btrfs: move inline function code to header file
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35
36 #define BUFFER_LRU_MAX 64
37
38 struct tree_entry {
39 u64 start;
40 u64 end;
41 struct rb_node rb_node;
42 };
43
44 struct extent_page_data {
45 struct bio *bio;
46 struct extent_io_tree *tree;
47 get_extent_t *get_extent;
48 unsigned long bio_flags;
49
50 /* tells writepage not to lock the state bits for this range
51 * it still does the unlocking
52 */
53 unsigned int extent_locked:1;
54
55 /* tells the submit_bio code to use a WRITE_SYNC */
56 unsigned int sync_io:1;
57 };
58
59 static noinline void flush_write_bio(void *data);
60 static inline struct btrfs_fs_info *
61 tree_fs_info(struct extent_io_tree *tree)
62 {
63 return btrfs_sb(tree->mapping->host->i_sb);
64 }
65
66 int __init extent_io_init(void)
67 {
68 extent_state_cache = kmem_cache_create("btrfs_extent_state",
69 sizeof(struct extent_state), 0,
70 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
71 if (!extent_state_cache)
72 return -ENOMEM;
73
74 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
75 sizeof(struct extent_buffer), 0,
76 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
77 if (!extent_buffer_cache)
78 goto free_state_cache;
79 return 0;
80
81 free_state_cache:
82 kmem_cache_destroy(extent_state_cache);
83 return -ENOMEM;
84 }
85
86 void extent_io_exit(void)
87 {
88 struct extent_state *state;
89 struct extent_buffer *eb;
90
91 while (!list_empty(&states)) {
92 state = list_entry(states.next, struct extent_state, leak_list);
93 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
94 "state %lu in tree %p refs %d\n",
95 (unsigned long long)state->start,
96 (unsigned long long)state->end,
97 state->state, state->tree, atomic_read(&state->refs));
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100
101 }
102
103 while (!list_empty(&buffers)) {
104 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
105 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
106 "refs %d\n", (unsigned long long)eb->start,
107 eb->len, atomic_read(&eb->refs));
108 list_del(&eb->leak_list);
109 kmem_cache_free(extent_buffer_cache, eb);
110 }
111 if (extent_state_cache)
112 kmem_cache_destroy(extent_state_cache);
113 if (extent_buffer_cache)
114 kmem_cache_destroy(extent_buffer_cache);
115 }
116
117 void extent_io_tree_init(struct extent_io_tree *tree,
118 struct address_space *mapping)
119 {
120 tree->state = RB_ROOT;
121 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
122 tree->ops = NULL;
123 tree->dirty_bytes = 0;
124 spin_lock_init(&tree->lock);
125 spin_lock_init(&tree->buffer_lock);
126 tree->mapping = mapping;
127 }
128
129 static struct extent_state *alloc_extent_state(gfp_t mask)
130 {
131 struct extent_state *state;
132 #if LEAK_DEBUG
133 unsigned long flags;
134 #endif
135
136 state = kmem_cache_alloc(extent_state_cache, mask);
137 if (!state)
138 return state;
139 state->state = 0;
140 state->private = 0;
141 state->tree = NULL;
142 #if LEAK_DEBUG
143 spin_lock_irqsave(&leak_lock, flags);
144 list_add(&state->leak_list, &states);
145 spin_unlock_irqrestore(&leak_lock, flags);
146 #endif
147 atomic_set(&state->refs, 1);
148 init_waitqueue_head(&state->wq);
149 trace_alloc_extent_state(state, mask, _RET_IP_);
150 return state;
151 }
152
153 void free_extent_state(struct extent_state *state)
154 {
155 if (!state)
156 return;
157 if (atomic_dec_and_test(&state->refs)) {
158 #if LEAK_DEBUG
159 unsigned long flags;
160 #endif
161 WARN_ON(state->tree);
162 #if LEAK_DEBUG
163 spin_lock_irqsave(&leak_lock, flags);
164 list_del(&state->leak_list);
165 spin_unlock_irqrestore(&leak_lock, flags);
166 #endif
167 trace_free_extent_state(state, _RET_IP_);
168 kmem_cache_free(extent_state_cache, state);
169 }
170 }
171
172 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
173 struct rb_node *node)
174 {
175 struct rb_node **p = &root->rb_node;
176 struct rb_node *parent = NULL;
177 struct tree_entry *entry;
178
179 while (*p) {
180 parent = *p;
181 entry = rb_entry(parent, struct tree_entry, rb_node);
182
183 if (offset < entry->start)
184 p = &(*p)->rb_left;
185 else if (offset > entry->end)
186 p = &(*p)->rb_right;
187 else
188 return parent;
189 }
190
191 rb_link_node(node, parent, p);
192 rb_insert_color(node, root);
193 return NULL;
194 }
195
196 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
197 struct rb_node **prev_ret,
198 struct rb_node **next_ret)
199 {
200 struct rb_root *root = &tree->state;
201 struct rb_node *n = root->rb_node;
202 struct rb_node *prev = NULL;
203 struct rb_node *orig_prev = NULL;
204 struct tree_entry *entry;
205 struct tree_entry *prev_entry = NULL;
206
207 while (n) {
208 entry = rb_entry(n, struct tree_entry, rb_node);
209 prev = n;
210 prev_entry = entry;
211
212 if (offset < entry->start)
213 n = n->rb_left;
214 else if (offset > entry->end)
215 n = n->rb_right;
216 else
217 return n;
218 }
219
220 if (prev_ret) {
221 orig_prev = prev;
222 while (prev && offset > prev_entry->end) {
223 prev = rb_next(prev);
224 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
225 }
226 *prev_ret = prev;
227 prev = orig_prev;
228 }
229
230 if (next_ret) {
231 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
232 while (prev && offset < prev_entry->start) {
233 prev = rb_prev(prev);
234 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
235 }
236 *next_ret = prev;
237 }
238 return NULL;
239 }
240
241 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
242 u64 offset)
243 {
244 struct rb_node *prev = NULL;
245 struct rb_node *ret;
246
247 ret = __etree_search(tree, offset, &prev, NULL);
248 if (!ret)
249 return prev;
250 return ret;
251 }
252
253 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
254 struct extent_state *other)
255 {
256 if (tree->ops && tree->ops->merge_extent_hook)
257 tree->ops->merge_extent_hook(tree->mapping->host, new,
258 other);
259 }
260
261 /*
262 * utility function to look for merge candidates inside a given range.
263 * Any extents with matching state are merged together into a single
264 * extent in the tree. Extents with EXTENT_IO in their state field
265 * are not merged because the end_io handlers need to be able to do
266 * operations on them without sleeping (or doing allocations/splits).
267 *
268 * This should be called with the tree lock held.
269 */
270 static void merge_state(struct extent_io_tree *tree,
271 struct extent_state *state)
272 {
273 struct extent_state *other;
274 struct rb_node *other_node;
275
276 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
277 return;
278
279 other_node = rb_prev(&state->rb_node);
280 if (other_node) {
281 other = rb_entry(other_node, struct extent_state, rb_node);
282 if (other->end == state->start - 1 &&
283 other->state == state->state) {
284 merge_cb(tree, state, other);
285 state->start = other->start;
286 other->tree = NULL;
287 rb_erase(&other->rb_node, &tree->state);
288 free_extent_state(other);
289 }
290 }
291 other_node = rb_next(&state->rb_node);
292 if (other_node) {
293 other = rb_entry(other_node, struct extent_state, rb_node);
294 if (other->start == state->end + 1 &&
295 other->state == state->state) {
296 merge_cb(tree, state, other);
297 state->end = other->end;
298 other->tree = NULL;
299 rb_erase(&other->rb_node, &tree->state);
300 free_extent_state(other);
301 }
302 }
303 }
304
305 static void set_state_cb(struct extent_io_tree *tree,
306 struct extent_state *state, int *bits)
307 {
308 if (tree->ops && tree->ops->set_bit_hook)
309 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
310 }
311
312 static void clear_state_cb(struct extent_io_tree *tree,
313 struct extent_state *state, int *bits)
314 {
315 if (tree->ops && tree->ops->clear_bit_hook)
316 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
317 }
318
319 static void set_state_bits(struct extent_io_tree *tree,
320 struct extent_state *state, int *bits);
321
322 /*
323 * insert an extent_state struct into the tree. 'bits' are set on the
324 * struct before it is inserted.
325 *
326 * This may return -EEXIST if the extent is already there, in which case the
327 * state struct is freed.
328 *
329 * The tree lock is not taken internally. This is a utility function and
330 * probably isn't what you want to call (see set/clear_extent_bit).
331 */
332 static int insert_state(struct extent_io_tree *tree,
333 struct extent_state *state, u64 start, u64 end,
334 int *bits)
335 {
336 struct rb_node *node;
337
338 if (end < start) {
339 printk(KERN_ERR "btrfs end < start %llu %llu\n",
340 (unsigned long long)end,
341 (unsigned long long)start);
342 WARN_ON(1);
343 }
344 state->start = start;
345 state->end = end;
346
347 set_state_bits(tree, state, bits);
348
349 node = tree_insert(&tree->state, end, &state->rb_node);
350 if (node) {
351 struct extent_state *found;
352 found = rb_entry(node, struct extent_state, rb_node);
353 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
354 "%llu %llu\n", (unsigned long long)found->start,
355 (unsigned long long)found->end,
356 (unsigned long long)start, (unsigned long long)end);
357 return -EEXIST;
358 }
359 state->tree = tree;
360 merge_state(tree, state);
361 return 0;
362 }
363
364 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
365 u64 split)
366 {
367 if (tree->ops && tree->ops->split_extent_hook)
368 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
369 }
370
371 /*
372 * split a given extent state struct in two, inserting the preallocated
373 * struct 'prealloc' as the newly created second half. 'split' indicates an
374 * offset inside 'orig' where it should be split.
375 *
376 * Before calling,
377 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
378 * are two extent state structs in the tree:
379 * prealloc: [orig->start, split - 1]
380 * orig: [ split, orig->end ]
381 *
382 * The tree locks are not taken by this function. They need to be held
383 * by the caller.
384 */
385 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
386 struct extent_state *prealloc, u64 split)
387 {
388 struct rb_node *node;
389
390 split_cb(tree, orig, split);
391
392 prealloc->start = orig->start;
393 prealloc->end = split - 1;
394 prealloc->state = orig->state;
395 orig->start = split;
396
397 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
398 if (node) {
399 free_extent_state(prealloc);
400 return -EEXIST;
401 }
402 prealloc->tree = tree;
403 return 0;
404 }
405
406 static struct extent_state *next_state(struct extent_state *state)
407 {
408 struct rb_node *next = rb_next(&state->rb_node);
409 if (next)
410 return rb_entry(next, struct extent_state, rb_node);
411 else
412 return NULL;
413 }
414
415 /*
416 * utility function to clear some bits in an extent state struct.
417 * it will optionally wake up any one waiting on this state (wake == 1).
418 *
419 * If no bits are set on the state struct after clearing things, the
420 * struct is freed and removed from the tree
421 */
422 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
423 struct extent_state *state,
424 int *bits, int wake)
425 {
426 struct extent_state *next;
427 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
428
429 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
430 u64 range = state->end - state->start + 1;
431 WARN_ON(range > tree->dirty_bytes);
432 tree->dirty_bytes -= range;
433 }
434 clear_state_cb(tree, state, bits);
435 state->state &= ~bits_to_clear;
436 if (wake)
437 wake_up(&state->wq);
438 if (state->state == 0) {
439 next = next_state(state);
440 if (state->tree) {
441 rb_erase(&state->rb_node, &tree->state);
442 state->tree = NULL;
443 free_extent_state(state);
444 } else {
445 WARN_ON(1);
446 }
447 } else {
448 merge_state(tree, state);
449 next = next_state(state);
450 }
451 return next;
452 }
453
454 static struct extent_state *
455 alloc_extent_state_atomic(struct extent_state *prealloc)
456 {
457 if (!prealloc)
458 prealloc = alloc_extent_state(GFP_ATOMIC);
459
460 return prealloc;
461 }
462
463 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
464 {
465 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
466 "Extent tree was modified by another "
467 "thread while locked.");
468 }
469
470 /*
471 * clear some bits on a range in the tree. This may require splitting
472 * or inserting elements in the tree, so the gfp mask is used to
473 * indicate which allocations or sleeping are allowed.
474 *
475 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
476 * the given range from the tree regardless of state (ie for truncate).
477 *
478 * the range [start, end] is inclusive.
479 *
480 * This takes the tree lock, and returns 0 on success and < 0 on error.
481 */
482 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
483 int bits, int wake, int delete,
484 struct extent_state **cached_state,
485 gfp_t mask)
486 {
487 struct extent_state *state;
488 struct extent_state *cached;
489 struct extent_state *prealloc = NULL;
490 struct rb_node *node;
491 u64 last_end;
492 int err;
493 int clear = 0;
494
495 if (delete)
496 bits |= ~EXTENT_CTLBITS;
497 bits |= EXTENT_FIRST_DELALLOC;
498
499 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
500 clear = 1;
501 again:
502 if (!prealloc && (mask & __GFP_WAIT)) {
503 prealloc = alloc_extent_state(mask);
504 if (!prealloc)
505 return -ENOMEM;
506 }
507
508 spin_lock(&tree->lock);
509 if (cached_state) {
510 cached = *cached_state;
511
512 if (clear) {
513 *cached_state = NULL;
514 cached_state = NULL;
515 }
516
517 if (cached && cached->tree && cached->start <= start &&
518 cached->end > start) {
519 if (clear)
520 atomic_dec(&cached->refs);
521 state = cached;
522 goto hit_next;
523 }
524 if (clear)
525 free_extent_state(cached);
526 }
527 /*
528 * this search will find the extents that end after
529 * our range starts
530 */
531 node = tree_search(tree, start);
532 if (!node)
533 goto out;
534 state = rb_entry(node, struct extent_state, rb_node);
535 hit_next:
536 if (state->start > end)
537 goto out;
538 WARN_ON(state->end < start);
539 last_end = state->end;
540
541 /* the state doesn't have the wanted bits, go ahead */
542 if (!(state->state & bits)) {
543 state = next_state(state);
544 goto next;
545 }
546
547 /*
548 * | ---- desired range ---- |
549 * | state | or
550 * | ------------- state -------------- |
551 *
552 * We need to split the extent we found, and may flip
553 * bits on second half.
554 *
555 * If the extent we found extends past our range, we
556 * just split and search again. It'll get split again
557 * the next time though.
558 *
559 * If the extent we found is inside our range, we clear
560 * the desired bit on it.
561 */
562
563 if (state->start < start) {
564 prealloc = alloc_extent_state_atomic(prealloc);
565 BUG_ON(!prealloc);
566 err = split_state(tree, state, prealloc, start);
567 if (err)
568 extent_io_tree_panic(tree, err);
569
570 prealloc = NULL;
571 if (err)
572 goto out;
573 if (state->end <= end) {
574 state = clear_state_bit(tree, state, &bits, wake);
575 goto next;
576 }
577 goto search_again;
578 }
579 /*
580 * | ---- desired range ---- |
581 * | state |
582 * We need to split the extent, and clear the bit
583 * on the first half
584 */
585 if (state->start <= end && state->end > end) {
586 prealloc = alloc_extent_state_atomic(prealloc);
587 BUG_ON(!prealloc);
588 err = split_state(tree, state, prealloc, end + 1);
589 if (err)
590 extent_io_tree_panic(tree, err);
591
592 if (wake)
593 wake_up(&state->wq);
594
595 clear_state_bit(tree, prealloc, &bits, wake);
596
597 prealloc = NULL;
598 goto out;
599 }
600
601 state = clear_state_bit(tree, state, &bits, wake);
602 next:
603 if (last_end == (u64)-1)
604 goto out;
605 start = last_end + 1;
606 if (start <= end && state && !need_resched())
607 goto hit_next;
608 goto search_again;
609
610 out:
611 spin_unlock(&tree->lock);
612 if (prealloc)
613 free_extent_state(prealloc);
614
615 return 0;
616
617 search_again:
618 if (start > end)
619 goto out;
620 spin_unlock(&tree->lock);
621 if (mask & __GFP_WAIT)
622 cond_resched();
623 goto again;
624 }
625
626 static void wait_on_state(struct extent_io_tree *tree,
627 struct extent_state *state)
628 __releases(tree->lock)
629 __acquires(tree->lock)
630 {
631 DEFINE_WAIT(wait);
632 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
633 spin_unlock(&tree->lock);
634 schedule();
635 spin_lock(&tree->lock);
636 finish_wait(&state->wq, &wait);
637 }
638
639 /*
640 * waits for one or more bits to clear on a range in the state tree.
641 * The range [start, end] is inclusive.
642 * The tree lock is taken by this function
643 */
644 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
645 {
646 struct extent_state *state;
647 struct rb_node *node;
648
649 spin_lock(&tree->lock);
650 again:
651 while (1) {
652 /*
653 * this search will find all the extents that end after
654 * our range starts
655 */
656 node = tree_search(tree, start);
657 if (!node)
658 break;
659
660 state = rb_entry(node, struct extent_state, rb_node);
661
662 if (state->start > end)
663 goto out;
664
665 if (state->state & bits) {
666 start = state->start;
667 atomic_inc(&state->refs);
668 wait_on_state(tree, state);
669 free_extent_state(state);
670 goto again;
671 }
672 start = state->end + 1;
673
674 if (start > end)
675 break;
676
677 cond_resched_lock(&tree->lock);
678 }
679 out:
680 spin_unlock(&tree->lock);
681 }
682
683 static void set_state_bits(struct extent_io_tree *tree,
684 struct extent_state *state,
685 int *bits)
686 {
687 int bits_to_set = *bits & ~EXTENT_CTLBITS;
688
689 set_state_cb(tree, state, bits);
690 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
691 u64 range = state->end - state->start + 1;
692 tree->dirty_bytes += range;
693 }
694 state->state |= bits_to_set;
695 }
696
697 static void cache_state(struct extent_state *state,
698 struct extent_state **cached_ptr)
699 {
700 if (cached_ptr && !(*cached_ptr)) {
701 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
702 *cached_ptr = state;
703 atomic_inc(&state->refs);
704 }
705 }
706 }
707
708 static void uncache_state(struct extent_state **cached_ptr)
709 {
710 if (cached_ptr && (*cached_ptr)) {
711 struct extent_state *state = *cached_ptr;
712 *cached_ptr = NULL;
713 free_extent_state(state);
714 }
715 }
716
717 /*
718 * set some bits on a range in the tree. This may require allocations or
719 * sleeping, so the gfp mask is used to indicate what is allowed.
720 *
721 * If any of the exclusive bits are set, this will fail with -EEXIST if some
722 * part of the range already has the desired bits set. The start of the
723 * existing range is returned in failed_start in this case.
724 *
725 * [start, end] is inclusive This takes the tree lock.
726 */
727
728 static int __must_check
729 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
730 int bits, int exclusive_bits, u64 *failed_start,
731 struct extent_state **cached_state, gfp_t mask)
732 {
733 struct extent_state *state;
734 struct extent_state *prealloc = NULL;
735 struct rb_node *node;
736 int err = 0;
737 u64 last_start;
738 u64 last_end;
739
740 bits |= EXTENT_FIRST_DELALLOC;
741 again:
742 if (!prealloc && (mask & __GFP_WAIT)) {
743 prealloc = alloc_extent_state(mask);
744 BUG_ON(!prealloc);
745 }
746
747 spin_lock(&tree->lock);
748 if (cached_state && *cached_state) {
749 state = *cached_state;
750 if (state->start <= start && state->end > start &&
751 state->tree) {
752 node = &state->rb_node;
753 goto hit_next;
754 }
755 }
756 /*
757 * this search will find all the extents that end after
758 * our range starts.
759 */
760 node = tree_search(tree, start);
761 if (!node) {
762 prealloc = alloc_extent_state_atomic(prealloc);
763 BUG_ON(!prealloc);
764 err = insert_state(tree, prealloc, start, end, &bits);
765 if (err)
766 extent_io_tree_panic(tree, err);
767
768 prealloc = NULL;
769 goto out;
770 }
771 state = rb_entry(node, struct extent_state, rb_node);
772 hit_next:
773 last_start = state->start;
774 last_end = state->end;
775
776 /*
777 * | ---- desired range ---- |
778 * | state |
779 *
780 * Just lock what we found and keep going
781 */
782 if (state->start == start && state->end <= end) {
783 if (state->state & exclusive_bits) {
784 *failed_start = state->start;
785 err = -EEXIST;
786 goto out;
787 }
788
789 set_state_bits(tree, state, &bits);
790 cache_state(state, cached_state);
791 merge_state(tree, state);
792 if (last_end == (u64)-1)
793 goto out;
794 start = last_end + 1;
795 state = next_state(state);
796 if (start < end && state && state->start == start &&
797 !need_resched())
798 goto hit_next;
799 goto search_again;
800 }
801
802 /*
803 * | ---- desired range ---- |
804 * | state |
805 * or
806 * | ------------- state -------------- |
807 *
808 * We need to split the extent we found, and may flip bits on
809 * second half.
810 *
811 * If the extent we found extends past our
812 * range, we just split and search again. It'll get split
813 * again the next time though.
814 *
815 * If the extent we found is inside our range, we set the
816 * desired bit on it.
817 */
818 if (state->start < start) {
819 if (state->state & exclusive_bits) {
820 *failed_start = start;
821 err = -EEXIST;
822 goto out;
823 }
824
825 prealloc = alloc_extent_state_atomic(prealloc);
826 BUG_ON(!prealloc);
827 err = split_state(tree, state, prealloc, start);
828 if (err)
829 extent_io_tree_panic(tree, err);
830
831 prealloc = NULL;
832 if (err)
833 goto out;
834 if (state->end <= end) {
835 set_state_bits(tree, state, &bits);
836 cache_state(state, cached_state);
837 merge_state(tree, state);
838 if (last_end == (u64)-1)
839 goto out;
840 start = last_end + 1;
841 state = next_state(state);
842 if (start < end && state && state->start == start &&
843 !need_resched())
844 goto hit_next;
845 }
846 goto search_again;
847 }
848 /*
849 * | ---- desired range ---- |
850 * | state | or | state |
851 *
852 * There's a hole, we need to insert something in it and
853 * ignore the extent we found.
854 */
855 if (state->start > start) {
856 u64 this_end;
857 if (end < last_start)
858 this_end = end;
859 else
860 this_end = last_start - 1;
861
862 prealloc = alloc_extent_state_atomic(prealloc);
863 BUG_ON(!prealloc);
864
865 /*
866 * Avoid to free 'prealloc' if it can be merged with
867 * the later extent.
868 */
869 err = insert_state(tree, prealloc, start, this_end,
870 &bits);
871 if (err)
872 extent_io_tree_panic(tree, err);
873
874 cache_state(prealloc, cached_state);
875 prealloc = NULL;
876 start = this_end + 1;
877 goto search_again;
878 }
879 /*
880 * | ---- desired range ---- |
881 * | state |
882 * We need to split the extent, and set the bit
883 * on the first half
884 */
885 if (state->start <= end && state->end > end) {
886 if (state->state & exclusive_bits) {
887 *failed_start = start;
888 err = -EEXIST;
889 goto out;
890 }
891
892 prealloc = alloc_extent_state_atomic(prealloc);
893 BUG_ON(!prealloc);
894 err = split_state(tree, state, prealloc, end + 1);
895 if (err)
896 extent_io_tree_panic(tree, err);
897
898 set_state_bits(tree, prealloc, &bits);
899 cache_state(prealloc, cached_state);
900 merge_state(tree, prealloc);
901 prealloc = NULL;
902 goto out;
903 }
904
905 goto search_again;
906
907 out:
908 spin_unlock(&tree->lock);
909 if (prealloc)
910 free_extent_state(prealloc);
911
912 return err;
913
914 search_again:
915 if (start > end)
916 goto out;
917 spin_unlock(&tree->lock);
918 if (mask & __GFP_WAIT)
919 cond_resched();
920 goto again;
921 }
922
923 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
924 u64 *failed_start, struct extent_state **cached_state,
925 gfp_t mask)
926 {
927 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
928 cached_state, mask);
929 }
930
931
932 /**
933 * convert_extent_bit - convert all bits in a given range from one bit to
934 * another
935 * @tree: the io tree to search
936 * @start: the start offset in bytes
937 * @end: the end offset in bytes (inclusive)
938 * @bits: the bits to set in this range
939 * @clear_bits: the bits to clear in this range
940 * @cached_state: state that we're going to cache
941 * @mask: the allocation mask
942 *
943 * This will go through and set bits for the given range. If any states exist
944 * already in this range they are set with the given bit and cleared of the
945 * clear_bits. This is only meant to be used by things that are mergeable, ie
946 * converting from say DELALLOC to DIRTY. This is not meant to be used with
947 * boundary bits like LOCK.
948 */
949 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
950 int bits, int clear_bits,
951 struct extent_state **cached_state, gfp_t mask)
952 {
953 struct extent_state *state;
954 struct extent_state *prealloc = NULL;
955 struct rb_node *node;
956 int err = 0;
957 u64 last_start;
958 u64 last_end;
959
960 again:
961 if (!prealloc && (mask & __GFP_WAIT)) {
962 prealloc = alloc_extent_state(mask);
963 if (!prealloc)
964 return -ENOMEM;
965 }
966
967 spin_lock(&tree->lock);
968 if (cached_state && *cached_state) {
969 state = *cached_state;
970 if (state->start <= start && state->end > start &&
971 state->tree) {
972 node = &state->rb_node;
973 goto hit_next;
974 }
975 }
976
977 /*
978 * this search will find all the extents that end after
979 * our range starts.
980 */
981 node = tree_search(tree, start);
982 if (!node) {
983 prealloc = alloc_extent_state_atomic(prealloc);
984 if (!prealloc) {
985 err = -ENOMEM;
986 goto out;
987 }
988 err = insert_state(tree, prealloc, start, end, &bits);
989 prealloc = NULL;
990 if (err)
991 extent_io_tree_panic(tree, err);
992 goto out;
993 }
994 state = rb_entry(node, struct extent_state, rb_node);
995 hit_next:
996 last_start = state->start;
997 last_end = state->end;
998
999 /*
1000 * | ---- desired range ---- |
1001 * | state |
1002 *
1003 * Just lock what we found and keep going
1004 */
1005 if (state->start == start && state->end <= end) {
1006 set_state_bits(tree, state, &bits);
1007 cache_state(state, cached_state);
1008 state = clear_state_bit(tree, state, &clear_bits, 0);
1009 if (last_end == (u64)-1)
1010 goto out;
1011 start = last_end + 1;
1012 if (start < end && state && state->start == start &&
1013 !need_resched())
1014 goto hit_next;
1015 goto search_again;
1016 }
1017
1018 /*
1019 * | ---- desired range ---- |
1020 * | state |
1021 * or
1022 * | ------------- state -------------- |
1023 *
1024 * We need to split the extent we found, and may flip bits on
1025 * second half.
1026 *
1027 * If the extent we found extends past our
1028 * range, we just split and search again. It'll get split
1029 * again the next time though.
1030 *
1031 * If the extent we found is inside our range, we set the
1032 * desired bit on it.
1033 */
1034 if (state->start < start) {
1035 prealloc = alloc_extent_state_atomic(prealloc);
1036 if (!prealloc) {
1037 err = -ENOMEM;
1038 goto out;
1039 }
1040 err = split_state(tree, state, prealloc, start);
1041 if (err)
1042 extent_io_tree_panic(tree, err);
1043 prealloc = NULL;
1044 if (err)
1045 goto out;
1046 if (state->end <= end) {
1047 set_state_bits(tree, state, &bits);
1048 cache_state(state, cached_state);
1049 state = clear_state_bit(tree, state, &clear_bits, 0);
1050 if (last_end == (u64)-1)
1051 goto out;
1052 start = last_end + 1;
1053 if (start < end && state && state->start == start &&
1054 !need_resched())
1055 goto hit_next;
1056 }
1057 goto search_again;
1058 }
1059 /*
1060 * | ---- desired range ---- |
1061 * | state | or | state |
1062 *
1063 * There's a hole, we need to insert something in it and
1064 * ignore the extent we found.
1065 */
1066 if (state->start > start) {
1067 u64 this_end;
1068 if (end < last_start)
1069 this_end = end;
1070 else
1071 this_end = last_start - 1;
1072
1073 prealloc = alloc_extent_state_atomic(prealloc);
1074 if (!prealloc) {
1075 err = -ENOMEM;
1076 goto out;
1077 }
1078
1079 /*
1080 * Avoid to free 'prealloc' if it can be merged with
1081 * the later extent.
1082 */
1083 err = insert_state(tree, prealloc, start, this_end,
1084 &bits);
1085 if (err)
1086 extent_io_tree_panic(tree, err);
1087 cache_state(prealloc, cached_state);
1088 prealloc = NULL;
1089 start = this_end + 1;
1090 goto search_again;
1091 }
1092 /*
1093 * | ---- desired range ---- |
1094 * | state |
1095 * We need to split the extent, and set the bit
1096 * on the first half
1097 */
1098 if (state->start <= end && state->end > end) {
1099 prealloc = alloc_extent_state_atomic(prealloc);
1100 if (!prealloc) {
1101 err = -ENOMEM;
1102 goto out;
1103 }
1104
1105 err = split_state(tree, state, prealloc, end + 1);
1106 if (err)
1107 extent_io_tree_panic(tree, err);
1108
1109 set_state_bits(tree, prealloc, &bits);
1110 cache_state(prealloc, cached_state);
1111 clear_state_bit(tree, prealloc, &clear_bits, 0);
1112 prealloc = NULL;
1113 goto out;
1114 }
1115
1116 goto search_again;
1117
1118 out:
1119 spin_unlock(&tree->lock);
1120 if (prealloc)
1121 free_extent_state(prealloc);
1122
1123 return err;
1124
1125 search_again:
1126 if (start > end)
1127 goto out;
1128 spin_unlock(&tree->lock);
1129 if (mask & __GFP_WAIT)
1130 cond_resched();
1131 goto again;
1132 }
1133
1134 /* wrappers around set/clear extent bit */
1135 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1136 gfp_t mask)
1137 {
1138 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1139 NULL, mask);
1140 }
1141
1142 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1143 int bits, gfp_t mask)
1144 {
1145 return set_extent_bit(tree, start, end, bits, NULL,
1146 NULL, mask);
1147 }
1148
1149 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1150 int bits, gfp_t mask)
1151 {
1152 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1153 }
1154
1155 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1156 struct extent_state **cached_state, gfp_t mask)
1157 {
1158 return set_extent_bit(tree, start, end,
1159 EXTENT_DELALLOC | EXTENT_UPTODATE,
1160 NULL, cached_state, mask);
1161 }
1162
1163 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1164 struct extent_state **cached_state, gfp_t mask)
1165 {
1166 return set_extent_bit(tree, start, end,
1167 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1168 NULL, cached_state, mask);
1169 }
1170
1171 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1172 gfp_t mask)
1173 {
1174 return clear_extent_bit(tree, start, end,
1175 EXTENT_DIRTY | EXTENT_DELALLOC |
1176 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1177 }
1178
1179 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1180 gfp_t mask)
1181 {
1182 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1183 NULL, mask);
1184 }
1185
1186 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1187 struct extent_state **cached_state, gfp_t mask)
1188 {
1189 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1190 cached_state, mask);
1191 }
1192
1193 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1194 struct extent_state **cached_state, gfp_t mask)
1195 {
1196 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1197 cached_state, mask);
1198 }
1199
1200 /*
1201 * either insert or lock state struct between start and end use mask to tell
1202 * us if waiting is desired.
1203 */
1204 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1205 int bits, struct extent_state **cached_state)
1206 {
1207 int err;
1208 u64 failed_start;
1209 while (1) {
1210 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1211 EXTENT_LOCKED, &failed_start,
1212 cached_state, GFP_NOFS);
1213 if (err == -EEXIST) {
1214 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1215 start = failed_start;
1216 } else
1217 break;
1218 WARN_ON(start > end);
1219 }
1220 return err;
1221 }
1222
1223 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1224 {
1225 return lock_extent_bits(tree, start, end, 0, NULL);
1226 }
1227
1228 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1229 {
1230 int err;
1231 u64 failed_start;
1232
1233 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1234 &failed_start, NULL, GFP_NOFS);
1235 if (err == -EEXIST) {
1236 if (failed_start > start)
1237 clear_extent_bit(tree, start, failed_start - 1,
1238 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1239 return 0;
1240 }
1241 return 1;
1242 }
1243
1244 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1245 struct extent_state **cached, gfp_t mask)
1246 {
1247 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1248 mask);
1249 }
1250
1251 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1252 {
1253 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1254 GFP_NOFS);
1255 }
1256
1257 /*
1258 * helper function to set both pages and extents in the tree writeback
1259 */
1260 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1261 {
1262 unsigned long index = start >> PAGE_CACHE_SHIFT;
1263 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1264 struct page *page;
1265
1266 while (index <= end_index) {
1267 page = find_get_page(tree->mapping, index);
1268 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1269 set_page_writeback(page);
1270 page_cache_release(page);
1271 index++;
1272 }
1273 return 0;
1274 }
1275
1276 /* find the first state struct with 'bits' set after 'start', and
1277 * return it. tree->lock must be held. NULL will returned if
1278 * nothing was found after 'start'
1279 */
1280 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1281 u64 start, int bits)
1282 {
1283 struct rb_node *node;
1284 struct extent_state *state;
1285
1286 /*
1287 * this search will find all the extents that end after
1288 * our range starts.
1289 */
1290 node = tree_search(tree, start);
1291 if (!node)
1292 goto out;
1293
1294 while (1) {
1295 state = rb_entry(node, struct extent_state, rb_node);
1296 if (state->end >= start && (state->state & bits))
1297 return state;
1298
1299 node = rb_next(node);
1300 if (!node)
1301 break;
1302 }
1303 out:
1304 return NULL;
1305 }
1306
1307 /*
1308 * find the first offset in the io tree with 'bits' set. zero is
1309 * returned if we find something, and *start_ret and *end_ret are
1310 * set to reflect the state struct that was found.
1311 *
1312 * If nothing was found, 1 is returned. If found something, return 0.
1313 */
1314 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1315 u64 *start_ret, u64 *end_ret, int bits,
1316 struct extent_state **cached_state)
1317 {
1318 struct extent_state *state;
1319 struct rb_node *n;
1320 int ret = 1;
1321
1322 spin_lock(&tree->lock);
1323 if (cached_state && *cached_state) {
1324 state = *cached_state;
1325 if (state->end == start - 1 && state->tree) {
1326 n = rb_next(&state->rb_node);
1327 while (n) {
1328 state = rb_entry(n, struct extent_state,
1329 rb_node);
1330 if (state->state & bits)
1331 goto got_it;
1332 n = rb_next(n);
1333 }
1334 free_extent_state(*cached_state);
1335 *cached_state = NULL;
1336 goto out;
1337 }
1338 free_extent_state(*cached_state);
1339 *cached_state = NULL;
1340 }
1341
1342 state = find_first_extent_bit_state(tree, start, bits);
1343 got_it:
1344 if (state) {
1345 cache_state(state, cached_state);
1346 *start_ret = state->start;
1347 *end_ret = state->end;
1348 ret = 0;
1349 }
1350 out:
1351 spin_unlock(&tree->lock);
1352 return ret;
1353 }
1354
1355 /*
1356 * find a contiguous range of bytes in the file marked as delalloc, not
1357 * more than 'max_bytes'. start and end are used to return the range,
1358 *
1359 * 1 is returned if we find something, 0 if nothing was in the tree
1360 */
1361 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1362 u64 *start, u64 *end, u64 max_bytes,
1363 struct extent_state **cached_state)
1364 {
1365 struct rb_node *node;
1366 struct extent_state *state;
1367 u64 cur_start = *start;
1368 u64 found = 0;
1369 u64 total_bytes = 0;
1370
1371 spin_lock(&tree->lock);
1372
1373 /*
1374 * this search will find all the extents that end after
1375 * our range starts.
1376 */
1377 node = tree_search(tree, cur_start);
1378 if (!node) {
1379 if (!found)
1380 *end = (u64)-1;
1381 goto out;
1382 }
1383
1384 while (1) {
1385 state = rb_entry(node, struct extent_state, rb_node);
1386 if (found && (state->start != cur_start ||
1387 (state->state & EXTENT_BOUNDARY))) {
1388 goto out;
1389 }
1390 if (!(state->state & EXTENT_DELALLOC)) {
1391 if (!found)
1392 *end = state->end;
1393 goto out;
1394 }
1395 if (!found) {
1396 *start = state->start;
1397 *cached_state = state;
1398 atomic_inc(&state->refs);
1399 }
1400 found++;
1401 *end = state->end;
1402 cur_start = state->end + 1;
1403 node = rb_next(node);
1404 if (!node)
1405 break;
1406 total_bytes += state->end - state->start + 1;
1407 if (total_bytes >= max_bytes)
1408 break;
1409 }
1410 out:
1411 spin_unlock(&tree->lock);
1412 return found;
1413 }
1414
1415 static noinline void __unlock_for_delalloc(struct inode *inode,
1416 struct page *locked_page,
1417 u64 start, u64 end)
1418 {
1419 int ret;
1420 struct page *pages[16];
1421 unsigned long index = start >> PAGE_CACHE_SHIFT;
1422 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1423 unsigned long nr_pages = end_index - index + 1;
1424 int i;
1425
1426 if (index == locked_page->index && end_index == index)
1427 return;
1428
1429 while (nr_pages > 0) {
1430 ret = find_get_pages_contig(inode->i_mapping, index,
1431 min_t(unsigned long, nr_pages,
1432 ARRAY_SIZE(pages)), pages);
1433 for (i = 0; i < ret; i++) {
1434 if (pages[i] != locked_page)
1435 unlock_page(pages[i]);
1436 page_cache_release(pages[i]);
1437 }
1438 nr_pages -= ret;
1439 index += ret;
1440 cond_resched();
1441 }
1442 }
1443
1444 static noinline int lock_delalloc_pages(struct inode *inode,
1445 struct page *locked_page,
1446 u64 delalloc_start,
1447 u64 delalloc_end)
1448 {
1449 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1450 unsigned long start_index = index;
1451 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1452 unsigned long pages_locked = 0;
1453 struct page *pages[16];
1454 unsigned long nrpages;
1455 int ret;
1456 int i;
1457
1458 /* the caller is responsible for locking the start index */
1459 if (index == locked_page->index && index == end_index)
1460 return 0;
1461
1462 /* skip the page at the start index */
1463 nrpages = end_index - index + 1;
1464 while (nrpages > 0) {
1465 ret = find_get_pages_contig(inode->i_mapping, index,
1466 min_t(unsigned long,
1467 nrpages, ARRAY_SIZE(pages)), pages);
1468 if (ret == 0) {
1469 ret = -EAGAIN;
1470 goto done;
1471 }
1472 /* now we have an array of pages, lock them all */
1473 for (i = 0; i < ret; i++) {
1474 /*
1475 * the caller is taking responsibility for
1476 * locked_page
1477 */
1478 if (pages[i] != locked_page) {
1479 lock_page(pages[i]);
1480 if (!PageDirty(pages[i]) ||
1481 pages[i]->mapping != inode->i_mapping) {
1482 ret = -EAGAIN;
1483 unlock_page(pages[i]);
1484 page_cache_release(pages[i]);
1485 goto done;
1486 }
1487 }
1488 page_cache_release(pages[i]);
1489 pages_locked++;
1490 }
1491 nrpages -= ret;
1492 index += ret;
1493 cond_resched();
1494 }
1495 ret = 0;
1496 done:
1497 if (ret && pages_locked) {
1498 __unlock_for_delalloc(inode, locked_page,
1499 delalloc_start,
1500 ((u64)(start_index + pages_locked - 1)) <<
1501 PAGE_CACHE_SHIFT);
1502 }
1503 return ret;
1504 }
1505
1506 /*
1507 * find a contiguous range of bytes in the file marked as delalloc, not
1508 * more than 'max_bytes'. start and end are used to return the range,
1509 *
1510 * 1 is returned if we find something, 0 if nothing was in the tree
1511 */
1512 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1513 struct extent_io_tree *tree,
1514 struct page *locked_page,
1515 u64 *start, u64 *end,
1516 u64 max_bytes)
1517 {
1518 u64 delalloc_start;
1519 u64 delalloc_end;
1520 u64 found;
1521 struct extent_state *cached_state = NULL;
1522 int ret;
1523 int loops = 0;
1524
1525 again:
1526 /* step one, find a bunch of delalloc bytes starting at start */
1527 delalloc_start = *start;
1528 delalloc_end = 0;
1529 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1530 max_bytes, &cached_state);
1531 if (!found || delalloc_end <= *start) {
1532 *start = delalloc_start;
1533 *end = delalloc_end;
1534 free_extent_state(cached_state);
1535 return found;
1536 }
1537
1538 /*
1539 * start comes from the offset of locked_page. We have to lock
1540 * pages in order, so we can't process delalloc bytes before
1541 * locked_page
1542 */
1543 if (delalloc_start < *start)
1544 delalloc_start = *start;
1545
1546 /*
1547 * make sure to limit the number of pages we try to lock down
1548 * if we're looping.
1549 */
1550 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1551 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1552
1553 /* step two, lock all the pages after the page that has start */
1554 ret = lock_delalloc_pages(inode, locked_page,
1555 delalloc_start, delalloc_end);
1556 if (ret == -EAGAIN) {
1557 /* some of the pages are gone, lets avoid looping by
1558 * shortening the size of the delalloc range we're searching
1559 */
1560 free_extent_state(cached_state);
1561 if (!loops) {
1562 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1563 max_bytes = PAGE_CACHE_SIZE - offset;
1564 loops = 1;
1565 goto again;
1566 } else {
1567 found = 0;
1568 goto out_failed;
1569 }
1570 }
1571 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1572
1573 /* step three, lock the state bits for the whole range */
1574 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1575
1576 /* then test to make sure it is all still delalloc */
1577 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1578 EXTENT_DELALLOC, 1, cached_state);
1579 if (!ret) {
1580 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1581 &cached_state, GFP_NOFS);
1582 __unlock_for_delalloc(inode, locked_page,
1583 delalloc_start, delalloc_end);
1584 cond_resched();
1585 goto again;
1586 }
1587 free_extent_state(cached_state);
1588 *start = delalloc_start;
1589 *end = delalloc_end;
1590 out_failed:
1591 return found;
1592 }
1593
1594 int extent_clear_unlock_delalloc(struct inode *inode,
1595 struct extent_io_tree *tree,
1596 u64 start, u64 end, struct page *locked_page,
1597 unsigned long op)
1598 {
1599 int ret;
1600 struct page *pages[16];
1601 unsigned long index = start >> PAGE_CACHE_SHIFT;
1602 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1603 unsigned long nr_pages = end_index - index + 1;
1604 int i;
1605 int clear_bits = 0;
1606
1607 if (op & EXTENT_CLEAR_UNLOCK)
1608 clear_bits |= EXTENT_LOCKED;
1609 if (op & EXTENT_CLEAR_DIRTY)
1610 clear_bits |= EXTENT_DIRTY;
1611
1612 if (op & EXTENT_CLEAR_DELALLOC)
1613 clear_bits |= EXTENT_DELALLOC;
1614
1615 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1616 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1617 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1618 EXTENT_SET_PRIVATE2)))
1619 return 0;
1620
1621 while (nr_pages > 0) {
1622 ret = find_get_pages_contig(inode->i_mapping, index,
1623 min_t(unsigned long,
1624 nr_pages, ARRAY_SIZE(pages)), pages);
1625 for (i = 0; i < ret; i++) {
1626
1627 if (op & EXTENT_SET_PRIVATE2)
1628 SetPagePrivate2(pages[i]);
1629
1630 if (pages[i] == locked_page) {
1631 page_cache_release(pages[i]);
1632 continue;
1633 }
1634 if (op & EXTENT_CLEAR_DIRTY)
1635 clear_page_dirty_for_io(pages[i]);
1636 if (op & EXTENT_SET_WRITEBACK)
1637 set_page_writeback(pages[i]);
1638 if (op & EXTENT_END_WRITEBACK)
1639 end_page_writeback(pages[i]);
1640 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1641 unlock_page(pages[i]);
1642 page_cache_release(pages[i]);
1643 }
1644 nr_pages -= ret;
1645 index += ret;
1646 cond_resched();
1647 }
1648 return 0;
1649 }
1650
1651 /*
1652 * count the number of bytes in the tree that have a given bit(s)
1653 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1654 * cached. The total number found is returned.
1655 */
1656 u64 count_range_bits(struct extent_io_tree *tree,
1657 u64 *start, u64 search_end, u64 max_bytes,
1658 unsigned long bits, int contig)
1659 {
1660 struct rb_node *node;
1661 struct extent_state *state;
1662 u64 cur_start = *start;
1663 u64 total_bytes = 0;
1664 u64 last = 0;
1665 int found = 0;
1666
1667 if (search_end <= cur_start) {
1668 WARN_ON(1);
1669 return 0;
1670 }
1671
1672 spin_lock(&tree->lock);
1673 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1674 total_bytes = tree->dirty_bytes;
1675 goto out;
1676 }
1677 /*
1678 * this search will find all the extents that end after
1679 * our range starts.
1680 */
1681 node = tree_search(tree, cur_start);
1682 if (!node)
1683 goto out;
1684
1685 while (1) {
1686 state = rb_entry(node, struct extent_state, rb_node);
1687 if (state->start > search_end)
1688 break;
1689 if (contig && found && state->start > last + 1)
1690 break;
1691 if (state->end >= cur_start && (state->state & bits) == bits) {
1692 total_bytes += min(search_end, state->end) + 1 -
1693 max(cur_start, state->start);
1694 if (total_bytes >= max_bytes)
1695 break;
1696 if (!found) {
1697 *start = max(cur_start, state->start);
1698 found = 1;
1699 }
1700 last = state->end;
1701 } else if (contig && found) {
1702 break;
1703 }
1704 node = rb_next(node);
1705 if (!node)
1706 break;
1707 }
1708 out:
1709 spin_unlock(&tree->lock);
1710 return total_bytes;
1711 }
1712
1713 /*
1714 * set the private field for a given byte offset in the tree. If there isn't
1715 * an extent_state there already, this does nothing.
1716 */
1717 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1718 {
1719 struct rb_node *node;
1720 struct extent_state *state;
1721 int ret = 0;
1722
1723 spin_lock(&tree->lock);
1724 /*
1725 * this search will find all the extents that end after
1726 * our range starts.
1727 */
1728 node = tree_search(tree, start);
1729 if (!node) {
1730 ret = -ENOENT;
1731 goto out;
1732 }
1733 state = rb_entry(node, struct extent_state, rb_node);
1734 if (state->start != start) {
1735 ret = -ENOENT;
1736 goto out;
1737 }
1738 state->private = private;
1739 out:
1740 spin_unlock(&tree->lock);
1741 return ret;
1742 }
1743
1744 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1745 {
1746 struct rb_node *node;
1747 struct extent_state *state;
1748 int ret = 0;
1749
1750 spin_lock(&tree->lock);
1751 /*
1752 * this search will find all the extents that end after
1753 * our range starts.
1754 */
1755 node = tree_search(tree, start);
1756 if (!node) {
1757 ret = -ENOENT;
1758 goto out;
1759 }
1760 state = rb_entry(node, struct extent_state, rb_node);
1761 if (state->start != start) {
1762 ret = -ENOENT;
1763 goto out;
1764 }
1765 *private = state->private;
1766 out:
1767 spin_unlock(&tree->lock);
1768 return ret;
1769 }
1770
1771 /*
1772 * searches a range in the state tree for a given mask.
1773 * If 'filled' == 1, this returns 1 only if every extent in the tree
1774 * has the bits set. Otherwise, 1 is returned if any bit in the
1775 * range is found set.
1776 */
1777 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1778 int bits, int filled, struct extent_state *cached)
1779 {
1780 struct extent_state *state = NULL;
1781 struct rb_node *node;
1782 int bitset = 0;
1783
1784 spin_lock(&tree->lock);
1785 if (cached && cached->tree && cached->start <= start &&
1786 cached->end > start)
1787 node = &cached->rb_node;
1788 else
1789 node = tree_search(tree, start);
1790 while (node && start <= end) {
1791 state = rb_entry(node, struct extent_state, rb_node);
1792
1793 if (filled && state->start > start) {
1794 bitset = 0;
1795 break;
1796 }
1797
1798 if (state->start > end)
1799 break;
1800
1801 if (state->state & bits) {
1802 bitset = 1;
1803 if (!filled)
1804 break;
1805 } else if (filled) {
1806 bitset = 0;
1807 break;
1808 }
1809
1810 if (state->end == (u64)-1)
1811 break;
1812
1813 start = state->end + 1;
1814 if (start > end)
1815 break;
1816 node = rb_next(node);
1817 if (!node) {
1818 if (filled)
1819 bitset = 0;
1820 break;
1821 }
1822 }
1823 spin_unlock(&tree->lock);
1824 return bitset;
1825 }
1826
1827 /*
1828 * helper function to set a given page up to date if all the
1829 * extents in the tree for that page are up to date
1830 */
1831 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1832 {
1833 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1834 u64 end = start + PAGE_CACHE_SIZE - 1;
1835 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1836 SetPageUptodate(page);
1837 }
1838
1839 /*
1840 * helper function to unlock a page if all the extents in the tree
1841 * for that page are unlocked
1842 */
1843 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1844 {
1845 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1846 u64 end = start + PAGE_CACHE_SIZE - 1;
1847 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1848 unlock_page(page);
1849 }
1850
1851 /*
1852 * helper function to end page writeback if all the extents
1853 * in the tree for that page are done with writeback
1854 */
1855 static void check_page_writeback(struct extent_io_tree *tree,
1856 struct page *page)
1857 {
1858 end_page_writeback(page);
1859 }
1860
1861 /*
1862 * When IO fails, either with EIO or csum verification fails, we
1863 * try other mirrors that might have a good copy of the data. This
1864 * io_failure_record is used to record state as we go through all the
1865 * mirrors. If another mirror has good data, the page is set up to date
1866 * and things continue. If a good mirror can't be found, the original
1867 * bio end_io callback is called to indicate things have failed.
1868 */
1869 struct io_failure_record {
1870 struct page *page;
1871 u64 start;
1872 u64 len;
1873 u64 logical;
1874 unsigned long bio_flags;
1875 int this_mirror;
1876 int failed_mirror;
1877 int in_validation;
1878 };
1879
1880 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1881 int did_repair)
1882 {
1883 int ret;
1884 int err = 0;
1885 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1886
1887 set_state_private(failure_tree, rec->start, 0);
1888 ret = clear_extent_bits(failure_tree, rec->start,
1889 rec->start + rec->len - 1,
1890 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1891 if (ret)
1892 err = ret;
1893
1894 if (did_repair) {
1895 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1896 rec->start + rec->len - 1,
1897 EXTENT_DAMAGED, GFP_NOFS);
1898 if (ret && !err)
1899 err = ret;
1900 }
1901
1902 kfree(rec);
1903 return err;
1904 }
1905
1906 static void repair_io_failure_callback(struct bio *bio, int err)
1907 {
1908 complete(bio->bi_private);
1909 }
1910
1911 /*
1912 * this bypasses the standard btrfs submit functions deliberately, as
1913 * the standard behavior is to write all copies in a raid setup. here we only
1914 * want to write the one bad copy. so we do the mapping for ourselves and issue
1915 * submit_bio directly.
1916 * to avoid any synchonization issues, wait for the data after writing, which
1917 * actually prevents the read that triggered the error from finishing.
1918 * currently, there can be no more than two copies of every data bit. thus,
1919 * exactly one rewrite is required.
1920 */
1921 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1922 u64 length, u64 logical, struct page *page,
1923 int mirror_num)
1924 {
1925 struct bio *bio;
1926 struct btrfs_device *dev;
1927 DECLARE_COMPLETION_ONSTACK(compl);
1928 u64 map_length = 0;
1929 u64 sector;
1930 struct btrfs_bio *bbio = NULL;
1931 int ret;
1932
1933 BUG_ON(!mirror_num);
1934
1935 bio = bio_alloc(GFP_NOFS, 1);
1936 if (!bio)
1937 return -EIO;
1938 bio->bi_private = &compl;
1939 bio->bi_end_io = repair_io_failure_callback;
1940 bio->bi_size = 0;
1941 map_length = length;
1942
1943 ret = btrfs_map_block(map_tree, WRITE, logical,
1944 &map_length, &bbio, mirror_num);
1945 if (ret) {
1946 bio_put(bio);
1947 return -EIO;
1948 }
1949 BUG_ON(mirror_num != bbio->mirror_num);
1950 sector = bbio->stripes[mirror_num-1].physical >> 9;
1951 bio->bi_sector = sector;
1952 dev = bbio->stripes[mirror_num-1].dev;
1953 kfree(bbio);
1954 if (!dev || !dev->bdev || !dev->writeable) {
1955 bio_put(bio);
1956 return -EIO;
1957 }
1958 bio->bi_bdev = dev->bdev;
1959 bio_add_page(bio, page, length, start-page_offset(page));
1960 btrfsic_submit_bio(WRITE_SYNC, bio);
1961 wait_for_completion(&compl);
1962
1963 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1964 /* try to remap that extent elsewhere? */
1965 bio_put(bio);
1966 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1967 return -EIO;
1968 }
1969
1970 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1971 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1972 start, rcu_str_deref(dev->name), sector);
1973
1974 bio_put(bio);
1975 return 0;
1976 }
1977
1978 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1979 int mirror_num)
1980 {
1981 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1982 u64 start = eb->start;
1983 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1984 int ret = 0;
1985
1986 for (i = 0; i < num_pages; i++) {
1987 struct page *p = extent_buffer_page(eb, i);
1988 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1989 start, p, mirror_num);
1990 if (ret)
1991 break;
1992 start += PAGE_CACHE_SIZE;
1993 }
1994
1995 return ret;
1996 }
1997
1998 /*
1999 * each time an IO finishes, we do a fast check in the IO failure tree
2000 * to see if we need to process or clean up an io_failure_record
2001 */
2002 static int clean_io_failure(u64 start, struct page *page)
2003 {
2004 u64 private;
2005 u64 private_failure;
2006 struct io_failure_record *failrec;
2007 struct btrfs_mapping_tree *map_tree;
2008 struct extent_state *state;
2009 int num_copies;
2010 int did_repair = 0;
2011 int ret;
2012 struct inode *inode = page->mapping->host;
2013
2014 private = 0;
2015 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2016 (u64)-1, 1, EXTENT_DIRTY, 0);
2017 if (!ret)
2018 return 0;
2019
2020 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2021 &private_failure);
2022 if (ret)
2023 return 0;
2024
2025 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2026 BUG_ON(!failrec->this_mirror);
2027
2028 if (failrec->in_validation) {
2029 /* there was no real error, just free the record */
2030 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2031 failrec->start);
2032 did_repair = 1;
2033 goto out;
2034 }
2035
2036 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2037 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2038 failrec->start,
2039 EXTENT_LOCKED);
2040 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2041
2042 if (state && state->start == failrec->start) {
2043 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2044 num_copies = btrfs_num_copies(map_tree, failrec->logical,
2045 failrec->len);
2046 if (num_copies > 1) {
2047 ret = repair_io_failure(map_tree, start, failrec->len,
2048 failrec->logical, page,
2049 failrec->failed_mirror);
2050 did_repair = !ret;
2051 }
2052 }
2053
2054 out:
2055 if (!ret)
2056 ret = free_io_failure(inode, failrec, did_repair);
2057
2058 return ret;
2059 }
2060
2061 /*
2062 * this is a generic handler for readpage errors (default
2063 * readpage_io_failed_hook). if other copies exist, read those and write back
2064 * good data to the failed position. does not investigate in remapping the
2065 * failed extent elsewhere, hoping the device will be smart enough to do this as
2066 * needed
2067 */
2068
2069 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2070 u64 start, u64 end, int failed_mirror,
2071 struct extent_state *state)
2072 {
2073 struct io_failure_record *failrec = NULL;
2074 u64 private;
2075 struct extent_map *em;
2076 struct inode *inode = page->mapping->host;
2077 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2078 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2079 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2080 struct bio *bio;
2081 int num_copies;
2082 int ret;
2083 int read_mode;
2084 u64 logical;
2085
2086 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2087
2088 ret = get_state_private(failure_tree, start, &private);
2089 if (ret) {
2090 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2091 if (!failrec)
2092 return -ENOMEM;
2093 failrec->start = start;
2094 failrec->len = end - start + 1;
2095 failrec->this_mirror = 0;
2096 failrec->bio_flags = 0;
2097 failrec->in_validation = 0;
2098
2099 read_lock(&em_tree->lock);
2100 em = lookup_extent_mapping(em_tree, start, failrec->len);
2101 if (!em) {
2102 read_unlock(&em_tree->lock);
2103 kfree(failrec);
2104 return -EIO;
2105 }
2106
2107 if (em->start > start || em->start + em->len < start) {
2108 free_extent_map(em);
2109 em = NULL;
2110 }
2111 read_unlock(&em_tree->lock);
2112
2113 if (!em) {
2114 kfree(failrec);
2115 return -EIO;
2116 }
2117 logical = start - em->start;
2118 logical = em->block_start + logical;
2119 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2120 logical = em->block_start;
2121 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2122 extent_set_compress_type(&failrec->bio_flags,
2123 em->compress_type);
2124 }
2125 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2126 "len=%llu\n", logical, start, failrec->len);
2127 failrec->logical = logical;
2128 free_extent_map(em);
2129
2130 /* set the bits in the private failure tree */
2131 ret = set_extent_bits(failure_tree, start, end,
2132 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2133 if (ret >= 0)
2134 ret = set_state_private(failure_tree, start,
2135 (u64)(unsigned long)failrec);
2136 /* set the bits in the inode's tree */
2137 if (ret >= 0)
2138 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2139 GFP_NOFS);
2140 if (ret < 0) {
2141 kfree(failrec);
2142 return ret;
2143 }
2144 } else {
2145 failrec = (struct io_failure_record *)(unsigned long)private;
2146 pr_debug("bio_readpage_error: (found) logical=%llu, "
2147 "start=%llu, len=%llu, validation=%d\n",
2148 failrec->logical, failrec->start, failrec->len,
2149 failrec->in_validation);
2150 /*
2151 * when data can be on disk more than twice, add to failrec here
2152 * (e.g. with a list for failed_mirror) to make
2153 * clean_io_failure() clean all those errors at once.
2154 */
2155 }
2156 num_copies = btrfs_num_copies(
2157 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2158 failrec->logical, failrec->len);
2159 if (num_copies == 1) {
2160 /*
2161 * we only have a single copy of the data, so don't bother with
2162 * all the retry and error correction code that follows. no
2163 * matter what the error is, it is very likely to persist.
2164 */
2165 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2166 "state=%p, num_copies=%d, next_mirror %d, "
2167 "failed_mirror %d\n", state, num_copies,
2168 failrec->this_mirror, failed_mirror);
2169 free_io_failure(inode, failrec, 0);
2170 return -EIO;
2171 }
2172
2173 if (!state) {
2174 spin_lock(&tree->lock);
2175 state = find_first_extent_bit_state(tree, failrec->start,
2176 EXTENT_LOCKED);
2177 if (state && state->start != failrec->start)
2178 state = NULL;
2179 spin_unlock(&tree->lock);
2180 }
2181
2182 /*
2183 * there are two premises:
2184 * a) deliver good data to the caller
2185 * b) correct the bad sectors on disk
2186 */
2187 if (failed_bio->bi_vcnt > 1) {
2188 /*
2189 * to fulfill b), we need to know the exact failing sectors, as
2190 * we don't want to rewrite any more than the failed ones. thus,
2191 * we need separate read requests for the failed bio
2192 *
2193 * if the following BUG_ON triggers, our validation request got
2194 * merged. we need separate requests for our algorithm to work.
2195 */
2196 BUG_ON(failrec->in_validation);
2197 failrec->in_validation = 1;
2198 failrec->this_mirror = failed_mirror;
2199 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2200 } else {
2201 /*
2202 * we're ready to fulfill a) and b) alongside. get a good copy
2203 * of the failed sector and if we succeed, we have setup
2204 * everything for repair_io_failure to do the rest for us.
2205 */
2206 if (failrec->in_validation) {
2207 BUG_ON(failrec->this_mirror != failed_mirror);
2208 failrec->in_validation = 0;
2209 failrec->this_mirror = 0;
2210 }
2211 failrec->failed_mirror = failed_mirror;
2212 failrec->this_mirror++;
2213 if (failrec->this_mirror == failed_mirror)
2214 failrec->this_mirror++;
2215 read_mode = READ_SYNC;
2216 }
2217
2218 if (!state || failrec->this_mirror > num_copies) {
2219 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2220 "next_mirror %d, failed_mirror %d\n", state,
2221 num_copies, failrec->this_mirror, failed_mirror);
2222 free_io_failure(inode, failrec, 0);
2223 return -EIO;
2224 }
2225
2226 bio = bio_alloc(GFP_NOFS, 1);
2227 if (!bio) {
2228 free_io_failure(inode, failrec, 0);
2229 return -EIO;
2230 }
2231 bio->bi_private = state;
2232 bio->bi_end_io = failed_bio->bi_end_io;
2233 bio->bi_sector = failrec->logical >> 9;
2234 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2235 bio->bi_size = 0;
2236
2237 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2238
2239 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2240 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2241 failrec->this_mirror, num_copies, failrec->in_validation);
2242
2243 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2244 failrec->this_mirror,
2245 failrec->bio_flags, 0);
2246 return ret;
2247 }
2248
2249 /* lots and lots of room for performance fixes in the end_bio funcs */
2250
2251 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2252 {
2253 int uptodate = (err == 0);
2254 struct extent_io_tree *tree;
2255 int ret;
2256
2257 tree = &BTRFS_I(page->mapping->host)->io_tree;
2258
2259 if (tree->ops && tree->ops->writepage_end_io_hook) {
2260 ret = tree->ops->writepage_end_io_hook(page, start,
2261 end, NULL, uptodate);
2262 if (ret)
2263 uptodate = 0;
2264 }
2265
2266 if (!uptodate) {
2267 ClearPageUptodate(page);
2268 SetPageError(page);
2269 }
2270 return 0;
2271 }
2272
2273 /*
2274 * after a writepage IO is done, we need to:
2275 * clear the uptodate bits on error
2276 * clear the writeback bits in the extent tree for this IO
2277 * end_page_writeback if the page has no more pending IO
2278 *
2279 * Scheduling is not allowed, so the extent state tree is expected
2280 * to have one and only one object corresponding to this IO.
2281 */
2282 static void end_bio_extent_writepage(struct bio *bio, int err)
2283 {
2284 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2285 struct extent_io_tree *tree;
2286 u64 start;
2287 u64 end;
2288 int whole_page;
2289
2290 do {
2291 struct page *page = bvec->bv_page;
2292 tree = &BTRFS_I(page->mapping->host)->io_tree;
2293
2294 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2295 bvec->bv_offset;
2296 end = start + bvec->bv_len - 1;
2297
2298 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2299 whole_page = 1;
2300 else
2301 whole_page = 0;
2302
2303 if (--bvec >= bio->bi_io_vec)
2304 prefetchw(&bvec->bv_page->flags);
2305
2306 if (end_extent_writepage(page, err, start, end))
2307 continue;
2308
2309 if (whole_page)
2310 end_page_writeback(page);
2311 else
2312 check_page_writeback(tree, page);
2313 } while (bvec >= bio->bi_io_vec);
2314
2315 bio_put(bio);
2316 }
2317
2318 /*
2319 * after a readpage IO is done, we need to:
2320 * clear the uptodate bits on error
2321 * set the uptodate bits if things worked
2322 * set the page up to date if all extents in the tree are uptodate
2323 * clear the lock bit in the extent tree
2324 * unlock the page if there are no other extents locked for it
2325 *
2326 * Scheduling is not allowed, so the extent state tree is expected
2327 * to have one and only one object corresponding to this IO.
2328 */
2329 static void end_bio_extent_readpage(struct bio *bio, int err)
2330 {
2331 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2332 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2333 struct bio_vec *bvec = bio->bi_io_vec;
2334 struct extent_io_tree *tree;
2335 u64 start;
2336 u64 end;
2337 int whole_page;
2338 int mirror;
2339 int ret;
2340
2341 if (err)
2342 uptodate = 0;
2343
2344 do {
2345 struct page *page = bvec->bv_page;
2346 struct extent_state *cached = NULL;
2347 struct extent_state *state;
2348
2349 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2350 "mirror=%ld\n", (u64)bio->bi_sector, err,
2351 (long int)bio->bi_bdev);
2352 tree = &BTRFS_I(page->mapping->host)->io_tree;
2353
2354 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2355 bvec->bv_offset;
2356 end = start + bvec->bv_len - 1;
2357
2358 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2359 whole_page = 1;
2360 else
2361 whole_page = 0;
2362
2363 if (++bvec <= bvec_end)
2364 prefetchw(&bvec->bv_page->flags);
2365
2366 spin_lock(&tree->lock);
2367 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2368 if (state && state->start == start) {
2369 /*
2370 * take a reference on the state, unlock will drop
2371 * the ref
2372 */
2373 cache_state(state, &cached);
2374 }
2375 spin_unlock(&tree->lock);
2376
2377 mirror = (int)(unsigned long)bio->bi_bdev;
2378 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2379 ret = tree->ops->readpage_end_io_hook(page, start, end,
2380 state, mirror);
2381 if (ret)
2382 uptodate = 0;
2383 else
2384 clean_io_failure(start, page);
2385 }
2386
2387 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2388 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2389 if (!ret && !err &&
2390 test_bit(BIO_UPTODATE, &bio->bi_flags))
2391 uptodate = 1;
2392 } else if (!uptodate) {
2393 /*
2394 * The generic bio_readpage_error handles errors the
2395 * following way: If possible, new read requests are
2396 * created and submitted and will end up in
2397 * end_bio_extent_readpage as well (if we're lucky, not
2398 * in the !uptodate case). In that case it returns 0 and
2399 * we just go on with the next page in our bio. If it
2400 * can't handle the error it will return -EIO and we
2401 * remain responsible for that page.
2402 */
2403 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2404 if (ret == 0) {
2405 uptodate =
2406 test_bit(BIO_UPTODATE, &bio->bi_flags);
2407 if (err)
2408 uptodate = 0;
2409 uncache_state(&cached);
2410 continue;
2411 }
2412 }
2413
2414 if (uptodate && tree->track_uptodate) {
2415 set_extent_uptodate(tree, start, end, &cached,
2416 GFP_ATOMIC);
2417 }
2418 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2419
2420 if (whole_page) {
2421 if (uptodate) {
2422 SetPageUptodate(page);
2423 } else {
2424 ClearPageUptodate(page);
2425 SetPageError(page);
2426 }
2427 unlock_page(page);
2428 } else {
2429 if (uptodate) {
2430 check_page_uptodate(tree, page);
2431 } else {
2432 ClearPageUptodate(page);
2433 SetPageError(page);
2434 }
2435 check_page_locked(tree, page);
2436 }
2437 } while (bvec <= bvec_end);
2438
2439 bio_put(bio);
2440 }
2441
2442 struct bio *
2443 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2444 gfp_t gfp_flags)
2445 {
2446 struct bio *bio;
2447
2448 bio = bio_alloc(gfp_flags, nr_vecs);
2449
2450 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2451 while (!bio && (nr_vecs /= 2))
2452 bio = bio_alloc(gfp_flags, nr_vecs);
2453 }
2454
2455 if (bio) {
2456 bio->bi_size = 0;
2457 bio->bi_bdev = bdev;
2458 bio->bi_sector = first_sector;
2459 }
2460 return bio;
2461 }
2462
2463 /*
2464 * Since writes are async, they will only return -ENOMEM.
2465 * Reads can return the full range of I/O error conditions.
2466 */
2467 static int __must_check submit_one_bio(int rw, struct bio *bio,
2468 int mirror_num, unsigned long bio_flags)
2469 {
2470 int ret = 0;
2471 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2472 struct page *page = bvec->bv_page;
2473 struct extent_io_tree *tree = bio->bi_private;
2474 u64 start;
2475
2476 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2477
2478 bio->bi_private = NULL;
2479
2480 bio_get(bio);
2481
2482 if (tree->ops && tree->ops->submit_bio_hook)
2483 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2484 mirror_num, bio_flags, start);
2485 else
2486 btrfsic_submit_bio(rw, bio);
2487
2488 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2489 ret = -EOPNOTSUPP;
2490 bio_put(bio);
2491 return ret;
2492 }
2493
2494 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2495 unsigned long offset, size_t size, struct bio *bio,
2496 unsigned long bio_flags)
2497 {
2498 int ret = 0;
2499 if (tree->ops && tree->ops->merge_bio_hook)
2500 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2501 bio_flags);
2502 BUG_ON(ret < 0);
2503 return ret;
2504
2505 }
2506
2507 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2508 struct page *page, sector_t sector,
2509 size_t size, unsigned long offset,
2510 struct block_device *bdev,
2511 struct bio **bio_ret,
2512 unsigned long max_pages,
2513 bio_end_io_t end_io_func,
2514 int mirror_num,
2515 unsigned long prev_bio_flags,
2516 unsigned long bio_flags)
2517 {
2518 int ret = 0;
2519 struct bio *bio;
2520 int nr;
2521 int contig = 0;
2522 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2523 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2524 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2525
2526 if (bio_ret && *bio_ret) {
2527 bio = *bio_ret;
2528 if (old_compressed)
2529 contig = bio->bi_sector == sector;
2530 else
2531 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2532 sector;
2533
2534 if (prev_bio_flags != bio_flags || !contig ||
2535 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2536 bio_add_page(bio, page, page_size, offset) < page_size) {
2537 ret = submit_one_bio(rw, bio, mirror_num,
2538 prev_bio_flags);
2539 if (ret < 0)
2540 return ret;
2541 bio = NULL;
2542 } else {
2543 return 0;
2544 }
2545 }
2546 if (this_compressed)
2547 nr = BIO_MAX_PAGES;
2548 else
2549 nr = bio_get_nr_vecs(bdev);
2550
2551 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2552 if (!bio)
2553 return -ENOMEM;
2554
2555 bio_add_page(bio, page, page_size, offset);
2556 bio->bi_end_io = end_io_func;
2557 bio->bi_private = tree;
2558
2559 if (bio_ret)
2560 *bio_ret = bio;
2561 else
2562 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2563
2564 return ret;
2565 }
2566
2567 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2568 {
2569 if (!PagePrivate(page)) {
2570 SetPagePrivate(page);
2571 page_cache_get(page);
2572 set_page_private(page, (unsigned long)eb);
2573 } else {
2574 WARN_ON(page->private != (unsigned long)eb);
2575 }
2576 }
2577
2578 void set_page_extent_mapped(struct page *page)
2579 {
2580 if (!PagePrivate(page)) {
2581 SetPagePrivate(page);
2582 page_cache_get(page);
2583 set_page_private(page, EXTENT_PAGE_PRIVATE);
2584 }
2585 }
2586
2587 /*
2588 * basic readpage implementation. Locked extent state structs are inserted
2589 * into the tree that are removed when the IO is done (by the end_io
2590 * handlers)
2591 * XXX JDM: This needs looking at to ensure proper page locking
2592 */
2593 static int __extent_read_full_page(struct extent_io_tree *tree,
2594 struct page *page,
2595 get_extent_t *get_extent,
2596 struct bio **bio, int mirror_num,
2597 unsigned long *bio_flags)
2598 {
2599 struct inode *inode = page->mapping->host;
2600 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2601 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2602 u64 end;
2603 u64 cur = start;
2604 u64 extent_offset;
2605 u64 last_byte = i_size_read(inode);
2606 u64 block_start;
2607 u64 cur_end;
2608 sector_t sector;
2609 struct extent_map *em;
2610 struct block_device *bdev;
2611 struct btrfs_ordered_extent *ordered;
2612 int ret;
2613 int nr = 0;
2614 size_t pg_offset = 0;
2615 size_t iosize;
2616 size_t disk_io_size;
2617 size_t blocksize = inode->i_sb->s_blocksize;
2618 unsigned long this_bio_flag = 0;
2619
2620 set_page_extent_mapped(page);
2621
2622 if (!PageUptodate(page)) {
2623 if (cleancache_get_page(page) == 0) {
2624 BUG_ON(blocksize != PAGE_SIZE);
2625 goto out;
2626 }
2627 }
2628
2629 end = page_end;
2630 while (1) {
2631 lock_extent(tree, start, end);
2632 ordered = btrfs_lookup_ordered_extent(inode, start);
2633 if (!ordered)
2634 break;
2635 unlock_extent(tree, start, end);
2636 btrfs_start_ordered_extent(inode, ordered, 1);
2637 btrfs_put_ordered_extent(ordered);
2638 }
2639
2640 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2641 char *userpage;
2642 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2643
2644 if (zero_offset) {
2645 iosize = PAGE_CACHE_SIZE - zero_offset;
2646 userpage = kmap_atomic(page);
2647 memset(userpage + zero_offset, 0, iosize);
2648 flush_dcache_page(page);
2649 kunmap_atomic(userpage);
2650 }
2651 }
2652 while (cur <= end) {
2653 if (cur >= last_byte) {
2654 char *userpage;
2655 struct extent_state *cached = NULL;
2656
2657 iosize = PAGE_CACHE_SIZE - pg_offset;
2658 userpage = kmap_atomic(page);
2659 memset(userpage + pg_offset, 0, iosize);
2660 flush_dcache_page(page);
2661 kunmap_atomic(userpage);
2662 set_extent_uptodate(tree, cur, cur + iosize - 1,
2663 &cached, GFP_NOFS);
2664 unlock_extent_cached(tree, cur, cur + iosize - 1,
2665 &cached, GFP_NOFS);
2666 break;
2667 }
2668 em = get_extent(inode, page, pg_offset, cur,
2669 end - cur + 1, 0);
2670 if (IS_ERR_OR_NULL(em)) {
2671 SetPageError(page);
2672 unlock_extent(tree, cur, end);
2673 break;
2674 }
2675 extent_offset = cur - em->start;
2676 BUG_ON(extent_map_end(em) <= cur);
2677 BUG_ON(end < cur);
2678
2679 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2680 this_bio_flag = EXTENT_BIO_COMPRESSED;
2681 extent_set_compress_type(&this_bio_flag,
2682 em->compress_type);
2683 }
2684
2685 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2686 cur_end = min(extent_map_end(em) - 1, end);
2687 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2688 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2689 disk_io_size = em->block_len;
2690 sector = em->block_start >> 9;
2691 } else {
2692 sector = (em->block_start + extent_offset) >> 9;
2693 disk_io_size = iosize;
2694 }
2695 bdev = em->bdev;
2696 block_start = em->block_start;
2697 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2698 block_start = EXTENT_MAP_HOLE;
2699 free_extent_map(em);
2700 em = NULL;
2701
2702 /* we've found a hole, just zero and go on */
2703 if (block_start == EXTENT_MAP_HOLE) {
2704 char *userpage;
2705 struct extent_state *cached = NULL;
2706
2707 userpage = kmap_atomic(page);
2708 memset(userpage + pg_offset, 0, iosize);
2709 flush_dcache_page(page);
2710 kunmap_atomic(userpage);
2711
2712 set_extent_uptodate(tree, cur, cur + iosize - 1,
2713 &cached, GFP_NOFS);
2714 unlock_extent_cached(tree, cur, cur + iosize - 1,
2715 &cached, GFP_NOFS);
2716 cur = cur + iosize;
2717 pg_offset += iosize;
2718 continue;
2719 }
2720 /* the get_extent function already copied into the page */
2721 if (test_range_bit(tree, cur, cur_end,
2722 EXTENT_UPTODATE, 1, NULL)) {
2723 check_page_uptodate(tree, page);
2724 unlock_extent(tree, cur, cur + iosize - 1);
2725 cur = cur + iosize;
2726 pg_offset += iosize;
2727 continue;
2728 }
2729 /* we have an inline extent but it didn't get marked up
2730 * to date. Error out
2731 */
2732 if (block_start == EXTENT_MAP_INLINE) {
2733 SetPageError(page);
2734 unlock_extent(tree, cur, cur + iosize - 1);
2735 cur = cur + iosize;
2736 pg_offset += iosize;
2737 continue;
2738 }
2739
2740 ret = 0;
2741 if (tree->ops && tree->ops->readpage_io_hook) {
2742 ret = tree->ops->readpage_io_hook(page, cur,
2743 cur + iosize - 1);
2744 }
2745 if (!ret) {
2746 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2747 pnr -= page->index;
2748 ret = submit_extent_page(READ, tree, page,
2749 sector, disk_io_size, pg_offset,
2750 bdev, bio, pnr,
2751 end_bio_extent_readpage, mirror_num,
2752 *bio_flags,
2753 this_bio_flag);
2754 BUG_ON(ret == -ENOMEM);
2755 nr++;
2756 *bio_flags = this_bio_flag;
2757 }
2758 if (ret)
2759 SetPageError(page);
2760 cur = cur + iosize;
2761 pg_offset += iosize;
2762 }
2763 out:
2764 if (!nr) {
2765 if (!PageError(page))
2766 SetPageUptodate(page);
2767 unlock_page(page);
2768 }
2769 return 0;
2770 }
2771
2772 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2773 get_extent_t *get_extent, int mirror_num)
2774 {
2775 struct bio *bio = NULL;
2776 unsigned long bio_flags = 0;
2777 int ret;
2778
2779 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2780 &bio_flags);
2781 if (bio)
2782 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2783 return ret;
2784 }
2785
2786 static noinline void update_nr_written(struct page *page,
2787 struct writeback_control *wbc,
2788 unsigned long nr_written)
2789 {
2790 wbc->nr_to_write -= nr_written;
2791 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2792 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2793 page->mapping->writeback_index = page->index + nr_written;
2794 }
2795
2796 /*
2797 * the writepage semantics are similar to regular writepage. extent
2798 * records are inserted to lock ranges in the tree, and as dirty areas
2799 * are found, they are marked writeback. Then the lock bits are removed
2800 * and the end_io handler clears the writeback ranges
2801 */
2802 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2803 void *data)
2804 {
2805 struct inode *inode = page->mapping->host;
2806 struct extent_page_data *epd = data;
2807 struct extent_io_tree *tree = epd->tree;
2808 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2809 u64 delalloc_start;
2810 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2811 u64 end;
2812 u64 cur = start;
2813 u64 extent_offset;
2814 u64 last_byte = i_size_read(inode);
2815 u64 block_start;
2816 u64 iosize;
2817 sector_t sector;
2818 struct extent_state *cached_state = NULL;
2819 struct extent_map *em;
2820 struct block_device *bdev;
2821 int ret;
2822 int nr = 0;
2823 size_t pg_offset = 0;
2824 size_t blocksize;
2825 loff_t i_size = i_size_read(inode);
2826 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2827 u64 nr_delalloc;
2828 u64 delalloc_end;
2829 int page_started;
2830 int compressed;
2831 int write_flags;
2832 unsigned long nr_written = 0;
2833 bool fill_delalloc = true;
2834
2835 if (wbc->sync_mode == WB_SYNC_ALL)
2836 write_flags = WRITE_SYNC;
2837 else
2838 write_flags = WRITE;
2839
2840 trace___extent_writepage(page, inode, wbc);
2841
2842 WARN_ON(!PageLocked(page));
2843
2844 ClearPageError(page);
2845
2846 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2847 if (page->index > end_index ||
2848 (page->index == end_index && !pg_offset)) {
2849 page->mapping->a_ops->invalidatepage(page, 0);
2850 unlock_page(page);
2851 return 0;
2852 }
2853
2854 if (page->index == end_index) {
2855 char *userpage;
2856
2857 userpage = kmap_atomic(page);
2858 memset(userpage + pg_offset, 0,
2859 PAGE_CACHE_SIZE - pg_offset);
2860 kunmap_atomic(userpage);
2861 flush_dcache_page(page);
2862 }
2863 pg_offset = 0;
2864
2865 set_page_extent_mapped(page);
2866
2867 if (!tree->ops || !tree->ops->fill_delalloc)
2868 fill_delalloc = false;
2869
2870 delalloc_start = start;
2871 delalloc_end = 0;
2872 page_started = 0;
2873 if (!epd->extent_locked && fill_delalloc) {
2874 u64 delalloc_to_write = 0;
2875 /*
2876 * make sure the wbc mapping index is at least updated
2877 * to this page.
2878 */
2879 update_nr_written(page, wbc, 0);
2880
2881 while (delalloc_end < page_end) {
2882 nr_delalloc = find_lock_delalloc_range(inode, tree,
2883 page,
2884 &delalloc_start,
2885 &delalloc_end,
2886 128 * 1024 * 1024);
2887 if (nr_delalloc == 0) {
2888 delalloc_start = delalloc_end + 1;
2889 continue;
2890 }
2891 ret = tree->ops->fill_delalloc(inode, page,
2892 delalloc_start,
2893 delalloc_end,
2894 &page_started,
2895 &nr_written);
2896 /* File system has been set read-only */
2897 if (ret) {
2898 SetPageError(page);
2899 goto done;
2900 }
2901 /*
2902 * delalloc_end is already one less than the total
2903 * length, so we don't subtract one from
2904 * PAGE_CACHE_SIZE
2905 */
2906 delalloc_to_write += (delalloc_end - delalloc_start +
2907 PAGE_CACHE_SIZE) >>
2908 PAGE_CACHE_SHIFT;
2909 delalloc_start = delalloc_end + 1;
2910 }
2911 if (wbc->nr_to_write < delalloc_to_write) {
2912 int thresh = 8192;
2913
2914 if (delalloc_to_write < thresh * 2)
2915 thresh = delalloc_to_write;
2916 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2917 thresh);
2918 }
2919
2920 /* did the fill delalloc function already unlock and start
2921 * the IO?
2922 */
2923 if (page_started) {
2924 ret = 0;
2925 /*
2926 * we've unlocked the page, so we can't update
2927 * the mapping's writeback index, just update
2928 * nr_to_write.
2929 */
2930 wbc->nr_to_write -= nr_written;
2931 goto done_unlocked;
2932 }
2933 }
2934 if (tree->ops && tree->ops->writepage_start_hook) {
2935 ret = tree->ops->writepage_start_hook(page, start,
2936 page_end);
2937 if (ret) {
2938 /* Fixup worker will requeue */
2939 if (ret == -EBUSY)
2940 wbc->pages_skipped++;
2941 else
2942 redirty_page_for_writepage(wbc, page);
2943 update_nr_written(page, wbc, nr_written);
2944 unlock_page(page);
2945 ret = 0;
2946 goto done_unlocked;
2947 }
2948 }
2949
2950 /*
2951 * we don't want to touch the inode after unlocking the page,
2952 * so we update the mapping writeback index now
2953 */
2954 update_nr_written(page, wbc, nr_written + 1);
2955
2956 end = page_end;
2957 if (last_byte <= start) {
2958 if (tree->ops && tree->ops->writepage_end_io_hook)
2959 tree->ops->writepage_end_io_hook(page, start,
2960 page_end, NULL, 1);
2961 goto done;
2962 }
2963
2964 blocksize = inode->i_sb->s_blocksize;
2965
2966 while (cur <= end) {
2967 if (cur >= last_byte) {
2968 if (tree->ops && tree->ops->writepage_end_io_hook)
2969 tree->ops->writepage_end_io_hook(page, cur,
2970 page_end, NULL, 1);
2971 break;
2972 }
2973 em = epd->get_extent(inode, page, pg_offset, cur,
2974 end - cur + 1, 1);
2975 if (IS_ERR_OR_NULL(em)) {
2976 SetPageError(page);
2977 break;
2978 }
2979
2980 extent_offset = cur - em->start;
2981 BUG_ON(extent_map_end(em) <= cur);
2982 BUG_ON(end < cur);
2983 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2984 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2985 sector = (em->block_start + extent_offset) >> 9;
2986 bdev = em->bdev;
2987 block_start = em->block_start;
2988 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2989 free_extent_map(em);
2990 em = NULL;
2991
2992 /*
2993 * compressed and inline extents are written through other
2994 * paths in the FS
2995 */
2996 if (compressed || block_start == EXTENT_MAP_HOLE ||
2997 block_start == EXTENT_MAP_INLINE) {
2998 /*
2999 * end_io notification does not happen here for
3000 * compressed extents
3001 */
3002 if (!compressed && tree->ops &&
3003 tree->ops->writepage_end_io_hook)
3004 tree->ops->writepage_end_io_hook(page, cur,
3005 cur + iosize - 1,
3006 NULL, 1);
3007 else if (compressed) {
3008 /* we don't want to end_page_writeback on
3009 * a compressed extent. this happens
3010 * elsewhere
3011 */
3012 nr++;
3013 }
3014
3015 cur += iosize;
3016 pg_offset += iosize;
3017 continue;
3018 }
3019 /* leave this out until we have a page_mkwrite call */
3020 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3021 EXTENT_DIRTY, 0, NULL)) {
3022 cur = cur + iosize;
3023 pg_offset += iosize;
3024 continue;
3025 }
3026
3027 if (tree->ops && tree->ops->writepage_io_hook) {
3028 ret = tree->ops->writepage_io_hook(page, cur,
3029 cur + iosize - 1);
3030 } else {
3031 ret = 0;
3032 }
3033 if (ret) {
3034 SetPageError(page);
3035 } else {
3036 unsigned long max_nr = end_index + 1;
3037
3038 set_range_writeback(tree, cur, cur + iosize - 1);
3039 if (!PageWriteback(page)) {
3040 printk(KERN_ERR "btrfs warning page %lu not "
3041 "writeback, cur %llu end %llu\n",
3042 page->index, (unsigned long long)cur,
3043 (unsigned long long)end);
3044 }
3045
3046 ret = submit_extent_page(write_flags, tree, page,
3047 sector, iosize, pg_offset,
3048 bdev, &epd->bio, max_nr,
3049 end_bio_extent_writepage,
3050 0, 0, 0);
3051 if (ret)
3052 SetPageError(page);
3053 }
3054 cur = cur + iosize;
3055 pg_offset += iosize;
3056 nr++;
3057 }
3058 done:
3059 if (nr == 0) {
3060 /* make sure the mapping tag for page dirty gets cleared */
3061 set_page_writeback(page);
3062 end_page_writeback(page);
3063 }
3064 unlock_page(page);
3065
3066 done_unlocked:
3067
3068 /* drop our reference on any cached states */
3069 free_extent_state(cached_state);
3070 return 0;
3071 }
3072
3073 static int eb_wait(void *word)
3074 {
3075 io_schedule();
3076 return 0;
3077 }
3078
3079 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3080 {
3081 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3082 TASK_UNINTERRUPTIBLE);
3083 }
3084
3085 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3086 struct btrfs_fs_info *fs_info,
3087 struct extent_page_data *epd)
3088 {
3089 unsigned long i, num_pages;
3090 int flush = 0;
3091 int ret = 0;
3092
3093 if (!btrfs_try_tree_write_lock(eb)) {
3094 flush = 1;
3095 flush_write_bio(epd);
3096 btrfs_tree_lock(eb);
3097 }
3098
3099 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3100 btrfs_tree_unlock(eb);
3101 if (!epd->sync_io)
3102 return 0;
3103 if (!flush) {
3104 flush_write_bio(epd);
3105 flush = 1;
3106 }
3107 while (1) {
3108 wait_on_extent_buffer_writeback(eb);
3109 btrfs_tree_lock(eb);
3110 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3111 break;
3112 btrfs_tree_unlock(eb);
3113 }
3114 }
3115
3116 /*
3117 * We need to do this to prevent races in people who check if the eb is
3118 * under IO since we can end up having no IO bits set for a short period
3119 * of time.
3120 */
3121 spin_lock(&eb->refs_lock);
3122 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3123 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3124 spin_unlock(&eb->refs_lock);
3125 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3126 spin_lock(&fs_info->delalloc_lock);
3127 if (fs_info->dirty_metadata_bytes >= eb->len)
3128 fs_info->dirty_metadata_bytes -= eb->len;
3129 else
3130 WARN_ON(1);
3131 spin_unlock(&fs_info->delalloc_lock);
3132 ret = 1;
3133 } else {
3134 spin_unlock(&eb->refs_lock);
3135 }
3136
3137 btrfs_tree_unlock(eb);
3138
3139 if (!ret)
3140 return ret;
3141
3142 num_pages = num_extent_pages(eb->start, eb->len);
3143 for (i = 0; i < num_pages; i++) {
3144 struct page *p = extent_buffer_page(eb, i);
3145
3146 if (!trylock_page(p)) {
3147 if (!flush) {
3148 flush_write_bio(epd);
3149 flush = 1;
3150 }
3151 lock_page(p);
3152 }
3153 }
3154
3155 return ret;
3156 }
3157
3158 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3159 {
3160 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3161 smp_mb__after_clear_bit();
3162 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3163 }
3164
3165 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3166 {
3167 int uptodate = err == 0;
3168 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3169 struct extent_buffer *eb;
3170 int done;
3171
3172 do {
3173 struct page *page = bvec->bv_page;
3174
3175 bvec--;
3176 eb = (struct extent_buffer *)page->private;
3177 BUG_ON(!eb);
3178 done = atomic_dec_and_test(&eb->io_pages);
3179
3180 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3181 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3182 ClearPageUptodate(page);
3183 SetPageError(page);
3184 }
3185
3186 end_page_writeback(page);
3187
3188 if (!done)
3189 continue;
3190
3191 end_extent_buffer_writeback(eb);
3192 } while (bvec >= bio->bi_io_vec);
3193
3194 bio_put(bio);
3195
3196 }
3197
3198 static int write_one_eb(struct extent_buffer *eb,
3199 struct btrfs_fs_info *fs_info,
3200 struct writeback_control *wbc,
3201 struct extent_page_data *epd)
3202 {
3203 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3204 u64 offset = eb->start;
3205 unsigned long i, num_pages;
3206 unsigned long bio_flags = 0;
3207 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3208 int ret = 0;
3209
3210 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3211 num_pages = num_extent_pages(eb->start, eb->len);
3212 atomic_set(&eb->io_pages, num_pages);
3213 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3214 bio_flags = EXTENT_BIO_TREE_LOG;
3215
3216 for (i = 0; i < num_pages; i++) {
3217 struct page *p = extent_buffer_page(eb, i);
3218
3219 clear_page_dirty_for_io(p);
3220 set_page_writeback(p);
3221 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3222 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3223 -1, end_bio_extent_buffer_writepage,
3224 0, epd->bio_flags, bio_flags);
3225 epd->bio_flags = bio_flags;
3226 if (ret) {
3227 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3228 SetPageError(p);
3229 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3230 end_extent_buffer_writeback(eb);
3231 ret = -EIO;
3232 break;
3233 }
3234 offset += PAGE_CACHE_SIZE;
3235 update_nr_written(p, wbc, 1);
3236 unlock_page(p);
3237 }
3238
3239 if (unlikely(ret)) {
3240 for (; i < num_pages; i++) {
3241 struct page *p = extent_buffer_page(eb, i);
3242 unlock_page(p);
3243 }
3244 }
3245
3246 return ret;
3247 }
3248
3249 int btree_write_cache_pages(struct address_space *mapping,
3250 struct writeback_control *wbc)
3251 {
3252 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3253 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3254 struct extent_buffer *eb, *prev_eb = NULL;
3255 struct extent_page_data epd = {
3256 .bio = NULL,
3257 .tree = tree,
3258 .extent_locked = 0,
3259 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3260 .bio_flags = 0,
3261 };
3262 int ret = 0;
3263 int done = 0;
3264 int nr_to_write_done = 0;
3265 struct pagevec pvec;
3266 int nr_pages;
3267 pgoff_t index;
3268 pgoff_t end; /* Inclusive */
3269 int scanned = 0;
3270 int tag;
3271
3272 pagevec_init(&pvec, 0);
3273 if (wbc->range_cyclic) {
3274 index = mapping->writeback_index; /* Start from prev offset */
3275 end = -1;
3276 } else {
3277 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3278 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3279 scanned = 1;
3280 }
3281 if (wbc->sync_mode == WB_SYNC_ALL)
3282 tag = PAGECACHE_TAG_TOWRITE;
3283 else
3284 tag = PAGECACHE_TAG_DIRTY;
3285 retry:
3286 if (wbc->sync_mode == WB_SYNC_ALL)
3287 tag_pages_for_writeback(mapping, index, end);
3288 while (!done && !nr_to_write_done && (index <= end) &&
3289 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3290 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3291 unsigned i;
3292
3293 scanned = 1;
3294 for (i = 0; i < nr_pages; i++) {
3295 struct page *page = pvec.pages[i];
3296
3297 if (!PagePrivate(page))
3298 continue;
3299
3300 if (!wbc->range_cyclic && page->index > end) {
3301 done = 1;
3302 break;
3303 }
3304
3305 spin_lock(&mapping->private_lock);
3306 if (!PagePrivate(page)) {
3307 spin_unlock(&mapping->private_lock);
3308 continue;
3309 }
3310
3311 eb = (struct extent_buffer *)page->private;
3312
3313 /*
3314 * Shouldn't happen and normally this would be a BUG_ON
3315 * but no sense in crashing the users box for something
3316 * we can survive anyway.
3317 */
3318 if (!eb) {
3319 spin_unlock(&mapping->private_lock);
3320 WARN_ON(1);
3321 continue;
3322 }
3323
3324 if (eb == prev_eb) {
3325 spin_unlock(&mapping->private_lock);
3326 continue;
3327 }
3328
3329 ret = atomic_inc_not_zero(&eb->refs);
3330 spin_unlock(&mapping->private_lock);
3331 if (!ret)
3332 continue;
3333
3334 prev_eb = eb;
3335 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3336 if (!ret) {
3337 free_extent_buffer(eb);
3338 continue;
3339 }
3340
3341 ret = write_one_eb(eb, fs_info, wbc, &epd);
3342 if (ret) {
3343 done = 1;
3344 free_extent_buffer(eb);
3345 break;
3346 }
3347 free_extent_buffer(eb);
3348
3349 /*
3350 * the filesystem may choose to bump up nr_to_write.
3351 * We have to make sure to honor the new nr_to_write
3352 * at any time
3353 */
3354 nr_to_write_done = wbc->nr_to_write <= 0;
3355 }
3356 pagevec_release(&pvec);
3357 cond_resched();
3358 }
3359 if (!scanned && !done) {
3360 /*
3361 * We hit the last page and there is more work to be done: wrap
3362 * back to the start of the file
3363 */
3364 scanned = 1;
3365 index = 0;
3366 goto retry;
3367 }
3368 flush_write_bio(&epd);
3369 return ret;
3370 }
3371
3372 /**
3373 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3374 * @mapping: address space structure to write
3375 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3376 * @writepage: function called for each page
3377 * @data: data passed to writepage function
3378 *
3379 * If a page is already under I/O, write_cache_pages() skips it, even
3380 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3381 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3382 * and msync() need to guarantee that all the data which was dirty at the time
3383 * the call was made get new I/O started against them. If wbc->sync_mode is
3384 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3385 * existing IO to complete.
3386 */
3387 static int extent_write_cache_pages(struct extent_io_tree *tree,
3388 struct address_space *mapping,
3389 struct writeback_control *wbc,
3390 writepage_t writepage, void *data,
3391 void (*flush_fn)(void *))
3392 {
3393 struct inode *inode = mapping->host;
3394 int ret = 0;
3395 int done = 0;
3396 int nr_to_write_done = 0;
3397 struct pagevec pvec;
3398 int nr_pages;
3399 pgoff_t index;
3400 pgoff_t end; /* Inclusive */
3401 int scanned = 0;
3402 int tag;
3403
3404 /*
3405 * We have to hold onto the inode so that ordered extents can do their
3406 * work when the IO finishes. The alternative to this is failing to add
3407 * an ordered extent if the igrab() fails there and that is a huge pain
3408 * to deal with, so instead just hold onto the inode throughout the
3409 * writepages operation. If it fails here we are freeing up the inode
3410 * anyway and we'd rather not waste our time writing out stuff that is
3411 * going to be truncated anyway.
3412 */
3413 if (!igrab(inode))
3414 return 0;
3415
3416 pagevec_init(&pvec, 0);
3417 if (wbc->range_cyclic) {
3418 index = mapping->writeback_index; /* Start from prev offset */
3419 end = -1;
3420 } else {
3421 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3422 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3423 scanned = 1;
3424 }
3425 if (wbc->sync_mode == WB_SYNC_ALL)
3426 tag = PAGECACHE_TAG_TOWRITE;
3427 else
3428 tag = PAGECACHE_TAG_DIRTY;
3429 retry:
3430 if (wbc->sync_mode == WB_SYNC_ALL)
3431 tag_pages_for_writeback(mapping, index, end);
3432 while (!done && !nr_to_write_done && (index <= end) &&
3433 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3434 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3435 unsigned i;
3436
3437 scanned = 1;
3438 for (i = 0; i < nr_pages; i++) {
3439 struct page *page = pvec.pages[i];
3440
3441 /*
3442 * At this point we hold neither mapping->tree_lock nor
3443 * lock on the page itself: the page may be truncated or
3444 * invalidated (changing page->mapping to NULL), or even
3445 * swizzled back from swapper_space to tmpfs file
3446 * mapping
3447 */
3448 if (tree->ops &&
3449 tree->ops->write_cache_pages_lock_hook) {
3450 tree->ops->write_cache_pages_lock_hook(page,
3451 data, flush_fn);
3452 } else {
3453 if (!trylock_page(page)) {
3454 flush_fn(data);
3455 lock_page(page);
3456 }
3457 }
3458
3459 if (unlikely(page->mapping != mapping)) {
3460 unlock_page(page);
3461 continue;
3462 }
3463
3464 if (!wbc->range_cyclic && page->index > end) {
3465 done = 1;
3466 unlock_page(page);
3467 continue;
3468 }
3469
3470 if (wbc->sync_mode != WB_SYNC_NONE) {
3471 if (PageWriteback(page))
3472 flush_fn(data);
3473 wait_on_page_writeback(page);
3474 }
3475
3476 if (PageWriteback(page) ||
3477 !clear_page_dirty_for_io(page)) {
3478 unlock_page(page);
3479 continue;
3480 }
3481
3482 ret = (*writepage)(page, wbc, data);
3483
3484 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3485 unlock_page(page);
3486 ret = 0;
3487 }
3488 if (ret)
3489 done = 1;
3490
3491 /*
3492 * the filesystem may choose to bump up nr_to_write.
3493 * We have to make sure to honor the new nr_to_write
3494 * at any time
3495 */
3496 nr_to_write_done = wbc->nr_to_write <= 0;
3497 }
3498 pagevec_release(&pvec);
3499 cond_resched();
3500 }
3501 if (!scanned && !done) {
3502 /*
3503 * We hit the last page and there is more work to be done: wrap
3504 * back to the start of the file
3505 */
3506 scanned = 1;
3507 index = 0;
3508 goto retry;
3509 }
3510 btrfs_add_delayed_iput(inode);
3511 return ret;
3512 }
3513
3514 static void flush_epd_write_bio(struct extent_page_data *epd)
3515 {
3516 if (epd->bio) {
3517 int rw = WRITE;
3518 int ret;
3519
3520 if (epd->sync_io)
3521 rw = WRITE_SYNC;
3522
3523 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3524 BUG_ON(ret < 0); /* -ENOMEM */
3525 epd->bio = NULL;
3526 }
3527 }
3528
3529 static noinline void flush_write_bio(void *data)
3530 {
3531 struct extent_page_data *epd = data;
3532 flush_epd_write_bio(epd);
3533 }
3534
3535 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3536 get_extent_t *get_extent,
3537 struct writeback_control *wbc)
3538 {
3539 int ret;
3540 struct extent_page_data epd = {
3541 .bio = NULL,
3542 .tree = tree,
3543 .get_extent = get_extent,
3544 .extent_locked = 0,
3545 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3546 .bio_flags = 0,
3547 };
3548
3549 ret = __extent_writepage(page, wbc, &epd);
3550
3551 flush_epd_write_bio(&epd);
3552 return ret;
3553 }
3554
3555 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3556 u64 start, u64 end, get_extent_t *get_extent,
3557 int mode)
3558 {
3559 int ret = 0;
3560 struct address_space *mapping = inode->i_mapping;
3561 struct page *page;
3562 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3563 PAGE_CACHE_SHIFT;
3564
3565 struct extent_page_data epd = {
3566 .bio = NULL,
3567 .tree = tree,
3568 .get_extent = get_extent,
3569 .extent_locked = 1,
3570 .sync_io = mode == WB_SYNC_ALL,
3571 .bio_flags = 0,
3572 };
3573 struct writeback_control wbc_writepages = {
3574 .sync_mode = mode,
3575 .nr_to_write = nr_pages * 2,
3576 .range_start = start,
3577 .range_end = end + 1,
3578 };
3579
3580 while (start <= end) {
3581 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3582 if (clear_page_dirty_for_io(page))
3583 ret = __extent_writepage(page, &wbc_writepages, &epd);
3584 else {
3585 if (tree->ops && tree->ops->writepage_end_io_hook)
3586 tree->ops->writepage_end_io_hook(page, start,
3587 start + PAGE_CACHE_SIZE - 1,
3588 NULL, 1);
3589 unlock_page(page);
3590 }
3591 page_cache_release(page);
3592 start += PAGE_CACHE_SIZE;
3593 }
3594
3595 flush_epd_write_bio(&epd);
3596 return ret;
3597 }
3598
3599 int extent_writepages(struct extent_io_tree *tree,
3600 struct address_space *mapping,
3601 get_extent_t *get_extent,
3602 struct writeback_control *wbc)
3603 {
3604 int ret = 0;
3605 struct extent_page_data epd = {
3606 .bio = NULL,
3607 .tree = tree,
3608 .get_extent = get_extent,
3609 .extent_locked = 0,
3610 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3611 .bio_flags = 0,
3612 };
3613
3614 ret = extent_write_cache_pages(tree, mapping, wbc,
3615 __extent_writepage, &epd,
3616 flush_write_bio);
3617 flush_epd_write_bio(&epd);
3618 return ret;
3619 }
3620
3621 int extent_readpages(struct extent_io_tree *tree,
3622 struct address_space *mapping,
3623 struct list_head *pages, unsigned nr_pages,
3624 get_extent_t get_extent)
3625 {
3626 struct bio *bio = NULL;
3627 unsigned page_idx;
3628 unsigned long bio_flags = 0;
3629 struct page *pagepool[16];
3630 struct page *page;
3631 int i = 0;
3632 int nr = 0;
3633
3634 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3635 page = list_entry(pages->prev, struct page, lru);
3636
3637 prefetchw(&page->flags);
3638 list_del(&page->lru);
3639 if (add_to_page_cache_lru(page, mapping,
3640 page->index, GFP_NOFS)) {
3641 page_cache_release(page);
3642 continue;
3643 }
3644
3645 pagepool[nr++] = page;
3646 if (nr < ARRAY_SIZE(pagepool))
3647 continue;
3648 for (i = 0; i < nr; i++) {
3649 __extent_read_full_page(tree, pagepool[i], get_extent,
3650 &bio, 0, &bio_flags);
3651 page_cache_release(pagepool[i]);
3652 }
3653 nr = 0;
3654 }
3655 for (i = 0; i < nr; i++) {
3656 __extent_read_full_page(tree, pagepool[i], get_extent,
3657 &bio, 0, &bio_flags);
3658 page_cache_release(pagepool[i]);
3659 }
3660
3661 BUG_ON(!list_empty(pages));
3662 if (bio)
3663 return submit_one_bio(READ, bio, 0, bio_flags);
3664 return 0;
3665 }
3666
3667 /*
3668 * basic invalidatepage code, this waits on any locked or writeback
3669 * ranges corresponding to the page, and then deletes any extent state
3670 * records from the tree
3671 */
3672 int extent_invalidatepage(struct extent_io_tree *tree,
3673 struct page *page, unsigned long offset)
3674 {
3675 struct extent_state *cached_state = NULL;
3676 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3677 u64 end = start + PAGE_CACHE_SIZE - 1;
3678 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3679
3680 start += (offset + blocksize - 1) & ~(blocksize - 1);
3681 if (start > end)
3682 return 0;
3683
3684 lock_extent_bits(tree, start, end, 0, &cached_state);
3685 wait_on_page_writeback(page);
3686 clear_extent_bit(tree, start, end,
3687 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3688 EXTENT_DO_ACCOUNTING,
3689 1, 1, &cached_state, GFP_NOFS);
3690 return 0;
3691 }
3692
3693 /*
3694 * a helper for releasepage, this tests for areas of the page that
3695 * are locked or under IO and drops the related state bits if it is safe
3696 * to drop the page.
3697 */
3698 int try_release_extent_state(struct extent_map_tree *map,
3699 struct extent_io_tree *tree, struct page *page,
3700 gfp_t mask)
3701 {
3702 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3703 u64 end = start + PAGE_CACHE_SIZE - 1;
3704 int ret = 1;
3705
3706 if (test_range_bit(tree, start, end,
3707 EXTENT_IOBITS, 0, NULL))
3708 ret = 0;
3709 else {
3710 if ((mask & GFP_NOFS) == GFP_NOFS)
3711 mask = GFP_NOFS;
3712 /*
3713 * at this point we can safely clear everything except the
3714 * locked bit and the nodatasum bit
3715 */
3716 ret = clear_extent_bit(tree, start, end,
3717 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3718 0, 0, NULL, mask);
3719
3720 /* if clear_extent_bit failed for enomem reasons,
3721 * we can't allow the release to continue.
3722 */
3723 if (ret < 0)
3724 ret = 0;
3725 else
3726 ret = 1;
3727 }
3728 return ret;
3729 }
3730
3731 /*
3732 * a helper for releasepage. As long as there are no locked extents
3733 * in the range corresponding to the page, both state records and extent
3734 * map records are removed
3735 */
3736 int try_release_extent_mapping(struct extent_map_tree *map,
3737 struct extent_io_tree *tree, struct page *page,
3738 gfp_t mask)
3739 {
3740 struct extent_map *em;
3741 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3742 u64 end = start + PAGE_CACHE_SIZE - 1;
3743
3744 if ((mask & __GFP_WAIT) &&
3745 page->mapping->host->i_size > 16 * 1024 * 1024) {
3746 u64 len;
3747 while (start <= end) {
3748 len = end - start + 1;
3749 write_lock(&map->lock);
3750 em = lookup_extent_mapping(map, start, len);
3751 if (!em) {
3752 write_unlock(&map->lock);
3753 break;
3754 }
3755 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3756 em->start != start) {
3757 write_unlock(&map->lock);
3758 free_extent_map(em);
3759 break;
3760 }
3761 if (!test_range_bit(tree, em->start,
3762 extent_map_end(em) - 1,
3763 EXTENT_LOCKED | EXTENT_WRITEBACK,
3764 0, NULL)) {
3765 remove_extent_mapping(map, em);
3766 /* once for the rb tree */
3767 free_extent_map(em);
3768 }
3769 start = extent_map_end(em);
3770 write_unlock(&map->lock);
3771
3772 /* once for us */
3773 free_extent_map(em);
3774 }
3775 }
3776 return try_release_extent_state(map, tree, page, mask);
3777 }
3778
3779 /*
3780 * helper function for fiemap, which doesn't want to see any holes.
3781 * This maps until we find something past 'last'
3782 */
3783 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3784 u64 offset,
3785 u64 last,
3786 get_extent_t *get_extent)
3787 {
3788 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3789 struct extent_map *em;
3790 u64 len;
3791
3792 if (offset >= last)
3793 return NULL;
3794
3795 while(1) {
3796 len = last - offset;
3797 if (len == 0)
3798 break;
3799 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3800 em = get_extent(inode, NULL, 0, offset, len, 0);
3801 if (IS_ERR_OR_NULL(em))
3802 return em;
3803
3804 /* if this isn't a hole return it */
3805 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3806 em->block_start != EXTENT_MAP_HOLE) {
3807 return em;
3808 }
3809
3810 /* this is a hole, advance to the next extent */
3811 offset = extent_map_end(em);
3812 free_extent_map(em);
3813 if (offset >= last)
3814 break;
3815 }
3816 return NULL;
3817 }
3818
3819 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3820 __u64 start, __u64 len, get_extent_t *get_extent)
3821 {
3822 int ret = 0;
3823 u64 off = start;
3824 u64 max = start + len;
3825 u32 flags = 0;
3826 u32 found_type;
3827 u64 last;
3828 u64 last_for_get_extent = 0;
3829 u64 disko = 0;
3830 u64 isize = i_size_read(inode);
3831 struct btrfs_key found_key;
3832 struct extent_map *em = NULL;
3833 struct extent_state *cached_state = NULL;
3834 struct btrfs_path *path;
3835 struct btrfs_file_extent_item *item;
3836 int end = 0;
3837 u64 em_start = 0;
3838 u64 em_len = 0;
3839 u64 em_end = 0;
3840 unsigned long emflags;
3841
3842 if (len == 0)
3843 return -EINVAL;
3844
3845 path = btrfs_alloc_path();
3846 if (!path)
3847 return -ENOMEM;
3848 path->leave_spinning = 1;
3849
3850 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3851 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3852
3853 /*
3854 * lookup the last file extent. We're not using i_size here
3855 * because there might be preallocation past i_size
3856 */
3857 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3858 path, btrfs_ino(inode), -1, 0);
3859 if (ret < 0) {
3860 btrfs_free_path(path);
3861 return ret;
3862 }
3863 WARN_ON(!ret);
3864 path->slots[0]--;
3865 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3866 struct btrfs_file_extent_item);
3867 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3868 found_type = btrfs_key_type(&found_key);
3869
3870 /* No extents, but there might be delalloc bits */
3871 if (found_key.objectid != btrfs_ino(inode) ||
3872 found_type != BTRFS_EXTENT_DATA_KEY) {
3873 /* have to trust i_size as the end */
3874 last = (u64)-1;
3875 last_for_get_extent = isize;
3876 } else {
3877 /*
3878 * remember the start of the last extent. There are a
3879 * bunch of different factors that go into the length of the
3880 * extent, so its much less complex to remember where it started
3881 */
3882 last = found_key.offset;
3883 last_for_get_extent = last + 1;
3884 }
3885 btrfs_free_path(path);
3886
3887 /*
3888 * we might have some extents allocated but more delalloc past those
3889 * extents. so, we trust isize unless the start of the last extent is
3890 * beyond isize
3891 */
3892 if (last < isize) {
3893 last = (u64)-1;
3894 last_for_get_extent = isize;
3895 }
3896
3897 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3898 &cached_state);
3899
3900 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3901 get_extent);
3902 if (!em)
3903 goto out;
3904 if (IS_ERR(em)) {
3905 ret = PTR_ERR(em);
3906 goto out;
3907 }
3908
3909 while (!end) {
3910 u64 offset_in_extent;
3911
3912 /* break if the extent we found is outside the range */
3913 if (em->start >= max || extent_map_end(em) < off)
3914 break;
3915
3916 /*
3917 * get_extent may return an extent that starts before our
3918 * requested range. We have to make sure the ranges
3919 * we return to fiemap always move forward and don't
3920 * overlap, so adjust the offsets here
3921 */
3922 em_start = max(em->start, off);
3923
3924 /*
3925 * record the offset from the start of the extent
3926 * for adjusting the disk offset below
3927 */
3928 offset_in_extent = em_start - em->start;
3929 em_end = extent_map_end(em);
3930 em_len = em_end - em_start;
3931 emflags = em->flags;
3932 disko = 0;
3933 flags = 0;
3934
3935 /*
3936 * bump off for our next call to get_extent
3937 */
3938 off = extent_map_end(em);
3939 if (off >= max)
3940 end = 1;
3941
3942 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3943 end = 1;
3944 flags |= FIEMAP_EXTENT_LAST;
3945 } else if (em->block_start == EXTENT_MAP_INLINE) {
3946 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3947 FIEMAP_EXTENT_NOT_ALIGNED);
3948 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3949 flags |= (FIEMAP_EXTENT_DELALLOC |
3950 FIEMAP_EXTENT_UNKNOWN);
3951 } else {
3952 disko = em->block_start + offset_in_extent;
3953 }
3954 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3955 flags |= FIEMAP_EXTENT_ENCODED;
3956
3957 free_extent_map(em);
3958 em = NULL;
3959 if ((em_start >= last) || em_len == (u64)-1 ||
3960 (last == (u64)-1 && isize <= em_end)) {
3961 flags |= FIEMAP_EXTENT_LAST;
3962 end = 1;
3963 }
3964
3965 /* now scan forward to see if this is really the last extent. */
3966 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3967 get_extent);
3968 if (IS_ERR(em)) {
3969 ret = PTR_ERR(em);
3970 goto out;
3971 }
3972 if (!em) {
3973 flags |= FIEMAP_EXTENT_LAST;
3974 end = 1;
3975 }
3976 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3977 em_len, flags);
3978 if (ret)
3979 goto out_free;
3980 }
3981 out_free:
3982 free_extent_map(em);
3983 out:
3984 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3985 &cached_state, GFP_NOFS);
3986 return ret;
3987 }
3988
3989 static void __free_extent_buffer(struct extent_buffer *eb)
3990 {
3991 #if LEAK_DEBUG
3992 unsigned long flags;
3993 spin_lock_irqsave(&leak_lock, flags);
3994 list_del(&eb->leak_list);
3995 spin_unlock_irqrestore(&leak_lock, flags);
3996 #endif
3997 if (eb->pages && eb->pages != eb->inline_pages)
3998 kfree(eb->pages);
3999 kmem_cache_free(extent_buffer_cache, eb);
4000 }
4001
4002 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4003 u64 start,
4004 unsigned long len,
4005 gfp_t mask)
4006 {
4007 struct extent_buffer *eb = NULL;
4008 #if LEAK_DEBUG
4009 unsigned long flags;
4010 #endif
4011
4012 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4013 if (eb == NULL)
4014 return NULL;
4015 eb->start = start;
4016 eb->len = len;
4017 eb->tree = tree;
4018 eb->bflags = 0;
4019 rwlock_init(&eb->lock);
4020 atomic_set(&eb->write_locks, 0);
4021 atomic_set(&eb->read_locks, 0);
4022 atomic_set(&eb->blocking_readers, 0);
4023 atomic_set(&eb->blocking_writers, 0);
4024 atomic_set(&eb->spinning_readers, 0);
4025 atomic_set(&eb->spinning_writers, 0);
4026 eb->lock_nested = 0;
4027 init_waitqueue_head(&eb->write_lock_wq);
4028 init_waitqueue_head(&eb->read_lock_wq);
4029
4030 #if LEAK_DEBUG
4031 spin_lock_irqsave(&leak_lock, flags);
4032 list_add(&eb->leak_list, &buffers);
4033 spin_unlock_irqrestore(&leak_lock, flags);
4034 #endif
4035 spin_lock_init(&eb->refs_lock);
4036 atomic_set(&eb->refs, 1);
4037 atomic_set(&eb->io_pages, 0);
4038
4039 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
4040 struct page **pages;
4041 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
4042 PAGE_CACHE_SHIFT;
4043 pages = kzalloc(num_pages, mask);
4044 if (!pages) {
4045 __free_extent_buffer(eb);
4046 return NULL;
4047 }
4048 eb->pages = pages;
4049 } else {
4050 eb->pages = eb->inline_pages;
4051 }
4052
4053 return eb;
4054 }
4055
4056 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4057 {
4058 unsigned long i;
4059 struct page *p;
4060 struct extent_buffer *new;
4061 unsigned long num_pages = num_extent_pages(src->start, src->len);
4062
4063 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4064 if (new == NULL)
4065 return NULL;
4066
4067 for (i = 0; i < num_pages; i++) {
4068 p = alloc_page(GFP_ATOMIC);
4069 BUG_ON(!p);
4070 attach_extent_buffer_page(new, p);
4071 WARN_ON(PageDirty(p));
4072 SetPageUptodate(p);
4073 new->pages[i] = p;
4074 }
4075
4076 copy_extent_buffer(new, src, 0, 0, src->len);
4077 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4078 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4079
4080 return new;
4081 }
4082
4083 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4084 {
4085 struct extent_buffer *eb;
4086 unsigned long num_pages = num_extent_pages(0, len);
4087 unsigned long i;
4088
4089 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4090 if (!eb)
4091 return NULL;
4092
4093 for (i = 0; i < num_pages; i++) {
4094 eb->pages[i] = alloc_page(GFP_ATOMIC);
4095 if (!eb->pages[i])
4096 goto err;
4097 }
4098 set_extent_buffer_uptodate(eb);
4099 btrfs_set_header_nritems(eb, 0);
4100 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4101
4102 return eb;
4103 err:
4104 for (i--; i > 0; i--)
4105 __free_page(eb->pages[i]);
4106 __free_extent_buffer(eb);
4107 return NULL;
4108 }
4109
4110 static int extent_buffer_under_io(struct extent_buffer *eb)
4111 {
4112 return (atomic_read(&eb->io_pages) ||
4113 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4114 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4115 }
4116
4117 /*
4118 * Helper for releasing extent buffer page.
4119 */
4120 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4121 unsigned long start_idx)
4122 {
4123 unsigned long index;
4124 unsigned long num_pages;
4125 struct page *page;
4126 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4127
4128 BUG_ON(extent_buffer_under_io(eb));
4129
4130 num_pages = num_extent_pages(eb->start, eb->len);
4131 index = start_idx + num_pages;
4132 if (start_idx >= index)
4133 return;
4134
4135 do {
4136 index--;
4137 page = extent_buffer_page(eb, index);
4138 if (page && mapped) {
4139 spin_lock(&page->mapping->private_lock);
4140 /*
4141 * We do this since we'll remove the pages after we've
4142 * removed the eb from the radix tree, so we could race
4143 * and have this page now attached to the new eb. So
4144 * only clear page_private if it's still connected to
4145 * this eb.
4146 */
4147 if (PagePrivate(page) &&
4148 page->private == (unsigned long)eb) {
4149 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4150 BUG_ON(PageDirty(page));
4151 BUG_ON(PageWriteback(page));
4152 /*
4153 * We need to make sure we haven't be attached
4154 * to a new eb.
4155 */
4156 ClearPagePrivate(page);
4157 set_page_private(page, 0);
4158 /* One for the page private */
4159 page_cache_release(page);
4160 }
4161 spin_unlock(&page->mapping->private_lock);
4162
4163 }
4164 if (page) {
4165 /* One for when we alloced the page */
4166 page_cache_release(page);
4167 }
4168 } while (index != start_idx);
4169 }
4170
4171 /*
4172 * Helper for releasing the extent buffer.
4173 */
4174 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4175 {
4176 btrfs_release_extent_buffer_page(eb, 0);
4177 __free_extent_buffer(eb);
4178 }
4179
4180 static void check_buffer_tree_ref(struct extent_buffer *eb)
4181 {
4182 /* the ref bit is tricky. We have to make sure it is set
4183 * if we have the buffer dirty. Otherwise the
4184 * code to free a buffer can end up dropping a dirty
4185 * page
4186 *
4187 * Once the ref bit is set, it won't go away while the
4188 * buffer is dirty or in writeback, and it also won't
4189 * go away while we have the reference count on the
4190 * eb bumped.
4191 *
4192 * We can't just set the ref bit without bumping the
4193 * ref on the eb because free_extent_buffer might
4194 * see the ref bit and try to clear it. If this happens
4195 * free_extent_buffer might end up dropping our original
4196 * ref by mistake and freeing the page before we are able
4197 * to add one more ref.
4198 *
4199 * So bump the ref count first, then set the bit. If someone
4200 * beat us to it, drop the ref we added.
4201 */
4202 spin_lock(&eb->refs_lock);
4203 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4204 atomic_inc(&eb->refs);
4205 spin_unlock(&eb->refs_lock);
4206 }
4207
4208 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4209 {
4210 unsigned long num_pages, i;
4211
4212 check_buffer_tree_ref(eb);
4213
4214 num_pages = num_extent_pages(eb->start, eb->len);
4215 for (i = 0; i < num_pages; i++) {
4216 struct page *p = extent_buffer_page(eb, i);
4217 mark_page_accessed(p);
4218 }
4219 }
4220
4221 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4222 u64 start, unsigned long len)
4223 {
4224 unsigned long num_pages = num_extent_pages(start, len);
4225 unsigned long i;
4226 unsigned long index = start >> PAGE_CACHE_SHIFT;
4227 struct extent_buffer *eb;
4228 struct extent_buffer *exists = NULL;
4229 struct page *p;
4230 struct address_space *mapping = tree->mapping;
4231 int uptodate = 1;
4232 int ret;
4233
4234 rcu_read_lock();
4235 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4236 if (eb && atomic_inc_not_zero(&eb->refs)) {
4237 rcu_read_unlock();
4238 mark_extent_buffer_accessed(eb);
4239 return eb;
4240 }
4241 rcu_read_unlock();
4242
4243 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4244 if (!eb)
4245 return NULL;
4246
4247 for (i = 0; i < num_pages; i++, index++) {
4248 p = find_or_create_page(mapping, index, GFP_NOFS);
4249 if (!p) {
4250 WARN_ON(1);
4251 goto free_eb;
4252 }
4253
4254 spin_lock(&mapping->private_lock);
4255 if (PagePrivate(p)) {
4256 /*
4257 * We could have already allocated an eb for this page
4258 * and attached one so lets see if we can get a ref on
4259 * the existing eb, and if we can we know it's good and
4260 * we can just return that one, else we know we can just
4261 * overwrite page->private.
4262 */
4263 exists = (struct extent_buffer *)p->private;
4264 if (atomic_inc_not_zero(&exists->refs)) {
4265 spin_unlock(&mapping->private_lock);
4266 unlock_page(p);
4267 page_cache_release(p);
4268 mark_extent_buffer_accessed(exists);
4269 goto free_eb;
4270 }
4271
4272 /*
4273 * Do this so attach doesn't complain and we need to
4274 * drop the ref the old guy had.
4275 */
4276 ClearPagePrivate(p);
4277 WARN_ON(PageDirty(p));
4278 page_cache_release(p);
4279 }
4280 attach_extent_buffer_page(eb, p);
4281 spin_unlock(&mapping->private_lock);
4282 WARN_ON(PageDirty(p));
4283 mark_page_accessed(p);
4284 eb->pages[i] = p;
4285 if (!PageUptodate(p))
4286 uptodate = 0;
4287
4288 /*
4289 * see below about how we avoid a nasty race with release page
4290 * and why we unlock later
4291 */
4292 }
4293 if (uptodate)
4294 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4295 again:
4296 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4297 if (ret)
4298 goto free_eb;
4299
4300 spin_lock(&tree->buffer_lock);
4301 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4302 if (ret == -EEXIST) {
4303 exists = radix_tree_lookup(&tree->buffer,
4304 start >> PAGE_CACHE_SHIFT);
4305 if (!atomic_inc_not_zero(&exists->refs)) {
4306 spin_unlock(&tree->buffer_lock);
4307 radix_tree_preload_end();
4308 exists = NULL;
4309 goto again;
4310 }
4311 spin_unlock(&tree->buffer_lock);
4312 radix_tree_preload_end();
4313 mark_extent_buffer_accessed(exists);
4314 goto free_eb;
4315 }
4316 /* add one reference for the tree */
4317 check_buffer_tree_ref(eb);
4318 spin_unlock(&tree->buffer_lock);
4319 radix_tree_preload_end();
4320
4321 /*
4322 * there is a race where release page may have
4323 * tried to find this extent buffer in the radix
4324 * but failed. It will tell the VM it is safe to
4325 * reclaim the, and it will clear the page private bit.
4326 * We must make sure to set the page private bit properly
4327 * after the extent buffer is in the radix tree so
4328 * it doesn't get lost
4329 */
4330 SetPageChecked(eb->pages[0]);
4331 for (i = 1; i < num_pages; i++) {
4332 p = extent_buffer_page(eb, i);
4333 ClearPageChecked(p);
4334 unlock_page(p);
4335 }
4336 unlock_page(eb->pages[0]);
4337 return eb;
4338
4339 free_eb:
4340 for (i = 0; i < num_pages; i++) {
4341 if (eb->pages[i])
4342 unlock_page(eb->pages[i]);
4343 }
4344
4345 WARN_ON(!atomic_dec_and_test(&eb->refs));
4346 btrfs_release_extent_buffer(eb);
4347 return exists;
4348 }
4349
4350 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4351 u64 start, unsigned long len)
4352 {
4353 struct extent_buffer *eb;
4354
4355 rcu_read_lock();
4356 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4357 if (eb && atomic_inc_not_zero(&eb->refs)) {
4358 rcu_read_unlock();
4359 mark_extent_buffer_accessed(eb);
4360 return eb;
4361 }
4362 rcu_read_unlock();
4363
4364 return NULL;
4365 }
4366
4367 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4368 {
4369 struct extent_buffer *eb =
4370 container_of(head, struct extent_buffer, rcu_head);
4371
4372 __free_extent_buffer(eb);
4373 }
4374
4375 /* Expects to have eb->eb_lock already held */
4376 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4377 {
4378 WARN_ON(atomic_read(&eb->refs) == 0);
4379 if (atomic_dec_and_test(&eb->refs)) {
4380 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4381 spin_unlock(&eb->refs_lock);
4382 } else {
4383 struct extent_io_tree *tree = eb->tree;
4384
4385 spin_unlock(&eb->refs_lock);
4386
4387 spin_lock(&tree->buffer_lock);
4388 radix_tree_delete(&tree->buffer,
4389 eb->start >> PAGE_CACHE_SHIFT);
4390 spin_unlock(&tree->buffer_lock);
4391 }
4392
4393 /* Should be safe to release our pages at this point */
4394 btrfs_release_extent_buffer_page(eb, 0);
4395 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4396 return 1;
4397 }
4398 spin_unlock(&eb->refs_lock);
4399
4400 return 0;
4401 }
4402
4403 void free_extent_buffer(struct extent_buffer *eb)
4404 {
4405 if (!eb)
4406 return;
4407
4408 spin_lock(&eb->refs_lock);
4409 if (atomic_read(&eb->refs) == 2 &&
4410 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4411 atomic_dec(&eb->refs);
4412
4413 if (atomic_read(&eb->refs) == 2 &&
4414 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4415 !extent_buffer_under_io(eb) &&
4416 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4417 atomic_dec(&eb->refs);
4418
4419 /*
4420 * I know this is terrible, but it's temporary until we stop tracking
4421 * the uptodate bits and such for the extent buffers.
4422 */
4423 release_extent_buffer(eb, GFP_ATOMIC);
4424 }
4425
4426 void free_extent_buffer_stale(struct extent_buffer *eb)
4427 {
4428 if (!eb)
4429 return;
4430
4431 spin_lock(&eb->refs_lock);
4432 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4433
4434 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4435 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4436 atomic_dec(&eb->refs);
4437 release_extent_buffer(eb, GFP_NOFS);
4438 }
4439
4440 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4441 {
4442 unsigned long i;
4443 unsigned long num_pages;
4444 struct page *page;
4445
4446 num_pages = num_extent_pages(eb->start, eb->len);
4447
4448 for (i = 0; i < num_pages; i++) {
4449 page = extent_buffer_page(eb, i);
4450 if (!PageDirty(page))
4451 continue;
4452
4453 lock_page(page);
4454 WARN_ON(!PagePrivate(page));
4455
4456 clear_page_dirty_for_io(page);
4457 spin_lock_irq(&page->mapping->tree_lock);
4458 if (!PageDirty(page)) {
4459 radix_tree_tag_clear(&page->mapping->page_tree,
4460 page_index(page),
4461 PAGECACHE_TAG_DIRTY);
4462 }
4463 spin_unlock_irq(&page->mapping->tree_lock);
4464 ClearPageError(page);
4465 unlock_page(page);
4466 }
4467 WARN_ON(atomic_read(&eb->refs) == 0);
4468 }
4469
4470 int set_extent_buffer_dirty(struct extent_buffer *eb)
4471 {
4472 unsigned long i;
4473 unsigned long num_pages;
4474 int was_dirty = 0;
4475
4476 check_buffer_tree_ref(eb);
4477
4478 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4479
4480 num_pages = num_extent_pages(eb->start, eb->len);
4481 WARN_ON(atomic_read(&eb->refs) == 0);
4482 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4483
4484 for (i = 0; i < num_pages; i++)
4485 set_page_dirty(extent_buffer_page(eb, i));
4486 return was_dirty;
4487 }
4488
4489 static int range_straddles_pages(u64 start, u64 len)
4490 {
4491 if (len < PAGE_CACHE_SIZE)
4492 return 1;
4493 if (start & (PAGE_CACHE_SIZE - 1))
4494 return 1;
4495 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4496 return 1;
4497 return 0;
4498 }
4499
4500 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4501 {
4502 unsigned long i;
4503 struct page *page;
4504 unsigned long num_pages;
4505
4506 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4507 num_pages = num_extent_pages(eb->start, eb->len);
4508 for (i = 0; i < num_pages; i++) {
4509 page = extent_buffer_page(eb, i);
4510 if (page)
4511 ClearPageUptodate(page);
4512 }
4513 return 0;
4514 }
4515
4516 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4517 {
4518 unsigned long i;
4519 struct page *page;
4520 unsigned long num_pages;
4521
4522 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4523 num_pages = num_extent_pages(eb->start, eb->len);
4524 for (i = 0; i < num_pages; i++) {
4525 page = extent_buffer_page(eb, i);
4526 SetPageUptodate(page);
4527 }
4528 return 0;
4529 }
4530
4531 int extent_range_uptodate(struct extent_io_tree *tree,
4532 u64 start, u64 end)
4533 {
4534 struct page *page;
4535 int ret;
4536 int pg_uptodate = 1;
4537 int uptodate;
4538 unsigned long index;
4539
4540 if (range_straddles_pages(start, end - start + 1)) {
4541 ret = test_range_bit(tree, start, end,
4542 EXTENT_UPTODATE, 1, NULL);
4543 if (ret)
4544 return 1;
4545 }
4546 while (start <= end) {
4547 index = start >> PAGE_CACHE_SHIFT;
4548 page = find_get_page(tree->mapping, index);
4549 if (!page)
4550 return 1;
4551 uptodate = PageUptodate(page);
4552 page_cache_release(page);
4553 if (!uptodate) {
4554 pg_uptodate = 0;
4555 break;
4556 }
4557 start += PAGE_CACHE_SIZE;
4558 }
4559 return pg_uptodate;
4560 }
4561
4562 int extent_buffer_uptodate(struct extent_buffer *eb)
4563 {
4564 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4565 }
4566
4567 int read_extent_buffer_pages(struct extent_io_tree *tree,
4568 struct extent_buffer *eb, u64 start, int wait,
4569 get_extent_t *get_extent, int mirror_num)
4570 {
4571 unsigned long i;
4572 unsigned long start_i;
4573 struct page *page;
4574 int err;
4575 int ret = 0;
4576 int locked_pages = 0;
4577 int all_uptodate = 1;
4578 unsigned long num_pages;
4579 unsigned long num_reads = 0;
4580 struct bio *bio = NULL;
4581 unsigned long bio_flags = 0;
4582
4583 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4584 return 0;
4585
4586 if (start) {
4587 WARN_ON(start < eb->start);
4588 start_i = (start >> PAGE_CACHE_SHIFT) -
4589 (eb->start >> PAGE_CACHE_SHIFT);
4590 } else {
4591 start_i = 0;
4592 }
4593
4594 num_pages = num_extent_pages(eb->start, eb->len);
4595 for (i = start_i; i < num_pages; i++) {
4596 page = extent_buffer_page(eb, i);
4597 if (wait == WAIT_NONE) {
4598 if (!trylock_page(page))
4599 goto unlock_exit;
4600 } else {
4601 lock_page(page);
4602 }
4603 locked_pages++;
4604 if (!PageUptodate(page)) {
4605 num_reads++;
4606 all_uptodate = 0;
4607 }
4608 }
4609 if (all_uptodate) {
4610 if (start_i == 0)
4611 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4612 goto unlock_exit;
4613 }
4614
4615 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4616 eb->read_mirror = 0;
4617 atomic_set(&eb->io_pages, num_reads);
4618 for (i = start_i; i < num_pages; i++) {
4619 page = extent_buffer_page(eb, i);
4620 if (!PageUptodate(page)) {
4621 ClearPageError(page);
4622 err = __extent_read_full_page(tree, page,
4623 get_extent, &bio,
4624 mirror_num, &bio_flags);
4625 if (err)
4626 ret = err;
4627 } else {
4628 unlock_page(page);
4629 }
4630 }
4631
4632 if (bio) {
4633 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4634 if (err)
4635 return err;
4636 }
4637
4638 if (ret || wait != WAIT_COMPLETE)
4639 return ret;
4640
4641 for (i = start_i; i < num_pages; i++) {
4642 page = extent_buffer_page(eb, i);
4643 wait_on_page_locked(page);
4644 if (!PageUptodate(page))
4645 ret = -EIO;
4646 }
4647
4648 return ret;
4649
4650 unlock_exit:
4651 i = start_i;
4652 while (locked_pages > 0) {
4653 page = extent_buffer_page(eb, i);
4654 i++;
4655 unlock_page(page);
4656 locked_pages--;
4657 }
4658 return ret;
4659 }
4660
4661 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4662 unsigned long start,
4663 unsigned long len)
4664 {
4665 size_t cur;
4666 size_t offset;
4667 struct page *page;
4668 char *kaddr;
4669 char *dst = (char *)dstv;
4670 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4671 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4672
4673 WARN_ON(start > eb->len);
4674 WARN_ON(start + len > eb->start + eb->len);
4675
4676 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4677
4678 while (len > 0) {
4679 page = extent_buffer_page(eb, i);
4680
4681 cur = min(len, (PAGE_CACHE_SIZE - offset));
4682 kaddr = page_address(page);
4683 memcpy(dst, kaddr + offset, cur);
4684
4685 dst += cur;
4686 len -= cur;
4687 offset = 0;
4688 i++;
4689 }
4690 }
4691
4692 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4693 unsigned long min_len, char **map,
4694 unsigned long *map_start,
4695 unsigned long *map_len)
4696 {
4697 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4698 char *kaddr;
4699 struct page *p;
4700 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4701 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4702 unsigned long end_i = (start_offset + start + min_len - 1) >>
4703 PAGE_CACHE_SHIFT;
4704
4705 if (i != end_i)
4706 return -EINVAL;
4707
4708 if (i == 0) {
4709 offset = start_offset;
4710 *map_start = 0;
4711 } else {
4712 offset = 0;
4713 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4714 }
4715
4716 if (start + min_len > eb->len) {
4717 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4718 "wanted %lu %lu\n", (unsigned long long)eb->start,
4719 eb->len, start, min_len);
4720 WARN_ON(1);
4721 return -EINVAL;
4722 }
4723
4724 p = extent_buffer_page(eb, i);
4725 kaddr = page_address(p);
4726 *map = kaddr + offset;
4727 *map_len = PAGE_CACHE_SIZE - offset;
4728 return 0;
4729 }
4730
4731 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4732 unsigned long start,
4733 unsigned long len)
4734 {
4735 size_t cur;
4736 size_t offset;
4737 struct page *page;
4738 char *kaddr;
4739 char *ptr = (char *)ptrv;
4740 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4741 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4742 int ret = 0;
4743
4744 WARN_ON(start > eb->len);
4745 WARN_ON(start + len > eb->start + eb->len);
4746
4747 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4748
4749 while (len > 0) {
4750 page = extent_buffer_page(eb, i);
4751
4752 cur = min(len, (PAGE_CACHE_SIZE - offset));
4753
4754 kaddr = page_address(page);
4755 ret = memcmp(ptr, kaddr + offset, cur);
4756 if (ret)
4757 break;
4758
4759 ptr += cur;
4760 len -= cur;
4761 offset = 0;
4762 i++;
4763 }
4764 return ret;
4765 }
4766
4767 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4768 unsigned long start, unsigned long len)
4769 {
4770 size_t cur;
4771 size_t offset;
4772 struct page *page;
4773 char *kaddr;
4774 char *src = (char *)srcv;
4775 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4776 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4777
4778 WARN_ON(start > eb->len);
4779 WARN_ON(start + len > eb->start + eb->len);
4780
4781 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4782
4783 while (len > 0) {
4784 page = extent_buffer_page(eb, i);
4785 WARN_ON(!PageUptodate(page));
4786
4787 cur = min(len, PAGE_CACHE_SIZE - offset);
4788 kaddr = page_address(page);
4789 memcpy(kaddr + offset, src, cur);
4790
4791 src += cur;
4792 len -= cur;
4793 offset = 0;
4794 i++;
4795 }
4796 }
4797
4798 void memset_extent_buffer(struct extent_buffer *eb, char c,
4799 unsigned long start, unsigned long len)
4800 {
4801 size_t cur;
4802 size_t offset;
4803 struct page *page;
4804 char *kaddr;
4805 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4806 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4807
4808 WARN_ON(start > eb->len);
4809 WARN_ON(start + len > eb->start + eb->len);
4810
4811 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4812
4813 while (len > 0) {
4814 page = extent_buffer_page(eb, i);
4815 WARN_ON(!PageUptodate(page));
4816
4817 cur = min(len, PAGE_CACHE_SIZE - offset);
4818 kaddr = page_address(page);
4819 memset(kaddr + offset, c, cur);
4820
4821 len -= cur;
4822 offset = 0;
4823 i++;
4824 }
4825 }
4826
4827 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4828 unsigned long dst_offset, unsigned long src_offset,
4829 unsigned long len)
4830 {
4831 u64 dst_len = dst->len;
4832 size_t cur;
4833 size_t offset;
4834 struct page *page;
4835 char *kaddr;
4836 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4837 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4838
4839 WARN_ON(src->len != dst_len);
4840
4841 offset = (start_offset + dst_offset) &
4842 ((unsigned long)PAGE_CACHE_SIZE - 1);
4843
4844 while (len > 0) {
4845 page = extent_buffer_page(dst, i);
4846 WARN_ON(!PageUptodate(page));
4847
4848 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4849
4850 kaddr = page_address(page);
4851 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4852
4853 src_offset += cur;
4854 len -= cur;
4855 offset = 0;
4856 i++;
4857 }
4858 }
4859
4860 static void move_pages(struct page *dst_page, struct page *src_page,
4861 unsigned long dst_off, unsigned long src_off,
4862 unsigned long len)
4863 {
4864 char *dst_kaddr = page_address(dst_page);
4865 if (dst_page == src_page) {
4866 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4867 } else {
4868 char *src_kaddr = page_address(src_page);
4869 char *p = dst_kaddr + dst_off + len;
4870 char *s = src_kaddr + src_off + len;
4871
4872 while (len--)
4873 *--p = *--s;
4874 }
4875 }
4876
4877 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4878 {
4879 unsigned long distance = (src > dst) ? src - dst : dst - src;
4880 return distance < len;
4881 }
4882
4883 static void copy_pages(struct page *dst_page, struct page *src_page,
4884 unsigned long dst_off, unsigned long src_off,
4885 unsigned long len)
4886 {
4887 char *dst_kaddr = page_address(dst_page);
4888 char *src_kaddr;
4889 int must_memmove = 0;
4890
4891 if (dst_page != src_page) {
4892 src_kaddr = page_address(src_page);
4893 } else {
4894 src_kaddr = dst_kaddr;
4895 if (areas_overlap(src_off, dst_off, len))
4896 must_memmove = 1;
4897 }
4898
4899 if (must_memmove)
4900 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4901 else
4902 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4903 }
4904
4905 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4906 unsigned long src_offset, unsigned long len)
4907 {
4908 size_t cur;
4909 size_t dst_off_in_page;
4910 size_t src_off_in_page;
4911 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4912 unsigned long dst_i;
4913 unsigned long src_i;
4914
4915 if (src_offset + len > dst->len) {
4916 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4917 "len %lu dst len %lu\n", src_offset, len, dst->len);
4918 BUG_ON(1);
4919 }
4920 if (dst_offset + len > dst->len) {
4921 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4922 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4923 BUG_ON(1);
4924 }
4925
4926 while (len > 0) {
4927 dst_off_in_page = (start_offset + dst_offset) &
4928 ((unsigned long)PAGE_CACHE_SIZE - 1);
4929 src_off_in_page = (start_offset + src_offset) &
4930 ((unsigned long)PAGE_CACHE_SIZE - 1);
4931
4932 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4933 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4934
4935 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4936 src_off_in_page));
4937 cur = min_t(unsigned long, cur,
4938 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4939
4940 copy_pages(extent_buffer_page(dst, dst_i),
4941 extent_buffer_page(dst, src_i),
4942 dst_off_in_page, src_off_in_page, cur);
4943
4944 src_offset += cur;
4945 dst_offset += cur;
4946 len -= cur;
4947 }
4948 }
4949
4950 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4951 unsigned long src_offset, unsigned long len)
4952 {
4953 size_t cur;
4954 size_t dst_off_in_page;
4955 size_t src_off_in_page;
4956 unsigned long dst_end = dst_offset + len - 1;
4957 unsigned long src_end = src_offset + len - 1;
4958 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4959 unsigned long dst_i;
4960 unsigned long src_i;
4961
4962 if (src_offset + len > dst->len) {
4963 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4964 "len %lu len %lu\n", src_offset, len, dst->len);
4965 BUG_ON(1);
4966 }
4967 if (dst_offset + len > dst->len) {
4968 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4969 "len %lu len %lu\n", dst_offset, len, dst->len);
4970 BUG_ON(1);
4971 }
4972 if (dst_offset < src_offset) {
4973 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4974 return;
4975 }
4976 while (len > 0) {
4977 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4978 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4979
4980 dst_off_in_page = (start_offset + dst_end) &
4981 ((unsigned long)PAGE_CACHE_SIZE - 1);
4982 src_off_in_page = (start_offset + src_end) &
4983 ((unsigned long)PAGE_CACHE_SIZE - 1);
4984
4985 cur = min_t(unsigned long, len, src_off_in_page + 1);
4986 cur = min(cur, dst_off_in_page + 1);
4987 move_pages(extent_buffer_page(dst, dst_i),
4988 extent_buffer_page(dst, src_i),
4989 dst_off_in_page - cur + 1,
4990 src_off_in_page - cur + 1, cur);
4991
4992 dst_end -= cur;
4993 src_end -= cur;
4994 len -= cur;
4995 }
4996 }
4997
4998 int try_release_extent_buffer(struct page *page, gfp_t mask)
4999 {
5000 struct extent_buffer *eb;
5001
5002 /*
5003 * We need to make sure noboody is attaching this page to an eb right
5004 * now.
5005 */
5006 spin_lock(&page->mapping->private_lock);
5007 if (!PagePrivate(page)) {
5008 spin_unlock(&page->mapping->private_lock);
5009 return 1;
5010 }
5011
5012 eb = (struct extent_buffer *)page->private;
5013 BUG_ON(!eb);
5014
5015 /*
5016 * This is a little awful but should be ok, we need to make sure that
5017 * the eb doesn't disappear out from under us while we're looking at
5018 * this page.
5019 */
5020 spin_lock(&eb->refs_lock);
5021 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5022 spin_unlock(&eb->refs_lock);
5023 spin_unlock(&page->mapping->private_lock);
5024 return 0;
5025 }
5026 spin_unlock(&page->mapping->private_lock);
5027
5028 if ((mask & GFP_NOFS) == GFP_NOFS)
5029 mask = GFP_NOFS;
5030
5031 /*
5032 * If tree ref isn't set then we know the ref on this eb is a real ref,
5033 * so just return, this page will likely be freed soon anyway.
5034 */
5035 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5036 spin_unlock(&eb->refs_lock);
5037 return 0;
5038 }
5039
5040 return release_extent_buffer(eb, mask);
5041 }
This page took 0.204825 seconds and 5 git commands to generate.