214
1215 leaf = path->nodes[0];
1216 }
1217 ref = btrfs_item_ptr(leaf, path->slots[0],
1218 struct btrfs_extent_data_ref);
1219 if (ret == 0) {
1220 btrfs_set_extent_data_ref_root(leaf, ref,
1221 root_objectid);
1222 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1223 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1224 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1225 } else {
1226 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1227 num_refs += refs_to_add;
1228 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229 }
1230 }
1231 btrfs_mark_buffer_dirty(leaf);
1232 ret = 0;
1233 fail:
1234 btrfs_release_path(path);
1235 return ret;
1236 }
1237
1238 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1239 struct btrfs_root *root,
1240 struct btrfs_path *path,
1241 int refs_to_drop)
1242 {
1243 struct btrfs_key key;
1244 struct btrfs_extent_data_ref *ref1 = NULL;
1245 struct btrfs_shared_data_ref *ref2 = NULL;
1246 struct extent_buffer *leaf;
1247 u32 num_refs = 0;
1248 int ret = 0;
1249
1250 leaf = path->nodes[0];
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252
1253 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1254 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_extent_data_ref);
1256 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1257 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1258 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1259 struct btrfs_shared_data_ref);
1260 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1261 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1262 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1263 struct btrfs_extent_ref_v0 *ref0;
1264 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_extent_ref_v0);
1266 num_refs = btrfs_ref_count_v0(leaf, ref0);
1267 #endif
1268 } else {
1269 BUG();
1270 }
1271
1272 BUG_ON(num_refs < refs_to_drop);
1273 num_refs -= refs_to_drop;
1274
1275 if (num_refs == 0) {
1276 ret = btrfs_del_item(trans, root, path);
1277 } else {
1278 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1279 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1280 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1281 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 else {
1284 struct btrfs_extent_ref_v0 *ref0;
1285 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_ref_v0);
1287 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 }
1289 #endif
1290 btrfs_mark_buffer_dirty(leaf);
1291 }
1292 return ret;
1293 }
1294
1295 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1296 struct btrfs_path *path,
1297 struct btrfs_extent_inline_ref *iref)
1298 {
1299 struct btrfs_key key;
1300 struct extent_buffer *leaf;
1301 struct btrfs_extent_data_ref *ref1;
1302 struct btrfs_shared_data_ref *ref2;
1303 u32 num_refs = 0;
1304
1305 leaf = path->nodes[0];
1306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1307 if (iref) {
1308 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1309 BTRFS_EXTENT_DATA_REF_KEY) {
1310 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1311 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1312 } else {
1313 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1314 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1315 }
1316 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1317 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_data_ref);
1319 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1320 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1321 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1322 struct btrfs_shared_data_ref);
1323 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1325 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1326 struct btrfs_extent_ref_v0 *ref0;
1327 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1328 struct btrfs_extent_ref_v0);
1329 num_refs = btrfs_ref_count_v0(leaf, ref0);
1330 #endif
1331 } else {
1332 WARN_ON(1);
1333 }
1334 return num_refs;
1335 }
1336
1337 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1338 struct btrfs_root *root,
1339 struct btrfs_path *path,
1340 u64 bytenr, u64 parent,
1341 u64 root_objectid)
1342 {
1343 struct btrfs_key key;
1344 int ret;
1345
1346 key.objectid = bytenr;
1347 if (parent) {
1348 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1349 key.offset = parent;
1350 } else {
1351 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1352 key.offset = root_objectid;
1353 }
1354
1355 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1356 if (ret > 0)
1357 ret = -ENOENT;
1358 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1359 if (ret == -ENOENT && parent) {
1360 btrfs_release_path(path);
1361 key.type = BTRFS_EXTENT_REF_V0_KEY;
1362 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1363 if (ret > 0)
1364 ret = -ENOENT;
1365 }
1366 #endif
1367 return ret;
1368 }
1369
1370 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 bytenr, u64 parent,
1374 u64 root_objectid)
1375 {
1376 struct btrfs_key key;
1377 int ret;
1378
1379 key.objectid = bytenr;
1380 if (parent) {
1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 key.offset = parent;
1383 } else {
1384 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 key.offset = root_objectid;
1386 }
1387
1388 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1389 btrfs_release_path(path);
1390 return ret;
1391 }
1392
1393 static inline int extent_ref_type(u64 parent, u64 owner)
1394 {
1395 int type;
1396 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1397 if (parent > 0)
1398 type = BTRFS_SHARED_BLOCK_REF_KEY;
1399 else
1400 type = BTRFS_TREE_BLOCK_REF_KEY;
1401 } else {
1402 if (parent > 0)
1403 type = BTRFS_SHARED_DATA_REF_KEY;
1404 else
1405 type = BTRFS_EXTENT_DATA_REF_KEY;
1406 }
1407 return type;
1408 }
1409
1410 static int find_next_key(struct btrfs_path *path, int level,
1411 struct btrfs_key *key)
1412
1413 {
1414 for (; level < BTRFS_MAX_LEVEL; level++) {
1415 if (!path->nodes[level])
1416 break;
1417 if (path->slots[level] + 1 >=
1418 btrfs_header_nritems(path->nodes[level]))
1419 continue;
1420 if (level == 0)
1421 btrfs_item_key_to_cpu(path->nodes[level], key,
1422 path->slots[level] + 1);
1423 else
1424 btrfs_node_key_to_cpu(path->nodes[level], key,
1425 path->slots[level] + 1);
1426 return 0;
1427 }
1428 return 1;
1429 }
1430
1431 /*
1432 * look for inline back ref. if back ref is found, *ref_ret is set
1433 * to the address of inline back ref, and 0 is returned.
1434 *
1435 * if back ref isn't found, *ref_ret is set to the address where it
1436 * should be inserted, and -ENOENT is returned.
1437 *
1438 * if insert is true and there are too many inline back refs, the path
1439 * points to the extent item, and -EAGAIN is returned.
1440 *
1441 * NOTE: inline back refs are ordered in the same way that back ref
1442 * items in the tree are ordered.
1443 */
1444 static noinline_for_stack
1445 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1446 struct btrfs_root *root,
1447 struct btrfs_path *path,
1448 struct btrfs_extent_inline_ref **ref_ret,
1449 u64 bytenr, u64 num_bytes,
1450 u64 parent, u64 root_objectid,
1451 u64 owner, u64 offset, int insert)
1452 {
1453 struct btrfs_key key;
1454 struct extent_buffer *leaf;
1455 struct btrfs_extent_item *ei;
1456 struct btrfs_extent_inline_ref *iref;
1457 u64 flags;
1458 u64 item_size;
1459 unsigned long ptr;
1460 unsigned long end;
1461 int extra_size;
1462 int type;
1463 int want;
1464 int ret;
1465 int err = 0;
1466
1467 key.objectid = bytenr;
1468 key.type = BTRFS_EXTENT_ITEM_KEY;
1469 key.offset = num_bytes;
1470
1471 want = extent_ref_type(parent, owner);
1472 if (insert) {
1473 extra_size = btrfs_extent_inline_ref_size(want);
1474 path->keep_locks = 1;
1475 } else
1476 extra_size = -1;
1477 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1478 if (ret < 0) {
1479 err = ret;
1480 goto out;
1481 }
1482 if (ret && !insert) {
1483 err = -ENOENT;
1484 goto out;
1485 }
1486 BUG_ON(ret); /* Corruption */
1487
1488 leaf = path->nodes[0];
1489 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1490 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1491 if (item_size < sizeof(*ei)) {
1492 if (!insert) {
1493 err = -ENOENT;
1494 goto out;
1495 }
1496 ret = convert_extent_item_v0(trans, root, path, owner,
1497 extra_size);
1498 if (ret < 0) {
1499 err = ret;
1500 goto out;
1501 }
1502 leaf = path->nodes[0];
1503 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1504 }
1505 #endif
1506 BUG_ON(item_size < sizeof(*ei));
1507
1508 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1509 flags = btrfs_extent_flags(leaf, ei);
1510
1511 ptr = (unsigned long)(ei + 1);
1512 end = (unsigned long)ei + item_size;
1513
1514 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1515 ptr += sizeof(struct btrfs_tree_block_info);
1516 BUG_ON(ptr > end);
1517 } else {
1518 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1519 }
1520
1521 err = -ENOENT;
1522 while (1) {
1523 if (ptr >= end) {
1524 WARN_ON(ptr > end);
1525 break;
1526 }
1527 iref = (struct btrfs_extent_inline_ref *)ptr;
1528 type = btrfs_extent_inline_ref_type(leaf, iref);
1529 if (want < type)
1530 break;
1531 if (want > type) {
1532 ptr += btrfs_extent_inline_ref_size(type);
1533 continue;
1534 }
1535
1536 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1537 struct btrfs_extent_data_ref *dref;
1538 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1539 if (match_extent_data_ref(leaf, dref, root_objectid,
1540 owner, offset)) {
1541 err = 0;
1542 break;
1543 }
1544 if (hash_extent_data_ref_item(leaf, dref) <
1545 hash_extent_data_ref(root_objectid, owner, offset))
1546 break;
1547 } else {
1548 u64 ref_offset;
1549 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1550 if (parent > 0) {
1551 if (parent == ref_offset) {
1552 err = 0;
1553 break;
1554 }
1555 if (ref_offset < parent)
1556 break;
1557 } else {
1558 if (root_objectid == ref_offset) {
1559 err = 0;
1560 break;
1561 }
1562 if (ref_offset < root_objectid)
1563 break;
1564 }
1565 }
1566 ptr += btrfs_extent_inline_ref_size(type);
1567 }
1568 if (err == -ENOENT && insert) {
1569 if (item_size + extra_size >=
1570 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1571 err = -EAGAIN;
1572 goto out;
1573 }
1574 /*
1575 * To add new inline back ref, we have to make sure
1576 * there is no corresponding back ref item.
1577 * For simplicity, we just do not add new inline back
1578 * ref if there is any kind of item for this block
1579 */
1580 if (find_next_key(path, 0, &key) == 0 &&
1581 key.objectid == bytenr &&
1582 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1583 err = -EAGAIN;
1584 goto out;
1585 }
1586 }
1587 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1588 out:
1589 if (insert) {
1590 path->keep_locks = 0;
1591 btrfs_unlock_up_safe(path, 1);
1592 }
1593 return err;
1594 }
1595
1596 /*
1597 * helper to add new inline back ref
1598 */
1599 static noinline_for_stack
1600 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1601 struct btrfs_root *root,
1602 struct btrfs_path *path,
1603 struct btrfs_extent_inline_ref *iref,
1604 u64 parent, u64 root_objectid,
1605 u64 owner, u64 offset, int refs_to_add,
1606 struct btrfs_delayed_extent_op *extent_op)
1607 {
1608 struct extent_buffer *leaf;
1609 struct btrfs_extent_item *ei;
1610 unsigned long ptr;
1611 unsigned long end;
1612 unsigned long item_offset;
1613 u64 refs;
1614 int size;
1615 int type;
1616
1617 leaf = path->nodes[0];
1618 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1619 item_offset = (unsigned long)iref - (unsigned long)ei;
1620
1621 type = extent_ref_type(parent, owner);
1622 size = btrfs_extent_inline_ref_size(type);
1623
1624 btrfs_extend_item(trans, root, path, size);
1625
1626 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1627 refs = btrfs_extent_refs(leaf, ei);
1628 refs += refs_to_add;
1629 btrfs_set_extent_refs(leaf, ei, refs);
1630 if (extent_op)
1631 __run_delayed_extent_op(extent_op, leaf, ei);
1632
1633 ptr = (unsigned long)ei + item_offset;
1634 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1635 if (ptr < end - size)
1636 memmove_extent_buffer(leaf, ptr + size, ptr,
1637 end - size - ptr);
1638
1639 iref = (struct btrfs_extent_inline_ref *)ptr;
1640 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1642 struct btrfs_extent_data_ref *dref;
1643 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1644 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1645 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1646 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1647 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1648 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1649 struct btrfs_shared_data_ref *sref;
1650 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1651 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1653 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1654 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1655 } else {
1656 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1657 }
1658 btrfs_mark_buffer_dirty(leaf);
1659 }
1660
1661 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1662 struct btrfs_root *root,
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref **ref_ret,
1665 u64 bytenr, u64 num_bytes, u64 parent,
1666 u64 root_objectid, u64 owner, u64 offset)
1667 {
1668 int ret;
1669
1670 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1671 bytenr, num_bytes, parent,
1672 root_objectid, owner, offset, 0);
1673 if (ret != -ENOENT)
1674 return ret;
1675
1676 btrfs_release_path(path);
1677 *ref_ret = NULL;
1678
1679 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1680 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1681 root_objectid);
1682 } else {
1683 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1684 root_objectid, owner, offset);
1685 }
1686 return ret;
1687 }
1688
1689 /*
1690 * helper to update/remove inline back ref
1691 */
1692 static noinline_for_stack
1693 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1694 struct btrfs_root *root,
1695 struct btrfs_path *path,
1696 struct btrfs_extent_inline_ref *iref,
1697 int refs_to_mod,
1698 struct btrfs_delayed_extent_op *extent_op)
1699 {
1700 struct extent_buffer *leaf;
1701 struct btrfs_extent_item *ei;
1702 struct btrfs_extent_data_ref *dref = NULL;
1703 struct btrfs_shared_data_ref *sref = NULL;
1704 unsigned long ptr;
1705 unsigned long end;
1706 u32 item_size;
1707 int size;
1708 int type;
1709 u64 refs;
1710
1711 leaf = path->nodes[0];
1712 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713 refs = btrfs_extent_refs(leaf, ei);
1714 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1715 refs += refs_to_mod;
1716 btrfs_set_extent_refs(leaf, ei, refs);
1717 if (extent_op)
1718 __run_delayed_extent_op(extent_op, leaf, ei);
1719
1720 type = btrfs_extent_inline_ref_type(leaf, iref);
1721
1722 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1723 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1724 refs = btrfs_extent_data_ref_count(leaf, dref);
1725 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1726 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1727 refs = btrfs_shared_data_ref_count(leaf, sref);
1728 } else {
1729 refs = 1;
1730 BUG_ON(refs_to_mod != -1);
1731 }
1732
1733 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1734 refs += refs_to_mod;
1735
1736 if (refs > 0) {
1737 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1738 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1739 else
1740 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1741 } else {
1742 size = btrfs_extent_inline_ref_size(type);
1743 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1744 ptr = (unsigned long)iref;
1745 end = (unsigned long)ei + item_size;
1746 if (ptr + size < end)
1747 memmove_extent_buffer(leaf, ptr, ptr + size,
1748 end - ptr - size);
1749 item_size -= size;
1750 btrfs_truncate_item(trans, root, path, item_size, 1);
1751 }
1752 btrfs_mark_buffer_dirty(leaf);
1753 }
1754
1755 static noinline_for_stack
1756 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1757 struct btrfs_root *root,
1758 struct btrfs_path *path,
1759 u64 bytenr, u64 num_bytes, u64 parent,
1760 u64 root_objectid, u64 owner,
1761 u64 offset, int refs_to_add,
1762 struct btrfs_delayed_extent_op *extent_op)
1763 {
1764 struct btrfs_extent_inline_ref *iref;
1765 int ret;
1766
1767 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1768 bytenr, num_bytes, parent,
1769 root_objectid, owner, offset, 1);
1770 if (ret == 0) {
1771 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1772 update_inline_extent_backref(trans, root, path, iref,
1773 refs_to_add, extent_op);
1774 } else if (ret == -ENOENT) {
1775 setup_inline_extent_backref(trans, root, path, iref, parent,
1776 root_objectid, owner, offset,
1777 refs_to_add, extent_op);
1778 ret = 0;
1779 }
1780 return ret;
1781 }
1782
1783 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1784 struct btrfs_root *root,
1785 struct btrfs_path *path,
1786 u64 bytenr, u64 parent, u64 root_objectid,
1787 u64 owner, u64 offset, int refs_to_add)
1788 {
1789 int ret;
1790 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1791 BUG_ON(refs_to_add != 1);
1792 ret = insert_tree_block_ref(trans, root, path, bytenr,
1793 parent, root_objectid);
1794 } else {
1795 ret = insert_extent_data_ref(trans, root, path, bytenr,
1796 parent, root_objectid,
1797 owner, offset, refs_to_add);
1798 }
1799 return ret;
1800 }
1801
1802 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 struct btrfs_extent_inline_ref *iref,
1806 int refs_to_drop, int is_data)
1807 {
1808 int ret = 0;
1809
1810 BUG_ON(!is_data && refs_to_drop != 1);
1811 if (iref) {
1812 update_inline_extent_backref(trans, root, path, iref,
1813 -refs_to_drop, NULL);
1814 } else if (is_data) {
1815 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1816 } else {
1817 ret = btrfs_del_item(trans, root, path);
1818 }
1819 return ret;
1820 }
1821
1822 static int btrfs_issue_discard(struct block_device *bdev,
1823 u64 start, u64 len)
1824 {
1825 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1826 }
1827
1828 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1829 u64 num_bytes, u64 *actual_bytes)
1830 {
1831 int ret;
1832 u64 discarded_bytes = 0;
1833 struct btrfs_bio *bbio = NULL;
1834
1835
1836 /* Tell the block device(s) that the sectors can be discarded */
1837 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1838 bytenr, &num_bytes, &bbio, 0);
1839 /* Error condition is -ENOMEM */
1840 if (!ret) {
1841 struct btrfs_bio_stripe *stripe = bbio->stripes;
1842 int i;
1843
1844
1845 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1846 if (!stripe->dev->can_discard)
1847 continue;
1848
1849 ret = btrfs_issue_discard(stripe->dev->bdev,
1850 stripe->physical,
1851 stripe->length);
1852 if (!ret)
1853 discarded_bytes += stripe->length;
1854 else if (ret != -EOPNOTSUPP)
1855 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1856
1857 /*
1858 * Just in case we get back EOPNOTSUPP for some reason,
1859 * just ignore the return value so we don't screw up
1860 * people calling discard_extent.
1861 */
1862 ret = 0;
1863 }
1864 kfree(bbio);
1865 }
1866
1867 if (actual_bytes)
1868 *actual_bytes = discarded_bytes;
1869
1870
1871 return ret;
1872 }
1873
1874 /* Can return -ENOMEM */
1875 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1876 struct btrfs_root *root,
1877 u64 bytenr, u64 num_bytes, u64 parent,
1878 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1879 {
1880 int ret;
1881 struct btrfs_fs_info *fs_info = root->fs_info;
1882
1883 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1884 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1885
1886 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1887 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1888 num_bytes,
1889 parent, root_objectid, (int)owner,
1890 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1891 } else {
1892 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1893 num_bytes,
1894 parent, root_objectid, owner, offset,
1895 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1896 }
1897 return ret;
1898 }
1899
1900 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1901 struct btrfs_root *root,
1902 u64 bytenr, u64 num_bytes,
1903 u64 parent, u64 root_objectid,
1904 u64 owner, u64 offset, int refs_to_add,
1905 struct btrfs_delayed_extent_op *extent_op)
1906 {
1907 struct btrfs_path *path;
1908 struct extent_buffer *leaf;
1909 struct btrfs_extent_item *item;
1910 u64 refs;
1911 int ret;
1912 int err = 0;
1913
1914 path = btrfs_alloc_path();
1915 if (!path)
1916 return -ENOMEM;
1917
1918 path->reada = 1;
1919 path->leave_spinning = 1;
1920 /* this will setup the path even if it fails to insert the back ref */
1921 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1922 path, bytenr, num_bytes, parent,
1923 root_objectid, owner, offset,
1924 refs_to_add, extent_op);
1925 if (ret == 0)
1926 goto out;
1927
1928 if (ret != -EAGAIN) {
1929 err = ret;
1930 goto out;
1931 }
1932
1933 leaf = path->nodes[0];
1934 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1935 refs = btrfs_extent_refs(leaf, item);
1936 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1937 if (extent_op)
1938 __run_delayed_extent_op(extent_op, leaf, item);
1939
1940 btrfs_mark_buffer_dirty(leaf);
1941 btrfs_release_path(path);
1942
1943 path->reada = 1;
1944 path->leave_spinning = 1;
1945
1946 /* now insert the actual backref */
1947 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1948 path, bytenr, parent, root_objectid,
1949 owner, offset, refs_to_add);
1950 if (ret)
1951 btrfs_abort_transaction(trans, root, ret);
1952 out:
1953 btrfs_free_path(path);
1954 return err;
1955 }
1956
1957 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1958 struct btrfs_root *root,
1959 struct btrfs_delayed_ref_node *node,
1960 struct btrfs_delayed_extent_op *extent_op,
1961 int insert_reserved)
1962 {
1963 int ret = 0;
1964 struct btrfs_delayed_data_ref *ref;
1965 struct btrfs_key ins;
1966 u64 parent = 0;
1967 u64 ref_root = 0;
1968 u64 flags = 0;
1969
1970 ins.objectid = node->bytenr;
1971 ins.offset = node->num_bytes;
1972 ins.type = BTRFS_EXTENT_ITEM_KEY;
1973
1974 ref = btrfs_delayed_node_to_data_ref(node);
1975 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1976 parent = ref->parent;
1977 else
1978 ref_root = ref->root;
1979
1980 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1981 if (extent_op) {
1982 BUG_ON(extent_op->update_key);
1983 flags |= extent_op->flags_to_set;
1984 }
1985 ret = alloc_reserved_file_extent(trans, root,
1986 parent, ref_root, flags,
1987 ref->objectid, ref->offset,
1988 &ins, node->ref_mod);
1989 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1990 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1991 node->num_bytes, parent,
1992 ref_root, ref->objectid,
1993 ref->offset, node->ref_mod,
1994 extent_op);
1995 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1996 ret = __btrfs_free_extent(trans, root, node->bytenr,
1997 node->num_bytes, parent,
1998 ref_root, ref->objectid,
1999 ref->offset, node->ref_mod,
2000 extent_op);
2001 } else {
2002 BUG();
2003 }
2004 return ret;
2005 }
2006
2007 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2008 struct extent_buffer *leaf,
2009 struct btrfs_extent_item *ei)
2010 {
2011 u64 flags = btrfs_extent_flags(leaf, ei);
2012 if (extent_op->update_flags) {
2013 flags |= extent_op->flags_to_set;
2014 btrfs_set_extent_flags(leaf, ei, flags);
2015 }
2016
2017 if (extent_op->update_key) {
2018 struct btrfs_tree_block_info *bi;
2019 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2020 bi = (struct btrfs_tree_block_info *)(ei + 1);
2021 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2022 }
2023 }
2024
2025 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2026 struct btrfs_root *root,
2027 struct btrfs_delayed_ref_node *node,
2028 struct btrfs_delayed_extent_op *extent_op)
2029 {
2030 struct btrfs_key key;
2031 struct btrfs_path *path;
2032 struct btrfs_extent_item *ei;
2033 struct extent_buffer *leaf;
2034 u32 item_size;
2035 int ret;
2036 int err = 0;
2037
2038 if (trans->aborted)
2039 return 0;
2040
2041 path = btrfs_alloc_path();
2042 if (!path)
2043 return -ENOMEM;
2044
2045 key.objectid = node->bytenr;
2046 key.type = BTRFS_EXTENT_ITEM_KEY;
2047 key.offset = node->num_bytes;
2048
2049 path->reada = 1;
2050 path->leave_spinning = 1;
2051 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2052 path, 0, 1);
2053 if (ret < 0) {
2054 err = ret;
2055 goto out;
2056 }
2057 if (ret > 0) {
2058 err = -EIO;
2059 goto out;
2060 }
2061
2062 leaf = path->nodes[0];
2063 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2064 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2065 if (item_size < sizeof(*ei)) {
2066 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2067 path, (u64)-1, 0);
2068 if (ret < 0) {
2069 err = ret;
2070 goto out;
2071 }
2072 leaf = path->nodes[0];
2073 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2074 }
2075 #endif
2076 BUG_ON(item_size < sizeof(*ei));
2077 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 __run_delayed_extent_op(extent_op, leaf, ei);
2079
2080 btrfs_mark_buffer_dirty(leaf);
2081 out:
2082 btrfs_free_path(path);
2083 return err;
2084 }
2085
2086 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2087 struct btrfs_root *root,
2088 struct btrfs_delayed_ref_node *node,
2089 struct btrfs_delayed_extent_op *extent_op,
2090 int insert_reserved)
2091 {
2092 int ret = 0;
2093 struct btrfs_delayed_tree_ref *ref;
2094 struct btrfs_key ins;
2095 u64 parent = 0;
2096 u64 ref_root = 0;
2097
2098 ins.objectid = node->bytenr;
2099 ins.offset = node->num_bytes;
2100 ins.type = BTRFS_EXTENT_ITEM_KEY;
2101
2102 ref = btrfs_delayed_node_to_tree_ref(node);
2103 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2104 parent = ref->parent;
2105 else
2106 ref_root = ref->root;
2107
2108 BUG_ON(node->ref_mod != 1);
2109 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2110 BUG_ON(!extent_op || !extent_op->update_flags ||
2111 !extent_op->update_key);
2112 ret = alloc_reserved_tree_block(trans, root,
2113 parent, ref_root,
2114 extent_op->flags_to_set,
2115 &extent_op->key,
2116 ref->level, &ins);
2117 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2118 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2119 node->num_bytes, parent, ref_root,
2120 ref->level, 0, 1, extent_op);
2121 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2122 ret = __btrfs_free_extent(trans, root, node->bytenr,
2123 node->num_bytes, parent, ref_root,
2124 ref->level, 0, 1, extent_op);
2125 } else {
2126 BUG();
2127 }
2128 return ret;
2129 }
2130
2131 /* helper function to actually process a single delayed ref entry */
2132 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2133 struct btrfs_root *root,
2134 struct btrfs_delayed_ref_node *node,
2135 struct btrfs_delayed_extent_op *extent_op,
2136 int insert_reserved)
2137 {
2138 int ret = 0;
2139
2140 if (trans->aborted)
2141 return 0;
2142
2143 if (btrfs_delayed_ref_is_head(node)) {
2144 struct btrfs_delayed_ref_head *head;
2145 /*
2146 * we've hit the end of the chain and we were supposed
2147 * to insert this extent into the tree. But, it got
2148 * deleted before we ever needed to insert it, so all
2149 * we have to do is clean up the accounting
2150 */
2151 BUG_ON(extent_op);
2152 head = btrfs_delayed_node_to_head(node);
2153 if (insert_reserved) {
2154 btrfs_pin_extent(root, node->bytenr,
2155 node->num_bytes, 1);
2156 if (head->is_data) {
2157 ret = btrfs_del_csums(trans, root,
2158 node->bytenr,
2159 node->num_bytes);
2160 }
2161 }
2162 mutex_unlock(&head->mutex);
2163 return ret;
2164 }
2165
2166 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2167 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2168 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2169 insert_reserved);
2170 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2171 node->type == BTRFS_SHARED_DATA_REF_KEY)
2172 ret = run_delayed_data_ref(trans, root, node, extent_op,
2173 insert_reserved);
2174 else
2175 BUG();
2176 return ret;
2177 }
2178
2179 static noinline struct btrfs_delayed_ref_node *
2180 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2181 {
2182 struct rb_node *node;
2183 struct btrfs_delayed_ref_node *ref;
2184 int action = BTRFS_ADD_DELAYED_REF;
2185 again:
2186 /*
2187 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2188 * this prevents ref count from going down to zero when
2189 * there still are pending delayed ref.
2190 */
2191 node = rb_prev(&head->node.rb_node);
2192 while (1) {
2193 if (!node)
2194 break;
2195 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2196 rb_node);
2197 if (ref->bytenr != head->node.bytenr)
2198 break;
2199 if (ref->action == action)
2200 return ref;
2201 node = rb_prev(node);
2202 }
2203 if (action == BTRFS_ADD_DELAYED_REF) {
2204 action = BTRFS_DROP_DELAYED_REF;
2205 goto again;
2206 }
2207 return NULL;
2208 }
2209
2210 /*
2211 * Returns 0 on success or if called with an already aborted transaction.
2212 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2213 */
2214 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root,
2216 struct list_head *cluster)
2217 {
2218 struct btrfs_delayed_ref_root *delayed_refs;
2219 struct btrfs_delayed_ref_node *ref;
2220 struct btrfs_delayed_ref_head *locked_ref = NULL;
2221 struct btrfs_delayed_extent_op *extent_op;
2222 struct btrfs_fs_info *fs_info = root->fs_info;
2223 int ret;
2224 int count = 0;
2225 int must_insert_reserved = 0;
2226
2227 delayed_refs = &trans->transaction->delayed_refs;
2228 while (1) {
2229 if (!locked_ref) {
2230 /* pick a new head ref from the cluster list */
2231 if (list_empty(cluster))
2232 break;
2233
2234 locked_ref = list_entry(cluster->next,
2235 struct btrfs_delayed_ref_head, cluster);
2236
2237 /* grab the lock that says we are going to process
2238 * all the refs for this head */
2239 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2240
2241 /*
2242 * we may have dropped the spin lock to get the head
2243 * mutex lock, and that might have given someone else
2244 * time to free the head. If that's true, it has been
2245 * removed from our list and we can move on.
2246 */
2247 if (ret == -EAGAIN) {
2248 locked_ref = NULL;
2249 count++;
2250 continue;
2251 }
2252 }
2253
2254 /*
2255 * locked_ref is the head node, so we have to go one
2256 * node back for any delayed ref updates
2257 */
2258 ref = select_delayed_ref(locked_ref);
2259
2260 if (ref && ref->seq &&
2261 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2262 /*
2263 * there are still refs with lower seq numbers in the
2264 * process of being added. Don't run this ref yet.
2265 */
2266 list_del_init(&locked_ref->cluster);
2267 mutex_unlock(&locked_ref->mutex);
2268 locked_ref = NULL;
2269 delayed_refs->num_heads_ready++;
2270 spin_unlock(&delayed_refs->lock);
2271 cond_resched();
2272 spin_lock(&delayed_refs->lock);
2273 continue;
2274 }
2275
2276 /*
2277 * record the must insert reserved flag before we
2278 * drop the spin lock.
2279 */
2280 must_insert_reserved = locked_ref->must_insert_reserved;
2281 locked_ref->must_insert_reserved = 0;
2282
2283 extent_op = locked_ref->extent_op;
2284 locked_ref->extent_op = NULL;
2285
2286 if (!ref) {
2287 /* All delayed refs have been processed, Go ahead
2288 * and send the head node to run_one_delayed_ref,
2289 * so that any accounting fixes can happen
2290 */
2291 ref = &locked_ref->node;
2292
2293 if (extent_op && must_insert_reserved) {
2294 kfree(extent_op);
2295 extent_op = NULL;
2296 }
2297
2298 if (extent_op) {
2299 spin_unlock(&delayed_refs->lock);
2300
2301 ret = run_delayed_extent_op(trans, root,
2302 ref, extent_op);
2303 kfree(extent_op);
2304
2305 if (ret) {
2306 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2307 spin_lock(&delayed_refs->lock);
2308 return ret;
2309 }
2310
2311 goto next;
2312 }
2313
2314 list_del_init(&locked_ref->cluster);
2315 locked_ref = NULL;
2316 }
2317
2318 ref->in_tree = 0;
2319 rb_erase(&ref->rb_node, &delayed_refs->root);
2320 delayed_refs->num_entries--;
2321 /*
2322 * we modified num_entries, but as we're currently running
2323 * delayed refs, skip
2324 * wake_up(&delayed_refs->seq_wait);
2325 * here.
2326 */
2327 spin_unlock(&delayed_refs->lock);
2328
2329 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2330 must_insert_reserved);
2331
2332 btrfs_put_delayed_ref(ref);
2333 kfree(extent_op);
2334 count++;
2335
2336 if (ret) {
2337 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2338 spin_lock(&delayed_refs->lock);
2339 return ret;
2340 }
2341
2342 next:
2343 do_chunk_alloc(trans, fs_info->extent_root,
2344 2 * 1024 * 1024,
2345 btrfs_get_alloc_profile(root, 0),
2346 CHUNK_ALLOC_NO_FORCE);
2347 cond_resched();
2348 spin_lock(&delayed_refs->lock);
2349 }
2350 return count;
2351 }
2352
2353 static void wait_for_more_refs(struct btrfs_fs_info *fs_info,
2354 struct btrfs_delayed_ref_root *delayed_refs,
2355 unsigned long num_refs,
2356 struct list_head *first_seq)
2357 {
2358 spin_unlock(&delayed_refs->lock);
2359 pr_debug("waiting for more refs (num %ld, first %p)\n",
2360 num_refs, first_seq);
2361 wait_event(fs_info->tree_mod_seq_wait,
2362 num_refs != delayed_refs->num_entries ||
2363 fs_info->tree_mod_seq_list.next != first_seq);
2364 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2365 delayed_refs->num_entries, fs_info->tree_mod_seq_list.next);
2366 spin_lock(&delayed_refs->lock);
2367 }
2368
2369 #ifdef SCRAMBLE_DELAYED_REFS
2370 /*
2371 * Normally delayed refs get processed in ascending bytenr order. This
2372 * correlates in most cases to the order added. To expose dependencies on this
2373 * order, we start to process the tree in the middle instead of the beginning
2374 */
2375 static u64 find_middle(struct rb_root *root)
2376 {
2377 struct rb_node *n = root->rb_node;
2378 struct btrfs_delayed_ref_node *entry;
2379 int alt = 1;
2380 u64 middle;
2381 u64 first = 0, last = 0;
2382
2383 n = rb_first(root);
2384 if (n) {
2385 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2386 first = entry->bytenr;
2387 }
2388 n = rb_last(root);
2389 if (n) {
2390 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2391 last = entry->bytenr;
2392 }
2393 n = root->rb_node;
2394
2395 while (n) {
2396 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2397 WARN_ON(!entry->in_tree);
2398
2399 middle = entry->bytenr;
2400
2401 if (alt)
2402 n = n->rb_left;
2403 else
2404 n = n->rb_right;
2405
2406 alt = 1 - alt;
2407 }
2408 return middle;
2409 }
2410 #endif
2411
2412 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2413 struct btrfs_fs_info *fs_info)
2414 {
2415 struct qgroup_update *qgroup_update;
2416 int ret = 0;
2417
2418 if (list_empty(&trans->qgroup_ref_list) !=
2419 !trans->delayed_ref_elem.seq) {
2420 /* list without seq or seq without list */
2421 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2422 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2423 trans->delayed_ref_elem.seq);
2424 BUG();
2425 }
2426
2427 if (!trans->delayed_ref_elem.seq)
2428 return 0;
2429
2430 while (!list_empty(&trans->qgroup_ref_list)) {
2431 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2432 struct qgroup_update, list);
2433 list_del(&qgroup_update->list);
2434 if (!ret)
2435 ret = btrfs_qgroup_account_ref(
2436 trans, fs_info, qgroup_update->node,
2437 qgroup_update->extent_op);
2438 kfree(qgroup_update);
2439 }
2440
2441 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2442
2443 return ret;
2444 }
2445
2446 /*
2447 * this starts processing the delayed reference count updates and
2448 * extent insertions we have queued up so far. count can be
2449 * 0, which means to process everything in the tree at the start
2450 * of the run (but not newly added entries), or it can be some target
2451 * number you'd like to process.
2452 *
2453 * Returns 0 on success or if called with an aborted transaction
2454 * Returns <0 on error and aborts the transaction
2455 */
2456 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2457 struct btrfs_root *root, unsigned long count)
2458 {
2459 struct rb_node *node;
2460 struct btrfs_delayed_ref_root *delayed_refs;
2461 struct btrfs_delayed_ref_node *ref;
2462 struct list_head cluster;
2463 struct list_head *first_seq = NULL;
2464 int ret;
2465 u64 delayed_start;
2466 int run_all = count == (unsigned long)-1;
2467 int run_most = 0;
2468 unsigned long num_refs = 0;
2469 int consider_waiting;
2470
2471 /* We'll clean this up in btrfs_cleanup_transaction */
2472 if (trans->aborted)
2473 return 0;
2474
2475 if (root == root->fs_info->extent_root)
2476 root = root->fs_info->tree_root;
2477
2478 do_chunk_alloc(trans, root->fs_info->extent_root,
2479 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2480 CHUNK_ALLOC_NO_FORCE);
2481
2482 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2483
2484 delayed_refs = &trans->transaction->delayed_refs;
2485 INIT_LIST_HEAD(&cluster);
2486 again:
2487 consider_waiting = 0;
2488 spin_lock(&delayed_refs->lock);
2489
2490 #ifdef SCRAMBLE_DELAYED_REFS
2491 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2492 #endif
2493
2494 if (count == 0) {
2495 count = delayed_refs->num_entries * 2;
2496 run_most = 1;
2497 }
2498 while (1) {
2499 if (!(run_all || run_most) &&
2500 delayed_refs->num_heads_ready < 64)
2501 break;
2502
2503 /*
2504 * go find something we can process in the rbtree. We start at
2505 * the beginning of the tree, and then build a cluster
2506 * of refs to process starting at the first one we are able to
2507 * lock
2508 */
2509 delayed_start = delayed_refs->run_delayed_start;
2510 ret = btrfs_find_ref_cluster(trans, &cluster,
2511 delayed_refs->run_delayed_start);
2512 if (ret)
2513 break;
2514
2515 if (delayed_start >= delayed_refs->run_delayed_start) {
2516 if (consider_waiting == 0) {
2517 /*
2518 * btrfs_find_ref_cluster looped. let's do one
2519 * more cycle. if we don't run any delayed ref
2520 * during that cycle (because we can't because
2521 * all of them are blocked) and if the number of
2522 * refs doesn't change, we avoid busy waiting.
2523 */
2524 consider_waiting = 1;
2525 num_refs = delayed_refs->num_entries;
2526 first_seq = root->fs_info->tree_mod_seq_list.next;
2527 } else {
2528 wait_for_more_refs(root->fs_info, delayed_refs,
2529 num_refs, first_seq);
2530 /*
2531 * after waiting, things have changed. we
2532 * dropped the lock and someone else might have
2533 * run some refs, built new clusters and so on.
2534 * therefore, we restart staleness detection.
2535 */
2536 consider_waiting = 0;
2537 }
2538 }
2539
2540 ret = run_clustered_refs(trans, root, &cluster);
2541 if (ret < 0) {
2542 spin_unlock(&delayed_refs->lock);
2543 btrfs_abort_transaction(trans, root, ret);
2544 return ret;
2545 }
2546
2547 count -= min_t(unsigned long, ret, count);
2548
2549 if (count == 0)
2550 break;
2551
2552 if (ret || delayed_refs->run_delayed_start == 0) {
2553 /* refs were run, let's reset staleness detection */
2554 consider_waiting = 0;
2555 }
2556 }
2557
2558 if (run_all) {
2559 node = rb_first(&delayed_refs->root);
2560 if (!node)
2561 goto out;
2562 count = (unsigned long)-1;
2563
2564 while (node) {
2565 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2566 rb_node);
2567 if (btrfs_delayed_ref_is_head(ref)) {
2568 struct btrfs_delayed_ref_head *head;
2569
2570 head = btrfs_delayed_node_to_head(ref);
2571 atomic_inc(&ref->refs);
2572
2573 spin_unlock(&delayed_refs->lock);
2574 /*
2575 * Mutex was contended, block until it's
2576 * released and try again
2577 */
2578 mutex_lock(&head->mutex);
2579 mutex_unlock(&head->mutex);
2580
2581 btrfs_put_delayed_ref(ref);
2582 cond_resched();
2583 goto again;
2584 }
2585 node = rb_next(node);
2586 }
2587 spin_unlock(&delayed_refs->lock);
2588 schedule_timeout(1);
2589 goto again;
2590 }
2591 out:
2592 spin_unlock(&delayed_refs->lock);
2593 assert_qgroups_uptodate(trans);
2594 return 0;
2595 }
2596
2597 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2598 struct btrfs_root *root,
2599 u64 bytenr, u64 num_bytes, u64 flags,
2600 int is_data)
2601 {
2602 struct btrfs_delayed_extent_op *extent_op;
2603 int ret;
2604
2605 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2606 if (!extent_op)
2607 return -ENOMEM;
2608
2609 extent_op->flags_to_set = flags;
2610 extent_op->update_flags = 1;
2611 extent_op->update_key = 0;
2612 extent_op->is_data = is_data ? 1 : 0;
2613
2614 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2615 num_bytes, extent_op);
2616 if (ret)
2617 kfree(extent_op);
2618 return ret;
2619 }
2620
2621 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2622 struct btrfs_root *root,
2623 struct btrfs_path *path,
2624 u64 objectid, u64 offset, u64 bytenr)
2625 {
2626 struct btrfs_delayed_ref_head *head;
2627 struct btrfs_delayed_ref_node *ref;
2628 struct btrfs_delayed_data_ref *data_ref;
2629 struct btrfs_delayed_ref_root *delayed_refs;
2630 struct rb_node *node;
2631 int ret = 0;
2632
2633 ret = -ENOENT;
2634 delayed_refs = &trans->transaction->delayed_refs;
2635 spin_lock(&delayed_refs->lock);
2636 head = btrfs_find_delayed_ref_head(trans, bytenr);
2637 if (!head)
2638 goto out;
2639
2640 if (!mutex_trylock(&head->mutex)) {
2641 atomic_inc(&head->node.refs);
2642 spin_unlock(&delayed_refs->lock);
2643
2644 btrfs_release_path(path);
2645
2646 /*
2647 * Mutex was contended, block until it's released and let
2648 * caller try again
2649 */
2650 mutex_lock(&head->mutex);
2651 mutex_unlock(&head->mutex);
2652 btrfs_put_delayed_ref(&head->node);
2653 return -EAGAIN;
2654 }
2655
2656 node = rb_prev(&head->node.rb_node);
2657 if (!node)
2658 goto out_unlock;
2659
2660 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2661
2662 if (ref->bytenr != bytenr)
2663 goto out_unlock;
2664
2665 ret = 1;
2666 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2667 goto out_unlock;
2668
2669 data_ref = btrfs_delayed_node_to_data_ref(ref);
2670
2671 node = rb_prev(node);
2672 if (node) {
2673 int seq = ref->seq;
2674
2675 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2676 if (ref->bytenr == bytenr && ref->seq == seq)
2677 goto out_unlock;
2678 }
2679
2680 if (data_ref->root != root->root_key.objectid ||
2681 data_ref->objectid != objectid || data_ref->offset != offset)
2682 goto out_unlock;
2683
2684 ret = 0;
2685 out_unlock:
2686 mutex_unlock(&head->mutex);
2687 out:
2688 spin_unlock(&delayed_refs->lock);
2689 return ret;
2690 }
2691
2692 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2693 struct btrfs_root *root,
2694 struct btrfs_path *path,
2695 u64 objectid, u64 offset, u64 bytenr)
2696 {
2697 struct btrfs_root *extent_root = root->fs_info->extent_root;
2698 struct extent_buffer *leaf;
2699 struct btrfs_extent_data_ref *ref;
2700 struct btrfs_extent_inline_ref *iref;
2701 struct btrfs_extent_item *ei;
2702 struct btrfs_key key;
2703 u32 item_size;
2704 int ret;
2705
2706 key.objectid = bytenr;
2707 key.offset = (u64)-1;
2708 key.type = BTRFS_EXTENT_ITEM_KEY;
2709
2710 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2711 if (ret < 0)
2712 goto out;
2713 BUG_ON(ret == 0); /* Corruption */
2714
2715 ret = -ENOENT;
2716 if (path->slots[0] == 0)
2717 goto out;
2718
2719 path->slots[0]--;
2720 leaf = path->nodes[0];
2721 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2722
2723 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2724 goto out;
2725
2726 ret = 1;
2727 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2728 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2729 if (item_size < sizeof(*ei)) {
2730 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2731 goto out;
2732 }
2733 #endif
2734 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2735
2736 if (item_size != sizeof(*ei) +
2737 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2738 goto out;
2739
2740 if (btrfs_extent_generation(leaf, ei) <=
2741 btrfs_root_last_snapshot(&root->root_item))
2742 goto out;
2743
2744 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2745 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2746 BTRFS_EXTENT_DATA_REF_KEY)
2747 goto out;
2748
2749 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2750 if (btrfs_extent_refs(leaf, ei) !=
2751 btrfs_extent_data_ref_count(leaf, ref) ||
2752 btrfs_extent_data_ref_root(leaf, ref) !=
2753 root->root_key.objectid ||
2754 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2755 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2756 goto out;
2757
2758 ret = 0;
2759 out:
2760 return ret;
2761 }
2762
2763 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2764 struct btrfs_root *root,
2765 u64 objectid, u64 offset, u64 bytenr)
2766 {
2767 struct btrfs_path *path;
2768 int ret;
2769 int ret2;
2770
2771 path = btrfs_alloc_path();
2772 if (!path)
2773 return -ENOENT;
2774
2775 do {
2776 ret = check_committed_ref(trans, root, path, objectid,
2777 offset, bytenr);
2778 if (ret && ret != -ENOENT)
2779 goto out;
2780
2781 ret2 = check_delayed_ref(trans, root, path, objectid,
2782 offset, bytenr);
2783 } while (ret2 == -EAGAIN);
2784
2785 if (ret2 && ret2 != -ENOENT) {
2786 ret = ret2;
2787 goto out;
2788 }
2789
2790 if (ret != -ENOENT || ret2 != -ENOENT)
2791 ret = 0;
2792 out:
2793 btrfs_free_path(path);
2794 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2795 WARN_ON(ret > 0);
2796 return ret;
2797 }
2798
2799 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2800 struct btrfs_root *root,
2801 struct extent_buffer *buf,
2802 int full_backref, int inc, int for_cow)
2803 {
2804 u64 bytenr;
2805 u64 num_bytes;
2806 u64 parent;
2807 u64 ref_root;
2808 u32 nritems;
2809 struct btrfs_key key;
2810 struct btrfs_file_extent_item *fi;
2811 int i;
2812 int level;
2813 int ret = 0;
2814 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2815 u64, u64, u64, u64, u64, u64, int);
2816
2817 ref_root = btrfs_header_owner(buf);
2818 nritems = btrfs_header_nritems(buf);
2819 level = btrfs_header_level(buf);
2820
2821 if (!root->ref_cows && level == 0)
2822 return 0;
2823
2824 if (inc)
2825 process_func = btrfs_inc_extent_ref;
2826 else
2827 process_func = btrfs_free_extent;
2828
2829 if (full_backref)
2830 parent = buf->start;
2831 else
2832 parent = 0;
2833
2834 for (i = 0; i < nritems; i++) {
2835 if (level == 0) {
2836 btrfs_item_key_to_cpu(buf, &key, i);
2837 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2838 continue;
2839 fi = btrfs_item_ptr(buf, i,
2840 struct btrfs_file_extent_item);
2841 if (btrfs_file_extent_type(buf, fi) ==
2842 BTRFS_FILE_EXTENT_INLINE)
2843 continue;
2844 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2845 if (bytenr == 0)
2846 continue;
2847
2848 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2849 key.offset -= btrfs_file_extent_offset(buf, fi);
2850 ret = process_func(trans, root, bytenr, num_bytes,
2851 parent, ref_root, key.objectid,
2852 key.offset, for_cow);
2853 if (ret)
2854 goto fail;
2855 } else {
2856 bytenr = btrfs_node_blockptr(buf, i);
2857 num_bytes = btrfs_level_size(root, level - 1);
2858 ret = process_func(trans, root, bytenr, num_bytes,
2859 parent, ref_root, level - 1, 0,
2860 for_cow);
2861 if (ret)
2862 goto fail;
2863 }
2864 }
2865 return 0;
2866 fail:
2867 return ret;
2868 }
2869
2870 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2871 struct extent_buffer *buf, int full_backref, int for_cow)
2872 {
2873 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2874 }
2875
2876 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2877 struct extent_buffer *buf, int full_backref, int for_cow)
2878 {
2879 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2880 }
2881
2882 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2883 struct btrfs_root *root,
2884 struct btrfs_path *path,
2885 struct btrfs_block_group_cache *cache)
2886 {
2887 int ret;
2888 struct btrfs_root *extent_root = root->fs_info->extent_root;
2889 unsigned long bi;
2890 struct extent_buffer *leaf;
2891
2892 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2893 if (ret < 0)
2894 goto fail;
2895 BUG_ON(ret); /* Corruption */
2896
2897 leaf = path->nodes[0];
2898 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2899 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2900 btrfs_mark_buffer_dirty(leaf);
2901 btrfs_release_path(path);
2902 fail:
2903 if (ret) {
2904 btrfs_abort_transaction(trans, root, ret);
2905 return ret;
2906 }
2907 return 0;
2908
2909 }
2910
2911 static struct btrfs_block_group_cache *
2912 next_block_group(struct btrfs_root *root,
2913 struct btrfs_block_group_cache *cache)
2914 {
2915 struct rb_node *node;
2916 spin_lock(&root->fs_info->block_group_cache_lock);
2917 node = rb_next(&cache->cache_node);
2918 btrfs_put_block_group(cache);
2919 if (node) {
2920 cache = rb_entry(node, struct btrfs_block_group_cache,
2921 cache_node);
2922 btrfs_get_block_group(cache);
2923 } else
2924 cache = NULL;
2925 spin_unlock(&root->fs_info->block_group_cache_lock);
2926 return cache;
2927 }
2928
2929 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2930 struct btrfs_trans_handle *trans,
2931 struct btrfs_path *path)
2932 {
2933 struct btrfs_root *root = block_group->fs_info->tree_root;
2934 struct inode *inode = NULL;
2935 u64 alloc_hint = 0;
2936 int dcs = BTRFS_DC_ERROR;
2937 int num_pages = 0;
2938 int retries = 0;
2939 int ret = 0;
2940
2941 /*
2942 * If this block group is smaller than 100 megs don't bother caching the
2943 * block group.
2944 */
2945 if (block_group->key.offset < (100 * 1024 * 1024)) {
2946 spin_lock(&block_group->lock);
2947 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2948 spin_unlock(&block_group->lock);
2949 return 0;
2950 }
2951
2952 again:
2953 inode = lookup_free_space_inode(root, block_group, path);
2954 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2955 ret = PTR_ERR(inode);
2956 btrfs_release_path(path);
2957 goto out;
2958 }
2959
2960 if (IS_ERR(inode)) {
2961 BUG_ON(retries);
2962 retries++;
2963
2964 if (block_group->ro)
2965 goto out_free;
2966
2967 ret = create_free_space_inode(root, trans, block_group, path);
2968 if (ret)
2969 goto out_free;
2970 goto again;
2971 }
2972
2973 /* We've already setup this transaction, go ahead and exit */
2974 if (block_group->cache_generation == trans->transid &&
2975 i_size_read(inode)) {
2976 dcs = BTRFS_DC_SETUP;
2977 goto out_put;
2978 }
2979
2980 /*
2981 * We want to set the generation to 0, that way if anything goes wrong
2982 * from here on out we know not to trust this cache when we load up next
2983 * time.
2984 */
2985 BTRFS_I(inode)->generation = 0;
2986 ret = btrfs_update_inode(trans, root, inode);
2987 WARN_ON(ret);
2988
2989 if (i_size_read(inode) > 0) {
2990 ret = btrfs_truncate_free_space_cache(root, trans, path,
2991 inode);
2992 if (ret)
2993 goto out_put;
2994 }
2995
2996 spin_lock(&block_group->lock);
2997 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2998 !btrfs_test_opt(root, SPACE_CACHE)) {
2999 /*
3000 * don't bother trying to write stuff out _if_
3001 * a) we're not cached,
3002 * b) we're with nospace_cache mount option.
3003 */
3004 dcs = BTRFS_DC_WRITTEN;
3005 spin_unlock(&block_group->lock);
3006 goto out_put;
3007 }
3008 spin_unlock(&block_group->lock);
3009
3010 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
3011 if (!num_pages)
3012 num_pages = 1;
3013
3014 /*
3015 * Just to make absolutely sure we have enough space, we're going to
3016 * preallocate 12 pages worth of space for each block group. In
3017 * practice we ought to use at most 8, but we need extra space so we can
3018 * add our header and have a terminator between the extents and the
3019 * bitmaps.
3020 */
3021 num_pages *= 16;
3022 num_pages *= PAGE_CACHE_SIZE;
3023
3024 ret = btrfs_check_data_free_space(inode, num_pages);
3025 if (ret)
3026 goto out_put;
3027
3028 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3029 num_pages, num_pages,
3030 &alloc_hint);
3031 if (!ret)
3032 dcs = BTRFS_DC_SETUP;
3033 btrfs_free_reserved_data_space(inode, num_pages);
3034
3035 out_put:
3036 iput(inode);
3037 out_free:
3038 btrfs_release_path(path);
3039 out:
3040 spin_lock(&block_group->lock);
3041 if (!ret && dcs == BTRFS_DC_SETUP)
3042 block_group->cache_generation = trans->transid;
3043 block_group->disk_cache_state = dcs;
3044 spin_unlock(&block_group->lock);
3045
3046 return ret;
3047 }
3048
3049 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3050 struct btrfs_root *root)
3051 {
3052 struct btrfs_block_group_cache *cache;
3053 int err = 0;
3054 struct btrfs_path *path;
3055 u64 last = 0;
3056
3057 path = btrfs_alloc_path();
3058 if (!path)
3059 return -ENOMEM;
3060
3061 again:
3062 while (1) {
3063 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3064 while (cache) {
3065 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3066 break;
3067 cache = next_block_group(root, cache);
3068 }
3069 if (!cache) {
3070 if (last == 0)
3071 break;
3072 last = 0;
3073 continue;
3074 }
3075 err = cache_save_setup(cache, trans, path);
3076 last = cache->key.objectid + cache->key.offset;
3077 btrfs_put_block_group(cache);
3078 }
3079
3080 while (1) {
3081 if (last == 0) {
3082 err = btrfs_run_delayed_refs(trans, root,
3083 (unsigned long)-1);
3084 if (err) /* File system offline */
3085 goto out;
3086 }
3087
3088 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3089 while (cache) {
3090 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3091 btrfs_put_block_group(cache);
3092 goto again;
3093 }
3094
3095 if (cache->dirty)
3096 break;
3097 cache = next_block_group(root, cache);
3098 }
3099 if (!cache) {
3100 if (last == 0)
3101 break;
3102 last = 0;
3103 continue;
3104 }
3105
3106 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3107 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3108 cache->dirty = 0;
3109 last = cache->key.objectid + cache->key.offset;
3110
3111 err = write_one_cache_group(trans, root, path, cache);
3112 if (err) /* File system offline */
3113 goto out;
3114
3115 btrfs_put_block_group(cache);
3116 }
3117
3118 while (1) {
3119 /*
3120 * I don't think this is needed since we're just marking our
3121 * preallocated extent as written, but just in case it can't
3122 * hurt.
3123 */
3124 if (last == 0) {
3125 err = btrfs_run_delayed_refs(trans, root,
3126 (unsigned long)-1);
3127 if (err) /* File system offline */
3128 goto out;
3129 }
3130
3131 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3132 while (cache) {
3133 /*
3134 * Really this shouldn't happen, but it could if we
3135 * couldn't write the entire preallocated extent and
3136 * splitting the extent resulted in a new block.
3137 */
3138 if (cache->dirty) {
3139 btrfs_put_block_group(cache);
3140 goto again;
3141 }
3142 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3143 break;
3144 cache = next_block_group(root, cache);
3145 }
3146 if (!cache) {
3147 if (last == 0)
3148 break;
3149 last = 0;
3150 continue;
3151 }
3152
3153 err = btrfs_write_out_cache(root, trans, cache, path);
3154
3155 /*
3156 * If we didn't have an error then the cache state is still
3157 * NEED_WRITE, so we can set it to WRITTEN.
3158 */
3159 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3160 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3161 last = cache->key.objectid + cache->key.offset;
3162 btrfs_put_block_group(cache);
3163 }
3164 out:
3165
3166 btrfs_free_path(path);
3167 return err;
3168 }
3169
3170 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3171 {
3172 struct btrfs_block_group_cache *block_group;
3173 int readonly = 0;
3174
3175 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3176 if (!block_group || block_group->ro)
3177 readonly = 1;
3178 if (block_group)
3179 btrfs_put_block_group(block_group);
3180 return readonly;
3181 }
3182
3183 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3184 u64 total_bytes, u64 bytes_used,
3185 struct btrfs_space_info **space_info)
3186 {
3187 struct btrfs_space_info *found;
3188 int i;
3189 int factor;
3190
3191 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3192 BTRFS_BLOCK_GROUP_RAID10))
3193 factor = 2;
3194 else
3195 factor = 1;
3196
3197 found = __find_space_info(info, flags);
3198 if (found) {
3199 spin_lock(&found->lock);
3200 found->total_bytes += total_bytes;
3201 found->disk_total += total_bytes * factor;
3202 found->bytes_used += bytes_used;
3203 found->disk_used += bytes_used * factor;
3204 found->full = 0;
3205 spin_unlock(&found->lock);
3206 *space_info = found;
3207 return 0;
3208 }
3209 found = kzalloc(sizeof(*found), GFP_NOFS);
3210 if (!found)
3211 return -ENOMEM;
3212
3213 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3214 INIT_LIST_HEAD(&found->block_groups[i]);
3215 init_rwsem(&found->groups_sem);
3216 spin_lock_init(&found->lock);
3217 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3218 found->total_bytes = total_bytes;
3219 found->disk_total = total_bytes * factor;
3220 found->bytes_used = bytes_used;
3221 found->disk_used = bytes_used * factor;
3222 found->bytes_pinned = 0;
3223 found->bytes_reserved = 0;
3224 found->bytes_readonly = 0;
3225 found->bytes_may_use = 0;
3226 found->full = 0;
3227 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3228 found->chunk_alloc = 0;
3229 found->flush = 0;
3230 init_waitqueue_head(&found->wait);
3231 *space_info = found;
3232 list_add_rcu(&found->list, &info->space_info);
3233 if (flags & BTRFS_BLOCK_GROUP_DATA)
3234 info->data_sinfo = found;
3235 return 0;
3236 }
3237
3238 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3239 {
3240 u64 extra_flags = chunk_to_extended(flags) &
3241 BTRFS_EXTENDED_PROFILE_MASK;
3242
3243 if (flags & BTRFS_BLOCK_GROUP_DATA)
3244 fs_info->avail_data_alloc_bits |= extra_flags;
3245 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3246 fs_info->avail_metadata_alloc_bits |= extra_flags;
3247 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3248 fs_info->avail_system_alloc_bits |= extra_flags;
3249 }
3250
3251 /*
3252 * returns target flags in extended format or 0 if restripe for this
3253 * chunk_type is not in progress
3254 *
3255 * should be called with either volume_mutex or balance_lock held
3256 */
3257 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3258 {
3259 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3260 u64 target = 0;
3261
3262 if (!bctl)
3263 return 0;
3264
3265 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3266 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3267 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3268 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3269 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3270 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3271 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3272 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3273 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3274 }
3275
3276 return target;
3277 }
3278
3279 /*
3280 * @flags: available profiles in extended format (see ctree.h)
3281 *
3282 * Returns reduced profile in chunk format. If profile changing is in
3283 * progress (either running or paused) picks the target profile (if it's
3284 * already available), otherwise falls back to plain reducing.
3285 */
3286 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3287 {
3288 /*
3289 * we add in the count of missing devices because we want
3290 * to make sure that any RAID levels on a degraded FS
3291 * continue to be honored.
3292 */
3293 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3294 root->fs_info->fs_devices->missing_devices;
3295 u64 target;
3296
3297 /*
3298 * see if restripe for this chunk_type is in progress, if so
3299 * try to reduce to the target profile
3300 */
3301 spin_lock(&root->fs_info->balance_lock);
3302 target = get_restripe_target(root->fs_info, flags);
3303 if (target) {
3304 /* pick target profile only if it's already available */
3305 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3306 spin_unlock(&root->fs_info->balance_lock);
3307 return extended_to_chunk(target);
3308 }
3309 }
3310 spin_unlock(&root->fs_info->balance_lock);
3311
3312 if (num_devices == 1)
3313 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3314 if (num_devices < 4)
3315 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3316
3317 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3318 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3319 BTRFS_BLOCK_GROUP_RAID10))) {
3320 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3321 }
3322
3323 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3324 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3325 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3326 }
3327
3328 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3329 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3330 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3331 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3332 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3333 }
3334
3335 return extended_to_chunk(flags);
3336 }
3337
3338 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3339 {
3340 if (flags & BTRFS_BLOCK_GROUP_DATA)
3341 flags |= root->fs_info->avail_data_alloc_bits;
3342 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3343 flags |= root->fs_info->avail_system_alloc_bits;
3344 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3345 flags |= root->fs_info->avail_metadata_alloc_bits;
3346
3347 return btrfs_reduce_alloc_profile(root, flags);
3348 }
3349
3350 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3351 {
3352 u64 flags;
3353
3354 if (data)
3355 flags = BTRFS_BLOCK_GROUP_DATA;
3356 else if (root == root->fs_info->chunk_root)
3357 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3358 else
3359 flags = BTRFS_BLOCK_GROUP_METADATA;
3360
3361 return get_alloc_profile(root, flags);
3362 }
3363
3364 /*
3365 * This will check the space that the inode allocates from to make sure we have
3366 * enough space for bytes.
3367 */
3368 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3369 {
3370 struct btrfs_space_info *data_sinfo;
3371 struct btrfs_root *root = BTRFS_I(inode)->root;
3372 struct btrfs_fs_info *fs_info = root->fs_info;
3373 u64 used;
3374 int ret = 0, committed = 0, alloc_chunk = 1;
3375
3376 /* make sure bytes are sectorsize aligned */
3377 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3378
3379 if (root == root->fs_info->tree_root ||
3380 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3381 alloc_chunk = 0;
3382 committed = 1;
3383 }
3384
3385 data_sinfo = fs_info->data_sinfo;
3386 if (!data_sinfo)
3387 goto alloc;
3388
3389 again:
3390 /* make sure we have enough space to handle the data first */
3391 spin_lock(&data_sinfo->lock);
3392 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3393 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3394 data_sinfo->bytes_may_use;
3395
3396 if (used + bytes > data_sinfo->total_bytes) {
3397 struct btrfs_trans_handle *trans;
3398
3399 /*
3400 * if we don't have enough free bytes in this space then we need
3401 * to alloc a new chunk.
3402 */
3403 if (!data_sinfo->full && alloc_chunk) {
3404 u64 alloc_target;
3405
3406 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3407 spin_unlock(&data_sinfo->lock);
3408 alloc:
3409 alloc_target = btrfs_get_alloc_profile(root, 1);
3410 trans = btrfs_join_transaction(root);
3411 if (IS_ERR(trans))
3412 return PTR_ERR(trans);
3413
3414 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3415 bytes + 2 * 1024 * 1024,
3416 alloc_target,
3417 CHUNK_ALLOC_NO_FORCE);
3418 btrfs_end_transaction(trans, root);
3419 if (ret < 0) {
3420 if (ret != -ENOSPC)
3421 return ret;
3422 else
3423 goto commit_trans;
3424 }
3425
3426 if (!data_sinfo)
3427 data_sinfo = fs_info->data_sinfo;
3428
3429 goto again;
3430 }
3431
3432 /*
3433 * If we have less pinned bytes than we want to allocate then
3434 * don't bother committing the transaction, it won't help us.
3435 */
3436 if (data_sinfo->bytes_pinned < bytes)
3437 committed = 1;
3438 spin_unlock(&data_sinfo->lock);
3439
3440 /* commit the current transaction and try again */
3441 commit_trans:
3442 if (!committed &&
3443 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3444 committed = 1;
3445 trans = btrfs_join_transaction(root);
3446 if (IS_ERR(trans))
3447 return PTR_ERR(trans);
3448 ret = btrfs_commit_transaction(trans, root);
3449 if (ret)
3450 return ret;
3451 goto again;
3452 }
3453
3454 return -ENOSPC;
3455 }
3456 data_sinfo->bytes_may_use += bytes;
3457 trace_btrfs_space_reservation(root->fs_info, "space_info",
3458 data_sinfo->flags, bytes, 1);
3459 spin_unlock(&data_sinfo->lock);
3460
3461 return 0;
3462 }
3463
3464 /*
3465 * Called if we need to clear a data reservation for this inode.
3466 */
3467 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3468 {
3469 struct btrfs_root *root = BTRFS_I(inode)->root;
3470 struct btrfs_space_info *data_sinfo;
3471
3472 /* make sure bytes are sectorsize aligned */
3473 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3474
3475 data_sinfo = root->fs_info->data_sinfo;
3476 spin_lock(&data_sinfo->lock);
3477 data_sinfo->bytes_may_use -= bytes;
3478 trace_btrfs_space_reservation(root->fs_info, "space_info",
3479 data_sinfo->flags, bytes, 0);
3480 spin_unlock(&data_sinfo->lock);
3481 }
3482
3483 static void force_metadata_allocation(struct btrfs_fs_info *info)
3484 {
3485 struct list_head *head = &info->space_info;
3486 struct btrfs_space_info *found;
3487
3488 rcu_read_lock();
3489 list_for_each_entry_rcu(found, head, list) {
3490 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3491 found->force_alloc = CHUNK_ALLOC_FORCE;
3492 }
3493 rcu_read_unlock();
3494 }
3495
3496 static int should_alloc_chunk(struct btrfs_root *root,
3497 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3498 int force)
3499 {
3500 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3501 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3502 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3503 u64 thresh;
3504
3505 if (force == CHUNK_ALLOC_FORCE)
3506 return 1;
3507
3508 /*
3509 * We need to take into account the global rsv because for all intents
3510 * and purposes it's used space. Don't worry about locking the
3511 * global_rsv, it doesn't change except when the transaction commits.
3512 */
3513 num_allocated += global_rsv->size;
3514
3515 /*
3516 * in limited mode, we want to have some free space up to
3517 * about 1% of the FS size.
3518 */
3519 if (force == CHUNK_ALLOC_LIMITED) {
3520 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3521 thresh = max_t(u64, 64 * 1024 * 1024,
3522 div_factor_fine(thresh, 1));
3523
3524 if (num_bytes - num_allocated < thresh)
3525 return 1;
3526 }
3527 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3528
3529 /* 256MB or 2% of the FS */
3530 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3531 /* system chunks need a much small threshold */
3532 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3533 thresh = 32 * 1024 * 1024;
3534
3535 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3536 return 0;
3537 return 1;
3538 }
3539
3540 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3541 {
3542 u64 num_dev;
3543
3544 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3545 type & BTRFS_BLOCK_GROUP_RAID0)
3546 num_dev = root->fs_info->fs_devices->rw_devices;
3547 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3548 num_dev = 2;
3549 else
3550 num_dev = 1; /* DUP or single */
3551
3552 /* metadata for updaing devices and chunk tree */
3553 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3554 }
3555
3556 static void check_system_chunk(struct btrfs_trans_handle *trans,
3557 struct btrfs_root *root, u64 type)
3558 {
3559 struct btrfs_space_info *info;
3560 u64 left;
3561 u64 thresh;
3562
3563 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3564 spin_lock(&info->lock);
3565 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3566 info->bytes_reserved - info->bytes_readonly;
3567 spin_unlock(&info->lock);
3568
3569 thresh = get_system_chunk_thresh(root, type);
3570 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3571 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3572 left, thresh, type);
3573 dump_space_info(info, 0, 0);
3574 }
3575
3576 if (left < thresh) {
3577 u64 flags;
3578
3579 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3580 btrfs_alloc_chunk(trans, root, flags);
3581 }
3582 }
3583
3584 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3585 struct btrfs_root *extent_root, u64 alloc_bytes,
3586 u64 flags, int force)
3587 {
3588 struct btrfs_space_info *space_info;
3589 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3590 int wait_for_alloc = 0;
3591 int ret = 0;
3592
3593 space_info = __find_space_info(extent_root->fs_info, flags);
3594 if (!space_info) {
3595 ret = update_space_info(extent_root->fs_info, flags,
3596 0, 0, &space_info);
3597 BUG_ON(ret); /* -ENOMEM */
3598 }
3599 BUG_ON(!space_info); /* Logic error */
3600
3601 again:
3602 spin_lock(&space_info->lock);
3603 if (force < space_info->force_alloc)
3604 force = space_info->force_alloc;
3605 if (space_info->full) {
3606 spin_unlock(&space_info->lock);
3607 return 0;
3608 }
3609
3610 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3611 spin_unlock(&space_info->lock);
3612 return 0;
3613 } else if (space_info->chunk_alloc) {
3614 wait_for_alloc = 1;
3615 } else {
3616 space_info->chunk_alloc = 1;
3617 }
3618
3619 spin_unlock(&space_info->lock);
3620
3621 mutex_lock(&fs_info->chunk_mutex);
3622
3623 /*
3624 * The chunk_mutex is held throughout the entirety of a chunk
3625 * allocation, so once we've acquired the chunk_mutex we know that the
3626 * other guy is done and we need to recheck and see if we should
3627 * allocate.
3628 */
3629 if (wait_for_alloc) {
3630 mutex_unlock(&fs_info->chunk_mutex);
3631 wait_for_alloc = 0;
3632 goto again;
3633 }
3634
3635 /*
3636 * If we have mixed data/metadata chunks we want to make sure we keep
3637 * allocating mixed chunks instead of individual chunks.
3638 */
3639 if (btrfs_mixed_space_info(space_info))
3640 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3641
3642 /*
3643 * if we're doing a data chunk, go ahead and make sure that
3644 * we keep a reasonable number of metadata chunks allocated in the
3645 * FS as well.
3646 */
3647 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3648 fs_info->data_chunk_allocations++;
3649 if (!(fs_info->data_chunk_allocations %
3650 fs_info->metadata_ratio))
3651 force_metadata_allocation(fs_info);
3652 }
3653
3654 /*
3655 * Check if we have enough space in SYSTEM chunk because we may need
3656 * to update devices.
3657 */
3658 check_system_chunk(trans, extent_root, flags);
3659
3660 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3661 if (ret < 0 && ret != -ENOSPC)
3662 goto out;
3663
3664 spin_lock(&space_info->lock);
3665 if (ret)
3666 space_info->full = 1;
3667 else
3668 ret = 1;
3669
3670 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3671 space_info->chunk_alloc = 0;
3672 spin_unlock(&space_info->lock);
3673 out:
3674 mutex_unlock(&fs_info->chunk_mutex);
3675 return ret;
3676 }
3677
3678 /*
3679 * shrink metadata reservation for delalloc
3680 */
3681 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3682 bool wait_ordered)
3683 {
3684 struct btrfs_block_rsv *block_rsv;
3685 struct btrfs_space_info *space_info;
3686 struct btrfs_trans_handle *trans;
3687 u64 delalloc_bytes;
3688 u64 max_reclaim;
3689 long time_left;
3690 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3691 int loops = 0;
3692
3693 trans = (struct btrfs_trans_handle *)current->journal_info;
3694 block_rsv = &root->fs_info->delalloc_block_rsv;
3695 space_info = block_rsv->space_info;
3696
3697 smp_mb();
3698 delalloc_bytes = root->fs_info->delalloc_bytes;
3699 if (delalloc_bytes == 0) {
3700 if (trans)
3701 return;
3702 btrfs_wait_ordered_extents(root, 0, 0);
3703 return;
3704 }
3705
3706 while (delalloc_bytes && loops < 3) {
3707 max_reclaim = min(delalloc_bytes, to_reclaim);
3708 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3709 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3710 WB_REASON_FS_FREE_SPACE);
3711
3712 spin_lock(&space_info->lock);
3713 if (space_info->bytes_used + space_info->bytes_reserved +
3714 space_info->bytes_pinned + space_info->bytes_readonly +
3715 space_info->bytes_may_use + orig <=
3716 space_info->total_bytes) {
3717 spin_unlock(&space_info->lock);
3718 break;
3719 }
3720 spin_unlock(&space_info->lock);
3721
3722 loops++;
3723 if (wait_ordered && !trans) {
3724 btrfs_wait_ordered_extents(root, 0, 0);
3725 } else {
3726 time_left = schedule_timeout_killable(1);
3727 if (time_left)
3728 break;
3729 }
3730 smp_mb();
3731 delalloc_bytes = root->fs_info->delalloc_bytes;
3732 }
3733 }
3734
3735 /**
3736 * maybe_commit_transaction - possibly commit the transaction if its ok to
3737 * @root - the root we're allocating for
3738 * @bytes - the number of bytes we want to reserve
3739 * @force - force the commit
3740 *
3741 * This will check to make sure that committing the transaction will actually
3742 * get us somewhere and then commit the transaction if it does. Otherwise it
3743 * will return -ENOSPC.
3744 */
3745 static int may_commit_transaction(struct btrfs_root *root,
3746 struct btrfs_space_info *space_info,
3747 u64 bytes, int force)
3748 {
3749 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3750 struct btrfs_trans_handle *trans;
3751
3752 trans = (struct btrfs_trans_handle *)current->journal_info;
3753 if (trans)
3754 return -EAGAIN;
3755
3756 if (force)
3757 goto commit;
3758
3759 /* See if there is enough pinned space to make this reservation */
3760 spin_lock(&space_info->lock);
3761 if (space_info->bytes_pinned >= bytes) {
3762 spin_unlock(&space_info->lock);
3763 goto commit;
3764 }
3765 spin_unlock(&space_info->lock);
3766
3767 /*
3768 * See if there is some space in the delayed insertion reservation for
3769 * this reservation.
3770 */
3771 if (space_info != delayed_rsv->space_info)
3772 return -ENOSPC;
3773
3774 spin_lock(&space_info->lock);
3775 spin_lock(&delayed_rsv->lock);
3776 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3777 spin_unlock(&delayed_rsv->lock);
3778 spin_unlock(&space_info->lock);
3779 return -ENOSPC;
3780 }
3781 spin_unlock(&delayed_rsv->lock);
3782 spin_unlock(&space_info->lock);
3783
3784 commit:
3785 trans = btrfs_join_transaction(root);
3786 if (IS_ERR(trans))
3787 return -ENOSPC;
3788
3789 return btrfs_commit_transaction(trans, root);
3790 }
3791
3792 enum flush_state {
3793 FLUSH_DELALLOC = 1,
3794 FLUSH_DELALLOC_WAIT = 2,
3795 FLUSH_DELAYED_ITEMS_NR = 3,
3796 FLUSH_DELAYED_ITEMS = 4,
3797 COMMIT_TRANS = 5,
3798 };
3799
3800 static int flush_space(struct btrfs_root *root,
3801 struct btrfs_space_info *space_info, u64 num_bytes,
3802 u64 orig_bytes, int state)
3803 {
3804 struct btrfs_trans_handle *trans;
3805 int nr;
3806 int ret = 0;
3807
3808 switch (state) {
3809 case FLUSH_DELALLOC:
3810 case FLUSH_DELALLOC_WAIT:
3811 shrink_delalloc(root, num_bytes, orig_bytes,
3812 state == FLUSH_DELALLOC_WAIT);
3813 break;
3814 case FLUSH_DELAYED_ITEMS_NR:
3815 case FLUSH_DELAYED_ITEMS:
3816 if (state == FLUSH_DELAYED_ITEMS_NR) {
3817 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3818
3819 nr = (int)div64_u64(num_bytes, bytes);
3820 if (!nr)
3821 nr = 1;
3822 nr *= 2;
3823 } else {
3824 nr = -1;
3825 }
3826 trans = btrfs_join_transaction(root);
3827 if (IS_ERR(trans)) {
3828 ret = PTR_ERR(trans);
3829 break;
3830 }
3831 ret = btrfs_run_delayed_items_nr(trans, root, nr);
3832 btrfs_end_transaction(trans, root);
3833 break;
3834 case COMMIT_TRANS:
3835 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3836 break;
3837 default:
3838 ret = -ENOSPC;
3839 break;
3840 }
3841
3842 return ret;
3843 }
3844 /**
3845 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3846 * @root - the root we're allocating for
3847 * @block_rsv - the block_rsv we're allocating for
3848 * @orig_bytes - the number of bytes we want
3849 * @flush - wether or not we can flush to make our reservation
3850 *
3851 * This will reserve orgi_bytes number of bytes from the space info associated
3852 * with the block_rsv. If there is not enough space it will make an attempt to
3853 * flush out space to make room. It will do this by flushing delalloc if
3854 * possible or committing the transaction. If flush is 0 then no attempts to
3855 * regain reservations will be made and this will fail if there is not enough
3856 * space already.
3857 */
3858 static int reserve_metadata_bytes(struct btrfs_root *root,
3859 struct btrfs_block_rsv *block_rsv,
3860 u64 orig_bytes, int flush)
3861 {
3862 struct btrfs_space_info *space_info = block_rsv->space_info;
3863 u64 used;
3864 u64 num_bytes = orig_bytes;
3865 int flush_state = FLUSH_DELALLOC;
3866 int ret = 0;
3867 bool flushing = false;
3868 bool committed = false;
3869
3870 again:
3871 ret = 0;
3872 spin_lock(&space_info->lock);
3873 /*
3874 * We only want to wait if somebody other than us is flushing and we are
3875 * actually alloed to flush.
3876 */
3877 while (flush && !flushing && space_info->flush) {
3878 spin_unlock(&space_info->lock);
3879 /*
3880 * If we have a trans handle we can't wait because the flusher
3881 * may have to commit the transaction, which would mean we would
3882 * deadlock since we are waiting for the flusher to finish, but
3883 * hold the current transaction open.
3884 */
3885 if (current->journal_info)
3886 return -EAGAIN;
3887 ret = wait_event_killable(space_info->wait, !space_info->flush);
3888 /* Must have been killed, return */
3889 if (ret)
3890 return -EINTR;
3891
3892 spin_lock(&space_info->lock);
3893 }
3894
3895 ret = -ENOSPC;
3896 used = space_info->bytes_used + space_info->bytes_reserved +
3897 space_info->bytes_pinned + space_info->bytes_readonly +
3898 space_info->bytes_may_use;
3899
3900 /*
3901 * The idea here is that we've not already over-reserved the block group
3902 * then we can go ahead and save our reservation first and then start
3903 * flushing if we need to. Otherwise if we've already overcommitted
3904 * lets start flushing stuff first and then come back and try to make
3905 * our reservation.
3906 */
3907 if (used <= space_info->total_bytes) {
3908 if (used + orig_bytes <= space_info->total_bytes) {
3909 space_info->bytes_may_use += orig_bytes;
3910 trace_btrfs_space_reservation(root->fs_info,
3911 "space_info", space_info->flags, orig_bytes, 1);
3912 ret = 0;
3913 } else {
3914 /*
3915 * Ok set num_bytes to orig_bytes since we aren't
3916 * overocmmitted, this way we only try and reclaim what
3917 * we need.
3918 */
3919 num_bytes = orig_bytes;
3920 }
3921 } else {
3922 /*
3923 * Ok we're over committed, set num_bytes to the overcommitted
3924 * amount plus the amount of bytes that we need for this
3925 * reservation.
3926 */
3927 num_bytes = used - space_info->total_bytes +
3928 (orig_bytes * 2);
3929 }
3930
3931 if (ret) {
3932 u64 profile = btrfs_get_alloc_profile(root, 0);
3933 u64 avail;
3934
3935 /*
3936 * If we have a lot of space that's pinned, don't bother doing
3937 * the overcommit dance yet and just commit the transaction.
3938 */
3939 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3940 do_div(avail, 10);
3941 if (space_info->bytes_pinned >= avail && flush && !committed) {
3942 space_info->flush = 1;
3943 flushing = true;
3944 spin_unlock(&space_info->lock);
3945 ret = may_commit_transaction(root, space_info,
3946 orig_bytes, 1);
3947 if (ret)
3948 goto out;
3949 committed = true;
3950 goto again;
3951 }
3952
3953 spin_lock(&root->fs_info->free_chunk_lock);
3954 avail = root->fs_info->free_chunk_space;
3955
3956 /*
3957 * If we have dup, raid1 or raid10 then only half of the free
3958 * space is actually useable.
3959 */
3960 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3961 BTRFS_BLOCK_GROUP_RAID1 |
3962 BTRFS_BLOCK_GROUP_RAID10))
3963 avail >>= 1;
3964
3965 /*
3966 * If we aren't flushing don't let us overcommit too much, say
3967 * 1/8th of the space. If we can flush, let it overcommit up to
3968 * 1/2 of the space.
3969 */
3970 if (flush)
3971 avail >>= 3;
3972 else
3973 avail >>= 1;
3974 spin_unlock(&root->fs_info->free_chunk_lock);
3975
3976 if (used + num_bytes < space_info->total_bytes + avail) {
3977 space_info->bytes_may_use += orig_bytes;
3978 trace_btrfs_space_reservation(root->fs_info,
3979 "space_info", space_info->flags, orig_bytes, 1);
3980 ret = 0;
3981 }
3982 }
3983
3984 /*
3985 * Couldn't make our reservation, save our place so while we're trying
3986 * to reclaim space we can actually use it instead of somebody else
3987 * stealing it from us.
3988 */
3989 if (ret && flush) {
3990 flushing = true;
3991 space_info->flush = 1;
3992 }
3993
3994 spin_unlock(&space_info->lock);
3995
3996 if (!ret || !flush)
3997 goto out;
3998
3999 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4000 flush_state);
4001 flush_state++;
4002 if (!ret)
4003 goto again;
4004 else if (flush_state <= COMMIT_TRANS)
4005 goto again;
4006
4007 out:
4008 if (flushing) {
4009 spin_lock(&space_info->lock);
4010 space_info->flush = 0;
4011 wake_up_all(&space_info->wait);
4012 spin_unlock(&space_info->lock);
4013 }
4014 return ret;
4015 }
4016
4017 static struct btrfs_block_rsv *get_block_rsv(
4018 const struct btrfs_trans_handle *trans,
4019 const struct btrfs_root *root)
4020 {
4021 struct btrfs_block_rsv *block_rsv = NULL;
4022
4023 if (root->ref_cows)
4024 block_rsv = trans->block_rsv;
4025
4026 if (root == root->fs_info->csum_root && trans->adding_csums)
4027 block_rsv = trans->block_rsv;
4028
4029 if (!block_rsv)
4030 block_rsv = root->block_rsv;
4031
4032 if (!block_rsv)
4033 block_rsv = &root->fs_info->empty_block_rsv;
4034
4035 return block_rsv;
4036 }
4037
4038 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4039 u64 num_bytes)
4040 {
4041 int ret = -ENOSPC;
4042 spin_lock(&block_rsv->lock);
4043 if (block_rsv->reserved >= num_bytes) {
4044 block_rsv->reserved -= num_bytes;
4045 if (block_rsv->reserved < block_rsv->size)
4046 block_rsv->full = 0;
4047 ret = 0;
4048 }
4049 spin_unlock(&block_rsv->lock);
4050 return ret;
4051 }
4052
4053 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4054 u64 num_bytes, int update_size)
4055 {
4056 spin_lock(&block_rsv->lock);
4057 block_rsv->reserved += num_bytes;
4058 if (update_size)
4059 block_rsv->size += num_bytes;
4060 else if (block_rsv->reserved >= block_rsv->size)
4061 block_rsv->full = 1;
4062 spin_unlock(&block_rsv->lock);
4063 }
4064
4065 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4066 struct btrfs_block_rsv *block_rsv,
4067 struct btrfs_block_rsv *dest, u64 num_bytes)
4068 {
4069 struct btrfs_space_info *space_info = block_rsv->space_info;
4070
4071 spin_lock(&block_rsv->lock);
4072 if (num_bytes == (u64)-1)
4073 num_bytes = block_rsv->size;
4074 block_rsv->size -= num_bytes;
4075 if (block_rsv->reserved >= block_rsv->size) {
4076 num_bytes = block_rsv->reserved - block_rsv->size;
4077 block_rsv->reserved = block_rsv->size;
4078 block_rsv->full = 1;
4079 } else {
4080 num_bytes = 0;
4081 }
4082 spin_unlock(&block_rsv->lock);
4083
4084 if (num_bytes > 0) {
4085 if (dest) {
4086 spin_lock(&dest->lock);
4087 if (!dest->full) {
4088 u64 bytes_to_add;
4089
4090 bytes_to_add = dest->size - dest->reserved;
4091 bytes_to_add = min(num_bytes, bytes_to_add);
4092 dest->reserved += bytes_to_add;
4093 if (dest->reserved >= dest->size)
4094 dest->full = 1;
4095 num_bytes -= bytes_to_add;
4096 }
4097 spin_unlock(&dest->lock);
4098 }
4099 if (num_bytes) {
4100 spin_lock(&space_info->lock);
4101 space_info->bytes_may_use -= num_bytes;
4102 trace_btrfs_space_reservation(fs_info, "space_info",
4103 space_info->flags, num_bytes, 0);
4104 space_info->reservation_progress++;
4105 spin_unlock(&space_info->lock);
4106 }
4107 }
4108 }
4109
4110 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4111 struct btrfs_block_rsv *dst, u64 num_bytes)
4112 {
4113 int ret;
4114
4115 ret = block_rsv_use_bytes(src, num_bytes);
4116 if (ret)
4117 return ret;
4118
4119 block_rsv_add_bytes(dst, num_bytes, 1);
4120 return 0;
4121 }
4122
4123 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
4124 {
4125 memset(rsv, 0, sizeof(*rsv));
4126 spin_lock_init(&rsv->lock);
4127 }
4128
4129 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
4130 {
4131 struct btrfs_block_rsv *block_rsv;
4132 struct btrfs_fs_info *fs_info = root->fs_info;
4133
4134 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4135 if (!block_rsv)
4136 return NULL;
4137
4138 btrfs_init_block_rsv(block_rsv);
4139 block_rsv->space_info = __find_space_info(fs_info,
4140 BTRFS_BLOCK_GROUP_METADATA);
4141 return block_rsv;
4142 }
4143
4144 void btrfs_free_block_rsv(struct btrfs_root *root,
4145 struct btrfs_block_rsv *rsv)
4146 {
4147 btrfs_block_rsv_release(root, rsv, (u64)-1);
4148 kfree(rsv);
4149 }
4150
4151 static inline int __block_rsv_add(struct btrfs_root *root,
4152 struct btrfs_block_rsv *block_rsv,
4153 u64 num_bytes, int flush)
4154 {
4155 int ret;
4156
4157 if (num_bytes == 0)
4158 return 0;
4159
4160 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4161 if (!ret) {
4162 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4163 return 0;
4164 }
4165
4166 return ret;
4167 }
4168
4169 int btrfs_block_rsv_add(struct btrfs_root *root,
4170 struct btrfs_block_rsv *block_rsv,
4171 u64 num_bytes)
4172 {
4173 return __block_rsv_add(root, block_rsv, num_bytes, 1);
4174 }
4175
4176 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4177 struct btrfs_block_rsv *block_rsv,
4178 u64 num_bytes)
4179 {
4180 return __block_rsv_add(root, block_rsv, num_bytes, 0);
4181 }
4182
4183 int btrfs_block_rsv_check(struct btrfs_root *root,
4184 struct btrfs_block_rsv *block_rsv, int min_factor)
4185 {
4186 u64 num_bytes = 0;
4187 int ret = -ENOSPC;
4188
4189 if (!block_rsv)
4190 return 0;
4191
4192 spin_lock(&block_rsv->lock);
4193 num_bytes = div_factor(block_rsv->size, min_factor);
4194 if (block_rsv->reserved >= num_bytes)
4195 ret = 0;
4196 spin_unlock(&block_rsv->lock);
4197
4198 return ret;
4199 }
4200
4201 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4202 struct btrfs_block_rsv *block_rsv,
4203 u64 min_reserved, int flush)
4204 {
4205 u64 num_bytes = 0;
4206 int ret = -ENOSPC;
4207
4208 if (!block_rsv)
4209 return 0;
4210
4211 spin_lock(&block_rsv->lock);
4212 num_bytes = min_reserved;
4213 if (block_rsv->reserved >= num_bytes)
4214 ret = 0;
4215 else
4216 num_bytes -= block_rsv->reserved;
4217 spin_unlock(&block_rsv->lock);
4218
4219 if (!ret)
4220 return 0;
4221
4222 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4223 if (!ret) {
4224 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4225 return 0;
4226 }
4227
4228 return ret;
4229 }
4230
4231 int btrfs_block_rsv_refill(struct btrfs_root *root,
4232 struct btrfs_block_rsv *block_rsv,
4233 u64 min_reserved)
4234 {
4235 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4236 }
4237
4238 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4239 struct btrfs_block_rsv *block_rsv,
4240 u64 min_reserved)
4241 {
4242 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4243 }
4244
4245 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4246 struct btrfs_block_rsv *dst_rsv,
4247 u64 num_bytes)
4248 {
4249 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4250 }
4251
4252 void btrfs_block_rsv_release(struct btrfs_root *root,
4253 struct btrfs_block_rsv *block_rsv,
4254 u64 num_bytes)
4255 {
4256 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4257 if (global_rsv->full || global_rsv == block_rsv ||
4258 block_rsv->space_info != global_rsv->space_info)
4259 global_rsv = NULL;
4260 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4261 num_bytes);
4262 }
4263
4264 /*
4265 * helper to calculate size of global block reservation.
4266 * the desired value is sum of space used by extent tree,
4267 * checksum tree and root tree
4268 */
4269 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4270 {
4271 struct btrfs_space_info *sinfo;
4272 u64 num_bytes;
4273 u64 meta_used;
4274 u64 data_used;
4275 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4276
4277 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4278 spin_lock(&sinfo->lock);
4279 data_used = sinfo->bytes_used;
4280 spin_unlock(&sinfo->lock);
4281
4282 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4283 spin_lock(&sinfo->lock);
4284 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4285 data_used = 0;
4286 meta_used = sinfo->bytes_used;
4287 spin_unlock(&sinfo->lock);
4288
4289 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4290 csum_size * 2;
4291 num_bytes += div64_u64(data_used + meta_used, 50);
4292
4293 if (num_bytes * 3 > meta_used)
4294 num_bytes = div64_u64(meta_used, 3);
4295
4296 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4297 }
4298
4299 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4300 {
4301 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4302 struct btrfs_space_info *sinfo = block_rsv->space_info;
4303 u64 num_bytes;
4304
4305 num_bytes = calc_global_metadata_size(fs_info);
4306
4307 spin_lock(&sinfo->lock);
4308 spin_lock(&block_rsv->lock);
4309
4310 block_rsv->size = num_bytes;
4311
4312 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4313 sinfo->bytes_reserved + sinfo->bytes_readonly +
4314 sinfo->bytes_may_use;
4315
4316 if (sinfo->total_bytes > num_bytes) {
4317 num_bytes = sinfo->total_bytes - num_bytes;
4318 block_rsv->reserved += num_bytes;
4319 sinfo->bytes_may_use += num_bytes;
4320 trace_btrfs_space_reservation(fs_info, "space_info",
4321 sinfo->flags, num_bytes, 1);
4322 }
4323
4324 if (block_rsv->reserved >= block_rsv->size) {
4325 num_bytes = block_rsv->reserved - block_rsv->size;
4326 sinfo->bytes_may_use -= num_bytes;
4327 trace_btrfs_space_reservation(fs_info, "space_info",
4328 sinfo->flags, num_bytes, 0);
4329 sinfo->reservation_progress++;
4330 block_rsv->reserved = block_rsv->size;
4331 block_rsv->full = 1;
4332 }
4333
4334 spin_unlock(&block_rsv->lock);
4335 spin_unlock(&sinfo->lock);
4336 }
4337
4338 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4339 {
4340 struct btrfs_space_info *space_info;
4341
4342 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4343 fs_info->chunk_block_rsv.space_info = space_info;
4344
4345 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4346 fs_info->global_block_rsv.space_info = space_info;
4347 fs_info->delalloc_block_rsv.space_info = space_info;
4348 fs_info->trans_block_rsv.space_info = space_info;
4349 fs_info->empty_block_rsv.space_info = space_info;
4350 fs_info->delayed_block_rsv.space_info = space_info;
4351
4352 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4353 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4354 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4355 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4356 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4357
4358 update_global_block_rsv(fs_info);
4359 }
4360
4361 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4362 {
4363 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4364 (u64)-1);
4365 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4366 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4367 WARN_ON(fs_info->trans_block_rsv.size > 0);
4368 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4369 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4370 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4371 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4372 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4373 }
4374
4375 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4376 struct btrfs_root *root)
4377 {
4378 if (!trans->block_rsv)
4379 return;
4380
4381 if (!trans->bytes_reserved)
4382 return;
4383
4384 trace_btrfs_space_reservation(root->fs_info, "transaction",
4385 trans->transid, trans->bytes_reserved, 0);
4386 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4387 trans->bytes_reserved = 0;
4388 }
4389
4390 /* Can only return 0 or -ENOSPC */
4391 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4392 struct inode *inode)
4393 {
4394 struct btrfs_root *root = BTRFS_I(inode)->root;
4395 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4396 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4397
4398 /*
4399 * We need to hold space in order to delete our orphan item once we've
4400 * added it, so this takes the reservation so we can release it later
4401 * when we are truly done with the orphan item.
4402 */
4403 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4404 trace_btrfs_space_reservation(root->fs_info, "orphan",
4405 btrfs_ino(inode), num_bytes, 1);
4406 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4407 }
4408
4409 void btrfs_orphan_release_metadata(struct inode *inode)
4410 {
4411 struct btrfs_root *root = BTRFS_I(inode)->root;
4412 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4413 trace_btrfs_space_reservation(root->fs_info, "orphan",
4414 btrfs_ino(inode), num_bytes, 0);
4415 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4416 }
4417
4418 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4419 struct btrfs_pending_snapshot *pending)
4420 {
4421 struct btrfs_root *root = pending->root;
4422 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4423 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4424 /*
4425 * two for root back/forward refs, two for directory entries
4426 * and one for root of the snapshot.
4427 */
4428 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4429 dst_rsv->space_info = src_rsv->space_info;
4430 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4431 }
4432
4433 /**
4434 * drop_outstanding_extent - drop an outstanding extent
4435 * @inode: the inode we're dropping the extent for
4436 *
4437 * This is called when we are freeing up an outstanding extent, either called
4438 * after an error or after an extent is written. This will return the number of
4439 * reserved extents that need to be freed. This must be called with
4440 * BTRFS_I(inode)->lock held.
4441 */
4442 static unsigned drop_outstanding_extent(struct inode *inode)
4443 {
4444 unsigned drop_inode_space = 0;
4445 unsigned dropped_extents = 0;
4446
4447 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4448 BTRFS_I(inode)->outstanding_extents--;
4449
4450 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4451 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4452 &BTRFS_I(inode)->runtime_flags))
4453 drop_inode_space = 1;
4454
4455 /*
4456 * If we have more or the same amount of outsanding extents than we have
4457 * reserved then we need to leave the reserved extents count alone.
4458 */
4459 if (BTRFS_I(inode)->outstanding_extents >=
4460 BTRFS_I(inode)->reserved_extents)
4461 return drop_inode_space;
4462
4463 dropped_extents = BTRFS_I(inode)->reserved_extents -
4464 BTRFS_I(inode)->outstanding_extents;
4465 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4466 return dropped_extents + drop_inode_space;
4467 }
4468
4469 /**
4470 * calc_csum_metadata_size - return the amount of metada space that must be
4471 * reserved/free'd for the given bytes.
4472 * @inode: the inode we're manipulating
4473 * @num_bytes: the number of bytes in question
4474 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4475 *
4476 * This adjusts the number of csum_bytes in the inode and then returns the
4477 * correct amount of metadata that must either be reserved or freed. We
4478 * calculate how many checksums we can fit into one leaf and then divide the
4479 * number of bytes that will need to be checksumed by this value to figure out
4480 * how many checksums will be required. If we are adding bytes then the number
4481 * may go up and we will return the number of additional bytes that must be
4482 * reserved. If it is going down we will return the number of bytes that must
4483 * be freed.
4484 *
4485 * This must be called with BTRFS_I(inode)->lock held.
4486 */
4487 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4488 int reserve)
4489 {
4490 struct btrfs_root *root = BTRFS_I(inode)->root;
4491 u64 csum_size;
4492 int num_csums_per_leaf;
4493 int num_csums;
4494 int old_csums;
4495
4496 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4497 BTRFS_I(inode)->csum_bytes == 0)
4498 return 0;
4499
4500 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4501 if (reserve)
4502 BTRFS_I(inode)->csum_bytes += num_bytes;
4503 else
4504 BTRFS_I(inode)->csum_bytes -= num_bytes;
4505 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4506 num_csums_per_leaf = (int)div64_u64(csum_size,
4507 sizeof(struct btrfs_csum_item) +
4508 sizeof(struct btrfs_disk_key));
4509 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4510 num_csums = num_csums + num_csums_per_leaf - 1;
4511 num_csums = num_csums / num_csums_per_leaf;
4512
4513 old_csums = old_csums + num_csums_per_leaf - 1;
4514 old_csums = old_csums / num_csums_per_leaf;
4515
4516 /* No change, no need to reserve more */
4517 if (old_csums == num_csums)
4518 return 0;
4519
4520 if (reserve)
4521 return btrfs_calc_trans_metadata_size(root,
4522 num_csums - old_csums);
4523
4524 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4525 }
4526
4527 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4528 {
4529 struct btrfs_root *root = BTRFS_I(inode)->root;
4530 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4531 u64 to_reserve = 0;
4532 u64 csum_bytes;
4533 unsigned nr_extents = 0;
4534 int extra_reserve = 0;
4535 int flush = 1;
4536 int ret;
4537
4538 /* Need to be holding the i_mutex here if we aren't free space cache */
4539 if (btrfs_is_free_space_inode(inode))
4540 flush = 0;
4541
4542 if (flush && btrfs_transaction_in_commit(root->fs_info))
4543 schedule_timeout(1);
4544
4545 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4546 num_bytes = ALIGN(num_bytes, root->sectorsize);
4547
4548 spin_lock(&BTRFS_I(inode)->lock);
4549 BTRFS_I(inode)->outstanding_extents++;
4550
4551 if (BTRFS_I(inode)->outstanding_extents >
4552 BTRFS_I(inode)->reserved_extents)
4553 nr_extents = BTRFS_I(inode)->outstanding_extents -
4554 BTRFS_I(inode)->reserved_extents;
4555
4556 /*
4557 * Add an item to reserve for updating the inode when we complete the
4558 * delalloc io.
4559 */
4560 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4561 &BTRFS_I(inode)->runtime_flags)) {
4562 nr_extents++;
4563 extra_reserve = 1;
4564 }
4565
4566 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4567 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4568 csum_bytes = BTRFS_I(inode)->csum_bytes;
4569 spin_unlock(&BTRFS_I(inode)->lock);
4570
4571 if (root->fs_info->quota_enabled) {
4572 ret = btrfs_qgroup_reserve(root, num_bytes +
4573 nr_extents * root->leafsize);
4574 if (ret)
4575 return ret;
4576 }
4577
4578 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4579 if (ret) {
4580 u64 to_free = 0;
4581 unsigned dropped;
4582
4583 spin_lock(&BTRFS_I(inode)->lock);
4584 dropped = drop_outstanding_extent(inode);
4585 /*
4586 * If the inodes csum_bytes is the same as the original
4587 * csum_bytes then we know we haven't raced with any free()ers
4588 * so we can just reduce our inodes csum bytes and carry on.
4589 * Otherwise we have to do the normal free thing to account for
4590 * the case that the free side didn't free up its reserve
4591 * because of this outstanding reservation.
4592 */
4593 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4594 calc_csum_metadata_size(inode, num_bytes, 0);
4595 else
4596 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4597 spin_unlock(&BTRFS_I(inode)->lock);
4598 if (dropped)
4599 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4600
4601 if (to_free) {
4602 btrfs_block_rsv_release(root, block_rsv, to_free);
4603 trace_btrfs_space_reservation(root->fs_info,
4604 "delalloc",
4605 btrfs_ino(inode),
4606 to_free, 0);
4607 }
4608 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4609 return ret;
4610 }
4611
4612 spin_lock(&BTRFS_I(inode)->lock);
4613 if (extra_reserve) {
4614 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4615 &BTRFS_I(inode)->runtime_flags);
4616 nr_extents--;
4617 }
4618 BTRFS_I(inode)->reserved_extents += nr_extents;
4619 spin_unlock(&BTRFS_I(inode)->lock);
4620 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4621
4622 if (to_reserve)
4623 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4624 btrfs_ino(inode), to_reserve, 1);
4625 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4626
4627 return 0;
4628 }
4629
4630 /**
4631 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4632 * @inode: the inode to release the reservation for
4633 * @num_bytes: the number of bytes we're releasing
4634 *
4635 * This will release the metadata reservation for an inode. This can be called
4636 * once we complete IO for a given set of bytes to release their metadata
4637 * reservations.
4638 */
4639 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4640 {
4641 struct btrfs_root *root = BTRFS_I(inode)->root;
4642 u64 to_free = 0;
4643 unsigned dropped;
4644
4645 num_bytes = ALIGN(num_bytes, root->sectorsize);
4646 spin_lock(&BTRFS_I(inode)->lock);
4647 dropped = drop_outstanding_extent(inode);
4648
4649 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4650 spin_unlock(&BTRFS_I(inode)->lock);
4651 if (dropped > 0)
4652 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4653
4654 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4655 btrfs_ino(inode), to_free, 0);
4656 if (root->fs_info->quota_enabled) {
4657 btrfs_qgroup_free(root, num_bytes +
4658 dropped * root->leafsize);
4659 }
4660
4661 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4662 to_free);
4663 }
4664
4665 /**
4666 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4667 * @inode: inode we're writing to
4668 * @num_bytes: the number of bytes we want to allocate
4669 *
4670 * This will do the following things
4671 *
4672 * o reserve space in the data space info for num_bytes
4673 * o reserve space in the metadata space info based on number of outstanding
4674 * extents and how much csums will be needed
4675 * o add to the inodes ->delalloc_bytes
4676 * o add it to the fs_info's delalloc inodes list.
4677 *
4678 * This will return 0 for success and -ENOSPC if there is no space left.
4679 */
4680 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4681 {
4682 int ret;
4683
4684 ret = btrfs_check_data_free_space(inode, num_bytes);
4685 if (ret)
4686 return ret;
4687
4688 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4689 if (ret) {
4690 btrfs_free_reserved_data_space(inode, num_bytes);
4691 return ret;
4692 }
4693
4694 return 0;
4695 }
4696
4697 /**
4698 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4699 * @inode: inode we're releasing space for
4700 * @num_bytes: the number of bytes we want to free up
4701 *
4702 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4703 * called in the case that we don't need the metadata AND data reservations
4704 * anymore. So if there is an error or we insert an inline extent.
4705 *
4706 * This function will release the metadata space that was not used and will
4707 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4708 * list if there are no delalloc bytes left.
4709 */
4710 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4711 {
4712 btrfs_delalloc_release_metadata(inode, num_bytes);
4713 btrfs_free_reserved_data_space(inode, num_bytes);
4714 }
4715
4716 static int update_block_group(struct btrfs_trans_handle *trans,
4717 struct btrfs_root *root,
4718 u64 bytenr, u64 num_bytes, int alloc)
4719 {
4720 struct btrfs_block_group_cache *cache = NULL;
4721 struct btrfs_fs_info *info = root->fs_info;
4722 u64 total = num_bytes;
4723 u64 old_val;
4724 u64 byte_in_group;
4725 int factor;
4726
4727 /* block accounting for super block */
4728 spin_lock(&info->delalloc_lock);
4729 old_val = btrfs_super_bytes_used(info->super_copy);
4730 if (alloc)
4731 old_val += num_bytes;
4732 else
4733 old_val -= num_bytes;
4734 btrfs_set_super_bytes_used(info->super_copy, old_val);
4735 spin_unlock(&info->delalloc_lock);
4736
4737 while (total) {
4738 cache = btrfs_lookup_block_group(info, bytenr);
4739 if (!cache)
4740 return -ENOENT;
4741 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4742 BTRFS_BLOCK_GROUP_RAID1 |
4743 BTRFS_BLOCK_GROUP_RAID10))
4744 factor = 2;
4745 else
4746 factor = 1;
4747 /*
4748 * If this block group has free space cache written out, we
4749 * need to make sure to load it if we are removing space. This
4750 * is because we need the unpinning stage to actually add the
4751 * space back to the block group, otherwise we will leak space.
4752 */
4753 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4754 cache_block_group(cache, trans, NULL, 1);
4755
4756 byte_in_group = bytenr - cache->key.objectid;
4757 WARN_ON(byte_in_group > cache->key.offset);
4758
4759 spin_lock(&cache->space_info->lock);
4760 spin_lock(&cache->lock);
4761
4762 if (btrfs_test_opt(root, SPACE_CACHE) &&
4763 cache->disk_cache_state < BTRFS_DC_CLEAR)
4764 cache->disk_cache_state = BTRFS_DC_CLEAR;
4765
4766 cache->dirty = 1;
4767 old_val = btrfs_block_group_used(&cache->item);
4768 num_bytes = min(total, cache->key.offset - byte_in_group);
4769 if (alloc) {
4770 old_val += num_bytes;
4771 btrfs_set_block_group_used(&cache->item, old_val);
4772 cache->reserved -= num_bytes;
4773 cache->space_info->bytes_reserved -= num_bytes;
4774 cache->space_info->bytes_used += num_bytes;
4775 cache->space_info->disk_used += num_bytes * factor;
4776 spin_unlock(&cache->lock);
4777 spin_unlock(&cache->space_info->lock);
4778 } else {
4779 old_val -= num_bytes;
4780 btrfs_set_block_group_used(&cache->item, old_val);
4781 cache->pinned += num_bytes;
4782 cache->space_info->bytes_pinned += num_bytes;
4783 cache->space_info->bytes_used -= num_bytes;
4784 cache->space_info->disk_used -= num_bytes * factor;
4785 spin_unlock(&cache->lock);
4786 spin_unlock(&cache->space_info->lock);
4787
4788 set_extent_dirty(info->pinned_extents,
4789 bytenr, bytenr + num_bytes - 1,
4790 GFP_NOFS | __GFP_NOFAIL);
4791 }
4792 btrfs_put_block_group(cache);
4793 total -= num_bytes;
4794 bytenr += num_bytes;
4795 }
4796 return 0;
4797 }
4798
4799 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4800 {
4801 struct btrfs_block_group_cache *cache;
4802 u64 bytenr;
4803
4804 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4805 if (!cache)
4806 return 0;
4807
4808 bytenr = cache->key.objectid;
4809 btrfs_put_block_group(cache);
4810
4811 return bytenr;
4812 }
4813
4814 static int pin_down_extent(struct btrfs_root *root,
4815 struct btrfs_block_group_cache *cache,
4816 u64 bytenr, u64 num_bytes, int reserved)
4817 {
4818 spin_lock(&cache->space_info->lock);
4819 spin_lock(&cache->lock);
4820 cache->pinned += num_bytes;
4821 cache->space_info->bytes_pinned += num_bytes;
4822 if (reserved) {
4823 cache->reserved -= num_bytes;
4824 cache->space_info->bytes_reserved -= num_bytes;
4825 }
4826 spin_unlock(&cache->lock);
4827 spin_unlock(&cache->space_info->lock);
4828
4829 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4830 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4831 return 0;
4832 }
4833
4834 /*
4835 * this function must be called within transaction
4836 */
4837 int btrfs_pin_extent(struct btrfs_root *root,
4838 u64 bytenr, u64 num_bytes, int reserved)
4839 {
4840 struct btrfs_block_group_cache *cache;
4841
4842 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4843 BUG_ON(!cache); /* Logic error */
4844
4845 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4846
4847 btrfs_put_block_group(cache);
4848 return 0;
4849 }
4850
4851 /*
4852 * this function must be called within transaction
4853 */
4854 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4855 struct btrfs_root *root,
4856 u64 bytenr, u64 num_bytes)
4857 {
4858 struct btrfs_block_group_cache *cache;
4859
4860 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4861 BUG_ON(!cache); /* Logic error */
4862
4863 /*
4864 * pull in the free space cache (if any) so that our pin
4865 * removes the free space from the cache. We have load_only set
4866 * to one because the slow code to read in the free extents does check
4867 * the pinned extents.
4868 */
4869 cache_block_group(cache, trans, root, 1);
4870
4871 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4872
4873 /* remove us from the free space cache (if we're there at all) */
4874 btrfs_remove_free_space(cache, bytenr, num_bytes);
4875 btrfs_put_block_group(cache);
4876 return 0;
4877 }
4878
4879 /**
4880 * btrfs_update_reserved_bytes - update the block_group and space info counters
4881 * @cache: The cache we are manipulating
4882 * @num_bytes: The number of bytes in question
4883 * @reserve: One of the reservation enums
4884 *
4885 * This is called by the allocator when it reserves space, or by somebody who is
4886 * freeing space that was never actually used on disk. For example if you
4887 * reserve some space for a new leaf in transaction A and before transaction A
4888 * commits you free that leaf, you call this with reserve set to 0 in order to
4889 * clear the reservation.
4890 *
4891 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4892 * ENOSPC accounting. For data we handle the reservation through clearing the
4893 * delalloc bits in the io_tree. We have to do this since we could end up
4894 * allocating less disk space for the amount of data we have reserved in the
4895 * case of compression.
4896 *
4897 * If this is a reservation and the block group has become read only we cannot
4898 * make the reservation and return -EAGAIN, otherwise this function always
4899 * succeeds.
4900 */
4901 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4902 u64 num_bytes, int reserve)
4903 {
4904 struct btrfs_space_info *space_info = cache->space_info;
4905 int ret = 0;
4906
4907 spin_lock(&space_info->lock);
4908 spin_lock(&cache->lock);
4909 if (reserve != RESERVE_FREE) {
4910 if (cache->ro) {
4911 ret = -EAGAIN;
4912 } else {
4913 cache->reserved += num_bytes;
4914 space_info->bytes_reserved += num_bytes;
4915 if (reserve == RESERVE_ALLOC) {
4916 trace_btrfs_space_reservation(cache->fs_info,
4917 "space_info", space_info->flags,
4918 num_bytes, 0);
4919 space_info->bytes_may_use -= num_bytes;
4920 }
4921 }
4922 } else {
4923 if (cache->ro)
4924 space_info->bytes_readonly += num_bytes;
4925 cache->reserved -= num_bytes;
4926 space_info->bytes_reserved -= num_bytes;
4927 space_info->reservation_progress++;
4928 }
4929 spin_unlock(&cache->lock);
4930 spin_unlock(&space_info->lock);
4931 return ret;
4932 }
4933
4934 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4935 struct btrfs_root *root)
4936 {
4937 struct btrfs_fs_info *fs_info = root->fs_info;
4938 struct btrfs_caching_control *next;
4939 struct btrfs_caching_control *caching_ctl;
4940 struct btrfs_block_group_cache *cache;
4941
4942 down_write(&fs_info->extent_commit_sem);
4943
4944 list_for_each_entry_safe(caching_ctl, next,
4945 &fs_info->caching_block_groups, list) {
4946 cache = caching_ctl->block_group;
4947 if (block_group_cache_done(cache)) {
4948 cache->last_byte_to_unpin = (u64)-1;
4949 list_del_init(&caching_ctl->list);
4950 put_caching_control(caching_ctl);
4951 } else {
4952 cache->last_byte_to_unpin = caching_ctl->progress;
4953 }
4954 }
4955
4956 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4957 fs_info->pinned_extents = &fs_info->freed_extents[1];
4958 else
4959 fs_info->pinned_extents = &fs_info->freed_extents[0];
4960
4961 up_write(&fs_info->extent_commit_sem);
4962
4963 update_global_block_rsv(fs_info);
4964 }
4965
4966 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4967 {
4968 struct btrfs_fs_info *fs_info = root->fs_info;
4969 struct btrfs_block_group_cache *cache = NULL;
4970 u64 len;
4971
4972 while (start <= end) {
4973 if (!cache ||
4974 start >= cache->key.objectid + cache->key.offset) {
4975 if (cache)
4976 btrfs_put_block_group(cache);
4977 cache = btrfs_lookup_block_group(fs_info, start);
4978 BUG_ON(!cache); /* Logic error */
4979 }
4980
4981 len = cache->key.objectid + cache->key.offset - start;
4982 len = min(len, end + 1 - start);
4983
4984 if (start < cache->last_byte_to_unpin) {
4985 len = min(len, cache->last_byte_to_unpin - start);
4986 btrfs_add_free_space(cache, start, len);
4987 }
4988
4989 start += len;
4990
4991 spin_lock(&cache->space_info->lock);
4992 spin_lock(&cache->lock);
4993 cache->pinned -= len;
4994 cache->space_info->bytes_pinned -= len;
4995 if (cache->ro)
4996 cache->space_info->bytes_readonly += len;
4997 spin_unlock(&cache->lock);
4998 spin_unlock(&cache->space_info->lock);
4999 }
5000
5001 if (cache)
5002 btrfs_put_block_group(cache);
5003 return 0;
5004 }
5005
5006 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5007 struct btrfs_root *root)
5008 {
5009 struct btrfs_fs_info *fs_info = root->fs_info;
5010 struct extent_io_tree *unpin;
5011 u64 start;
5012 u64 end;
5013 int ret;
5014
5015 if (trans->aborted)
5016 return 0;
5017
5018 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5019 unpin = &fs_info->freed_extents[1];
5020 else
5021 unpin = &fs_info->freed_extents[0];
5022
5023 while (1) {
5024 ret = find_first_extent_bit(unpin, 0, &start, &end,
5025 EXTENT_DIRTY);
5026 if (ret)
5027 break;
5028
5029 if (btrfs_test_opt(root, DISCARD))
5030 ret = btrfs_discard_extent(root, start,
5031 end + 1 - start, NULL);
5032
5033 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5034 unpin_extent_range(root, start, end);
5035 cond_resched();
5036 }
5037
5038 return 0;
5039 }
5040
5041 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5042 struct btrfs_root *root,
5043 u64 bytenr, u64 num_bytes, u64 parent,
5044 u64 root_objectid, u64 owner_objectid,
5045 u64 owner_offset, int refs_to_drop,
5046 struct btrfs_delayed_extent_op *extent_op)
5047 {
5048 struct btrfs_key key;
5049 struct btrfs_path *path;
5050 struct btrfs_fs_info *info = root->fs_info;
5051 struct btrfs_root *extent_root = info->extent_root;
5052 struct extent_buffer *leaf;
5053 struct btrfs_extent_item *ei;
5054 struct btrfs_extent_inline_ref *iref;
5055 int ret;
5056 int is_data;
5057 int extent_slot = 0;
5058 int found_extent = 0;
5059 int num_to_del = 1;
5060 u32 item_size;
5061 u64 refs;
5062
5063 path = btrfs_alloc_path();
5064 if (!path)
5065 return -ENOMEM;
5066
5067 path->reada = 1;
5068 path->leave_spinning = 1;
5069
5070 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5071 BUG_ON(!is_data && refs_to_drop != 1);
5072
5073 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5074 bytenr, num_bytes, parent,
5075 root_objectid, owner_objectid,
5076 owner_offset);
5077 if (ret == 0) {
5078 extent_slot = path->slots[0];
5079 while (extent_slot >= 0) {
5080 btrfs_item_key_to_cpu(path->nodes[0], &key,
5081 extent_slot);
5082 if (key.objectid != bytenr)
5083 break;
5084 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5085 key.offset == num_bytes) {
5086 found_extent = 1;
5087 break;
5088 }
5089 if (path->slots[0] - extent_slot > 5)
5090 break;
5091 extent_slot--;
5092 }
5093 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5094 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5095 if (found_extent && item_size < sizeof(*ei))
5096 found_extent = 0;
5097 #endif
5098 if (!found_extent) {
5099 BUG_ON(iref);
5100 ret = remove_extent_backref(trans, extent_root, path,
5101 NULL, refs_to_drop,
5102 is_data);
5103 if (ret)
5104 goto abort;
5105 btrfs_release_path(path);
5106 path->leave_spinning = 1;
5107
5108 key.objectid = bytenr;
5109 key.type = BTRFS_EXTENT_ITEM_KEY;
5110 key.offset = num_bytes;
5111
5112 ret = btrfs_search_slot(trans, extent_root,
5113 &key, path, -1, 1);
5114 if (ret) {
5115 printk(KERN_ERR "umm, got %d back from search"
5116 ", was looking for %llu\n", ret,
5117 (unsigned long long)bytenr);
5118 if (ret > 0)
5119 btrfs_print_leaf(extent_root,
5120 path->nodes[0]);
5121 }
5122 if (ret < 0)
5123 goto abort;
5124 extent_slot = path->slots[0];
5125 }
5126 } else if (ret == -ENOENT) {
5127 btrfs_print_leaf(extent_root, path->nodes[0]);
5128 WARN_ON(1);
5129 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5130 "parent %llu root %llu owner %llu offset %llu\n",
5131 (unsigned long long)bytenr,
5132 (unsigned long long)parent,
5133 (unsigned long long)root_objectid,
5134 (unsigned long long)owner_objectid,
5135 (unsigned long long)owner_offset);
5136 } else {
5137 goto abort;
5138 }
5139
5140 leaf = path->nodes[0];
5141 item_size = btrfs_item_size_nr(leaf, extent_slot);
5142 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5143 if (item_size < sizeof(*ei)) {
5144 BUG_ON(found_extent || extent_slot != path->slots[0]);
5145 ret = convert_extent_item_v0(trans, extent_root, path,
5146 owner_objectid, 0);
5147 if (ret < 0)
5148 goto abort;
5149
5150 btrfs_release_path(path);
5151 path->leave_spinning = 1;
5152
5153 key.objectid = bytenr;
5154 key.type = BTRFS_EXTENT_ITEM_KEY;
5155 key.offset = num_bytes;
5156
5157 ret = btrfs_search_slot(trans, extent_root, &key, path,
5158 -1, 1);
5159 if (ret) {
5160 printk(KERN_ERR "umm, got %d back from search"
5161 ", was looking for %llu\n", ret,
5162 (unsigned long long)bytenr);
5163 btrfs_print_leaf(extent_root, path->nodes[0]);
5164 }
5165 if (ret < 0)
5166 goto abort;
5167 extent_slot = path->slots[0];
5168 leaf = path->nodes[0];
5169 item_size = btrfs_item_size_nr(leaf, extent_slot);
5170 }
5171 #endif
5172 BUG_ON(item_size < sizeof(*ei));
5173 ei = btrfs_item_ptr(leaf, extent_slot,
5174 struct btrfs_extent_item);
5175 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5176 struct btrfs_tree_block_info *bi;
5177 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5178 bi = (struct btrfs_tree_block_info *)(ei + 1);
5179 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5180 }
5181
5182 refs = btrfs_extent_refs(leaf, ei);
5183 BUG_ON(refs < refs_to_drop);
5184 refs -= refs_to_drop;
5185
5186 if (refs > 0) {
5187 if (extent_op)
5188 __run_delayed_extent_op(extent_op, leaf, ei);
5189 /*
5190 * In the case of inline back ref, reference count will
5191 * be updated by remove_extent_backref
5192 */
5193 if (iref) {
5194 BUG_ON(!found_extent);
5195 } else {
5196 btrfs_set_extent_refs(leaf, ei, refs);
5197 btrfs_mark_buffer_dirty(leaf);
5198 }
5199 if (found_extent) {
5200 ret = remove_extent_backref(trans, extent_root, path,
5201 iref, refs_to_drop,
5202 is_data);
5203 if (ret)
5204 goto abort;
5205 }
5206 } else {
5207 if (found_extent) {
5208 BUG_ON(is_data && refs_to_drop !=
5209 extent_data_ref_count(root, path, iref));
5210 if (iref) {
5211 BUG_ON(path->slots[0] != extent_slot);
5212 } else {
5213 BUG_ON(path->slots[0] != extent_slot + 1);
5214 path->slots[0] = extent_slot;
5215 num_to_del = 2;
5216 }
5217 }
5218
5219 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5220 num_to_del);
5221 if (ret)
5222 goto abort;
5223 btrfs_release_path(path);
5224
5225 if (is_data) {
5226 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5227 if (ret)
5228 goto abort;
5229 }
5230
5231 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5232 if (ret)
5233 goto abort;
5234 }
5235 out:
5236 btrfs_free_path(path);
5237 return ret;
5238
5239 abort:
5240 btrfs_abort_transaction(trans, extent_root, ret);
5241 goto out;
5242 }
5243
5244 /*
5245 * when we free an block, it is possible (and likely) that we free the last
5246 * delayed ref for that extent as well. This searches the delayed ref tree for
5247 * a given extent, and if there are no other delayed refs to be processed, it
5248 * removes it from the tree.
5249 */
5250 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5251 struct btrfs_root *root, u64 bytenr)
5252 {
5253 struct btrfs_delayed_ref_head *head;
5254 struct btrfs_delayed_ref_root *delayed_refs;
5255 struct btrfs_delayed_ref_node *ref;
5256 struct rb_node *node;
5257 int ret = 0;
5258
5259 delayed_refs = &trans->transaction->delayed_refs;
5260 spin_lock(&delayed_refs->lock);
5261 head = btrfs_find_delayed_ref_head(trans, bytenr);
5262 if (!head)
5263 goto out;
5264
5265 node = rb_prev(&head->node.rb_node);
5266 if (!node)
5267 goto out;
5268
5269 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5270
5271 /* there are still entries for this ref, we can't drop it */
5272 if (ref->bytenr == bytenr)
5273 goto out;
5274
5275 if (head->extent_op) {
5276 if (!head->must_insert_reserved)
5277 goto out;
5278 kfree(head->extent_op);
5279 head->extent_op = NULL;
5280 }
5281
5282 /*
5283 * waiting for the lock here would deadlock. If someone else has it
5284 * locked they are already in the process of dropping it anyway
5285 */
5286 if (!mutex_trylock(&head->mutex))
5287 goto out;
5288
5289 /*
5290 * at this point we have a head with no other entries. Go
5291 * ahead and process it.
5292 */
5293 head->node.in_tree = 0;
5294 rb_erase(&head->node.rb_node, &delayed_refs->root);
5295
5296 delayed_refs->num_entries--;
5297 smp_mb();
5298 if (waitqueue_active(&root->fs_info->tree_mod_seq_wait))
5299 wake_up(&root->fs_info->tree_mod_seq_wait);
5300
5301 /*
5302 * we don't take a ref on the node because we're removing it from the
5303 * tree, so we just steal the ref the tree was holding.
5304 */
5305 delayed_refs->num_heads--;
5306 if (list_empty(&head->cluster))
5307 delayed_refs->num_heads_ready--;
5308
5309 list_del_init(&head->cluster);
5310 spin_unlock(&delayed_refs->lock);
5311
5312 BUG_ON(head->extent_op);
5313 if (head->must_insert_reserved)
5314 ret = 1;
5315
5316 mutex_unlock(&head->mutex);
5317 btrfs_put_delayed_ref(&head->node);
5318 return ret;
5319 out:
5320 spin_unlock(&delayed_refs->lock);
5321 return 0;
5322 }
5323
5324 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5325 struct btrfs_root *root,
5326 struct extent_buffer *buf,
5327 u64 parent, int last_ref)
5328 {
5329 struct btrfs_block_group_cache *cache = NULL;
5330 int ret;
5331
5332 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5333 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5334 buf->start, buf->len,
5335 parent, root->root_key.objectid,
5336 btrfs_header_level(buf),
5337 BTRFS_DROP_DELAYED_REF, NULL, 0);
5338 BUG_ON(ret); /* -ENOMEM */
5339 }
5340
5341 if (!last_ref)
5342 return;
5343
5344 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5345
5346 if (btrfs_header_generation(buf) == trans->transid) {
5347 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5348 ret = check_ref_cleanup(trans, root, buf->start);
5349 if (!ret)
5350 goto out;
5351 }
5352
5353 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5354 pin_down_extent(root, cache, buf->start, buf->len, 1);
5355 goto out;
5356 }
5357
5358 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5359
5360 btrfs_add_free_space(cache, buf->start, buf->len);
5361 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5362 }
5363 out:
5364 /*
5365 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5366 * anymore.
5367 */
5368 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5369 btrfs_put_block_group(cache);
5370 }
5371
5372 /* Can return -ENOMEM */
5373 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5374 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5375 u64 owner, u64 offset, int for_cow)
5376 {
5377 int ret;
5378 struct btrfs_fs_info *fs_info = root->fs_info;
5379
5380 /*
5381 * tree log blocks never actually go into the extent allocation
5382 * tree, just update pinning info and exit early.
5383 */
5384 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5385 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5386 /* unlocks the pinned mutex */
5387 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5388 ret = 0;
5389 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5390 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5391 num_bytes,
5392 parent, root_objectid, (int)owner,
5393 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5394 } else {
5395 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5396 num_bytes,
5397 parent, root_objectid, owner,
5398 offset, BTRFS_DROP_DELAYED_REF,
5399 NULL, for_cow);
5400 }
5401 return ret;
5402 }
5403
5404 static u64 stripe_align(struct btrfs_root *root, u64 val)
5405 {
5406 u64 mask = ((u64)root->stripesize - 1);
5407 u64 ret = (val + mask) & ~mask;
5408 return ret;
5409 }
5410
5411 /*
5412 * when we wait for progress in the block group caching, its because
5413 * our allocation attempt failed at least once. So, we must sleep
5414 * and let some progress happen before we try again.
5415 *
5416 * This function will sleep at least once waiting for new free space to
5417 * show up, and then it will check the block group free space numbers
5418 * for our min num_bytes. Another option is to have it go ahead
5419 * and look in the rbtree for a free extent of a given size, but this
5420 * is a good start.
5421 */
5422 static noinline int
5423 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5424 u64 num_bytes)
5425 {
5426 struct btrfs_caching_control *caching_ctl;
5427 DEFINE_WAIT(wait);
5428
5429 caching_ctl = get_caching_control(cache);
5430 if (!caching_ctl)
5431 return 0;
5432
5433 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5434 (cache->free_space_ctl->free_space >= num_bytes));
5435
5436 put_caching_control(caching_ctl);
5437 return 0;
5438 }
5439
5440 static noinline int
5441 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5442 {
5443 struct btrfs_caching_control *caching_ctl;
5444 DEFINE_WAIT(wait);
5445
5446 caching_ctl = get_caching_control(cache);
5447 if (!caching_ctl)
5448 return 0;
5449
5450 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5451
5452 put_caching_control(caching_ctl);
5453 return 0;
5454 }
5455
5456 static int __get_block_group_index(u64 flags)
5457 {
5458 int index;
5459
5460 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5461 index = 0;
5462 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5463 index = 1;
5464 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5465 index = 2;
5466 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5467 index = 3;
5468 else
5469 index = 4;
5470
5471 return index;
5472 }
5473
5474 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5475 {
5476 return __get_block_group_index(cache->flags);
5477 }
5478
5479 enum btrfs_loop_type {
5480 LOOP_CACHING_NOWAIT = 0,
5481 LOOP_CACHING_WAIT = 1,
5482 LOOP_ALLOC_CHUNK = 2,
5483 LOOP_NO_EMPTY_SIZE = 3,
5484 };
5485
5486 /*
5487 * walks the btree of allocated extents and find a hole of a given size.
5488 * The key ins is changed to record the hole:
5489 * ins->objectid == block start
5490 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5491 * ins->offset == number of blocks
5492 * Any available blocks before search_start are skipped.
5493 */
5494 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5495 struct btrfs_root *orig_root,
5496 u64 num_bytes, u64 empty_size,
5497 u64 hint_byte, struct btrfs_key *ins,
5498 u64 data)
5499 {
5500 int ret = 0;
5501 struct btrfs_root *root = orig_root->fs_info->extent_root;
5502 struct btrfs_free_cluster *last_ptr = NULL;
5503 struct btrfs_block_group_cache *block_group = NULL;
5504 struct btrfs_block_group_cache *used_block_group;
5505 u64 search_start = 0;
5506 int empty_cluster = 2 * 1024 * 1024;
5507 int allowed_chunk_alloc = 0;
5508 int done_chunk_alloc = 0;
5509 struct btrfs_space_info *space_info;
5510 int loop = 0;
5511 int index = 0;
5512 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5513 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5514 bool found_uncached_bg = false;
5515 bool failed_cluster_refill = false;
5516 bool failed_alloc = false;
5517 bool use_cluster = true;
5518 bool have_caching_bg = false;
5519
5520 WARN_ON(num_bytes < root->sectorsize);
5521 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5522 ins->objectid = 0;
5523 ins->offset = 0;
5524
5525 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5526
5527 space_info = __find_space_info(root->fs_info, data);
5528 if (!space_info) {
5529 printk(KERN_ERR "No space info for %llu\n", data);
5530 return -ENOSPC;
5531 }
5532
5533 /*
5534 * If the space info is for both data and metadata it means we have a
5535 * small filesystem and we can't use the clustering stuff.
5536 */
5537 if (btrfs_mixed_space_info(space_info))
5538 use_cluster = false;
5539
5540 if (orig_root->ref_cows || empty_size)
5541 allowed_chunk_alloc = 1;
5542
5543 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5544 last_ptr = &root->fs_info->meta_alloc_cluster;
5545 if (!btrfs_test_opt(root, SSD))
5546 empty_cluster = 64 * 1024;
5547 }
5548
5549 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5550 btrfs_test_opt(root, SSD)) {
5551 last_ptr = &root->fs_info->data_alloc_cluster;
5552 }
5553
5554 if (last_ptr) {
5555 spin_lock(&last_ptr->lock);
5556 if (last_ptr->block_group)
5557 hint_byte = last_ptr->window_start;
5558 spin_unlock(&last_ptr->lock);
5559 }
5560
5561 search_start = max(search_start, first_logical_byte(root, 0));
5562 search_start = max(search_start, hint_byte);
5563
5564 if (!last_ptr)
5565 empty_cluster = 0;
5566
5567 if (search_start == hint_byte) {
5568 block_group = btrfs_lookup_block_group(root->fs_info,
5569 search_start);
5570 used_block_group = block_group;
5571 /*
5572 * we don't want to use the block group if it doesn't match our
5573 * allocation bits, or if its not cached.
5574 *
5575 * However if we are re-searching with an ideal block group
5576 * picked out then we don't care that the block group is cached.
5577 */
5578 if (block_group && block_group_bits(block_group, data) &&
5579 block_group->cached != BTRFS_CACHE_NO) {
5580 down_read(&space_info->groups_sem);
5581 if (list_empty(&block_group->list) ||
5582 block_group->ro) {
5583 /*
5584 * someone is removing this block group,
5585 * we can't jump into the have_block_group
5586 * target because our list pointers are not
5587 * valid
5588 */
5589 btrfs_put_block_group(block_group);
5590 up_read(&space_info->groups_sem);
5591 } else {
5592 index = get_block_group_index(block_group);
5593 goto have_block_group;
5594 }
5595 } else if (block_group) {
5596 btrfs_put_block_group(block_group);
5597 }
5598 }
5599 search:
5600 have_caching_bg = false;
5601 down_read(&space_info->groups_sem);
5602 list_for_each_entry(block_group, &space_info->block_groups[index],
5603 list) {
5604 u64 offset;
5605 int cached;
5606
5607 used_block_group = block_group;
5608 btrfs_get_block_group(block_group);
5609 search_start = block_group->key.objectid;
5610
5611 /*
5612 * this can happen if we end up cycling through all the
5613 * raid types, but we want to make sure we only allocate
5614 * for the proper type.
5615 */
5616 if (!block_group_bits(block_group, data)) {
5617 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5618 BTRFS_BLOCK_GROUP_RAID1 |
5619 BTRFS_BLOCK_GROUP_RAID10;
5620
5621 /*
5622 * if they asked for extra copies and this block group
5623 * doesn't provide them, bail. This does allow us to
5624 * fill raid0 from raid1.
5625 */
5626 if ((data & extra) && !(block_group->flags & extra))
5627 goto loop;
5628 }
5629
5630 have_block_group:
5631 cached = block_group_cache_done(block_group);
5632 if (unlikely(!cached)) {
5633 found_uncached_bg = true;
5634 ret = cache_block_group(block_group, trans,
5635 orig_root, 0);
5636 BUG_ON(ret < 0);
5637 ret = 0;
5638 }
5639
5640 if (unlikely(block_group->ro))
5641 goto loop;
5642
5643 /*
5644 * Ok we want to try and use the cluster allocator, so
5645 * lets look there
5646 */
5647 if (last_ptr) {
5648 /*
5649 * the refill lock keeps out other
5650 * people trying to start a new cluster
5651 */
5652 spin_lock(&last_ptr->refill_lock);
5653 used_block_group = last_ptr->block_group;
5654 if (used_block_group != block_group &&
5655 (!used_block_group ||
5656 used_block_group->ro ||
5657 !block_group_bits(used_block_group, data))) {
5658 used_block_group = block_group;
5659 goto refill_cluster;
5660 }
5661
5662 if (used_block_group != block_group)
5663 btrfs_get_block_group(used_block_group);
5664
5665 offset = btrfs_alloc_from_cluster(used_block_group,
5666 last_ptr, num_bytes, used_block_group->key.objectid);
5667 if (offset) {
5668 /* we have a block, we're done */
5669 spin_unlock(&last_ptr->refill_lock);
5670 trace_btrfs_reserve_extent_cluster(root,
5671 block_group, search_start, num_bytes);
5672 goto checks;
5673 }
5674
5675 WARN_ON(last_ptr->block_group != used_block_group);
5676 if (used_block_group != block_group) {
5677 btrfs_put_block_group(used_block_group);
5678 used_block_group = block_group;
5679 }
5680 refill_cluster:
5681 BUG_ON(used_block_group != block_group);
5682 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5683 * set up a new clusters, so lets just skip it
5684 * and let the allocator find whatever block
5685 * it can find. If we reach this point, we
5686 * will have tried the cluster allocator
5687 * plenty of times and not have found
5688 * anything, so we are likely way too
5689 * fragmented for the clustering stuff to find
5690 * anything.
5691 *
5692 * However, if the cluster is taken from the
5693 * current block group, release the cluster
5694 * first, so that we stand a better chance of
5695 * succeeding in the unclustered
5696 * allocation. */
5697 if (loop >= LOOP_NO_EMPTY_SIZE &&
5698 last_ptr->block_group != block_group) {
5699 spin_unlock(&last_ptr->refill_lock);
5700 goto unclustered_alloc;
5701 }
5702
5703 /*
5704 * this cluster didn't work out, free it and
5705 * start over
5706 */
5707 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5708
5709 if (loop >= LOOP_NO_EMPTY_SIZE) {
5710 spin_unlock(&last_ptr->refill_lock);
5711 goto unclustered_alloc;
5712 }
5713
5714 /* allocate a cluster in this block group */
5715 ret = btrfs_find_space_cluster(trans, root,
5716 block_group, last_ptr,
5717 search_start, num_bytes,
5718 empty_cluster + empty_size);
5719 if (ret == 0) {
5720 /*
5721 * now pull our allocation out of this
5722 * cluster
5723 */
5724 offset = btrfs_alloc_from_cluster(block_group,
5725 last_ptr, num_bytes,
5726 search_start);
5727 if (offset) {
5728 /* we found one, proceed */
5729 spin_unlock(&last_ptr->refill_lock);
5730 trace_btrfs_reserve_extent_cluster(root,
5731 block_group, search_start,
5732 num_bytes);
5733 goto checks;
5734 }
5735 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5736 && !failed_cluster_refill) {
5737 spin_unlock(&last_ptr->refill_lock);
5738
5739 failed_cluster_refill = true;
5740 wait_block_group_cache_progress(block_group,
5741 num_bytes + empty_cluster + empty_size);
5742 goto have_block_group;
5743 }
5744
5745 /*
5746 * at this point we either didn't find a cluster
5747 * or we weren't able to allocate a block from our
5748 * cluster. Free the cluster we've been trying
5749 * to use, and go to the next block group
5750 */
5751 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5752 spin_unlock(&last_ptr->refill_lock);
5753 goto loop;
5754 }
5755
5756 unclustered_alloc:
5757 spin_lock(&block_group->free_space_ctl->tree_lock);
5758 if (cached &&
5759 block_group->free_space_ctl->free_space <
5760 num_bytes + empty_cluster + empty_size) {
5761 spin_unlock(&block_group->free_space_ctl->tree_lock);
5762 goto loop;
5763 }
5764 spin_unlock(&block_group->free_space_ctl->tree_lock);
5765
5766 offset = btrfs_find_space_for_alloc(block_group, search_start,
5767 num_bytes, empty_size);
5768 /*
5769 * If we didn't find a chunk, and we haven't failed on this
5770 * block group before, and this block group is in the middle of
5771 * caching and we are ok with waiting, then go ahead and wait
5772 * for progress to be made, and set failed_alloc to true.
5773 *
5774 * If failed_alloc is true then we've already waited on this
5775 * block group once and should move on to the next block group.
5776 */
5777 if (!offset && !failed_alloc && !cached &&
5778 loop > LOOP_CACHING_NOWAIT) {
5779 wait_block_group_cache_progress(block_group,
5780 num_bytes + empty_size);
5781 failed_alloc = true;
5782 goto have_block_group;
5783 } else if (!offset) {
5784 if (!cached)
5785 have_caching_bg = true;
5786 goto loop;
5787 }
5788 checks:
5789 search_start = stripe_align(root, offset);
5790
5791 /* move on to the next group */
5792 if (search_start + num_bytes >
5793 used_block_group->key.objectid + used_block_group->key.offset) {
5794 btrfs_add_free_space(used_block_group, offset, num_bytes);
5795 goto loop;
5796 }
5797
5798 if (offset < search_start)
5799 btrfs_add_free_space(used_block_group, offset,
5800 search_start - offset);
5801 BUG_ON(offset > search_start);
5802
5803 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5804 alloc_type);
5805 if (ret == -EAGAIN) {
5806 btrfs_add_free_space(used_block_group, offset, num_bytes);
5807 goto loop;
5808 }
5809
5810 /* we are all good, lets return */
5811 ins->objectid = search_start;
5812 ins->offset = num_bytes;
5813
5814 trace_btrfs_reserve_extent(orig_root, block_group,
5815 search_start, num_bytes);
5816 if (offset < search_start)
5817 btrfs_add_free_space(used_block_group, offset,
5818 search_start - offset);
5819 BUG_ON(offset > search_start);
5820 if (used_block_group != block_group)
5821 btrfs_put_block_group(used_block_group);
5822 btrfs_put_block_group(block_group);
5823 break;
5824 loop:
5825 failed_cluster_refill = false;
5826 failed_alloc = false;
5827 BUG_ON(index != get_block_group_index(block_group));
5828 if (used_block_group != block_group)
5829 btrfs_put_block_group(used_block_group);
5830 btrfs_put_block_group(block_group);
5831 }
5832 up_read(&space_info->groups_sem);
5833
5834 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5835 goto search;
5836
5837 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5838 goto search;
5839
5840 /*
5841 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5842 * caching kthreads as we move along
5843 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5844 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5845 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5846 * again
5847 */
5848 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5849 index = 0;
5850 loop++;
5851 if (loop == LOOP_ALLOC_CHUNK) {
5852 if (allowed_chunk_alloc) {
5853 ret = do_chunk_alloc(trans, root, num_bytes +
5854 2 * 1024 * 1024, data,
5855 CHUNK_ALLOC_LIMITED);
5856 /*
5857 * Do not bail out on ENOSPC since we
5858 * can do more things.
5859 */
5860 if (ret < 0 && ret != -ENOSPC) {
5861 btrfs_abort_transaction(trans,
5862 root, ret);
5863 goto out;
5864 }
5865 allowed_chunk_alloc = 0;
5866 if (ret == 1)
5867 done_chunk_alloc = 1;
5868 } else if (!done_chunk_alloc &&
5869 space_info->force_alloc ==
5870 CHUNK_ALLOC_NO_FORCE) {
5871 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5872 }
5873
5874 /*
5875 * We didn't allocate a chunk, go ahead and drop the
5876 * empty size and loop again.
5877 */
5878 if (!done_chunk_alloc)
5879 loop = LOOP_NO_EMPTY_SIZE;
5880 }
5881
5882 if (loop == LOOP_NO_EMPTY_SIZE) {
5883 empty_size = 0;
5884 empty_cluster = 0;
5885 }
5886
5887 goto search;
5888 } else if (!ins->objectid) {
5889 ret = -ENOSPC;
5890 } else if (ins->objectid) {
5891 ret = 0;
5892 }
5893 out:
5894
5895 return ret;
5896 }
5897
5898 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5899 int dump_block_groups)
5900 {
5901 struct btrfs_block_group_cache *cache;
5902 int index = 0;
5903
5904 spin_lock(&info->lock);
5905 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5906 (unsigned long long)info->flags,
5907 (unsigned long long)(info->total_bytes - info->bytes_used -
5908 info->bytes_pinned - info->bytes_reserved -
5909 info->bytes_readonly),
5910 (info->full) ? "" : "not ");
5911 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5912 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5913 (unsigned long long)info->total_bytes,
5914 (unsigned long long)info->bytes_used,
5915 (unsigned long long)info->bytes_pinned,
5916 (unsigned long long)info->bytes_reserved,
5917 (unsigned long long)info->bytes_may_use,
5918 (unsigned long long)info->bytes_readonly);
5919 spin_unlock(&info->lock);
5920
5921 if (!dump_block_groups)
5922 return;
5923
5924 down_read(&info->groups_sem);
5925 again:
5926 list_for_each_entry(cache, &info->block_groups[index], list) {
5927 spin_lock(&cache->lock);
5928 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
5929 (unsigned long long)cache->key.objectid,
5930 (unsigned long long)cache->key.offset,
5931 (unsigned long long)btrfs_block_group_used(&cache->item),
5932 (unsigned long long)cache->pinned,
5933 (unsigned long long)cache->reserved,
5934 cache->ro ? "[readonly]" : "");
5935 btrfs_dump_free_space(cache, bytes);
5936 spin_unlock(&cache->lock);
5937 }
5938 if (++index < BTRFS_NR_RAID_TYPES)
5939 goto again;
5940 up_read(&info->groups_sem);
5941 }
5942
5943 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5944 struct btrfs_root *root,
5945 u64 num_bytes, u64 min_alloc_size,
5946 u64 empty_size, u64 hint_byte,
5947 struct btrfs_key *ins, u64 data)
5948 {
5949 bool final_tried = false;
5950 int ret;
5951
5952 data = btrfs_get_alloc_profile(root, data);
5953 again:
5954 /*
5955 * the only place that sets empty_size is btrfs_realloc_node, which
5956 * is not called recursively on allocations
5957 */
5958 if (empty_size || root->ref_cows) {
5959 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5960 num_bytes + 2 * 1024 * 1024, data,
5961 CHUNK_ALLOC_NO_FORCE);
5962 if (ret < 0 && ret != -ENOSPC) {
5963 btrfs_abort_transaction(trans, root, ret);
5964 return ret;
5965 }
5966 }
5967
5968 WARN_ON(num_bytes < root->sectorsize);
5969 ret = find_free_extent(trans, root, num_bytes, empty_size,
5970 hint_byte, ins, data);
5971
5972 if (ret == -ENOSPC) {
5973 if (!final_tried) {
5974 num_bytes = num_bytes >> 1;
5975 num_bytes = num_bytes & ~(root->sectorsize - 1);
5976 num_bytes = max(num_bytes, min_alloc_size);
5977 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5978 num_bytes, data, CHUNK_ALLOC_FORCE);
5979 if (ret < 0 && ret != -ENOSPC) {
5980 btrfs_abort_transaction(trans, root, ret);
5981 return ret;
5982 }
5983 if (num_bytes == min_alloc_size)
5984 final_tried = true;
5985 goto again;
5986 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5987 struct btrfs_space_info *sinfo;
5988
5989 sinfo = __find_space_info(root->fs_info, data);
5990 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5991 "wanted %llu\n", (unsigned long long)data,
5992 (unsigned long long)num_bytes);
5993 if (sinfo)
5994 dump_space_info(sinfo, num_bytes, 1);
5995 }
5996 }
5997
5998 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5999
6000 return ret;
6001 }
6002
6003 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6004 u64 start, u64 len, int pin)
6005 {
6006 struct btrfs_block_group_cache *cache;
6007 int ret = 0;
6008
6009 cache = btrfs_lookup_block_group(root->fs_info, start);
6010 if (!cache) {
6011 printk(KERN_ERR "Unable to find block group for %llu\n",
6012 (unsigned long long)start);
6013 return -ENOSPC;
6014 }
6015
6016 if (btrfs_test_opt(root, DISCARD))
6017 ret = btrfs_discard_extent(root, start, len, NULL);
6018
6019 if (pin)
6020 pin_down_extent(root, cache, start, len, 1);
6021 else {
6022 btrfs_add_free_space(cache, start, len);
6023 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6024 }
6025 btrfs_put_block_group(cache);
6026
6027 trace_btrfs_reserved_extent_free(root, start, len);
6028
6029 return ret;
6030 }
6031
6032 int btrfs_free_reserved_extent(struct btrfs_root *root,
6033 u64 start, u64 len)
6034 {
6035 return __btrfs_free_reserved_extent(root, start, len, 0);
6036 }
6037
6038 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6039 u64 start, u64 len)
6040 {
6041 return __btrfs_free_reserved_extent(root, start, len, 1);
6042 }
6043
6044 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6045 struct btrfs_root *root,
6046 u64 parent, u64 root_objectid,
6047 u64 flags, u64 owner, u64 offset,
6048 struct btrfs_key *ins, int ref_mod)
6049 {
6050 int ret;
6051 struct btrfs_fs_info *fs_info = root->fs_info;
6052 struct btrfs_extent_item *extent_item;
6053 struct btrfs_extent_inline_ref *iref;
6054 struct btrfs_path *path;
6055 struct extent_buffer *leaf;
6056 int type;
6057 u32 size;
6058
6059 if (parent > 0)
6060 type = BTRFS_SHARED_DATA_REF_KEY;
6061 else
6062 type = BTRFS_EXTENT_DATA_REF_KEY;
6063
6064 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6065
6066 path = btrfs_alloc_path();
6067 if (!path)
6068 return -ENOMEM;
6069
6070 path->leave_spinning = 1;
6071 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6072 ins, size);
6073 if (ret) {
6074 btrfs_free_path(path);
6075 return ret;
6076 }
6077
6078 leaf = path->nodes[0];
6079 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6080 struct btrfs_extent_item);
6081 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6082 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6083 btrfs_set_extent_flags(leaf, extent_item,
6084 flags | BTRFS_EXTENT_FLAG_DATA);
6085
6086 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6087 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6088 if (parent > 0) {
6089 struct btrfs_shared_data_ref *ref;
6090 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6091 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6092 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6093 } else {
6094 struct btrfs_extent_data_ref *ref;
6095 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6096 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6097 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6098 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6099 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6100 }
6101
6102 btrfs_mark_buffer_dirty(path->nodes[0]);
6103 btrfs_free_path(path);
6104
6105 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6106 if (ret) { /* -ENOENT, logic error */
6107 printk(KERN_ERR "btrfs update block group failed for %llu "
6108 "%llu\n", (unsigned long long)ins->objectid,
6109 (unsigned long long)ins->offset);
6110 BUG();
6111 }
6112 return ret;
6113 }
6114
6115 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6116 struct btrfs_root *root,
6117 u64 parent, u64 root_objectid,
6118 u64 flags, struct btrfs_disk_key *key,
6119 int level, struct btrfs_key *ins)
6120 {
6121 int ret;
6122 struct btrfs_fs_info *fs_info = root->fs_info;
6123 struct btrfs_extent_item *extent_item;
6124 struct btrfs_tree_block_info *block_info;
6125 struct btrfs_extent_inline_ref *iref;
6126 struct btrfs_path *path;
6127 struct extent_buffer *leaf;
6128 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6129
6130 path = btrfs_alloc_path();
6131 if (!path)
6132 return -ENOMEM;
6133
6134 path->leave_spinning = 1;
6135 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6136 ins, size);
6137 if (ret) {
6138 btrfs_free_path(path);
6139 return ret;
6140 }
6141
6142 leaf = path->nodes[0];
6143 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6144 struct btrfs_extent_item);
6145 btrfs_set_extent_refs(leaf, extent_item, 1);
6146 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6147 btrfs_set_extent_flags(leaf, extent_item,
6148 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6149 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6150
6151 btrfs_set_tree_block_key(leaf, block_info, key);
6152 btrfs_set_tree_block_level(leaf, block_info, level);
6153
6154 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6155 if (parent > 0) {
6156 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6157 btrfs_set_extent_inline_ref_type(leaf, iref,
6158 BTRFS_SHARED_BLOCK_REF_KEY);
6159 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6160 } else {
6161 btrfs_set_extent_inline_ref_type(leaf, iref,
6162 BTRFS_TREE_BLOCK_REF_KEY);
6163 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6164 }
6165
6166 btrfs_mark_buffer_dirty(leaf);
6167 btrfs_free_path(path);
6168
6169 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6170 if (ret) { /* -ENOENT, logic error */
6171 printk(KERN_ERR "btrfs update block group failed for %llu "
6172 "%llu\n", (unsigned long long)ins->objectid,
6173 (unsigned long long)ins->offset);
6174 BUG();
6175 }
6176 return ret;
6177 }
6178
6179 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6180 struct btrfs_root *root,
6181 u64 root_objectid, u64 owner,
6182 u64 offset, struct btrfs_key *ins)
6183 {
6184 int ret;
6185
6186 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6187
6188 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6189 ins->offset, 0,
6190 root_objectid, owner, offset,
6191 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6192 return ret;
6193 }
6194
6195 /*
6196 * this is used by the tree logging recovery code. It records that
6197 * an extent has been allocated and makes sure to clear the free
6198 * space cache bits as well
6199 */
6200 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6201 struct btrfs_root *root,
6202 u64 root_objectid, u64 owner, u64 offset,
6203 struct btrfs_key *ins)
6204 {
6205 int ret;
6206 struct btrfs_block_group_cache *block_group;
6207 struct btrfs_caching_control *caching_ctl;
6208 u64 start = ins->objectid;
6209 u64 num_bytes = ins->offset;
6210
6211 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6212 cache_block_group(block_group, trans, NULL, 0);
6213 caching_ctl = get_caching_control(block_group);
6214
6215 if (!caching_ctl) {
6216 BUG_ON(!block_group_cache_done(block_group));
6217 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6218 BUG_ON(ret); /* -ENOMEM */
6219 } else {
6220 mutex_lock(&caching_ctl->mutex);
6221
6222 if (start >= caching_ctl->progress) {
6223 ret = add_excluded_extent(root, start, num_bytes);
6224 BUG_ON(ret); /* -ENOMEM */
6225 } else if (start + num_bytes <= caching_ctl->progress) {
6226 ret = btrfs_remove_free_space(block_group,
6227 start, num_bytes);
6228 BUG_ON(ret); /* -ENOMEM */
6229 } else {
6230 num_bytes = caching_ctl->progress - start;
6231 ret = btrfs_remove_free_space(block_group,
6232 start, num_bytes);
6233 BUG_ON(ret); /* -ENOMEM */
6234
6235 start = caching_ctl->progress;
6236 num_bytes = ins->objectid + ins->offset -
6237 caching_ctl->progress;
6238 ret = add_excluded_extent(root, start, num_bytes);
6239 BUG_ON(ret); /* -ENOMEM */
6240 }
6241
6242 mutex_unlock(&caching_ctl->mutex);
6243 put_caching_control(caching_ctl);
6244 }
6245
6246 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6247 RESERVE_ALLOC_NO_ACCOUNT);
6248 BUG_ON(ret); /* logic error */
6249 btrfs_put_block_group(block_group);
6250 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6251 0, owner, offset, ins, 1);
6252 return ret;
6253 }
6254
6255 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6256 struct btrfs_root *root,
6257 u64 bytenr, u32 blocksize,
6258 int level)
6259 {
6260 struct extent_buffer *buf;
6261
6262 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6263 if (!buf)
6264 return ERR_PTR(-ENOMEM);
6265 btrfs_set_header_generation(buf, trans->transid);
6266 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6267 btrfs_tree_lock(buf);
6268 clean_tree_block(trans, root, buf);
6269 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6270
6271 btrfs_set_lock_blocking(buf);
6272 btrfs_set_buffer_uptodate(buf);
6273
6274 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6275 /*
6276 * we allow two log transactions at a time, use different
6277 * EXENT bit to differentiate dirty pages.
6278 */
6279 if (root->log_transid % 2 == 0)
6280 set_extent_dirty(&root->dirty_log_pages, buf->start,
6281 buf->start + buf->len - 1, GFP_NOFS);
6282 else
6283 set_extent_new(&root->dirty_log_pages, buf->start,
6284 buf->start + buf->len - 1, GFP_NOFS);
6285 } else {
6286 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6287 buf->start + buf->len - 1, GFP_NOFS);
6288 }
6289 trans->blocks_used++;
6290 /* this returns a buffer locked for blocking */
6291 return buf;
6292 }
6293
6294 static struct btrfs_block_rsv *
6295 use_block_rsv(struct btrfs_trans_handle *trans,
6296 struct btrfs_root *root, u32 blocksize)
6297 {
6298 struct btrfs_block_rsv *block_rsv;
6299 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6300 int ret;
6301
6302 block_rsv = get_block_rsv(trans, root);
6303
6304 if (block_rsv->size == 0) {
6305 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6306 /*
6307 * If we couldn't reserve metadata bytes try and use some from
6308 * the global reserve.
6309 */
6310 if (ret && block_rsv != global_rsv) {
6311 ret = block_rsv_use_bytes(global_rsv, blocksize);
6312 if (!ret)
6313 return global_rsv;
6314 return ERR_PTR(ret);
6315 } else if (ret) {
6316 return ERR_PTR(ret);
6317 }
6318 return block_rsv;
6319 }
6320
6321 ret = block_rsv_use_bytes(block_rsv, blocksize);
6322 if (!ret)
6323 return block_rsv;
6324 if (ret) {
6325 static DEFINE_RATELIMIT_STATE(_rs,
6326 DEFAULT_RATELIMIT_INTERVAL,
6327 /*DEFAULT_RATELIMIT_BURST*/ 2);
6328 if (__ratelimit(&_rs)) {
6329 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6330 WARN_ON(1);
6331 }
6332 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6333 if (!ret) {
6334 return block_rsv;
6335 } else if (ret && block_rsv != global_rsv) {
6336 ret = block_rsv_use_bytes(global_rsv, blocksize);
6337 if (!ret)
6338 return global_rsv;
6339 }
6340 }
6341
6342 return ERR_PTR(-ENOSPC);
6343 }
6344
6345 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6346 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6347 {
6348 block_rsv_add_bytes(block_rsv, blocksize, 0);
6349 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6350 }
6351
6352 /*
6353 * finds a free extent and does all the dirty work required for allocation
6354 * returns the key for the extent through ins, and a tree buffer for
6355 * the first block of the extent through buf.
6356 *
6357 * returns the tree buffer or NULL.
6358 */
6359 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6360 struct btrfs_root *root, u32 blocksize,
6361 u64 parent, u64 root_objectid,
6362 struct btrfs_disk_key *key, int level,
6363 u64 hint, u64 empty_size)
6364 {
6365 struct btrfs_key ins;
6366 struct btrfs_block_rsv *block_rsv;
6367 struct extent_buffer *buf;
6368 u64 flags = 0;
6369 int ret;
6370
6371
6372 block_rsv = use_block_rsv(trans, root, blocksize);
6373 if (IS_ERR(block_rsv))
6374 return ERR_CAST(block_rsv);
6375
6376 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6377 empty_size, hint, &ins, 0);
6378 if (ret) {
6379 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6380 return ERR_PTR(ret);
6381 }
6382
6383 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6384 blocksize, level);
6385 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6386
6387 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6388 if (parent == 0)
6389 parent = ins.objectid;
6390 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6391 } else
6392 BUG_ON(parent > 0);
6393
6394 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6395 struct btrfs_delayed_extent_op *extent_op;
6396 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6397 BUG_ON(!extent_op); /* -ENOMEM */
6398 if (key)
6399 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6400 else
6401 memset(&extent_op->key, 0, sizeof(extent_op->key));
6402 extent_op->flags_to_set = flags;
6403 extent_op->update_key = 1;
6404 extent_op->update_flags = 1;
6405 extent_op->is_data = 0;
6406
6407 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6408 ins.objectid,
6409 ins.offset, parent, root_objectid,
6410 level, BTRFS_ADD_DELAYED_EXTENT,
6411 extent_op, 0);
6412 BUG_ON(ret); /* -ENOMEM */
6413 }
6414 return buf;
6415 }
6416
6417 struct walk_control {
6418 u64 refs[BTRFS_MAX_LEVEL];
6419 u64 flags[BTRFS_MAX_LEVEL];
6420 struct btrfs_key update_progress;
6421 int stage;
6422 int level;
6423 int shared_level;
6424 int update_ref;
6425 int keep_locks;
6426 int reada_slot;
6427 int reada_count;
6428 int for_reloc;
6429 };
6430
6431 #define DROP_REFERENCE 1
6432 #define UPDATE_BACKREF 2
6433
6434 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6435 struct btrfs_root *root,
6436 struct walk_control *wc,
6437 struct btrfs_path *path)
6438 {
6439 u64 bytenr;
6440 u64 generation;
6441 u64 refs;
6442 u64 flags;
6443 u32 nritems;
6444 u32 blocksize;
6445 struct btrfs_key key;
6446 struct extent_buffer *eb;
6447 int ret;
6448 int slot;
6449 int nread = 0;
6450
6451 if (path->slots[wc->level] < wc->reada_slot) {
6452 wc->reada_count = wc->reada_count * 2 / 3;
6453 wc->reada_count = max(wc->reada_count, 2);
6454 } else {
6455 wc->reada_count = wc->reada_count * 3 / 2;
6456 wc->reada_count = min_t(int, wc->reada_count,
6457 BTRFS_NODEPTRS_PER_BLOCK(root));
6458 }
6459
6460 eb = path->nodes[wc->level];
6461 nritems = btrfs_header_nritems(eb);
6462 blocksize = btrfs_level_size(root, wc->level - 1);
6463
6464 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6465 if (nread >= wc->reada_count)
6466 break;
6467
6468 cond_resched();
6469 bytenr = btrfs_node_blockptr(eb, slot);
6470 generation = btrfs_node_ptr_generation(eb, slot);
6471
6472 if (slot == path->slots[wc->level])
6473 goto reada;
6474
6475 if (wc->stage == UPDATE_BACKREF &&
6476 generation <= root->root_key.offset)
6477 continue;
6478
6479 /* We don't lock the tree block, it's OK to be racy here */
6480 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6481 &refs, &flags);
6482 /* We don't care about errors in readahead. */
6483 if (ret < 0)
6484 continue;
6485 BUG_ON(refs == 0);
6486
6487 if (wc->stage == DROP_REFERENCE) {
6488 if (refs == 1)
6489 goto reada;
6490
6491 if (wc->level == 1 &&
6492 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6493 continue;
6494 if (!wc->update_ref ||
6495 generation <= root->root_key.offset)
6496 continue;
6497 btrfs_node_key_to_cpu(eb, &key, slot);
6498 ret = btrfs_comp_cpu_keys(&key,
6499 &wc->update_progress);
6500 if (ret < 0)
6501 continue;
6502 } else {
6503 if (wc->level == 1 &&
6504 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6505 continue;
6506 }
6507 reada:
6508 ret = readahead_tree_block(root, bytenr, blocksize,
6509 generation);
6510 if (ret)
6511 break;
6512 nread++;
6513 }
6514 wc->reada_slot = slot;
6515 }
6516
6517 /*
6518 * hepler to process tree block while walking down the tree.
6519 *
6520 * when wc->stage == UPDATE_BACKREF, this function updates
6521 * back refs for pointers in the block.
6522 *
6523 * NOTE: return value 1 means we should stop walking down.
6524 */
6525 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6526 struct btrfs_root *root,
6527 struct btrfs_path *path,
6528 struct walk_control *wc, int lookup_info)
6529 {
6530 int level = wc->level;
6531 struct extent_buffer *eb = path->nodes[level];
6532 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6533 int ret;
6534
6535 if (wc->stage == UPDATE_BACKREF &&
6536 btrfs_header_owner(eb) != root->root_key.objectid)
6537 return 1;
6538
6539 /*
6540 * when reference count of tree block is 1, it won't increase
6541 * again. once full backref flag is set, we never clear it.
6542 */
6543 if (lookup_info &&
6544 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6545 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6546 BUG_ON(!path->locks[level]);
6547 ret = btrfs_lookup_extent_info(trans, root,
6548 eb->start, eb->len,
6549 &wc->refs[level],
6550 &wc->flags[level]);
6551 BUG_ON(ret == -ENOMEM);
6552 if (ret)
6553 return ret;
6554 BUG_ON(wc->refs[level] == 0);
6555 }
6556
6557 if (wc->stage == DROP_REFERENCE) {
6558 if (wc->refs[level] > 1)
6559 return 1;
6560
6561 if (path->locks[level] && !wc->keep_locks) {
6562 btrfs_tree_unlock_rw(eb, path->locks[level]);
6563 path->locks[level] = 0;
6564 }
6565 return 0;
6566 }
6567
6568 /* wc->stage == UPDATE_BACKREF */
6569 if (!(wc->flags[level] & flag)) {
6570 BUG_ON(!path->locks[level]);
6571 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6572 BUG_ON(ret); /* -ENOMEM */
6573 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6574 BUG_ON(ret); /* -ENOMEM */
6575 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6576 eb->len, flag, 0);
6577 BUG_ON(ret); /* -ENOMEM */
6578 wc->flags[level] |= flag;
6579 }
6580
6581 /*
6582 * the block is shared by multiple trees, so it's not good to
6583 * keep the tree lock
6584 */
6585 if (path->locks[level] && level > 0) {
6586 btrfs_tree_unlock_rw(eb, path->locks[level]);
6587 path->locks[level] = 0;
6588 }
6589 return 0;
6590 }
6591
6592 /*
6593 * hepler to process tree block pointer.
6594 *
6595 * when wc->stage == DROP_REFERENCE, this function checks
6596 * reference count of the block pointed to. if the block
6597 * is shared and we need update back refs for the subtree
6598 * rooted at the block, this function changes wc->stage to
6599 * UPDATE_BACKREF. if the block is shared and there is no
6600 * need to update back, this function drops the reference
6601 * to the block.
6602 *
6603 * NOTE: return value 1 means we should stop walking down.
6604 */
6605 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6606 struct btrfs_root *root,
6607 struct btrfs_path *path,
6608 struct walk_control *wc, int *lookup_info)
6609 {
6610 u64 bytenr;
6611 u64 generation;
6612 u64 parent;
6613 u32 blocksize;
6614 struct btrfs_key key;
6615 struct extent_buffer *next;
6616 int level = wc->level;
6617 int reada = 0;
6618 int ret = 0;
6619
6620 generation = btrfs_node_ptr_generation(path->nodes[level],
6621 path->slots[level]);
6622 /*
6623 * if the lower level block was created before the snapshot
6624 * was created, we know there is no need to update back refs
6625 * for the subtree
6626 */
6627 if (wc->stage == UPDATE_BACKREF &&
6628 generation <= root->root_key.offset) {
6629 *lookup_info = 1;
6630 return 1;
6631 }
6632
6633 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6634 blocksize = btrfs_level_size(root, level - 1);
6635
6636 next = btrfs_find_tree_block(root, bytenr, blocksize);
6637 if (!next) {
6638 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6639 if (!next)
6640 return -ENOMEM;
6641 reada = 1;
6642 }
6643 btrfs_tree_lock(next);
6644 btrfs_set_lock_blocking(next);
6645
6646 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6647 &wc->refs[level - 1],
6648 &wc->flags[level - 1]);
6649 if (ret < 0) {
6650 btrfs_tree_unlock(next);
6651 return ret;
6652 }
6653
6654 BUG_ON(wc->refs[level - 1] == 0);
6655 *lookup_info = 0;
6656
6657 if (wc->stage == DROP_REFERENCE) {
6658 if (wc->refs[level - 1] > 1) {
6659 if (level == 1 &&
6660 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6661 goto skip;
6662
6663 if (!wc->update_ref ||
6664 generation <= root->root_key.offset)
6665 goto skip;
6666
6667 btrfs_node_key_to_cpu(path->nodes[level], &key,
6668 path->slots[level]);
6669 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6670 if (ret < 0)
6671 goto skip;
6672
6673 wc->stage = UPDATE_BACKREF;
6674 wc->shared_level = level - 1;
6675 }
6676 } else {
6677 if (level == 1 &&
6678 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6679 goto skip;
6680 }
6681
6682 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6683 btrfs_tree_unlock(next);
6684 free_extent_buffer(next);
6685 next = NULL;
6686 *lookup_info = 1;
6687 }
6688
6689 if (!next) {
6690 if (reada && level == 1)
6691 reada_walk_down(trans, root, wc, path);
6692 next = read_tree_block(root, bytenr, blocksize, generation);
6693 if (!next)
6694 return -EIO;
6695 btrfs_tree_lock(next);
6696 btrfs_set_lock_blocking(next);
6697 }
6698
6699 level--;
6700 BUG_ON(level != btrfs_header_level(next));
6701 path->nodes[level] = next;
6702 path->slots[level] = 0;
6703 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6704 wc->level = level;
6705 if (wc->level == 1)
6706 wc->reada_slot = 0;
6707 return 0;
6708 skip:
6709 wc->refs[level - 1] = 0;
6710 wc->flags[level - 1] = 0;
6711 if (wc->stage == DROP_REFERENCE) {
6712 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6713 parent = path->nodes[level]->start;
6714 } else {
6715 BUG_ON(root->root_key.objectid !=
6716 btrfs_header_owner(path->nodes[level]));
6717 parent = 0;
6718 }
6719
6720 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6721 root->root_key.objectid, level - 1, 0, 0);
6722 BUG_ON(ret); /* -ENOMEM */
6723 }
6724 btrfs_tree_unlock(next);
6725 free_extent_buffer(next);
6726 *lookup_info = 1;
6727 return 1;
6728 }
6729
6730 /*
6731 * hepler to process tree block while walking up the tree.
6732 *
6733 * when wc->stage == DROP_REFERENCE, this function drops
6734 * reference count on the block.
6735 *
6736 * when wc->stage == UPDATE_BACKREF, this function changes
6737 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6738 * to UPDATE_BACKREF previously while processing the block.
6739 *
6740 * NOTE: return value 1 means we should stop walking up.
6741 */
6742 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6743 struct btrfs_root *root,
6744 struct btrfs_path *path,
6745 struct walk_control *wc)
6746 {
6747 int ret;
6748 int level = wc->level;
6749 struct extent_buffer *eb = path->nodes[level];
6750 u64 parent = 0;
6751
6752 if (wc->stage == UPDATE_BACKREF) {
6753 BUG_ON(wc->shared_level < level);
6754 if (level < wc->shared_level)
6755 goto out;
6756
6757 ret = find_next_key(path, level + 1, &wc->update_progress);
6758 if (ret > 0)
6759 wc->update_ref = 0;
6760
6761 wc->stage = DROP_REFERENCE;
6762 wc->shared_level = -1;
6763 path->slots[level] = 0;
6764
6765 /*
6766 * check reference count again if the block isn't locked.
6767 * we should start walking down the tree again if reference
6768 * count is one.
6769 */
6770 if (!path->locks[level]) {
6771 BUG_ON(level == 0);
6772 btrfs_tree_lock(eb);
6773 btrfs_set_lock_blocking(eb);
6774 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6775
6776 ret = btrfs_lookup_extent_info(trans, root,
6777 eb->start, eb->len,
6778 &wc->refs[level],
6779 &wc->flags[level]);
6780 if (ret < 0) {
6781 btrfs_tree_unlock_rw(eb, path->locks[level]);
6782 return ret;
6783 }
6784 BUG_ON(wc->refs[level] == 0);
6785 if (wc->refs[level] == 1) {
6786 btrfs_tree_unlock_rw(eb, path->locks[level]);
6787 return 1;
6788 }
6789 }
6790 }
6791
6792 /* wc->stage == DROP_REFERENCE */
6793 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6794
6795 if (wc->refs[level] == 1) {
6796 if (level == 0) {
6797 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6798 ret = btrfs_dec_ref(trans, root, eb, 1,
6799 wc->for_reloc);
6800 else
6801 ret = btrfs_dec_ref(trans, root, eb, 0,
6802 wc->for_reloc);
6803 BUG_ON(ret); /* -ENOMEM */
6804 }
6805 /* make block locked assertion in clean_tree_block happy */
6806 if (!path->locks[level] &&
6807 btrfs_header_generation(eb) == trans->transid) {
6808 btrfs_tree_lock(eb);
6809 btrfs_set_lock_blocking(eb);
6810 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6811 }
6812 clean_tree_block(trans, root, eb);
6813 }
6814
6815 if (eb == root->node) {
6816 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6817 parent = eb->start;
6818 else
6819 BUG_ON(root->root_key.objectid !=
6820 btrfs_header_owner(eb));
6821 } else {
6822 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6823 parent = path->nodes[level + 1]->start;
6824 else
6825 BUG_ON(root->root_key.objectid !=
6826 btrfs_header_owner(path->nodes[level + 1]));
6827 }
6828
6829 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6830 out:
6831 wc->refs[level] = 0;
6832 wc->flags[level] = 0;
6833 return 0;
6834 }
6835
6836 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6837 struct btrfs_root *root,
6838 struct btrfs_path *path,
6839 struct walk_control *wc)
6840 {
6841 int level = wc->level;
6842 int lookup_info = 1;
6843 int ret;
6844
6845 while (level >= 0) {
6846 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6847 if (ret > 0)
6848 break;
6849
6850 if (level == 0)
6851 break;
6852
6853 if (path->slots[level] >=
6854 btrfs_header_nritems(path->nodes[level]))
6855 break;
6856
6857 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6858 if (ret > 0) {
6859 path->slots[level]++;
6860 continue;
6861 } else if (ret < 0)
6862 return ret;
6863 level = wc->level;
6864 }
6865 return 0;
6866 }
6867
6868 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6869 struct btrfs_root *root,
6870 struct btrfs_path *path,
6871 struct walk_control *wc, int max_level)
6872 {
6873 int level = wc->level;
6874 int ret;
6875
6876 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6877 while (level < max_level && path->nodes[level]) {
6878 wc->level = level;
6879 if (path->slots[level] + 1 <
6880 btrfs_header_nritems(path->nodes[level])) {
6881 path->slots[level]++;
6882 return 0;
6883 } else {
6884 ret = walk_up_proc(trans, root, path, wc);
6885 if (ret > 0)
6886 return 0;
6887
6888 if (path->locks[level]) {
6889 btrfs_tree_unlock_rw(path->nodes[level],
6890 path->locks[level]);
6891 path->locks[level] = 0;
6892 }
6893 free_extent_buffer(path->nodes[level]);
6894 path->nodes[level] = NULL;
6895 level++;
6896 }
6897 }
6898 return 1;
6899 }
6900
6901 /*
6902 * drop a subvolume tree.
6903 *
6904 * this function traverses the tree freeing any blocks that only
6905 * referenced by the tree.
6906 *
6907 * when a shared tree block is found. this function decreases its
6908 * reference count by one. if update_ref is true, this function
6909 * also make sure backrefs for the shared block and all lower level
6910 * blocks are properly updated.
6911 */
6912 int btrfs_drop_snapshot(struct btrfs_root *root,
6913 struct btrfs_block_rsv *block_rsv, int update_ref,
6914 int for_reloc)
6915 {
6916 struct btrfs_path *path;
6917 struct btrfs_trans_handle *trans;
6918 struct btrfs_root *tree_root = root->fs_info->tree_root;
6919 struct btrfs_root_item *root_item = &root->root_item;
6920 struct walk_control *wc;
6921 struct btrfs_key key;
6922 int err = 0;
6923 int ret;
6924 int level;
6925
6926 path = btrfs_alloc_path();
6927 if (!path) {
6928 err = -ENOMEM;
6929 goto out;
6930 }
6931
6932 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6933 if (!wc) {
6934 btrfs_free_path(path);
6935 err = -ENOMEM;
6936 goto out;
6937 }
6938
6939 trans = btrfs_start_transaction(tree_root, 0);
6940 if (IS_ERR(trans)) {
6941 err = PTR_ERR(trans);
6942 goto out_free;
6943 }
6944
6945 if (block_rsv)
6946 trans->block_rsv = block_rsv;
6947
6948 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6949 level = btrfs_header_level(root->node);
6950 path->nodes[level] = btrfs_lock_root_node(root);
6951 btrfs_set_lock_blocking(path->nodes[level]);
6952 path->slots[level] = 0;
6953 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6954 memset(&wc->update_progress, 0,
6955 sizeof(wc->update_progress));
6956 } else {
6957 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6958 memcpy(&wc->update_progress, &key,
6959 sizeof(wc->update_progress));
6960
6961 level = root_item->drop_level;
6962 BUG_ON(level == 0);
6963 path->lowest_level = level;
6964 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6965 path->lowest_level = 0;
6966 if (ret < 0) {
6967 err = ret;
6968 goto out_end_trans;
6969 }
6970 WARN_ON(ret > 0);
6971
6972 /*
6973 * unlock our path, this is safe because only this
6974 * function is allowed to delete this snapshot
6975 */
6976 btrfs_unlock_up_safe(path, 0);
6977
6978 level = btrfs_header_level(root->node);
6979 while (1) {
6980 btrfs_tree_lock(path->nodes[level]);
6981 btrfs_set_lock_blocking(path->nodes[level]);
6982
6983 ret = btrfs_lookup_extent_info(trans, root,
6984 path->nodes[level]->start,
6985 path->nodes[level]->len,
6986 &wc->refs[level],
6987 &wc->flags[level]);
6988 if (ret < 0) {
6989 err = ret;
6990 goto out_end_trans;
6991 }
6992 BUG_ON(wc->refs[level] == 0);
6993
6994 if (level == root_item->drop_level)
6995 break;
6996
6997 btrfs_tree_unlock(path->nodes[level]);
6998 WARN_ON(wc->refs[level] != 1);
6999 level--;
7000 }
7001 }
7002
7003 wc->level = level;
7004 wc->shared_level = -1;
7005 wc->stage = DROP_REFERENCE;
7006 wc->update_ref = update_ref;
7007 wc->keep_locks = 0;
7008 wc->for_reloc = for_reloc;
7009 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7010
7011 while (1) {
7012 ret = walk_down_tree(trans, root, path, wc);
7013 if (ret < 0) {
7014 err = ret;
7015 break;
7016 }
7017
7018 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7019 if (ret < 0) {
7020 err = ret;
7021 break;
7022 }
7023
7024 if (ret > 0) {
7025 BUG_ON(wc->stage != DROP_REFERENCE);
7026 break;
7027 }
7028
7029 if (wc->stage == DROP_REFERENCE) {
7030 level = wc->level;
7031 btrfs_node_key(path->nodes[level],
7032 &root_item->drop_progress,
7033 path->slots[level]);
7034 root_item->drop_level = level;
7035 }
7036
7037 BUG_ON(wc->level == 0);
7038 if (btrfs_should_end_transaction(trans, tree_root)) {
7039 ret = btrfs_update_root(trans, tree_root,
7040 &root->root_key,
7041 root_item);
7042 if (ret) {
7043 btrfs_abort_transaction(trans, tree_root, ret);
7044 err = ret;
7045 goto out_end_trans;
7046 }
7047
7048 btrfs_end_transaction_throttle(trans, tree_root);
7049 trans = btrfs_start_transaction(tree_root, 0);
7050 if (IS_ERR(trans)) {
7051 err = PTR_ERR(trans);
7052 goto out_free;
7053 }
7054 if (block_rsv)
7055 trans->block_rsv = block_rsv;
7056 }
7057 }
7058 btrfs_release_path(path);
7059 if (err)
7060 goto out_end_trans;
7061
7062 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7063 if (ret) {
7064 btrfs_abort_transaction(trans, tree_root, ret);
7065 goto out_end_trans;
7066 }
7067
7068 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7069 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7070 NULL, NULL);
7071 if (ret < 0) {
7072 btrfs_abort_transaction(trans, tree_root, ret);
7073 err = ret;
7074 goto out_end_trans;
7075 } else if (ret > 0) {
7076 /* if we fail to delete the orphan item this time
7077 * around, it'll get picked up the next time.
7078 *
7079 * The most common failure here is just -ENOENT.
7080 */
7081 btrfs_del_orphan_item(trans, tree_root,
7082 root->root_key.objectid);
7083 }
7084 }
7085
7086 if (root->in_radix) {
7087 btrfs_free_fs_root(tree_root->fs_info, root);
7088 } else {
7089 free_extent_buffer(root->node);
7090 free_extent_buffer(root->commit_root);
7091 kfree(root);
7092 }
7093 out_end_trans:
7094 btrfs_end_transaction_throttle(trans, tree_root);
7095 out_free:
7096 kfree(wc);
7097 btrfs_free_path(path);
7098 out:
7099 if (err)
7100 btrfs_std_error(root->fs_info, err);
7101 return err;
7102 }
7103
7104 /*
7105 * drop subtree rooted at tree block 'node'.
7106 *
7107 * NOTE: this function will unlock and release tree block 'node'
7108 * only used by relocation code
7109 */
7110 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7111 struct btrfs_root *root,
7112 struct extent_buffer *node,
7113 struct extent_buffer *parent)
7114 {
7115 struct btrfs_path *path;
7116 struct walk_control *wc;
7117 int level;
7118 int parent_level;
7119 int ret = 0;
7120 int wret;
7121
7122 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7123
7124 path = btrfs_alloc_path();
7125 if (!path)
7126 return -ENOMEM;
7127
7128 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7129 if (!wc) {
7130 btrfs_free_path(path);
7131 return -ENOMEM;
7132 }
7133
7134 btrfs_assert_tree_locked(parent);
7135 parent_level = btrfs_header_level(parent);
7136 extent_buffer_get(parent);
7137 path->nodes[parent_level] = parent;
7138 path->slots[parent_level] = btrfs_header_nritems(parent);
7139
7140 btrfs_assert_tree_locked(node);
7141 level = btrfs_header_level(node);
7142 path->nodes[level] = node;
7143 path->slots[level] = 0;
7144 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7145
7146 wc->refs[parent_level] = 1;
7147 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7148 wc->level = level;
7149 wc->shared_level = -1;
7150 wc->stage = DROP_REFERENCE;
7151 wc->update_ref = 0;
7152 wc->keep_locks = 1;
7153 wc->for_reloc = 1;
7154 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7155
7156 while (1) {
7157 wret = walk_down_tree(trans, root, path, wc);
7158 if (wret < 0) {
7159 ret = wret;
7160 break;
7161 }
7162
7163 wret = walk_up_tree(trans, root, path, wc, parent_level);
7164 if (wret < 0)
7165 ret = wret;
7166 if (wret != 0)
7167 break;
7168 }
7169
7170 kfree(wc);
7171 btrfs_free_path(path);
7172 return ret;
7173 }
7174
7175 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7176 {
7177 u64 num_devices;
7178 u64 stripped;
7179
7180 /*
7181 * if restripe for this chunk_type is on pick target profile and
7182 * return, otherwise do the usual balance
7183 */
7184 stripped = get_restripe_target(root->fs_info, flags);
7185 if (stripped)
7186 return extended_to_chunk(stripped);
7187
7188 /*
7189 * we add in the count of missing devices because we want
7190 * to make sure that any RAID levels on a degraded FS
7191 * continue to be honored.
7192 */
7193 num_devices = root->fs_info->fs_devices->rw_devices +
7194 root->fs_info->fs_devices->missing_devices;
7195
7196 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7197 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7198
7199 if (num_devices == 1) {
7200 stripped |= BTRFS_BLOCK_GROUP_DUP;
7201 stripped = flags & ~stripped;
7202
7203 /* turn raid0 into single device chunks */
7204 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7205 return stripped;
7206
7207 /* turn mirroring into duplication */
7208 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7209 BTRFS_BLOCK_GROUP_RAID10))
7210 return stripped | BTRFS_BLOCK_GROUP_DUP;
7211 } else {
7212 /* they already had raid on here, just return */
7213 if (flags & stripped)
7214 return flags;
7215
7216 stripped |= BTRFS_BLOCK_GROUP_DUP;
7217 stripped = flags & ~stripped;
7218
7219 /* switch duplicated blocks with raid1 */
7220 if (flags & BTRFS_BLOCK_GROUP_DUP)
7221 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7222
7223 /* this is drive concat, leave it alone */
7224 }
7225
7226 return flags;
7227 }
7228
7229 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7230 {
7231 struct btrfs_space_info *sinfo = cache->space_info;
7232 u64 num_bytes;
7233 u64 min_allocable_bytes;
7234 int ret = -ENOSPC;
7235
7236
7237 /*
7238 * We need some metadata space and system metadata space for
7239 * allocating chunks in some corner cases until we force to set
7240 * it to be readonly.
7241 */
7242 if ((sinfo->flags &
7243 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7244 !force)
7245 min_allocable_bytes = 1 * 1024 * 1024;
7246 else
7247 min_allocable_bytes = 0;
7248
7249 spin_lock(&sinfo->lock);
7250 spin_lock(&cache->lock);
7251
7252 if (cache->ro) {
7253 ret = 0;
7254 goto out;
7255 }
7256
7257 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7258 cache->bytes_super - btrfs_block_group_used(&cache->item);
7259
7260 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7261 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7262 min_allocable_bytes <= sinfo->total_bytes) {
7263 sinfo->bytes_readonly += num_bytes;
7264 cache->ro = 1;
7265 ret = 0;
7266 }
7267 out:
7268 spin_unlock(&cache->lock);
7269 spin_unlock(&sinfo->lock);
7270 return ret;
7271 }
7272
7273 int btrfs_set_block_group_ro(struct btrfs_root *root,
7274 struct btrfs_block_group_cache *cache)
7275
7276 {
7277 struct btrfs_trans_handle *trans;
7278 u64 alloc_flags;
7279 int ret;
7280
7281 BUG_ON(cache->ro);
7282
7283 trans = btrfs_join_transaction(root);
7284 if (IS_ERR(trans))
7285 return PTR_ERR(trans);
7286
7287 alloc_flags = update_block_group_flags(root, cache->flags);
7288 if (alloc_flags != cache->flags) {
7289 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7290 CHUNK_ALLOC_FORCE);
7291 if (ret < 0)
7292 goto out;
7293 }
7294
7295 ret = set_block_group_ro(cache, 0);
7296 if (!ret)
7297 goto out;
7298 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7299 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7300 CHUNK_ALLOC_FORCE);
7301 if (ret < 0)
7302 goto out;
7303 ret = set_block_group_ro(cache, 0);
7304 out:
7305 btrfs_end_transaction(trans, root);
7306 return ret;
7307 }
7308
7309 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7310 struct btrfs_root *root, u64 type)
7311 {
7312 u64 alloc_flags = get_alloc_profile(root, type);
7313 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7314 CHUNK_ALLOC_FORCE);
7315 }
7316
7317 /*
7318 * helper to account the unused space of all the readonly block group in the
7319 * list. takes mirrors into account.
7320 */
7321 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7322 {
7323 struct btrfs_block_group_cache *block_group;
7324 u64 free_bytes = 0;
7325 int factor;
7326
7327 list_for_each_entry(block_group, groups_list, list) {
7328 spin_lock(&block_group->lock);
7329
7330 if (!block_group->ro) {
7331 spin_unlock(&block_group->lock);
7332 continue;
7333 }
7334
7335 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7336 BTRFS_BLOCK_GROUP_RAID10 |
7337 BTRFS_BLOCK_GROUP_DUP))
7338 factor = 2;
7339 else
7340 factor = 1;
7341
7342 free_bytes += (block_group->key.offset -
7343 btrfs_block_group_used(&block_group->item)) *
7344 factor;
7345
7346 spin_unlock(&block_group->lock);
7347 }
7348
7349 return free_bytes;
7350 }
7351
7352 /*
7353 * helper to account the unused space of all the readonly block group in the
7354 * space_info. takes mirrors into account.
7355 */
7356 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7357 {
7358 int i;
7359 u64 free_bytes = 0;
7360
7361 spin_lock(&sinfo->lock);
7362
7363 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7364 if (!list_empty(&sinfo->block_groups[i]))
7365 free_bytes += __btrfs_get_ro_block_group_free_space(
7366 &sinfo->block_groups[i]);
7367
7368 spin_unlock(&sinfo->lock);
7369
7370 return free_bytes;
7371 }
7372
7373 void btrfs_set_block_group_rw(struct btrfs_root *root,
7374 struct btrfs_block_group_cache *cache)
7375 {
7376 struct btrfs_space_info *sinfo = cache->space_info;
7377 u64 num_bytes;
7378
7379 BUG_ON(!cache->ro);
7380
7381 spin_lock(&sinfo->lock);
7382 spin_lock(&cache->lock);
7383 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7384 cache->bytes_super - btrfs_block_group_used(&cache->item);
7385 sinfo->bytes_readonly -= num_bytes;
7386 cache->ro = 0;
7387 spin_unlock(&cache->lock);
7388 spin_unlock(&sinfo->lock);
7389 }
7390
7391 /*
7392 * checks to see if its even possible to relocate this block group.
7393 *
7394 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7395 * ok to go ahead and try.
7396 */
7397 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7398 {
7399 struct btrfs_block_group_cache *block_group;
7400 struct btrfs_space_info *space_info;
7401 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7402 struct btrfs_device *device;
7403 u64 min_free;
7404 u64 dev_min = 1;
7405 u64 dev_nr = 0;
7406 u64 target;
7407 int index;
7408 int full = 0;
7409 int ret = 0;
7410
7411 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7412
7413 /* odd, couldn't find the block group, leave it alone */
7414 if (!block_group)
7415 return -1;
7416
7417 min_free = btrfs_block_group_used(&block_group->item);
7418
7419 /* no bytes used, we're good */
7420 if (!min_free)
7421 goto out;
7422
7423 space_info = block_group->space_info;
7424 spin_lock(&space_info->lock);
7425
7426 full = space_info->full;
7427
7428 /*
7429 * if this is the last block group we have in this space, we can't
7430 * relocate it unless we're able to allocate a new chunk below.
7431 *
7432 * Otherwise, we need to make sure we have room in the space to handle
7433 * all of the extents from this block group. If we can, we're good
7434 */
7435 if ((space_info->total_bytes != block_group->key.offset) &&
7436 (space_info->bytes_used + space_info->bytes_reserved +
7437 space_info->bytes_pinned + space_info->bytes_readonly +
7438 min_free < space_info->total_bytes)) {
7439 spin_unlock(&space_info->lock);
7440 goto out;
7441 }
7442 spin_unlock(&space_info->lock);
7443
7444 /*
7445 * ok we don't have enough space, but maybe we have free space on our
7446 * devices to allocate new chunks for relocation, so loop through our
7447 * alloc devices and guess if we have enough space. if this block
7448 * group is going to be restriped, run checks against the target
7449 * profile instead of the current one.
7450 */
7451 ret = -1;
7452
7453 /*
7454 * index:
7455 * 0: raid10
7456 * 1: raid1
7457 * 2: dup
7458 * 3: raid0
7459 * 4: single
7460 */
7461 target = get_restripe_target(root->fs_info, block_group->flags);
7462 if (target) {
7463 index = __get_block_group_index(extended_to_chunk(target));
7464 } else {
7465 /*
7466 * this is just a balance, so if we were marked as full
7467 * we know there is no space for a new chunk
7468 */
7469 if (full)
7470 goto out;
7471
7472 index = get_block_group_index(block_group);
7473 }
7474
7475 if (index == 0) {
7476 dev_min = 4;
7477 /* Divide by 2 */
7478 min_free >>= 1;
7479 } else if (index == 1) {
7480 dev_min = 2;
7481 } else if (index == 2) {
7482 /* Multiply by 2 */
7483 min_free <<= 1;
7484 } else if (index == 3) {
7485 dev_min = fs_devices->rw_devices;
7486 do_div(min_free, dev_min);
7487 }
7488
7489 mutex_lock(&root->fs_info->chunk_mutex);
7490 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7491 u64 dev_offset;
7492
7493 /*
7494 * check to make sure we can actually find a chunk with enough
7495 * space to fit our block group in.
7496 */
7497 if (device->total_bytes > device->bytes_used + min_free) {
7498 ret = find_free_dev_extent(device, min_free,
7499 &dev_offset, NULL);
7500 if (!ret)
7501 dev_nr++;
7502
7503 if (dev_nr >= dev_min)
7504 break;
7505
7506 ret = -1;
7507 }
7508 }
7509 mutex_unlock(&root->fs_info->chunk_mutex);
7510 out:
7511 btrfs_put_block_group(block_group);
7512 return ret;
7513 }
7514
7515 static int find_first_block_group(struct btrfs_root *root,
7516 struct btrfs_path *path, struct btrfs_key *key)
7517 {
7518 int ret = 0;
7519 struct btrfs_key found_key;
7520 struct extent_buffer *leaf;
7521 int slot;
7522
7523 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7524 if (ret < 0)
7525 goto out;
7526
7527 while (1) {
7528 slot = path->slots[0];
7529 leaf = path->nodes[0];
7530 if (slot >= btrfs_header_nritems(leaf)) {
7531 ret = btrfs_next_leaf(root, path);
7532 if (ret == 0)
7533 continue;
7534 if (ret < 0)
7535 goto out;
7536 break;
7537 }
7538 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7539
7540 if (found_key.objectid >= key->objectid &&
7541 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7542 ret = 0;
7543 goto out;
7544 }
7545 path->slots[0]++;
7546 }
7547 out:
7548 return ret;
7549 }
7550
7551 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7552 {
7553 struct btrfs_block_group_cache *block_group;
7554 u64 last = 0;
7555
7556 while (1) {
7557 struct inode *inode;
7558
7559 block_group = btrfs_lookup_first_block_group(info, last);
7560 while (block_group) {
7561 spin_lock(&block_group->lock);
7562 if (block_group->iref)
7563 break;
7564 spin_unlock(&block_group->lock);
7565 block_group = next_block_group(info->tree_root,
7566 block_group);
7567 }
7568 if (!block_group) {
7569 if (last == 0)
7570 break;
7571 last = 0;
7572 continue;
7573 }
7574
7575 inode = block_group->inode;
7576 block_group->iref = 0;
7577 block_group->inode = NULL;
7578 spin_unlock(&block_group->lock);
7579 iput(inode);
7580 last = block_group->key.objectid + block_group->key.offset;
7581 btrfs_put_block_group(block_group);
7582 }
7583 }
7584
7585 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7586 {
7587 struct btrfs_block_group_cache *block_group;
7588 struct btrfs_space_info *space_info;
7589 struct btrfs_caching_control *caching_ctl;
7590 struct rb_node *n;
7591
7592 down_write(&info->extent_commit_sem);
7593 while (!list_empty(&info->caching_block_groups)) {
7594 caching_ctl = list_entry(info->caching_block_groups.next,
7595 struct btrfs_caching_control, list);
7596 list_del(&caching_ctl->list);
7597 put_caching_control(caching_ctl);
7598 }
7599 up_write(&info->extent_commit_sem);
7600
7601 spin_lock(&info->block_group_cache_lock);
7602 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7603 block_group = rb_entry(n, struct btrfs_block_group_cache,
7604 cache_node);
7605 rb_erase(&block_group->cache_node,
7606 &info->block_group_cache_tree);
7607 spin_unlock(&info->block_group_cache_lock);
7608
7609 down_write(&block_group->space_info->groups_sem);
7610 list_del(&block_group->list);
7611 up_write(&block_group->space_info->groups_sem);
7612
7613 if (block_group->cached == BTRFS_CACHE_STARTED)
7614 wait_block_group_cache_done(block_group);
7615
7616 /*
7617 * We haven't cached this block group, which means we could
7618 * possibly have excluded extents on this block group.
7619 */
7620 if (block_group->cached == BTRFS_CACHE_NO)
7621 free_excluded_extents(info->extent_root, block_group);
7622
7623 btrfs_remove_free_space_cache(block_group);
7624 btrfs_put_block_group(block_group);
7625
7626 spin_lock(&info->block_group_cache_lock);
7627 }
7628 spin_unlock(&info->block_group_cache_lock);
7629
7630 /* now that all the block groups are freed, go through and
7631 * free all the space_info structs. This is only called during
7632 * the final stages of unmount, and so we know nobody is
7633 * using them. We call synchronize_rcu() once before we start,
7634 * just to be on the safe side.
7635 */
7636 synchronize_rcu();
7637
7638 release_global_block_rsv(info);
7639
7640 while(!list_empty(&info->space_info)) {
7641 space_info = list_entry(info->space_info.next,
7642 struct btrfs_space_info,
7643 list);
7644 if (space_info->bytes_pinned > 0 ||
7645 space_info->bytes_reserved > 0 ||
7646 space_info->bytes_may_use > 0) {
7647 WARN_ON(1);
7648 dump_space_info(space_info, 0, 0);
7649 }
7650 list_del(&space_info->list);
7651 kfree(space_info);
7652 }
7653 return 0;
7654 }
7655
7656 static void __link_block_group(struct btrfs_space_info *space_info,
7657 struct btrfs_block_group_cache *cache)
7658 {
7659 int index = get_block_group_index(cache);
7660
7661 down_write(&space_info->groups_sem);
7662 list_add_tail(&cache->list, &space_info->block_groups[index]);
7663 up_write(&space_info->groups_sem);
7664 }
7665
7666 int btrfs_read_block_groups(struct btrfs_root *root)
7667 {
7668 struct btrfs_path *path;
7669 int ret;
7670 struct btrfs_block_group_cache *cache;
7671 struct btrfs_fs_info *info = root->fs_info;
7672 struct btrfs_space_info *space_info;
7673 struct btrfs_key key;
7674 struct btrfs_key found_key;
7675 struct extent_buffer *leaf;
7676 int need_clear = 0;
7677 u64 cache_gen;
7678
7679 root = info->extent_root;
7680 key.objectid = 0;
7681 key.offset = 0;
7682 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7683 path = btrfs_alloc_path();
7684 if (!path)
7685 return -ENOMEM;
7686 path->reada = 1;
7687
7688 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7689 if (btrfs_test_opt(root, SPACE_CACHE) &&
7690 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7691 need_clear = 1;
7692 if (btrfs_test_opt(root, CLEAR_CACHE))
7693 need_clear = 1;
7694
7695 while (1) {
7696 ret = find_first_block_group(root, path, &key);
7697 if (ret > 0)
7698 break;
7699 if (ret != 0)
7700 goto error;
7701 leaf = path->nodes[0];
7702 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7703 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7704 if (!cache) {
7705 ret = -ENOMEM;
7706 goto error;
7707 }
7708 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7709 GFP_NOFS);
7710 if (!cache->free_space_ctl) {
7711 kfree(cache);
7712 ret = -ENOMEM;
7713 goto error;
7714 }
7715
7716 atomic_set(&cache->count, 1);
7717 spin_lock_init(&cache->lock);
7718 cache->fs_info = info;
7719 INIT_LIST_HEAD(&cache->list);
7720 INIT_LIST_HEAD(&cache->cluster_list);
7721
7722 if (need_clear) {
7723 /*
7724 * When we mount with old space cache, we need to
7725 * set BTRFS_DC_CLEAR and set dirty flag.
7726 *
7727 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7728 * truncate the old free space cache inode and
7729 * setup a new one.
7730 * b) Setting 'dirty flag' makes sure that we flush
7731 * the new space cache info onto disk.
7732 */
7733 cache->disk_cache_state = BTRFS_DC_CLEAR;
7734 if (btrfs_test_opt(root, SPACE_CACHE))
7735 cache->dirty = 1;
7736 }
7737
7738 read_extent_buffer(leaf, &cache->item,
7739 btrfs_item_ptr_offset(leaf, path->slots[0]),
7740 sizeof(cache->item));
7741 memcpy(&cache->key, &found_key, sizeof(found_key));
7742
7743 key.objectid = found_key.objectid + found_key.offset;
7744 btrfs_release_path(path);
7745 cache->flags = btrfs_block_group_flags(&cache->item);
7746 cache->sectorsize = root->sectorsize;
7747
7748 btrfs_init_free_space_ctl(cache);
7749
7750 /*
7751 * We need to exclude the super stripes now so that the space
7752 * info has super bytes accounted for, otherwise we'll think
7753 * we have more space than we actually do.
7754 */
7755 exclude_super_stripes(root, cache);
7756
7757 /*
7758 * check for two cases, either we are full, and therefore
7759 * don't need to bother with the caching work since we won't
7760 * find any space, or we are empty, and we can just add all
7761 * the space in and be done with it. This saves us _alot_ of
7762 * time, particularly in the full case.
7763 */
7764 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7765 cache->last_byte_to_unpin = (u64)-1;
7766 cache->cached = BTRFS_CACHE_FINISHED;
7767 free_excluded_extents(root, cache);
7768 } else if (btrfs_block_group_used(&cache->item) == 0) {
7769 cache->last_byte_to_unpin = (u64)-1;
7770 cache->cached = BTRFS_CACHE_FINISHED;
7771 add_new_free_space(cache, root->fs_info,
7772 found_key.objectid,
7773 found_key.objectid +
7774 found_key.offset);
7775 free_excluded_extents(root, cache);
7776 }
7777
7778 ret = update_space_info(info, cache->flags, found_key.offset,
7779 btrfs_block_group_used(&cache->item),
7780 &space_info);
7781 BUG_ON(ret); /* -ENOMEM */
7782 cache->space_info = space_info;
7783 spin_lock(&cache->space_info->lock);
7784 cache->space_info->bytes_readonly += cache->bytes_super;
7785 spin_unlock(&cache->space_info->lock);
7786
7787 __link_block_group(space_info, cache);
7788
7789 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7790 BUG_ON(ret); /* Logic error */
7791
7792 set_avail_alloc_bits(root->fs_info, cache->flags);
7793 if (btrfs_chunk_readonly(root, cache->key.objectid))
7794 set_block_group_ro(cache, 1);
7795 }
7796
7797 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7798 if (!(get_alloc_profile(root, space_info->flags) &
7799 (BTRFS_BLOCK_GROUP_RAID10 |
7800 BTRFS_BLOCK_GROUP_RAID1 |
7801 BTRFS_BLOCK_GROUP_DUP)))
7802 continue;
7803 /*
7804 * avoid allocating from un-mirrored block group if there are
7805 * mirrored block groups.
7806 */
7807 list_for_each_entry(cache, &space_info->block_groups[3], list)
7808 set_block_group_ro(cache, 1);
7809 list_for_each_entry(cache, &space_info->block_groups[4], list)
7810 set_block_group_ro(cache, 1);
7811 }
7812
7813 init_global_block_rsv(info);
7814 ret = 0;
7815 error:
7816 btrfs_free_path(path);
7817 return ret;
7818 }
7819
7820 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7821 struct btrfs_root *root, u64 bytes_used,
7822 u64 type, u64 chunk_objectid, u64 chunk_offset,
7823 u64 size)
7824 {
7825 int ret;
7826 struct btrfs_root *extent_root;
7827 struct btrfs_block_group_cache *cache;
7828
7829 extent_root = root->fs_info->extent_root;
7830
7831 root->fs_info->last_trans_log_full_commit = trans->transid;
7832
7833 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7834 if (!cache)
7835 return -ENOMEM;
7836 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7837 GFP_NOFS);
7838 if (!cache->free_space_ctl) {
7839 kfree(cache);
7840 return -ENOMEM;
7841 }
7842
7843 cache->key.objectid = chunk_offset;
7844 cache->key.offset = size;
7845 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7846 cache->sectorsize = root->sectorsize;
7847 cache->fs_info = root->fs_info;
7848
7849 atomic_set(&cache->count, 1);
7850 spin_lock_init(&cache->lock);
7851 INIT_LIST_HEAD(&cache->list);
7852 INIT_LIST_HEAD(&cache->cluster_list);
7853
7854 btrfs_init_free_space_ctl(cache);
7855
7856 btrfs_set_block_group_used(&cache->item, bytes_used);
7857 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7858 cache->flags = type;
7859 btrfs_set_block_group_flags(&cache->item, type);
7860
7861 cache->last_byte_to_unpin = (u64)-1;
7862 cache->cached = BTRFS_CACHE_FINISHED;
7863 exclude_super_stripes(root, cache);
7864
7865 add_new_free_space(cache, root->fs_info, chunk_offset,
7866 chunk_offset + size);
7867
7868 free_excluded_extents(root, cache);
7869
7870 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7871 &cache->space_info);
7872 BUG_ON(ret); /* -ENOMEM */
7873 update_global_block_rsv(root->fs_info);
7874
7875 spin_lock(&cache->space_info->lock);
7876 cache->space_info->bytes_readonly += cache->bytes_super;
7877 spin_unlock(&cache->space_info->lock);
7878
7879 __link_block_group(cache->space_info, cache);
7880
7881 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7882 BUG_ON(ret); /* Logic error */
7883
7884 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7885 sizeof(cache->item));
7886 if (ret) {
7887 btrfs_abort_transaction(trans, extent_root, ret);
7888 return ret;
7889 }
7890
7891 set_avail_alloc_bits(extent_root->fs_info, type);
7892
7893 return 0;
7894 }
7895
7896 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7897 {
7898 u64 extra_flags = chunk_to_extended(flags) &
7899 BTRFS_EXTENDED_PROFILE_MASK;
7900
7901 if (flags & BTRFS_BLOCK_GROUP_DATA)
7902 fs_info->avail_data_alloc_bits &= ~extra_flags;
7903 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7904 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7905 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7906 fs_info->avail_system_alloc_bits &= ~extra_flags;
7907 }
7908
7909 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7910 struct btrfs_root *root, u64 group_start)
7911 {
7912 struct btrfs_path *path;
7913 struct btrfs_block_group_cache *block_group;
7914 struct btrfs_free_cluster *cluster;
7915 struct btrfs_root *tree_root = root->fs_info->tree_root;
7916 struct btrfs_key key;
7917 struct inode *inode;
7918 int ret;
7919 int index;
7920 int factor;
7921
7922 root = root->fs_info->extent_root;
7923
7924 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7925 BUG_ON(!block_group);
7926 BUG_ON(!block_group->ro);
7927
7928 /*
7929 * Free the reserved super bytes from this block group before
7930 * remove it.
7931 */
7932 free_excluded_extents(root, block_group);
7933
7934 memcpy(&key, &block_group->key, sizeof(key));
7935 index = get_block_group_index(block_group);
7936 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7937 BTRFS_BLOCK_GROUP_RAID1 |
7938 BTRFS_BLOCK_GROUP_RAID10))
7939 factor = 2;
7940 else
7941 factor = 1;
7942
7943 /* make sure this block group isn't part of an allocation cluster */
7944 cluster = &root->fs_info->data_alloc_cluster;
7945 spin_lock(&cluster->refill_lock);
7946 btrfs_return_cluster_to_free_space(block_group, cluster);
7947 spin_unlock(&cluster->refill_lock);
7948
7949 /*
7950 * make sure this block group isn't part of a metadata
7951 * allocation cluster
7952 */
7953 cluster = &root->fs_info->meta_alloc_cluster;
7954 spin_lock(&cluster->refill_lock);
7955 btrfs_return_cluster_to_free_space(block_group, cluster);
7956 spin_unlock(&cluster->refill_lock);
7957
7958 path = btrfs_alloc_path();
7959 if (!path) {
7960 ret = -ENOMEM;
7961 goto out;
7962 }
7963
7964 inode = lookup_free_space_inode(tree_root, block_group, path);
7965 if (!IS_ERR(inode)) {
7966 ret = btrfs_orphan_add(trans, inode);
7967 if (ret) {
7968 btrfs_add_delayed_iput(inode);
7969 goto out;
7970 }
7971 clear_nlink(inode);
7972 /* One for the block groups ref */
7973 spin_lock(&block_group->lock);
7974 if (block_group->iref) {
7975 block_group->iref = 0;
7976 block_group->inode = NULL;
7977 spin_unlock(&block_group->lock);
7978 iput(inode);
7979 } else {
7980 spin_unlock(&block_group->lock);
7981 }
7982 /* One for our lookup ref */
7983 btrfs_add_delayed_iput(inode);
7984 }
7985
7986 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7987 key.offset = block_group->key.objectid;
7988 key.type = 0;
7989
7990 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7991 if (ret < 0)
7992 goto out;
7993 if (ret > 0)
7994 btrfs_release_path(path);
7995 if (ret == 0) {
7996 ret = btrfs_del_item(trans, tree_root, path);
7997 if (ret)
7998 goto out;
7999 btrfs_release_path(path);
8000 }
8001
8002 spin_lock(&root->fs_info->block_group_cache_lock);
8003 rb_erase(&block_group->cache_node,
8004 &root->fs_info->block_group_cache_tree);
8005 spin_unlock(&root->fs_info->block_group_cache_lock);
8006
8007 down_write(&block_group->space_info->groups_sem);
8008 /*
8009 * we must use list_del_init so people can check to see if they
8010 * are still on the list after taking the semaphore
8011 */
8012 list_del_init(&block_group->list);
8013 if (list_empty(&block_group->space_info->block_groups[index]))
8014 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8015 up_write(&block_group->space_info->groups_sem);
8016
8017 if (block_group->cached == BTRFS_CACHE_STARTED)
8018 wait_block_group_cache_done(block_group);
8019
8020 btrfs_remove_free_space_cache(block_group);
8021
8022 spin_lock(&block_group->space_info->lock);
8023 block_group->space_info->total_bytes -= block_group->key.offset;
8024 block_group->space_info->bytes_readonly -= block_group->key.offset;
8025 block_group->space_info->disk_total -= block_group->key.offset * factor;
8026 spin_unlock(&block_group->space_info->lock);
8027
8028 memcpy(&key, &block_group->key, sizeof(key));
8029
8030 btrfs_clear_space_info_full(root->fs_info);
8031
8032 btrfs_put_block_group(block_group);
8033 btrfs_put_block_group(block_group);
8034
8035 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8036 if (ret > 0)
8037 ret = -EIO;
8038 if (ret < 0)
8039 goto out;
8040
8041 ret = btrfs_del_item(trans, root, path);
8042 out:
8043 btrfs_free_path(path);
8044 return ret;
8045 }
8046
8047 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8048 {
8049 struct btrfs_space_info *space_info;
8050 struct btrfs_super_block *disk_super;
8051 u64 features;
8052 u64 flags;
8053 int mixed = 0;
8054 int ret;
8055
8056 disk_super = fs_info->super_copy;
8057 if (!btrfs_super_root(disk_super))
8058 return 1;
8059
8060 features = btrfs_super_incompat_flags(disk_super);
8061 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8062 mixed = 1;
8063
8064 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8065 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8066 if (ret)
8067 goto out;
8068
8069 if (mixed) {
8070 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8071 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8072 } else {
8073 flags = BTRFS_BLOCK_GROUP_METADATA;
8074 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8075 if (ret)
8076 goto out;
8077
8078 flags = BTRFS_BLOCK_GROUP_DATA;
8079 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8080 }
8081 out:
8082 return ret;
8083 }
8084
8085 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8086 {
8087 return unpin_extent_range(root, start, end);
8088 }
8089
8090 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8091 u64 num_bytes, u64 *actual_bytes)
8092 {
8093 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8094 }
8095
8096 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8097 {
8098 struct btrfs_fs_info *fs_info = root->fs_info;
8099 struct btrfs_block_group_cache *cache = NULL;
8100 u64 group_trimmed;
8101 u64 start;
8102 u64 end;
8103 u64 trimmed = 0;
8104 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8105 int ret = 0;
8106
8107 /*
8108 * try to trim all FS space, our block group may start from non-zero.
8109 */
8110 if (range->len == total_bytes)
8111 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8112 else
8113 cache = btrfs_lookup_block_group(fs_info, range->start);
8114
8115 while (cache) {
8116 if (cache->key.objectid >= (range->start + range->len)) {
8117 btrfs_put_block_group(cache);
8118 break;
8119 }
8120
8121 start = max(range->start, cache->key.objectid);
8122 end = min(range->start + range->len,
8123 cache->key.objectid + cache->key.offset);
8124
8125 if (end - start >= range->minlen) {
8126 if (!block_group_cache_done(cache)) {
8127 ret = cache_block_group(cache, NULL, root, 0);
8128 if (!ret)
8129 wait_block_group_cache_done(cache);
8130 }
8131 ret = btrfs_trim_block_group(cache,
8132 &group_trimmed,
8133 start,
8134 end,
8135 range->minlen);
8136
8137 trimmed += group_trimmed;
8138 if (ret) {
8139 btrfs_put_block_group(cache);
8140 break;
8141 }
8142 }
8143
8144 cache = next_block_group(fs_info->tree_root, cache);
8145 }
8146
8147 range->len = trimmed;
8148 return ret;
8149 }
This page took 0.205117 seconds and 6 git commands to generate.