Btrfs: fix memory leak of orphan block rsv
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 (unsigned long long)state->start,
65 (unsigned long long)state->end,
66 state->state, state->tree, atomic_read(&state->refs));
67 list_del(&state->leak_list);
68 kmem_cache_free(extent_state_cache, state);
69 }
70
71 while (!list_empty(&buffers)) {
72 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74 "refs %d\n", (unsigned long long)eb->start,
75 eb->len, atomic_read(&eb->refs));
76 list_del(&eb->leak_list);
77 kmem_cache_free(extent_buffer_cache, eb);
78 }
79 }
80
81 #define btrfs_debug_check_extent_io_range(inode, start, end) \
82 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
84 struct inode *inode, u64 start, u64 end)
85 {
86 u64 isize = i_size_read(inode);
87
88 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
89 printk_ratelimited(KERN_DEBUG
90 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
91 caller,
92 (unsigned long long)btrfs_ino(inode),
93 (unsigned long long)isize,
94 (unsigned long long)start,
95 (unsigned long long)end);
96 }
97 }
98 #else
99 #define btrfs_leak_debug_add(new, head) do {} while (0)
100 #define btrfs_leak_debug_del(entry) do {} while (0)
101 #define btrfs_leak_debug_check() do {} while (0)
102 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
103 #endif
104
105 #define BUFFER_LRU_MAX 64
106
107 struct tree_entry {
108 u64 start;
109 u64 end;
110 struct rb_node rb_node;
111 };
112
113 struct extent_page_data {
114 struct bio *bio;
115 struct extent_io_tree *tree;
116 get_extent_t *get_extent;
117 unsigned long bio_flags;
118
119 /* tells writepage not to lock the state bits for this range
120 * it still does the unlocking
121 */
122 unsigned int extent_locked:1;
123
124 /* tells the submit_bio code to use a WRITE_SYNC */
125 unsigned int sync_io:1;
126 };
127
128 static noinline void flush_write_bio(void *data);
129 static inline struct btrfs_fs_info *
130 tree_fs_info(struct extent_io_tree *tree)
131 {
132 return btrfs_sb(tree->mapping->host->i_sb);
133 }
134
135 int __init extent_io_init(void)
136 {
137 extent_state_cache = kmem_cache_create("btrfs_extent_state",
138 sizeof(struct extent_state), 0,
139 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
140 if (!extent_state_cache)
141 return -ENOMEM;
142
143 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
144 sizeof(struct extent_buffer), 0,
145 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
146 if (!extent_buffer_cache)
147 goto free_state_cache;
148
149 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
150 offsetof(struct btrfs_io_bio, bio));
151 if (!btrfs_bioset)
152 goto free_buffer_cache;
153 return 0;
154
155 free_buffer_cache:
156 kmem_cache_destroy(extent_buffer_cache);
157 extent_buffer_cache = NULL;
158
159 free_state_cache:
160 kmem_cache_destroy(extent_state_cache);
161 extent_state_cache = NULL;
162 return -ENOMEM;
163 }
164
165 void extent_io_exit(void)
166 {
167 btrfs_leak_debug_check();
168
169 /*
170 * Make sure all delayed rcu free are flushed before we
171 * destroy caches.
172 */
173 rcu_barrier();
174 if (extent_state_cache)
175 kmem_cache_destroy(extent_state_cache);
176 if (extent_buffer_cache)
177 kmem_cache_destroy(extent_buffer_cache);
178 if (btrfs_bioset)
179 bioset_free(btrfs_bioset);
180 }
181
182 void extent_io_tree_init(struct extent_io_tree *tree,
183 struct address_space *mapping)
184 {
185 tree->state = RB_ROOT;
186 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
187 tree->ops = NULL;
188 tree->dirty_bytes = 0;
189 spin_lock_init(&tree->lock);
190 spin_lock_init(&tree->buffer_lock);
191 tree->mapping = mapping;
192 }
193
194 static struct extent_state *alloc_extent_state(gfp_t mask)
195 {
196 struct extent_state *state;
197
198 state = kmem_cache_alloc(extent_state_cache, mask);
199 if (!state)
200 return state;
201 state->state = 0;
202 state->private = 0;
203 state->tree = NULL;
204 btrfs_leak_debug_add(&state->leak_list, &states);
205 atomic_set(&state->refs, 1);
206 init_waitqueue_head(&state->wq);
207 trace_alloc_extent_state(state, mask, _RET_IP_);
208 return state;
209 }
210
211 void free_extent_state(struct extent_state *state)
212 {
213 if (!state)
214 return;
215 if (atomic_dec_and_test(&state->refs)) {
216 WARN_ON(state->tree);
217 btrfs_leak_debug_del(&state->leak_list);
218 trace_free_extent_state(state, _RET_IP_);
219 kmem_cache_free(extent_state_cache, state);
220 }
221 }
222
223 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
224 struct rb_node *node)
225 {
226 struct rb_node **p = &root->rb_node;
227 struct rb_node *parent = NULL;
228 struct tree_entry *entry;
229
230 while (*p) {
231 parent = *p;
232 entry = rb_entry(parent, struct tree_entry, rb_node);
233
234 if (offset < entry->start)
235 p = &(*p)->rb_left;
236 else if (offset > entry->end)
237 p = &(*p)->rb_right;
238 else
239 return parent;
240 }
241
242 rb_link_node(node, parent, p);
243 rb_insert_color(node, root);
244 return NULL;
245 }
246
247 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
248 struct rb_node **prev_ret,
249 struct rb_node **next_ret)
250 {
251 struct rb_root *root = &tree->state;
252 struct rb_node *n = root->rb_node;
253 struct rb_node *prev = NULL;
254 struct rb_node *orig_prev = NULL;
255 struct tree_entry *entry;
256 struct tree_entry *prev_entry = NULL;
257
258 while (n) {
259 entry = rb_entry(n, struct tree_entry, rb_node);
260 prev = n;
261 prev_entry = entry;
262
263 if (offset < entry->start)
264 n = n->rb_left;
265 else if (offset > entry->end)
266 n = n->rb_right;
267 else
268 return n;
269 }
270
271 if (prev_ret) {
272 orig_prev = prev;
273 while (prev && offset > prev_entry->end) {
274 prev = rb_next(prev);
275 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
276 }
277 *prev_ret = prev;
278 prev = orig_prev;
279 }
280
281 if (next_ret) {
282 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
283 while (prev && offset < prev_entry->start) {
284 prev = rb_prev(prev);
285 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286 }
287 *next_ret = prev;
288 }
289 return NULL;
290 }
291
292 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
293 u64 offset)
294 {
295 struct rb_node *prev = NULL;
296 struct rb_node *ret;
297
298 ret = __etree_search(tree, offset, &prev, NULL);
299 if (!ret)
300 return prev;
301 return ret;
302 }
303
304 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
305 struct extent_state *other)
306 {
307 if (tree->ops && tree->ops->merge_extent_hook)
308 tree->ops->merge_extent_hook(tree->mapping->host, new,
309 other);
310 }
311
312 /*
313 * utility function to look for merge candidates inside a given range.
314 * Any extents with matching state are merged together into a single
315 * extent in the tree. Extents with EXTENT_IO in their state field
316 * are not merged because the end_io handlers need to be able to do
317 * operations on them without sleeping (or doing allocations/splits).
318 *
319 * This should be called with the tree lock held.
320 */
321 static void merge_state(struct extent_io_tree *tree,
322 struct extent_state *state)
323 {
324 struct extent_state *other;
325 struct rb_node *other_node;
326
327 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
328 return;
329
330 other_node = rb_prev(&state->rb_node);
331 if (other_node) {
332 other = rb_entry(other_node, struct extent_state, rb_node);
333 if (other->end == state->start - 1 &&
334 other->state == state->state) {
335 merge_cb(tree, state, other);
336 state->start = other->start;
337 other->tree = NULL;
338 rb_erase(&other->rb_node, &tree->state);
339 free_extent_state(other);
340 }
341 }
342 other_node = rb_next(&state->rb_node);
343 if (other_node) {
344 other = rb_entry(other_node, struct extent_state, rb_node);
345 if (other->start == state->end + 1 &&
346 other->state == state->state) {
347 merge_cb(tree, state, other);
348 state->end = other->end;
349 other->tree = NULL;
350 rb_erase(&other->rb_node, &tree->state);
351 free_extent_state(other);
352 }
353 }
354 }
355
356 static void set_state_cb(struct extent_io_tree *tree,
357 struct extent_state *state, unsigned long *bits)
358 {
359 if (tree->ops && tree->ops->set_bit_hook)
360 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
361 }
362
363 static void clear_state_cb(struct extent_io_tree *tree,
364 struct extent_state *state, unsigned long *bits)
365 {
366 if (tree->ops && tree->ops->clear_bit_hook)
367 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
368 }
369
370 static void set_state_bits(struct extent_io_tree *tree,
371 struct extent_state *state, unsigned long *bits);
372
373 /*
374 * insert an extent_state struct into the tree. 'bits' are set on the
375 * struct before it is inserted.
376 *
377 * This may return -EEXIST if the extent is already there, in which case the
378 * state struct is freed.
379 *
380 * The tree lock is not taken internally. This is a utility function and
381 * probably isn't what you want to call (see set/clear_extent_bit).
382 */
383 static int insert_state(struct extent_io_tree *tree,
384 struct extent_state *state, u64 start, u64 end,
385 unsigned long *bits)
386 {
387 struct rb_node *node;
388
389 if (end < start)
390 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
391 (unsigned long long)end,
392 (unsigned long long)start);
393 state->start = start;
394 state->end = end;
395
396 set_state_bits(tree, state, bits);
397
398 node = tree_insert(&tree->state, end, &state->rb_node);
399 if (node) {
400 struct extent_state *found;
401 found = rb_entry(node, struct extent_state, rb_node);
402 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
403 "%llu %llu\n", (unsigned long long)found->start,
404 (unsigned long long)found->end,
405 (unsigned long long)start, (unsigned long long)end);
406 return -EEXIST;
407 }
408 state->tree = tree;
409 merge_state(tree, state);
410 return 0;
411 }
412
413 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
414 u64 split)
415 {
416 if (tree->ops && tree->ops->split_extent_hook)
417 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
418 }
419
420 /*
421 * split a given extent state struct in two, inserting the preallocated
422 * struct 'prealloc' as the newly created second half. 'split' indicates an
423 * offset inside 'orig' where it should be split.
424 *
425 * Before calling,
426 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
427 * are two extent state structs in the tree:
428 * prealloc: [orig->start, split - 1]
429 * orig: [ split, orig->end ]
430 *
431 * The tree locks are not taken by this function. They need to be held
432 * by the caller.
433 */
434 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
435 struct extent_state *prealloc, u64 split)
436 {
437 struct rb_node *node;
438
439 split_cb(tree, orig, split);
440
441 prealloc->start = orig->start;
442 prealloc->end = split - 1;
443 prealloc->state = orig->state;
444 orig->start = split;
445
446 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
447 if (node) {
448 free_extent_state(prealloc);
449 return -EEXIST;
450 }
451 prealloc->tree = tree;
452 return 0;
453 }
454
455 static struct extent_state *next_state(struct extent_state *state)
456 {
457 struct rb_node *next = rb_next(&state->rb_node);
458 if (next)
459 return rb_entry(next, struct extent_state, rb_node);
460 else
461 return NULL;
462 }
463
464 /*
465 * utility function to clear some bits in an extent state struct.
466 * it will optionally wake up any one waiting on this state (wake == 1).
467 *
468 * If no bits are set on the state struct after clearing things, the
469 * struct is freed and removed from the tree
470 */
471 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
472 struct extent_state *state,
473 unsigned long *bits, int wake)
474 {
475 struct extent_state *next;
476 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
477
478 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
479 u64 range = state->end - state->start + 1;
480 WARN_ON(range > tree->dirty_bytes);
481 tree->dirty_bytes -= range;
482 }
483 clear_state_cb(tree, state, bits);
484 state->state &= ~bits_to_clear;
485 if (wake)
486 wake_up(&state->wq);
487 if (state->state == 0) {
488 next = next_state(state);
489 if (state->tree) {
490 rb_erase(&state->rb_node, &tree->state);
491 state->tree = NULL;
492 free_extent_state(state);
493 } else {
494 WARN_ON(1);
495 }
496 } else {
497 merge_state(tree, state);
498 next = next_state(state);
499 }
500 return next;
501 }
502
503 static struct extent_state *
504 alloc_extent_state_atomic(struct extent_state *prealloc)
505 {
506 if (!prealloc)
507 prealloc = alloc_extent_state(GFP_ATOMIC);
508
509 return prealloc;
510 }
511
512 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
513 {
514 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
515 "Extent tree was modified by another "
516 "thread while locked.");
517 }
518
519 /*
520 * clear some bits on a range in the tree. This may require splitting
521 * or inserting elements in the tree, so the gfp mask is used to
522 * indicate which allocations or sleeping are allowed.
523 *
524 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
525 * the given range from the tree regardless of state (ie for truncate).
526 *
527 * the range [start, end] is inclusive.
528 *
529 * This takes the tree lock, and returns 0 on success and < 0 on error.
530 */
531 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
532 unsigned long bits, int wake, int delete,
533 struct extent_state **cached_state,
534 gfp_t mask)
535 {
536 struct extent_state *state;
537 struct extent_state *cached;
538 struct extent_state *prealloc = NULL;
539 struct rb_node *node;
540 u64 last_end;
541 int err;
542 int clear = 0;
543
544 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
545
546 if (bits & EXTENT_DELALLOC)
547 bits |= EXTENT_NORESERVE;
548
549 if (delete)
550 bits |= ~EXTENT_CTLBITS;
551 bits |= EXTENT_FIRST_DELALLOC;
552
553 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
554 clear = 1;
555 again:
556 if (!prealloc && (mask & __GFP_WAIT)) {
557 prealloc = alloc_extent_state(mask);
558 if (!prealloc)
559 return -ENOMEM;
560 }
561
562 spin_lock(&tree->lock);
563 if (cached_state) {
564 cached = *cached_state;
565
566 if (clear) {
567 *cached_state = NULL;
568 cached_state = NULL;
569 }
570
571 if (cached && cached->tree && cached->start <= start &&
572 cached->end > start) {
573 if (clear)
574 atomic_dec(&cached->refs);
575 state = cached;
576 goto hit_next;
577 }
578 if (clear)
579 free_extent_state(cached);
580 }
581 /*
582 * this search will find the extents that end after
583 * our range starts
584 */
585 node = tree_search(tree, start);
586 if (!node)
587 goto out;
588 state = rb_entry(node, struct extent_state, rb_node);
589 hit_next:
590 if (state->start > end)
591 goto out;
592 WARN_ON(state->end < start);
593 last_end = state->end;
594
595 /* the state doesn't have the wanted bits, go ahead */
596 if (!(state->state & bits)) {
597 state = next_state(state);
598 goto next;
599 }
600
601 /*
602 * | ---- desired range ---- |
603 * | state | or
604 * | ------------- state -------------- |
605 *
606 * We need to split the extent we found, and may flip
607 * bits on second half.
608 *
609 * If the extent we found extends past our range, we
610 * just split and search again. It'll get split again
611 * the next time though.
612 *
613 * If the extent we found is inside our range, we clear
614 * the desired bit on it.
615 */
616
617 if (state->start < start) {
618 prealloc = alloc_extent_state_atomic(prealloc);
619 BUG_ON(!prealloc);
620 err = split_state(tree, state, prealloc, start);
621 if (err)
622 extent_io_tree_panic(tree, err);
623
624 prealloc = NULL;
625 if (err)
626 goto out;
627 if (state->end <= end) {
628 state = clear_state_bit(tree, state, &bits, wake);
629 goto next;
630 }
631 goto search_again;
632 }
633 /*
634 * | ---- desired range ---- |
635 * | state |
636 * We need to split the extent, and clear the bit
637 * on the first half
638 */
639 if (state->start <= end && state->end > end) {
640 prealloc = alloc_extent_state_atomic(prealloc);
641 BUG_ON(!prealloc);
642 err = split_state(tree, state, prealloc, end + 1);
643 if (err)
644 extent_io_tree_panic(tree, err);
645
646 if (wake)
647 wake_up(&state->wq);
648
649 clear_state_bit(tree, prealloc, &bits, wake);
650
651 prealloc = NULL;
652 goto out;
653 }
654
655 state = clear_state_bit(tree, state, &bits, wake);
656 next:
657 if (last_end == (u64)-1)
658 goto out;
659 start = last_end + 1;
660 if (start <= end && state && !need_resched())
661 goto hit_next;
662 goto search_again;
663
664 out:
665 spin_unlock(&tree->lock);
666 if (prealloc)
667 free_extent_state(prealloc);
668
669 return 0;
670
671 search_again:
672 if (start > end)
673 goto out;
674 spin_unlock(&tree->lock);
675 if (mask & __GFP_WAIT)
676 cond_resched();
677 goto again;
678 }
679
680 static void wait_on_state(struct extent_io_tree *tree,
681 struct extent_state *state)
682 __releases(tree->lock)
683 __acquires(tree->lock)
684 {
685 DEFINE_WAIT(wait);
686 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
687 spin_unlock(&tree->lock);
688 schedule();
689 spin_lock(&tree->lock);
690 finish_wait(&state->wq, &wait);
691 }
692
693 /*
694 * waits for one or more bits to clear on a range in the state tree.
695 * The range [start, end] is inclusive.
696 * The tree lock is taken by this function
697 */
698 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699 unsigned long bits)
700 {
701 struct extent_state *state;
702 struct rb_node *node;
703
704 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
705
706 spin_lock(&tree->lock);
707 again:
708 while (1) {
709 /*
710 * this search will find all the extents that end after
711 * our range starts
712 */
713 node = tree_search(tree, start);
714 if (!node)
715 break;
716
717 state = rb_entry(node, struct extent_state, rb_node);
718
719 if (state->start > end)
720 goto out;
721
722 if (state->state & bits) {
723 start = state->start;
724 atomic_inc(&state->refs);
725 wait_on_state(tree, state);
726 free_extent_state(state);
727 goto again;
728 }
729 start = state->end + 1;
730
731 if (start > end)
732 break;
733
734 cond_resched_lock(&tree->lock);
735 }
736 out:
737 spin_unlock(&tree->lock);
738 }
739
740 static void set_state_bits(struct extent_io_tree *tree,
741 struct extent_state *state,
742 unsigned long *bits)
743 {
744 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
745
746 set_state_cb(tree, state, bits);
747 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
748 u64 range = state->end - state->start + 1;
749 tree->dirty_bytes += range;
750 }
751 state->state |= bits_to_set;
752 }
753
754 static void cache_state(struct extent_state *state,
755 struct extent_state **cached_ptr)
756 {
757 if (cached_ptr && !(*cached_ptr)) {
758 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
759 *cached_ptr = state;
760 atomic_inc(&state->refs);
761 }
762 }
763 }
764
765 /*
766 * set some bits on a range in the tree. This may require allocations or
767 * sleeping, so the gfp mask is used to indicate what is allowed.
768 *
769 * If any of the exclusive bits are set, this will fail with -EEXIST if some
770 * part of the range already has the desired bits set. The start of the
771 * existing range is returned in failed_start in this case.
772 *
773 * [start, end] is inclusive This takes the tree lock.
774 */
775
776 static int __must_check
777 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
778 unsigned long bits, unsigned long exclusive_bits,
779 u64 *failed_start, struct extent_state **cached_state,
780 gfp_t mask)
781 {
782 struct extent_state *state;
783 struct extent_state *prealloc = NULL;
784 struct rb_node *node;
785 int err = 0;
786 u64 last_start;
787 u64 last_end;
788
789 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
790
791 bits |= EXTENT_FIRST_DELALLOC;
792 again:
793 if (!prealloc && (mask & __GFP_WAIT)) {
794 prealloc = alloc_extent_state(mask);
795 BUG_ON(!prealloc);
796 }
797
798 spin_lock(&tree->lock);
799 if (cached_state && *cached_state) {
800 state = *cached_state;
801 if (state->start <= start && state->end > start &&
802 state->tree) {
803 node = &state->rb_node;
804 goto hit_next;
805 }
806 }
807 /*
808 * this search will find all the extents that end after
809 * our range starts.
810 */
811 node = tree_search(tree, start);
812 if (!node) {
813 prealloc = alloc_extent_state_atomic(prealloc);
814 BUG_ON(!prealloc);
815 err = insert_state(tree, prealloc, start, end, &bits);
816 if (err)
817 extent_io_tree_panic(tree, err);
818
819 prealloc = NULL;
820 goto out;
821 }
822 state = rb_entry(node, struct extent_state, rb_node);
823 hit_next:
824 last_start = state->start;
825 last_end = state->end;
826
827 /*
828 * | ---- desired range ---- |
829 * | state |
830 *
831 * Just lock what we found and keep going
832 */
833 if (state->start == start && state->end <= end) {
834 if (state->state & exclusive_bits) {
835 *failed_start = state->start;
836 err = -EEXIST;
837 goto out;
838 }
839
840 set_state_bits(tree, state, &bits);
841 cache_state(state, cached_state);
842 merge_state(tree, state);
843 if (last_end == (u64)-1)
844 goto out;
845 start = last_end + 1;
846 state = next_state(state);
847 if (start < end && state && state->start == start &&
848 !need_resched())
849 goto hit_next;
850 goto search_again;
851 }
852
853 /*
854 * | ---- desired range ---- |
855 * | state |
856 * or
857 * | ------------- state -------------- |
858 *
859 * We need to split the extent we found, and may flip bits on
860 * second half.
861 *
862 * If the extent we found extends past our
863 * range, we just split and search again. It'll get split
864 * again the next time though.
865 *
866 * If the extent we found is inside our range, we set the
867 * desired bit on it.
868 */
869 if (state->start < start) {
870 if (state->state & exclusive_bits) {
871 *failed_start = start;
872 err = -EEXIST;
873 goto out;
874 }
875
876 prealloc = alloc_extent_state_atomic(prealloc);
877 BUG_ON(!prealloc);
878 err = split_state(tree, state, prealloc, start);
879 if (err)
880 extent_io_tree_panic(tree, err);
881
882 prealloc = NULL;
883 if (err)
884 goto out;
885 if (state->end <= end) {
886 set_state_bits(tree, state, &bits);
887 cache_state(state, cached_state);
888 merge_state(tree, state);
889 if (last_end == (u64)-1)
890 goto out;
891 start = last_end + 1;
892 state = next_state(state);
893 if (start < end && state && state->start == start &&
894 !need_resched())
895 goto hit_next;
896 }
897 goto search_again;
898 }
899 /*
900 * | ---- desired range ---- |
901 * | state | or | state |
902 *
903 * There's a hole, we need to insert something in it and
904 * ignore the extent we found.
905 */
906 if (state->start > start) {
907 u64 this_end;
908 if (end < last_start)
909 this_end = end;
910 else
911 this_end = last_start - 1;
912
913 prealloc = alloc_extent_state_atomic(prealloc);
914 BUG_ON(!prealloc);
915
916 /*
917 * Avoid to free 'prealloc' if it can be merged with
918 * the later extent.
919 */
920 err = insert_state(tree, prealloc, start, this_end,
921 &bits);
922 if (err)
923 extent_io_tree_panic(tree, err);
924
925 cache_state(prealloc, cached_state);
926 prealloc = NULL;
927 start = this_end + 1;
928 goto search_again;
929 }
930 /*
931 * | ---- desired range ---- |
932 * | state |
933 * We need to split the extent, and set the bit
934 * on the first half
935 */
936 if (state->start <= end && state->end > end) {
937 if (state->state & exclusive_bits) {
938 *failed_start = start;
939 err = -EEXIST;
940 goto out;
941 }
942
943 prealloc = alloc_extent_state_atomic(prealloc);
944 BUG_ON(!prealloc);
945 err = split_state(tree, state, prealloc, end + 1);
946 if (err)
947 extent_io_tree_panic(tree, err);
948
949 set_state_bits(tree, prealloc, &bits);
950 cache_state(prealloc, cached_state);
951 merge_state(tree, prealloc);
952 prealloc = NULL;
953 goto out;
954 }
955
956 goto search_again;
957
958 out:
959 spin_unlock(&tree->lock);
960 if (prealloc)
961 free_extent_state(prealloc);
962
963 return err;
964
965 search_again:
966 if (start > end)
967 goto out;
968 spin_unlock(&tree->lock);
969 if (mask & __GFP_WAIT)
970 cond_resched();
971 goto again;
972 }
973
974 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
975 unsigned long bits, u64 * failed_start,
976 struct extent_state **cached_state, gfp_t mask)
977 {
978 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
979 cached_state, mask);
980 }
981
982
983 /**
984 * convert_extent_bit - convert all bits in a given range from one bit to
985 * another
986 * @tree: the io tree to search
987 * @start: the start offset in bytes
988 * @end: the end offset in bytes (inclusive)
989 * @bits: the bits to set in this range
990 * @clear_bits: the bits to clear in this range
991 * @cached_state: state that we're going to cache
992 * @mask: the allocation mask
993 *
994 * This will go through and set bits for the given range. If any states exist
995 * already in this range they are set with the given bit and cleared of the
996 * clear_bits. This is only meant to be used by things that are mergeable, ie
997 * converting from say DELALLOC to DIRTY. This is not meant to be used with
998 * boundary bits like LOCK.
999 */
1000 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1001 unsigned long bits, unsigned long clear_bits,
1002 struct extent_state **cached_state, gfp_t mask)
1003 {
1004 struct extent_state *state;
1005 struct extent_state *prealloc = NULL;
1006 struct rb_node *node;
1007 int err = 0;
1008 u64 last_start;
1009 u64 last_end;
1010
1011 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1012
1013 again:
1014 if (!prealloc && (mask & __GFP_WAIT)) {
1015 prealloc = alloc_extent_state(mask);
1016 if (!prealloc)
1017 return -ENOMEM;
1018 }
1019
1020 spin_lock(&tree->lock);
1021 if (cached_state && *cached_state) {
1022 state = *cached_state;
1023 if (state->start <= start && state->end > start &&
1024 state->tree) {
1025 node = &state->rb_node;
1026 goto hit_next;
1027 }
1028 }
1029
1030 /*
1031 * this search will find all the extents that end after
1032 * our range starts.
1033 */
1034 node = tree_search(tree, start);
1035 if (!node) {
1036 prealloc = alloc_extent_state_atomic(prealloc);
1037 if (!prealloc) {
1038 err = -ENOMEM;
1039 goto out;
1040 }
1041 err = insert_state(tree, prealloc, start, end, &bits);
1042 prealloc = NULL;
1043 if (err)
1044 extent_io_tree_panic(tree, err);
1045 goto out;
1046 }
1047 state = rb_entry(node, struct extent_state, rb_node);
1048 hit_next:
1049 last_start = state->start;
1050 last_end = state->end;
1051
1052 /*
1053 * | ---- desired range ---- |
1054 * | state |
1055 *
1056 * Just lock what we found and keep going
1057 */
1058 if (state->start == start && state->end <= end) {
1059 set_state_bits(tree, state, &bits);
1060 cache_state(state, cached_state);
1061 state = clear_state_bit(tree, state, &clear_bits, 0);
1062 if (last_end == (u64)-1)
1063 goto out;
1064 start = last_end + 1;
1065 if (start < end && state && state->start == start &&
1066 !need_resched())
1067 goto hit_next;
1068 goto search_again;
1069 }
1070
1071 /*
1072 * | ---- desired range ---- |
1073 * | state |
1074 * or
1075 * | ------------- state -------------- |
1076 *
1077 * We need to split the extent we found, and may flip bits on
1078 * second half.
1079 *
1080 * If the extent we found extends past our
1081 * range, we just split and search again. It'll get split
1082 * again the next time though.
1083 *
1084 * If the extent we found is inside our range, we set the
1085 * desired bit on it.
1086 */
1087 if (state->start < start) {
1088 prealloc = alloc_extent_state_atomic(prealloc);
1089 if (!prealloc) {
1090 err = -ENOMEM;
1091 goto out;
1092 }
1093 err = split_state(tree, state, prealloc, start);
1094 if (err)
1095 extent_io_tree_panic(tree, err);
1096 prealloc = NULL;
1097 if (err)
1098 goto out;
1099 if (state->end <= end) {
1100 set_state_bits(tree, state, &bits);
1101 cache_state(state, cached_state);
1102 state = clear_state_bit(tree, state, &clear_bits, 0);
1103 if (last_end == (u64)-1)
1104 goto out;
1105 start = last_end + 1;
1106 if (start < end && state && state->start == start &&
1107 !need_resched())
1108 goto hit_next;
1109 }
1110 goto search_again;
1111 }
1112 /*
1113 * | ---- desired range ---- |
1114 * | state | or | state |
1115 *
1116 * There's a hole, we need to insert something in it and
1117 * ignore the extent we found.
1118 */
1119 if (state->start > start) {
1120 u64 this_end;
1121 if (end < last_start)
1122 this_end = end;
1123 else
1124 this_end = last_start - 1;
1125
1126 prealloc = alloc_extent_state_atomic(prealloc);
1127 if (!prealloc) {
1128 err = -ENOMEM;
1129 goto out;
1130 }
1131
1132 /*
1133 * Avoid to free 'prealloc' if it can be merged with
1134 * the later extent.
1135 */
1136 err = insert_state(tree, prealloc, start, this_end,
1137 &bits);
1138 if (err)
1139 extent_io_tree_panic(tree, err);
1140 cache_state(prealloc, cached_state);
1141 prealloc = NULL;
1142 start = this_end + 1;
1143 goto search_again;
1144 }
1145 /*
1146 * | ---- desired range ---- |
1147 * | state |
1148 * We need to split the extent, and set the bit
1149 * on the first half
1150 */
1151 if (state->start <= end && state->end > end) {
1152 prealloc = alloc_extent_state_atomic(prealloc);
1153 if (!prealloc) {
1154 err = -ENOMEM;
1155 goto out;
1156 }
1157
1158 err = split_state(tree, state, prealloc, end + 1);
1159 if (err)
1160 extent_io_tree_panic(tree, err);
1161
1162 set_state_bits(tree, prealloc, &bits);
1163 cache_state(prealloc, cached_state);
1164 clear_state_bit(tree, prealloc, &clear_bits, 0);
1165 prealloc = NULL;
1166 goto out;
1167 }
1168
1169 goto search_again;
1170
1171 out:
1172 spin_unlock(&tree->lock);
1173 if (prealloc)
1174 free_extent_state(prealloc);
1175
1176 return err;
1177
1178 search_again:
1179 if (start > end)
1180 goto out;
1181 spin_unlock(&tree->lock);
1182 if (mask & __GFP_WAIT)
1183 cond_resched();
1184 goto again;
1185 }
1186
1187 /* wrappers around set/clear extent bit */
1188 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1189 gfp_t mask)
1190 {
1191 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1192 NULL, mask);
1193 }
1194
1195 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1196 unsigned long bits, gfp_t mask)
1197 {
1198 return set_extent_bit(tree, start, end, bits, NULL,
1199 NULL, mask);
1200 }
1201
1202 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1203 unsigned long bits, gfp_t mask)
1204 {
1205 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1206 }
1207
1208 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1209 struct extent_state **cached_state, gfp_t mask)
1210 {
1211 return set_extent_bit(tree, start, end,
1212 EXTENT_DELALLOC | EXTENT_UPTODATE,
1213 NULL, cached_state, mask);
1214 }
1215
1216 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1217 struct extent_state **cached_state, gfp_t mask)
1218 {
1219 return set_extent_bit(tree, start, end,
1220 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1221 NULL, cached_state, mask);
1222 }
1223
1224 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1225 gfp_t mask)
1226 {
1227 return clear_extent_bit(tree, start, end,
1228 EXTENT_DIRTY | EXTENT_DELALLOC |
1229 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1230 }
1231
1232 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1233 gfp_t mask)
1234 {
1235 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1236 NULL, mask);
1237 }
1238
1239 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1240 struct extent_state **cached_state, gfp_t mask)
1241 {
1242 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1243 cached_state, mask);
1244 }
1245
1246 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1247 struct extent_state **cached_state, gfp_t mask)
1248 {
1249 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1250 cached_state, mask);
1251 }
1252
1253 /*
1254 * either insert or lock state struct between start and end use mask to tell
1255 * us if waiting is desired.
1256 */
1257 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1258 unsigned long bits, struct extent_state **cached_state)
1259 {
1260 int err;
1261 u64 failed_start;
1262 while (1) {
1263 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1264 EXTENT_LOCKED, &failed_start,
1265 cached_state, GFP_NOFS);
1266 if (err == -EEXIST) {
1267 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1268 start = failed_start;
1269 } else
1270 break;
1271 WARN_ON(start > end);
1272 }
1273 return err;
1274 }
1275
1276 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1277 {
1278 return lock_extent_bits(tree, start, end, 0, NULL);
1279 }
1280
1281 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1282 {
1283 int err;
1284 u64 failed_start;
1285
1286 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1287 &failed_start, NULL, GFP_NOFS);
1288 if (err == -EEXIST) {
1289 if (failed_start > start)
1290 clear_extent_bit(tree, start, failed_start - 1,
1291 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1292 return 0;
1293 }
1294 return 1;
1295 }
1296
1297 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1298 struct extent_state **cached, gfp_t mask)
1299 {
1300 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1301 mask);
1302 }
1303
1304 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1305 {
1306 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1307 GFP_NOFS);
1308 }
1309
1310 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1311 {
1312 unsigned long index = start >> PAGE_CACHE_SHIFT;
1313 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1314 struct page *page;
1315
1316 while (index <= end_index) {
1317 page = find_get_page(inode->i_mapping, index);
1318 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1319 clear_page_dirty_for_io(page);
1320 page_cache_release(page);
1321 index++;
1322 }
1323 return 0;
1324 }
1325
1326 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1327 {
1328 unsigned long index = start >> PAGE_CACHE_SHIFT;
1329 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1330 struct page *page;
1331
1332 while (index <= end_index) {
1333 page = find_get_page(inode->i_mapping, index);
1334 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1335 account_page_redirty(page);
1336 __set_page_dirty_nobuffers(page);
1337 page_cache_release(page);
1338 index++;
1339 }
1340 return 0;
1341 }
1342
1343 /*
1344 * helper function to set both pages and extents in the tree writeback
1345 */
1346 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1347 {
1348 unsigned long index = start >> PAGE_CACHE_SHIFT;
1349 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1350 struct page *page;
1351
1352 while (index <= end_index) {
1353 page = find_get_page(tree->mapping, index);
1354 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1355 set_page_writeback(page);
1356 page_cache_release(page);
1357 index++;
1358 }
1359 return 0;
1360 }
1361
1362 /* find the first state struct with 'bits' set after 'start', and
1363 * return it. tree->lock must be held. NULL will returned if
1364 * nothing was found after 'start'
1365 */
1366 static struct extent_state *
1367 find_first_extent_bit_state(struct extent_io_tree *tree,
1368 u64 start, unsigned long bits)
1369 {
1370 struct rb_node *node;
1371 struct extent_state *state;
1372
1373 /*
1374 * this search will find all the extents that end after
1375 * our range starts.
1376 */
1377 node = tree_search(tree, start);
1378 if (!node)
1379 goto out;
1380
1381 while (1) {
1382 state = rb_entry(node, struct extent_state, rb_node);
1383 if (state->end >= start && (state->state & bits))
1384 return state;
1385
1386 node = rb_next(node);
1387 if (!node)
1388 break;
1389 }
1390 out:
1391 return NULL;
1392 }
1393
1394 /*
1395 * find the first offset in the io tree with 'bits' set. zero is
1396 * returned if we find something, and *start_ret and *end_ret are
1397 * set to reflect the state struct that was found.
1398 *
1399 * If nothing was found, 1 is returned. If found something, return 0.
1400 */
1401 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1402 u64 *start_ret, u64 *end_ret, unsigned long bits,
1403 struct extent_state **cached_state)
1404 {
1405 struct extent_state *state;
1406 struct rb_node *n;
1407 int ret = 1;
1408
1409 spin_lock(&tree->lock);
1410 if (cached_state && *cached_state) {
1411 state = *cached_state;
1412 if (state->end == start - 1 && state->tree) {
1413 n = rb_next(&state->rb_node);
1414 while (n) {
1415 state = rb_entry(n, struct extent_state,
1416 rb_node);
1417 if (state->state & bits)
1418 goto got_it;
1419 n = rb_next(n);
1420 }
1421 free_extent_state(*cached_state);
1422 *cached_state = NULL;
1423 goto out;
1424 }
1425 free_extent_state(*cached_state);
1426 *cached_state = NULL;
1427 }
1428
1429 state = find_first_extent_bit_state(tree, start, bits);
1430 got_it:
1431 if (state) {
1432 cache_state(state, cached_state);
1433 *start_ret = state->start;
1434 *end_ret = state->end;
1435 ret = 0;
1436 }
1437 out:
1438 spin_unlock(&tree->lock);
1439 return ret;
1440 }
1441
1442 /*
1443 * find a contiguous range of bytes in the file marked as delalloc, not
1444 * more than 'max_bytes'. start and end are used to return the range,
1445 *
1446 * 1 is returned if we find something, 0 if nothing was in the tree
1447 */
1448 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1449 u64 *start, u64 *end, u64 max_bytes,
1450 struct extent_state **cached_state)
1451 {
1452 struct rb_node *node;
1453 struct extent_state *state;
1454 u64 cur_start = *start;
1455 u64 found = 0;
1456 u64 total_bytes = 0;
1457
1458 spin_lock(&tree->lock);
1459
1460 /*
1461 * this search will find all the extents that end after
1462 * our range starts.
1463 */
1464 node = tree_search(tree, cur_start);
1465 if (!node) {
1466 if (!found)
1467 *end = (u64)-1;
1468 goto out;
1469 }
1470
1471 while (1) {
1472 state = rb_entry(node, struct extent_state, rb_node);
1473 if (found && (state->start != cur_start ||
1474 (state->state & EXTENT_BOUNDARY))) {
1475 goto out;
1476 }
1477 if (!(state->state & EXTENT_DELALLOC)) {
1478 if (!found)
1479 *end = state->end;
1480 goto out;
1481 }
1482 if (!found) {
1483 *start = state->start;
1484 *cached_state = state;
1485 atomic_inc(&state->refs);
1486 }
1487 found++;
1488 *end = state->end;
1489 cur_start = state->end + 1;
1490 node = rb_next(node);
1491 if (!node)
1492 break;
1493 total_bytes += state->end - state->start + 1;
1494 if (total_bytes >= max_bytes)
1495 break;
1496 }
1497 out:
1498 spin_unlock(&tree->lock);
1499 return found;
1500 }
1501
1502 static noinline void __unlock_for_delalloc(struct inode *inode,
1503 struct page *locked_page,
1504 u64 start, u64 end)
1505 {
1506 int ret;
1507 struct page *pages[16];
1508 unsigned long index = start >> PAGE_CACHE_SHIFT;
1509 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1510 unsigned long nr_pages = end_index - index + 1;
1511 int i;
1512
1513 if (index == locked_page->index && end_index == index)
1514 return;
1515
1516 while (nr_pages > 0) {
1517 ret = find_get_pages_contig(inode->i_mapping, index,
1518 min_t(unsigned long, nr_pages,
1519 ARRAY_SIZE(pages)), pages);
1520 for (i = 0; i < ret; i++) {
1521 if (pages[i] != locked_page)
1522 unlock_page(pages[i]);
1523 page_cache_release(pages[i]);
1524 }
1525 nr_pages -= ret;
1526 index += ret;
1527 cond_resched();
1528 }
1529 }
1530
1531 static noinline int lock_delalloc_pages(struct inode *inode,
1532 struct page *locked_page,
1533 u64 delalloc_start,
1534 u64 delalloc_end)
1535 {
1536 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1537 unsigned long start_index = index;
1538 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1539 unsigned long pages_locked = 0;
1540 struct page *pages[16];
1541 unsigned long nrpages;
1542 int ret;
1543 int i;
1544
1545 /* the caller is responsible for locking the start index */
1546 if (index == locked_page->index && index == end_index)
1547 return 0;
1548
1549 /* skip the page at the start index */
1550 nrpages = end_index - index + 1;
1551 while (nrpages > 0) {
1552 ret = find_get_pages_contig(inode->i_mapping, index,
1553 min_t(unsigned long,
1554 nrpages, ARRAY_SIZE(pages)), pages);
1555 if (ret == 0) {
1556 ret = -EAGAIN;
1557 goto done;
1558 }
1559 /* now we have an array of pages, lock them all */
1560 for (i = 0; i < ret; i++) {
1561 /*
1562 * the caller is taking responsibility for
1563 * locked_page
1564 */
1565 if (pages[i] != locked_page) {
1566 lock_page(pages[i]);
1567 if (!PageDirty(pages[i]) ||
1568 pages[i]->mapping != inode->i_mapping) {
1569 ret = -EAGAIN;
1570 unlock_page(pages[i]);
1571 page_cache_release(pages[i]);
1572 goto done;
1573 }
1574 }
1575 page_cache_release(pages[i]);
1576 pages_locked++;
1577 }
1578 nrpages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
1582 ret = 0;
1583 done:
1584 if (ret && pages_locked) {
1585 __unlock_for_delalloc(inode, locked_page,
1586 delalloc_start,
1587 ((u64)(start_index + pages_locked - 1)) <<
1588 PAGE_CACHE_SHIFT);
1589 }
1590 return ret;
1591 }
1592
1593 /*
1594 * find a contiguous range of bytes in the file marked as delalloc, not
1595 * more than 'max_bytes'. start and end are used to return the range,
1596 *
1597 * 1 is returned if we find something, 0 if nothing was in the tree
1598 */
1599 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1600 struct extent_io_tree *tree,
1601 struct page *locked_page,
1602 u64 *start, u64 *end,
1603 u64 max_bytes)
1604 {
1605 u64 delalloc_start;
1606 u64 delalloc_end;
1607 u64 found;
1608 struct extent_state *cached_state = NULL;
1609 int ret;
1610 int loops = 0;
1611
1612 again:
1613 /* step one, find a bunch of delalloc bytes starting at start */
1614 delalloc_start = *start;
1615 delalloc_end = 0;
1616 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1617 max_bytes, &cached_state);
1618 if (!found || delalloc_end <= *start) {
1619 *start = delalloc_start;
1620 *end = delalloc_end;
1621 free_extent_state(cached_state);
1622 return found;
1623 }
1624
1625 /*
1626 * start comes from the offset of locked_page. We have to lock
1627 * pages in order, so we can't process delalloc bytes before
1628 * locked_page
1629 */
1630 if (delalloc_start < *start)
1631 delalloc_start = *start;
1632
1633 /*
1634 * make sure to limit the number of pages we try to lock down
1635 * if we're looping.
1636 */
1637 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1638 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1639
1640 /* step two, lock all the pages after the page that has start */
1641 ret = lock_delalloc_pages(inode, locked_page,
1642 delalloc_start, delalloc_end);
1643 if (ret == -EAGAIN) {
1644 /* some of the pages are gone, lets avoid looping by
1645 * shortening the size of the delalloc range we're searching
1646 */
1647 free_extent_state(cached_state);
1648 if (!loops) {
1649 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1650 max_bytes = PAGE_CACHE_SIZE - offset;
1651 loops = 1;
1652 goto again;
1653 } else {
1654 found = 0;
1655 goto out_failed;
1656 }
1657 }
1658 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1659
1660 /* step three, lock the state bits for the whole range */
1661 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1662
1663 /* then test to make sure it is all still delalloc */
1664 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1665 EXTENT_DELALLOC, 1, cached_state);
1666 if (!ret) {
1667 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1668 &cached_state, GFP_NOFS);
1669 __unlock_for_delalloc(inode, locked_page,
1670 delalloc_start, delalloc_end);
1671 cond_resched();
1672 goto again;
1673 }
1674 free_extent_state(cached_state);
1675 *start = delalloc_start;
1676 *end = delalloc_end;
1677 out_failed:
1678 return found;
1679 }
1680
1681 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1682 struct page *locked_page,
1683 unsigned long clear_bits,
1684 unsigned long page_ops)
1685 {
1686 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1687 int ret;
1688 struct page *pages[16];
1689 unsigned long index = start >> PAGE_CACHE_SHIFT;
1690 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1691 unsigned long nr_pages = end_index - index + 1;
1692 int i;
1693
1694 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1695 if (page_ops == 0)
1696 return 0;
1697
1698 while (nr_pages > 0) {
1699 ret = find_get_pages_contig(inode->i_mapping, index,
1700 min_t(unsigned long,
1701 nr_pages, ARRAY_SIZE(pages)), pages);
1702 for (i = 0; i < ret; i++) {
1703
1704 if (page_ops & PAGE_SET_PRIVATE2)
1705 SetPagePrivate2(pages[i]);
1706
1707 if (pages[i] == locked_page) {
1708 page_cache_release(pages[i]);
1709 continue;
1710 }
1711 if (page_ops & PAGE_CLEAR_DIRTY)
1712 clear_page_dirty_for_io(pages[i]);
1713 if (page_ops & PAGE_SET_WRITEBACK)
1714 set_page_writeback(pages[i]);
1715 if (page_ops & PAGE_END_WRITEBACK)
1716 end_page_writeback(pages[i]);
1717 if (page_ops & PAGE_UNLOCK)
1718 unlock_page(pages[i]);
1719 page_cache_release(pages[i]);
1720 }
1721 nr_pages -= ret;
1722 index += ret;
1723 cond_resched();
1724 }
1725 return 0;
1726 }
1727
1728 /*
1729 * count the number of bytes in the tree that have a given bit(s)
1730 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1731 * cached. The total number found is returned.
1732 */
1733 u64 count_range_bits(struct extent_io_tree *tree,
1734 u64 *start, u64 search_end, u64 max_bytes,
1735 unsigned long bits, int contig)
1736 {
1737 struct rb_node *node;
1738 struct extent_state *state;
1739 u64 cur_start = *start;
1740 u64 total_bytes = 0;
1741 u64 last = 0;
1742 int found = 0;
1743
1744 if (search_end <= cur_start) {
1745 WARN_ON(1);
1746 return 0;
1747 }
1748
1749 spin_lock(&tree->lock);
1750 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1751 total_bytes = tree->dirty_bytes;
1752 goto out;
1753 }
1754 /*
1755 * this search will find all the extents that end after
1756 * our range starts.
1757 */
1758 node = tree_search(tree, cur_start);
1759 if (!node)
1760 goto out;
1761
1762 while (1) {
1763 state = rb_entry(node, struct extent_state, rb_node);
1764 if (state->start > search_end)
1765 break;
1766 if (contig && found && state->start > last + 1)
1767 break;
1768 if (state->end >= cur_start && (state->state & bits) == bits) {
1769 total_bytes += min(search_end, state->end) + 1 -
1770 max(cur_start, state->start);
1771 if (total_bytes >= max_bytes)
1772 break;
1773 if (!found) {
1774 *start = max(cur_start, state->start);
1775 found = 1;
1776 }
1777 last = state->end;
1778 } else if (contig && found) {
1779 break;
1780 }
1781 node = rb_next(node);
1782 if (!node)
1783 break;
1784 }
1785 out:
1786 spin_unlock(&tree->lock);
1787 return total_bytes;
1788 }
1789
1790 /*
1791 * set the private field for a given byte offset in the tree. If there isn't
1792 * an extent_state there already, this does nothing.
1793 */
1794 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1795 {
1796 struct rb_node *node;
1797 struct extent_state *state;
1798 int ret = 0;
1799
1800 spin_lock(&tree->lock);
1801 /*
1802 * this search will find all the extents that end after
1803 * our range starts.
1804 */
1805 node = tree_search(tree, start);
1806 if (!node) {
1807 ret = -ENOENT;
1808 goto out;
1809 }
1810 state = rb_entry(node, struct extent_state, rb_node);
1811 if (state->start != start) {
1812 ret = -ENOENT;
1813 goto out;
1814 }
1815 state->private = private;
1816 out:
1817 spin_unlock(&tree->lock);
1818 return ret;
1819 }
1820
1821 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1822 {
1823 struct rb_node *node;
1824 struct extent_state *state;
1825 int ret = 0;
1826
1827 spin_lock(&tree->lock);
1828 /*
1829 * this search will find all the extents that end after
1830 * our range starts.
1831 */
1832 node = tree_search(tree, start);
1833 if (!node) {
1834 ret = -ENOENT;
1835 goto out;
1836 }
1837 state = rb_entry(node, struct extent_state, rb_node);
1838 if (state->start != start) {
1839 ret = -ENOENT;
1840 goto out;
1841 }
1842 *private = state->private;
1843 out:
1844 spin_unlock(&tree->lock);
1845 return ret;
1846 }
1847
1848 /*
1849 * searches a range in the state tree for a given mask.
1850 * If 'filled' == 1, this returns 1 only if every extent in the tree
1851 * has the bits set. Otherwise, 1 is returned if any bit in the
1852 * range is found set.
1853 */
1854 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1855 unsigned long bits, int filled, struct extent_state *cached)
1856 {
1857 struct extent_state *state = NULL;
1858 struct rb_node *node;
1859 int bitset = 0;
1860
1861 spin_lock(&tree->lock);
1862 if (cached && cached->tree && cached->start <= start &&
1863 cached->end > start)
1864 node = &cached->rb_node;
1865 else
1866 node = tree_search(tree, start);
1867 while (node && start <= end) {
1868 state = rb_entry(node, struct extent_state, rb_node);
1869
1870 if (filled && state->start > start) {
1871 bitset = 0;
1872 break;
1873 }
1874
1875 if (state->start > end)
1876 break;
1877
1878 if (state->state & bits) {
1879 bitset = 1;
1880 if (!filled)
1881 break;
1882 } else if (filled) {
1883 bitset = 0;
1884 break;
1885 }
1886
1887 if (state->end == (u64)-1)
1888 break;
1889
1890 start = state->end + 1;
1891 if (start > end)
1892 break;
1893 node = rb_next(node);
1894 if (!node) {
1895 if (filled)
1896 bitset = 0;
1897 break;
1898 }
1899 }
1900 spin_unlock(&tree->lock);
1901 return bitset;
1902 }
1903
1904 /*
1905 * helper function to set a given page up to date if all the
1906 * extents in the tree for that page are up to date
1907 */
1908 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1909 {
1910 u64 start = page_offset(page);
1911 u64 end = start + PAGE_CACHE_SIZE - 1;
1912 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1913 SetPageUptodate(page);
1914 }
1915
1916 /*
1917 * When IO fails, either with EIO or csum verification fails, we
1918 * try other mirrors that might have a good copy of the data. This
1919 * io_failure_record is used to record state as we go through all the
1920 * mirrors. If another mirror has good data, the page is set up to date
1921 * and things continue. If a good mirror can't be found, the original
1922 * bio end_io callback is called to indicate things have failed.
1923 */
1924 struct io_failure_record {
1925 struct page *page;
1926 u64 start;
1927 u64 len;
1928 u64 logical;
1929 unsigned long bio_flags;
1930 int this_mirror;
1931 int failed_mirror;
1932 int in_validation;
1933 };
1934
1935 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1936 int did_repair)
1937 {
1938 int ret;
1939 int err = 0;
1940 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1941
1942 set_state_private(failure_tree, rec->start, 0);
1943 ret = clear_extent_bits(failure_tree, rec->start,
1944 rec->start + rec->len - 1,
1945 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1946 if (ret)
1947 err = ret;
1948
1949 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1950 rec->start + rec->len - 1,
1951 EXTENT_DAMAGED, GFP_NOFS);
1952 if (ret && !err)
1953 err = ret;
1954
1955 kfree(rec);
1956 return err;
1957 }
1958
1959 static void repair_io_failure_callback(struct bio *bio, int err)
1960 {
1961 complete(bio->bi_private);
1962 }
1963
1964 /*
1965 * this bypasses the standard btrfs submit functions deliberately, as
1966 * the standard behavior is to write all copies in a raid setup. here we only
1967 * want to write the one bad copy. so we do the mapping for ourselves and issue
1968 * submit_bio directly.
1969 * to avoid any synchronization issues, wait for the data after writing, which
1970 * actually prevents the read that triggered the error from finishing.
1971 * currently, there can be no more than two copies of every data bit. thus,
1972 * exactly one rewrite is required.
1973 */
1974 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1975 u64 length, u64 logical, struct page *page,
1976 int mirror_num)
1977 {
1978 struct bio *bio;
1979 struct btrfs_device *dev;
1980 DECLARE_COMPLETION_ONSTACK(compl);
1981 u64 map_length = 0;
1982 u64 sector;
1983 struct btrfs_bio *bbio = NULL;
1984 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1985 int ret;
1986
1987 BUG_ON(!mirror_num);
1988
1989 /* we can't repair anything in raid56 yet */
1990 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1991 return 0;
1992
1993 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1994 if (!bio)
1995 return -EIO;
1996 bio->bi_private = &compl;
1997 bio->bi_end_io = repair_io_failure_callback;
1998 bio->bi_size = 0;
1999 map_length = length;
2000
2001 ret = btrfs_map_block(fs_info, WRITE, logical,
2002 &map_length, &bbio, mirror_num);
2003 if (ret) {
2004 bio_put(bio);
2005 return -EIO;
2006 }
2007 BUG_ON(mirror_num != bbio->mirror_num);
2008 sector = bbio->stripes[mirror_num-1].physical >> 9;
2009 bio->bi_sector = sector;
2010 dev = bbio->stripes[mirror_num-1].dev;
2011 kfree(bbio);
2012 if (!dev || !dev->bdev || !dev->writeable) {
2013 bio_put(bio);
2014 return -EIO;
2015 }
2016 bio->bi_bdev = dev->bdev;
2017 bio_add_page(bio, page, length, start - page_offset(page));
2018 btrfsic_submit_bio(WRITE_SYNC, bio);
2019 wait_for_completion(&compl);
2020
2021 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2022 /* try to remap that extent elsewhere? */
2023 bio_put(bio);
2024 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2025 return -EIO;
2026 }
2027
2028 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2029 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2030 start, rcu_str_deref(dev->name), sector);
2031
2032 bio_put(bio);
2033 return 0;
2034 }
2035
2036 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2037 int mirror_num)
2038 {
2039 u64 start = eb->start;
2040 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2041 int ret = 0;
2042
2043 for (i = 0; i < num_pages; i++) {
2044 struct page *p = extent_buffer_page(eb, i);
2045 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2046 start, p, mirror_num);
2047 if (ret)
2048 break;
2049 start += PAGE_CACHE_SIZE;
2050 }
2051
2052 return ret;
2053 }
2054
2055 /*
2056 * each time an IO finishes, we do a fast check in the IO failure tree
2057 * to see if we need to process or clean up an io_failure_record
2058 */
2059 static int clean_io_failure(u64 start, struct page *page)
2060 {
2061 u64 private;
2062 u64 private_failure;
2063 struct io_failure_record *failrec;
2064 struct btrfs_fs_info *fs_info;
2065 struct extent_state *state;
2066 int num_copies;
2067 int did_repair = 0;
2068 int ret;
2069 struct inode *inode = page->mapping->host;
2070
2071 private = 0;
2072 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2073 (u64)-1, 1, EXTENT_DIRTY, 0);
2074 if (!ret)
2075 return 0;
2076
2077 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2078 &private_failure);
2079 if (ret)
2080 return 0;
2081
2082 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2083 BUG_ON(!failrec->this_mirror);
2084
2085 if (failrec->in_validation) {
2086 /* there was no real error, just free the record */
2087 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2088 failrec->start);
2089 did_repair = 1;
2090 goto out;
2091 }
2092
2093 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2094 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2095 failrec->start,
2096 EXTENT_LOCKED);
2097 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2098
2099 if (state && state->start <= failrec->start &&
2100 state->end >= failrec->start + failrec->len - 1) {
2101 fs_info = BTRFS_I(inode)->root->fs_info;
2102 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2103 failrec->len);
2104 if (num_copies > 1) {
2105 ret = repair_io_failure(fs_info, start, failrec->len,
2106 failrec->logical, page,
2107 failrec->failed_mirror);
2108 did_repair = !ret;
2109 }
2110 ret = 0;
2111 }
2112
2113 out:
2114 if (!ret)
2115 ret = free_io_failure(inode, failrec, did_repair);
2116
2117 return ret;
2118 }
2119
2120 /*
2121 * this is a generic handler for readpage errors (default
2122 * readpage_io_failed_hook). if other copies exist, read those and write back
2123 * good data to the failed position. does not investigate in remapping the
2124 * failed extent elsewhere, hoping the device will be smart enough to do this as
2125 * needed
2126 */
2127
2128 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2129 struct page *page, u64 start, u64 end,
2130 int failed_mirror)
2131 {
2132 struct io_failure_record *failrec = NULL;
2133 u64 private;
2134 struct extent_map *em;
2135 struct inode *inode = page->mapping->host;
2136 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2137 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2138 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2139 struct bio *bio;
2140 struct btrfs_io_bio *btrfs_failed_bio;
2141 struct btrfs_io_bio *btrfs_bio;
2142 int num_copies;
2143 int ret;
2144 int read_mode;
2145 u64 logical;
2146
2147 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2148
2149 ret = get_state_private(failure_tree, start, &private);
2150 if (ret) {
2151 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2152 if (!failrec)
2153 return -ENOMEM;
2154 failrec->start = start;
2155 failrec->len = end - start + 1;
2156 failrec->this_mirror = 0;
2157 failrec->bio_flags = 0;
2158 failrec->in_validation = 0;
2159
2160 read_lock(&em_tree->lock);
2161 em = lookup_extent_mapping(em_tree, start, failrec->len);
2162 if (!em) {
2163 read_unlock(&em_tree->lock);
2164 kfree(failrec);
2165 return -EIO;
2166 }
2167
2168 if (em->start > start || em->start + em->len < start) {
2169 free_extent_map(em);
2170 em = NULL;
2171 }
2172 read_unlock(&em_tree->lock);
2173
2174 if (!em) {
2175 kfree(failrec);
2176 return -EIO;
2177 }
2178 logical = start - em->start;
2179 logical = em->block_start + logical;
2180 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2181 logical = em->block_start;
2182 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2183 extent_set_compress_type(&failrec->bio_flags,
2184 em->compress_type);
2185 }
2186 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2187 "len=%llu\n", logical, start, failrec->len);
2188 failrec->logical = logical;
2189 free_extent_map(em);
2190
2191 /* set the bits in the private failure tree */
2192 ret = set_extent_bits(failure_tree, start, end,
2193 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2194 if (ret >= 0)
2195 ret = set_state_private(failure_tree, start,
2196 (u64)(unsigned long)failrec);
2197 /* set the bits in the inode's tree */
2198 if (ret >= 0)
2199 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2200 GFP_NOFS);
2201 if (ret < 0) {
2202 kfree(failrec);
2203 return ret;
2204 }
2205 } else {
2206 failrec = (struct io_failure_record *)(unsigned long)private;
2207 pr_debug("bio_readpage_error: (found) logical=%llu, "
2208 "start=%llu, len=%llu, validation=%d\n",
2209 failrec->logical, failrec->start, failrec->len,
2210 failrec->in_validation);
2211 /*
2212 * when data can be on disk more than twice, add to failrec here
2213 * (e.g. with a list for failed_mirror) to make
2214 * clean_io_failure() clean all those errors at once.
2215 */
2216 }
2217 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2218 failrec->logical, failrec->len);
2219 if (num_copies == 1) {
2220 /*
2221 * we only have a single copy of the data, so don't bother with
2222 * all the retry and error correction code that follows. no
2223 * matter what the error is, it is very likely to persist.
2224 */
2225 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2226 num_copies, failrec->this_mirror, failed_mirror);
2227 free_io_failure(inode, failrec, 0);
2228 return -EIO;
2229 }
2230
2231 /*
2232 * there are two premises:
2233 * a) deliver good data to the caller
2234 * b) correct the bad sectors on disk
2235 */
2236 if (failed_bio->bi_vcnt > 1) {
2237 /*
2238 * to fulfill b), we need to know the exact failing sectors, as
2239 * we don't want to rewrite any more than the failed ones. thus,
2240 * we need separate read requests for the failed bio
2241 *
2242 * if the following BUG_ON triggers, our validation request got
2243 * merged. we need separate requests for our algorithm to work.
2244 */
2245 BUG_ON(failrec->in_validation);
2246 failrec->in_validation = 1;
2247 failrec->this_mirror = failed_mirror;
2248 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2249 } else {
2250 /*
2251 * we're ready to fulfill a) and b) alongside. get a good copy
2252 * of the failed sector and if we succeed, we have setup
2253 * everything for repair_io_failure to do the rest for us.
2254 */
2255 if (failrec->in_validation) {
2256 BUG_ON(failrec->this_mirror != failed_mirror);
2257 failrec->in_validation = 0;
2258 failrec->this_mirror = 0;
2259 }
2260 failrec->failed_mirror = failed_mirror;
2261 failrec->this_mirror++;
2262 if (failrec->this_mirror == failed_mirror)
2263 failrec->this_mirror++;
2264 read_mode = READ_SYNC;
2265 }
2266
2267 if (failrec->this_mirror > num_copies) {
2268 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2269 num_copies, failrec->this_mirror, failed_mirror);
2270 free_io_failure(inode, failrec, 0);
2271 return -EIO;
2272 }
2273
2274 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2275 if (!bio) {
2276 free_io_failure(inode, failrec, 0);
2277 return -EIO;
2278 }
2279 bio->bi_end_io = failed_bio->bi_end_io;
2280 bio->bi_sector = failrec->logical >> 9;
2281 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2282 bio->bi_size = 0;
2283
2284 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2285 if (btrfs_failed_bio->csum) {
2286 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2288
2289 btrfs_bio = btrfs_io_bio(bio);
2290 btrfs_bio->csum = btrfs_bio->csum_inline;
2291 phy_offset >>= inode->i_sb->s_blocksize_bits;
2292 phy_offset *= csum_size;
2293 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2294 csum_size);
2295 }
2296
2297 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2298
2299 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2300 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2301 failrec->this_mirror, num_copies, failrec->in_validation);
2302
2303 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2304 failrec->this_mirror,
2305 failrec->bio_flags, 0);
2306 return ret;
2307 }
2308
2309 /* lots and lots of room for performance fixes in the end_bio funcs */
2310
2311 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2312 {
2313 int uptodate = (err == 0);
2314 struct extent_io_tree *tree;
2315 int ret;
2316
2317 tree = &BTRFS_I(page->mapping->host)->io_tree;
2318
2319 if (tree->ops && tree->ops->writepage_end_io_hook) {
2320 ret = tree->ops->writepage_end_io_hook(page, start,
2321 end, NULL, uptodate);
2322 if (ret)
2323 uptodate = 0;
2324 }
2325
2326 if (!uptodate) {
2327 ClearPageUptodate(page);
2328 SetPageError(page);
2329 }
2330 return 0;
2331 }
2332
2333 /*
2334 * after a writepage IO is done, we need to:
2335 * clear the uptodate bits on error
2336 * clear the writeback bits in the extent tree for this IO
2337 * end_page_writeback if the page has no more pending IO
2338 *
2339 * Scheduling is not allowed, so the extent state tree is expected
2340 * to have one and only one object corresponding to this IO.
2341 */
2342 static void end_bio_extent_writepage(struct bio *bio, int err)
2343 {
2344 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2345 struct extent_io_tree *tree;
2346 u64 start;
2347 u64 end;
2348
2349 do {
2350 struct page *page = bvec->bv_page;
2351 tree = &BTRFS_I(page->mapping->host)->io_tree;
2352
2353 /* We always issue full-page reads, but if some block
2354 * in a page fails to read, blk_update_request() will
2355 * advance bv_offset and adjust bv_len to compensate.
2356 * Print a warning for nonzero offsets, and an error
2357 * if they don't add up to a full page. */
2358 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2359 printk("%s page write in btrfs with offset %u and length %u\n",
2360 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2361 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2362 bvec->bv_offset, bvec->bv_len);
2363
2364 start = page_offset(page);
2365 end = start + bvec->bv_offset + bvec->bv_len - 1;
2366
2367 if (--bvec >= bio->bi_io_vec)
2368 prefetchw(&bvec->bv_page->flags);
2369
2370 if (end_extent_writepage(page, err, start, end))
2371 continue;
2372
2373 end_page_writeback(page);
2374 } while (bvec >= bio->bi_io_vec);
2375
2376 bio_put(bio);
2377 }
2378
2379 static void
2380 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2381 int uptodate)
2382 {
2383 struct extent_state *cached = NULL;
2384 u64 end = start + len - 1;
2385
2386 if (uptodate && tree->track_uptodate)
2387 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2388 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2389 }
2390
2391 /*
2392 * after a readpage IO is done, we need to:
2393 * clear the uptodate bits on error
2394 * set the uptodate bits if things worked
2395 * set the page up to date if all extents in the tree are uptodate
2396 * clear the lock bit in the extent tree
2397 * unlock the page if there are no other extents locked for it
2398 *
2399 * Scheduling is not allowed, so the extent state tree is expected
2400 * to have one and only one object corresponding to this IO.
2401 */
2402 static void end_bio_extent_readpage(struct bio *bio, int err)
2403 {
2404 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2405 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2406 struct bio_vec *bvec = bio->bi_io_vec;
2407 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2408 struct extent_io_tree *tree;
2409 u64 offset = 0;
2410 u64 start;
2411 u64 end;
2412 u64 len;
2413 u64 extent_start = 0;
2414 u64 extent_len = 0;
2415 int mirror;
2416 int ret;
2417
2418 if (err)
2419 uptodate = 0;
2420
2421 do {
2422 struct page *page = bvec->bv_page;
2423 struct inode *inode = page->mapping->host;
2424
2425 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2426 "mirror=%lu\n", (u64)bio->bi_sector, err,
2427 io_bio->mirror_num);
2428 tree = &BTRFS_I(inode)->io_tree;
2429
2430 /* We always issue full-page reads, but if some block
2431 * in a page fails to read, blk_update_request() will
2432 * advance bv_offset and adjust bv_len to compensate.
2433 * Print a warning for nonzero offsets, and an error
2434 * if they don't add up to a full page. */
2435 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2436 printk("%s page read in btrfs with offset %u and length %u\n",
2437 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2438 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2439 bvec->bv_offset, bvec->bv_len);
2440
2441 start = page_offset(page);
2442 end = start + bvec->bv_offset + bvec->bv_len - 1;
2443 len = bvec->bv_len;
2444
2445 if (++bvec <= bvec_end)
2446 prefetchw(&bvec->bv_page->flags);
2447
2448 mirror = io_bio->mirror_num;
2449 if (likely(uptodate && tree->ops &&
2450 tree->ops->readpage_end_io_hook)) {
2451 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2452 page, start, end,
2453 mirror);
2454 if (ret)
2455 uptodate = 0;
2456 else
2457 clean_io_failure(start, page);
2458 }
2459
2460 if (likely(uptodate))
2461 goto readpage_ok;
2462
2463 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2464 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2465 if (!ret && !err &&
2466 test_bit(BIO_UPTODATE, &bio->bi_flags))
2467 uptodate = 1;
2468 } else {
2469 /*
2470 * The generic bio_readpage_error handles errors the
2471 * following way: If possible, new read requests are
2472 * created and submitted and will end up in
2473 * end_bio_extent_readpage as well (if we're lucky, not
2474 * in the !uptodate case). In that case it returns 0 and
2475 * we just go on with the next page in our bio. If it
2476 * can't handle the error it will return -EIO and we
2477 * remain responsible for that page.
2478 */
2479 ret = bio_readpage_error(bio, offset, page, start, end,
2480 mirror);
2481 if (ret == 0) {
2482 uptodate =
2483 test_bit(BIO_UPTODATE, &bio->bi_flags);
2484 if (err)
2485 uptodate = 0;
2486 continue;
2487 }
2488 }
2489 readpage_ok:
2490 if (likely(uptodate)) {
2491 loff_t i_size = i_size_read(inode);
2492 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2493 unsigned offset;
2494
2495 /* Zero out the end if this page straddles i_size */
2496 offset = i_size & (PAGE_CACHE_SIZE-1);
2497 if (page->index == end_index && offset)
2498 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2499 SetPageUptodate(page);
2500 } else {
2501 ClearPageUptodate(page);
2502 SetPageError(page);
2503 }
2504 unlock_page(page);
2505 offset += len;
2506
2507 if (unlikely(!uptodate)) {
2508 if (extent_len) {
2509 endio_readpage_release_extent(tree,
2510 extent_start,
2511 extent_len, 1);
2512 extent_start = 0;
2513 extent_len = 0;
2514 }
2515 endio_readpage_release_extent(tree, start,
2516 end - start + 1, 0);
2517 } else if (!extent_len) {
2518 extent_start = start;
2519 extent_len = end + 1 - start;
2520 } else if (extent_start + extent_len == start) {
2521 extent_len += end + 1 - start;
2522 } else {
2523 endio_readpage_release_extent(tree, extent_start,
2524 extent_len, uptodate);
2525 extent_start = start;
2526 extent_len = end + 1 - start;
2527 }
2528 } while (bvec <= bvec_end);
2529
2530 if (extent_len)
2531 endio_readpage_release_extent(tree, extent_start, extent_len,
2532 uptodate);
2533 if (io_bio->end_io)
2534 io_bio->end_io(io_bio, err);
2535 bio_put(bio);
2536 }
2537
2538 /*
2539 * this allocates from the btrfs_bioset. We're returning a bio right now
2540 * but you can call btrfs_io_bio for the appropriate container_of magic
2541 */
2542 struct bio *
2543 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2544 gfp_t gfp_flags)
2545 {
2546 struct btrfs_io_bio *btrfs_bio;
2547 struct bio *bio;
2548
2549 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2550
2551 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2552 while (!bio && (nr_vecs /= 2)) {
2553 bio = bio_alloc_bioset(gfp_flags,
2554 nr_vecs, btrfs_bioset);
2555 }
2556 }
2557
2558 if (bio) {
2559 bio->bi_size = 0;
2560 bio->bi_bdev = bdev;
2561 bio->bi_sector = first_sector;
2562 btrfs_bio = btrfs_io_bio(bio);
2563 btrfs_bio->csum = NULL;
2564 btrfs_bio->csum_allocated = NULL;
2565 btrfs_bio->end_io = NULL;
2566 }
2567 return bio;
2568 }
2569
2570 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2571 {
2572 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2573 }
2574
2575
2576 /* this also allocates from the btrfs_bioset */
2577 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2578 {
2579 struct btrfs_io_bio *btrfs_bio;
2580 struct bio *bio;
2581
2582 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2583 if (bio) {
2584 btrfs_bio = btrfs_io_bio(bio);
2585 btrfs_bio->csum = NULL;
2586 btrfs_bio->csum_allocated = NULL;
2587 btrfs_bio->end_io = NULL;
2588 }
2589 return bio;
2590 }
2591
2592
2593 static int __must_check submit_one_bio(int rw, struct bio *bio,
2594 int mirror_num, unsigned long bio_flags)
2595 {
2596 int ret = 0;
2597 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2598 struct page *page = bvec->bv_page;
2599 struct extent_io_tree *tree = bio->bi_private;
2600 u64 start;
2601
2602 start = page_offset(page) + bvec->bv_offset;
2603
2604 bio->bi_private = NULL;
2605
2606 bio_get(bio);
2607
2608 if (tree->ops && tree->ops->submit_bio_hook)
2609 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2610 mirror_num, bio_flags, start);
2611 else
2612 btrfsic_submit_bio(rw, bio);
2613
2614 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2615 ret = -EOPNOTSUPP;
2616 bio_put(bio);
2617 return ret;
2618 }
2619
2620 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2621 unsigned long offset, size_t size, struct bio *bio,
2622 unsigned long bio_flags)
2623 {
2624 int ret = 0;
2625 if (tree->ops && tree->ops->merge_bio_hook)
2626 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2627 bio_flags);
2628 BUG_ON(ret < 0);
2629 return ret;
2630
2631 }
2632
2633 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2634 struct page *page, sector_t sector,
2635 size_t size, unsigned long offset,
2636 struct block_device *bdev,
2637 struct bio **bio_ret,
2638 unsigned long max_pages,
2639 bio_end_io_t end_io_func,
2640 int mirror_num,
2641 unsigned long prev_bio_flags,
2642 unsigned long bio_flags)
2643 {
2644 int ret = 0;
2645 struct bio *bio;
2646 int nr;
2647 int contig = 0;
2648 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2649 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2650 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2651
2652 if (bio_ret && *bio_ret) {
2653 bio = *bio_ret;
2654 if (old_compressed)
2655 contig = bio->bi_sector == sector;
2656 else
2657 contig = bio_end_sector(bio) == sector;
2658
2659 if (prev_bio_flags != bio_flags || !contig ||
2660 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2661 bio_add_page(bio, page, page_size, offset) < page_size) {
2662 ret = submit_one_bio(rw, bio, mirror_num,
2663 prev_bio_flags);
2664 if (ret < 0)
2665 return ret;
2666 bio = NULL;
2667 } else {
2668 return 0;
2669 }
2670 }
2671 if (this_compressed)
2672 nr = BIO_MAX_PAGES;
2673 else
2674 nr = bio_get_nr_vecs(bdev);
2675
2676 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2677 if (!bio)
2678 return -ENOMEM;
2679
2680 bio_add_page(bio, page, page_size, offset);
2681 bio->bi_end_io = end_io_func;
2682 bio->bi_private = tree;
2683
2684 if (bio_ret)
2685 *bio_ret = bio;
2686 else
2687 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2688
2689 return ret;
2690 }
2691
2692 static void attach_extent_buffer_page(struct extent_buffer *eb,
2693 struct page *page)
2694 {
2695 if (!PagePrivate(page)) {
2696 SetPagePrivate(page);
2697 page_cache_get(page);
2698 set_page_private(page, (unsigned long)eb);
2699 } else {
2700 WARN_ON(page->private != (unsigned long)eb);
2701 }
2702 }
2703
2704 void set_page_extent_mapped(struct page *page)
2705 {
2706 if (!PagePrivate(page)) {
2707 SetPagePrivate(page);
2708 page_cache_get(page);
2709 set_page_private(page, EXTENT_PAGE_PRIVATE);
2710 }
2711 }
2712
2713 static struct extent_map *
2714 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2715 u64 start, u64 len, get_extent_t *get_extent,
2716 struct extent_map **em_cached)
2717 {
2718 struct extent_map *em;
2719
2720 if (em_cached && *em_cached) {
2721 em = *em_cached;
2722 if (em->in_tree && start >= em->start &&
2723 start < extent_map_end(em)) {
2724 atomic_inc(&em->refs);
2725 return em;
2726 }
2727
2728 free_extent_map(em);
2729 *em_cached = NULL;
2730 }
2731
2732 em = get_extent(inode, page, pg_offset, start, len, 0);
2733 if (em_cached && !IS_ERR_OR_NULL(em)) {
2734 BUG_ON(*em_cached);
2735 atomic_inc(&em->refs);
2736 *em_cached = em;
2737 }
2738 return em;
2739 }
2740 /*
2741 * basic readpage implementation. Locked extent state structs are inserted
2742 * into the tree that are removed when the IO is done (by the end_io
2743 * handlers)
2744 * XXX JDM: This needs looking at to ensure proper page locking
2745 */
2746 static int __do_readpage(struct extent_io_tree *tree,
2747 struct page *page,
2748 get_extent_t *get_extent,
2749 struct extent_map **em_cached,
2750 struct bio **bio, int mirror_num,
2751 unsigned long *bio_flags, int rw)
2752 {
2753 struct inode *inode = page->mapping->host;
2754 u64 start = page_offset(page);
2755 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2756 u64 end;
2757 u64 cur = start;
2758 u64 extent_offset;
2759 u64 last_byte = i_size_read(inode);
2760 u64 block_start;
2761 u64 cur_end;
2762 sector_t sector;
2763 struct extent_map *em;
2764 struct block_device *bdev;
2765 int ret;
2766 int nr = 0;
2767 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2768 size_t pg_offset = 0;
2769 size_t iosize;
2770 size_t disk_io_size;
2771 size_t blocksize = inode->i_sb->s_blocksize;
2772 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2773
2774 set_page_extent_mapped(page);
2775
2776 end = page_end;
2777 if (!PageUptodate(page)) {
2778 if (cleancache_get_page(page) == 0) {
2779 BUG_ON(blocksize != PAGE_SIZE);
2780 unlock_extent(tree, start, end);
2781 goto out;
2782 }
2783 }
2784
2785 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2786 char *userpage;
2787 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2788
2789 if (zero_offset) {
2790 iosize = PAGE_CACHE_SIZE - zero_offset;
2791 userpage = kmap_atomic(page);
2792 memset(userpage + zero_offset, 0, iosize);
2793 flush_dcache_page(page);
2794 kunmap_atomic(userpage);
2795 }
2796 }
2797 while (cur <= end) {
2798 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2799
2800 if (cur >= last_byte) {
2801 char *userpage;
2802 struct extent_state *cached = NULL;
2803
2804 iosize = PAGE_CACHE_SIZE - pg_offset;
2805 userpage = kmap_atomic(page);
2806 memset(userpage + pg_offset, 0, iosize);
2807 flush_dcache_page(page);
2808 kunmap_atomic(userpage);
2809 set_extent_uptodate(tree, cur, cur + iosize - 1,
2810 &cached, GFP_NOFS);
2811 if (!parent_locked)
2812 unlock_extent_cached(tree, cur,
2813 cur + iosize - 1,
2814 &cached, GFP_NOFS);
2815 break;
2816 }
2817 em = __get_extent_map(inode, page, pg_offset, cur,
2818 end - cur + 1, get_extent, em_cached);
2819 if (IS_ERR_OR_NULL(em)) {
2820 SetPageError(page);
2821 if (!parent_locked)
2822 unlock_extent(tree, cur, end);
2823 break;
2824 }
2825 extent_offset = cur - em->start;
2826 BUG_ON(extent_map_end(em) <= cur);
2827 BUG_ON(end < cur);
2828
2829 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2830 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2831 extent_set_compress_type(&this_bio_flag,
2832 em->compress_type);
2833 }
2834
2835 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2836 cur_end = min(extent_map_end(em) - 1, end);
2837 iosize = ALIGN(iosize, blocksize);
2838 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2839 disk_io_size = em->block_len;
2840 sector = em->block_start >> 9;
2841 } else {
2842 sector = (em->block_start + extent_offset) >> 9;
2843 disk_io_size = iosize;
2844 }
2845 bdev = em->bdev;
2846 block_start = em->block_start;
2847 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2848 block_start = EXTENT_MAP_HOLE;
2849 free_extent_map(em);
2850 em = NULL;
2851
2852 /* we've found a hole, just zero and go on */
2853 if (block_start == EXTENT_MAP_HOLE) {
2854 char *userpage;
2855 struct extent_state *cached = NULL;
2856
2857 userpage = kmap_atomic(page);
2858 memset(userpage + pg_offset, 0, iosize);
2859 flush_dcache_page(page);
2860 kunmap_atomic(userpage);
2861
2862 set_extent_uptodate(tree, cur, cur + iosize - 1,
2863 &cached, GFP_NOFS);
2864 unlock_extent_cached(tree, cur, cur + iosize - 1,
2865 &cached, GFP_NOFS);
2866 cur = cur + iosize;
2867 pg_offset += iosize;
2868 continue;
2869 }
2870 /* the get_extent function already copied into the page */
2871 if (test_range_bit(tree, cur, cur_end,
2872 EXTENT_UPTODATE, 1, NULL)) {
2873 check_page_uptodate(tree, page);
2874 if (!parent_locked)
2875 unlock_extent(tree, cur, cur + iosize - 1);
2876 cur = cur + iosize;
2877 pg_offset += iosize;
2878 continue;
2879 }
2880 /* we have an inline extent but it didn't get marked up
2881 * to date. Error out
2882 */
2883 if (block_start == EXTENT_MAP_INLINE) {
2884 SetPageError(page);
2885 if (!parent_locked)
2886 unlock_extent(tree, cur, cur + iosize - 1);
2887 cur = cur + iosize;
2888 pg_offset += iosize;
2889 continue;
2890 }
2891
2892 pnr -= page->index;
2893 ret = submit_extent_page(rw, tree, page,
2894 sector, disk_io_size, pg_offset,
2895 bdev, bio, pnr,
2896 end_bio_extent_readpage, mirror_num,
2897 *bio_flags,
2898 this_bio_flag);
2899 if (!ret) {
2900 nr++;
2901 *bio_flags = this_bio_flag;
2902 } else {
2903 SetPageError(page);
2904 if (!parent_locked)
2905 unlock_extent(tree, cur, cur + iosize - 1);
2906 }
2907 cur = cur + iosize;
2908 pg_offset += iosize;
2909 }
2910 out:
2911 if (!nr) {
2912 if (!PageError(page))
2913 SetPageUptodate(page);
2914 unlock_page(page);
2915 }
2916 return 0;
2917 }
2918
2919 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2920 struct page *pages[], int nr_pages,
2921 u64 start, u64 end,
2922 get_extent_t *get_extent,
2923 struct extent_map **em_cached,
2924 struct bio **bio, int mirror_num,
2925 unsigned long *bio_flags, int rw)
2926 {
2927 struct inode *inode;
2928 struct btrfs_ordered_extent *ordered;
2929 int index;
2930
2931 inode = pages[0]->mapping->host;
2932 while (1) {
2933 lock_extent(tree, start, end);
2934 ordered = btrfs_lookup_ordered_range(inode, start,
2935 end - start + 1);
2936 if (!ordered)
2937 break;
2938 unlock_extent(tree, start, end);
2939 btrfs_start_ordered_extent(inode, ordered, 1);
2940 btrfs_put_ordered_extent(ordered);
2941 }
2942
2943 for (index = 0; index < nr_pages; index++) {
2944 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2945 mirror_num, bio_flags, rw);
2946 page_cache_release(pages[index]);
2947 }
2948 }
2949
2950 static void __extent_readpages(struct extent_io_tree *tree,
2951 struct page *pages[],
2952 int nr_pages, get_extent_t *get_extent,
2953 struct extent_map **em_cached,
2954 struct bio **bio, int mirror_num,
2955 unsigned long *bio_flags, int rw)
2956 {
2957 u64 start = 0;
2958 u64 end = 0;
2959 u64 page_start;
2960 int index;
2961 int first_index = 0;
2962
2963 for (index = 0; index < nr_pages; index++) {
2964 page_start = page_offset(pages[index]);
2965 if (!end) {
2966 start = page_start;
2967 end = start + PAGE_CACHE_SIZE - 1;
2968 first_index = index;
2969 } else if (end + 1 == page_start) {
2970 end += PAGE_CACHE_SIZE;
2971 } else {
2972 __do_contiguous_readpages(tree, &pages[first_index],
2973 index - first_index, start,
2974 end, get_extent, em_cached,
2975 bio, mirror_num, bio_flags,
2976 rw);
2977 start = page_start;
2978 end = start + PAGE_CACHE_SIZE - 1;
2979 first_index = index;
2980 }
2981 }
2982
2983 if (end)
2984 __do_contiguous_readpages(tree, &pages[first_index],
2985 index - first_index, start,
2986 end, get_extent, em_cached, bio,
2987 mirror_num, bio_flags, rw);
2988 }
2989
2990 static int __extent_read_full_page(struct extent_io_tree *tree,
2991 struct page *page,
2992 get_extent_t *get_extent,
2993 struct bio **bio, int mirror_num,
2994 unsigned long *bio_flags, int rw)
2995 {
2996 struct inode *inode = page->mapping->host;
2997 struct btrfs_ordered_extent *ordered;
2998 u64 start = page_offset(page);
2999 u64 end = start + PAGE_CACHE_SIZE - 1;
3000 int ret;
3001
3002 while (1) {
3003 lock_extent(tree, start, end);
3004 ordered = btrfs_lookup_ordered_extent(inode, start);
3005 if (!ordered)
3006 break;
3007 unlock_extent(tree, start, end);
3008 btrfs_start_ordered_extent(inode, ordered, 1);
3009 btrfs_put_ordered_extent(ordered);
3010 }
3011
3012 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3013 bio_flags, rw);
3014 return ret;
3015 }
3016
3017 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3018 get_extent_t *get_extent, int mirror_num)
3019 {
3020 struct bio *bio = NULL;
3021 unsigned long bio_flags = 0;
3022 int ret;
3023
3024 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3025 &bio_flags, READ);
3026 if (bio)
3027 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3028 return ret;
3029 }
3030
3031 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3032 get_extent_t *get_extent, int mirror_num)
3033 {
3034 struct bio *bio = NULL;
3035 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3036 int ret;
3037
3038 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3039 &bio_flags, READ);
3040 if (bio)
3041 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3042 return ret;
3043 }
3044
3045 static noinline void update_nr_written(struct page *page,
3046 struct writeback_control *wbc,
3047 unsigned long nr_written)
3048 {
3049 wbc->nr_to_write -= nr_written;
3050 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3051 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3052 page->mapping->writeback_index = page->index + nr_written;
3053 }
3054
3055 /*
3056 * the writepage semantics are similar to regular writepage. extent
3057 * records are inserted to lock ranges in the tree, and as dirty areas
3058 * are found, they are marked writeback. Then the lock bits are removed
3059 * and the end_io handler clears the writeback ranges
3060 */
3061 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3062 void *data)
3063 {
3064 struct inode *inode = page->mapping->host;
3065 struct extent_page_data *epd = data;
3066 struct extent_io_tree *tree = epd->tree;
3067 u64 start = page_offset(page);
3068 u64 delalloc_start;
3069 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3070 u64 end;
3071 u64 cur = start;
3072 u64 extent_offset;
3073 u64 last_byte = i_size_read(inode);
3074 u64 block_start;
3075 u64 iosize;
3076 sector_t sector;
3077 struct extent_state *cached_state = NULL;
3078 struct extent_map *em;
3079 struct block_device *bdev;
3080 int ret;
3081 int nr = 0;
3082 size_t pg_offset = 0;
3083 size_t blocksize;
3084 loff_t i_size = i_size_read(inode);
3085 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3086 u64 nr_delalloc;
3087 u64 delalloc_end;
3088 int page_started;
3089 int compressed;
3090 int write_flags;
3091 unsigned long nr_written = 0;
3092 bool fill_delalloc = true;
3093
3094 if (wbc->sync_mode == WB_SYNC_ALL)
3095 write_flags = WRITE_SYNC;
3096 else
3097 write_flags = WRITE;
3098
3099 trace___extent_writepage(page, inode, wbc);
3100
3101 WARN_ON(!PageLocked(page));
3102
3103 ClearPageError(page);
3104
3105 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3106 if (page->index > end_index ||
3107 (page->index == end_index && !pg_offset)) {
3108 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3109 unlock_page(page);
3110 return 0;
3111 }
3112
3113 if (page->index == end_index) {
3114 char *userpage;
3115
3116 userpage = kmap_atomic(page);
3117 memset(userpage + pg_offset, 0,
3118 PAGE_CACHE_SIZE - pg_offset);
3119 kunmap_atomic(userpage);
3120 flush_dcache_page(page);
3121 }
3122 pg_offset = 0;
3123
3124 set_page_extent_mapped(page);
3125
3126 if (!tree->ops || !tree->ops->fill_delalloc)
3127 fill_delalloc = false;
3128
3129 delalloc_start = start;
3130 delalloc_end = 0;
3131 page_started = 0;
3132 if (!epd->extent_locked && fill_delalloc) {
3133 u64 delalloc_to_write = 0;
3134 /*
3135 * make sure the wbc mapping index is at least updated
3136 * to this page.
3137 */
3138 update_nr_written(page, wbc, 0);
3139
3140 while (delalloc_end < page_end) {
3141 nr_delalloc = find_lock_delalloc_range(inode, tree,
3142 page,
3143 &delalloc_start,
3144 &delalloc_end,
3145 128 * 1024 * 1024);
3146 if (nr_delalloc == 0) {
3147 delalloc_start = delalloc_end + 1;
3148 continue;
3149 }
3150 ret = tree->ops->fill_delalloc(inode, page,
3151 delalloc_start,
3152 delalloc_end,
3153 &page_started,
3154 &nr_written);
3155 /* File system has been set read-only */
3156 if (ret) {
3157 SetPageError(page);
3158 goto done;
3159 }
3160 /*
3161 * delalloc_end is already one less than the total
3162 * length, so we don't subtract one from
3163 * PAGE_CACHE_SIZE
3164 */
3165 delalloc_to_write += (delalloc_end - delalloc_start +
3166 PAGE_CACHE_SIZE) >>
3167 PAGE_CACHE_SHIFT;
3168 delalloc_start = delalloc_end + 1;
3169 }
3170 if (wbc->nr_to_write < delalloc_to_write) {
3171 int thresh = 8192;
3172
3173 if (delalloc_to_write < thresh * 2)
3174 thresh = delalloc_to_write;
3175 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3176 thresh);
3177 }
3178
3179 /* did the fill delalloc function already unlock and start
3180 * the IO?
3181 */
3182 if (page_started) {
3183 ret = 0;
3184 /*
3185 * we've unlocked the page, so we can't update
3186 * the mapping's writeback index, just update
3187 * nr_to_write.
3188 */
3189 wbc->nr_to_write -= nr_written;
3190 goto done_unlocked;
3191 }
3192 }
3193 if (tree->ops && tree->ops->writepage_start_hook) {
3194 ret = tree->ops->writepage_start_hook(page, start,
3195 page_end);
3196 if (ret) {
3197 /* Fixup worker will requeue */
3198 if (ret == -EBUSY)
3199 wbc->pages_skipped++;
3200 else
3201 redirty_page_for_writepage(wbc, page);
3202 update_nr_written(page, wbc, nr_written);
3203 unlock_page(page);
3204 ret = 0;
3205 goto done_unlocked;
3206 }
3207 }
3208
3209 /*
3210 * we don't want to touch the inode after unlocking the page,
3211 * so we update the mapping writeback index now
3212 */
3213 update_nr_written(page, wbc, nr_written + 1);
3214
3215 end = page_end;
3216 if (last_byte <= start) {
3217 if (tree->ops && tree->ops->writepage_end_io_hook)
3218 tree->ops->writepage_end_io_hook(page, start,
3219 page_end, NULL, 1);
3220 goto done;
3221 }
3222
3223 blocksize = inode->i_sb->s_blocksize;
3224
3225 while (cur <= end) {
3226 if (cur >= last_byte) {
3227 if (tree->ops && tree->ops->writepage_end_io_hook)
3228 tree->ops->writepage_end_io_hook(page, cur,
3229 page_end, NULL, 1);
3230 break;
3231 }
3232 em = epd->get_extent(inode, page, pg_offset, cur,
3233 end - cur + 1, 1);
3234 if (IS_ERR_OR_NULL(em)) {
3235 SetPageError(page);
3236 break;
3237 }
3238
3239 extent_offset = cur - em->start;
3240 BUG_ON(extent_map_end(em) <= cur);
3241 BUG_ON(end < cur);
3242 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3243 iosize = ALIGN(iosize, blocksize);
3244 sector = (em->block_start + extent_offset) >> 9;
3245 bdev = em->bdev;
3246 block_start = em->block_start;
3247 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3248 free_extent_map(em);
3249 em = NULL;
3250
3251 /*
3252 * compressed and inline extents are written through other
3253 * paths in the FS
3254 */
3255 if (compressed || block_start == EXTENT_MAP_HOLE ||
3256 block_start == EXTENT_MAP_INLINE) {
3257 /*
3258 * end_io notification does not happen here for
3259 * compressed extents
3260 */
3261 if (!compressed && tree->ops &&
3262 tree->ops->writepage_end_io_hook)
3263 tree->ops->writepage_end_io_hook(page, cur,
3264 cur + iosize - 1,
3265 NULL, 1);
3266 else if (compressed) {
3267 /* we don't want to end_page_writeback on
3268 * a compressed extent. this happens
3269 * elsewhere
3270 */
3271 nr++;
3272 }
3273
3274 cur += iosize;
3275 pg_offset += iosize;
3276 continue;
3277 }
3278 /* leave this out until we have a page_mkwrite call */
3279 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3280 EXTENT_DIRTY, 0, NULL)) {
3281 cur = cur + iosize;
3282 pg_offset += iosize;
3283 continue;
3284 }
3285
3286 if (tree->ops && tree->ops->writepage_io_hook) {
3287 ret = tree->ops->writepage_io_hook(page, cur,
3288 cur + iosize - 1);
3289 } else {
3290 ret = 0;
3291 }
3292 if (ret) {
3293 SetPageError(page);
3294 } else {
3295 unsigned long max_nr = end_index + 1;
3296
3297 set_range_writeback(tree, cur, cur + iosize - 1);
3298 if (!PageWriteback(page)) {
3299 printk(KERN_ERR "btrfs warning page %lu not "
3300 "writeback, cur %llu end %llu\n",
3301 page->index, (unsigned long long)cur,
3302 (unsigned long long)end);
3303 }
3304
3305 ret = submit_extent_page(write_flags, tree, page,
3306 sector, iosize, pg_offset,
3307 bdev, &epd->bio, max_nr,
3308 end_bio_extent_writepage,
3309 0, 0, 0);
3310 if (ret)
3311 SetPageError(page);
3312 }
3313 cur = cur + iosize;
3314 pg_offset += iosize;
3315 nr++;
3316 }
3317 done:
3318 if (nr == 0) {
3319 /* make sure the mapping tag for page dirty gets cleared */
3320 set_page_writeback(page);
3321 end_page_writeback(page);
3322 }
3323 unlock_page(page);
3324
3325 done_unlocked:
3326
3327 /* drop our reference on any cached states */
3328 free_extent_state(cached_state);
3329 return 0;
3330 }
3331
3332 static int eb_wait(void *word)
3333 {
3334 io_schedule();
3335 return 0;
3336 }
3337
3338 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3339 {
3340 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3341 TASK_UNINTERRUPTIBLE);
3342 }
3343
3344 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3345 struct btrfs_fs_info *fs_info,
3346 struct extent_page_data *epd)
3347 {
3348 unsigned long i, num_pages;
3349 int flush = 0;
3350 int ret = 0;
3351
3352 if (!btrfs_try_tree_write_lock(eb)) {
3353 flush = 1;
3354 flush_write_bio(epd);
3355 btrfs_tree_lock(eb);
3356 }
3357
3358 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3359 btrfs_tree_unlock(eb);
3360 if (!epd->sync_io)
3361 return 0;
3362 if (!flush) {
3363 flush_write_bio(epd);
3364 flush = 1;
3365 }
3366 while (1) {
3367 wait_on_extent_buffer_writeback(eb);
3368 btrfs_tree_lock(eb);
3369 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3370 break;
3371 btrfs_tree_unlock(eb);
3372 }
3373 }
3374
3375 /*
3376 * We need to do this to prevent races in people who check if the eb is
3377 * under IO since we can end up having no IO bits set for a short period
3378 * of time.
3379 */
3380 spin_lock(&eb->refs_lock);
3381 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3382 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3383 spin_unlock(&eb->refs_lock);
3384 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3385 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3386 -eb->len,
3387 fs_info->dirty_metadata_batch);
3388 ret = 1;
3389 } else {
3390 spin_unlock(&eb->refs_lock);
3391 }
3392
3393 btrfs_tree_unlock(eb);
3394
3395 if (!ret)
3396 return ret;
3397
3398 num_pages = num_extent_pages(eb->start, eb->len);
3399 for (i = 0; i < num_pages; i++) {
3400 struct page *p = extent_buffer_page(eb, i);
3401
3402 if (!trylock_page(p)) {
3403 if (!flush) {
3404 flush_write_bio(epd);
3405 flush = 1;
3406 }
3407 lock_page(p);
3408 }
3409 }
3410
3411 return ret;
3412 }
3413
3414 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3415 {
3416 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3417 smp_mb__after_clear_bit();
3418 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3419 }
3420
3421 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3422 {
3423 int uptodate = err == 0;
3424 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3425 struct extent_buffer *eb;
3426 int done;
3427
3428 do {
3429 struct page *page = bvec->bv_page;
3430
3431 bvec--;
3432 eb = (struct extent_buffer *)page->private;
3433 BUG_ON(!eb);
3434 done = atomic_dec_and_test(&eb->io_pages);
3435
3436 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3437 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3438 ClearPageUptodate(page);
3439 SetPageError(page);
3440 }
3441
3442 end_page_writeback(page);
3443
3444 if (!done)
3445 continue;
3446
3447 end_extent_buffer_writeback(eb);
3448 } while (bvec >= bio->bi_io_vec);
3449
3450 bio_put(bio);
3451
3452 }
3453
3454 static int write_one_eb(struct extent_buffer *eb,
3455 struct btrfs_fs_info *fs_info,
3456 struct writeback_control *wbc,
3457 struct extent_page_data *epd)
3458 {
3459 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3460 u64 offset = eb->start;
3461 unsigned long i, num_pages;
3462 unsigned long bio_flags = 0;
3463 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3464 int ret = 0;
3465
3466 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3467 num_pages = num_extent_pages(eb->start, eb->len);
3468 atomic_set(&eb->io_pages, num_pages);
3469 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3470 bio_flags = EXTENT_BIO_TREE_LOG;
3471
3472 for (i = 0; i < num_pages; i++) {
3473 struct page *p = extent_buffer_page(eb, i);
3474
3475 clear_page_dirty_for_io(p);
3476 set_page_writeback(p);
3477 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3478 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3479 -1, end_bio_extent_buffer_writepage,
3480 0, epd->bio_flags, bio_flags);
3481 epd->bio_flags = bio_flags;
3482 if (ret) {
3483 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3484 SetPageError(p);
3485 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3486 end_extent_buffer_writeback(eb);
3487 ret = -EIO;
3488 break;
3489 }
3490 offset += PAGE_CACHE_SIZE;
3491 update_nr_written(p, wbc, 1);
3492 unlock_page(p);
3493 }
3494
3495 if (unlikely(ret)) {
3496 for (; i < num_pages; i++) {
3497 struct page *p = extent_buffer_page(eb, i);
3498 unlock_page(p);
3499 }
3500 }
3501
3502 return ret;
3503 }
3504
3505 int btree_write_cache_pages(struct address_space *mapping,
3506 struct writeback_control *wbc)
3507 {
3508 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3509 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3510 struct extent_buffer *eb, *prev_eb = NULL;
3511 struct extent_page_data epd = {
3512 .bio = NULL,
3513 .tree = tree,
3514 .extent_locked = 0,
3515 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3516 .bio_flags = 0,
3517 };
3518 int ret = 0;
3519 int done = 0;
3520 int nr_to_write_done = 0;
3521 struct pagevec pvec;
3522 int nr_pages;
3523 pgoff_t index;
3524 pgoff_t end; /* Inclusive */
3525 int scanned = 0;
3526 int tag;
3527
3528 pagevec_init(&pvec, 0);
3529 if (wbc->range_cyclic) {
3530 index = mapping->writeback_index; /* Start from prev offset */
3531 end = -1;
3532 } else {
3533 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3534 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3535 scanned = 1;
3536 }
3537 if (wbc->sync_mode == WB_SYNC_ALL)
3538 tag = PAGECACHE_TAG_TOWRITE;
3539 else
3540 tag = PAGECACHE_TAG_DIRTY;
3541 retry:
3542 if (wbc->sync_mode == WB_SYNC_ALL)
3543 tag_pages_for_writeback(mapping, index, end);
3544 while (!done && !nr_to_write_done && (index <= end) &&
3545 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3546 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3547 unsigned i;
3548
3549 scanned = 1;
3550 for (i = 0; i < nr_pages; i++) {
3551 struct page *page = pvec.pages[i];
3552
3553 if (!PagePrivate(page))
3554 continue;
3555
3556 if (!wbc->range_cyclic && page->index > end) {
3557 done = 1;
3558 break;
3559 }
3560
3561 spin_lock(&mapping->private_lock);
3562 if (!PagePrivate(page)) {
3563 spin_unlock(&mapping->private_lock);
3564 continue;
3565 }
3566
3567 eb = (struct extent_buffer *)page->private;
3568
3569 /*
3570 * Shouldn't happen and normally this would be a BUG_ON
3571 * but no sense in crashing the users box for something
3572 * we can survive anyway.
3573 */
3574 if (!eb) {
3575 spin_unlock(&mapping->private_lock);
3576 WARN_ON(1);
3577 continue;
3578 }
3579
3580 if (eb == prev_eb) {
3581 spin_unlock(&mapping->private_lock);
3582 continue;
3583 }
3584
3585 ret = atomic_inc_not_zero(&eb->refs);
3586 spin_unlock(&mapping->private_lock);
3587 if (!ret)
3588 continue;
3589
3590 prev_eb = eb;
3591 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3592 if (!ret) {
3593 free_extent_buffer(eb);
3594 continue;
3595 }
3596
3597 ret = write_one_eb(eb, fs_info, wbc, &epd);
3598 if (ret) {
3599 done = 1;
3600 free_extent_buffer(eb);
3601 break;
3602 }
3603 free_extent_buffer(eb);
3604
3605 /*
3606 * the filesystem may choose to bump up nr_to_write.
3607 * We have to make sure to honor the new nr_to_write
3608 * at any time
3609 */
3610 nr_to_write_done = wbc->nr_to_write <= 0;
3611 }
3612 pagevec_release(&pvec);
3613 cond_resched();
3614 }
3615 if (!scanned && !done) {
3616 /*
3617 * We hit the last page and there is more work to be done: wrap
3618 * back to the start of the file
3619 */
3620 scanned = 1;
3621 index = 0;
3622 goto retry;
3623 }
3624 flush_write_bio(&epd);
3625 return ret;
3626 }
3627
3628 /**
3629 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3630 * @mapping: address space structure to write
3631 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3632 * @writepage: function called for each page
3633 * @data: data passed to writepage function
3634 *
3635 * If a page is already under I/O, write_cache_pages() skips it, even
3636 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3637 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3638 * and msync() need to guarantee that all the data which was dirty at the time
3639 * the call was made get new I/O started against them. If wbc->sync_mode is
3640 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3641 * existing IO to complete.
3642 */
3643 static int extent_write_cache_pages(struct extent_io_tree *tree,
3644 struct address_space *mapping,
3645 struct writeback_control *wbc,
3646 writepage_t writepage, void *data,
3647 void (*flush_fn)(void *))
3648 {
3649 struct inode *inode = mapping->host;
3650 int ret = 0;
3651 int done = 0;
3652 int nr_to_write_done = 0;
3653 struct pagevec pvec;
3654 int nr_pages;
3655 pgoff_t index;
3656 pgoff_t end; /* Inclusive */
3657 int scanned = 0;
3658 int tag;
3659
3660 /*
3661 * We have to hold onto the inode so that ordered extents can do their
3662 * work when the IO finishes. The alternative to this is failing to add
3663 * an ordered extent if the igrab() fails there and that is a huge pain
3664 * to deal with, so instead just hold onto the inode throughout the
3665 * writepages operation. If it fails here we are freeing up the inode
3666 * anyway and we'd rather not waste our time writing out stuff that is
3667 * going to be truncated anyway.
3668 */
3669 if (!igrab(inode))
3670 return 0;
3671
3672 pagevec_init(&pvec, 0);
3673 if (wbc->range_cyclic) {
3674 index = mapping->writeback_index; /* Start from prev offset */
3675 end = -1;
3676 } else {
3677 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3678 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3679 scanned = 1;
3680 }
3681 if (wbc->sync_mode == WB_SYNC_ALL)
3682 tag = PAGECACHE_TAG_TOWRITE;
3683 else
3684 tag = PAGECACHE_TAG_DIRTY;
3685 retry:
3686 if (wbc->sync_mode == WB_SYNC_ALL)
3687 tag_pages_for_writeback(mapping, index, end);
3688 while (!done && !nr_to_write_done && (index <= end) &&
3689 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3690 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3691 unsigned i;
3692
3693 scanned = 1;
3694 for (i = 0; i < nr_pages; i++) {
3695 struct page *page = pvec.pages[i];
3696
3697 /*
3698 * At this point we hold neither mapping->tree_lock nor
3699 * lock on the page itself: the page may be truncated or
3700 * invalidated (changing page->mapping to NULL), or even
3701 * swizzled back from swapper_space to tmpfs file
3702 * mapping
3703 */
3704 if (!trylock_page(page)) {
3705 flush_fn(data);
3706 lock_page(page);
3707 }
3708
3709 if (unlikely(page->mapping != mapping)) {
3710 unlock_page(page);
3711 continue;
3712 }
3713
3714 if (!wbc->range_cyclic && page->index > end) {
3715 done = 1;
3716 unlock_page(page);
3717 continue;
3718 }
3719
3720 if (wbc->sync_mode != WB_SYNC_NONE) {
3721 if (PageWriteback(page))
3722 flush_fn(data);
3723 wait_on_page_writeback(page);
3724 }
3725
3726 if (PageWriteback(page) ||
3727 !clear_page_dirty_for_io(page)) {
3728 unlock_page(page);
3729 continue;
3730 }
3731
3732 ret = (*writepage)(page, wbc, data);
3733
3734 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3735 unlock_page(page);
3736 ret = 0;
3737 }
3738 if (ret)
3739 done = 1;
3740
3741 /*
3742 * the filesystem may choose to bump up nr_to_write.
3743 * We have to make sure to honor the new nr_to_write
3744 * at any time
3745 */
3746 nr_to_write_done = wbc->nr_to_write <= 0;
3747 }
3748 pagevec_release(&pvec);
3749 cond_resched();
3750 }
3751 if (!scanned && !done) {
3752 /*
3753 * We hit the last page and there is more work to be done: wrap
3754 * back to the start of the file
3755 */
3756 scanned = 1;
3757 index = 0;
3758 goto retry;
3759 }
3760 btrfs_add_delayed_iput(inode);
3761 return ret;
3762 }
3763
3764 static void flush_epd_write_bio(struct extent_page_data *epd)
3765 {
3766 if (epd->bio) {
3767 int rw = WRITE;
3768 int ret;
3769
3770 if (epd->sync_io)
3771 rw = WRITE_SYNC;
3772
3773 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3774 BUG_ON(ret < 0); /* -ENOMEM */
3775 epd->bio = NULL;
3776 }
3777 }
3778
3779 static noinline void flush_write_bio(void *data)
3780 {
3781 struct extent_page_data *epd = data;
3782 flush_epd_write_bio(epd);
3783 }
3784
3785 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3786 get_extent_t *get_extent,
3787 struct writeback_control *wbc)
3788 {
3789 int ret;
3790 struct extent_page_data epd = {
3791 .bio = NULL,
3792 .tree = tree,
3793 .get_extent = get_extent,
3794 .extent_locked = 0,
3795 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3796 .bio_flags = 0,
3797 };
3798
3799 ret = __extent_writepage(page, wbc, &epd);
3800
3801 flush_epd_write_bio(&epd);
3802 return ret;
3803 }
3804
3805 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3806 u64 start, u64 end, get_extent_t *get_extent,
3807 int mode)
3808 {
3809 int ret = 0;
3810 struct address_space *mapping = inode->i_mapping;
3811 struct page *page;
3812 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3813 PAGE_CACHE_SHIFT;
3814
3815 struct extent_page_data epd = {
3816 .bio = NULL,
3817 .tree = tree,
3818 .get_extent = get_extent,
3819 .extent_locked = 1,
3820 .sync_io = mode == WB_SYNC_ALL,
3821 .bio_flags = 0,
3822 };
3823 struct writeback_control wbc_writepages = {
3824 .sync_mode = mode,
3825 .nr_to_write = nr_pages * 2,
3826 .range_start = start,
3827 .range_end = end + 1,
3828 };
3829
3830 while (start <= end) {
3831 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3832 if (clear_page_dirty_for_io(page))
3833 ret = __extent_writepage(page, &wbc_writepages, &epd);
3834 else {
3835 if (tree->ops && tree->ops->writepage_end_io_hook)
3836 tree->ops->writepage_end_io_hook(page, start,
3837 start + PAGE_CACHE_SIZE - 1,
3838 NULL, 1);
3839 unlock_page(page);
3840 }
3841 page_cache_release(page);
3842 start += PAGE_CACHE_SIZE;
3843 }
3844
3845 flush_epd_write_bio(&epd);
3846 return ret;
3847 }
3848
3849 int extent_writepages(struct extent_io_tree *tree,
3850 struct address_space *mapping,
3851 get_extent_t *get_extent,
3852 struct writeback_control *wbc)
3853 {
3854 int ret = 0;
3855 struct extent_page_data epd = {
3856 .bio = NULL,
3857 .tree = tree,
3858 .get_extent = get_extent,
3859 .extent_locked = 0,
3860 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3861 .bio_flags = 0,
3862 };
3863
3864 ret = extent_write_cache_pages(tree, mapping, wbc,
3865 __extent_writepage, &epd,
3866 flush_write_bio);
3867 flush_epd_write_bio(&epd);
3868 return ret;
3869 }
3870
3871 int extent_readpages(struct extent_io_tree *tree,
3872 struct address_space *mapping,
3873 struct list_head *pages, unsigned nr_pages,
3874 get_extent_t get_extent)
3875 {
3876 struct bio *bio = NULL;
3877 unsigned page_idx;
3878 unsigned long bio_flags = 0;
3879 struct page *pagepool[16];
3880 struct page *page;
3881 struct extent_map *em_cached = NULL;
3882 int nr = 0;
3883
3884 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3885 page = list_entry(pages->prev, struct page, lru);
3886
3887 prefetchw(&page->flags);
3888 list_del(&page->lru);
3889 if (add_to_page_cache_lru(page, mapping,
3890 page->index, GFP_NOFS)) {
3891 page_cache_release(page);
3892 continue;
3893 }
3894
3895 pagepool[nr++] = page;
3896 if (nr < ARRAY_SIZE(pagepool))
3897 continue;
3898 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3899 &bio, 0, &bio_flags, READ);
3900 nr = 0;
3901 }
3902 if (nr)
3903 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3904 &bio, 0, &bio_flags, READ);
3905
3906 if (em_cached)
3907 free_extent_map(em_cached);
3908
3909 BUG_ON(!list_empty(pages));
3910 if (bio)
3911 return submit_one_bio(READ, bio, 0, bio_flags);
3912 return 0;
3913 }
3914
3915 /*
3916 * basic invalidatepage code, this waits on any locked or writeback
3917 * ranges corresponding to the page, and then deletes any extent state
3918 * records from the tree
3919 */
3920 int extent_invalidatepage(struct extent_io_tree *tree,
3921 struct page *page, unsigned long offset)
3922 {
3923 struct extent_state *cached_state = NULL;
3924 u64 start = page_offset(page);
3925 u64 end = start + PAGE_CACHE_SIZE - 1;
3926 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3927
3928 start += ALIGN(offset, blocksize);
3929 if (start > end)
3930 return 0;
3931
3932 lock_extent_bits(tree, start, end, 0, &cached_state);
3933 wait_on_page_writeback(page);
3934 clear_extent_bit(tree, start, end,
3935 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3936 EXTENT_DO_ACCOUNTING,
3937 1, 1, &cached_state, GFP_NOFS);
3938 return 0;
3939 }
3940
3941 /*
3942 * a helper for releasepage, this tests for areas of the page that
3943 * are locked or under IO and drops the related state bits if it is safe
3944 * to drop the page.
3945 */
3946 static int try_release_extent_state(struct extent_map_tree *map,
3947 struct extent_io_tree *tree,
3948 struct page *page, gfp_t mask)
3949 {
3950 u64 start = page_offset(page);
3951 u64 end = start + PAGE_CACHE_SIZE - 1;
3952 int ret = 1;
3953
3954 if (test_range_bit(tree, start, end,
3955 EXTENT_IOBITS, 0, NULL))
3956 ret = 0;
3957 else {
3958 if ((mask & GFP_NOFS) == GFP_NOFS)
3959 mask = GFP_NOFS;
3960 /*
3961 * at this point we can safely clear everything except the
3962 * locked bit and the nodatasum bit
3963 */
3964 ret = clear_extent_bit(tree, start, end,
3965 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3966 0, 0, NULL, mask);
3967
3968 /* if clear_extent_bit failed for enomem reasons,
3969 * we can't allow the release to continue.
3970 */
3971 if (ret < 0)
3972 ret = 0;
3973 else
3974 ret = 1;
3975 }
3976 return ret;
3977 }
3978
3979 /*
3980 * a helper for releasepage. As long as there are no locked extents
3981 * in the range corresponding to the page, both state records and extent
3982 * map records are removed
3983 */
3984 int try_release_extent_mapping(struct extent_map_tree *map,
3985 struct extent_io_tree *tree, struct page *page,
3986 gfp_t mask)
3987 {
3988 struct extent_map *em;
3989 u64 start = page_offset(page);
3990 u64 end = start + PAGE_CACHE_SIZE - 1;
3991
3992 if ((mask & __GFP_WAIT) &&
3993 page->mapping->host->i_size > 16 * 1024 * 1024) {
3994 u64 len;
3995 while (start <= end) {
3996 len = end - start + 1;
3997 write_lock(&map->lock);
3998 em = lookup_extent_mapping(map, start, len);
3999 if (!em) {
4000 write_unlock(&map->lock);
4001 break;
4002 }
4003 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4004 em->start != start) {
4005 write_unlock(&map->lock);
4006 free_extent_map(em);
4007 break;
4008 }
4009 if (!test_range_bit(tree, em->start,
4010 extent_map_end(em) - 1,
4011 EXTENT_LOCKED | EXTENT_WRITEBACK,
4012 0, NULL)) {
4013 remove_extent_mapping(map, em);
4014 /* once for the rb tree */
4015 free_extent_map(em);
4016 }
4017 start = extent_map_end(em);
4018 write_unlock(&map->lock);
4019
4020 /* once for us */
4021 free_extent_map(em);
4022 }
4023 }
4024 return try_release_extent_state(map, tree, page, mask);
4025 }
4026
4027 /*
4028 * helper function for fiemap, which doesn't want to see any holes.
4029 * This maps until we find something past 'last'
4030 */
4031 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4032 u64 offset,
4033 u64 last,
4034 get_extent_t *get_extent)
4035 {
4036 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4037 struct extent_map *em;
4038 u64 len;
4039
4040 if (offset >= last)
4041 return NULL;
4042
4043 while(1) {
4044 len = last - offset;
4045 if (len == 0)
4046 break;
4047 len = ALIGN(len, sectorsize);
4048 em = get_extent(inode, NULL, 0, offset, len, 0);
4049 if (IS_ERR_OR_NULL(em))
4050 return em;
4051
4052 /* if this isn't a hole return it */
4053 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4054 em->block_start != EXTENT_MAP_HOLE) {
4055 return em;
4056 }
4057
4058 /* this is a hole, advance to the next extent */
4059 offset = extent_map_end(em);
4060 free_extent_map(em);
4061 if (offset >= last)
4062 break;
4063 }
4064 return NULL;
4065 }
4066
4067 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4068 __u64 start, __u64 len, get_extent_t *get_extent)
4069 {
4070 int ret = 0;
4071 u64 off = start;
4072 u64 max = start + len;
4073 u32 flags = 0;
4074 u32 found_type;
4075 u64 last;
4076 u64 last_for_get_extent = 0;
4077 u64 disko = 0;
4078 u64 isize = i_size_read(inode);
4079 struct btrfs_key found_key;
4080 struct extent_map *em = NULL;
4081 struct extent_state *cached_state = NULL;
4082 struct btrfs_path *path;
4083 struct btrfs_file_extent_item *item;
4084 int end = 0;
4085 u64 em_start = 0;
4086 u64 em_len = 0;
4087 u64 em_end = 0;
4088 unsigned long emflags;
4089
4090 if (len == 0)
4091 return -EINVAL;
4092
4093 path = btrfs_alloc_path();
4094 if (!path)
4095 return -ENOMEM;
4096 path->leave_spinning = 1;
4097
4098 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4099 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4100
4101 /*
4102 * lookup the last file extent. We're not using i_size here
4103 * because there might be preallocation past i_size
4104 */
4105 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4106 path, btrfs_ino(inode), -1, 0);
4107 if (ret < 0) {
4108 btrfs_free_path(path);
4109 return ret;
4110 }
4111 WARN_ON(!ret);
4112 path->slots[0]--;
4113 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4114 struct btrfs_file_extent_item);
4115 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4116 found_type = btrfs_key_type(&found_key);
4117
4118 /* No extents, but there might be delalloc bits */
4119 if (found_key.objectid != btrfs_ino(inode) ||
4120 found_type != BTRFS_EXTENT_DATA_KEY) {
4121 /* have to trust i_size as the end */
4122 last = (u64)-1;
4123 last_for_get_extent = isize;
4124 } else {
4125 /*
4126 * remember the start of the last extent. There are a
4127 * bunch of different factors that go into the length of the
4128 * extent, so its much less complex to remember where it started
4129 */
4130 last = found_key.offset;
4131 last_for_get_extent = last + 1;
4132 }
4133 btrfs_free_path(path);
4134
4135 /*
4136 * we might have some extents allocated but more delalloc past those
4137 * extents. so, we trust isize unless the start of the last extent is
4138 * beyond isize
4139 */
4140 if (last < isize) {
4141 last = (u64)-1;
4142 last_for_get_extent = isize;
4143 }
4144
4145 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4146 &cached_state);
4147
4148 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4149 get_extent);
4150 if (!em)
4151 goto out;
4152 if (IS_ERR(em)) {
4153 ret = PTR_ERR(em);
4154 goto out;
4155 }
4156
4157 while (!end) {
4158 u64 offset_in_extent = 0;
4159
4160 /* break if the extent we found is outside the range */
4161 if (em->start >= max || extent_map_end(em) < off)
4162 break;
4163
4164 /*
4165 * get_extent may return an extent that starts before our
4166 * requested range. We have to make sure the ranges
4167 * we return to fiemap always move forward and don't
4168 * overlap, so adjust the offsets here
4169 */
4170 em_start = max(em->start, off);
4171
4172 /*
4173 * record the offset from the start of the extent
4174 * for adjusting the disk offset below. Only do this if the
4175 * extent isn't compressed since our in ram offset may be past
4176 * what we have actually allocated on disk.
4177 */
4178 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4179 offset_in_extent = em_start - em->start;
4180 em_end = extent_map_end(em);
4181 em_len = em_end - em_start;
4182 emflags = em->flags;
4183 disko = 0;
4184 flags = 0;
4185
4186 /*
4187 * bump off for our next call to get_extent
4188 */
4189 off = extent_map_end(em);
4190 if (off >= max)
4191 end = 1;
4192
4193 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4194 end = 1;
4195 flags |= FIEMAP_EXTENT_LAST;
4196 } else if (em->block_start == EXTENT_MAP_INLINE) {
4197 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4198 FIEMAP_EXTENT_NOT_ALIGNED);
4199 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4200 flags |= (FIEMAP_EXTENT_DELALLOC |
4201 FIEMAP_EXTENT_UNKNOWN);
4202 } else {
4203 disko = em->block_start + offset_in_extent;
4204 }
4205 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4206 flags |= FIEMAP_EXTENT_ENCODED;
4207
4208 free_extent_map(em);
4209 em = NULL;
4210 if ((em_start >= last) || em_len == (u64)-1 ||
4211 (last == (u64)-1 && isize <= em_end)) {
4212 flags |= FIEMAP_EXTENT_LAST;
4213 end = 1;
4214 }
4215
4216 /* now scan forward to see if this is really the last extent. */
4217 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4218 get_extent);
4219 if (IS_ERR(em)) {
4220 ret = PTR_ERR(em);
4221 goto out;
4222 }
4223 if (!em) {
4224 flags |= FIEMAP_EXTENT_LAST;
4225 end = 1;
4226 }
4227 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4228 em_len, flags);
4229 if (ret)
4230 goto out_free;
4231 }
4232 out_free:
4233 free_extent_map(em);
4234 out:
4235 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4236 &cached_state, GFP_NOFS);
4237 return ret;
4238 }
4239
4240 static void __free_extent_buffer(struct extent_buffer *eb)
4241 {
4242 btrfs_leak_debug_del(&eb->leak_list);
4243 kmem_cache_free(extent_buffer_cache, eb);
4244 }
4245
4246 static int extent_buffer_under_io(struct extent_buffer *eb)
4247 {
4248 return (atomic_read(&eb->io_pages) ||
4249 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4250 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4251 }
4252
4253 /*
4254 * Helper for releasing extent buffer page.
4255 */
4256 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4257 unsigned long start_idx)
4258 {
4259 unsigned long index;
4260 unsigned long num_pages;
4261 struct page *page;
4262 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4263
4264 BUG_ON(extent_buffer_under_io(eb));
4265
4266 num_pages = num_extent_pages(eb->start, eb->len);
4267 index = start_idx + num_pages;
4268 if (start_idx >= index)
4269 return;
4270
4271 do {
4272 index--;
4273 page = extent_buffer_page(eb, index);
4274 if (page && mapped) {
4275 spin_lock(&page->mapping->private_lock);
4276 /*
4277 * We do this since we'll remove the pages after we've
4278 * removed the eb from the radix tree, so we could race
4279 * and have this page now attached to the new eb. So
4280 * only clear page_private if it's still connected to
4281 * this eb.
4282 */
4283 if (PagePrivate(page) &&
4284 page->private == (unsigned long)eb) {
4285 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4286 BUG_ON(PageDirty(page));
4287 BUG_ON(PageWriteback(page));
4288 /*
4289 * We need to make sure we haven't be attached
4290 * to a new eb.
4291 */
4292 ClearPagePrivate(page);
4293 set_page_private(page, 0);
4294 /* One for the page private */
4295 page_cache_release(page);
4296 }
4297 spin_unlock(&page->mapping->private_lock);
4298
4299 }
4300 if (page) {
4301 /* One for when we alloced the page */
4302 page_cache_release(page);
4303 }
4304 } while (index != start_idx);
4305 }
4306
4307 /*
4308 * Helper for releasing the extent buffer.
4309 */
4310 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4311 {
4312 btrfs_release_extent_buffer_page(eb, 0);
4313 __free_extent_buffer(eb);
4314 }
4315
4316 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4317 u64 start,
4318 unsigned long len,
4319 gfp_t mask)
4320 {
4321 struct extent_buffer *eb = NULL;
4322
4323 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4324 if (eb == NULL)
4325 return NULL;
4326 eb->start = start;
4327 eb->len = len;
4328 eb->tree = tree;
4329 eb->bflags = 0;
4330 rwlock_init(&eb->lock);
4331 atomic_set(&eb->write_locks, 0);
4332 atomic_set(&eb->read_locks, 0);
4333 atomic_set(&eb->blocking_readers, 0);
4334 atomic_set(&eb->blocking_writers, 0);
4335 atomic_set(&eb->spinning_readers, 0);
4336 atomic_set(&eb->spinning_writers, 0);
4337 eb->lock_nested = 0;
4338 init_waitqueue_head(&eb->write_lock_wq);
4339 init_waitqueue_head(&eb->read_lock_wq);
4340
4341 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4342
4343 spin_lock_init(&eb->refs_lock);
4344 atomic_set(&eb->refs, 1);
4345 atomic_set(&eb->io_pages, 0);
4346
4347 /*
4348 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4349 */
4350 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4351 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4352 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4353
4354 return eb;
4355 }
4356
4357 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4358 {
4359 unsigned long i;
4360 struct page *p;
4361 struct extent_buffer *new;
4362 unsigned long num_pages = num_extent_pages(src->start, src->len);
4363
4364 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4365 if (new == NULL)
4366 return NULL;
4367
4368 for (i = 0; i < num_pages; i++) {
4369 p = alloc_page(GFP_NOFS);
4370 if (!p) {
4371 btrfs_release_extent_buffer(new);
4372 return NULL;
4373 }
4374 attach_extent_buffer_page(new, p);
4375 WARN_ON(PageDirty(p));
4376 SetPageUptodate(p);
4377 new->pages[i] = p;
4378 }
4379
4380 copy_extent_buffer(new, src, 0, 0, src->len);
4381 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4382 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4383
4384 return new;
4385 }
4386
4387 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4388 {
4389 struct extent_buffer *eb;
4390 unsigned long num_pages = num_extent_pages(0, len);
4391 unsigned long i;
4392
4393 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4394 if (!eb)
4395 return NULL;
4396
4397 for (i = 0; i < num_pages; i++) {
4398 eb->pages[i] = alloc_page(GFP_NOFS);
4399 if (!eb->pages[i])
4400 goto err;
4401 }
4402 set_extent_buffer_uptodate(eb);
4403 btrfs_set_header_nritems(eb, 0);
4404 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4405
4406 return eb;
4407 err:
4408 for (; i > 0; i--)
4409 __free_page(eb->pages[i - 1]);
4410 __free_extent_buffer(eb);
4411 return NULL;
4412 }
4413
4414 static void check_buffer_tree_ref(struct extent_buffer *eb)
4415 {
4416 int refs;
4417 /* the ref bit is tricky. We have to make sure it is set
4418 * if we have the buffer dirty. Otherwise the
4419 * code to free a buffer can end up dropping a dirty
4420 * page
4421 *
4422 * Once the ref bit is set, it won't go away while the
4423 * buffer is dirty or in writeback, and it also won't
4424 * go away while we have the reference count on the
4425 * eb bumped.
4426 *
4427 * We can't just set the ref bit without bumping the
4428 * ref on the eb because free_extent_buffer might
4429 * see the ref bit and try to clear it. If this happens
4430 * free_extent_buffer might end up dropping our original
4431 * ref by mistake and freeing the page before we are able
4432 * to add one more ref.
4433 *
4434 * So bump the ref count first, then set the bit. If someone
4435 * beat us to it, drop the ref we added.
4436 */
4437 refs = atomic_read(&eb->refs);
4438 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4439 return;
4440
4441 spin_lock(&eb->refs_lock);
4442 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4443 atomic_inc(&eb->refs);
4444 spin_unlock(&eb->refs_lock);
4445 }
4446
4447 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4448 {
4449 unsigned long num_pages, i;
4450
4451 check_buffer_tree_ref(eb);
4452
4453 num_pages = num_extent_pages(eb->start, eb->len);
4454 for (i = 0; i < num_pages; i++) {
4455 struct page *p = extent_buffer_page(eb, i);
4456 mark_page_accessed(p);
4457 }
4458 }
4459
4460 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4461 u64 start, unsigned long len)
4462 {
4463 unsigned long num_pages = num_extent_pages(start, len);
4464 unsigned long i;
4465 unsigned long index = start >> PAGE_CACHE_SHIFT;
4466 struct extent_buffer *eb;
4467 struct extent_buffer *exists = NULL;
4468 struct page *p;
4469 struct address_space *mapping = tree->mapping;
4470 int uptodate = 1;
4471 int ret;
4472
4473 rcu_read_lock();
4474 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4475 if (eb && atomic_inc_not_zero(&eb->refs)) {
4476 rcu_read_unlock();
4477 mark_extent_buffer_accessed(eb);
4478 return eb;
4479 }
4480 rcu_read_unlock();
4481
4482 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4483 if (!eb)
4484 return NULL;
4485
4486 for (i = 0; i < num_pages; i++, index++) {
4487 p = find_or_create_page(mapping, index, GFP_NOFS);
4488 if (!p)
4489 goto free_eb;
4490
4491 spin_lock(&mapping->private_lock);
4492 if (PagePrivate(p)) {
4493 /*
4494 * We could have already allocated an eb for this page
4495 * and attached one so lets see if we can get a ref on
4496 * the existing eb, and if we can we know it's good and
4497 * we can just return that one, else we know we can just
4498 * overwrite page->private.
4499 */
4500 exists = (struct extent_buffer *)p->private;
4501 if (atomic_inc_not_zero(&exists->refs)) {
4502 spin_unlock(&mapping->private_lock);
4503 unlock_page(p);
4504 page_cache_release(p);
4505 mark_extent_buffer_accessed(exists);
4506 goto free_eb;
4507 }
4508
4509 /*
4510 * Do this so attach doesn't complain and we need to
4511 * drop the ref the old guy had.
4512 */
4513 ClearPagePrivate(p);
4514 WARN_ON(PageDirty(p));
4515 page_cache_release(p);
4516 }
4517 attach_extent_buffer_page(eb, p);
4518 spin_unlock(&mapping->private_lock);
4519 WARN_ON(PageDirty(p));
4520 mark_page_accessed(p);
4521 eb->pages[i] = p;
4522 if (!PageUptodate(p))
4523 uptodate = 0;
4524
4525 /*
4526 * see below about how we avoid a nasty race with release page
4527 * and why we unlock later
4528 */
4529 }
4530 if (uptodate)
4531 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4532 again:
4533 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4534 if (ret)
4535 goto free_eb;
4536
4537 spin_lock(&tree->buffer_lock);
4538 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4539 if (ret == -EEXIST) {
4540 exists = radix_tree_lookup(&tree->buffer,
4541 start >> PAGE_CACHE_SHIFT);
4542 if (!atomic_inc_not_zero(&exists->refs)) {
4543 spin_unlock(&tree->buffer_lock);
4544 radix_tree_preload_end();
4545 exists = NULL;
4546 goto again;
4547 }
4548 spin_unlock(&tree->buffer_lock);
4549 radix_tree_preload_end();
4550 mark_extent_buffer_accessed(exists);
4551 goto free_eb;
4552 }
4553 /* add one reference for the tree */
4554 check_buffer_tree_ref(eb);
4555 spin_unlock(&tree->buffer_lock);
4556 radix_tree_preload_end();
4557
4558 /*
4559 * there is a race where release page may have
4560 * tried to find this extent buffer in the radix
4561 * but failed. It will tell the VM it is safe to
4562 * reclaim the, and it will clear the page private bit.
4563 * We must make sure to set the page private bit properly
4564 * after the extent buffer is in the radix tree so
4565 * it doesn't get lost
4566 */
4567 SetPageChecked(eb->pages[0]);
4568 for (i = 1; i < num_pages; i++) {
4569 p = extent_buffer_page(eb, i);
4570 ClearPageChecked(p);
4571 unlock_page(p);
4572 }
4573 unlock_page(eb->pages[0]);
4574 return eb;
4575
4576 free_eb:
4577 for (i = 0; i < num_pages; i++) {
4578 if (eb->pages[i])
4579 unlock_page(eb->pages[i]);
4580 }
4581
4582 WARN_ON(!atomic_dec_and_test(&eb->refs));
4583 btrfs_release_extent_buffer(eb);
4584 return exists;
4585 }
4586
4587 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4588 u64 start, unsigned long len)
4589 {
4590 struct extent_buffer *eb;
4591
4592 rcu_read_lock();
4593 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4594 if (eb && atomic_inc_not_zero(&eb->refs)) {
4595 rcu_read_unlock();
4596 mark_extent_buffer_accessed(eb);
4597 return eb;
4598 }
4599 rcu_read_unlock();
4600
4601 return NULL;
4602 }
4603
4604 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4605 {
4606 struct extent_buffer *eb =
4607 container_of(head, struct extent_buffer, rcu_head);
4608
4609 __free_extent_buffer(eb);
4610 }
4611
4612 /* Expects to have eb->eb_lock already held */
4613 static int release_extent_buffer(struct extent_buffer *eb)
4614 {
4615 WARN_ON(atomic_read(&eb->refs) == 0);
4616 if (atomic_dec_and_test(&eb->refs)) {
4617 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4618 spin_unlock(&eb->refs_lock);
4619 } else {
4620 struct extent_io_tree *tree = eb->tree;
4621
4622 spin_unlock(&eb->refs_lock);
4623
4624 spin_lock(&tree->buffer_lock);
4625 radix_tree_delete(&tree->buffer,
4626 eb->start >> PAGE_CACHE_SHIFT);
4627 spin_unlock(&tree->buffer_lock);
4628 }
4629
4630 /* Should be safe to release our pages at this point */
4631 btrfs_release_extent_buffer_page(eb, 0);
4632 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4633 return 1;
4634 }
4635 spin_unlock(&eb->refs_lock);
4636
4637 return 0;
4638 }
4639
4640 void free_extent_buffer(struct extent_buffer *eb)
4641 {
4642 int refs;
4643 int old;
4644 if (!eb)
4645 return;
4646
4647 while (1) {
4648 refs = atomic_read(&eb->refs);
4649 if (refs <= 3)
4650 break;
4651 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4652 if (old == refs)
4653 return;
4654 }
4655
4656 spin_lock(&eb->refs_lock);
4657 if (atomic_read(&eb->refs) == 2 &&
4658 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4659 atomic_dec(&eb->refs);
4660
4661 if (atomic_read(&eb->refs) == 2 &&
4662 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4663 !extent_buffer_under_io(eb) &&
4664 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4665 atomic_dec(&eb->refs);
4666
4667 /*
4668 * I know this is terrible, but it's temporary until we stop tracking
4669 * the uptodate bits and such for the extent buffers.
4670 */
4671 release_extent_buffer(eb);
4672 }
4673
4674 void free_extent_buffer_stale(struct extent_buffer *eb)
4675 {
4676 if (!eb)
4677 return;
4678
4679 spin_lock(&eb->refs_lock);
4680 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4681
4682 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4683 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4684 atomic_dec(&eb->refs);
4685 release_extent_buffer(eb);
4686 }
4687
4688 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4689 {
4690 unsigned long i;
4691 unsigned long num_pages;
4692 struct page *page;
4693
4694 num_pages = num_extent_pages(eb->start, eb->len);
4695
4696 for (i = 0; i < num_pages; i++) {
4697 page = extent_buffer_page(eb, i);
4698 if (!PageDirty(page))
4699 continue;
4700
4701 lock_page(page);
4702 WARN_ON(!PagePrivate(page));
4703
4704 clear_page_dirty_for_io(page);
4705 spin_lock_irq(&page->mapping->tree_lock);
4706 if (!PageDirty(page)) {
4707 radix_tree_tag_clear(&page->mapping->page_tree,
4708 page_index(page),
4709 PAGECACHE_TAG_DIRTY);
4710 }
4711 spin_unlock_irq(&page->mapping->tree_lock);
4712 ClearPageError(page);
4713 unlock_page(page);
4714 }
4715 WARN_ON(atomic_read(&eb->refs) == 0);
4716 }
4717
4718 int set_extent_buffer_dirty(struct extent_buffer *eb)
4719 {
4720 unsigned long i;
4721 unsigned long num_pages;
4722 int was_dirty = 0;
4723
4724 check_buffer_tree_ref(eb);
4725
4726 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4727
4728 num_pages = num_extent_pages(eb->start, eb->len);
4729 WARN_ON(atomic_read(&eb->refs) == 0);
4730 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4731
4732 for (i = 0; i < num_pages; i++)
4733 set_page_dirty(extent_buffer_page(eb, i));
4734 return was_dirty;
4735 }
4736
4737 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4738 {
4739 unsigned long i;
4740 struct page *page;
4741 unsigned long num_pages;
4742
4743 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4744 num_pages = num_extent_pages(eb->start, eb->len);
4745 for (i = 0; i < num_pages; i++) {
4746 page = extent_buffer_page(eb, i);
4747 if (page)
4748 ClearPageUptodate(page);
4749 }
4750 return 0;
4751 }
4752
4753 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4754 {
4755 unsigned long i;
4756 struct page *page;
4757 unsigned long num_pages;
4758
4759 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4760 num_pages = num_extent_pages(eb->start, eb->len);
4761 for (i = 0; i < num_pages; i++) {
4762 page = extent_buffer_page(eb, i);
4763 SetPageUptodate(page);
4764 }
4765 return 0;
4766 }
4767
4768 int extent_buffer_uptodate(struct extent_buffer *eb)
4769 {
4770 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4771 }
4772
4773 int read_extent_buffer_pages(struct extent_io_tree *tree,
4774 struct extent_buffer *eb, u64 start, int wait,
4775 get_extent_t *get_extent, int mirror_num)
4776 {
4777 unsigned long i;
4778 unsigned long start_i;
4779 struct page *page;
4780 int err;
4781 int ret = 0;
4782 int locked_pages = 0;
4783 int all_uptodate = 1;
4784 unsigned long num_pages;
4785 unsigned long num_reads = 0;
4786 struct bio *bio = NULL;
4787 unsigned long bio_flags = 0;
4788
4789 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4790 return 0;
4791
4792 if (start) {
4793 WARN_ON(start < eb->start);
4794 start_i = (start >> PAGE_CACHE_SHIFT) -
4795 (eb->start >> PAGE_CACHE_SHIFT);
4796 } else {
4797 start_i = 0;
4798 }
4799
4800 num_pages = num_extent_pages(eb->start, eb->len);
4801 for (i = start_i; i < num_pages; i++) {
4802 page = extent_buffer_page(eb, i);
4803 if (wait == WAIT_NONE) {
4804 if (!trylock_page(page))
4805 goto unlock_exit;
4806 } else {
4807 lock_page(page);
4808 }
4809 locked_pages++;
4810 if (!PageUptodate(page)) {
4811 num_reads++;
4812 all_uptodate = 0;
4813 }
4814 }
4815 if (all_uptodate) {
4816 if (start_i == 0)
4817 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4818 goto unlock_exit;
4819 }
4820
4821 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4822 eb->read_mirror = 0;
4823 atomic_set(&eb->io_pages, num_reads);
4824 for (i = start_i; i < num_pages; i++) {
4825 page = extent_buffer_page(eb, i);
4826 if (!PageUptodate(page)) {
4827 ClearPageError(page);
4828 err = __extent_read_full_page(tree, page,
4829 get_extent, &bio,
4830 mirror_num, &bio_flags,
4831 READ | REQ_META);
4832 if (err)
4833 ret = err;
4834 } else {
4835 unlock_page(page);
4836 }
4837 }
4838
4839 if (bio) {
4840 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4841 bio_flags);
4842 if (err)
4843 return err;
4844 }
4845
4846 if (ret || wait != WAIT_COMPLETE)
4847 return ret;
4848
4849 for (i = start_i; i < num_pages; i++) {
4850 page = extent_buffer_page(eb, i);
4851 wait_on_page_locked(page);
4852 if (!PageUptodate(page))
4853 ret = -EIO;
4854 }
4855
4856 return ret;
4857
4858 unlock_exit:
4859 i = start_i;
4860 while (locked_pages > 0) {
4861 page = extent_buffer_page(eb, i);
4862 i++;
4863 unlock_page(page);
4864 locked_pages--;
4865 }
4866 return ret;
4867 }
4868
4869 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4870 unsigned long start,
4871 unsigned long len)
4872 {
4873 size_t cur;
4874 size_t offset;
4875 struct page *page;
4876 char *kaddr;
4877 char *dst = (char *)dstv;
4878 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4879 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4880
4881 WARN_ON(start > eb->len);
4882 WARN_ON(start + len > eb->start + eb->len);
4883
4884 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4885
4886 while (len > 0) {
4887 page = extent_buffer_page(eb, i);
4888
4889 cur = min(len, (PAGE_CACHE_SIZE - offset));
4890 kaddr = page_address(page);
4891 memcpy(dst, kaddr + offset, cur);
4892
4893 dst += cur;
4894 len -= cur;
4895 offset = 0;
4896 i++;
4897 }
4898 }
4899
4900 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4901 unsigned long min_len, char **map,
4902 unsigned long *map_start,
4903 unsigned long *map_len)
4904 {
4905 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4906 char *kaddr;
4907 struct page *p;
4908 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4909 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4910 unsigned long end_i = (start_offset + start + min_len - 1) >>
4911 PAGE_CACHE_SHIFT;
4912
4913 if (i != end_i)
4914 return -EINVAL;
4915
4916 if (i == 0) {
4917 offset = start_offset;
4918 *map_start = 0;
4919 } else {
4920 offset = 0;
4921 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4922 }
4923
4924 if (start + min_len > eb->len) {
4925 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4926 "wanted %lu %lu\n", (unsigned long long)eb->start,
4927 eb->len, start, min_len);
4928 return -EINVAL;
4929 }
4930
4931 p = extent_buffer_page(eb, i);
4932 kaddr = page_address(p);
4933 *map = kaddr + offset;
4934 *map_len = PAGE_CACHE_SIZE - offset;
4935 return 0;
4936 }
4937
4938 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4939 unsigned long start,
4940 unsigned long len)
4941 {
4942 size_t cur;
4943 size_t offset;
4944 struct page *page;
4945 char *kaddr;
4946 char *ptr = (char *)ptrv;
4947 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4948 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4949 int ret = 0;
4950
4951 WARN_ON(start > eb->len);
4952 WARN_ON(start + len > eb->start + eb->len);
4953
4954 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4955
4956 while (len > 0) {
4957 page = extent_buffer_page(eb, i);
4958
4959 cur = min(len, (PAGE_CACHE_SIZE - offset));
4960
4961 kaddr = page_address(page);
4962 ret = memcmp(ptr, kaddr + offset, cur);
4963 if (ret)
4964 break;
4965
4966 ptr += cur;
4967 len -= cur;
4968 offset = 0;
4969 i++;
4970 }
4971 return ret;
4972 }
4973
4974 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4975 unsigned long start, unsigned long len)
4976 {
4977 size_t cur;
4978 size_t offset;
4979 struct page *page;
4980 char *kaddr;
4981 char *src = (char *)srcv;
4982 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4983 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4984
4985 WARN_ON(start > eb->len);
4986 WARN_ON(start + len > eb->start + eb->len);
4987
4988 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4989
4990 while (len > 0) {
4991 page = extent_buffer_page(eb, i);
4992 WARN_ON(!PageUptodate(page));
4993
4994 cur = min(len, PAGE_CACHE_SIZE - offset);
4995 kaddr = page_address(page);
4996 memcpy(kaddr + offset, src, cur);
4997
4998 src += cur;
4999 len -= cur;
5000 offset = 0;
5001 i++;
5002 }
5003 }
5004
5005 void memset_extent_buffer(struct extent_buffer *eb, char c,
5006 unsigned long start, unsigned long len)
5007 {
5008 size_t cur;
5009 size_t offset;
5010 struct page *page;
5011 char *kaddr;
5012 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5013 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5014
5015 WARN_ON(start > eb->len);
5016 WARN_ON(start + len > eb->start + eb->len);
5017
5018 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
5019
5020 while (len > 0) {
5021 page = extent_buffer_page(eb, i);
5022 WARN_ON(!PageUptodate(page));
5023
5024 cur = min(len, PAGE_CACHE_SIZE - offset);
5025 kaddr = page_address(page);
5026 memset(kaddr + offset, c, cur);
5027
5028 len -= cur;
5029 offset = 0;
5030 i++;
5031 }
5032 }
5033
5034 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5035 unsigned long dst_offset, unsigned long src_offset,
5036 unsigned long len)
5037 {
5038 u64 dst_len = dst->len;
5039 size_t cur;
5040 size_t offset;
5041 struct page *page;
5042 char *kaddr;
5043 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5044 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5045
5046 WARN_ON(src->len != dst_len);
5047
5048 offset = (start_offset + dst_offset) &
5049 ((unsigned long)PAGE_CACHE_SIZE - 1);
5050
5051 while (len > 0) {
5052 page = extent_buffer_page(dst, i);
5053 WARN_ON(!PageUptodate(page));
5054
5055 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5056
5057 kaddr = page_address(page);
5058 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5059
5060 src_offset += cur;
5061 len -= cur;
5062 offset = 0;
5063 i++;
5064 }
5065 }
5066
5067 static void move_pages(struct page *dst_page, struct page *src_page,
5068 unsigned long dst_off, unsigned long src_off,
5069 unsigned long len)
5070 {
5071 char *dst_kaddr = page_address(dst_page);
5072 if (dst_page == src_page) {
5073 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
5074 } else {
5075 char *src_kaddr = page_address(src_page);
5076 char *p = dst_kaddr + dst_off + len;
5077 char *s = src_kaddr + src_off + len;
5078
5079 while (len--)
5080 *--p = *--s;
5081 }
5082 }
5083
5084 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5085 {
5086 unsigned long distance = (src > dst) ? src - dst : dst - src;
5087 return distance < len;
5088 }
5089
5090 static void copy_pages(struct page *dst_page, struct page *src_page,
5091 unsigned long dst_off, unsigned long src_off,
5092 unsigned long len)
5093 {
5094 char *dst_kaddr = page_address(dst_page);
5095 char *src_kaddr;
5096 int must_memmove = 0;
5097
5098 if (dst_page != src_page) {
5099 src_kaddr = page_address(src_page);
5100 } else {
5101 src_kaddr = dst_kaddr;
5102 if (areas_overlap(src_off, dst_off, len))
5103 must_memmove = 1;
5104 }
5105
5106 if (must_memmove)
5107 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5108 else
5109 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5110 }
5111
5112 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5113 unsigned long src_offset, unsigned long len)
5114 {
5115 size_t cur;
5116 size_t dst_off_in_page;
5117 size_t src_off_in_page;
5118 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5119 unsigned long dst_i;
5120 unsigned long src_i;
5121
5122 if (src_offset + len > dst->len) {
5123 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5124 "len %lu dst len %lu\n", src_offset, len, dst->len);
5125 BUG_ON(1);
5126 }
5127 if (dst_offset + len > dst->len) {
5128 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5129 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5130 BUG_ON(1);
5131 }
5132
5133 while (len > 0) {
5134 dst_off_in_page = (start_offset + dst_offset) &
5135 ((unsigned long)PAGE_CACHE_SIZE - 1);
5136 src_off_in_page = (start_offset + src_offset) &
5137 ((unsigned long)PAGE_CACHE_SIZE - 1);
5138
5139 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5140 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5141
5142 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5143 src_off_in_page));
5144 cur = min_t(unsigned long, cur,
5145 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5146
5147 copy_pages(extent_buffer_page(dst, dst_i),
5148 extent_buffer_page(dst, src_i),
5149 dst_off_in_page, src_off_in_page, cur);
5150
5151 src_offset += cur;
5152 dst_offset += cur;
5153 len -= cur;
5154 }
5155 }
5156
5157 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5158 unsigned long src_offset, unsigned long len)
5159 {
5160 size_t cur;
5161 size_t dst_off_in_page;
5162 size_t src_off_in_page;
5163 unsigned long dst_end = dst_offset + len - 1;
5164 unsigned long src_end = src_offset + len - 1;
5165 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5166 unsigned long dst_i;
5167 unsigned long src_i;
5168
5169 if (src_offset + len > dst->len) {
5170 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5171 "len %lu len %lu\n", src_offset, len, dst->len);
5172 BUG_ON(1);
5173 }
5174 if (dst_offset + len > dst->len) {
5175 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5176 "len %lu len %lu\n", dst_offset, len, dst->len);
5177 BUG_ON(1);
5178 }
5179 if (dst_offset < src_offset) {
5180 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5181 return;
5182 }
5183 while (len > 0) {
5184 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5185 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5186
5187 dst_off_in_page = (start_offset + dst_end) &
5188 ((unsigned long)PAGE_CACHE_SIZE - 1);
5189 src_off_in_page = (start_offset + src_end) &
5190 ((unsigned long)PAGE_CACHE_SIZE - 1);
5191
5192 cur = min_t(unsigned long, len, src_off_in_page + 1);
5193 cur = min(cur, dst_off_in_page + 1);
5194 move_pages(extent_buffer_page(dst, dst_i),
5195 extent_buffer_page(dst, src_i),
5196 dst_off_in_page - cur + 1,
5197 src_off_in_page - cur + 1, cur);
5198
5199 dst_end -= cur;
5200 src_end -= cur;
5201 len -= cur;
5202 }
5203 }
5204
5205 int try_release_extent_buffer(struct page *page)
5206 {
5207 struct extent_buffer *eb;
5208
5209 /*
5210 * We need to make sure noboody is attaching this page to an eb right
5211 * now.
5212 */
5213 spin_lock(&page->mapping->private_lock);
5214 if (!PagePrivate(page)) {
5215 spin_unlock(&page->mapping->private_lock);
5216 return 1;
5217 }
5218
5219 eb = (struct extent_buffer *)page->private;
5220 BUG_ON(!eb);
5221
5222 /*
5223 * This is a little awful but should be ok, we need to make sure that
5224 * the eb doesn't disappear out from under us while we're looking at
5225 * this page.
5226 */
5227 spin_lock(&eb->refs_lock);
5228 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5229 spin_unlock(&eb->refs_lock);
5230 spin_unlock(&page->mapping->private_lock);
5231 return 0;
5232 }
5233 spin_unlock(&page->mapping->private_lock);
5234
5235 /*
5236 * If tree ref isn't set then we know the ref on this eb is a real ref,
5237 * so just return, this page will likely be freed soon anyway.
5238 */
5239 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5240 spin_unlock(&eb->refs_lock);
5241 return 0;
5242 }
5243
5244 return release_extent_buffer(eb);
5245 }
This page took 0.201977 seconds and 5 git commands to generate.