btrfs: using cached extent_state in set/unlock combinations
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include "extent_io.h"
14 #include "extent_map.h"
15 #include "compat.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18
19 static struct kmem_cache *extent_state_cache;
20 static struct kmem_cache *extent_buffer_cache;
21
22 static LIST_HEAD(buffers);
23 static LIST_HEAD(states);
24
25 #define LEAK_DEBUG 0
26 #if LEAK_DEBUG
27 static DEFINE_SPINLOCK(leak_lock);
28 #endif
29
30 #define BUFFER_LRU_MAX 64
31
32 struct tree_entry {
33 u64 start;
34 u64 end;
35 struct rb_node rb_node;
36 };
37
38 struct extent_page_data {
39 struct bio *bio;
40 struct extent_io_tree *tree;
41 get_extent_t *get_extent;
42
43 /* tells writepage not to lock the state bits for this range
44 * it still does the unlocking
45 */
46 unsigned int extent_locked:1;
47
48 /* tells the submit_bio code to use a WRITE_SYNC */
49 unsigned int sync_io:1;
50 };
51
52 int __init extent_io_init(void)
53 {
54 extent_state_cache = kmem_cache_create("extent_state",
55 sizeof(struct extent_state), 0,
56 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
57 if (!extent_state_cache)
58 return -ENOMEM;
59
60 extent_buffer_cache = kmem_cache_create("extent_buffers",
61 sizeof(struct extent_buffer), 0,
62 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
63 if (!extent_buffer_cache)
64 goto free_state_cache;
65 return 0;
66
67 free_state_cache:
68 kmem_cache_destroy(extent_state_cache);
69 return -ENOMEM;
70 }
71
72 void extent_io_exit(void)
73 {
74 struct extent_state *state;
75 struct extent_buffer *eb;
76
77 while (!list_empty(&states)) {
78 state = list_entry(states.next, struct extent_state, leak_list);
79 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
80 "state %lu in tree %p refs %d\n",
81 (unsigned long long)state->start,
82 (unsigned long long)state->end,
83 state->state, state->tree, atomic_read(&state->refs));
84 list_del(&state->leak_list);
85 kmem_cache_free(extent_state_cache, state);
86
87 }
88
89 while (!list_empty(&buffers)) {
90 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
91 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
92 "refs %d\n", (unsigned long long)eb->start,
93 eb->len, atomic_read(&eb->refs));
94 list_del(&eb->leak_list);
95 kmem_cache_free(extent_buffer_cache, eb);
96 }
97 if (extent_state_cache)
98 kmem_cache_destroy(extent_state_cache);
99 if (extent_buffer_cache)
100 kmem_cache_destroy(extent_buffer_cache);
101 }
102
103 void extent_io_tree_init(struct extent_io_tree *tree,
104 struct address_space *mapping, gfp_t mask)
105 {
106 tree->state = RB_ROOT;
107 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
108 tree->ops = NULL;
109 tree->dirty_bytes = 0;
110 spin_lock_init(&tree->lock);
111 spin_lock_init(&tree->buffer_lock);
112 tree->mapping = mapping;
113 }
114
115 static struct extent_state *alloc_extent_state(gfp_t mask)
116 {
117 struct extent_state *state;
118 #if LEAK_DEBUG
119 unsigned long flags;
120 #endif
121
122 state = kmem_cache_alloc(extent_state_cache, mask);
123 if (!state)
124 return state;
125 state->state = 0;
126 state->private = 0;
127 state->tree = NULL;
128 #if LEAK_DEBUG
129 spin_lock_irqsave(&leak_lock, flags);
130 list_add(&state->leak_list, &states);
131 spin_unlock_irqrestore(&leak_lock, flags);
132 #endif
133 atomic_set(&state->refs, 1);
134 init_waitqueue_head(&state->wq);
135 return state;
136 }
137
138 void free_extent_state(struct extent_state *state)
139 {
140 if (!state)
141 return;
142 if (atomic_dec_and_test(&state->refs)) {
143 #if LEAK_DEBUG
144 unsigned long flags;
145 #endif
146 WARN_ON(state->tree);
147 #if LEAK_DEBUG
148 spin_lock_irqsave(&leak_lock, flags);
149 list_del(&state->leak_list);
150 spin_unlock_irqrestore(&leak_lock, flags);
151 #endif
152 kmem_cache_free(extent_state_cache, state);
153 }
154 }
155
156 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
157 struct rb_node *node)
158 {
159 struct rb_node **p = &root->rb_node;
160 struct rb_node *parent = NULL;
161 struct tree_entry *entry;
162
163 while (*p) {
164 parent = *p;
165 entry = rb_entry(parent, struct tree_entry, rb_node);
166
167 if (offset < entry->start)
168 p = &(*p)->rb_left;
169 else if (offset > entry->end)
170 p = &(*p)->rb_right;
171 else
172 return parent;
173 }
174
175 entry = rb_entry(node, struct tree_entry, rb_node);
176 rb_link_node(node, parent, p);
177 rb_insert_color(node, root);
178 return NULL;
179 }
180
181 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
182 struct rb_node **prev_ret,
183 struct rb_node **next_ret)
184 {
185 struct rb_root *root = &tree->state;
186 struct rb_node *n = root->rb_node;
187 struct rb_node *prev = NULL;
188 struct rb_node *orig_prev = NULL;
189 struct tree_entry *entry;
190 struct tree_entry *prev_entry = NULL;
191
192 while (n) {
193 entry = rb_entry(n, struct tree_entry, rb_node);
194 prev = n;
195 prev_entry = entry;
196
197 if (offset < entry->start)
198 n = n->rb_left;
199 else if (offset > entry->end)
200 n = n->rb_right;
201 else
202 return n;
203 }
204
205 if (prev_ret) {
206 orig_prev = prev;
207 while (prev && offset > prev_entry->end) {
208 prev = rb_next(prev);
209 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
210 }
211 *prev_ret = prev;
212 prev = orig_prev;
213 }
214
215 if (next_ret) {
216 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
217 while (prev && offset < prev_entry->start) {
218 prev = rb_prev(prev);
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 }
221 *next_ret = prev;
222 }
223 return NULL;
224 }
225
226 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
227 u64 offset)
228 {
229 struct rb_node *prev = NULL;
230 struct rb_node *ret;
231
232 ret = __etree_search(tree, offset, &prev, NULL);
233 if (!ret)
234 return prev;
235 return ret;
236 }
237
238 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
239 struct extent_state *other)
240 {
241 if (tree->ops && tree->ops->merge_extent_hook)
242 tree->ops->merge_extent_hook(tree->mapping->host, new,
243 other);
244 }
245
246 /*
247 * utility function to look for merge candidates inside a given range.
248 * Any extents with matching state are merged together into a single
249 * extent in the tree. Extents with EXTENT_IO in their state field
250 * are not merged because the end_io handlers need to be able to do
251 * operations on them without sleeping (or doing allocations/splits).
252 *
253 * This should be called with the tree lock held.
254 */
255 static int merge_state(struct extent_io_tree *tree,
256 struct extent_state *state)
257 {
258 struct extent_state *other;
259 struct rb_node *other_node;
260
261 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
262 return 0;
263
264 other_node = rb_prev(&state->rb_node);
265 if (other_node) {
266 other = rb_entry(other_node, struct extent_state, rb_node);
267 if (other->end == state->start - 1 &&
268 other->state == state->state) {
269 merge_cb(tree, state, other);
270 state->start = other->start;
271 other->tree = NULL;
272 rb_erase(&other->rb_node, &tree->state);
273 free_extent_state(other);
274 }
275 }
276 other_node = rb_next(&state->rb_node);
277 if (other_node) {
278 other = rb_entry(other_node, struct extent_state, rb_node);
279 if (other->start == state->end + 1 &&
280 other->state == state->state) {
281 merge_cb(tree, state, other);
282 other->start = state->start;
283 state->tree = NULL;
284 rb_erase(&state->rb_node, &tree->state);
285 free_extent_state(state);
286 state = NULL;
287 }
288 }
289
290 return 0;
291 }
292
293 static int set_state_cb(struct extent_io_tree *tree,
294 struct extent_state *state, int *bits)
295 {
296 if (tree->ops && tree->ops->set_bit_hook) {
297 return tree->ops->set_bit_hook(tree->mapping->host,
298 state, bits);
299 }
300
301 return 0;
302 }
303
304 static void clear_state_cb(struct extent_io_tree *tree,
305 struct extent_state *state, int *bits)
306 {
307 if (tree->ops && tree->ops->clear_bit_hook)
308 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
309 }
310
311 /*
312 * insert an extent_state struct into the tree. 'bits' are set on the
313 * struct before it is inserted.
314 *
315 * This may return -EEXIST if the extent is already there, in which case the
316 * state struct is freed.
317 *
318 * The tree lock is not taken internally. This is a utility function and
319 * probably isn't what you want to call (see set/clear_extent_bit).
320 */
321 static int insert_state(struct extent_io_tree *tree,
322 struct extent_state *state, u64 start, u64 end,
323 int *bits)
324 {
325 struct rb_node *node;
326 int bits_to_set = *bits & ~EXTENT_CTLBITS;
327 int ret;
328
329 if (end < start) {
330 printk(KERN_ERR "btrfs end < start %llu %llu\n",
331 (unsigned long long)end,
332 (unsigned long long)start);
333 WARN_ON(1);
334 }
335 state->start = start;
336 state->end = end;
337 ret = set_state_cb(tree, state, bits);
338 if (ret)
339 return ret;
340
341 if (bits_to_set & EXTENT_DIRTY)
342 tree->dirty_bytes += end - start + 1;
343 state->state |= bits_to_set;
344 node = tree_insert(&tree->state, end, &state->rb_node);
345 if (node) {
346 struct extent_state *found;
347 found = rb_entry(node, struct extent_state, rb_node);
348 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
349 "%llu %llu\n", (unsigned long long)found->start,
350 (unsigned long long)found->end,
351 (unsigned long long)start, (unsigned long long)end);
352 free_extent_state(state);
353 return -EEXIST;
354 }
355 state->tree = tree;
356 merge_state(tree, state);
357 return 0;
358 }
359
360 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
361 u64 split)
362 {
363 if (tree->ops && tree->ops->split_extent_hook)
364 return tree->ops->split_extent_hook(tree->mapping->host,
365 orig, split);
366 return 0;
367 }
368
369 /*
370 * split a given extent state struct in two, inserting the preallocated
371 * struct 'prealloc' as the newly created second half. 'split' indicates an
372 * offset inside 'orig' where it should be split.
373 *
374 * Before calling,
375 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
376 * are two extent state structs in the tree:
377 * prealloc: [orig->start, split - 1]
378 * orig: [ split, orig->end ]
379 *
380 * The tree locks are not taken by this function. They need to be held
381 * by the caller.
382 */
383 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
384 struct extent_state *prealloc, u64 split)
385 {
386 struct rb_node *node;
387
388 split_cb(tree, orig, split);
389
390 prealloc->start = orig->start;
391 prealloc->end = split - 1;
392 prealloc->state = orig->state;
393 orig->start = split;
394
395 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
396 if (node) {
397 free_extent_state(prealloc);
398 return -EEXIST;
399 }
400 prealloc->tree = tree;
401 return 0;
402 }
403
404 /*
405 * utility function to clear some bits in an extent state struct.
406 * it will optionally wake up any one waiting on this state (wake == 1), or
407 * forcibly remove the state from the tree (delete == 1).
408 *
409 * If no bits are set on the state struct after clearing things, the
410 * struct is freed and removed from the tree
411 */
412 static int clear_state_bit(struct extent_io_tree *tree,
413 struct extent_state *state,
414 int *bits, int wake)
415 {
416 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
417 int ret = state->state & bits_to_clear;
418
419 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
420 u64 range = state->end - state->start + 1;
421 WARN_ON(range > tree->dirty_bytes);
422 tree->dirty_bytes -= range;
423 }
424 clear_state_cb(tree, state, bits);
425 state->state &= ~bits_to_clear;
426 if (wake)
427 wake_up(&state->wq);
428 if (state->state == 0) {
429 if (state->tree) {
430 rb_erase(&state->rb_node, &tree->state);
431 state->tree = NULL;
432 free_extent_state(state);
433 } else {
434 WARN_ON(1);
435 }
436 } else {
437 merge_state(tree, state);
438 }
439 return ret;
440 }
441
442 /*
443 * clear some bits on a range in the tree. This may require splitting
444 * or inserting elements in the tree, so the gfp mask is used to
445 * indicate which allocations or sleeping are allowed.
446 *
447 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448 * the given range from the tree regardless of state (ie for truncate).
449 *
450 * the range [start, end] is inclusive.
451 *
452 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453 * bits were already set, or zero if none of the bits were already set.
454 */
455 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
456 int bits, int wake, int delete,
457 struct extent_state **cached_state,
458 gfp_t mask)
459 {
460 struct extent_state *state;
461 struct extent_state *cached;
462 struct extent_state *prealloc = NULL;
463 struct rb_node *next_node;
464 struct rb_node *node;
465 u64 last_end;
466 int err;
467 int set = 0;
468 int clear = 0;
469
470 if (delete)
471 bits |= ~EXTENT_CTLBITS;
472 bits |= EXTENT_FIRST_DELALLOC;
473
474 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
475 clear = 1;
476 again:
477 if (!prealloc && (mask & __GFP_WAIT)) {
478 prealloc = alloc_extent_state(mask);
479 if (!prealloc)
480 return -ENOMEM;
481 }
482
483 spin_lock(&tree->lock);
484 if (cached_state) {
485 cached = *cached_state;
486
487 if (clear) {
488 *cached_state = NULL;
489 cached_state = NULL;
490 }
491
492 if (cached && cached->tree && cached->start == start) {
493 if (clear)
494 atomic_dec(&cached->refs);
495 state = cached;
496 goto hit_next;
497 }
498 if (clear)
499 free_extent_state(cached);
500 }
501 /*
502 * this search will find the extents that end after
503 * our range starts
504 */
505 node = tree_search(tree, start);
506 if (!node)
507 goto out;
508 state = rb_entry(node, struct extent_state, rb_node);
509 hit_next:
510 if (state->start > end)
511 goto out;
512 WARN_ON(state->end < start);
513 last_end = state->end;
514
515 /*
516 * | ---- desired range ---- |
517 * | state | or
518 * | ------------- state -------------- |
519 *
520 * We need to split the extent we found, and may flip
521 * bits on second half.
522 *
523 * If the extent we found extends past our range, we
524 * just split and search again. It'll get split again
525 * the next time though.
526 *
527 * If the extent we found is inside our range, we clear
528 * the desired bit on it.
529 */
530
531 if (state->start < start) {
532 if (!prealloc)
533 prealloc = alloc_extent_state(GFP_ATOMIC);
534 err = split_state(tree, state, prealloc, start);
535 BUG_ON(err == -EEXIST);
536 prealloc = NULL;
537 if (err)
538 goto out;
539 if (state->end <= end) {
540 set |= clear_state_bit(tree, state, &bits, wake);
541 if (last_end == (u64)-1)
542 goto out;
543 start = last_end + 1;
544 }
545 goto search_again;
546 }
547 /*
548 * | ---- desired range ---- |
549 * | state |
550 * We need to split the extent, and clear the bit
551 * on the first half
552 */
553 if (state->start <= end && state->end > end) {
554 if (!prealloc)
555 prealloc = alloc_extent_state(GFP_ATOMIC);
556 err = split_state(tree, state, prealloc, end + 1);
557 BUG_ON(err == -EEXIST);
558 if (wake)
559 wake_up(&state->wq);
560
561 set |= clear_state_bit(tree, prealloc, &bits, wake);
562
563 prealloc = NULL;
564 goto out;
565 }
566
567 if (state->end < end && prealloc && !need_resched())
568 next_node = rb_next(&state->rb_node);
569 else
570 next_node = NULL;
571
572 set |= clear_state_bit(tree, state, &bits, wake);
573 if (last_end == (u64)-1)
574 goto out;
575 start = last_end + 1;
576 if (start <= end && next_node) {
577 state = rb_entry(next_node, struct extent_state,
578 rb_node);
579 if (state->start == start)
580 goto hit_next;
581 }
582 goto search_again;
583
584 out:
585 spin_unlock(&tree->lock);
586 if (prealloc)
587 free_extent_state(prealloc);
588
589 return set;
590
591 search_again:
592 if (start > end)
593 goto out;
594 spin_unlock(&tree->lock);
595 if (mask & __GFP_WAIT)
596 cond_resched();
597 goto again;
598 }
599
600 static int wait_on_state(struct extent_io_tree *tree,
601 struct extent_state *state)
602 __releases(tree->lock)
603 __acquires(tree->lock)
604 {
605 DEFINE_WAIT(wait);
606 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&tree->lock);
608 schedule();
609 spin_lock(&tree->lock);
610 finish_wait(&state->wq, &wait);
611 return 0;
612 }
613
614 /*
615 * waits for one or more bits to clear on a range in the state tree.
616 * The range [start, end] is inclusive.
617 * The tree lock is taken by this function
618 */
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
620 {
621 struct extent_state *state;
622 struct rb_node *node;
623
624 spin_lock(&tree->lock);
625 again:
626 while (1) {
627 /*
628 * this search will find all the extents that end after
629 * our range starts
630 */
631 node = tree_search(tree, start);
632 if (!node)
633 break;
634
635 state = rb_entry(node, struct extent_state, rb_node);
636
637 if (state->start > end)
638 goto out;
639
640 if (state->state & bits) {
641 start = state->start;
642 atomic_inc(&state->refs);
643 wait_on_state(tree, state);
644 free_extent_state(state);
645 goto again;
646 }
647 start = state->end + 1;
648
649 if (start > end)
650 break;
651
652 if (need_resched()) {
653 spin_unlock(&tree->lock);
654 cond_resched();
655 spin_lock(&tree->lock);
656 }
657 }
658 out:
659 spin_unlock(&tree->lock);
660 return 0;
661 }
662
663 static int set_state_bits(struct extent_io_tree *tree,
664 struct extent_state *state,
665 int *bits)
666 {
667 int ret;
668 int bits_to_set = *bits & ~EXTENT_CTLBITS;
669
670 ret = set_state_cb(tree, state, bits);
671 if (ret)
672 return ret;
673 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
674 u64 range = state->end - state->start + 1;
675 tree->dirty_bytes += range;
676 }
677 state->state |= bits_to_set;
678
679 return 0;
680 }
681
682 static void cache_state(struct extent_state *state,
683 struct extent_state **cached_ptr)
684 {
685 if (cached_ptr && !(*cached_ptr)) {
686 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
687 *cached_ptr = state;
688 atomic_inc(&state->refs);
689 }
690 }
691 }
692
693 static void uncache_state(struct extent_state **cached_ptr)
694 {
695 if (cached_ptr && (*cached_ptr)) {
696 struct extent_state *state = *cached_ptr;
697 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
698 *cached_ptr = NULL;
699 free_extent_state(state);
700 }
701 }
702 }
703
704 /*
705 * set some bits on a range in the tree. This may require allocations or
706 * sleeping, so the gfp mask is used to indicate what is allowed.
707 *
708 * If any of the exclusive bits are set, this will fail with -EEXIST if some
709 * part of the range already has the desired bits set. The start of the
710 * existing range is returned in failed_start in this case.
711 *
712 * [start, end] is inclusive This takes the tree lock.
713 */
714
715 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
716 int bits, int exclusive_bits, u64 *failed_start,
717 struct extent_state **cached_state, gfp_t mask)
718 {
719 struct extent_state *state;
720 struct extent_state *prealloc = NULL;
721 struct rb_node *node;
722 int err = 0;
723 u64 last_start;
724 u64 last_end;
725
726 bits |= EXTENT_FIRST_DELALLOC;
727 again:
728 if (!prealloc && (mask & __GFP_WAIT)) {
729 prealloc = alloc_extent_state(mask);
730 if (!prealloc)
731 return -ENOMEM;
732 }
733
734 spin_lock(&tree->lock);
735 if (cached_state && *cached_state) {
736 state = *cached_state;
737 if (state->start == start && state->tree) {
738 node = &state->rb_node;
739 goto hit_next;
740 }
741 }
742 /*
743 * this search will find all the extents that end after
744 * our range starts.
745 */
746 node = tree_search(tree, start);
747 if (!node) {
748 err = insert_state(tree, prealloc, start, end, &bits);
749 prealloc = NULL;
750 BUG_ON(err == -EEXIST);
751 goto out;
752 }
753 state = rb_entry(node, struct extent_state, rb_node);
754 hit_next:
755 last_start = state->start;
756 last_end = state->end;
757
758 /*
759 * | ---- desired range ---- |
760 * | state |
761 *
762 * Just lock what we found and keep going
763 */
764 if (state->start == start && state->end <= end) {
765 struct rb_node *next_node;
766 if (state->state & exclusive_bits) {
767 *failed_start = state->start;
768 err = -EEXIST;
769 goto out;
770 }
771
772 err = set_state_bits(tree, state, &bits);
773 if (err)
774 goto out;
775
776 cache_state(state, cached_state);
777 merge_state(tree, state);
778 if (last_end == (u64)-1)
779 goto out;
780
781 start = last_end + 1;
782 if (start < end && prealloc && !need_resched()) {
783 next_node = rb_next(node);
784 if (next_node) {
785 state = rb_entry(next_node, struct extent_state,
786 rb_node);
787 if (state->start == start)
788 goto hit_next;
789 }
790 }
791 goto search_again;
792 }
793
794 /*
795 * | ---- desired range ---- |
796 * | state |
797 * or
798 * | ------------- state -------------- |
799 *
800 * We need to split the extent we found, and may flip bits on
801 * second half.
802 *
803 * If the extent we found extends past our
804 * range, we just split and search again. It'll get split
805 * again the next time though.
806 *
807 * If the extent we found is inside our range, we set the
808 * desired bit on it.
809 */
810 if (state->start < start) {
811 if (state->state & exclusive_bits) {
812 *failed_start = start;
813 err = -EEXIST;
814 goto out;
815 }
816 err = split_state(tree, state, prealloc, start);
817 BUG_ON(err == -EEXIST);
818 prealloc = NULL;
819 if (err)
820 goto out;
821 if (state->end <= end) {
822 err = set_state_bits(tree, state, &bits);
823 if (err)
824 goto out;
825 cache_state(state, cached_state);
826 merge_state(tree, state);
827 if (last_end == (u64)-1)
828 goto out;
829 start = last_end + 1;
830 }
831 goto search_again;
832 }
833 /*
834 * | ---- desired range ---- |
835 * | state | or | state |
836 *
837 * There's a hole, we need to insert something in it and
838 * ignore the extent we found.
839 */
840 if (state->start > start) {
841 u64 this_end;
842 if (end < last_start)
843 this_end = end;
844 else
845 this_end = last_start - 1;
846 err = insert_state(tree, prealloc, start, this_end,
847 &bits);
848 BUG_ON(err == -EEXIST);
849 if (err) {
850 prealloc = NULL;
851 goto out;
852 }
853 cache_state(prealloc, cached_state);
854 prealloc = NULL;
855 start = this_end + 1;
856 goto search_again;
857 }
858 /*
859 * | ---- desired range ---- |
860 * | state |
861 * We need to split the extent, and set the bit
862 * on the first half
863 */
864 if (state->start <= end && state->end > end) {
865 if (state->state & exclusive_bits) {
866 *failed_start = start;
867 err = -EEXIST;
868 goto out;
869 }
870 err = split_state(tree, state, prealloc, end + 1);
871 BUG_ON(err == -EEXIST);
872
873 err = set_state_bits(tree, prealloc, &bits);
874 if (err) {
875 prealloc = NULL;
876 goto out;
877 }
878 cache_state(prealloc, cached_state);
879 merge_state(tree, prealloc);
880 prealloc = NULL;
881 goto out;
882 }
883
884 goto search_again;
885
886 out:
887 spin_unlock(&tree->lock);
888 if (prealloc)
889 free_extent_state(prealloc);
890
891 return err;
892
893 search_again:
894 if (start > end)
895 goto out;
896 spin_unlock(&tree->lock);
897 if (mask & __GFP_WAIT)
898 cond_resched();
899 goto again;
900 }
901
902 /* wrappers around set/clear extent bit */
903 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
904 gfp_t mask)
905 {
906 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
907 NULL, mask);
908 }
909
910 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
911 int bits, gfp_t mask)
912 {
913 return set_extent_bit(tree, start, end, bits, 0, NULL,
914 NULL, mask);
915 }
916
917 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
918 int bits, gfp_t mask)
919 {
920 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
921 }
922
923 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
924 struct extent_state **cached_state, gfp_t mask)
925 {
926 return set_extent_bit(tree, start, end,
927 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
928 0, NULL, cached_state, mask);
929 }
930
931 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
932 gfp_t mask)
933 {
934 return clear_extent_bit(tree, start, end,
935 EXTENT_DIRTY | EXTENT_DELALLOC |
936 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
937 }
938
939 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
940 gfp_t mask)
941 {
942 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
943 NULL, mask);
944 }
945
946 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
947 gfp_t mask)
948 {
949 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
950 NULL, mask);
951 }
952
953 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
954 struct extent_state **cached_state, gfp_t mask)
955 {
956 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
957 NULL, cached_state, mask);
958 }
959
960 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
961 u64 end, struct extent_state **cached_state,
962 gfp_t mask)
963 {
964 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
965 cached_state, mask);
966 }
967
968 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
969 {
970 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
971 }
972
973 /*
974 * either insert or lock state struct between start and end use mask to tell
975 * us if waiting is desired.
976 */
977 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
978 int bits, struct extent_state **cached_state, gfp_t mask)
979 {
980 int err;
981 u64 failed_start;
982 while (1) {
983 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
984 EXTENT_LOCKED, &failed_start,
985 cached_state, mask);
986 if (err == -EEXIST && (mask & __GFP_WAIT)) {
987 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
988 start = failed_start;
989 } else {
990 break;
991 }
992 WARN_ON(start > end);
993 }
994 return err;
995 }
996
997 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
998 {
999 return lock_extent_bits(tree, start, end, 0, NULL, mask);
1000 }
1001
1002 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1003 gfp_t mask)
1004 {
1005 int err;
1006 u64 failed_start;
1007
1008 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1009 &failed_start, NULL, mask);
1010 if (err == -EEXIST) {
1011 if (failed_start > start)
1012 clear_extent_bit(tree, start, failed_start - 1,
1013 EXTENT_LOCKED, 1, 0, NULL, mask);
1014 return 0;
1015 }
1016 return 1;
1017 }
1018
1019 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1020 struct extent_state **cached, gfp_t mask)
1021 {
1022 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1023 mask);
1024 }
1025
1026 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1027 {
1028 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1029 mask);
1030 }
1031
1032 /*
1033 * helper function to set pages and extents in the tree dirty
1034 */
1035 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1036 {
1037 unsigned long index = start >> PAGE_CACHE_SHIFT;
1038 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1039 struct page *page;
1040
1041 while (index <= end_index) {
1042 page = find_get_page(tree->mapping, index);
1043 BUG_ON(!page);
1044 __set_page_dirty_nobuffers(page);
1045 page_cache_release(page);
1046 index++;
1047 }
1048 return 0;
1049 }
1050
1051 /*
1052 * helper function to set both pages and extents in the tree writeback
1053 */
1054 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1055 {
1056 unsigned long index = start >> PAGE_CACHE_SHIFT;
1057 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1058 struct page *page;
1059
1060 while (index <= end_index) {
1061 page = find_get_page(tree->mapping, index);
1062 BUG_ON(!page);
1063 set_page_writeback(page);
1064 page_cache_release(page);
1065 index++;
1066 }
1067 return 0;
1068 }
1069
1070 /*
1071 * find the first offset in the io tree with 'bits' set. zero is
1072 * returned if we find something, and *start_ret and *end_ret are
1073 * set to reflect the state struct that was found.
1074 *
1075 * If nothing was found, 1 is returned, < 0 on error
1076 */
1077 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1078 u64 *start_ret, u64 *end_ret, int bits)
1079 {
1080 struct rb_node *node;
1081 struct extent_state *state;
1082 int ret = 1;
1083
1084 spin_lock(&tree->lock);
1085 /*
1086 * this search will find all the extents that end after
1087 * our range starts.
1088 */
1089 node = tree_search(tree, start);
1090 if (!node)
1091 goto out;
1092
1093 while (1) {
1094 state = rb_entry(node, struct extent_state, rb_node);
1095 if (state->end >= start && (state->state & bits)) {
1096 *start_ret = state->start;
1097 *end_ret = state->end;
1098 ret = 0;
1099 break;
1100 }
1101 node = rb_next(node);
1102 if (!node)
1103 break;
1104 }
1105 out:
1106 spin_unlock(&tree->lock);
1107 return ret;
1108 }
1109
1110 /* find the first state struct with 'bits' set after 'start', and
1111 * return it. tree->lock must be held. NULL will returned if
1112 * nothing was found after 'start'
1113 */
1114 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1115 u64 start, int bits)
1116 {
1117 struct rb_node *node;
1118 struct extent_state *state;
1119
1120 /*
1121 * this search will find all the extents that end after
1122 * our range starts.
1123 */
1124 node = tree_search(tree, start);
1125 if (!node)
1126 goto out;
1127
1128 while (1) {
1129 state = rb_entry(node, struct extent_state, rb_node);
1130 if (state->end >= start && (state->state & bits))
1131 return state;
1132
1133 node = rb_next(node);
1134 if (!node)
1135 break;
1136 }
1137 out:
1138 return NULL;
1139 }
1140
1141 /*
1142 * find a contiguous range of bytes in the file marked as delalloc, not
1143 * more than 'max_bytes'. start and end are used to return the range,
1144 *
1145 * 1 is returned if we find something, 0 if nothing was in the tree
1146 */
1147 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1148 u64 *start, u64 *end, u64 max_bytes,
1149 struct extent_state **cached_state)
1150 {
1151 struct rb_node *node;
1152 struct extent_state *state;
1153 u64 cur_start = *start;
1154 u64 found = 0;
1155 u64 total_bytes = 0;
1156
1157 spin_lock(&tree->lock);
1158
1159 /*
1160 * this search will find all the extents that end after
1161 * our range starts.
1162 */
1163 node = tree_search(tree, cur_start);
1164 if (!node) {
1165 if (!found)
1166 *end = (u64)-1;
1167 goto out;
1168 }
1169
1170 while (1) {
1171 state = rb_entry(node, struct extent_state, rb_node);
1172 if (found && (state->start != cur_start ||
1173 (state->state & EXTENT_BOUNDARY))) {
1174 goto out;
1175 }
1176 if (!(state->state & EXTENT_DELALLOC)) {
1177 if (!found)
1178 *end = state->end;
1179 goto out;
1180 }
1181 if (!found) {
1182 *start = state->start;
1183 *cached_state = state;
1184 atomic_inc(&state->refs);
1185 }
1186 found++;
1187 *end = state->end;
1188 cur_start = state->end + 1;
1189 node = rb_next(node);
1190 if (!node)
1191 break;
1192 total_bytes += state->end - state->start + 1;
1193 if (total_bytes >= max_bytes)
1194 break;
1195 }
1196 out:
1197 spin_unlock(&tree->lock);
1198 return found;
1199 }
1200
1201 static noinline int __unlock_for_delalloc(struct inode *inode,
1202 struct page *locked_page,
1203 u64 start, u64 end)
1204 {
1205 int ret;
1206 struct page *pages[16];
1207 unsigned long index = start >> PAGE_CACHE_SHIFT;
1208 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1209 unsigned long nr_pages = end_index - index + 1;
1210 int i;
1211
1212 if (index == locked_page->index && end_index == index)
1213 return 0;
1214
1215 while (nr_pages > 0) {
1216 ret = find_get_pages_contig(inode->i_mapping, index,
1217 min_t(unsigned long, nr_pages,
1218 ARRAY_SIZE(pages)), pages);
1219 for (i = 0; i < ret; i++) {
1220 if (pages[i] != locked_page)
1221 unlock_page(pages[i]);
1222 page_cache_release(pages[i]);
1223 }
1224 nr_pages -= ret;
1225 index += ret;
1226 cond_resched();
1227 }
1228 return 0;
1229 }
1230
1231 static noinline int lock_delalloc_pages(struct inode *inode,
1232 struct page *locked_page,
1233 u64 delalloc_start,
1234 u64 delalloc_end)
1235 {
1236 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1237 unsigned long start_index = index;
1238 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1239 unsigned long pages_locked = 0;
1240 struct page *pages[16];
1241 unsigned long nrpages;
1242 int ret;
1243 int i;
1244
1245 /* the caller is responsible for locking the start index */
1246 if (index == locked_page->index && index == end_index)
1247 return 0;
1248
1249 /* skip the page at the start index */
1250 nrpages = end_index - index + 1;
1251 while (nrpages > 0) {
1252 ret = find_get_pages_contig(inode->i_mapping, index,
1253 min_t(unsigned long,
1254 nrpages, ARRAY_SIZE(pages)), pages);
1255 if (ret == 0) {
1256 ret = -EAGAIN;
1257 goto done;
1258 }
1259 /* now we have an array of pages, lock them all */
1260 for (i = 0; i < ret; i++) {
1261 /*
1262 * the caller is taking responsibility for
1263 * locked_page
1264 */
1265 if (pages[i] != locked_page) {
1266 lock_page(pages[i]);
1267 if (!PageDirty(pages[i]) ||
1268 pages[i]->mapping != inode->i_mapping) {
1269 ret = -EAGAIN;
1270 unlock_page(pages[i]);
1271 page_cache_release(pages[i]);
1272 goto done;
1273 }
1274 }
1275 page_cache_release(pages[i]);
1276 pages_locked++;
1277 }
1278 nrpages -= ret;
1279 index += ret;
1280 cond_resched();
1281 }
1282 ret = 0;
1283 done:
1284 if (ret && pages_locked) {
1285 __unlock_for_delalloc(inode, locked_page,
1286 delalloc_start,
1287 ((u64)(start_index + pages_locked - 1)) <<
1288 PAGE_CACHE_SHIFT);
1289 }
1290 return ret;
1291 }
1292
1293 /*
1294 * find a contiguous range of bytes in the file marked as delalloc, not
1295 * more than 'max_bytes'. start and end are used to return the range,
1296 *
1297 * 1 is returned if we find something, 0 if nothing was in the tree
1298 */
1299 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1300 struct extent_io_tree *tree,
1301 struct page *locked_page,
1302 u64 *start, u64 *end,
1303 u64 max_bytes)
1304 {
1305 u64 delalloc_start;
1306 u64 delalloc_end;
1307 u64 found;
1308 struct extent_state *cached_state = NULL;
1309 int ret;
1310 int loops = 0;
1311
1312 again:
1313 /* step one, find a bunch of delalloc bytes starting at start */
1314 delalloc_start = *start;
1315 delalloc_end = 0;
1316 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1317 max_bytes, &cached_state);
1318 if (!found || delalloc_end <= *start) {
1319 *start = delalloc_start;
1320 *end = delalloc_end;
1321 free_extent_state(cached_state);
1322 return found;
1323 }
1324
1325 /*
1326 * start comes from the offset of locked_page. We have to lock
1327 * pages in order, so we can't process delalloc bytes before
1328 * locked_page
1329 */
1330 if (delalloc_start < *start)
1331 delalloc_start = *start;
1332
1333 /*
1334 * make sure to limit the number of pages we try to lock down
1335 * if we're looping.
1336 */
1337 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1338 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1339
1340 /* step two, lock all the pages after the page that has start */
1341 ret = lock_delalloc_pages(inode, locked_page,
1342 delalloc_start, delalloc_end);
1343 if (ret == -EAGAIN) {
1344 /* some of the pages are gone, lets avoid looping by
1345 * shortening the size of the delalloc range we're searching
1346 */
1347 free_extent_state(cached_state);
1348 if (!loops) {
1349 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1350 max_bytes = PAGE_CACHE_SIZE - offset;
1351 loops = 1;
1352 goto again;
1353 } else {
1354 found = 0;
1355 goto out_failed;
1356 }
1357 }
1358 BUG_ON(ret);
1359
1360 /* step three, lock the state bits for the whole range */
1361 lock_extent_bits(tree, delalloc_start, delalloc_end,
1362 0, &cached_state, GFP_NOFS);
1363
1364 /* then test to make sure it is all still delalloc */
1365 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1366 EXTENT_DELALLOC, 1, cached_state);
1367 if (!ret) {
1368 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1369 &cached_state, GFP_NOFS);
1370 __unlock_for_delalloc(inode, locked_page,
1371 delalloc_start, delalloc_end);
1372 cond_resched();
1373 goto again;
1374 }
1375 free_extent_state(cached_state);
1376 *start = delalloc_start;
1377 *end = delalloc_end;
1378 out_failed:
1379 return found;
1380 }
1381
1382 int extent_clear_unlock_delalloc(struct inode *inode,
1383 struct extent_io_tree *tree,
1384 u64 start, u64 end, struct page *locked_page,
1385 unsigned long op)
1386 {
1387 int ret;
1388 struct page *pages[16];
1389 unsigned long index = start >> PAGE_CACHE_SHIFT;
1390 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1391 unsigned long nr_pages = end_index - index + 1;
1392 int i;
1393 int clear_bits = 0;
1394
1395 if (op & EXTENT_CLEAR_UNLOCK)
1396 clear_bits |= EXTENT_LOCKED;
1397 if (op & EXTENT_CLEAR_DIRTY)
1398 clear_bits |= EXTENT_DIRTY;
1399
1400 if (op & EXTENT_CLEAR_DELALLOC)
1401 clear_bits |= EXTENT_DELALLOC;
1402
1403 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1404 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1405 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1406 EXTENT_SET_PRIVATE2)))
1407 return 0;
1408
1409 while (nr_pages > 0) {
1410 ret = find_get_pages_contig(inode->i_mapping, index,
1411 min_t(unsigned long,
1412 nr_pages, ARRAY_SIZE(pages)), pages);
1413 for (i = 0; i < ret; i++) {
1414
1415 if (op & EXTENT_SET_PRIVATE2)
1416 SetPagePrivate2(pages[i]);
1417
1418 if (pages[i] == locked_page) {
1419 page_cache_release(pages[i]);
1420 continue;
1421 }
1422 if (op & EXTENT_CLEAR_DIRTY)
1423 clear_page_dirty_for_io(pages[i]);
1424 if (op & EXTENT_SET_WRITEBACK)
1425 set_page_writeback(pages[i]);
1426 if (op & EXTENT_END_WRITEBACK)
1427 end_page_writeback(pages[i]);
1428 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1429 unlock_page(pages[i]);
1430 page_cache_release(pages[i]);
1431 }
1432 nr_pages -= ret;
1433 index += ret;
1434 cond_resched();
1435 }
1436 return 0;
1437 }
1438
1439 /*
1440 * count the number of bytes in the tree that have a given bit(s)
1441 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1442 * cached. The total number found is returned.
1443 */
1444 u64 count_range_bits(struct extent_io_tree *tree,
1445 u64 *start, u64 search_end, u64 max_bytes,
1446 unsigned long bits, int contig)
1447 {
1448 struct rb_node *node;
1449 struct extent_state *state;
1450 u64 cur_start = *start;
1451 u64 total_bytes = 0;
1452 u64 last = 0;
1453 int found = 0;
1454
1455 if (search_end <= cur_start) {
1456 WARN_ON(1);
1457 return 0;
1458 }
1459
1460 spin_lock(&tree->lock);
1461 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1462 total_bytes = tree->dirty_bytes;
1463 goto out;
1464 }
1465 /*
1466 * this search will find all the extents that end after
1467 * our range starts.
1468 */
1469 node = tree_search(tree, cur_start);
1470 if (!node)
1471 goto out;
1472
1473 while (1) {
1474 state = rb_entry(node, struct extent_state, rb_node);
1475 if (state->start > search_end)
1476 break;
1477 if (contig && found && state->start > last + 1)
1478 break;
1479 if (state->end >= cur_start && (state->state & bits) == bits) {
1480 total_bytes += min(search_end, state->end) + 1 -
1481 max(cur_start, state->start);
1482 if (total_bytes >= max_bytes)
1483 break;
1484 if (!found) {
1485 *start = state->start;
1486 found = 1;
1487 }
1488 last = state->end;
1489 } else if (contig && found) {
1490 break;
1491 }
1492 node = rb_next(node);
1493 if (!node)
1494 break;
1495 }
1496 out:
1497 spin_unlock(&tree->lock);
1498 return total_bytes;
1499 }
1500
1501 /*
1502 * set the private field for a given byte offset in the tree. If there isn't
1503 * an extent_state there already, this does nothing.
1504 */
1505 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1506 {
1507 struct rb_node *node;
1508 struct extent_state *state;
1509 int ret = 0;
1510
1511 spin_lock(&tree->lock);
1512 /*
1513 * this search will find all the extents that end after
1514 * our range starts.
1515 */
1516 node = tree_search(tree, start);
1517 if (!node) {
1518 ret = -ENOENT;
1519 goto out;
1520 }
1521 state = rb_entry(node, struct extent_state, rb_node);
1522 if (state->start != start) {
1523 ret = -ENOENT;
1524 goto out;
1525 }
1526 state->private = private;
1527 out:
1528 spin_unlock(&tree->lock);
1529 return ret;
1530 }
1531
1532 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1533 {
1534 struct rb_node *node;
1535 struct extent_state *state;
1536 int ret = 0;
1537
1538 spin_lock(&tree->lock);
1539 /*
1540 * this search will find all the extents that end after
1541 * our range starts.
1542 */
1543 node = tree_search(tree, start);
1544 if (!node) {
1545 ret = -ENOENT;
1546 goto out;
1547 }
1548 state = rb_entry(node, struct extent_state, rb_node);
1549 if (state->start != start) {
1550 ret = -ENOENT;
1551 goto out;
1552 }
1553 *private = state->private;
1554 out:
1555 spin_unlock(&tree->lock);
1556 return ret;
1557 }
1558
1559 /*
1560 * searches a range in the state tree for a given mask.
1561 * If 'filled' == 1, this returns 1 only if every extent in the tree
1562 * has the bits set. Otherwise, 1 is returned if any bit in the
1563 * range is found set.
1564 */
1565 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1566 int bits, int filled, struct extent_state *cached)
1567 {
1568 struct extent_state *state = NULL;
1569 struct rb_node *node;
1570 int bitset = 0;
1571
1572 spin_lock(&tree->lock);
1573 if (cached && cached->tree && cached->start == start)
1574 node = &cached->rb_node;
1575 else
1576 node = tree_search(tree, start);
1577 while (node && start <= end) {
1578 state = rb_entry(node, struct extent_state, rb_node);
1579
1580 if (filled && state->start > start) {
1581 bitset = 0;
1582 break;
1583 }
1584
1585 if (state->start > end)
1586 break;
1587
1588 if (state->state & bits) {
1589 bitset = 1;
1590 if (!filled)
1591 break;
1592 } else if (filled) {
1593 bitset = 0;
1594 break;
1595 }
1596
1597 if (state->end == (u64)-1)
1598 break;
1599
1600 start = state->end + 1;
1601 if (start > end)
1602 break;
1603 node = rb_next(node);
1604 if (!node) {
1605 if (filled)
1606 bitset = 0;
1607 break;
1608 }
1609 }
1610 spin_unlock(&tree->lock);
1611 return bitset;
1612 }
1613
1614 /*
1615 * helper function to set a given page up to date if all the
1616 * extents in the tree for that page are up to date
1617 */
1618 static int check_page_uptodate(struct extent_io_tree *tree,
1619 struct page *page)
1620 {
1621 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1622 u64 end = start + PAGE_CACHE_SIZE - 1;
1623 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1624 SetPageUptodate(page);
1625 return 0;
1626 }
1627
1628 /*
1629 * helper function to unlock a page if all the extents in the tree
1630 * for that page are unlocked
1631 */
1632 static int check_page_locked(struct extent_io_tree *tree,
1633 struct page *page)
1634 {
1635 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1636 u64 end = start + PAGE_CACHE_SIZE - 1;
1637 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1638 unlock_page(page);
1639 return 0;
1640 }
1641
1642 /*
1643 * helper function to end page writeback if all the extents
1644 * in the tree for that page are done with writeback
1645 */
1646 static int check_page_writeback(struct extent_io_tree *tree,
1647 struct page *page)
1648 {
1649 end_page_writeback(page);
1650 return 0;
1651 }
1652
1653 /* lots and lots of room for performance fixes in the end_bio funcs */
1654
1655 /*
1656 * after a writepage IO is done, we need to:
1657 * clear the uptodate bits on error
1658 * clear the writeback bits in the extent tree for this IO
1659 * end_page_writeback if the page has no more pending IO
1660 *
1661 * Scheduling is not allowed, so the extent state tree is expected
1662 * to have one and only one object corresponding to this IO.
1663 */
1664 static void end_bio_extent_writepage(struct bio *bio, int err)
1665 {
1666 int uptodate = err == 0;
1667 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1668 struct extent_io_tree *tree;
1669 u64 start;
1670 u64 end;
1671 int whole_page;
1672 int ret;
1673
1674 do {
1675 struct page *page = bvec->bv_page;
1676 tree = &BTRFS_I(page->mapping->host)->io_tree;
1677
1678 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1679 bvec->bv_offset;
1680 end = start + bvec->bv_len - 1;
1681
1682 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1683 whole_page = 1;
1684 else
1685 whole_page = 0;
1686
1687 if (--bvec >= bio->bi_io_vec)
1688 prefetchw(&bvec->bv_page->flags);
1689 if (tree->ops && tree->ops->writepage_end_io_hook) {
1690 ret = tree->ops->writepage_end_io_hook(page, start,
1691 end, NULL, uptodate);
1692 if (ret)
1693 uptodate = 0;
1694 }
1695
1696 if (!uptodate && tree->ops &&
1697 tree->ops->writepage_io_failed_hook) {
1698 ret = tree->ops->writepage_io_failed_hook(bio, page,
1699 start, end, NULL);
1700 if (ret == 0) {
1701 uptodate = (err == 0);
1702 continue;
1703 }
1704 }
1705
1706 if (!uptodate) {
1707 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1708 ClearPageUptodate(page);
1709 SetPageError(page);
1710 }
1711
1712 if (whole_page)
1713 end_page_writeback(page);
1714 else
1715 check_page_writeback(tree, page);
1716 } while (bvec >= bio->bi_io_vec);
1717
1718 bio_put(bio);
1719 }
1720
1721 /*
1722 * after a readpage IO is done, we need to:
1723 * clear the uptodate bits on error
1724 * set the uptodate bits if things worked
1725 * set the page up to date if all extents in the tree are uptodate
1726 * clear the lock bit in the extent tree
1727 * unlock the page if there are no other extents locked for it
1728 *
1729 * Scheduling is not allowed, so the extent state tree is expected
1730 * to have one and only one object corresponding to this IO.
1731 */
1732 static void end_bio_extent_readpage(struct bio *bio, int err)
1733 {
1734 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1735 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1736 struct bio_vec *bvec = bio->bi_io_vec;
1737 struct extent_io_tree *tree;
1738 u64 start;
1739 u64 end;
1740 int whole_page;
1741 int ret;
1742
1743 if (err)
1744 uptodate = 0;
1745
1746 do {
1747 struct page *page = bvec->bv_page;
1748 struct extent_state *cached = NULL;
1749 struct extent_state *state;
1750
1751 tree = &BTRFS_I(page->mapping->host)->io_tree;
1752
1753 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1754 bvec->bv_offset;
1755 end = start + bvec->bv_len - 1;
1756
1757 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1758 whole_page = 1;
1759 else
1760 whole_page = 0;
1761
1762 if (++bvec <= bvec_end)
1763 prefetchw(&bvec->bv_page->flags);
1764
1765 spin_lock(&tree->lock);
1766 state = find_first_extent_bit_state(tree, start, 0);
1767 if (state) {
1768 /*
1769 * take a reference on the state, unlock will drop
1770 * the ref
1771 */
1772 cache_state(state, &cached);
1773 }
1774 spin_unlock(&tree->lock);
1775
1776 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1777 ret = tree->ops->readpage_end_io_hook(page, start, end,
1778 state);
1779 if (ret)
1780 uptodate = 0;
1781 }
1782 if (!uptodate && tree->ops &&
1783 tree->ops->readpage_io_failed_hook) {
1784 ret = tree->ops->readpage_io_failed_hook(bio, page,
1785 start, end, NULL);
1786 if (ret == 0) {
1787 uptodate =
1788 test_bit(BIO_UPTODATE, &bio->bi_flags);
1789 if (err)
1790 uptodate = 0;
1791 uncache_state(&cached);
1792 continue;
1793 }
1794 }
1795
1796 if (uptodate) {
1797 set_extent_uptodate(tree, start, end, &cached,
1798 GFP_ATOMIC);
1799 }
1800 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
1801
1802 if (whole_page) {
1803 if (uptodate) {
1804 SetPageUptodate(page);
1805 } else {
1806 ClearPageUptodate(page);
1807 SetPageError(page);
1808 }
1809 unlock_page(page);
1810 } else {
1811 if (uptodate) {
1812 check_page_uptodate(tree, page);
1813 } else {
1814 ClearPageUptodate(page);
1815 SetPageError(page);
1816 }
1817 check_page_locked(tree, page);
1818 }
1819 } while (bvec <= bvec_end);
1820
1821 bio_put(bio);
1822 }
1823
1824 /*
1825 * IO done from prepare_write is pretty simple, we just unlock
1826 * the structs in the extent tree when done, and set the uptodate bits
1827 * as appropriate.
1828 */
1829 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1830 {
1831 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1832 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1833 struct extent_io_tree *tree;
1834 u64 start;
1835 u64 end;
1836
1837 do {
1838 struct page *page = bvec->bv_page;
1839 struct extent_state *cached = NULL;
1840 tree = &BTRFS_I(page->mapping->host)->io_tree;
1841
1842 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1843 bvec->bv_offset;
1844 end = start + bvec->bv_len - 1;
1845
1846 if (--bvec >= bio->bi_io_vec)
1847 prefetchw(&bvec->bv_page->flags);
1848
1849 if (uptodate) {
1850 set_extent_uptodate(tree, start, end, &cached,
1851 GFP_ATOMIC);
1852 } else {
1853 ClearPageUptodate(page);
1854 SetPageError(page);
1855 }
1856
1857 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
1858
1859 } while (bvec >= bio->bi_io_vec);
1860
1861 bio_put(bio);
1862 }
1863
1864 struct bio *
1865 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1866 gfp_t gfp_flags)
1867 {
1868 struct bio *bio;
1869
1870 bio = bio_alloc(gfp_flags, nr_vecs);
1871
1872 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1873 while (!bio && (nr_vecs /= 2))
1874 bio = bio_alloc(gfp_flags, nr_vecs);
1875 }
1876
1877 if (bio) {
1878 bio->bi_size = 0;
1879 bio->bi_bdev = bdev;
1880 bio->bi_sector = first_sector;
1881 }
1882 return bio;
1883 }
1884
1885 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1886 unsigned long bio_flags)
1887 {
1888 int ret = 0;
1889 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1890 struct page *page = bvec->bv_page;
1891 struct extent_io_tree *tree = bio->bi_private;
1892 u64 start;
1893
1894 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1895
1896 bio->bi_private = NULL;
1897
1898 bio_get(bio);
1899
1900 if (tree->ops && tree->ops->submit_bio_hook)
1901 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1902 mirror_num, bio_flags, start);
1903 else
1904 submit_bio(rw, bio);
1905 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1906 ret = -EOPNOTSUPP;
1907 bio_put(bio);
1908 return ret;
1909 }
1910
1911 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1912 struct page *page, sector_t sector,
1913 size_t size, unsigned long offset,
1914 struct block_device *bdev,
1915 struct bio **bio_ret,
1916 unsigned long max_pages,
1917 bio_end_io_t end_io_func,
1918 int mirror_num,
1919 unsigned long prev_bio_flags,
1920 unsigned long bio_flags)
1921 {
1922 int ret = 0;
1923 struct bio *bio;
1924 int nr;
1925 int contig = 0;
1926 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1927 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1928 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1929
1930 if (bio_ret && *bio_ret) {
1931 bio = *bio_ret;
1932 if (old_compressed)
1933 contig = bio->bi_sector == sector;
1934 else
1935 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1936 sector;
1937
1938 if (prev_bio_flags != bio_flags || !contig ||
1939 (tree->ops && tree->ops->merge_bio_hook &&
1940 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1941 bio_flags)) ||
1942 bio_add_page(bio, page, page_size, offset) < page_size) {
1943 ret = submit_one_bio(rw, bio, mirror_num,
1944 prev_bio_flags);
1945 bio = NULL;
1946 } else {
1947 return 0;
1948 }
1949 }
1950 if (this_compressed)
1951 nr = BIO_MAX_PAGES;
1952 else
1953 nr = bio_get_nr_vecs(bdev);
1954
1955 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1956 if (!bio)
1957 return -ENOMEM;
1958
1959 bio_add_page(bio, page, page_size, offset);
1960 bio->bi_end_io = end_io_func;
1961 bio->bi_private = tree;
1962
1963 if (bio_ret)
1964 *bio_ret = bio;
1965 else
1966 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1967
1968 return ret;
1969 }
1970
1971 void set_page_extent_mapped(struct page *page)
1972 {
1973 if (!PagePrivate(page)) {
1974 SetPagePrivate(page);
1975 page_cache_get(page);
1976 set_page_private(page, EXTENT_PAGE_PRIVATE);
1977 }
1978 }
1979
1980 static void set_page_extent_head(struct page *page, unsigned long len)
1981 {
1982 WARN_ON(!PagePrivate(page));
1983 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1984 }
1985
1986 /*
1987 * basic readpage implementation. Locked extent state structs are inserted
1988 * into the tree that are removed when the IO is done (by the end_io
1989 * handlers)
1990 */
1991 static int __extent_read_full_page(struct extent_io_tree *tree,
1992 struct page *page,
1993 get_extent_t *get_extent,
1994 struct bio **bio, int mirror_num,
1995 unsigned long *bio_flags)
1996 {
1997 struct inode *inode = page->mapping->host;
1998 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1999 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2000 u64 end;
2001 u64 cur = start;
2002 u64 extent_offset;
2003 u64 last_byte = i_size_read(inode);
2004 u64 block_start;
2005 u64 cur_end;
2006 sector_t sector;
2007 struct extent_map *em;
2008 struct block_device *bdev;
2009 struct btrfs_ordered_extent *ordered;
2010 int ret;
2011 int nr = 0;
2012 size_t page_offset = 0;
2013 size_t iosize;
2014 size_t disk_io_size;
2015 size_t blocksize = inode->i_sb->s_blocksize;
2016 unsigned long this_bio_flag = 0;
2017
2018 set_page_extent_mapped(page);
2019
2020 end = page_end;
2021 while (1) {
2022 lock_extent(tree, start, end, GFP_NOFS);
2023 ordered = btrfs_lookup_ordered_extent(inode, start);
2024 if (!ordered)
2025 break;
2026 unlock_extent(tree, start, end, GFP_NOFS);
2027 btrfs_start_ordered_extent(inode, ordered, 1);
2028 btrfs_put_ordered_extent(ordered);
2029 }
2030
2031 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2032 char *userpage;
2033 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2034
2035 if (zero_offset) {
2036 iosize = PAGE_CACHE_SIZE - zero_offset;
2037 userpage = kmap_atomic(page, KM_USER0);
2038 memset(userpage + zero_offset, 0, iosize);
2039 flush_dcache_page(page);
2040 kunmap_atomic(userpage, KM_USER0);
2041 }
2042 }
2043 while (cur <= end) {
2044 if (cur >= last_byte) {
2045 char *userpage;
2046 struct extent_state *cached = NULL;
2047
2048 iosize = PAGE_CACHE_SIZE - page_offset;
2049 userpage = kmap_atomic(page, KM_USER0);
2050 memset(userpage + page_offset, 0, iosize);
2051 flush_dcache_page(page);
2052 kunmap_atomic(userpage, KM_USER0);
2053 set_extent_uptodate(tree, cur, cur + iosize - 1,
2054 &cached, GFP_NOFS);
2055 unlock_extent_cached(tree, cur, cur + iosize - 1,
2056 &cached, GFP_NOFS);
2057 break;
2058 }
2059 em = get_extent(inode, page, page_offset, cur,
2060 end - cur + 1, 0);
2061 if (IS_ERR(em) || !em) {
2062 SetPageError(page);
2063 unlock_extent(tree, cur, end, GFP_NOFS);
2064 break;
2065 }
2066 extent_offset = cur - em->start;
2067 BUG_ON(extent_map_end(em) <= cur);
2068 BUG_ON(end < cur);
2069
2070 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2071 this_bio_flag = EXTENT_BIO_COMPRESSED;
2072 extent_set_compress_type(&this_bio_flag,
2073 em->compress_type);
2074 }
2075
2076 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2077 cur_end = min(extent_map_end(em) - 1, end);
2078 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2079 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2080 disk_io_size = em->block_len;
2081 sector = em->block_start >> 9;
2082 } else {
2083 sector = (em->block_start + extent_offset) >> 9;
2084 disk_io_size = iosize;
2085 }
2086 bdev = em->bdev;
2087 block_start = em->block_start;
2088 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2089 block_start = EXTENT_MAP_HOLE;
2090 free_extent_map(em);
2091 em = NULL;
2092
2093 /* we've found a hole, just zero and go on */
2094 if (block_start == EXTENT_MAP_HOLE) {
2095 char *userpage;
2096 struct extent_state *cached = NULL;
2097
2098 userpage = kmap_atomic(page, KM_USER0);
2099 memset(userpage + page_offset, 0, iosize);
2100 flush_dcache_page(page);
2101 kunmap_atomic(userpage, KM_USER0);
2102
2103 set_extent_uptodate(tree, cur, cur + iosize - 1,
2104 &cached, GFP_NOFS);
2105 unlock_extent_cached(tree, cur, cur + iosize - 1,
2106 &cached, GFP_NOFS);
2107 cur = cur + iosize;
2108 page_offset += iosize;
2109 continue;
2110 }
2111 /* the get_extent function already copied into the page */
2112 if (test_range_bit(tree, cur, cur_end,
2113 EXTENT_UPTODATE, 1, NULL)) {
2114 check_page_uptodate(tree, page);
2115 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2116 cur = cur + iosize;
2117 page_offset += iosize;
2118 continue;
2119 }
2120 /* we have an inline extent but it didn't get marked up
2121 * to date. Error out
2122 */
2123 if (block_start == EXTENT_MAP_INLINE) {
2124 SetPageError(page);
2125 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2126 cur = cur + iosize;
2127 page_offset += iosize;
2128 continue;
2129 }
2130
2131 ret = 0;
2132 if (tree->ops && tree->ops->readpage_io_hook) {
2133 ret = tree->ops->readpage_io_hook(page, cur,
2134 cur + iosize - 1);
2135 }
2136 if (!ret) {
2137 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2138 pnr -= page->index;
2139 ret = submit_extent_page(READ, tree, page,
2140 sector, disk_io_size, page_offset,
2141 bdev, bio, pnr,
2142 end_bio_extent_readpage, mirror_num,
2143 *bio_flags,
2144 this_bio_flag);
2145 nr++;
2146 *bio_flags = this_bio_flag;
2147 }
2148 if (ret)
2149 SetPageError(page);
2150 cur = cur + iosize;
2151 page_offset += iosize;
2152 }
2153 if (!nr) {
2154 if (!PageError(page))
2155 SetPageUptodate(page);
2156 unlock_page(page);
2157 }
2158 return 0;
2159 }
2160
2161 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2162 get_extent_t *get_extent)
2163 {
2164 struct bio *bio = NULL;
2165 unsigned long bio_flags = 0;
2166 int ret;
2167
2168 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2169 &bio_flags);
2170 if (bio)
2171 ret = submit_one_bio(READ, bio, 0, bio_flags);
2172 return ret;
2173 }
2174
2175 static noinline void update_nr_written(struct page *page,
2176 struct writeback_control *wbc,
2177 unsigned long nr_written)
2178 {
2179 wbc->nr_to_write -= nr_written;
2180 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2181 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2182 page->mapping->writeback_index = page->index + nr_written;
2183 }
2184
2185 /*
2186 * the writepage semantics are similar to regular writepage. extent
2187 * records are inserted to lock ranges in the tree, and as dirty areas
2188 * are found, they are marked writeback. Then the lock bits are removed
2189 * and the end_io handler clears the writeback ranges
2190 */
2191 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2192 void *data)
2193 {
2194 struct inode *inode = page->mapping->host;
2195 struct extent_page_data *epd = data;
2196 struct extent_io_tree *tree = epd->tree;
2197 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2198 u64 delalloc_start;
2199 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2200 u64 end;
2201 u64 cur = start;
2202 u64 extent_offset;
2203 u64 last_byte = i_size_read(inode);
2204 u64 block_start;
2205 u64 iosize;
2206 sector_t sector;
2207 struct extent_state *cached_state = NULL;
2208 struct extent_map *em;
2209 struct block_device *bdev;
2210 int ret;
2211 int nr = 0;
2212 size_t pg_offset = 0;
2213 size_t blocksize;
2214 loff_t i_size = i_size_read(inode);
2215 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2216 u64 nr_delalloc;
2217 u64 delalloc_end;
2218 int page_started;
2219 int compressed;
2220 int write_flags;
2221 unsigned long nr_written = 0;
2222
2223 if (wbc->sync_mode == WB_SYNC_ALL)
2224 write_flags = WRITE_SYNC_PLUG;
2225 else
2226 write_flags = WRITE;
2227
2228 trace___extent_writepage(page, inode, wbc);
2229
2230 WARN_ON(!PageLocked(page));
2231 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2232 if (page->index > end_index ||
2233 (page->index == end_index && !pg_offset)) {
2234 page->mapping->a_ops->invalidatepage(page, 0);
2235 unlock_page(page);
2236 return 0;
2237 }
2238
2239 if (page->index == end_index) {
2240 char *userpage;
2241
2242 userpage = kmap_atomic(page, KM_USER0);
2243 memset(userpage + pg_offset, 0,
2244 PAGE_CACHE_SIZE - pg_offset);
2245 kunmap_atomic(userpage, KM_USER0);
2246 flush_dcache_page(page);
2247 }
2248 pg_offset = 0;
2249
2250 set_page_extent_mapped(page);
2251
2252 delalloc_start = start;
2253 delalloc_end = 0;
2254 page_started = 0;
2255 if (!epd->extent_locked) {
2256 u64 delalloc_to_write = 0;
2257 /*
2258 * make sure the wbc mapping index is at least updated
2259 * to this page.
2260 */
2261 update_nr_written(page, wbc, 0);
2262
2263 while (delalloc_end < page_end) {
2264 nr_delalloc = find_lock_delalloc_range(inode, tree,
2265 page,
2266 &delalloc_start,
2267 &delalloc_end,
2268 128 * 1024 * 1024);
2269 if (nr_delalloc == 0) {
2270 delalloc_start = delalloc_end + 1;
2271 continue;
2272 }
2273 tree->ops->fill_delalloc(inode, page, delalloc_start,
2274 delalloc_end, &page_started,
2275 &nr_written);
2276 /*
2277 * delalloc_end is already one less than the total
2278 * length, so we don't subtract one from
2279 * PAGE_CACHE_SIZE
2280 */
2281 delalloc_to_write += (delalloc_end - delalloc_start +
2282 PAGE_CACHE_SIZE) >>
2283 PAGE_CACHE_SHIFT;
2284 delalloc_start = delalloc_end + 1;
2285 }
2286 if (wbc->nr_to_write < delalloc_to_write) {
2287 int thresh = 8192;
2288
2289 if (delalloc_to_write < thresh * 2)
2290 thresh = delalloc_to_write;
2291 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2292 thresh);
2293 }
2294
2295 /* did the fill delalloc function already unlock and start
2296 * the IO?
2297 */
2298 if (page_started) {
2299 ret = 0;
2300 /*
2301 * we've unlocked the page, so we can't update
2302 * the mapping's writeback index, just update
2303 * nr_to_write.
2304 */
2305 wbc->nr_to_write -= nr_written;
2306 goto done_unlocked;
2307 }
2308 }
2309 if (tree->ops && tree->ops->writepage_start_hook) {
2310 ret = tree->ops->writepage_start_hook(page, start,
2311 page_end);
2312 if (ret == -EAGAIN) {
2313 redirty_page_for_writepage(wbc, page);
2314 update_nr_written(page, wbc, nr_written);
2315 unlock_page(page);
2316 ret = 0;
2317 goto done_unlocked;
2318 }
2319 }
2320
2321 /*
2322 * we don't want to touch the inode after unlocking the page,
2323 * so we update the mapping writeback index now
2324 */
2325 update_nr_written(page, wbc, nr_written + 1);
2326
2327 end = page_end;
2328 if (last_byte <= start) {
2329 if (tree->ops && tree->ops->writepage_end_io_hook)
2330 tree->ops->writepage_end_io_hook(page, start,
2331 page_end, NULL, 1);
2332 goto done;
2333 }
2334
2335 blocksize = inode->i_sb->s_blocksize;
2336
2337 while (cur <= end) {
2338 if (cur >= last_byte) {
2339 if (tree->ops && tree->ops->writepage_end_io_hook)
2340 tree->ops->writepage_end_io_hook(page, cur,
2341 page_end, NULL, 1);
2342 break;
2343 }
2344 em = epd->get_extent(inode, page, pg_offset, cur,
2345 end - cur + 1, 1);
2346 if (IS_ERR(em) || !em) {
2347 SetPageError(page);
2348 break;
2349 }
2350
2351 extent_offset = cur - em->start;
2352 BUG_ON(extent_map_end(em) <= cur);
2353 BUG_ON(end < cur);
2354 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2355 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2356 sector = (em->block_start + extent_offset) >> 9;
2357 bdev = em->bdev;
2358 block_start = em->block_start;
2359 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2360 free_extent_map(em);
2361 em = NULL;
2362
2363 /*
2364 * compressed and inline extents are written through other
2365 * paths in the FS
2366 */
2367 if (compressed || block_start == EXTENT_MAP_HOLE ||
2368 block_start == EXTENT_MAP_INLINE) {
2369 /*
2370 * end_io notification does not happen here for
2371 * compressed extents
2372 */
2373 if (!compressed && tree->ops &&
2374 tree->ops->writepage_end_io_hook)
2375 tree->ops->writepage_end_io_hook(page, cur,
2376 cur + iosize - 1,
2377 NULL, 1);
2378 else if (compressed) {
2379 /* we don't want to end_page_writeback on
2380 * a compressed extent. this happens
2381 * elsewhere
2382 */
2383 nr++;
2384 }
2385
2386 cur += iosize;
2387 pg_offset += iosize;
2388 continue;
2389 }
2390 /* leave this out until we have a page_mkwrite call */
2391 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2392 EXTENT_DIRTY, 0, NULL)) {
2393 cur = cur + iosize;
2394 pg_offset += iosize;
2395 continue;
2396 }
2397
2398 if (tree->ops && tree->ops->writepage_io_hook) {
2399 ret = tree->ops->writepage_io_hook(page, cur,
2400 cur + iosize - 1);
2401 } else {
2402 ret = 0;
2403 }
2404 if (ret) {
2405 SetPageError(page);
2406 } else {
2407 unsigned long max_nr = end_index + 1;
2408
2409 set_range_writeback(tree, cur, cur + iosize - 1);
2410 if (!PageWriteback(page)) {
2411 printk(KERN_ERR "btrfs warning page %lu not "
2412 "writeback, cur %llu end %llu\n",
2413 page->index, (unsigned long long)cur,
2414 (unsigned long long)end);
2415 }
2416
2417 ret = submit_extent_page(write_flags, tree, page,
2418 sector, iosize, pg_offset,
2419 bdev, &epd->bio, max_nr,
2420 end_bio_extent_writepage,
2421 0, 0, 0);
2422 if (ret)
2423 SetPageError(page);
2424 }
2425 cur = cur + iosize;
2426 pg_offset += iosize;
2427 nr++;
2428 }
2429 done:
2430 if (nr == 0) {
2431 /* make sure the mapping tag for page dirty gets cleared */
2432 set_page_writeback(page);
2433 end_page_writeback(page);
2434 }
2435 unlock_page(page);
2436
2437 done_unlocked:
2438
2439 /* drop our reference on any cached states */
2440 free_extent_state(cached_state);
2441 return 0;
2442 }
2443
2444 /**
2445 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2446 * @mapping: address space structure to write
2447 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2448 * @writepage: function called for each page
2449 * @data: data passed to writepage function
2450 *
2451 * If a page is already under I/O, write_cache_pages() skips it, even
2452 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2453 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2454 * and msync() need to guarantee that all the data which was dirty at the time
2455 * the call was made get new I/O started against them. If wbc->sync_mode is
2456 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2457 * existing IO to complete.
2458 */
2459 static int extent_write_cache_pages(struct extent_io_tree *tree,
2460 struct address_space *mapping,
2461 struct writeback_control *wbc,
2462 writepage_t writepage, void *data,
2463 void (*flush_fn)(void *))
2464 {
2465 int ret = 0;
2466 int done = 0;
2467 int nr_to_write_done = 0;
2468 struct pagevec pvec;
2469 int nr_pages;
2470 pgoff_t index;
2471 pgoff_t end; /* Inclusive */
2472 int scanned = 0;
2473
2474 pagevec_init(&pvec, 0);
2475 if (wbc->range_cyclic) {
2476 index = mapping->writeback_index; /* Start from prev offset */
2477 end = -1;
2478 } else {
2479 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2480 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2481 scanned = 1;
2482 }
2483 retry:
2484 while (!done && !nr_to_write_done && (index <= end) &&
2485 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2486 PAGECACHE_TAG_DIRTY, min(end - index,
2487 (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2488 unsigned i;
2489
2490 scanned = 1;
2491 for (i = 0; i < nr_pages; i++) {
2492 struct page *page = pvec.pages[i];
2493
2494 /*
2495 * At this point we hold neither mapping->tree_lock nor
2496 * lock on the page itself: the page may be truncated or
2497 * invalidated (changing page->mapping to NULL), or even
2498 * swizzled back from swapper_space to tmpfs file
2499 * mapping
2500 */
2501 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2502 tree->ops->write_cache_pages_lock_hook(page);
2503 else
2504 lock_page(page);
2505
2506 if (unlikely(page->mapping != mapping)) {
2507 unlock_page(page);
2508 continue;
2509 }
2510
2511 if (!wbc->range_cyclic && page->index > end) {
2512 done = 1;
2513 unlock_page(page);
2514 continue;
2515 }
2516
2517 if (wbc->sync_mode != WB_SYNC_NONE) {
2518 if (PageWriteback(page))
2519 flush_fn(data);
2520 wait_on_page_writeback(page);
2521 }
2522
2523 if (PageWriteback(page) ||
2524 !clear_page_dirty_for_io(page)) {
2525 unlock_page(page);
2526 continue;
2527 }
2528
2529 ret = (*writepage)(page, wbc, data);
2530
2531 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2532 unlock_page(page);
2533 ret = 0;
2534 }
2535 if (ret)
2536 done = 1;
2537
2538 /*
2539 * the filesystem may choose to bump up nr_to_write.
2540 * We have to make sure to honor the new nr_to_write
2541 * at any time
2542 */
2543 nr_to_write_done = wbc->nr_to_write <= 0;
2544 }
2545 pagevec_release(&pvec);
2546 cond_resched();
2547 }
2548 if (!scanned && !done) {
2549 /*
2550 * We hit the last page and there is more work to be done: wrap
2551 * back to the start of the file
2552 */
2553 scanned = 1;
2554 index = 0;
2555 goto retry;
2556 }
2557 return ret;
2558 }
2559
2560 static void flush_epd_write_bio(struct extent_page_data *epd)
2561 {
2562 if (epd->bio) {
2563 if (epd->sync_io)
2564 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2565 else
2566 submit_one_bio(WRITE, epd->bio, 0, 0);
2567 epd->bio = NULL;
2568 }
2569 }
2570
2571 static noinline void flush_write_bio(void *data)
2572 {
2573 struct extent_page_data *epd = data;
2574 flush_epd_write_bio(epd);
2575 }
2576
2577 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2578 get_extent_t *get_extent,
2579 struct writeback_control *wbc)
2580 {
2581 int ret;
2582 struct address_space *mapping = page->mapping;
2583 struct extent_page_data epd = {
2584 .bio = NULL,
2585 .tree = tree,
2586 .get_extent = get_extent,
2587 .extent_locked = 0,
2588 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2589 };
2590 struct writeback_control wbc_writepages = {
2591 .sync_mode = wbc->sync_mode,
2592 .older_than_this = NULL,
2593 .nr_to_write = 64,
2594 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2595 .range_end = (loff_t)-1,
2596 };
2597
2598 ret = __extent_writepage(page, wbc, &epd);
2599
2600 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2601 __extent_writepage, &epd, flush_write_bio);
2602 flush_epd_write_bio(&epd);
2603 return ret;
2604 }
2605
2606 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2607 u64 start, u64 end, get_extent_t *get_extent,
2608 int mode)
2609 {
2610 int ret = 0;
2611 struct address_space *mapping = inode->i_mapping;
2612 struct page *page;
2613 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2614 PAGE_CACHE_SHIFT;
2615
2616 struct extent_page_data epd = {
2617 .bio = NULL,
2618 .tree = tree,
2619 .get_extent = get_extent,
2620 .extent_locked = 1,
2621 .sync_io = mode == WB_SYNC_ALL,
2622 };
2623 struct writeback_control wbc_writepages = {
2624 .sync_mode = mode,
2625 .older_than_this = NULL,
2626 .nr_to_write = nr_pages * 2,
2627 .range_start = start,
2628 .range_end = end + 1,
2629 };
2630
2631 while (start <= end) {
2632 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2633 if (clear_page_dirty_for_io(page))
2634 ret = __extent_writepage(page, &wbc_writepages, &epd);
2635 else {
2636 if (tree->ops && tree->ops->writepage_end_io_hook)
2637 tree->ops->writepage_end_io_hook(page, start,
2638 start + PAGE_CACHE_SIZE - 1,
2639 NULL, 1);
2640 unlock_page(page);
2641 }
2642 page_cache_release(page);
2643 start += PAGE_CACHE_SIZE;
2644 }
2645
2646 flush_epd_write_bio(&epd);
2647 return ret;
2648 }
2649
2650 int extent_writepages(struct extent_io_tree *tree,
2651 struct address_space *mapping,
2652 get_extent_t *get_extent,
2653 struct writeback_control *wbc)
2654 {
2655 int ret = 0;
2656 struct extent_page_data epd = {
2657 .bio = NULL,
2658 .tree = tree,
2659 .get_extent = get_extent,
2660 .extent_locked = 0,
2661 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2662 };
2663
2664 ret = extent_write_cache_pages(tree, mapping, wbc,
2665 __extent_writepage, &epd,
2666 flush_write_bio);
2667 flush_epd_write_bio(&epd);
2668 return ret;
2669 }
2670
2671 int extent_readpages(struct extent_io_tree *tree,
2672 struct address_space *mapping,
2673 struct list_head *pages, unsigned nr_pages,
2674 get_extent_t get_extent)
2675 {
2676 struct bio *bio = NULL;
2677 unsigned page_idx;
2678 unsigned long bio_flags = 0;
2679
2680 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2681 struct page *page = list_entry(pages->prev, struct page, lru);
2682
2683 prefetchw(&page->flags);
2684 list_del(&page->lru);
2685 if (!add_to_page_cache_lru(page, mapping,
2686 page->index, GFP_KERNEL)) {
2687 __extent_read_full_page(tree, page, get_extent,
2688 &bio, 0, &bio_flags);
2689 }
2690 page_cache_release(page);
2691 }
2692 BUG_ON(!list_empty(pages));
2693 if (bio)
2694 submit_one_bio(READ, bio, 0, bio_flags);
2695 return 0;
2696 }
2697
2698 /*
2699 * basic invalidatepage code, this waits on any locked or writeback
2700 * ranges corresponding to the page, and then deletes any extent state
2701 * records from the tree
2702 */
2703 int extent_invalidatepage(struct extent_io_tree *tree,
2704 struct page *page, unsigned long offset)
2705 {
2706 struct extent_state *cached_state = NULL;
2707 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2708 u64 end = start + PAGE_CACHE_SIZE - 1;
2709 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2710
2711 start += (offset + blocksize - 1) & ~(blocksize - 1);
2712 if (start > end)
2713 return 0;
2714
2715 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2716 wait_on_page_writeback(page);
2717 clear_extent_bit(tree, start, end,
2718 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2719 EXTENT_DO_ACCOUNTING,
2720 1, 1, &cached_state, GFP_NOFS);
2721 return 0;
2722 }
2723
2724 /*
2725 * simple commit_write call, set_range_dirty is used to mark both
2726 * the pages and the extent records as dirty
2727 */
2728 int extent_commit_write(struct extent_io_tree *tree,
2729 struct inode *inode, struct page *page,
2730 unsigned from, unsigned to)
2731 {
2732 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2733
2734 set_page_extent_mapped(page);
2735 set_page_dirty(page);
2736
2737 if (pos > inode->i_size) {
2738 i_size_write(inode, pos);
2739 mark_inode_dirty(inode);
2740 }
2741 return 0;
2742 }
2743
2744 int extent_prepare_write(struct extent_io_tree *tree,
2745 struct inode *inode, struct page *page,
2746 unsigned from, unsigned to, get_extent_t *get_extent)
2747 {
2748 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2749 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2750 u64 block_start;
2751 u64 orig_block_start;
2752 u64 block_end;
2753 u64 cur_end;
2754 struct extent_map *em;
2755 unsigned blocksize = 1 << inode->i_blkbits;
2756 size_t page_offset = 0;
2757 size_t block_off_start;
2758 size_t block_off_end;
2759 int err = 0;
2760 int iocount = 0;
2761 int ret = 0;
2762 int isnew;
2763
2764 set_page_extent_mapped(page);
2765
2766 block_start = (page_start + from) & ~((u64)blocksize - 1);
2767 block_end = (page_start + to - 1) | (blocksize - 1);
2768 orig_block_start = block_start;
2769
2770 lock_extent(tree, page_start, page_end, GFP_NOFS);
2771 while (block_start <= block_end) {
2772 em = get_extent(inode, page, page_offset, block_start,
2773 block_end - block_start + 1, 1);
2774 if (IS_ERR(em) || !em)
2775 goto err;
2776
2777 cur_end = min(block_end, extent_map_end(em) - 1);
2778 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2779 block_off_end = block_off_start + blocksize;
2780 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2781
2782 if (!PageUptodate(page) && isnew &&
2783 (block_off_end > to || block_off_start < from)) {
2784 void *kaddr;
2785
2786 kaddr = kmap_atomic(page, KM_USER0);
2787 if (block_off_end > to)
2788 memset(kaddr + to, 0, block_off_end - to);
2789 if (block_off_start < from)
2790 memset(kaddr + block_off_start, 0,
2791 from - block_off_start);
2792 flush_dcache_page(page);
2793 kunmap_atomic(kaddr, KM_USER0);
2794 }
2795 if ((em->block_start != EXTENT_MAP_HOLE &&
2796 em->block_start != EXTENT_MAP_INLINE) &&
2797 !isnew && !PageUptodate(page) &&
2798 (block_off_end > to || block_off_start < from) &&
2799 !test_range_bit(tree, block_start, cur_end,
2800 EXTENT_UPTODATE, 1, NULL)) {
2801 u64 sector;
2802 u64 extent_offset = block_start - em->start;
2803 size_t iosize;
2804 sector = (em->block_start + extent_offset) >> 9;
2805 iosize = (cur_end - block_start + blocksize) &
2806 ~((u64)blocksize - 1);
2807 /*
2808 * we've already got the extent locked, but we
2809 * need to split the state such that our end_bio
2810 * handler can clear the lock.
2811 */
2812 set_extent_bit(tree, block_start,
2813 block_start + iosize - 1,
2814 EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2815 ret = submit_extent_page(READ, tree, page,
2816 sector, iosize, page_offset, em->bdev,
2817 NULL, 1,
2818 end_bio_extent_preparewrite, 0,
2819 0, 0);
2820 if (ret && !err)
2821 err = ret;
2822 iocount++;
2823 block_start = block_start + iosize;
2824 } else {
2825 struct extent_state *cached = NULL;
2826
2827 set_extent_uptodate(tree, block_start, cur_end, &cached,
2828 GFP_NOFS);
2829 unlock_extent_cached(tree, block_start, cur_end,
2830 &cached, GFP_NOFS);
2831 block_start = cur_end + 1;
2832 }
2833 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2834 free_extent_map(em);
2835 }
2836 if (iocount) {
2837 wait_extent_bit(tree, orig_block_start,
2838 block_end, EXTENT_LOCKED);
2839 }
2840 check_page_uptodate(tree, page);
2841 err:
2842 /* FIXME, zero out newly allocated blocks on error */
2843 return err;
2844 }
2845
2846 /*
2847 * a helper for releasepage, this tests for areas of the page that
2848 * are locked or under IO and drops the related state bits if it is safe
2849 * to drop the page.
2850 */
2851 int try_release_extent_state(struct extent_map_tree *map,
2852 struct extent_io_tree *tree, struct page *page,
2853 gfp_t mask)
2854 {
2855 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2856 u64 end = start + PAGE_CACHE_SIZE - 1;
2857 int ret = 1;
2858
2859 if (test_range_bit(tree, start, end,
2860 EXTENT_IOBITS, 0, NULL))
2861 ret = 0;
2862 else {
2863 if ((mask & GFP_NOFS) == GFP_NOFS)
2864 mask = GFP_NOFS;
2865 /*
2866 * at this point we can safely clear everything except the
2867 * locked bit and the nodatasum bit
2868 */
2869 ret = clear_extent_bit(tree, start, end,
2870 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2871 0, 0, NULL, mask);
2872
2873 /* if clear_extent_bit failed for enomem reasons,
2874 * we can't allow the release to continue.
2875 */
2876 if (ret < 0)
2877 ret = 0;
2878 else
2879 ret = 1;
2880 }
2881 return ret;
2882 }
2883
2884 /*
2885 * a helper for releasepage. As long as there are no locked extents
2886 * in the range corresponding to the page, both state records and extent
2887 * map records are removed
2888 */
2889 int try_release_extent_mapping(struct extent_map_tree *map,
2890 struct extent_io_tree *tree, struct page *page,
2891 gfp_t mask)
2892 {
2893 struct extent_map *em;
2894 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2895 u64 end = start + PAGE_CACHE_SIZE - 1;
2896
2897 if ((mask & __GFP_WAIT) &&
2898 page->mapping->host->i_size > 16 * 1024 * 1024) {
2899 u64 len;
2900 while (start <= end) {
2901 len = end - start + 1;
2902 write_lock(&map->lock);
2903 em = lookup_extent_mapping(map, start, len);
2904 if (!em || IS_ERR(em)) {
2905 write_unlock(&map->lock);
2906 break;
2907 }
2908 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2909 em->start != start) {
2910 write_unlock(&map->lock);
2911 free_extent_map(em);
2912 break;
2913 }
2914 if (!test_range_bit(tree, em->start,
2915 extent_map_end(em) - 1,
2916 EXTENT_LOCKED | EXTENT_WRITEBACK,
2917 0, NULL)) {
2918 remove_extent_mapping(map, em);
2919 /* once for the rb tree */
2920 free_extent_map(em);
2921 }
2922 start = extent_map_end(em);
2923 write_unlock(&map->lock);
2924
2925 /* once for us */
2926 free_extent_map(em);
2927 }
2928 }
2929 return try_release_extent_state(map, tree, page, mask);
2930 }
2931
2932 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2933 get_extent_t *get_extent)
2934 {
2935 struct inode *inode = mapping->host;
2936 struct extent_state *cached_state = NULL;
2937 u64 start = iblock << inode->i_blkbits;
2938 sector_t sector = 0;
2939 size_t blksize = (1 << inode->i_blkbits);
2940 struct extent_map *em;
2941
2942 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2943 0, &cached_state, GFP_NOFS);
2944 em = get_extent(inode, NULL, 0, start, blksize, 0);
2945 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
2946 start + blksize - 1, &cached_state, GFP_NOFS);
2947 if (!em || IS_ERR(em))
2948 return 0;
2949
2950 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2951 goto out;
2952
2953 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2954 out:
2955 free_extent_map(em);
2956 return sector;
2957 }
2958
2959 /*
2960 * helper function for fiemap, which doesn't want to see any holes.
2961 * This maps until we find something past 'last'
2962 */
2963 static struct extent_map *get_extent_skip_holes(struct inode *inode,
2964 u64 offset,
2965 u64 last,
2966 get_extent_t *get_extent)
2967 {
2968 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
2969 struct extent_map *em;
2970 u64 len;
2971
2972 if (offset >= last)
2973 return NULL;
2974
2975 while(1) {
2976 len = last - offset;
2977 if (len == 0)
2978 break;
2979 len = (len + sectorsize - 1) & ~(sectorsize - 1);
2980 em = get_extent(inode, NULL, 0, offset, len, 0);
2981 if (!em || IS_ERR(em))
2982 return em;
2983
2984 /* if this isn't a hole return it */
2985 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
2986 em->block_start != EXTENT_MAP_HOLE) {
2987 return em;
2988 }
2989
2990 /* this is a hole, advance to the next extent */
2991 offset = extent_map_end(em);
2992 free_extent_map(em);
2993 if (offset >= last)
2994 break;
2995 }
2996 return NULL;
2997 }
2998
2999 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3000 __u64 start, __u64 len, get_extent_t *get_extent)
3001 {
3002 int ret = 0;
3003 u64 off = start;
3004 u64 max = start + len;
3005 u32 flags = 0;
3006 u32 found_type;
3007 u64 last;
3008 u64 last_for_get_extent = 0;
3009 u64 disko = 0;
3010 u64 isize = i_size_read(inode);
3011 struct btrfs_key found_key;
3012 struct extent_map *em = NULL;
3013 struct extent_state *cached_state = NULL;
3014 struct btrfs_path *path;
3015 struct btrfs_file_extent_item *item;
3016 int end = 0;
3017 u64 em_start = 0;
3018 u64 em_len = 0;
3019 u64 em_end = 0;
3020 unsigned long emflags;
3021
3022 if (len == 0)
3023 return -EINVAL;
3024
3025 path = btrfs_alloc_path();
3026 if (!path)
3027 return -ENOMEM;
3028 path->leave_spinning = 1;
3029
3030 /*
3031 * lookup the last file extent. We're not using i_size here
3032 * because there might be preallocation past i_size
3033 */
3034 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3035 path, inode->i_ino, -1, 0);
3036 if (ret < 0) {
3037 btrfs_free_path(path);
3038 return ret;
3039 }
3040 WARN_ON(!ret);
3041 path->slots[0]--;
3042 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3043 struct btrfs_file_extent_item);
3044 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3045 found_type = btrfs_key_type(&found_key);
3046
3047 /* No extents, but there might be delalloc bits */
3048 if (found_key.objectid != inode->i_ino ||
3049 found_type != BTRFS_EXTENT_DATA_KEY) {
3050 /* have to trust i_size as the end */
3051 last = (u64)-1;
3052 last_for_get_extent = isize;
3053 } else {
3054 /*
3055 * remember the start of the last extent. There are a
3056 * bunch of different factors that go into the length of the
3057 * extent, so its much less complex to remember where it started
3058 */
3059 last = found_key.offset;
3060 last_for_get_extent = last + 1;
3061 }
3062 btrfs_free_path(path);
3063
3064 /*
3065 * we might have some extents allocated but more delalloc past those
3066 * extents. so, we trust isize unless the start of the last extent is
3067 * beyond isize
3068 */
3069 if (last < isize) {
3070 last = (u64)-1;
3071 last_for_get_extent = isize;
3072 }
3073
3074 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3075 &cached_state, GFP_NOFS);
3076
3077 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3078 get_extent);
3079 if (!em)
3080 goto out;
3081 if (IS_ERR(em)) {
3082 ret = PTR_ERR(em);
3083 goto out;
3084 }
3085
3086 while (!end) {
3087 u64 offset_in_extent;
3088
3089 /* break if the extent we found is outside the range */
3090 if (em->start >= max || extent_map_end(em) < off)
3091 break;
3092
3093 /*
3094 * get_extent may return an extent that starts before our
3095 * requested range. We have to make sure the ranges
3096 * we return to fiemap always move forward and don't
3097 * overlap, so adjust the offsets here
3098 */
3099 em_start = max(em->start, off);
3100
3101 /*
3102 * record the offset from the start of the extent
3103 * for adjusting the disk offset below
3104 */
3105 offset_in_extent = em_start - em->start;
3106 em_end = extent_map_end(em);
3107 em_len = em_end - em_start;
3108 emflags = em->flags;
3109 disko = 0;
3110 flags = 0;
3111
3112 /*
3113 * bump off for our next call to get_extent
3114 */
3115 off = extent_map_end(em);
3116 if (off >= max)
3117 end = 1;
3118
3119 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3120 end = 1;
3121 flags |= FIEMAP_EXTENT_LAST;
3122 } else if (em->block_start == EXTENT_MAP_INLINE) {
3123 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3124 FIEMAP_EXTENT_NOT_ALIGNED);
3125 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3126 flags |= (FIEMAP_EXTENT_DELALLOC |
3127 FIEMAP_EXTENT_UNKNOWN);
3128 } else {
3129 disko = em->block_start + offset_in_extent;
3130 }
3131 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3132 flags |= FIEMAP_EXTENT_ENCODED;
3133
3134 free_extent_map(em);
3135 em = NULL;
3136 if ((em_start >= last) || em_len == (u64)-1 ||
3137 (last == (u64)-1 && isize <= em_end)) {
3138 flags |= FIEMAP_EXTENT_LAST;
3139 end = 1;
3140 }
3141
3142 /* now scan forward to see if this is really the last extent. */
3143 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3144 get_extent);
3145 if (IS_ERR(em)) {
3146 ret = PTR_ERR(em);
3147 goto out;
3148 }
3149 if (!em) {
3150 flags |= FIEMAP_EXTENT_LAST;
3151 end = 1;
3152 }
3153 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3154 em_len, flags);
3155 if (ret)
3156 goto out_free;
3157 }
3158 out_free:
3159 free_extent_map(em);
3160 out:
3161 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3162 &cached_state, GFP_NOFS);
3163 return ret;
3164 }
3165
3166 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3167 unsigned long i)
3168 {
3169 struct page *p;
3170 struct address_space *mapping;
3171
3172 if (i == 0)
3173 return eb->first_page;
3174 i += eb->start >> PAGE_CACHE_SHIFT;
3175 mapping = eb->first_page->mapping;
3176 if (!mapping)
3177 return NULL;
3178
3179 /*
3180 * extent_buffer_page is only called after pinning the page
3181 * by increasing the reference count. So we know the page must
3182 * be in the radix tree.
3183 */
3184 rcu_read_lock();
3185 p = radix_tree_lookup(&mapping->page_tree, i);
3186 rcu_read_unlock();
3187
3188 return p;
3189 }
3190
3191 static inline unsigned long num_extent_pages(u64 start, u64 len)
3192 {
3193 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3194 (start >> PAGE_CACHE_SHIFT);
3195 }
3196
3197 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3198 u64 start,
3199 unsigned long len,
3200 gfp_t mask)
3201 {
3202 struct extent_buffer *eb = NULL;
3203 #if LEAK_DEBUG
3204 unsigned long flags;
3205 #endif
3206
3207 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3208 if (eb == NULL)
3209 return NULL;
3210 eb->start = start;
3211 eb->len = len;
3212 spin_lock_init(&eb->lock);
3213 init_waitqueue_head(&eb->lock_wq);
3214
3215 #if LEAK_DEBUG
3216 spin_lock_irqsave(&leak_lock, flags);
3217 list_add(&eb->leak_list, &buffers);
3218 spin_unlock_irqrestore(&leak_lock, flags);
3219 #endif
3220 atomic_set(&eb->refs, 1);
3221
3222 return eb;
3223 }
3224
3225 static void __free_extent_buffer(struct extent_buffer *eb)
3226 {
3227 #if LEAK_DEBUG
3228 unsigned long flags;
3229 spin_lock_irqsave(&leak_lock, flags);
3230 list_del(&eb->leak_list);
3231 spin_unlock_irqrestore(&leak_lock, flags);
3232 #endif
3233 kmem_cache_free(extent_buffer_cache, eb);
3234 }
3235
3236 /*
3237 * Helper for releasing extent buffer page.
3238 */
3239 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3240 unsigned long start_idx)
3241 {
3242 unsigned long index;
3243 struct page *page;
3244
3245 if (!eb->first_page)
3246 return;
3247
3248 index = num_extent_pages(eb->start, eb->len);
3249 if (start_idx >= index)
3250 return;
3251
3252 do {
3253 index--;
3254 page = extent_buffer_page(eb, index);
3255 if (page)
3256 page_cache_release(page);
3257 } while (index != start_idx);
3258 }
3259
3260 /*
3261 * Helper for releasing the extent buffer.
3262 */
3263 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3264 {
3265 btrfs_release_extent_buffer_page(eb, 0);
3266 __free_extent_buffer(eb);
3267 }
3268
3269 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3270 u64 start, unsigned long len,
3271 struct page *page0,
3272 gfp_t mask)
3273 {
3274 unsigned long num_pages = num_extent_pages(start, len);
3275 unsigned long i;
3276 unsigned long index = start >> PAGE_CACHE_SHIFT;
3277 struct extent_buffer *eb;
3278 struct extent_buffer *exists = NULL;
3279 struct page *p;
3280 struct address_space *mapping = tree->mapping;
3281 int uptodate = 1;
3282 int ret;
3283
3284 rcu_read_lock();
3285 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3286 if (eb && atomic_inc_not_zero(&eb->refs)) {
3287 rcu_read_unlock();
3288 mark_page_accessed(eb->first_page);
3289 return eb;
3290 }
3291 rcu_read_unlock();
3292
3293 eb = __alloc_extent_buffer(tree, start, len, mask);
3294 if (!eb)
3295 return NULL;
3296
3297 if (page0) {
3298 eb->first_page = page0;
3299 i = 1;
3300 index++;
3301 page_cache_get(page0);
3302 mark_page_accessed(page0);
3303 set_page_extent_mapped(page0);
3304 set_page_extent_head(page0, len);
3305 uptodate = PageUptodate(page0);
3306 } else {
3307 i = 0;
3308 }
3309 for (; i < num_pages; i++, index++) {
3310 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3311 if (!p) {
3312 WARN_ON(1);
3313 goto free_eb;
3314 }
3315 set_page_extent_mapped(p);
3316 mark_page_accessed(p);
3317 if (i == 0) {
3318 eb->first_page = p;
3319 set_page_extent_head(p, len);
3320 } else {
3321 set_page_private(p, EXTENT_PAGE_PRIVATE);
3322 }
3323 if (!PageUptodate(p))
3324 uptodate = 0;
3325
3326 /*
3327 * see below about how we avoid a nasty race with release page
3328 * and why we unlock later
3329 */
3330 if (i != 0)
3331 unlock_page(p);
3332 }
3333 if (uptodate)
3334 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3335
3336 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3337 if (ret)
3338 goto free_eb;
3339
3340 spin_lock(&tree->buffer_lock);
3341 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3342 if (ret == -EEXIST) {
3343 exists = radix_tree_lookup(&tree->buffer,
3344 start >> PAGE_CACHE_SHIFT);
3345 /* add one reference for the caller */
3346 atomic_inc(&exists->refs);
3347 spin_unlock(&tree->buffer_lock);
3348 radix_tree_preload_end();
3349 goto free_eb;
3350 }
3351 /* add one reference for the tree */
3352 atomic_inc(&eb->refs);
3353 spin_unlock(&tree->buffer_lock);
3354 radix_tree_preload_end();
3355
3356 /*
3357 * there is a race where release page may have
3358 * tried to find this extent buffer in the radix
3359 * but failed. It will tell the VM it is safe to
3360 * reclaim the, and it will clear the page private bit.
3361 * We must make sure to set the page private bit properly
3362 * after the extent buffer is in the radix tree so
3363 * it doesn't get lost
3364 */
3365 set_page_extent_mapped(eb->first_page);
3366 set_page_extent_head(eb->first_page, eb->len);
3367 if (!page0)
3368 unlock_page(eb->first_page);
3369 return eb;
3370
3371 free_eb:
3372 if (eb->first_page && !page0)
3373 unlock_page(eb->first_page);
3374
3375 if (!atomic_dec_and_test(&eb->refs))
3376 return exists;
3377 btrfs_release_extent_buffer(eb);
3378 return exists;
3379 }
3380
3381 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3382 u64 start, unsigned long len,
3383 gfp_t mask)
3384 {
3385 struct extent_buffer *eb;
3386
3387 rcu_read_lock();
3388 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3389 if (eb && atomic_inc_not_zero(&eb->refs)) {
3390 rcu_read_unlock();
3391 mark_page_accessed(eb->first_page);
3392 return eb;
3393 }
3394 rcu_read_unlock();
3395
3396 return NULL;
3397 }
3398
3399 void free_extent_buffer(struct extent_buffer *eb)
3400 {
3401 if (!eb)
3402 return;
3403
3404 if (!atomic_dec_and_test(&eb->refs))
3405 return;
3406
3407 WARN_ON(1);
3408 }
3409
3410 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3411 struct extent_buffer *eb)
3412 {
3413 unsigned long i;
3414 unsigned long num_pages;
3415 struct page *page;
3416
3417 num_pages = num_extent_pages(eb->start, eb->len);
3418
3419 for (i = 0; i < num_pages; i++) {
3420 page = extent_buffer_page(eb, i);
3421 if (!PageDirty(page))
3422 continue;
3423
3424 lock_page(page);
3425 WARN_ON(!PagePrivate(page));
3426
3427 set_page_extent_mapped(page);
3428 if (i == 0)
3429 set_page_extent_head(page, eb->len);
3430
3431 clear_page_dirty_for_io(page);
3432 spin_lock_irq(&page->mapping->tree_lock);
3433 if (!PageDirty(page)) {
3434 radix_tree_tag_clear(&page->mapping->page_tree,
3435 page_index(page),
3436 PAGECACHE_TAG_DIRTY);
3437 }
3438 spin_unlock_irq(&page->mapping->tree_lock);
3439 unlock_page(page);
3440 }
3441 return 0;
3442 }
3443
3444 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3445 struct extent_buffer *eb)
3446 {
3447 return wait_on_extent_writeback(tree, eb->start,
3448 eb->start + eb->len - 1);
3449 }
3450
3451 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3452 struct extent_buffer *eb)
3453 {
3454 unsigned long i;
3455 unsigned long num_pages;
3456 int was_dirty = 0;
3457
3458 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3459 num_pages = num_extent_pages(eb->start, eb->len);
3460 for (i = 0; i < num_pages; i++)
3461 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3462 return was_dirty;
3463 }
3464
3465 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3466 struct extent_buffer *eb,
3467 struct extent_state **cached_state)
3468 {
3469 unsigned long i;
3470 struct page *page;
3471 unsigned long num_pages;
3472
3473 num_pages = num_extent_pages(eb->start, eb->len);
3474 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3475
3476 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3477 cached_state, GFP_NOFS);
3478 for (i = 0; i < num_pages; i++) {
3479 page = extent_buffer_page(eb, i);
3480 if (page)
3481 ClearPageUptodate(page);
3482 }
3483 return 0;
3484 }
3485
3486 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3487 struct extent_buffer *eb)
3488 {
3489 unsigned long i;
3490 struct page *page;
3491 unsigned long num_pages;
3492
3493 num_pages = num_extent_pages(eb->start, eb->len);
3494
3495 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3496 NULL, GFP_NOFS);
3497 for (i = 0; i < num_pages; i++) {
3498 page = extent_buffer_page(eb, i);
3499 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3500 ((i == num_pages - 1) &&
3501 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3502 check_page_uptodate(tree, page);
3503 continue;
3504 }
3505 SetPageUptodate(page);
3506 }
3507 return 0;
3508 }
3509
3510 int extent_range_uptodate(struct extent_io_tree *tree,
3511 u64 start, u64 end)
3512 {
3513 struct page *page;
3514 int ret;
3515 int pg_uptodate = 1;
3516 int uptodate;
3517 unsigned long index;
3518
3519 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3520 if (ret)
3521 return 1;
3522 while (start <= end) {
3523 index = start >> PAGE_CACHE_SHIFT;
3524 page = find_get_page(tree->mapping, index);
3525 uptodate = PageUptodate(page);
3526 page_cache_release(page);
3527 if (!uptodate) {
3528 pg_uptodate = 0;
3529 break;
3530 }
3531 start += PAGE_CACHE_SIZE;
3532 }
3533 return pg_uptodate;
3534 }
3535
3536 int extent_buffer_uptodate(struct extent_io_tree *tree,
3537 struct extent_buffer *eb,
3538 struct extent_state *cached_state)
3539 {
3540 int ret = 0;
3541 unsigned long num_pages;
3542 unsigned long i;
3543 struct page *page;
3544 int pg_uptodate = 1;
3545
3546 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3547 return 1;
3548
3549 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3550 EXTENT_UPTODATE, 1, cached_state);
3551 if (ret)
3552 return ret;
3553
3554 num_pages = num_extent_pages(eb->start, eb->len);
3555 for (i = 0; i < num_pages; i++) {
3556 page = extent_buffer_page(eb, i);
3557 if (!PageUptodate(page)) {
3558 pg_uptodate = 0;
3559 break;
3560 }
3561 }
3562 return pg_uptodate;
3563 }
3564
3565 int read_extent_buffer_pages(struct extent_io_tree *tree,
3566 struct extent_buffer *eb,
3567 u64 start, int wait,
3568 get_extent_t *get_extent, int mirror_num)
3569 {
3570 unsigned long i;
3571 unsigned long start_i;
3572 struct page *page;
3573 int err;
3574 int ret = 0;
3575 int locked_pages = 0;
3576 int all_uptodate = 1;
3577 int inc_all_pages = 0;
3578 unsigned long num_pages;
3579 struct bio *bio = NULL;
3580 unsigned long bio_flags = 0;
3581
3582 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3583 return 0;
3584
3585 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3586 EXTENT_UPTODATE, 1, NULL)) {
3587 return 0;
3588 }
3589
3590 if (start) {
3591 WARN_ON(start < eb->start);
3592 start_i = (start >> PAGE_CACHE_SHIFT) -
3593 (eb->start >> PAGE_CACHE_SHIFT);
3594 } else {
3595 start_i = 0;
3596 }
3597
3598 num_pages = num_extent_pages(eb->start, eb->len);
3599 for (i = start_i; i < num_pages; i++) {
3600 page = extent_buffer_page(eb, i);
3601 if (!wait) {
3602 if (!trylock_page(page))
3603 goto unlock_exit;
3604 } else {
3605 lock_page(page);
3606 }
3607 locked_pages++;
3608 if (!PageUptodate(page))
3609 all_uptodate = 0;
3610 }
3611 if (all_uptodate) {
3612 if (start_i == 0)
3613 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3614 goto unlock_exit;
3615 }
3616
3617 for (i = start_i; i < num_pages; i++) {
3618 page = extent_buffer_page(eb, i);
3619
3620 WARN_ON(!PagePrivate(page));
3621
3622 set_page_extent_mapped(page);
3623 if (i == 0)
3624 set_page_extent_head(page, eb->len);
3625
3626 if (inc_all_pages)
3627 page_cache_get(page);
3628 if (!PageUptodate(page)) {
3629 if (start_i == 0)
3630 inc_all_pages = 1;
3631 ClearPageError(page);
3632 err = __extent_read_full_page(tree, page,
3633 get_extent, &bio,
3634 mirror_num, &bio_flags);
3635 if (err)
3636 ret = err;
3637 } else {
3638 unlock_page(page);
3639 }
3640 }
3641
3642 if (bio)
3643 submit_one_bio(READ, bio, mirror_num, bio_flags);
3644
3645 if (ret || !wait)
3646 return ret;
3647
3648 for (i = start_i; i < num_pages; i++) {
3649 page = extent_buffer_page(eb, i);
3650 wait_on_page_locked(page);
3651 if (!PageUptodate(page))
3652 ret = -EIO;
3653 }
3654
3655 if (!ret)
3656 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3657 return ret;
3658
3659 unlock_exit:
3660 i = start_i;
3661 while (locked_pages > 0) {
3662 page = extent_buffer_page(eb, i);
3663 i++;
3664 unlock_page(page);
3665 locked_pages--;
3666 }
3667 return ret;
3668 }
3669
3670 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3671 unsigned long start,
3672 unsigned long len)
3673 {
3674 size_t cur;
3675 size_t offset;
3676 struct page *page;
3677 char *kaddr;
3678 char *dst = (char *)dstv;
3679 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3680 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3681
3682 WARN_ON(start > eb->len);
3683 WARN_ON(start + len > eb->start + eb->len);
3684
3685 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3686
3687 while (len > 0) {
3688 page = extent_buffer_page(eb, i);
3689
3690 cur = min(len, (PAGE_CACHE_SIZE - offset));
3691 kaddr = kmap_atomic(page, KM_USER1);
3692 memcpy(dst, kaddr + offset, cur);
3693 kunmap_atomic(kaddr, KM_USER1);
3694
3695 dst += cur;
3696 len -= cur;
3697 offset = 0;
3698 i++;
3699 }
3700 }
3701
3702 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3703 unsigned long min_len, char **token, char **map,
3704 unsigned long *map_start,
3705 unsigned long *map_len, int km)
3706 {
3707 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3708 char *kaddr;
3709 struct page *p;
3710 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3711 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3712 unsigned long end_i = (start_offset + start + min_len - 1) >>
3713 PAGE_CACHE_SHIFT;
3714
3715 if (i != end_i)
3716 return -EINVAL;
3717
3718 if (i == 0) {
3719 offset = start_offset;
3720 *map_start = 0;
3721 } else {
3722 offset = 0;
3723 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3724 }
3725
3726 if (start + min_len > eb->len) {
3727 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3728 "wanted %lu %lu\n", (unsigned long long)eb->start,
3729 eb->len, start, min_len);
3730 WARN_ON(1);
3731 return -EINVAL;
3732 }
3733
3734 p = extent_buffer_page(eb, i);
3735 kaddr = kmap_atomic(p, km);
3736 *token = kaddr;
3737 *map = kaddr + offset;
3738 *map_len = PAGE_CACHE_SIZE - offset;
3739 return 0;
3740 }
3741
3742 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3743 unsigned long min_len,
3744 char **token, char **map,
3745 unsigned long *map_start,
3746 unsigned long *map_len, int km)
3747 {
3748 int err;
3749 int save = 0;
3750 if (eb->map_token) {
3751 unmap_extent_buffer(eb, eb->map_token, km);
3752 eb->map_token = NULL;
3753 save = 1;
3754 }
3755 err = map_private_extent_buffer(eb, start, min_len, token, map,
3756 map_start, map_len, km);
3757 if (!err && save) {
3758 eb->map_token = *token;
3759 eb->kaddr = *map;
3760 eb->map_start = *map_start;
3761 eb->map_len = *map_len;
3762 }
3763 return err;
3764 }
3765
3766 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3767 {
3768 kunmap_atomic(token, km);
3769 }
3770
3771 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3772 unsigned long start,
3773 unsigned long len)
3774 {
3775 size_t cur;
3776 size_t offset;
3777 struct page *page;
3778 char *kaddr;
3779 char *ptr = (char *)ptrv;
3780 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3781 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3782 int ret = 0;
3783
3784 WARN_ON(start > eb->len);
3785 WARN_ON(start + len > eb->start + eb->len);
3786
3787 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3788
3789 while (len > 0) {
3790 page = extent_buffer_page(eb, i);
3791
3792 cur = min(len, (PAGE_CACHE_SIZE - offset));
3793
3794 kaddr = kmap_atomic(page, KM_USER0);
3795 ret = memcmp(ptr, kaddr + offset, cur);
3796 kunmap_atomic(kaddr, KM_USER0);
3797 if (ret)
3798 break;
3799
3800 ptr += cur;
3801 len -= cur;
3802 offset = 0;
3803 i++;
3804 }
3805 return ret;
3806 }
3807
3808 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3809 unsigned long start, unsigned long len)
3810 {
3811 size_t cur;
3812 size_t offset;
3813 struct page *page;
3814 char *kaddr;
3815 char *src = (char *)srcv;
3816 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3817 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3818
3819 WARN_ON(start > eb->len);
3820 WARN_ON(start + len > eb->start + eb->len);
3821
3822 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3823
3824 while (len > 0) {
3825 page = extent_buffer_page(eb, i);
3826 WARN_ON(!PageUptodate(page));
3827
3828 cur = min(len, PAGE_CACHE_SIZE - offset);
3829 kaddr = kmap_atomic(page, KM_USER1);
3830 memcpy(kaddr + offset, src, cur);
3831 kunmap_atomic(kaddr, KM_USER1);
3832
3833 src += cur;
3834 len -= cur;
3835 offset = 0;
3836 i++;
3837 }
3838 }
3839
3840 void memset_extent_buffer(struct extent_buffer *eb, char c,
3841 unsigned long start, unsigned long len)
3842 {
3843 size_t cur;
3844 size_t offset;
3845 struct page *page;
3846 char *kaddr;
3847 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3848 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3849
3850 WARN_ON(start > eb->len);
3851 WARN_ON(start + len > eb->start + eb->len);
3852
3853 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3854
3855 while (len > 0) {
3856 page = extent_buffer_page(eb, i);
3857 WARN_ON(!PageUptodate(page));
3858
3859 cur = min(len, PAGE_CACHE_SIZE - offset);
3860 kaddr = kmap_atomic(page, KM_USER0);
3861 memset(kaddr + offset, c, cur);
3862 kunmap_atomic(kaddr, KM_USER0);
3863
3864 len -= cur;
3865 offset = 0;
3866 i++;
3867 }
3868 }
3869
3870 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3871 unsigned long dst_offset, unsigned long src_offset,
3872 unsigned long len)
3873 {
3874 u64 dst_len = dst->len;
3875 size_t cur;
3876 size_t offset;
3877 struct page *page;
3878 char *kaddr;
3879 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3880 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3881
3882 WARN_ON(src->len != dst_len);
3883
3884 offset = (start_offset + dst_offset) &
3885 ((unsigned long)PAGE_CACHE_SIZE - 1);
3886
3887 while (len > 0) {
3888 page = extent_buffer_page(dst, i);
3889 WARN_ON(!PageUptodate(page));
3890
3891 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3892
3893 kaddr = kmap_atomic(page, KM_USER0);
3894 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3895 kunmap_atomic(kaddr, KM_USER0);
3896
3897 src_offset += cur;
3898 len -= cur;
3899 offset = 0;
3900 i++;
3901 }
3902 }
3903
3904 static void move_pages(struct page *dst_page, struct page *src_page,
3905 unsigned long dst_off, unsigned long src_off,
3906 unsigned long len)
3907 {
3908 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3909 if (dst_page == src_page) {
3910 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3911 } else {
3912 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3913 char *p = dst_kaddr + dst_off + len;
3914 char *s = src_kaddr + src_off + len;
3915
3916 while (len--)
3917 *--p = *--s;
3918
3919 kunmap_atomic(src_kaddr, KM_USER1);
3920 }
3921 kunmap_atomic(dst_kaddr, KM_USER0);
3922 }
3923
3924 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
3925 {
3926 unsigned long distance = (src > dst) ? src - dst : dst - src;
3927 return distance < len;
3928 }
3929
3930 static void copy_pages(struct page *dst_page, struct page *src_page,
3931 unsigned long dst_off, unsigned long src_off,
3932 unsigned long len)
3933 {
3934 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3935 char *src_kaddr;
3936
3937 if (dst_page != src_page) {
3938 src_kaddr = kmap_atomic(src_page, KM_USER1);
3939 } else {
3940 src_kaddr = dst_kaddr;
3941 BUG_ON(areas_overlap(src_off, dst_off, len));
3942 }
3943
3944 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3945 kunmap_atomic(dst_kaddr, KM_USER0);
3946 if (dst_page != src_page)
3947 kunmap_atomic(src_kaddr, KM_USER1);
3948 }
3949
3950 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3951 unsigned long src_offset, unsigned long len)
3952 {
3953 size_t cur;
3954 size_t dst_off_in_page;
3955 size_t src_off_in_page;
3956 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3957 unsigned long dst_i;
3958 unsigned long src_i;
3959
3960 if (src_offset + len > dst->len) {
3961 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3962 "len %lu dst len %lu\n", src_offset, len, dst->len);
3963 BUG_ON(1);
3964 }
3965 if (dst_offset + len > dst->len) {
3966 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3967 "len %lu dst len %lu\n", dst_offset, len, dst->len);
3968 BUG_ON(1);
3969 }
3970
3971 while (len > 0) {
3972 dst_off_in_page = (start_offset + dst_offset) &
3973 ((unsigned long)PAGE_CACHE_SIZE - 1);
3974 src_off_in_page = (start_offset + src_offset) &
3975 ((unsigned long)PAGE_CACHE_SIZE - 1);
3976
3977 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3978 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3979
3980 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3981 src_off_in_page));
3982 cur = min_t(unsigned long, cur,
3983 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3984
3985 copy_pages(extent_buffer_page(dst, dst_i),
3986 extent_buffer_page(dst, src_i),
3987 dst_off_in_page, src_off_in_page, cur);
3988
3989 src_offset += cur;
3990 dst_offset += cur;
3991 len -= cur;
3992 }
3993 }
3994
3995 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3996 unsigned long src_offset, unsigned long len)
3997 {
3998 size_t cur;
3999 size_t dst_off_in_page;
4000 size_t src_off_in_page;
4001 unsigned long dst_end = dst_offset + len - 1;
4002 unsigned long src_end = src_offset + len - 1;
4003 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4004 unsigned long dst_i;
4005 unsigned long src_i;
4006
4007 if (src_offset + len > dst->len) {
4008 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4009 "len %lu len %lu\n", src_offset, len, dst->len);
4010 BUG_ON(1);
4011 }
4012 if (dst_offset + len > dst->len) {
4013 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4014 "len %lu len %lu\n", dst_offset, len, dst->len);
4015 BUG_ON(1);
4016 }
4017 if (!areas_overlap(src_offset, dst_offset, len)) {
4018 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4019 return;
4020 }
4021 while (len > 0) {
4022 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4023 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4024
4025 dst_off_in_page = (start_offset + dst_end) &
4026 ((unsigned long)PAGE_CACHE_SIZE - 1);
4027 src_off_in_page = (start_offset + src_end) &
4028 ((unsigned long)PAGE_CACHE_SIZE - 1);
4029
4030 cur = min_t(unsigned long, len, src_off_in_page + 1);
4031 cur = min(cur, dst_off_in_page + 1);
4032 move_pages(extent_buffer_page(dst, dst_i),
4033 extent_buffer_page(dst, src_i),
4034 dst_off_in_page - cur + 1,
4035 src_off_in_page - cur + 1, cur);
4036
4037 dst_end -= cur;
4038 src_end -= cur;
4039 len -= cur;
4040 }
4041 }
4042
4043 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4044 {
4045 struct extent_buffer *eb =
4046 container_of(head, struct extent_buffer, rcu_head);
4047
4048 btrfs_release_extent_buffer(eb);
4049 }
4050
4051 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4052 {
4053 u64 start = page_offset(page);
4054 struct extent_buffer *eb;
4055 int ret = 1;
4056
4057 spin_lock(&tree->buffer_lock);
4058 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4059 if (!eb) {
4060 spin_unlock(&tree->buffer_lock);
4061 return ret;
4062 }
4063
4064 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4065 ret = 0;
4066 goto out;
4067 }
4068
4069 /*
4070 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4071 * Or go back.
4072 */
4073 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4074 ret = 0;
4075 goto out;
4076 }
4077
4078 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4079 out:
4080 spin_unlock(&tree->buffer_lock);
4081
4082 /* at this point we can safely release the extent buffer */
4083 if (atomic_read(&eb->refs) == 0)
4084 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4085 return ret;
4086 }
This page took 0.121685 seconds and 5 git commands to generate.