Merge remote-tracking branch 'v4l-dvb/master'
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 return !RB_EMPTY_NODE(&state->rb_node);
32 }
33
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37
38 static DEFINE_SPINLOCK(leak_lock);
39
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48 }
49
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58 }
59
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 atomic_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
79 "refs %d\n",
80 eb->start, eb->len, atomic_read(&eb->refs));
81 list_del(&eb->leak_list);
82 kmem_cache_free(extent_buffer_cache, eb);
83 }
84 }
85
86 #define btrfs_debug_check_extent_io_range(tree, start, end) \
87 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
88 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
89 struct extent_io_tree *tree, u64 start, u64 end)
90 {
91 struct inode *inode;
92 u64 isize;
93
94 if (!tree->mapping)
95 return;
96
97 inode = tree->mapping->host;
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(inode), isize, start, end);
103 }
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head) do {} while (0)
107 #define btrfs_leak_debug_del(entry) do {} while (0)
108 #define btrfs_leak_debug_check() do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
110 #endif
111
112 #define BUFFER_LRU_MAX 64
113
114 struct tree_entry {
115 u64 start;
116 u64 end;
117 struct rb_node rb_node;
118 };
119
120 struct extent_page_data {
121 struct bio *bio;
122 struct extent_io_tree *tree;
123 get_extent_t *get_extent;
124 unsigned long bio_flags;
125
126 /* tells writepage not to lock the state bits for this range
127 * it still does the unlocking
128 */
129 unsigned int extent_locked:1;
130
131 /* tells the submit_bio code to use a WRITE_SYNC */
132 unsigned int sync_io:1;
133 };
134
135 static void add_extent_changeset(struct extent_state *state, unsigned bits,
136 struct extent_changeset *changeset,
137 int set)
138 {
139 int ret;
140
141 if (!changeset)
142 return;
143 if (set && (state->state & bits) == bits)
144 return;
145 if (!set && (state->state & bits) == 0)
146 return;
147 changeset->bytes_changed += state->end - state->start + 1;
148 ret = ulist_add(changeset->range_changed, state->start, state->end,
149 GFP_ATOMIC);
150 /* ENOMEM */
151 BUG_ON(ret < 0);
152 }
153
154 static noinline void flush_write_bio(void *data);
155 static inline struct btrfs_fs_info *
156 tree_fs_info(struct extent_io_tree *tree)
157 {
158 if (!tree->mapping)
159 return NULL;
160 return btrfs_sb(tree->mapping->host->i_sb);
161 }
162
163 int __init extent_io_init(void)
164 {
165 extent_state_cache = kmem_cache_create("btrfs_extent_state",
166 sizeof(struct extent_state), 0,
167 SLAB_MEM_SPREAD, NULL);
168 if (!extent_state_cache)
169 return -ENOMEM;
170
171 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
172 sizeof(struct extent_buffer), 0,
173 SLAB_MEM_SPREAD, NULL);
174 if (!extent_buffer_cache)
175 goto free_state_cache;
176
177 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
178 offsetof(struct btrfs_io_bio, bio));
179 if (!btrfs_bioset)
180 goto free_buffer_cache;
181
182 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
183 goto free_bioset;
184
185 return 0;
186
187 free_bioset:
188 bioset_free(btrfs_bioset);
189 btrfs_bioset = NULL;
190
191 free_buffer_cache:
192 kmem_cache_destroy(extent_buffer_cache);
193 extent_buffer_cache = NULL;
194
195 free_state_cache:
196 kmem_cache_destroy(extent_state_cache);
197 extent_state_cache = NULL;
198 return -ENOMEM;
199 }
200
201 void extent_io_exit(void)
202 {
203 btrfs_leak_debug_check();
204
205 /*
206 * Make sure all delayed rcu free are flushed before we
207 * destroy caches.
208 */
209 rcu_barrier();
210 kmem_cache_destroy(extent_state_cache);
211 kmem_cache_destroy(extent_buffer_cache);
212 if (btrfs_bioset)
213 bioset_free(btrfs_bioset);
214 }
215
216 void extent_io_tree_init(struct extent_io_tree *tree,
217 struct address_space *mapping)
218 {
219 tree->state = RB_ROOT;
220 tree->ops = NULL;
221 tree->dirty_bytes = 0;
222 spin_lock_init(&tree->lock);
223 tree->mapping = mapping;
224 }
225
226 static struct extent_state *alloc_extent_state(gfp_t mask)
227 {
228 struct extent_state *state;
229
230 state = kmem_cache_alloc(extent_state_cache, mask);
231 if (!state)
232 return state;
233 state->state = 0;
234 state->failrec = NULL;
235 RB_CLEAR_NODE(&state->rb_node);
236 btrfs_leak_debug_add(&state->leak_list, &states);
237 atomic_set(&state->refs, 1);
238 init_waitqueue_head(&state->wq);
239 trace_alloc_extent_state(state, mask, _RET_IP_);
240 return state;
241 }
242
243 void free_extent_state(struct extent_state *state)
244 {
245 if (!state)
246 return;
247 if (atomic_dec_and_test(&state->refs)) {
248 WARN_ON(extent_state_in_tree(state));
249 btrfs_leak_debug_del(&state->leak_list);
250 trace_free_extent_state(state, _RET_IP_);
251 kmem_cache_free(extent_state_cache, state);
252 }
253 }
254
255 static struct rb_node *tree_insert(struct rb_root *root,
256 struct rb_node *search_start,
257 u64 offset,
258 struct rb_node *node,
259 struct rb_node ***p_in,
260 struct rb_node **parent_in)
261 {
262 struct rb_node **p;
263 struct rb_node *parent = NULL;
264 struct tree_entry *entry;
265
266 if (p_in && parent_in) {
267 p = *p_in;
268 parent = *parent_in;
269 goto do_insert;
270 }
271
272 p = search_start ? &search_start : &root->rb_node;
273 while (*p) {
274 parent = *p;
275 entry = rb_entry(parent, struct tree_entry, rb_node);
276
277 if (offset < entry->start)
278 p = &(*p)->rb_left;
279 else if (offset > entry->end)
280 p = &(*p)->rb_right;
281 else
282 return parent;
283 }
284
285 do_insert:
286 rb_link_node(node, parent, p);
287 rb_insert_color(node, root);
288 return NULL;
289 }
290
291 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
292 struct rb_node **prev_ret,
293 struct rb_node **next_ret,
294 struct rb_node ***p_ret,
295 struct rb_node **parent_ret)
296 {
297 struct rb_root *root = &tree->state;
298 struct rb_node **n = &root->rb_node;
299 struct rb_node *prev = NULL;
300 struct rb_node *orig_prev = NULL;
301 struct tree_entry *entry;
302 struct tree_entry *prev_entry = NULL;
303
304 while (*n) {
305 prev = *n;
306 entry = rb_entry(prev, struct tree_entry, rb_node);
307 prev_entry = entry;
308
309 if (offset < entry->start)
310 n = &(*n)->rb_left;
311 else if (offset > entry->end)
312 n = &(*n)->rb_right;
313 else
314 return *n;
315 }
316
317 if (p_ret)
318 *p_ret = n;
319 if (parent_ret)
320 *parent_ret = prev;
321
322 if (prev_ret) {
323 orig_prev = prev;
324 while (prev && offset > prev_entry->end) {
325 prev = rb_next(prev);
326 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
327 }
328 *prev_ret = prev;
329 prev = orig_prev;
330 }
331
332 if (next_ret) {
333 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
334 while (prev && offset < prev_entry->start) {
335 prev = rb_prev(prev);
336 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
337 }
338 *next_ret = prev;
339 }
340 return NULL;
341 }
342
343 static inline struct rb_node *
344 tree_search_for_insert(struct extent_io_tree *tree,
345 u64 offset,
346 struct rb_node ***p_ret,
347 struct rb_node **parent_ret)
348 {
349 struct rb_node *prev = NULL;
350 struct rb_node *ret;
351
352 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
353 if (!ret)
354 return prev;
355 return ret;
356 }
357
358 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
359 u64 offset)
360 {
361 return tree_search_for_insert(tree, offset, NULL, NULL);
362 }
363
364 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
365 struct extent_state *other)
366 {
367 if (tree->ops && tree->ops->merge_extent_hook)
368 tree->ops->merge_extent_hook(tree->mapping->host, new,
369 other);
370 }
371
372 /*
373 * utility function to look for merge candidates inside a given range.
374 * Any extents with matching state are merged together into a single
375 * extent in the tree. Extents with EXTENT_IO in their state field
376 * are not merged because the end_io handlers need to be able to do
377 * operations on them without sleeping (or doing allocations/splits).
378 *
379 * This should be called with the tree lock held.
380 */
381 static void merge_state(struct extent_io_tree *tree,
382 struct extent_state *state)
383 {
384 struct extent_state *other;
385 struct rb_node *other_node;
386
387 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
388 return;
389
390 other_node = rb_prev(&state->rb_node);
391 if (other_node) {
392 other = rb_entry(other_node, struct extent_state, rb_node);
393 if (other->end == state->start - 1 &&
394 other->state == state->state) {
395 merge_cb(tree, state, other);
396 state->start = other->start;
397 rb_erase(&other->rb_node, &tree->state);
398 RB_CLEAR_NODE(&other->rb_node);
399 free_extent_state(other);
400 }
401 }
402 other_node = rb_next(&state->rb_node);
403 if (other_node) {
404 other = rb_entry(other_node, struct extent_state, rb_node);
405 if (other->start == state->end + 1 &&
406 other->state == state->state) {
407 merge_cb(tree, state, other);
408 state->end = other->end;
409 rb_erase(&other->rb_node, &tree->state);
410 RB_CLEAR_NODE(&other->rb_node);
411 free_extent_state(other);
412 }
413 }
414 }
415
416 static void set_state_cb(struct extent_io_tree *tree,
417 struct extent_state *state, unsigned *bits)
418 {
419 if (tree->ops && tree->ops->set_bit_hook)
420 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
421 }
422
423 static void clear_state_cb(struct extent_io_tree *tree,
424 struct extent_state *state, unsigned *bits)
425 {
426 if (tree->ops && tree->ops->clear_bit_hook)
427 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
428 }
429
430 static void set_state_bits(struct extent_io_tree *tree,
431 struct extent_state *state, unsigned *bits,
432 struct extent_changeset *changeset);
433
434 /*
435 * insert an extent_state struct into the tree. 'bits' are set on the
436 * struct before it is inserted.
437 *
438 * This may return -EEXIST if the extent is already there, in which case the
439 * state struct is freed.
440 *
441 * The tree lock is not taken internally. This is a utility function and
442 * probably isn't what you want to call (see set/clear_extent_bit).
443 */
444 static int insert_state(struct extent_io_tree *tree,
445 struct extent_state *state, u64 start, u64 end,
446 struct rb_node ***p,
447 struct rb_node **parent,
448 unsigned *bits, struct extent_changeset *changeset)
449 {
450 struct rb_node *node;
451
452 if (end < start)
453 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
454 end, start);
455 state->start = start;
456 state->end = end;
457
458 set_state_bits(tree, state, bits, changeset);
459
460 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
461 if (node) {
462 struct extent_state *found;
463 found = rb_entry(node, struct extent_state, rb_node);
464 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
465 "%llu %llu\n",
466 found->start, found->end, start, end);
467 return -EEXIST;
468 }
469 merge_state(tree, state);
470 return 0;
471 }
472
473 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
474 u64 split)
475 {
476 if (tree->ops && tree->ops->split_extent_hook)
477 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
478 }
479
480 /*
481 * split a given extent state struct in two, inserting the preallocated
482 * struct 'prealloc' as the newly created second half. 'split' indicates an
483 * offset inside 'orig' where it should be split.
484 *
485 * Before calling,
486 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
487 * are two extent state structs in the tree:
488 * prealloc: [orig->start, split - 1]
489 * orig: [ split, orig->end ]
490 *
491 * The tree locks are not taken by this function. They need to be held
492 * by the caller.
493 */
494 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
495 struct extent_state *prealloc, u64 split)
496 {
497 struct rb_node *node;
498
499 split_cb(tree, orig, split);
500
501 prealloc->start = orig->start;
502 prealloc->end = split - 1;
503 prealloc->state = orig->state;
504 orig->start = split;
505
506 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
507 &prealloc->rb_node, NULL, NULL);
508 if (node) {
509 free_extent_state(prealloc);
510 return -EEXIST;
511 }
512 return 0;
513 }
514
515 static struct extent_state *next_state(struct extent_state *state)
516 {
517 struct rb_node *next = rb_next(&state->rb_node);
518 if (next)
519 return rb_entry(next, struct extent_state, rb_node);
520 else
521 return NULL;
522 }
523
524 /*
525 * utility function to clear some bits in an extent state struct.
526 * it will optionally wake up any one waiting on this state (wake == 1).
527 *
528 * If no bits are set on the state struct after clearing things, the
529 * struct is freed and removed from the tree
530 */
531 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
532 struct extent_state *state,
533 unsigned *bits, int wake,
534 struct extent_changeset *changeset)
535 {
536 struct extent_state *next;
537 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
538
539 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
540 u64 range = state->end - state->start + 1;
541 WARN_ON(range > tree->dirty_bytes);
542 tree->dirty_bytes -= range;
543 }
544 clear_state_cb(tree, state, bits);
545 add_extent_changeset(state, bits_to_clear, changeset, 0);
546 state->state &= ~bits_to_clear;
547 if (wake)
548 wake_up(&state->wq);
549 if (state->state == 0) {
550 next = next_state(state);
551 if (extent_state_in_tree(state)) {
552 rb_erase(&state->rb_node, &tree->state);
553 RB_CLEAR_NODE(&state->rb_node);
554 free_extent_state(state);
555 } else {
556 WARN_ON(1);
557 }
558 } else {
559 merge_state(tree, state);
560 next = next_state(state);
561 }
562 return next;
563 }
564
565 static struct extent_state *
566 alloc_extent_state_atomic(struct extent_state *prealloc)
567 {
568 if (!prealloc)
569 prealloc = alloc_extent_state(GFP_ATOMIC);
570
571 return prealloc;
572 }
573
574 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
575 {
576 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
577 "Extent tree was modified by another "
578 "thread while locked.");
579 }
580
581 /*
582 * clear some bits on a range in the tree. This may require splitting
583 * or inserting elements in the tree, so the gfp mask is used to
584 * indicate which allocations or sleeping are allowed.
585 *
586 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
587 * the given range from the tree regardless of state (ie for truncate).
588 *
589 * the range [start, end] is inclusive.
590 *
591 * This takes the tree lock, and returns 0 on success and < 0 on error.
592 */
593 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
594 unsigned bits, int wake, int delete,
595 struct extent_state **cached_state,
596 gfp_t mask, struct extent_changeset *changeset)
597 {
598 struct extent_state *state;
599 struct extent_state *cached;
600 struct extent_state *prealloc = NULL;
601 struct rb_node *node;
602 u64 last_end;
603 int err;
604 int clear = 0;
605
606 btrfs_debug_check_extent_io_range(tree, start, end);
607
608 if (bits & EXTENT_DELALLOC)
609 bits |= EXTENT_NORESERVE;
610
611 if (delete)
612 bits |= ~EXTENT_CTLBITS;
613 bits |= EXTENT_FIRST_DELALLOC;
614
615 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
616 clear = 1;
617 again:
618 if (!prealloc && gfpflags_allow_blocking(mask)) {
619 /*
620 * Don't care for allocation failure here because we might end
621 * up not needing the pre-allocated extent state at all, which
622 * is the case if we only have in the tree extent states that
623 * cover our input range and don't cover too any other range.
624 * If we end up needing a new extent state we allocate it later.
625 */
626 prealloc = alloc_extent_state(mask);
627 }
628
629 spin_lock(&tree->lock);
630 if (cached_state) {
631 cached = *cached_state;
632
633 if (clear) {
634 *cached_state = NULL;
635 cached_state = NULL;
636 }
637
638 if (cached && extent_state_in_tree(cached) &&
639 cached->start <= start && cached->end > start) {
640 if (clear)
641 atomic_dec(&cached->refs);
642 state = cached;
643 goto hit_next;
644 }
645 if (clear)
646 free_extent_state(cached);
647 }
648 /*
649 * this search will find the extents that end after
650 * our range starts
651 */
652 node = tree_search(tree, start);
653 if (!node)
654 goto out;
655 state = rb_entry(node, struct extent_state, rb_node);
656 hit_next:
657 if (state->start > end)
658 goto out;
659 WARN_ON(state->end < start);
660 last_end = state->end;
661
662 /* the state doesn't have the wanted bits, go ahead */
663 if (!(state->state & bits)) {
664 state = next_state(state);
665 goto next;
666 }
667
668 /*
669 * | ---- desired range ---- |
670 * | state | or
671 * | ------------- state -------------- |
672 *
673 * We need to split the extent we found, and may flip
674 * bits on second half.
675 *
676 * If the extent we found extends past our range, we
677 * just split and search again. It'll get split again
678 * the next time though.
679 *
680 * If the extent we found is inside our range, we clear
681 * the desired bit on it.
682 */
683
684 if (state->start < start) {
685 prealloc = alloc_extent_state_atomic(prealloc);
686 BUG_ON(!prealloc);
687 err = split_state(tree, state, prealloc, start);
688 if (err)
689 extent_io_tree_panic(tree, err);
690
691 prealloc = NULL;
692 if (err)
693 goto out;
694 if (state->end <= end) {
695 state = clear_state_bit(tree, state, &bits, wake,
696 changeset);
697 goto next;
698 }
699 goto search_again;
700 }
701 /*
702 * | ---- desired range ---- |
703 * | state |
704 * We need to split the extent, and clear the bit
705 * on the first half
706 */
707 if (state->start <= end && state->end > end) {
708 prealloc = alloc_extent_state_atomic(prealloc);
709 BUG_ON(!prealloc);
710 err = split_state(tree, state, prealloc, end + 1);
711 if (err)
712 extent_io_tree_panic(tree, err);
713
714 if (wake)
715 wake_up(&state->wq);
716
717 clear_state_bit(tree, prealloc, &bits, wake, changeset);
718
719 prealloc = NULL;
720 goto out;
721 }
722
723 state = clear_state_bit(tree, state, &bits, wake, changeset);
724 next:
725 if (last_end == (u64)-1)
726 goto out;
727 start = last_end + 1;
728 if (start <= end && state && !need_resched())
729 goto hit_next;
730
731 search_again:
732 if (start > end)
733 goto out;
734 spin_unlock(&tree->lock);
735 if (gfpflags_allow_blocking(mask))
736 cond_resched();
737 goto again;
738
739 out:
740 spin_unlock(&tree->lock);
741 if (prealloc)
742 free_extent_state(prealloc);
743
744 return 0;
745
746 }
747
748 static void wait_on_state(struct extent_io_tree *tree,
749 struct extent_state *state)
750 __releases(tree->lock)
751 __acquires(tree->lock)
752 {
753 DEFINE_WAIT(wait);
754 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
755 spin_unlock(&tree->lock);
756 schedule();
757 spin_lock(&tree->lock);
758 finish_wait(&state->wq, &wait);
759 }
760
761 /*
762 * waits for one or more bits to clear on a range in the state tree.
763 * The range [start, end] is inclusive.
764 * The tree lock is taken by this function
765 */
766 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
767 unsigned long bits)
768 {
769 struct extent_state *state;
770 struct rb_node *node;
771
772 btrfs_debug_check_extent_io_range(tree, start, end);
773
774 spin_lock(&tree->lock);
775 again:
776 while (1) {
777 /*
778 * this search will find all the extents that end after
779 * our range starts
780 */
781 node = tree_search(tree, start);
782 process_node:
783 if (!node)
784 break;
785
786 state = rb_entry(node, struct extent_state, rb_node);
787
788 if (state->start > end)
789 goto out;
790
791 if (state->state & bits) {
792 start = state->start;
793 atomic_inc(&state->refs);
794 wait_on_state(tree, state);
795 free_extent_state(state);
796 goto again;
797 }
798 start = state->end + 1;
799
800 if (start > end)
801 break;
802
803 if (!cond_resched_lock(&tree->lock)) {
804 node = rb_next(node);
805 goto process_node;
806 }
807 }
808 out:
809 spin_unlock(&tree->lock);
810 }
811
812 static void set_state_bits(struct extent_io_tree *tree,
813 struct extent_state *state,
814 unsigned *bits, struct extent_changeset *changeset)
815 {
816 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
817
818 set_state_cb(tree, state, bits);
819 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
820 u64 range = state->end - state->start + 1;
821 tree->dirty_bytes += range;
822 }
823 add_extent_changeset(state, bits_to_set, changeset, 1);
824 state->state |= bits_to_set;
825 }
826
827 static void cache_state_if_flags(struct extent_state *state,
828 struct extent_state **cached_ptr,
829 unsigned flags)
830 {
831 if (cached_ptr && !(*cached_ptr)) {
832 if (!flags || (state->state & flags)) {
833 *cached_ptr = state;
834 atomic_inc(&state->refs);
835 }
836 }
837 }
838
839 static void cache_state(struct extent_state *state,
840 struct extent_state **cached_ptr)
841 {
842 return cache_state_if_flags(state, cached_ptr,
843 EXTENT_IOBITS | EXTENT_BOUNDARY);
844 }
845
846 /*
847 * set some bits on a range in the tree. This may require allocations or
848 * sleeping, so the gfp mask is used to indicate what is allowed.
849 *
850 * If any of the exclusive bits are set, this will fail with -EEXIST if some
851 * part of the range already has the desired bits set. The start of the
852 * existing range is returned in failed_start in this case.
853 *
854 * [start, end] is inclusive This takes the tree lock.
855 */
856
857 static int __must_check
858 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
859 unsigned bits, unsigned exclusive_bits,
860 u64 *failed_start, struct extent_state **cached_state,
861 gfp_t mask, struct extent_changeset *changeset)
862 {
863 struct extent_state *state;
864 struct extent_state *prealloc = NULL;
865 struct rb_node *node;
866 struct rb_node **p;
867 struct rb_node *parent;
868 int err = 0;
869 u64 last_start;
870 u64 last_end;
871
872 btrfs_debug_check_extent_io_range(tree, start, end);
873
874 bits |= EXTENT_FIRST_DELALLOC;
875 again:
876 if (!prealloc && gfpflags_allow_blocking(mask)) {
877 /*
878 * Don't care for allocation failure here because we might end
879 * up not needing the pre-allocated extent state at all, which
880 * is the case if we only have in the tree extent states that
881 * cover our input range and don't cover too any other range.
882 * If we end up needing a new extent state we allocate it later.
883 */
884 prealloc = alloc_extent_state(mask);
885 }
886
887 spin_lock(&tree->lock);
888 if (cached_state && *cached_state) {
889 state = *cached_state;
890 if (state->start <= start && state->end > start &&
891 extent_state_in_tree(state)) {
892 node = &state->rb_node;
893 goto hit_next;
894 }
895 }
896 /*
897 * this search will find all the extents that end after
898 * our range starts.
899 */
900 node = tree_search_for_insert(tree, start, &p, &parent);
901 if (!node) {
902 prealloc = alloc_extent_state_atomic(prealloc);
903 BUG_ON(!prealloc);
904 err = insert_state(tree, prealloc, start, end,
905 &p, &parent, &bits, changeset);
906 if (err)
907 extent_io_tree_panic(tree, err);
908
909 cache_state(prealloc, cached_state);
910 prealloc = NULL;
911 goto out;
912 }
913 state = rb_entry(node, struct extent_state, rb_node);
914 hit_next:
915 last_start = state->start;
916 last_end = state->end;
917
918 /*
919 * | ---- desired range ---- |
920 * | state |
921 *
922 * Just lock what we found and keep going
923 */
924 if (state->start == start && state->end <= end) {
925 if (state->state & exclusive_bits) {
926 *failed_start = state->start;
927 err = -EEXIST;
928 goto out;
929 }
930
931 set_state_bits(tree, state, &bits, changeset);
932 cache_state(state, cached_state);
933 merge_state(tree, state);
934 if (last_end == (u64)-1)
935 goto out;
936 start = last_end + 1;
937 state = next_state(state);
938 if (start < end && state && state->start == start &&
939 !need_resched())
940 goto hit_next;
941 goto search_again;
942 }
943
944 /*
945 * | ---- desired range ---- |
946 * | state |
947 * or
948 * | ------------- state -------------- |
949 *
950 * We need to split the extent we found, and may flip bits on
951 * second half.
952 *
953 * If the extent we found extends past our
954 * range, we just split and search again. It'll get split
955 * again the next time though.
956 *
957 * If the extent we found is inside our range, we set the
958 * desired bit on it.
959 */
960 if (state->start < start) {
961 if (state->state & exclusive_bits) {
962 *failed_start = start;
963 err = -EEXIST;
964 goto out;
965 }
966
967 prealloc = alloc_extent_state_atomic(prealloc);
968 BUG_ON(!prealloc);
969 err = split_state(tree, state, prealloc, start);
970 if (err)
971 extent_io_tree_panic(tree, err);
972
973 prealloc = NULL;
974 if (err)
975 goto out;
976 if (state->end <= end) {
977 set_state_bits(tree, state, &bits, changeset);
978 cache_state(state, cached_state);
979 merge_state(tree, state);
980 if (last_end == (u64)-1)
981 goto out;
982 start = last_end + 1;
983 state = next_state(state);
984 if (start < end && state && state->start == start &&
985 !need_resched())
986 goto hit_next;
987 }
988 goto search_again;
989 }
990 /*
991 * | ---- desired range ---- |
992 * | state | or | state |
993 *
994 * There's a hole, we need to insert something in it and
995 * ignore the extent we found.
996 */
997 if (state->start > start) {
998 u64 this_end;
999 if (end < last_start)
1000 this_end = end;
1001 else
1002 this_end = last_start - 1;
1003
1004 prealloc = alloc_extent_state_atomic(prealloc);
1005 BUG_ON(!prealloc);
1006
1007 /*
1008 * Avoid to free 'prealloc' if it can be merged with
1009 * the later extent.
1010 */
1011 err = insert_state(tree, prealloc, start, this_end,
1012 NULL, NULL, &bits, changeset);
1013 if (err)
1014 extent_io_tree_panic(tree, err);
1015
1016 cache_state(prealloc, cached_state);
1017 prealloc = NULL;
1018 start = this_end + 1;
1019 goto search_again;
1020 }
1021 /*
1022 * | ---- desired range ---- |
1023 * | state |
1024 * We need to split the extent, and set the bit
1025 * on the first half
1026 */
1027 if (state->start <= end && state->end > end) {
1028 if (state->state & exclusive_bits) {
1029 *failed_start = start;
1030 err = -EEXIST;
1031 goto out;
1032 }
1033
1034 prealloc = alloc_extent_state_atomic(prealloc);
1035 BUG_ON(!prealloc);
1036 err = split_state(tree, state, prealloc, end + 1);
1037 if (err)
1038 extent_io_tree_panic(tree, err);
1039
1040 set_state_bits(tree, prealloc, &bits, changeset);
1041 cache_state(prealloc, cached_state);
1042 merge_state(tree, prealloc);
1043 prealloc = NULL;
1044 goto out;
1045 }
1046
1047 search_again:
1048 if (start > end)
1049 goto out;
1050 spin_unlock(&tree->lock);
1051 if (gfpflags_allow_blocking(mask))
1052 cond_resched();
1053 goto again;
1054
1055 out:
1056 spin_unlock(&tree->lock);
1057 if (prealloc)
1058 free_extent_state(prealloc);
1059
1060 return err;
1061
1062 }
1063
1064 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1065 unsigned bits, u64 * failed_start,
1066 struct extent_state **cached_state, gfp_t mask)
1067 {
1068 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1069 cached_state, mask, NULL);
1070 }
1071
1072
1073 /**
1074 * convert_extent_bit - convert all bits in a given range from one bit to
1075 * another
1076 * @tree: the io tree to search
1077 * @start: the start offset in bytes
1078 * @end: the end offset in bytes (inclusive)
1079 * @bits: the bits to set in this range
1080 * @clear_bits: the bits to clear in this range
1081 * @cached_state: state that we're going to cache
1082 *
1083 * This will go through and set bits for the given range. If any states exist
1084 * already in this range they are set with the given bit and cleared of the
1085 * clear_bits. This is only meant to be used by things that are mergeable, ie
1086 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1087 * boundary bits like LOCK.
1088 *
1089 * All allocations are done with GFP_NOFS.
1090 */
1091 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1092 unsigned bits, unsigned clear_bits,
1093 struct extent_state **cached_state)
1094 {
1095 struct extent_state *state;
1096 struct extent_state *prealloc = NULL;
1097 struct rb_node *node;
1098 struct rb_node **p;
1099 struct rb_node *parent;
1100 int err = 0;
1101 u64 last_start;
1102 u64 last_end;
1103 bool first_iteration = true;
1104
1105 btrfs_debug_check_extent_io_range(tree, start, end);
1106
1107 again:
1108 if (!prealloc) {
1109 /*
1110 * Best effort, don't worry if extent state allocation fails
1111 * here for the first iteration. We might have a cached state
1112 * that matches exactly the target range, in which case no
1113 * extent state allocations are needed. We'll only know this
1114 * after locking the tree.
1115 */
1116 prealloc = alloc_extent_state(GFP_NOFS);
1117 if (!prealloc && !first_iteration)
1118 return -ENOMEM;
1119 }
1120
1121 spin_lock(&tree->lock);
1122 if (cached_state && *cached_state) {
1123 state = *cached_state;
1124 if (state->start <= start && state->end > start &&
1125 extent_state_in_tree(state)) {
1126 node = &state->rb_node;
1127 goto hit_next;
1128 }
1129 }
1130
1131 /*
1132 * this search will find all the extents that end after
1133 * our range starts.
1134 */
1135 node = tree_search_for_insert(tree, start, &p, &parent);
1136 if (!node) {
1137 prealloc = alloc_extent_state_atomic(prealloc);
1138 if (!prealloc) {
1139 err = -ENOMEM;
1140 goto out;
1141 }
1142 err = insert_state(tree, prealloc, start, end,
1143 &p, &parent, &bits, NULL);
1144 if (err)
1145 extent_io_tree_panic(tree, err);
1146 cache_state(prealloc, cached_state);
1147 prealloc = NULL;
1148 goto out;
1149 }
1150 state = rb_entry(node, struct extent_state, rb_node);
1151 hit_next:
1152 last_start = state->start;
1153 last_end = state->end;
1154
1155 /*
1156 * | ---- desired range ---- |
1157 * | state |
1158 *
1159 * Just lock what we found and keep going
1160 */
1161 if (state->start == start && state->end <= end) {
1162 set_state_bits(tree, state, &bits, NULL);
1163 cache_state(state, cached_state);
1164 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1165 if (last_end == (u64)-1)
1166 goto out;
1167 start = last_end + 1;
1168 if (start < end && state && state->start == start &&
1169 !need_resched())
1170 goto hit_next;
1171 goto search_again;
1172 }
1173
1174 /*
1175 * | ---- desired range ---- |
1176 * | state |
1177 * or
1178 * | ------------- state -------------- |
1179 *
1180 * We need to split the extent we found, and may flip bits on
1181 * second half.
1182 *
1183 * If the extent we found extends past our
1184 * range, we just split and search again. It'll get split
1185 * again the next time though.
1186 *
1187 * If the extent we found is inside our range, we set the
1188 * desired bit on it.
1189 */
1190 if (state->start < start) {
1191 prealloc = alloc_extent_state_atomic(prealloc);
1192 if (!prealloc) {
1193 err = -ENOMEM;
1194 goto out;
1195 }
1196 err = split_state(tree, state, prealloc, start);
1197 if (err)
1198 extent_io_tree_panic(tree, err);
1199 prealloc = NULL;
1200 if (err)
1201 goto out;
1202 if (state->end <= end) {
1203 set_state_bits(tree, state, &bits, NULL);
1204 cache_state(state, cached_state);
1205 state = clear_state_bit(tree, state, &clear_bits, 0,
1206 NULL);
1207 if (last_end == (u64)-1)
1208 goto out;
1209 start = last_end + 1;
1210 if (start < end && state && state->start == start &&
1211 !need_resched())
1212 goto hit_next;
1213 }
1214 goto search_again;
1215 }
1216 /*
1217 * | ---- desired range ---- |
1218 * | state | or | state |
1219 *
1220 * There's a hole, we need to insert something in it and
1221 * ignore the extent we found.
1222 */
1223 if (state->start > start) {
1224 u64 this_end;
1225 if (end < last_start)
1226 this_end = end;
1227 else
1228 this_end = last_start - 1;
1229
1230 prealloc = alloc_extent_state_atomic(prealloc);
1231 if (!prealloc) {
1232 err = -ENOMEM;
1233 goto out;
1234 }
1235
1236 /*
1237 * Avoid to free 'prealloc' if it can be merged with
1238 * the later extent.
1239 */
1240 err = insert_state(tree, prealloc, start, this_end,
1241 NULL, NULL, &bits, NULL);
1242 if (err)
1243 extent_io_tree_panic(tree, err);
1244 cache_state(prealloc, cached_state);
1245 prealloc = NULL;
1246 start = this_end + 1;
1247 goto search_again;
1248 }
1249 /*
1250 * | ---- desired range ---- |
1251 * | state |
1252 * We need to split the extent, and set the bit
1253 * on the first half
1254 */
1255 if (state->start <= end && state->end > end) {
1256 prealloc = alloc_extent_state_atomic(prealloc);
1257 if (!prealloc) {
1258 err = -ENOMEM;
1259 goto out;
1260 }
1261
1262 err = split_state(tree, state, prealloc, end + 1);
1263 if (err)
1264 extent_io_tree_panic(tree, err);
1265
1266 set_state_bits(tree, prealloc, &bits, NULL);
1267 cache_state(prealloc, cached_state);
1268 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1269 prealloc = NULL;
1270 goto out;
1271 }
1272
1273 search_again:
1274 if (start > end)
1275 goto out;
1276 spin_unlock(&tree->lock);
1277 cond_resched();
1278 first_iteration = false;
1279 goto again;
1280
1281 out:
1282 spin_unlock(&tree->lock);
1283 if (prealloc)
1284 free_extent_state(prealloc);
1285
1286 return err;
1287 }
1288
1289 /* wrappers around set/clear extent bit */
1290 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1291 unsigned bits, struct extent_changeset *changeset)
1292 {
1293 /*
1294 * We don't support EXTENT_LOCKED yet, as current changeset will
1295 * record any bits changed, so for EXTENT_LOCKED case, it will
1296 * either fail with -EEXIST or changeset will record the whole
1297 * range.
1298 */
1299 BUG_ON(bits & EXTENT_LOCKED);
1300
1301 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1302 changeset);
1303 }
1304
1305 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1306 unsigned bits, int wake, int delete,
1307 struct extent_state **cached, gfp_t mask)
1308 {
1309 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1310 cached, mask, NULL);
1311 }
1312
1313 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1314 unsigned bits, struct extent_changeset *changeset)
1315 {
1316 /*
1317 * Don't support EXTENT_LOCKED case, same reason as
1318 * set_record_extent_bits().
1319 */
1320 BUG_ON(bits & EXTENT_LOCKED);
1321
1322 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1323 changeset);
1324 }
1325
1326 /*
1327 * either insert or lock state struct between start and end use mask to tell
1328 * us if waiting is desired.
1329 */
1330 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1331 struct extent_state **cached_state)
1332 {
1333 int err;
1334 u64 failed_start;
1335
1336 while (1) {
1337 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1338 EXTENT_LOCKED, &failed_start,
1339 cached_state, GFP_NOFS, NULL);
1340 if (err == -EEXIST) {
1341 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1342 start = failed_start;
1343 } else
1344 break;
1345 WARN_ON(start > end);
1346 }
1347 return err;
1348 }
1349
1350 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1351 {
1352 int err;
1353 u64 failed_start;
1354
1355 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1356 &failed_start, NULL, GFP_NOFS, NULL);
1357 if (err == -EEXIST) {
1358 if (failed_start > start)
1359 clear_extent_bit(tree, start, failed_start - 1,
1360 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1361 return 0;
1362 }
1363 return 1;
1364 }
1365
1366 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1367 {
1368 unsigned long index = start >> PAGE_SHIFT;
1369 unsigned long end_index = end >> PAGE_SHIFT;
1370 struct page *page;
1371
1372 while (index <= end_index) {
1373 page = find_get_page(inode->i_mapping, index);
1374 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1375 clear_page_dirty_for_io(page);
1376 put_page(page);
1377 index++;
1378 }
1379 }
1380
1381 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1382 {
1383 unsigned long index = start >> PAGE_SHIFT;
1384 unsigned long end_index = end >> PAGE_SHIFT;
1385 struct page *page;
1386
1387 while (index <= end_index) {
1388 page = find_get_page(inode->i_mapping, index);
1389 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1390 __set_page_dirty_nobuffers(page);
1391 account_page_redirty(page);
1392 put_page(page);
1393 index++;
1394 }
1395 }
1396
1397 /*
1398 * helper function to set both pages and extents in the tree writeback
1399 */
1400 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1401 {
1402 unsigned long index = start >> PAGE_SHIFT;
1403 unsigned long end_index = end >> PAGE_SHIFT;
1404 struct page *page;
1405
1406 while (index <= end_index) {
1407 page = find_get_page(tree->mapping, index);
1408 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1409 set_page_writeback(page);
1410 put_page(page);
1411 index++;
1412 }
1413 }
1414
1415 /* find the first state struct with 'bits' set after 'start', and
1416 * return it. tree->lock must be held. NULL will returned if
1417 * nothing was found after 'start'
1418 */
1419 static struct extent_state *
1420 find_first_extent_bit_state(struct extent_io_tree *tree,
1421 u64 start, unsigned bits)
1422 {
1423 struct rb_node *node;
1424 struct extent_state *state;
1425
1426 /*
1427 * this search will find all the extents that end after
1428 * our range starts.
1429 */
1430 node = tree_search(tree, start);
1431 if (!node)
1432 goto out;
1433
1434 while (1) {
1435 state = rb_entry(node, struct extent_state, rb_node);
1436 if (state->end >= start && (state->state & bits))
1437 return state;
1438
1439 node = rb_next(node);
1440 if (!node)
1441 break;
1442 }
1443 out:
1444 return NULL;
1445 }
1446
1447 /*
1448 * find the first offset in the io tree with 'bits' set. zero is
1449 * returned if we find something, and *start_ret and *end_ret are
1450 * set to reflect the state struct that was found.
1451 *
1452 * If nothing was found, 1 is returned. If found something, return 0.
1453 */
1454 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1455 u64 *start_ret, u64 *end_ret, unsigned bits,
1456 struct extent_state **cached_state)
1457 {
1458 struct extent_state *state;
1459 struct rb_node *n;
1460 int ret = 1;
1461
1462 spin_lock(&tree->lock);
1463 if (cached_state && *cached_state) {
1464 state = *cached_state;
1465 if (state->end == start - 1 && extent_state_in_tree(state)) {
1466 n = rb_next(&state->rb_node);
1467 while (n) {
1468 state = rb_entry(n, struct extent_state,
1469 rb_node);
1470 if (state->state & bits)
1471 goto got_it;
1472 n = rb_next(n);
1473 }
1474 free_extent_state(*cached_state);
1475 *cached_state = NULL;
1476 goto out;
1477 }
1478 free_extent_state(*cached_state);
1479 *cached_state = NULL;
1480 }
1481
1482 state = find_first_extent_bit_state(tree, start, bits);
1483 got_it:
1484 if (state) {
1485 cache_state_if_flags(state, cached_state, 0);
1486 *start_ret = state->start;
1487 *end_ret = state->end;
1488 ret = 0;
1489 }
1490 out:
1491 spin_unlock(&tree->lock);
1492 return ret;
1493 }
1494
1495 /*
1496 * find a contiguous range of bytes in the file marked as delalloc, not
1497 * more than 'max_bytes'. start and end are used to return the range,
1498 *
1499 * 1 is returned if we find something, 0 if nothing was in the tree
1500 */
1501 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1502 u64 *start, u64 *end, u64 max_bytes,
1503 struct extent_state **cached_state)
1504 {
1505 struct rb_node *node;
1506 struct extent_state *state;
1507 u64 cur_start = *start;
1508 u64 found = 0;
1509 u64 total_bytes = 0;
1510
1511 spin_lock(&tree->lock);
1512
1513 /*
1514 * this search will find all the extents that end after
1515 * our range starts.
1516 */
1517 node = tree_search(tree, cur_start);
1518 if (!node) {
1519 if (!found)
1520 *end = (u64)-1;
1521 goto out;
1522 }
1523
1524 while (1) {
1525 state = rb_entry(node, struct extent_state, rb_node);
1526 if (found && (state->start != cur_start ||
1527 (state->state & EXTENT_BOUNDARY))) {
1528 goto out;
1529 }
1530 if (!(state->state & EXTENT_DELALLOC)) {
1531 if (!found)
1532 *end = state->end;
1533 goto out;
1534 }
1535 if (!found) {
1536 *start = state->start;
1537 *cached_state = state;
1538 atomic_inc(&state->refs);
1539 }
1540 found++;
1541 *end = state->end;
1542 cur_start = state->end + 1;
1543 node = rb_next(node);
1544 total_bytes += state->end - state->start + 1;
1545 if (total_bytes >= max_bytes)
1546 break;
1547 if (!node)
1548 break;
1549 }
1550 out:
1551 spin_unlock(&tree->lock);
1552 return found;
1553 }
1554
1555 static noinline void __unlock_for_delalloc(struct inode *inode,
1556 struct page *locked_page,
1557 u64 start, u64 end)
1558 {
1559 int ret;
1560 struct page *pages[16];
1561 unsigned long index = start >> PAGE_SHIFT;
1562 unsigned long end_index = end >> PAGE_SHIFT;
1563 unsigned long nr_pages = end_index - index + 1;
1564 int i;
1565
1566 if (index == locked_page->index && end_index == index)
1567 return;
1568
1569 while (nr_pages > 0) {
1570 ret = find_get_pages_contig(inode->i_mapping, index,
1571 min_t(unsigned long, nr_pages,
1572 ARRAY_SIZE(pages)), pages);
1573 for (i = 0; i < ret; i++) {
1574 if (pages[i] != locked_page)
1575 unlock_page(pages[i]);
1576 put_page(pages[i]);
1577 }
1578 nr_pages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
1582 }
1583
1584 static noinline int lock_delalloc_pages(struct inode *inode,
1585 struct page *locked_page,
1586 u64 delalloc_start,
1587 u64 delalloc_end)
1588 {
1589 unsigned long index = delalloc_start >> PAGE_SHIFT;
1590 unsigned long start_index = index;
1591 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1592 unsigned long pages_locked = 0;
1593 struct page *pages[16];
1594 unsigned long nrpages;
1595 int ret;
1596 int i;
1597
1598 /* the caller is responsible for locking the start index */
1599 if (index == locked_page->index && index == end_index)
1600 return 0;
1601
1602 /* skip the page at the start index */
1603 nrpages = end_index - index + 1;
1604 while (nrpages > 0) {
1605 ret = find_get_pages_contig(inode->i_mapping, index,
1606 min_t(unsigned long,
1607 nrpages, ARRAY_SIZE(pages)), pages);
1608 if (ret == 0) {
1609 ret = -EAGAIN;
1610 goto done;
1611 }
1612 /* now we have an array of pages, lock them all */
1613 for (i = 0; i < ret; i++) {
1614 /*
1615 * the caller is taking responsibility for
1616 * locked_page
1617 */
1618 if (pages[i] != locked_page) {
1619 lock_page(pages[i]);
1620 if (!PageDirty(pages[i]) ||
1621 pages[i]->mapping != inode->i_mapping) {
1622 ret = -EAGAIN;
1623 unlock_page(pages[i]);
1624 put_page(pages[i]);
1625 goto done;
1626 }
1627 }
1628 put_page(pages[i]);
1629 pages_locked++;
1630 }
1631 nrpages -= ret;
1632 index += ret;
1633 cond_resched();
1634 }
1635 ret = 0;
1636 done:
1637 if (ret && pages_locked) {
1638 __unlock_for_delalloc(inode, locked_page,
1639 delalloc_start,
1640 ((u64)(start_index + pages_locked - 1)) <<
1641 PAGE_SHIFT);
1642 }
1643 return ret;
1644 }
1645
1646 /*
1647 * find a contiguous range of bytes in the file marked as delalloc, not
1648 * more than 'max_bytes'. start and end are used to return the range,
1649 *
1650 * 1 is returned if we find something, 0 if nothing was in the tree
1651 */
1652 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653 struct extent_io_tree *tree,
1654 struct page *locked_page, u64 *start,
1655 u64 *end, u64 max_bytes)
1656 {
1657 u64 delalloc_start;
1658 u64 delalloc_end;
1659 u64 found;
1660 struct extent_state *cached_state = NULL;
1661 int ret;
1662 int loops = 0;
1663
1664 again:
1665 /* step one, find a bunch of delalloc bytes starting at start */
1666 delalloc_start = *start;
1667 delalloc_end = 0;
1668 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1669 max_bytes, &cached_state);
1670 if (!found || delalloc_end <= *start) {
1671 *start = delalloc_start;
1672 *end = delalloc_end;
1673 free_extent_state(cached_state);
1674 return 0;
1675 }
1676
1677 /*
1678 * start comes from the offset of locked_page. We have to lock
1679 * pages in order, so we can't process delalloc bytes before
1680 * locked_page
1681 */
1682 if (delalloc_start < *start)
1683 delalloc_start = *start;
1684
1685 /*
1686 * make sure to limit the number of pages we try to lock down
1687 */
1688 if (delalloc_end + 1 - delalloc_start > max_bytes)
1689 delalloc_end = delalloc_start + max_bytes - 1;
1690
1691 /* step two, lock all the pages after the page that has start */
1692 ret = lock_delalloc_pages(inode, locked_page,
1693 delalloc_start, delalloc_end);
1694 if (ret == -EAGAIN) {
1695 /* some of the pages are gone, lets avoid looping by
1696 * shortening the size of the delalloc range we're searching
1697 */
1698 free_extent_state(cached_state);
1699 cached_state = NULL;
1700 if (!loops) {
1701 max_bytes = PAGE_SIZE;
1702 loops = 1;
1703 goto again;
1704 } else {
1705 found = 0;
1706 goto out_failed;
1707 }
1708 }
1709 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1710
1711 /* step three, lock the state bits for the whole range */
1712 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1713
1714 /* then test to make sure it is all still delalloc */
1715 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1716 EXTENT_DELALLOC, 1, cached_state);
1717 if (!ret) {
1718 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719 &cached_state, GFP_NOFS);
1720 __unlock_for_delalloc(inode, locked_page,
1721 delalloc_start, delalloc_end);
1722 cond_resched();
1723 goto again;
1724 }
1725 free_extent_state(cached_state);
1726 *start = delalloc_start;
1727 *end = delalloc_end;
1728 out_failed:
1729 return found;
1730 }
1731
1732 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1733 u64 delalloc_end, struct page *locked_page,
1734 unsigned clear_bits,
1735 unsigned long page_ops)
1736 {
1737 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1738 int ret;
1739 struct page *pages[16];
1740 unsigned long index = start >> PAGE_SHIFT;
1741 unsigned long end_index = end >> PAGE_SHIFT;
1742 unsigned long nr_pages = end_index - index + 1;
1743 int i;
1744
1745 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1746 if (page_ops == 0)
1747 return;
1748
1749 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1750 mapping_set_error(inode->i_mapping, -EIO);
1751
1752 while (nr_pages > 0) {
1753 ret = find_get_pages_contig(inode->i_mapping, index,
1754 min_t(unsigned long,
1755 nr_pages, ARRAY_SIZE(pages)), pages);
1756 for (i = 0; i < ret; i++) {
1757
1758 if (page_ops & PAGE_SET_PRIVATE2)
1759 SetPagePrivate2(pages[i]);
1760
1761 if (pages[i] == locked_page) {
1762 put_page(pages[i]);
1763 continue;
1764 }
1765 if (page_ops & PAGE_CLEAR_DIRTY)
1766 clear_page_dirty_for_io(pages[i]);
1767 if (page_ops & PAGE_SET_WRITEBACK)
1768 set_page_writeback(pages[i]);
1769 if (page_ops & PAGE_SET_ERROR)
1770 SetPageError(pages[i]);
1771 if (page_ops & PAGE_END_WRITEBACK)
1772 end_page_writeback(pages[i]);
1773 if (page_ops & PAGE_UNLOCK)
1774 unlock_page(pages[i]);
1775 put_page(pages[i]);
1776 }
1777 nr_pages -= ret;
1778 index += ret;
1779 cond_resched();
1780 }
1781 }
1782
1783 /*
1784 * count the number of bytes in the tree that have a given bit(s)
1785 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1786 * cached. The total number found is returned.
1787 */
1788 u64 count_range_bits(struct extent_io_tree *tree,
1789 u64 *start, u64 search_end, u64 max_bytes,
1790 unsigned bits, int contig)
1791 {
1792 struct rb_node *node;
1793 struct extent_state *state;
1794 u64 cur_start = *start;
1795 u64 total_bytes = 0;
1796 u64 last = 0;
1797 int found = 0;
1798
1799 if (WARN_ON(search_end <= cur_start))
1800 return 0;
1801
1802 spin_lock(&tree->lock);
1803 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1804 total_bytes = tree->dirty_bytes;
1805 goto out;
1806 }
1807 /*
1808 * this search will find all the extents that end after
1809 * our range starts.
1810 */
1811 node = tree_search(tree, cur_start);
1812 if (!node)
1813 goto out;
1814
1815 while (1) {
1816 state = rb_entry(node, struct extent_state, rb_node);
1817 if (state->start > search_end)
1818 break;
1819 if (contig && found && state->start > last + 1)
1820 break;
1821 if (state->end >= cur_start && (state->state & bits) == bits) {
1822 total_bytes += min(search_end, state->end) + 1 -
1823 max(cur_start, state->start);
1824 if (total_bytes >= max_bytes)
1825 break;
1826 if (!found) {
1827 *start = max(cur_start, state->start);
1828 found = 1;
1829 }
1830 last = state->end;
1831 } else if (contig && found) {
1832 break;
1833 }
1834 node = rb_next(node);
1835 if (!node)
1836 break;
1837 }
1838 out:
1839 spin_unlock(&tree->lock);
1840 return total_bytes;
1841 }
1842
1843 /*
1844 * set the private field for a given byte offset in the tree. If there isn't
1845 * an extent_state there already, this does nothing.
1846 */
1847 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1848 struct io_failure_record *failrec)
1849 {
1850 struct rb_node *node;
1851 struct extent_state *state;
1852 int ret = 0;
1853
1854 spin_lock(&tree->lock);
1855 /*
1856 * this search will find all the extents that end after
1857 * our range starts.
1858 */
1859 node = tree_search(tree, start);
1860 if (!node) {
1861 ret = -ENOENT;
1862 goto out;
1863 }
1864 state = rb_entry(node, struct extent_state, rb_node);
1865 if (state->start != start) {
1866 ret = -ENOENT;
1867 goto out;
1868 }
1869 state->failrec = failrec;
1870 out:
1871 spin_unlock(&tree->lock);
1872 return ret;
1873 }
1874
1875 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1876 struct io_failure_record **failrec)
1877 {
1878 struct rb_node *node;
1879 struct extent_state *state;
1880 int ret = 0;
1881
1882 spin_lock(&tree->lock);
1883 /*
1884 * this search will find all the extents that end after
1885 * our range starts.
1886 */
1887 node = tree_search(tree, start);
1888 if (!node) {
1889 ret = -ENOENT;
1890 goto out;
1891 }
1892 state = rb_entry(node, struct extent_state, rb_node);
1893 if (state->start != start) {
1894 ret = -ENOENT;
1895 goto out;
1896 }
1897 *failrec = state->failrec;
1898 out:
1899 spin_unlock(&tree->lock);
1900 return ret;
1901 }
1902
1903 /*
1904 * searches a range in the state tree for a given mask.
1905 * If 'filled' == 1, this returns 1 only if every extent in the tree
1906 * has the bits set. Otherwise, 1 is returned if any bit in the
1907 * range is found set.
1908 */
1909 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1910 unsigned bits, int filled, struct extent_state *cached)
1911 {
1912 struct extent_state *state = NULL;
1913 struct rb_node *node;
1914 int bitset = 0;
1915
1916 spin_lock(&tree->lock);
1917 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1918 cached->end > start)
1919 node = &cached->rb_node;
1920 else
1921 node = tree_search(tree, start);
1922 while (node && start <= end) {
1923 state = rb_entry(node, struct extent_state, rb_node);
1924
1925 if (filled && state->start > start) {
1926 bitset = 0;
1927 break;
1928 }
1929
1930 if (state->start > end)
1931 break;
1932
1933 if (state->state & bits) {
1934 bitset = 1;
1935 if (!filled)
1936 break;
1937 } else if (filled) {
1938 bitset = 0;
1939 break;
1940 }
1941
1942 if (state->end == (u64)-1)
1943 break;
1944
1945 start = state->end + 1;
1946 if (start > end)
1947 break;
1948 node = rb_next(node);
1949 if (!node) {
1950 if (filled)
1951 bitset = 0;
1952 break;
1953 }
1954 }
1955 spin_unlock(&tree->lock);
1956 return bitset;
1957 }
1958
1959 /*
1960 * helper function to set a given page up to date if all the
1961 * extents in the tree for that page are up to date
1962 */
1963 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1964 {
1965 u64 start = page_offset(page);
1966 u64 end = start + PAGE_SIZE - 1;
1967 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1968 SetPageUptodate(page);
1969 }
1970
1971 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1972 {
1973 int ret;
1974 int err = 0;
1975 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1976
1977 set_state_failrec(failure_tree, rec->start, NULL);
1978 ret = clear_extent_bits(failure_tree, rec->start,
1979 rec->start + rec->len - 1,
1980 EXTENT_LOCKED | EXTENT_DIRTY);
1981 if (ret)
1982 err = ret;
1983
1984 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1985 rec->start + rec->len - 1,
1986 EXTENT_DAMAGED);
1987 if (ret && !err)
1988 err = ret;
1989
1990 kfree(rec);
1991 return err;
1992 }
1993
1994 /*
1995 * this bypasses the standard btrfs submit functions deliberately, as
1996 * the standard behavior is to write all copies in a raid setup. here we only
1997 * want to write the one bad copy. so we do the mapping for ourselves and issue
1998 * submit_bio directly.
1999 * to avoid any synchronization issues, wait for the data after writing, which
2000 * actually prevents the read that triggered the error from finishing.
2001 * currently, there can be no more than two copies of every data bit. thus,
2002 * exactly one rewrite is required.
2003 */
2004 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2005 struct page *page, unsigned int pg_offset, int mirror_num)
2006 {
2007 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2008 struct bio *bio;
2009 struct btrfs_device *dev;
2010 u64 map_length = 0;
2011 u64 sector;
2012 struct btrfs_bio *bbio = NULL;
2013 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2014 int ret;
2015
2016 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2017 BUG_ON(!mirror_num);
2018
2019 /* we can't repair anything in raid56 yet */
2020 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2021 return 0;
2022
2023 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2024 if (!bio)
2025 return -EIO;
2026 bio->bi_iter.bi_size = 0;
2027 map_length = length;
2028
2029 /*
2030 * Avoid races with device replace and make sure our bbio has devices
2031 * associated to its stripes that don't go away while we are doing the
2032 * read repair operation.
2033 */
2034 btrfs_bio_counter_inc_blocked(fs_info);
2035 ret = btrfs_map_block(fs_info, WRITE, logical,
2036 &map_length, &bbio, mirror_num);
2037 if (ret) {
2038 btrfs_bio_counter_dec(fs_info);
2039 bio_put(bio);
2040 return -EIO;
2041 }
2042 BUG_ON(mirror_num != bbio->mirror_num);
2043 sector = bbio->stripes[mirror_num-1].physical >> 9;
2044 bio->bi_iter.bi_sector = sector;
2045 dev = bbio->stripes[mirror_num-1].dev;
2046 btrfs_put_bbio(bbio);
2047 if (!dev || !dev->bdev || !dev->writeable) {
2048 btrfs_bio_counter_dec(fs_info);
2049 bio_put(bio);
2050 return -EIO;
2051 }
2052 bio->bi_bdev = dev->bdev;
2053 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_SYNC);
2054 bio_add_page(bio, page, length, pg_offset);
2055
2056 if (btrfsic_submit_bio_wait(bio)) {
2057 /* try to remap that extent elsewhere? */
2058 btrfs_bio_counter_dec(fs_info);
2059 bio_put(bio);
2060 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2061 return -EIO;
2062 }
2063
2064 btrfs_info_rl_in_rcu(fs_info,
2065 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2066 btrfs_ino(inode), start,
2067 rcu_str_deref(dev->name), sector);
2068 btrfs_bio_counter_dec(fs_info);
2069 bio_put(bio);
2070 return 0;
2071 }
2072
2073 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2074 int mirror_num)
2075 {
2076 u64 start = eb->start;
2077 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2078 int ret = 0;
2079
2080 if (root->fs_info->sb->s_flags & MS_RDONLY)
2081 return -EROFS;
2082
2083 for (i = 0; i < num_pages; i++) {
2084 struct page *p = eb->pages[i];
2085
2086 ret = repair_io_failure(root->fs_info->btree_inode, start,
2087 PAGE_SIZE, start, p,
2088 start - page_offset(p), mirror_num);
2089 if (ret)
2090 break;
2091 start += PAGE_SIZE;
2092 }
2093
2094 return ret;
2095 }
2096
2097 /*
2098 * each time an IO finishes, we do a fast check in the IO failure tree
2099 * to see if we need to process or clean up an io_failure_record
2100 */
2101 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2102 unsigned int pg_offset)
2103 {
2104 u64 private;
2105 struct io_failure_record *failrec;
2106 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2107 struct extent_state *state;
2108 int num_copies;
2109 int ret;
2110
2111 private = 0;
2112 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2113 (u64)-1, 1, EXTENT_DIRTY, 0);
2114 if (!ret)
2115 return 0;
2116
2117 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2118 &failrec);
2119 if (ret)
2120 return 0;
2121
2122 BUG_ON(!failrec->this_mirror);
2123
2124 if (failrec->in_validation) {
2125 /* there was no real error, just free the record */
2126 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2127 failrec->start);
2128 goto out;
2129 }
2130 if (fs_info->sb->s_flags & MS_RDONLY)
2131 goto out;
2132
2133 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2134 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2135 failrec->start,
2136 EXTENT_LOCKED);
2137 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2138
2139 if (state && state->start <= failrec->start &&
2140 state->end >= failrec->start + failrec->len - 1) {
2141 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2142 failrec->len);
2143 if (num_copies > 1) {
2144 repair_io_failure(inode, start, failrec->len,
2145 failrec->logical, page,
2146 pg_offset, failrec->failed_mirror);
2147 }
2148 }
2149
2150 out:
2151 free_io_failure(inode, failrec);
2152
2153 return 0;
2154 }
2155
2156 /*
2157 * Can be called when
2158 * - hold extent lock
2159 * - under ordered extent
2160 * - the inode is freeing
2161 */
2162 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2163 {
2164 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2165 struct io_failure_record *failrec;
2166 struct extent_state *state, *next;
2167
2168 if (RB_EMPTY_ROOT(&failure_tree->state))
2169 return;
2170
2171 spin_lock(&failure_tree->lock);
2172 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2173 while (state) {
2174 if (state->start > end)
2175 break;
2176
2177 ASSERT(state->end <= end);
2178
2179 next = next_state(state);
2180
2181 failrec = state->failrec;
2182 free_extent_state(state);
2183 kfree(failrec);
2184
2185 state = next;
2186 }
2187 spin_unlock(&failure_tree->lock);
2188 }
2189
2190 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2191 struct io_failure_record **failrec_ret)
2192 {
2193 struct io_failure_record *failrec;
2194 struct extent_map *em;
2195 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2196 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2197 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2198 int ret;
2199 u64 logical;
2200
2201 ret = get_state_failrec(failure_tree, start, &failrec);
2202 if (ret) {
2203 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2204 if (!failrec)
2205 return -ENOMEM;
2206
2207 failrec->start = start;
2208 failrec->len = end - start + 1;
2209 failrec->this_mirror = 0;
2210 failrec->bio_flags = 0;
2211 failrec->in_validation = 0;
2212
2213 read_lock(&em_tree->lock);
2214 em = lookup_extent_mapping(em_tree, start, failrec->len);
2215 if (!em) {
2216 read_unlock(&em_tree->lock);
2217 kfree(failrec);
2218 return -EIO;
2219 }
2220
2221 if (em->start > start || em->start + em->len <= start) {
2222 free_extent_map(em);
2223 em = NULL;
2224 }
2225 read_unlock(&em_tree->lock);
2226 if (!em) {
2227 kfree(failrec);
2228 return -EIO;
2229 }
2230
2231 logical = start - em->start;
2232 logical = em->block_start + logical;
2233 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2234 logical = em->block_start;
2235 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2236 extent_set_compress_type(&failrec->bio_flags,
2237 em->compress_type);
2238 }
2239
2240 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2241 logical, start, failrec->len);
2242
2243 failrec->logical = logical;
2244 free_extent_map(em);
2245
2246 /* set the bits in the private failure tree */
2247 ret = set_extent_bits(failure_tree, start, end,
2248 EXTENT_LOCKED | EXTENT_DIRTY);
2249 if (ret >= 0)
2250 ret = set_state_failrec(failure_tree, start, failrec);
2251 /* set the bits in the inode's tree */
2252 if (ret >= 0)
2253 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2254 if (ret < 0) {
2255 kfree(failrec);
2256 return ret;
2257 }
2258 } else {
2259 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2260 failrec->logical, failrec->start, failrec->len,
2261 failrec->in_validation);
2262 /*
2263 * when data can be on disk more than twice, add to failrec here
2264 * (e.g. with a list for failed_mirror) to make
2265 * clean_io_failure() clean all those errors at once.
2266 */
2267 }
2268
2269 *failrec_ret = failrec;
2270
2271 return 0;
2272 }
2273
2274 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2275 struct io_failure_record *failrec, int failed_mirror)
2276 {
2277 int num_copies;
2278
2279 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2280 failrec->logical, failrec->len);
2281 if (num_copies == 1) {
2282 /*
2283 * we only have a single copy of the data, so don't bother with
2284 * all the retry and error correction code that follows. no
2285 * matter what the error is, it is very likely to persist.
2286 */
2287 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2288 num_copies, failrec->this_mirror, failed_mirror);
2289 return 0;
2290 }
2291
2292 /*
2293 * there are two premises:
2294 * a) deliver good data to the caller
2295 * b) correct the bad sectors on disk
2296 */
2297 if (failed_bio->bi_vcnt > 1) {
2298 /*
2299 * to fulfill b), we need to know the exact failing sectors, as
2300 * we don't want to rewrite any more than the failed ones. thus,
2301 * we need separate read requests for the failed bio
2302 *
2303 * if the following BUG_ON triggers, our validation request got
2304 * merged. we need separate requests for our algorithm to work.
2305 */
2306 BUG_ON(failrec->in_validation);
2307 failrec->in_validation = 1;
2308 failrec->this_mirror = failed_mirror;
2309 } else {
2310 /*
2311 * we're ready to fulfill a) and b) alongside. get a good copy
2312 * of the failed sector and if we succeed, we have setup
2313 * everything for repair_io_failure to do the rest for us.
2314 */
2315 if (failrec->in_validation) {
2316 BUG_ON(failrec->this_mirror != failed_mirror);
2317 failrec->in_validation = 0;
2318 failrec->this_mirror = 0;
2319 }
2320 failrec->failed_mirror = failed_mirror;
2321 failrec->this_mirror++;
2322 if (failrec->this_mirror == failed_mirror)
2323 failrec->this_mirror++;
2324 }
2325
2326 if (failrec->this_mirror > num_copies) {
2327 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2328 num_copies, failrec->this_mirror, failed_mirror);
2329 return 0;
2330 }
2331
2332 return 1;
2333 }
2334
2335
2336 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2337 struct io_failure_record *failrec,
2338 struct page *page, int pg_offset, int icsum,
2339 bio_end_io_t *endio_func, void *data)
2340 {
2341 struct bio *bio;
2342 struct btrfs_io_bio *btrfs_failed_bio;
2343 struct btrfs_io_bio *btrfs_bio;
2344
2345 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2346 if (!bio)
2347 return NULL;
2348
2349 bio->bi_end_io = endio_func;
2350 bio->bi_iter.bi_sector = failrec->logical >> 9;
2351 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2352 bio->bi_iter.bi_size = 0;
2353 bio->bi_private = data;
2354
2355 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2356 if (btrfs_failed_bio->csum) {
2357 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2358 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2359
2360 btrfs_bio = btrfs_io_bio(bio);
2361 btrfs_bio->csum = btrfs_bio->csum_inline;
2362 icsum *= csum_size;
2363 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2364 csum_size);
2365 }
2366
2367 bio_add_page(bio, page, failrec->len, pg_offset);
2368
2369 return bio;
2370 }
2371
2372 /*
2373 * this is a generic handler for readpage errors (default
2374 * readpage_io_failed_hook). if other copies exist, read those and write back
2375 * good data to the failed position. does not investigate in remapping the
2376 * failed extent elsewhere, hoping the device will be smart enough to do this as
2377 * needed
2378 */
2379
2380 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2381 struct page *page, u64 start, u64 end,
2382 int failed_mirror)
2383 {
2384 struct io_failure_record *failrec;
2385 struct inode *inode = page->mapping->host;
2386 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2387 struct bio *bio;
2388 int read_mode;
2389 int ret;
2390
2391 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2392
2393 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2394 if (ret)
2395 return ret;
2396
2397 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2398 if (!ret) {
2399 free_io_failure(inode, failrec);
2400 return -EIO;
2401 }
2402
2403 if (failed_bio->bi_vcnt > 1)
2404 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2405 else
2406 read_mode = READ_SYNC;
2407
2408 phy_offset >>= inode->i_sb->s_blocksize_bits;
2409 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2410 start - page_offset(page),
2411 (int)phy_offset, failed_bio->bi_end_io,
2412 NULL);
2413 if (!bio) {
2414 free_io_failure(inode, failrec);
2415 return -EIO;
2416 }
2417 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2418
2419 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2420 read_mode, failrec->this_mirror, failrec->in_validation);
2421
2422 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2423 failrec->bio_flags, 0);
2424 if (ret) {
2425 free_io_failure(inode, failrec);
2426 bio_put(bio);
2427 }
2428
2429 return ret;
2430 }
2431
2432 /* lots and lots of room for performance fixes in the end_bio funcs */
2433
2434 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2435 {
2436 int uptodate = (err == 0);
2437 struct extent_io_tree *tree;
2438 int ret = 0;
2439
2440 tree = &BTRFS_I(page->mapping->host)->io_tree;
2441
2442 if (tree->ops && tree->ops->writepage_end_io_hook) {
2443 ret = tree->ops->writepage_end_io_hook(page, start,
2444 end, NULL, uptodate);
2445 if (ret)
2446 uptodate = 0;
2447 }
2448
2449 if (!uptodate) {
2450 ClearPageUptodate(page);
2451 SetPageError(page);
2452 ret = ret < 0 ? ret : -EIO;
2453 mapping_set_error(page->mapping, ret);
2454 }
2455 }
2456
2457 /*
2458 * after a writepage IO is done, we need to:
2459 * clear the uptodate bits on error
2460 * clear the writeback bits in the extent tree for this IO
2461 * end_page_writeback if the page has no more pending IO
2462 *
2463 * Scheduling is not allowed, so the extent state tree is expected
2464 * to have one and only one object corresponding to this IO.
2465 */
2466 static void end_bio_extent_writepage(struct bio *bio)
2467 {
2468 struct bio_vec *bvec;
2469 u64 start;
2470 u64 end;
2471 int i;
2472
2473 bio_for_each_segment_all(bvec, bio, i) {
2474 struct page *page = bvec->bv_page;
2475
2476 /* We always issue full-page reads, but if some block
2477 * in a page fails to read, blk_update_request() will
2478 * advance bv_offset and adjust bv_len to compensate.
2479 * Print a warning for nonzero offsets, and an error
2480 * if they don't add up to a full page. */
2481 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2482 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2483 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2484 "partial page write in btrfs with offset %u and length %u",
2485 bvec->bv_offset, bvec->bv_len);
2486 else
2487 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2488 "incomplete page write in btrfs with offset %u and "
2489 "length %u",
2490 bvec->bv_offset, bvec->bv_len);
2491 }
2492
2493 start = page_offset(page);
2494 end = start + bvec->bv_offset + bvec->bv_len - 1;
2495
2496 end_extent_writepage(page, bio->bi_error, start, end);
2497 end_page_writeback(page);
2498 }
2499
2500 bio_put(bio);
2501 }
2502
2503 static void
2504 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2505 int uptodate)
2506 {
2507 struct extent_state *cached = NULL;
2508 u64 end = start + len - 1;
2509
2510 if (uptodate && tree->track_uptodate)
2511 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2512 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2513 }
2514
2515 /*
2516 * after a readpage IO is done, we need to:
2517 * clear the uptodate bits on error
2518 * set the uptodate bits if things worked
2519 * set the page up to date if all extents in the tree are uptodate
2520 * clear the lock bit in the extent tree
2521 * unlock the page if there are no other extents locked for it
2522 *
2523 * Scheduling is not allowed, so the extent state tree is expected
2524 * to have one and only one object corresponding to this IO.
2525 */
2526 static void end_bio_extent_readpage(struct bio *bio)
2527 {
2528 struct bio_vec *bvec;
2529 int uptodate = !bio->bi_error;
2530 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2531 struct extent_io_tree *tree;
2532 u64 offset = 0;
2533 u64 start;
2534 u64 end;
2535 u64 len;
2536 u64 extent_start = 0;
2537 u64 extent_len = 0;
2538 int mirror;
2539 int ret;
2540 int i;
2541
2542 bio_for_each_segment_all(bvec, bio, i) {
2543 struct page *page = bvec->bv_page;
2544 struct inode *inode = page->mapping->host;
2545
2546 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2547 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2548 bio->bi_error, io_bio->mirror_num);
2549 tree = &BTRFS_I(inode)->io_tree;
2550
2551 /* We always issue full-page reads, but if some block
2552 * in a page fails to read, blk_update_request() will
2553 * advance bv_offset and adjust bv_len to compensate.
2554 * Print a warning for nonzero offsets, and an error
2555 * if they don't add up to a full page. */
2556 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2557 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2558 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2559 "partial page read in btrfs with offset %u and length %u",
2560 bvec->bv_offset, bvec->bv_len);
2561 else
2562 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2563 "incomplete page read in btrfs with offset %u and "
2564 "length %u",
2565 bvec->bv_offset, bvec->bv_len);
2566 }
2567
2568 start = page_offset(page);
2569 end = start + bvec->bv_offset + bvec->bv_len - 1;
2570 len = bvec->bv_len;
2571
2572 mirror = io_bio->mirror_num;
2573 if (likely(uptodate && tree->ops &&
2574 tree->ops->readpage_end_io_hook)) {
2575 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2576 page, start, end,
2577 mirror);
2578 if (ret)
2579 uptodate = 0;
2580 else
2581 clean_io_failure(inode, start, page, 0);
2582 }
2583
2584 if (likely(uptodate))
2585 goto readpage_ok;
2586
2587 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2588 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2589 if (!ret && !bio->bi_error)
2590 uptodate = 1;
2591 } else {
2592 /*
2593 * The generic bio_readpage_error handles errors the
2594 * following way: If possible, new read requests are
2595 * created and submitted and will end up in
2596 * end_bio_extent_readpage as well (if we're lucky, not
2597 * in the !uptodate case). In that case it returns 0 and
2598 * we just go on with the next page in our bio. If it
2599 * can't handle the error it will return -EIO and we
2600 * remain responsible for that page.
2601 */
2602 ret = bio_readpage_error(bio, offset, page, start, end,
2603 mirror);
2604 if (ret == 0) {
2605 uptodate = !bio->bi_error;
2606 offset += len;
2607 continue;
2608 }
2609 }
2610 readpage_ok:
2611 if (likely(uptodate)) {
2612 loff_t i_size = i_size_read(inode);
2613 pgoff_t end_index = i_size >> PAGE_SHIFT;
2614 unsigned off;
2615
2616 /* Zero out the end if this page straddles i_size */
2617 off = i_size & (PAGE_SIZE-1);
2618 if (page->index == end_index && off)
2619 zero_user_segment(page, off, PAGE_SIZE);
2620 SetPageUptodate(page);
2621 } else {
2622 ClearPageUptodate(page);
2623 SetPageError(page);
2624 }
2625 unlock_page(page);
2626 offset += len;
2627
2628 if (unlikely(!uptodate)) {
2629 if (extent_len) {
2630 endio_readpage_release_extent(tree,
2631 extent_start,
2632 extent_len, 1);
2633 extent_start = 0;
2634 extent_len = 0;
2635 }
2636 endio_readpage_release_extent(tree, start,
2637 end - start + 1, 0);
2638 } else if (!extent_len) {
2639 extent_start = start;
2640 extent_len = end + 1 - start;
2641 } else if (extent_start + extent_len == start) {
2642 extent_len += end + 1 - start;
2643 } else {
2644 endio_readpage_release_extent(tree, extent_start,
2645 extent_len, uptodate);
2646 extent_start = start;
2647 extent_len = end + 1 - start;
2648 }
2649 }
2650
2651 if (extent_len)
2652 endio_readpage_release_extent(tree, extent_start, extent_len,
2653 uptodate);
2654 if (io_bio->end_io)
2655 io_bio->end_io(io_bio, bio->bi_error);
2656 bio_put(bio);
2657 }
2658
2659 /*
2660 * this allocates from the btrfs_bioset. We're returning a bio right now
2661 * but you can call btrfs_io_bio for the appropriate container_of magic
2662 */
2663 struct bio *
2664 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2665 gfp_t gfp_flags)
2666 {
2667 struct btrfs_io_bio *btrfs_bio;
2668 struct bio *bio;
2669
2670 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2671
2672 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2673 while (!bio && (nr_vecs /= 2)) {
2674 bio = bio_alloc_bioset(gfp_flags,
2675 nr_vecs, btrfs_bioset);
2676 }
2677 }
2678
2679 if (bio) {
2680 bio->bi_bdev = bdev;
2681 bio->bi_iter.bi_sector = first_sector;
2682 btrfs_bio = btrfs_io_bio(bio);
2683 btrfs_bio->csum = NULL;
2684 btrfs_bio->csum_allocated = NULL;
2685 btrfs_bio->end_io = NULL;
2686 }
2687 return bio;
2688 }
2689
2690 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2691 {
2692 struct btrfs_io_bio *btrfs_bio;
2693 struct bio *new;
2694
2695 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2696 if (new) {
2697 btrfs_bio = btrfs_io_bio(new);
2698 btrfs_bio->csum = NULL;
2699 btrfs_bio->csum_allocated = NULL;
2700 btrfs_bio->end_io = NULL;
2701 }
2702 return new;
2703 }
2704
2705 /* this also allocates from the btrfs_bioset */
2706 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2707 {
2708 struct btrfs_io_bio *btrfs_bio;
2709 struct bio *bio;
2710
2711 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2712 if (bio) {
2713 btrfs_bio = btrfs_io_bio(bio);
2714 btrfs_bio->csum = NULL;
2715 btrfs_bio->csum_allocated = NULL;
2716 btrfs_bio->end_io = NULL;
2717 }
2718 return bio;
2719 }
2720
2721
2722 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2723 unsigned long bio_flags)
2724 {
2725 int ret = 0;
2726 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2727 struct page *page = bvec->bv_page;
2728 struct extent_io_tree *tree = bio->bi_private;
2729 u64 start;
2730
2731 start = page_offset(page) + bvec->bv_offset;
2732
2733 bio->bi_private = NULL;
2734 bio_get(bio);
2735
2736 if (tree->ops && tree->ops->submit_bio_hook)
2737 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2738 mirror_num, bio_flags, start);
2739 else
2740 btrfsic_submit_bio(bio);
2741
2742 bio_put(bio);
2743 return ret;
2744 }
2745
2746 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2747 unsigned long offset, size_t size, struct bio *bio,
2748 unsigned long bio_flags)
2749 {
2750 int ret = 0;
2751 if (tree->ops && tree->ops->merge_bio_hook)
2752 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2753 bio_flags);
2754 return ret;
2755
2756 }
2757
2758 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2759 struct writeback_control *wbc,
2760 struct page *page, sector_t sector,
2761 size_t size, unsigned long offset,
2762 struct block_device *bdev,
2763 struct bio **bio_ret,
2764 unsigned long max_pages,
2765 bio_end_io_t end_io_func,
2766 int mirror_num,
2767 unsigned long prev_bio_flags,
2768 unsigned long bio_flags,
2769 bool force_bio_submit)
2770 {
2771 int ret = 0;
2772 struct bio *bio;
2773 int contig = 0;
2774 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2775 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2776
2777 if (bio_ret && *bio_ret) {
2778 bio = *bio_ret;
2779 if (old_compressed)
2780 contig = bio->bi_iter.bi_sector == sector;
2781 else
2782 contig = bio_end_sector(bio) == sector;
2783
2784 if (prev_bio_flags != bio_flags || !contig ||
2785 force_bio_submit ||
2786 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2787 bio_add_page(bio, page, page_size, offset) < page_size) {
2788 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2789 if (ret < 0) {
2790 *bio_ret = NULL;
2791 return ret;
2792 }
2793 bio = NULL;
2794 } else {
2795 if (wbc)
2796 wbc_account_io(wbc, page, page_size);
2797 return 0;
2798 }
2799 }
2800
2801 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2802 GFP_NOFS | __GFP_HIGH);
2803 if (!bio)
2804 return -ENOMEM;
2805
2806 bio_add_page(bio, page, page_size, offset);
2807 bio->bi_end_io = end_io_func;
2808 bio->bi_private = tree;
2809 bio_set_op_attrs(bio, op, op_flags);
2810 if (wbc) {
2811 wbc_init_bio(wbc, bio);
2812 wbc_account_io(wbc, page, page_size);
2813 }
2814
2815 if (bio_ret)
2816 *bio_ret = bio;
2817 else
2818 ret = submit_one_bio(bio, mirror_num, bio_flags);
2819
2820 return ret;
2821 }
2822
2823 static void attach_extent_buffer_page(struct extent_buffer *eb,
2824 struct page *page)
2825 {
2826 if (!PagePrivate(page)) {
2827 SetPagePrivate(page);
2828 get_page(page);
2829 set_page_private(page, (unsigned long)eb);
2830 } else {
2831 WARN_ON(page->private != (unsigned long)eb);
2832 }
2833 }
2834
2835 void set_page_extent_mapped(struct page *page)
2836 {
2837 if (!PagePrivate(page)) {
2838 SetPagePrivate(page);
2839 get_page(page);
2840 set_page_private(page, EXTENT_PAGE_PRIVATE);
2841 }
2842 }
2843
2844 static struct extent_map *
2845 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2846 u64 start, u64 len, get_extent_t *get_extent,
2847 struct extent_map **em_cached)
2848 {
2849 struct extent_map *em;
2850
2851 if (em_cached && *em_cached) {
2852 em = *em_cached;
2853 if (extent_map_in_tree(em) && start >= em->start &&
2854 start < extent_map_end(em)) {
2855 atomic_inc(&em->refs);
2856 return em;
2857 }
2858
2859 free_extent_map(em);
2860 *em_cached = NULL;
2861 }
2862
2863 em = get_extent(inode, page, pg_offset, start, len, 0);
2864 if (em_cached && !IS_ERR_OR_NULL(em)) {
2865 BUG_ON(*em_cached);
2866 atomic_inc(&em->refs);
2867 *em_cached = em;
2868 }
2869 return em;
2870 }
2871 /*
2872 * basic readpage implementation. Locked extent state structs are inserted
2873 * into the tree that are removed when the IO is done (by the end_io
2874 * handlers)
2875 * XXX JDM: This needs looking at to ensure proper page locking
2876 * return 0 on success, otherwise return error
2877 */
2878 static int __do_readpage(struct extent_io_tree *tree,
2879 struct page *page,
2880 get_extent_t *get_extent,
2881 struct extent_map **em_cached,
2882 struct bio **bio, int mirror_num,
2883 unsigned long *bio_flags, int read_flags,
2884 u64 *prev_em_start)
2885 {
2886 struct inode *inode = page->mapping->host;
2887 u64 start = page_offset(page);
2888 u64 page_end = start + PAGE_SIZE - 1;
2889 u64 end;
2890 u64 cur = start;
2891 u64 extent_offset;
2892 u64 last_byte = i_size_read(inode);
2893 u64 block_start;
2894 u64 cur_end;
2895 sector_t sector;
2896 struct extent_map *em;
2897 struct block_device *bdev;
2898 int ret = 0;
2899 int nr = 0;
2900 size_t pg_offset = 0;
2901 size_t iosize;
2902 size_t disk_io_size;
2903 size_t blocksize = inode->i_sb->s_blocksize;
2904 unsigned long this_bio_flag = 0;
2905
2906 set_page_extent_mapped(page);
2907
2908 end = page_end;
2909 if (!PageUptodate(page)) {
2910 if (cleancache_get_page(page) == 0) {
2911 BUG_ON(blocksize != PAGE_SIZE);
2912 unlock_extent(tree, start, end);
2913 goto out;
2914 }
2915 }
2916
2917 if (page->index == last_byte >> PAGE_SHIFT) {
2918 char *userpage;
2919 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2920
2921 if (zero_offset) {
2922 iosize = PAGE_SIZE - zero_offset;
2923 userpage = kmap_atomic(page);
2924 memset(userpage + zero_offset, 0, iosize);
2925 flush_dcache_page(page);
2926 kunmap_atomic(userpage);
2927 }
2928 }
2929 while (cur <= end) {
2930 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2931 bool force_bio_submit = false;
2932
2933 if (cur >= last_byte) {
2934 char *userpage;
2935 struct extent_state *cached = NULL;
2936
2937 iosize = PAGE_SIZE - pg_offset;
2938 userpage = kmap_atomic(page);
2939 memset(userpage + pg_offset, 0, iosize);
2940 flush_dcache_page(page);
2941 kunmap_atomic(userpage);
2942 set_extent_uptodate(tree, cur, cur + iosize - 1,
2943 &cached, GFP_NOFS);
2944 unlock_extent_cached(tree, cur,
2945 cur + iosize - 1,
2946 &cached, GFP_NOFS);
2947 break;
2948 }
2949 em = __get_extent_map(inode, page, pg_offset, cur,
2950 end - cur + 1, get_extent, em_cached);
2951 if (IS_ERR_OR_NULL(em)) {
2952 SetPageError(page);
2953 unlock_extent(tree, cur, end);
2954 break;
2955 }
2956 extent_offset = cur - em->start;
2957 BUG_ON(extent_map_end(em) <= cur);
2958 BUG_ON(end < cur);
2959
2960 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2961 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2962 extent_set_compress_type(&this_bio_flag,
2963 em->compress_type);
2964 }
2965
2966 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2967 cur_end = min(extent_map_end(em) - 1, end);
2968 iosize = ALIGN(iosize, blocksize);
2969 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2970 disk_io_size = em->block_len;
2971 sector = em->block_start >> 9;
2972 } else {
2973 sector = (em->block_start + extent_offset) >> 9;
2974 disk_io_size = iosize;
2975 }
2976 bdev = em->bdev;
2977 block_start = em->block_start;
2978 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2979 block_start = EXTENT_MAP_HOLE;
2980
2981 /*
2982 * If we have a file range that points to a compressed extent
2983 * and it's followed by a consecutive file range that points to
2984 * to the same compressed extent (possibly with a different
2985 * offset and/or length, so it either points to the whole extent
2986 * or only part of it), we must make sure we do not submit a
2987 * single bio to populate the pages for the 2 ranges because
2988 * this makes the compressed extent read zero out the pages
2989 * belonging to the 2nd range. Imagine the following scenario:
2990 *
2991 * File layout
2992 * [0 - 8K] [8K - 24K]
2993 * | |
2994 * | |
2995 * points to extent X, points to extent X,
2996 * offset 4K, length of 8K offset 0, length 16K
2997 *
2998 * [extent X, compressed length = 4K uncompressed length = 16K]
2999 *
3000 * If the bio to read the compressed extent covers both ranges,
3001 * it will decompress extent X into the pages belonging to the
3002 * first range and then it will stop, zeroing out the remaining
3003 * pages that belong to the other range that points to extent X.
3004 * So here we make sure we submit 2 bios, one for the first
3005 * range and another one for the third range. Both will target
3006 * the same physical extent from disk, but we can't currently
3007 * make the compressed bio endio callback populate the pages
3008 * for both ranges because each compressed bio is tightly
3009 * coupled with a single extent map, and each range can have
3010 * an extent map with a different offset value relative to the
3011 * uncompressed data of our extent and different lengths. This
3012 * is a corner case so we prioritize correctness over
3013 * non-optimal behavior (submitting 2 bios for the same extent).
3014 */
3015 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3016 prev_em_start && *prev_em_start != (u64)-1 &&
3017 *prev_em_start != em->orig_start)
3018 force_bio_submit = true;
3019
3020 if (prev_em_start)
3021 *prev_em_start = em->orig_start;
3022
3023 free_extent_map(em);
3024 em = NULL;
3025
3026 /* we've found a hole, just zero and go on */
3027 if (block_start == EXTENT_MAP_HOLE) {
3028 char *userpage;
3029 struct extent_state *cached = NULL;
3030
3031 userpage = kmap_atomic(page);
3032 memset(userpage + pg_offset, 0, iosize);
3033 flush_dcache_page(page);
3034 kunmap_atomic(userpage);
3035
3036 set_extent_uptodate(tree, cur, cur + iosize - 1,
3037 &cached, GFP_NOFS);
3038 unlock_extent_cached(tree, cur,
3039 cur + iosize - 1,
3040 &cached, GFP_NOFS);
3041 cur = cur + iosize;
3042 pg_offset += iosize;
3043 continue;
3044 }
3045 /* the get_extent function already copied into the page */
3046 if (test_range_bit(tree, cur, cur_end,
3047 EXTENT_UPTODATE, 1, NULL)) {
3048 check_page_uptodate(tree, page);
3049 unlock_extent(tree, cur, cur + iosize - 1);
3050 cur = cur + iosize;
3051 pg_offset += iosize;
3052 continue;
3053 }
3054 /* we have an inline extent but it didn't get marked up
3055 * to date. Error out
3056 */
3057 if (block_start == EXTENT_MAP_INLINE) {
3058 SetPageError(page);
3059 unlock_extent(tree, cur, cur + iosize - 1);
3060 cur = cur + iosize;
3061 pg_offset += iosize;
3062 continue;
3063 }
3064
3065 pnr -= page->index;
3066 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3067 page, sector, disk_io_size, pg_offset,
3068 bdev, bio, pnr,
3069 end_bio_extent_readpage, mirror_num,
3070 *bio_flags,
3071 this_bio_flag,
3072 force_bio_submit);
3073 if (!ret) {
3074 nr++;
3075 *bio_flags = this_bio_flag;
3076 } else {
3077 SetPageError(page);
3078 unlock_extent(tree, cur, cur + iosize - 1);
3079 goto out;
3080 }
3081 cur = cur + iosize;
3082 pg_offset += iosize;
3083 }
3084 out:
3085 if (!nr) {
3086 if (!PageError(page))
3087 SetPageUptodate(page);
3088 unlock_page(page);
3089 }
3090 return ret;
3091 }
3092
3093 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3094 struct page *pages[], int nr_pages,
3095 u64 start, u64 end,
3096 get_extent_t *get_extent,
3097 struct extent_map **em_cached,
3098 struct bio **bio, int mirror_num,
3099 unsigned long *bio_flags,
3100 u64 *prev_em_start)
3101 {
3102 struct inode *inode;
3103 struct btrfs_ordered_extent *ordered;
3104 int index;
3105
3106 inode = pages[0]->mapping->host;
3107 while (1) {
3108 lock_extent(tree, start, end);
3109 ordered = btrfs_lookup_ordered_range(inode, start,
3110 end - start + 1);
3111 if (!ordered)
3112 break;
3113 unlock_extent(tree, start, end);
3114 btrfs_start_ordered_extent(inode, ordered, 1);
3115 btrfs_put_ordered_extent(ordered);
3116 }
3117
3118 for (index = 0; index < nr_pages; index++) {
3119 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3120 mirror_num, bio_flags, 0, prev_em_start);
3121 put_page(pages[index]);
3122 }
3123 }
3124
3125 static void __extent_readpages(struct extent_io_tree *tree,
3126 struct page *pages[],
3127 int nr_pages, get_extent_t *get_extent,
3128 struct extent_map **em_cached,
3129 struct bio **bio, int mirror_num,
3130 unsigned long *bio_flags,
3131 u64 *prev_em_start)
3132 {
3133 u64 start = 0;
3134 u64 end = 0;
3135 u64 page_start;
3136 int index;
3137 int first_index = 0;
3138
3139 for (index = 0; index < nr_pages; index++) {
3140 page_start = page_offset(pages[index]);
3141 if (!end) {
3142 start = page_start;
3143 end = start + PAGE_SIZE - 1;
3144 first_index = index;
3145 } else if (end + 1 == page_start) {
3146 end += PAGE_SIZE;
3147 } else {
3148 __do_contiguous_readpages(tree, &pages[first_index],
3149 index - first_index, start,
3150 end, get_extent, em_cached,
3151 bio, mirror_num, bio_flags,
3152 prev_em_start);
3153 start = page_start;
3154 end = start + PAGE_SIZE - 1;
3155 first_index = index;
3156 }
3157 }
3158
3159 if (end)
3160 __do_contiguous_readpages(tree, &pages[first_index],
3161 index - first_index, start,
3162 end, get_extent, em_cached, bio,
3163 mirror_num, bio_flags,
3164 prev_em_start);
3165 }
3166
3167 static int __extent_read_full_page(struct extent_io_tree *tree,
3168 struct page *page,
3169 get_extent_t *get_extent,
3170 struct bio **bio, int mirror_num,
3171 unsigned long *bio_flags, int read_flags)
3172 {
3173 struct inode *inode = page->mapping->host;
3174 struct btrfs_ordered_extent *ordered;
3175 u64 start = page_offset(page);
3176 u64 end = start + PAGE_SIZE - 1;
3177 int ret;
3178
3179 while (1) {
3180 lock_extent(tree, start, end);
3181 ordered = btrfs_lookup_ordered_range(inode, start,
3182 PAGE_SIZE);
3183 if (!ordered)
3184 break;
3185 unlock_extent(tree, start, end);
3186 btrfs_start_ordered_extent(inode, ordered, 1);
3187 btrfs_put_ordered_extent(ordered);
3188 }
3189
3190 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3191 bio_flags, read_flags, NULL);
3192 return ret;
3193 }
3194
3195 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3196 get_extent_t *get_extent, int mirror_num)
3197 {
3198 struct bio *bio = NULL;
3199 unsigned long bio_flags = 0;
3200 int ret;
3201
3202 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3203 &bio_flags, 0);
3204 if (bio)
3205 ret = submit_one_bio(bio, mirror_num, bio_flags);
3206 return ret;
3207 }
3208
3209 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3210 unsigned long nr_written)
3211 {
3212 wbc->nr_to_write -= nr_written;
3213 }
3214
3215 /*
3216 * helper for __extent_writepage, doing all of the delayed allocation setup.
3217 *
3218 * This returns 1 if our fill_delalloc function did all the work required
3219 * to write the page (copy into inline extent). In this case the IO has
3220 * been started and the page is already unlocked.
3221 *
3222 * This returns 0 if all went well (page still locked)
3223 * This returns < 0 if there were errors (page still locked)
3224 */
3225 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3226 struct page *page, struct writeback_control *wbc,
3227 struct extent_page_data *epd,
3228 u64 delalloc_start,
3229 unsigned long *nr_written)
3230 {
3231 struct extent_io_tree *tree = epd->tree;
3232 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3233 u64 nr_delalloc;
3234 u64 delalloc_to_write = 0;
3235 u64 delalloc_end = 0;
3236 int ret;
3237 int page_started = 0;
3238
3239 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3240 return 0;
3241
3242 while (delalloc_end < page_end) {
3243 nr_delalloc = find_lock_delalloc_range(inode, tree,
3244 page,
3245 &delalloc_start,
3246 &delalloc_end,
3247 BTRFS_MAX_EXTENT_SIZE);
3248 if (nr_delalloc == 0) {
3249 delalloc_start = delalloc_end + 1;
3250 continue;
3251 }
3252 ret = tree->ops->fill_delalloc(inode, page,
3253 delalloc_start,
3254 delalloc_end,
3255 &page_started,
3256 nr_written);
3257 /* File system has been set read-only */
3258 if (ret) {
3259 SetPageError(page);
3260 /* fill_delalloc should be return < 0 for error
3261 * but just in case, we use > 0 here meaning the
3262 * IO is started, so we don't want to return > 0
3263 * unless things are going well.
3264 */
3265 ret = ret < 0 ? ret : -EIO;
3266 goto done;
3267 }
3268 /*
3269 * delalloc_end is already one less than the total length, so
3270 * we don't subtract one from PAGE_SIZE
3271 */
3272 delalloc_to_write += (delalloc_end - delalloc_start +
3273 PAGE_SIZE) >> PAGE_SHIFT;
3274 delalloc_start = delalloc_end + 1;
3275 }
3276 if (wbc->nr_to_write < delalloc_to_write) {
3277 int thresh = 8192;
3278
3279 if (delalloc_to_write < thresh * 2)
3280 thresh = delalloc_to_write;
3281 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3282 thresh);
3283 }
3284
3285 /* did the fill delalloc function already unlock and start
3286 * the IO?
3287 */
3288 if (page_started) {
3289 /*
3290 * we've unlocked the page, so we can't update
3291 * the mapping's writeback index, just update
3292 * nr_to_write.
3293 */
3294 wbc->nr_to_write -= *nr_written;
3295 return 1;
3296 }
3297
3298 ret = 0;
3299
3300 done:
3301 return ret;
3302 }
3303
3304 /*
3305 * helper for __extent_writepage. This calls the writepage start hooks,
3306 * and does the loop to map the page into extents and bios.
3307 *
3308 * We return 1 if the IO is started and the page is unlocked,
3309 * 0 if all went well (page still locked)
3310 * < 0 if there were errors (page still locked)
3311 */
3312 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3313 struct page *page,
3314 struct writeback_control *wbc,
3315 struct extent_page_data *epd,
3316 loff_t i_size,
3317 unsigned long nr_written,
3318 int write_flags, int *nr_ret)
3319 {
3320 struct extent_io_tree *tree = epd->tree;
3321 u64 start = page_offset(page);
3322 u64 page_end = start + PAGE_SIZE - 1;
3323 u64 end;
3324 u64 cur = start;
3325 u64 extent_offset;
3326 u64 block_start;
3327 u64 iosize;
3328 sector_t sector;
3329 struct extent_state *cached_state = NULL;
3330 struct extent_map *em;
3331 struct block_device *bdev;
3332 size_t pg_offset = 0;
3333 size_t blocksize;
3334 int ret = 0;
3335 int nr = 0;
3336 bool compressed;
3337
3338 if (tree->ops && tree->ops->writepage_start_hook) {
3339 ret = tree->ops->writepage_start_hook(page, start,
3340 page_end);
3341 if (ret) {
3342 /* Fixup worker will requeue */
3343 if (ret == -EBUSY)
3344 wbc->pages_skipped++;
3345 else
3346 redirty_page_for_writepage(wbc, page);
3347
3348 update_nr_written(page, wbc, nr_written);
3349 unlock_page(page);
3350 ret = 1;
3351 goto done_unlocked;
3352 }
3353 }
3354
3355 /*
3356 * we don't want to touch the inode after unlocking the page,
3357 * so we update the mapping writeback index now
3358 */
3359 update_nr_written(page, wbc, nr_written + 1);
3360
3361 end = page_end;
3362 if (i_size <= start) {
3363 if (tree->ops && tree->ops->writepage_end_io_hook)
3364 tree->ops->writepage_end_io_hook(page, start,
3365 page_end, NULL, 1);
3366 goto done;
3367 }
3368
3369 blocksize = inode->i_sb->s_blocksize;
3370
3371 while (cur <= end) {
3372 u64 em_end;
3373 unsigned long max_nr;
3374
3375 if (cur >= i_size) {
3376 if (tree->ops && tree->ops->writepage_end_io_hook)
3377 tree->ops->writepage_end_io_hook(page, cur,
3378 page_end, NULL, 1);
3379 break;
3380 }
3381 em = epd->get_extent(inode, page, pg_offset, cur,
3382 end - cur + 1, 1);
3383 if (IS_ERR_OR_NULL(em)) {
3384 SetPageError(page);
3385 ret = PTR_ERR_OR_ZERO(em);
3386 break;
3387 }
3388
3389 extent_offset = cur - em->start;
3390 em_end = extent_map_end(em);
3391 BUG_ON(em_end <= cur);
3392 BUG_ON(end < cur);
3393 iosize = min(em_end - cur, end - cur + 1);
3394 iosize = ALIGN(iosize, blocksize);
3395 sector = (em->block_start + extent_offset) >> 9;
3396 bdev = em->bdev;
3397 block_start = em->block_start;
3398 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3399 free_extent_map(em);
3400 em = NULL;
3401
3402 /*
3403 * compressed and inline extents are written through other
3404 * paths in the FS
3405 */
3406 if (compressed || block_start == EXTENT_MAP_HOLE ||
3407 block_start == EXTENT_MAP_INLINE) {
3408 /*
3409 * end_io notification does not happen here for
3410 * compressed extents
3411 */
3412 if (!compressed && tree->ops &&
3413 tree->ops->writepage_end_io_hook)
3414 tree->ops->writepage_end_io_hook(page, cur,
3415 cur + iosize - 1,
3416 NULL, 1);
3417 else if (compressed) {
3418 /* we don't want to end_page_writeback on
3419 * a compressed extent. this happens
3420 * elsewhere
3421 */
3422 nr++;
3423 }
3424
3425 cur += iosize;
3426 pg_offset += iosize;
3427 continue;
3428 }
3429
3430 max_nr = (i_size >> PAGE_SHIFT) + 1;
3431
3432 set_range_writeback(tree, cur, cur + iosize - 1);
3433 if (!PageWriteback(page)) {
3434 btrfs_err(BTRFS_I(inode)->root->fs_info,
3435 "page %lu not writeback, cur %llu end %llu",
3436 page->index, cur, end);
3437 }
3438
3439 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3440 page, sector, iosize, pg_offset,
3441 bdev, &epd->bio, max_nr,
3442 end_bio_extent_writepage,
3443 0, 0, 0, false);
3444 if (ret)
3445 SetPageError(page);
3446
3447 cur = cur + iosize;
3448 pg_offset += iosize;
3449 nr++;
3450 }
3451 done:
3452 *nr_ret = nr;
3453
3454 done_unlocked:
3455
3456 /* drop our reference on any cached states */
3457 free_extent_state(cached_state);
3458 return ret;
3459 }
3460
3461 /*
3462 * the writepage semantics are similar to regular writepage. extent
3463 * records are inserted to lock ranges in the tree, and as dirty areas
3464 * are found, they are marked writeback. Then the lock bits are removed
3465 * and the end_io handler clears the writeback ranges
3466 */
3467 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3468 void *data)
3469 {
3470 struct inode *inode = page->mapping->host;
3471 struct extent_page_data *epd = data;
3472 u64 start = page_offset(page);
3473 u64 page_end = start + PAGE_SIZE - 1;
3474 int ret;
3475 int nr = 0;
3476 size_t pg_offset = 0;
3477 loff_t i_size = i_size_read(inode);
3478 unsigned long end_index = i_size >> PAGE_SHIFT;
3479 int write_flags = 0;
3480 unsigned long nr_written = 0;
3481
3482 if (wbc->sync_mode == WB_SYNC_ALL)
3483 write_flags = WRITE_SYNC;
3484
3485 trace___extent_writepage(page, inode, wbc);
3486
3487 WARN_ON(!PageLocked(page));
3488
3489 ClearPageError(page);
3490
3491 pg_offset = i_size & (PAGE_SIZE - 1);
3492 if (page->index > end_index ||
3493 (page->index == end_index && !pg_offset)) {
3494 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3495 unlock_page(page);
3496 return 0;
3497 }
3498
3499 if (page->index == end_index) {
3500 char *userpage;
3501
3502 userpage = kmap_atomic(page);
3503 memset(userpage + pg_offset, 0,
3504 PAGE_SIZE - pg_offset);
3505 kunmap_atomic(userpage);
3506 flush_dcache_page(page);
3507 }
3508
3509 pg_offset = 0;
3510
3511 set_page_extent_mapped(page);
3512
3513 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3514 if (ret == 1)
3515 goto done_unlocked;
3516 if (ret)
3517 goto done;
3518
3519 ret = __extent_writepage_io(inode, page, wbc, epd,
3520 i_size, nr_written, write_flags, &nr);
3521 if (ret == 1)
3522 goto done_unlocked;
3523
3524 done:
3525 if (nr == 0) {
3526 /* make sure the mapping tag for page dirty gets cleared */
3527 set_page_writeback(page);
3528 end_page_writeback(page);
3529 }
3530 if (PageError(page)) {
3531 ret = ret < 0 ? ret : -EIO;
3532 end_extent_writepage(page, ret, start, page_end);
3533 }
3534 unlock_page(page);
3535 return ret;
3536
3537 done_unlocked:
3538 return 0;
3539 }
3540
3541 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3542 {
3543 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3544 TASK_UNINTERRUPTIBLE);
3545 }
3546
3547 static noinline_for_stack int
3548 lock_extent_buffer_for_io(struct extent_buffer *eb,
3549 struct btrfs_fs_info *fs_info,
3550 struct extent_page_data *epd)
3551 {
3552 unsigned long i, num_pages;
3553 int flush = 0;
3554 int ret = 0;
3555
3556 if (!btrfs_try_tree_write_lock(eb)) {
3557 flush = 1;
3558 flush_write_bio(epd);
3559 btrfs_tree_lock(eb);
3560 }
3561
3562 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3563 btrfs_tree_unlock(eb);
3564 if (!epd->sync_io)
3565 return 0;
3566 if (!flush) {
3567 flush_write_bio(epd);
3568 flush = 1;
3569 }
3570 while (1) {
3571 wait_on_extent_buffer_writeback(eb);
3572 btrfs_tree_lock(eb);
3573 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3574 break;
3575 btrfs_tree_unlock(eb);
3576 }
3577 }
3578
3579 /*
3580 * We need to do this to prevent races in people who check if the eb is
3581 * under IO since we can end up having no IO bits set for a short period
3582 * of time.
3583 */
3584 spin_lock(&eb->refs_lock);
3585 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3586 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3587 spin_unlock(&eb->refs_lock);
3588 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3589 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3590 -eb->len,
3591 fs_info->dirty_metadata_batch);
3592 ret = 1;
3593 } else {
3594 spin_unlock(&eb->refs_lock);
3595 }
3596
3597 btrfs_tree_unlock(eb);
3598
3599 if (!ret)
3600 return ret;
3601
3602 num_pages = num_extent_pages(eb->start, eb->len);
3603 for (i = 0; i < num_pages; i++) {
3604 struct page *p = eb->pages[i];
3605
3606 if (!trylock_page(p)) {
3607 if (!flush) {
3608 flush_write_bio(epd);
3609 flush = 1;
3610 }
3611 lock_page(p);
3612 }
3613 }
3614
3615 return ret;
3616 }
3617
3618 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3619 {
3620 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3621 smp_mb__after_atomic();
3622 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3623 }
3624
3625 static void set_btree_ioerr(struct page *page)
3626 {
3627 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3628
3629 SetPageError(page);
3630 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3631 return;
3632
3633 /*
3634 * If writeback for a btree extent that doesn't belong to a log tree
3635 * failed, increment the counter transaction->eb_write_errors.
3636 * We do this because while the transaction is running and before it's
3637 * committing (when we call filemap_fdata[write|wait]_range against
3638 * the btree inode), we might have
3639 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3640 * returns an error or an error happens during writeback, when we're
3641 * committing the transaction we wouldn't know about it, since the pages
3642 * can be no longer dirty nor marked anymore for writeback (if a
3643 * subsequent modification to the extent buffer didn't happen before the
3644 * transaction commit), which makes filemap_fdata[write|wait]_range not
3645 * able to find the pages tagged with SetPageError at transaction
3646 * commit time. So if this happens we must abort the transaction,
3647 * otherwise we commit a super block with btree roots that point to
3648 * btree nodes/leafs whose content on disk is invalid - either garbage
3649 * or the content of some node/leaf from a past generation that got
3650 * cowed or deleted and is no longer valid.
3651 *
3652 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3653 * not be enough - we need to distinguish between log tree extents vs
3654 * non-log tree extents, and the next filemap_fdatawait_range() call
3655 * will catch and clear such errors in the mapping - and that call might
3656 * be from a log sync and not from a transaction commit. Also, checking
3657 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3658 * not done and would not be reliable - the eb might have been released
3659 * from memory and reading it back again means that flag would not be
3660 * set (since it's a runtime flag, not persisted on disk).
3661 *
3662 * Using the flags below in the btree inode also makes us achieve the
3663 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3664 * writeback for all dirty pages and before filemap_fdatawait_range()
3665 * is called, the writeback for all dirty pages had already finished
3666 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3667 * filemap_fdatawait_range() would return success, as it could not know
3668 * that writeback errors happened (the pages were no longer tagged for
3669 * writeback).
3670 */
3671 switch (eb->log_index) {
3672 case -1:
3673 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3674 break;
3675 case 0:
3676 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3677 break;
3678 case 1:
3679 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3680 break;
3681 default:
3682 BUG(); /* unexpected, logic error */
3683 }
3684 }
3685
3686 static void end_bio_extent_buffer_writepage(struct bio *bio)
3687 {
3688 struct bio_vec *bvec;
3689 struct extent_buffer *eb;
3690 int i, done;
3691
3692 bio_for_each_segment_all(bvec, bio, i) {
3693 struct page *page = bvec->bv_page;
3694
3695 eb = (struct extent_buffer *)page->private;
3696 BUG_ON(!eb);
3697 done = atomic_dec_and_test(&eb->io_pages);
3698
3699 if (bio->bi_error ||
3700 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3701 ClearPageUptodate(page);
3702 set_btree_ioerr(page);
3703 }
3704
3705 end_page_writeback(page);
3706
3707 if (!done)
3708 continue;
3709
3710 end_extent_buffer_writeback(eb);
3711 }
3712
3713 bio_put(bio);
3714 }
3715
3716 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3717 struct btrfs_fs_info *fs_info,
3718 struct writeback_control *wbc,
3719 struct extent_page_data *epd)
3720 {
3721 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3722 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3723 u64 offset = eb->start;
3724 unsigned long i, num_pages;
3725 unsigned long bio_flags = 0;
3726 int write_flags = (epd->sync_io ? WRITE_SYNC : 0) | REQ_META;
3727 int ret = 0;
3728
3729 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3730 num_pages = num_extent_pages(eb->start, eb->len);
3731 atomic_set(&eb->io_pages, num_pages);
3732 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3733 bio_flags = EXTENT_BIO_TREE_LOG;
3734
3735 for (i = 0; i < num_pages; i++) {
3736 struct page *p = eb->pages[i];
3737
3738 clear_page_dirty_for_io(p);
3739 set_page_writeback(p);
3740 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3741 p, offset >> 9, PAGE_SIZE, 0, bdev,
3742 &epd->bio, -1,
3743 end_bio_extent_buffer_writepage,
3744 0, epd->bio_flags, bio_flags, false);
3745 epd->bio_flags = bio_flags;
3746 if (ret) {
3747 set_btree_ioerr(p);
3748 end_page_writeback(p);
3749 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3750 end_extent_buffer_writeback(eb);
3751 ret = -EIO;
3752 break;
3753 }
3754 offset += PAGE_SIZE;
3755 update_nr_written(p, wbc, 1);
3756 unlock_page(p);
3757 }
3758
3759 if (unlikely(ret)) {
3760 for (; i < num_pages; i++) {
3761 struct page *p = eb->pages[i];
3762 clear_page_dirty_for_io(p);
3763 unlock_page(p);
3764 }
3765 }
3766
3767 return ret;
3768 }
3769
3770 int btree_write_cache_pages(struct address_space *mapping,
3771 struct writeback_control *wbc)
3772 {
3773 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3774 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3775 struct extent_buffer *eb, *prev_eb = NULL;
3776 struct extent_page_data epd = {
3777 .bio = NULL,
3778 .tree = tree,
3779 .extent_locked = 0,
3780 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3781 .bio_flags = 0,
3782 };
3783 int ret = 0;
3784 int done = 0;
3785 int nr_to_write_done = 0;
3786 struct pagevec pvec;
3787 int nr_pages;
3788 pgoff_t index;
3789 pgoff_t end; /* Inclusive */
3790 int scanned = 0;
3791 int tag;
3792
3793 pagevec_init(&pvec, 0);
3794 if (wbc->range_cyclic) {
3795 index = mapping->writeback_index; /* Start from prev offset */
3796 end = -1;
3797 } else {
3798 index = wbc->range_start >> PAGE_SHIFT;
3799 end = wbc->range_end >> PAGE_SHIFT;
3800 scanned = 1;
3801 }
3802 if (wbc->sync_mode == WB_SYNC_ALL)
3803 tag = PAGECACHE_TAG_TOWRITE;
3804 else
3805 tag = PAGECACHE_TAG_DIRTY;
3806 retry:
3807 if (wbc->sync_mode == WB_SYNC_ALL)
3808 tag_pages_for_writeback(mapping, index, end);
3809 while (!done && !nr_to_write_done && (index <= end) &&
3810 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3811 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3812 unsigned i;
3813
3814 scanned = 1;
3815 for (i = 0; i < nr_pages; i++) {
3816 struct page *page = pvec.pages[i];
3817
3818 if (!PagePrivate(page))
3819 continue;
3820
3821 if (!wbc->range_cyclic && page->index > end) {
3822 done = 1;
3823 break;
3824 }
3825
3826 spin_lock(&mapping->private_lock);
3827 if (!PagePrivate(page)) {
3828 spin_unlock(&mapping->private_lock);
3829 continue;
3830 }
3831
3832 eb = (struct extent_buffer *)page->private;
3833
3834 /*
3835 * Shouldn't happen and normally this would be a BUG_ON
3836 * but no sense in crashing the users box for something
3837 * we can survive anyway.
3838 */
3839 if (WARN_ON(!eb)) {
3840 spin_unlock(&mapping->private_lock);
3841 continue;
3842 }
3843
3844 if (eb == prev_eb) {
3845 spin_unlock(&mapping->private_lock);
3846 continue;
3847 }
3848
3849 ret = atomic_inc_not_zero(&eb->refs);
3850 spin_unlock(&mapping->private_lock);
3851 if (!ret)
3852 continue;
3853
3854 prev_eb = eb;
3855 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3856 if (!ret) {
3857 free_extent_buffer(eb);
3858 continue;
3859 }
3860
3861 ret = write_one_eb(eb, fs_info, wbc, &epd);
3862 if (ret) {
3863 done = 1;
3864 free_extent_buffer(eb);
3865 break;
3866 }
3867 free_extent_buffer(eb);
3868
3869 /*
3870 * the filesystem may choose to bump up nr_to_write.
3871 * We have to make sure to honor the new nr_to_write
3872 * at any time
3873 */
3874 nr_to_write_done = wbc->nr_to_write <= 0;
3875 }
3876 pagevec_release(&pvec);
3877 cond_resched();
3878 }
3879 if (!scanned && !done) {
3880 /*
3881 * We hit the last page and there is more work to be done: wrap
3882 * back to the start of the file
3883 */
3884 scanned = 1;
3885 index = 0;
3886 goto retry;
3887 }
3888 flush_write_bio(&epd);
3889 return ret;
3890 }
3891
3892 /**
3893 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3894 * @mapping: address space structure to write
3895 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3896 * @writepage: function called for each page
3897 * @data: data passed to writepage function
3898 *
3899 * If a page is already under I/O, write_cache_pages() skips it, even
3900 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3901 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3902 * and msync() need to guarantee that all the data which was dirty at the time
3903 * the call was made get new I/O started against them. If wbc->sync_mode is
3904 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3905 * existing IO to complete.
3906 */
3907 static int extent_write_cache_pages(struct extent_io_tree *tree,
3908 struct address_space *mapping,
3909 struct writeback_control *wbc,
3910 writepage_t writepage, void *data,
3911 void (*flush_fn)(void *))
3912 {
3913 struct inode *inode = mapping->host;
3914 int ret = 0;
3915 int done = 0;
3916 int nr_to_write_done = 0;
3917 struct pagevec pvec;
3918 int nr_pages;
3919 pgoff_t index;
3920 pgoff_t end; /* Inclusive */
3921 pgoff_t done_index;
3922 int range_whole = 0;
3923 int scanned = 0;
3924 int tag;
3925
3926 /*
3927 * We have to hold onto the inode so that ordered extents can do their
3928 * work when the IO finishes. The alternative to this is failing to add
3929 * an ordered extent if the igrab() fails there and that is a huge pain
3930 * to deal with, so instead just hold onto the inode throughout the
3931 * writepages operation. If it fails here we are freeing up the inode
3932 * anyway and we'd rather not waste our time writing out stuff that is
3933 * going to be truncated anyway.
3934 */
3935 if (!igrab(inode))
3936 return 0;
3937
3938 pagevec_init(&pvec, 0);
3939 if (wbc->range_cyclic) {
3940 index = mapping->writeback_index; /* Start from prev offset */
3941 end = -1;
3942 } else {
3943 index = wbc->range_start >> PAGE_SHIFT;
3944 end = wbc->range_end >> PAGE_SHIFT;
3945 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3946 range_whole = 1;
3947 scanned = 1;
3948 }
3949 if (wbc->sync_mode == WB_SYNC_ALL)
3950 tag = PAGECACHE_TAG_TOWRITE;
3951 else
3952 tag = PAGECACHE_TAG_DIRTY;
3953 retry:
3954 if (wbc->sync_mode == WB_SYNC_ALL)
3955 tag_pages_for_writeback(mapping, index, end);
3956 done_index = index;
3957 while (!done && !nr_to_write_done && (index <= end) &&
3958 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3959 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3960 unsigned i;
3961
3962 scanned = 1;
3963 for (i = 0; i < nr_pages; i++) {
3964 struct page *page = pvec.pages[i];
3965
3966 done_index = page->index;
3967 /*
3968 * At this point we hold neither mapping->tree_lock nor
3969 * lock on the page itself: the page may be truncated or
3970 * invalidated (changing page->mapping to NULL), or even
3971 * swizzled back from swapper_space to tmpfs file
3972 * mapping
3973 */
3974 if (!trylock_page(page)) {
3975 flush_fn(data);
3976 lock_page(page);
3977 }
3978
3979 if (unlikely(page->mapping != mapping)) {
3980 unlock_page(page);
3981 continue;
3982 }
3983
3984 if (!wbc->range_cyclic && page->index > end) {
3985 done = 1;
3986 unlock_page(page);
3987 continue;
3988 }
3989
3990 if (wbc->sync_mode != WB_SYNC_NONE) {
3991 if (PageWriteback(page))
3992 flush_fn(data);
3993 wait_on_page_writeback(page);
3994 }
3995
3996 if (PageWriteback(page) ||
3997 !clear_page_dirty_for_io(page)) {
3998 unlock_page(page);
3999 continue;
4000 }
4001
4002 ret = (*writepage)(page, wbc, data);
4003
4004 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4005 unlock_page(page);
4006 ret = 0;
4007 }
4008 if (ret < 0) {
4009 /*
4010 * done_index is set past this page,
4011 * so media errors will not choke
4012 * background writeout for the entire
4013 * file. This has consequences for
4014 * range_cyclic semantics (ie. it may
4015 * not be suitable for data integrity
4016 * writeout).
4017 */
4018 done_index = page->index + 1;
4019 done = 1;
4020 break;
4021 }
4022
4023 /*
4024 * the filesystem may choose to bump up nr_to_write.
4025 * We have to make sure to honor the new nr_to_write
4026 * at any time
4027 */
4028 nr_to_write_done = wbc->nr_to_write <= 0;
4029 }
4030 pagevec_release(&pvec);
4031 cond_resched();
4032 }
4033 if (!scanned && !done) {
4034 /*
4035 * We hit the last page and there is more work to be done: wrap
4036 * back to the start of the file
4037 */
4038 scanned = 1;
4039 index = 0;
4040 goto retry;
4041 }
4042
4043 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4044 mapping->writeback_index = done_index;
4045
4046 btrfs_add_delayed_iput(inode);
4047 return ret;
4048 }
4049
4050 static void flush_epd_write_bio(struct extent_page_data *epd)
4051 {
4052 if (epd->bio) {
4053 int ret;
4054
4055 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4056 epd->sync_io ? WRITE_SYNC : 0);
4057
4058 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4059 BUG_ON(ret < 0); /* -ENOMEM */
4060 epd->bio = NULL;
4061 }
4062 }
4063
4064 static noinline void flush_write_bio(void *data)
4065 {
4066 struct extent_page_data *epd = data;
4067 flush_epd_write_bio(epd);
4068 }
4069
4070 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4071 get_extent_t *get_extent,
4072 struct writeback_control *wbc)
4073 {
4074 int ret;
4075 struct extent_page_data epd = {
4076 .bio = NULL,
4077 .tree = tree,
4078 .get_extent = get_extent,
4079 .extent_locked = 0,
4080 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4081 .bio_flags = 0,
4082 };
4083
4084 ret = __extent_writepage(page, wbc, &epd);
4085
4086 flush_epd_write_bio(&epd);
4087 return ret;
4088 }
4089
4090 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4091 u64 start, u64 end, get_extent_t *get_extent,
4092 int mode)
4093 {
4094 int ret = 0;
4095 struct address_space *mapping = inode->i_mapping;
4096 struct page *page;
4097 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4098 PAGE_SHIFT;
4099
4100 struct extent_page_data epd = {
4101 .bio = NULL,
4102 .tree = tree,
4103 .get_extent = get_extent,
4104 .extent_locked = 1,
4105 .sync_io = mode == WB_SYNC_ALL,
4106 .bio_flags = 0,
4107 };
4108 struct writeback_control wbc_writepages = {
4109 .sync_mode = mode,
4110 .nr_to_write = nr_pages * 2,
4111 .range_start = start,
4112 .range_end = end + 1,
4113 };
4114
4115 while (start <= end) {
4116 page = find_get_page(mapping, start >> PAGE_SHIFT);
4117 if (clear_page_dirty_for_io(page))
4118 ret = __extent_writepage(page, &wbc_writepages, &epd);
4119 else {
4120 if (tree->ops && tree->ops->writepage_end_io_hook)
4121 tree->ops->writepage_end_io_hook(page, start,
4122 start + PAGE_SIZE - 1,
4123 NULL, 1);
4124 unlock_page(page);
4125 }
4126 put_page(page);
4127 start += PAGE_SIZE;
4128 }
4129
4130 flush_epd_write_bio(&epd);
4131 return ret;
4132 }
4133
4134 int extent_writepages(struct extent_io_tree *tree,
4135 struct address_space *mapping,
4136 get_extent_t *get_extent,
4137 struct writeback_control *wbc)
4138 {
4139 int ret = 0;
4140 struct extent_page_data epd = {
4141 .bio = NULL,
4142 .tree = tree,
4143 .get_extent = get_extent,
4144 .extent_locked = 0,
4145 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4146 .bio_flags = 0,
4147 };
4148
4149 ret = extent_write_cache_pages(tree, mapping, wbc,
4150 __extent_writepage, &epd,
4151 flush_write_bio);
4152 flush_epd_write_bio(&epd);
4153 return ret;
4154 }
4155
4156 int extent_readpages(struct extent_io_tree *tree,
4157 struct address_space *mapping,
4158 struct list_head *pages, unsigned nr_pages,
4159 get_extent_t get_extent)
4160 {
4161 struct bio *bio = NULL;
4162 unsigned page_idx;
4163 unsigned long bio_flags = 0;
4164 struct page *pagepool[16];
4165 struct page *page;
4166 struct extent_map *em_cached = NULL;
4167 int nr = 0;
4168 u64 prev_em_start = (u64)-1;
4169
4170 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4171 page = list_entry(pages->prev, struct page, lru);
4172
4173 prefetchw(&page->flags);
4174 list_del(&page->lru);
4175 if (add_to_page_cache_lru(page, mapping,
4176 page->index,
4177 readahead_gfp_mask(mapping))) {
4178 put_page(page);
4179 continue;
4180 }
4181
4182 pagepool[nr++] = page;
4183 if (nr < ARRAY_SIZE(pagepool))
4184 continue;
4185 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4186 &bio, 0, &bio_flags, &prev_em_start);
4187 nr = 0;
4188 }
4189 if (nr)
4190 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4191 &bio, 0, &bio_flags, &prev_em_start);
4192
4193 if (em_cached)
4194 free_extent_map(em_cached);
4195
4196 BUG_ON(!list_empty(pages));
4197 if (bio)
4198 return submit_one_bio(bio, 0, bio_flags);
4199 return 0;
4200 }
4201
4202 /*
4203 * basic invalidatepage code, this waits on any locked or writeback
4204 * ranges corresponding to the page, and then deletes any extent state
4205 * records from the tree
4206 */
4207 int extent_invalidatepage(struct extent_io_tree *tree,
4208 struct page *page, unsigned long offset)
4209 {
4210 struct extent_state *cached_state = NULL;
4211 u64 start = page_offset(page);
4212 u64 end = start + PAGE_SIZE - 1;
4213 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4214
4215 start += ALIGN(offset, blocksize);
4216 if (start > end)
4217 return 0;
4218
4219 lock_extent_bits(tree, start, end, &cached_state);
4220 wait_on_page_writeback(page);
4221 clear_extent_bit(tree, start, end,
4222 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4223 EXTENT_DO_ACCOUNTING,
4224 1, 1, &cached_state, GFP_NOFS);
4225 return 0;
4226 }
4227
4228 /*
4229 * a helper for releasepage, this tests for areas of the page that
4230 * are locked or under IO and drops the related state bits if it is safe
4231 * to drop the page.
4232 */
4233 static int try_release_extent_state(struct extent_map_tree *map,
4234 struct extent_io_tree *tree,
4235 struct page *page, gfp_t mask)
4236 {
4237 u64 start = page_offset(page);
4238 u64 end = start + PAGE_SIZE - 1;
4239 int ret = 1;
4240
4241 if (test_range_bit(tree, start, end,
4242 EXTENT_IOBITS, 0, NULL))
4243 ret = 0;
4244 else {
4245 if ((mask & GFP_NOFS) == GFP_NOFS)
4246 mask = GFP_NOFS;
4247 /*
4248 * at this point we can safely clear everything except the
4249 * locked bit and the nodatasum bit
4250 */
4251 ret = clear_extent_bit(tree, start, end,
4252 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4253 0, 0, NULL, mask);
4254
4255 /* if clear_extent_bit failed for enomem reasons,
4256 * we can't allow the release to continue.
4257 */
4258 if (ret < 0)
4259 ret = 0;
4260 else
4261 ret = 1;
4262 }
4263 return ret;
4264 }
4265
4266 /*
4267 * a helper for releasepage. As long as there are no locked extents
4268 * in the range corresponding to the page, both state records and extent
4269 * map records are removed
4270 */
4271 int try_release_extent_mapping(struct extent_map_tree *map,
4272 struct extent_io_tree *tree, struct page *page,
4273 gfp_t mask)
4274 {
4275 struct extent_map *em;
4276 u64 start = page_offset(page);
4277 u64 end = start + PAGE_SIZE - 1;
4278
4279 if (gfpflags_allow_blocking(mask) &&
4280 page->mapping->host->i_size > SZ_16M) {
4281 u64 len;
4282 while (start <= end) {
4283 len = end - start + 1;
4284 write_lock(&map->lock);
4285 em = lookup_extent_mapping(map, start, len);
4286 if (!em) {
4287 write_unlock(&map->lock);
4288 break;
4289 }
4290 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4291 em->start != start) {
4292 write_unlock(&map->lock);
4293 free_extent_map(em);
4294 break;
4295 }
4296 if (!test_range_bit(tree, em->start,
4297 extent_map_end(em) - 1,
4298 EXTENT_LOCKED | EXTENT_WRITEBACK,
4299 0, NULL)) {
4300 remove_extent_mapping(map, em);
4301 /* once for the rb tree */
4302 free_extent_map(em);
4303 }
4304 start = extent_map_end(em);
4305 write_unlock(&map->lock);
4306
4307 /* once for us */
4308 free_extent_map(em);
4309 }
4310 }
4311 return try_release_extent_state(map, tree, page, mask);
4312 }
4313
4314 /*
4315 * helper function for fiemap, which doesn't want to see any holes.
4316 * This maps until we find something past 'last'
4317 */
4318 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4319 u64 offset,
4320 u64 last,
4321 get_extent_t *get_extent)
4322 {
4323 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4324 struct extent_map *em;
4325 u64 len;
4326
4327 if (offset >= last)
4328 return NULL;
4329
4330 while (1) {
4331 len = last - offset;
4332 if (len == 0)
4333 break;
4334 len = ALIGN(len, sectorsize);
4335 em = get_extent(inode, NULL, 0, offset, len, 0);
4336 if (IS_ERR_OR_NULL(em))
4337 return em;
4338
4339 /* if this isn't a hole return it */
4340 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4341 em->block_start != EXTENT_MAP_HOLE) {
4342 return em;
4343 }
4344
4345 /* this is a hole, advance to the next extent */
4346 offset = extent_map_end(em);
4347 free_extent_map(em);
4348 if (offset >= last)
4349 break;
4350 }
4351 return NULL;
4352 }
4353
4354 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4355 __u64 start, __u64 len, get_extent_t *get_extent)
4356 {
4357 int ret = 0;
4358 u64 off = start;
4359 u64 max = start + len;
4360 u32 flags = 0;
4361 u32 found_type;
4362 u64 last;
4363 u64 last_for_get_extent = 0;
4364 u64 disko = 0;
4365 u64 isize = i_size_read(inode);
4366 struct btrfs_key found_key;
4367 struct extent_map *em = NULL;
4368 struct extent_state *cached_state = NULL;
4369 struct btrfs_path *path;
4370 struct btrfs_root *root = BTRFS_I(inode)->root;
4371 int end = 0;
4372 u64 em_start = 0;
4373 u64 em_len = 0;
4374 u64 em_end = 0;
4375
4376 if (len == 0)
4377 return -EINVAL;
4378
4379 path = btrfs_alloc_path();
4380 if (!path)
4381 return -ENOMEM;
4382 path->leave_spinning = 1;
4383
4384 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4385 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4386
4387 /*
4388 * lookup the last file extent. We're not using i_size here
4389 * because there might be preallocation past i_size
4390 */
4391 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4392 0);
4393 if (ret < 0) {
4394 btrfs_free_path(path);
4395 return ret;
4396 } else {
4397 WARN_ON(!ret);
4398 if (ret == 1)
4399 ret = 0;
4400 }
4401
4402 path->slots[0]--;
4403 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4404 found_type = found_key.type;
4405
4406 /* No extents, but there might be delalloc bits */
4407 if (found_key.objectid != btrfs_ino(inode) ||
4408 found_type != BTRFS_EXTENT_DATA_KEY) {
4409 /* have to trust i_size as the end */
4410 last = (u64)-1;
4411 last_for_get_extent = isize;
4412 } else {
4413 /*
4414 * remember the start of the last extent. There are a
4415 * bunch of different factors that go into the length of the
4416 * extent, so its much less complex to remember where it started
4417 */
4418 last = found_key.offset;
4419 last_for_get_extent = last + 1;
4420 }
4421 btrfs_release_path(path);
4422
4423 /*
4424 * we might have some extents allocated but more delalloc past those
4425 * extents. so, we trust isize unless the start of the last extent is
4426 * beyond isize
4427 */
4428 if (last < isize) {
4429 last = (u64)-1;
4430 last_for_get_extent = isize;
4431 }
4432
4433 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4434 &cached_state);
4435
4436 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4437 get_extent);
4438 if (!em)
4439 goto out;
4440 if (IS_ERR(em)) {
4441 ret = PTR_ERR(em);
4442 goto out;
4443 }
4444
4445 while (!end) {
4446 u64 offset_in_extent = 0;
4447
4448 /* break if the extent we found is outside the range */
4449 if (em->start >= max || extent_map_end(em) < off)
4450 break;
4451
4452 /*
4453 * get_extent may return an extent that starts before our
4454 * requested range. We have to make sure the ranges
4455 * we return to fiemap always move forward and don't
4456 * overlap, so adjust the offsets here
4457 */
4458 em_start = max(em->start, off);
4459
4460 /*
4461 * record the offset from the start of the extent
4462 * for adjusting the disk offset below. Only do this if the
4463 * extent isn't compressed since our in ram offset may be past
4464 * what we have actually allocated on disk.
4465 */
4466 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4467 offset_in_extent = em_start - em->start;
4468 em_end = extent_map_end(em);
4469 em_len = em_end - em_start;
4470 disko = 0;
4471 flags = 0;
4472
4473 /*
4474 * bump off for our next call to get_extent
4475 */
4476 off = extent_map_end(em);
4477 if (off >= max)
4478 end = 1;
4479
4480 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4481 end = 1;
4482 flags |= FIEMAP_EXTENT_LAST;
4483 } else if (em->block_start == EXTENT_MAP_INLINE) {
4484 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4485 FIEMAP_EXTENT_NOT_ALIGNED);
4486 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4487 flags |= (FIEMAP_EXTENT_DELALLOC |
4488 FIEMAP_EXTENT_UNKNOWN);
4489 } else if (fieinfo->fi_extents_max) {
4490 struct btrfs_trans_handle *trans;
4491
4492 u64 bytenr = em->block_start -
4493 (em->start - em->orig_start);
4494
4495 disko = em->block_start + offset_in_extent;
4496
4497 /*
4498 * We need a trans handle to get delayed refs
4499 */
4500 trans = btrfs_join_transaction(root);
4501 /*
4502 * It's OK if we can't start a trans we can still check
4503 * from commit_root
4504 */
4505 if (IS_ERR(trans))
4506 trans = NULL;
4507
4508 /*
4509 * As btrfs supports shared space, this information
4510 * can be exported to userspace tools via
4511 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4512 * then we're just getting a count and we can skip the
4513 * lookup stuff.
4514 */
4515 ret = btrfs_check_shared(trans, root->fs_info,
4516 root->objectid,
4517 btrfs_ino(inode), bytenr);
4518 if (trans)
4519 btrfs_end_transaction(trans, root);
4520 if (ret < 0)
4521 goto out_free;
4522 if (ret)
4523 flags |= FIEMAP_EXTENT_SHARED;
4524 ret = 0;
4525 }
4526 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4527 flags |= FIEMAP_EXTENT_ENCODED;
4528 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4529 flags |= FIEMAP_EXTENT_UNWRITTEN;
4530
4531 free_extent_map(em);
4532 em = NULL;
4533 if ((em_start >= last) || em_len == (u64)-1 ||
4534 (last == (u64)-1 && isize <= em_end)) {
4535 flags |= FIEMAP_EXTENT_LAST;
4536 end = 1;
4537 }
4538
4539 /* now scan forward to see if this is really the last extent. */
4540 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4541 get_extent);
4542 if (IS_ERR(em)) {
4543 ret = PTR_ERR(em);
4544 goto out;
4545 }
4546 if (!em) {
4547 flags |= FIEMAP_EXTENT_LAST;
4548 end = 1;
4549 }
4550 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4551 em_len, flags);
4552 if (ret) {
4553 if (ret == 1)
4554 ret = 0;
4555 goto out_free;
4556 }
4557 }
4558 out_free:
4559 free_extent_map(em);
4560 out:
4561 btrfs_free_path(path);
4562 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4563 &cached_state, GFP_NOFS);
4564 return ret;
4565 }
4566
4567 static void __free_extent_buffer(struct extent_buffer *eb)
4568 {
4569 btrfs_leak_debug_del(&eb->leak_list);
4570 kmem_cache_free(extent_buffer_cache, eb);
4571 }
4572
4573 int extent_buffer_under_io(struct extent_buffer *eb)
4574 {
4575 return (atomic_read(&eb->io_pages) ||
4576 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4577 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4578 }
4579
4580 /*
4581 * Helper for releasing extent buffer page.
4582 */
4583 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4584 {
4585 unsigned long index;
4586 struct page *page;
4587 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4588
4589 BUG_ON(extent_buffer_under_io(eb));
4590
4591 index = num_extent_pages(eb->start, eb->len);
4592 if (index == 0)
4593 return;
4594
4595 do {
4596 index--;
4597 page = eb->pages[index];
4598 if (!page)
4599 continue;
4600 if (mapped)
4601 spin_lock(&page->mapping->private_lock);
4602 /*
4603 * We do this since we'll remove the pages after we've
4604 * removed the eb from the radix tree, so we could race
4605 * and have this page now attached to the new eb. So
4606 * only clear page_private if it's still connected to
4607 * this eb.
4608 */
4609 if (PagePrivate(page) &&
4610 page->private == (unsigned long)eb) {
4611 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4612 BUG_ON(PageDirty(page));
4613 BUG_ON(PageWriteback(page));
4614 /*
4615 * We need to make sure we haven't be attached
4616 * to a new eb.
4617 */
4618 ClearPagePrivate(page);
4619 set_page_private(page, 0);
4620 /* One for the page private */
4621 put_page(page);
4622 }
4623
4624 if (mapped)
4625 spin_unlock(&page->mapping->private_lock);
4626
4627 /* One for when we allocated the page */
4628 put_page(page);
4629 } while (index != 0);
4630 }
4631
4632 /*
4633 * Helper for releasing the extent buffer.
4634 */
4635 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4636 {
4637 btrfs_release_extent_buffer_page(eb);
4638 __free_extent_buffer(eb);
4639 }
4640
4641 static struct extent_buffer *
4642 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4643 unsigned long len)
4644 {
4645 struct extent_buffer *eb = NULL;
4646
4647 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4648 eb->start = start;
4649 eb->len = len;
4650 eb->fs_info = fs_info;
4651 eb->bflags = 0;
4652 rwlock_init(&eb->lock);
4653 atomic_set(&eb->write_locks, 0);
4654 atomic_set(&eb->read_locks, 0);
4655 atomic_set(&eb->blocking_readers, 0);
4656 atomic_set(&eb->blocking_writers, 0);
4657 atomic_set(&eb->spinning_readers, 0);
4658 atomic_set(&eb->spinning_writers, 0);
4659 eb->lock_nested = 0;
4660 init_waitqueue_head(&eb->write_lock_wq);
4661 init_waitqueue_head(&eb->read_lock_wq);
4662
4663 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4664
4665 spin_lock_init(&eb->refs_lock);
4666 atomic_set(&eb->refs, 1);
4667 atomic_set(&eb->io_pages, 0);
4668
4669 /*
4670 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4671 */
4672 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4673 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4674 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4675
4676 return eb;
4677 }
4678
4679 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4680 {
4681 unsigned long i;
4682 struct page *p;
4683 struct extent_buffer *new;
4684 unsigned long num_pages = num_extent_pages(src->start, src->len);
4685
4686 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4687 if (new == NULL)
4688 return NULL;
4689
4690 for (i = 0; i < num_pages; i++) {
4691 p = alloc_page(GFP_NOFS);
4692 if (!p) {
4693 btrfs_release_extent_buffer(new);
4694 return NULL;
4695 }
4696 attach_extent_buffer_page(new, p);
4697 WARN_ON(PageDirty(p));
4698 SetPageUptodate(p);
4699 new->pages[i] = p;
4700 }
4701
4702 copy_extent_buffer(new, src, 0, 0, src->len);
4703 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4704 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4705
4706 return new;
4707 }
4708
4709 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4710 u64 start, unsigned long len)
4711 {
4712 struct extent_buffer *eb;
4713 unsigned long num_pages;
4714 unsigned long i;
4715
4716 num_pages = num_extent_pages(start, len);
4717
4718 eb = __alloc_extent_buffer(fs_info, start, len);
4719 if (!eb)
4720 return NULL;
4721
4722 for (i = 0; i < num_pages; i++) {
4723 eb->pages[i] = alloc_page(GFP_NOFS);
4724 if (!eb->pages[i])
4725 goto err;
4726 }
4727 set_extent_buffer_uptodate(eb);
4728 btrfs_set_header_nritems(eb, 0);
4729 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4730
4731 return eb;
4732 err:
4733 for (; i > 0; i--)
4734 __free_page(eb->pages[i - 1]);
4735 __free_extent_buffer(eb);
4736 return NULL;
4737 }
4738
4739 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4740 u64 start, u32 nodesize)
4741 {
4742 unsigned long len;
4743
4744 if (!fs_info) {
4745 /*
4746 * Called only from tests that don't always have a fs_info
4747 * available
4748 */
4749 len = nodesize;
4750 } else {
4751 len = fs_info->tree_root->nodesize;
4752 }
4753
4754 return __alloc_dummy_extent_buffer(fs_info, start, len);
4755 }
4756
4757 static void check_buffer_tree_ref(struct extent_buffer *eb)
4758 {
4759 int refs;
4760 /* the ref bit is tricky. We have to make sure it is set
4761 * if we have the buffer dirty. Otherwise the
4762 * code to free a buffer can end up dropping a dirty
4763 * page
4764 *
4765 * Once the ref bit is set, it won't go away while the
4766 * buffer is dirty or in writeback, and it also won't
4767 * go away while we have the reference count on the
4768 * eb bumped.
4769 *
4770 * We can't just set the ref bit without bumping the
4771 * ref on the eb because free_extent_buffer might
4772 * see the ref bit and try to clear it. If this happens
4773 * free_extent_buffer might end up dropping our original
4774 * ref by mistake and freeing the page before we are able
4775 * to add one more ref.
4776 *
4777 * So bump the ref count first, then set the bit. If someone
4778 * beat us to it, drop the ref we added.
4779 */
4780 refs = atomic_read(&eb->refs);
4781 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4782 return;
4783
4784 spin_lock(&eb->refs_lock);
4785 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4786 atomic_inc(&eb->refs);
4787 spin_unlock(&eb->refs_lock);
4788 }
4789
4790 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4791 struct page *accessed)
4792 {
4793 unsigned long num_pages, i;
4794
4795 check_buffer_tree_ref(eb);
4796
4797 num_pages = num_extent_pages(eb->start, eb->len);
4798 for (i = 0; i < num_pages; i++) {
4799 struct page *p = eb->pages[i];
4800
4801 if (p != accessed)
4802 mark_page_accessed(p);
4803 }
4804 }
4805
4806 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4807 u64 start)
4808 {
4809 struct extent_buffer *eb;
4810
4811 rcu_read_lock();
4812 eb = radix_tree_lookup(&fs_info->buffer_radix,
4813 start >> PAGE_SHIFT);
4814 if (eb && atomic_inc_not_zero(&eb->refs)) {
4815 rcu_read_unlock();
4816 /*
4817 * Lock our eb's refs_lock to avoid races with
4818 * free_extent_buffer. When we get our eb it might be flagged
4819 * with EXTENT_BUFFER_STALE and another task running
4820 * free_extent_buffer might have seen that flag set,
4821 * eb->refs == 2, that the buffer isn't under IO (dirty and
4822 * writeback flags not set) and it's still in the tree (flag
4823 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4824 * of decrementing the extent buffer's reference count twice.
4825 * So here we could race and increment the eb's reference count,
4826 * clear its stale flag, mark it as dirty and drop our reference
4827 * before the other task finishes executing free_extent_buffer,
4828 * which would later result in an attempt to free an extent
4829 * buffer that is dirty.
4830 */
4831 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4832 spin_lock(&eb->refs_lock);
4833 spin_unlock(&eb->refs_lock);
4834 }
4835 mark_extent_buffer_accessed(eb, NULL);
4836 return eb;
4837 }
4838 rcu_read_unlock();
4839
4840 return NULL;
4841 }
4842
4843 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4844 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4845 u64 start, u32 nodesize)
4846 {
4847 struct extent_buffer *eb, *exists = NULL;
4848 int ret;
4849
4850 eb = find_extent_buffer(fs_info, start);
4851 if (eb)
4852 return eb;
4853 eb = alloc_dummy_extent_buffer(fs_info, start, nodesize);
4854 if (!eb)
4855 return NULL;
4856 eb->fs_info = fs_info;
4857 again:
4858 ret = radix_tree_preload(GFP_NOFS);
4859 if (ret)
4860 goto free_eb;
4861 spin_lock(&fs_info->buffer_lock);
4862 ret = radix_tree_insert(&fs_info->buffer_radix,
4863 start >> PAGE_SHIFT, eb);
4864 spin_unlock(&fs_info->buffer_lock);
4865 radix_tree_preload_end();
4866 if (ret == -EEXIST) {
4867 exists = find_extent_buffer(fs_info, start);
4868 if (exists)
4869 goto free_eb;
4870 else
4871 goto again;
4872 }
4873 check_buffer_tree_ref(eb);
4874 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4875
4876 /*
4877 * We will free dummy extent buffer's if they come into
4878 * free_extent_buffer with a ref count of 2, but if we are using this we
4879 * want the buffers to stay in memory until we're done with them, so
4880 * bump the ref count again.
4881 */
4882 atomic_inc(&eb->refs);
4883 return eb;
4884 free_eb:
4885 btrfs_release_extent_buffer(eb);
4886 return exists;
4887 }
4888 #endif
4889
4890 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4891 u64 start)
4892 {
4893 unsigned long len = fs_info->tree_root->nodesize;
4894 unsigned long num_pages = num_extent_pages(start, len);
4895 unsigned long i;
4896 unsigned long index = start >> PAGE_SHIFT;
4897 struct extent_buffer *eb;
4898 struct extent_buffer *exists = NULL;
4899 struct page *p;
4900 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4901 int uptodate = 1;
4902 int ret;
4903
4904 if (!IS_ALIGNED(start, fs_info->tree_root->sectorsize)) {
4905 btrfs_err(fs_info, "bad tree block start %llu", start);
4906 return ERR_PTR(-EINVAL);
4907 }
4908
4909 eb = find_extent_buffer(fs_info, start);
4910 if (eb)
4911 return eb;
4912
4913 eb = __alloc_extent_buffer(fs_info, start, len);
4914 if (!eb)
4915 return ERR_PTR(-ENOMEM);
4916
4917 for (i = 0; i < num_pages; i++, index++) {
4918 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4919 if (!p) {
4920 exists = ERR_PTR(-ENOMEM);
4921 goto free_eb;
4922 }
4923
4924 spin_lock(&mapping->private_lock);
4925 if (PagePrivate(p)) {
4926 /*
4927 * We could have already allocated an eb for this page
4928 * and attached one so lets see if we can get a ref on
4929 * the existing eb, and if we can we know it's good and
4930 * we can just return that one, else we know we can just
4931 * overwrite page->private.
4932 */
4933 exists = (struct extent_buffer *)p->private;
4934 if (atomic_inc_not_zero(&exists->refs)) {
4935 spin_unlock(&mapping->private_lock);
4936 unlock_page(p);
4937 put_page(p);
4938 mark_extent_buffer_accessed(exists, p);
4939 goto free_eb;
4940 }
4941 exists = NULL;
4942
4943 /*
4944 * Do this so attach doesn't complain and we need to
4945 * drop the ref the old guy had.
4946 */
4947 ClearPagePrivate(p);
4948 WARN_ON(PageDirty(p));
4949 put_page(p);
4950 }
4951 attach_extent_buffer_page(eb, p);
4952 spin_unlock(&mapping->private_lock);
4953 WARN_ON(PageDirty(p));
4954 eb->pages[i] = p;
4955 if (!PageUptodate(p))
4956 uptodate = 0;
4957
4958 /*
4959 * see below about how we avoid a nasty race with release page
4960 * and why we unlock later
4961 */
4962 }
4963 if (uptodate)
4964 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4965 again:
4966 ret = radix_tree_preload(GFP_NOFS);
4967 if (ret) {
4968 exists = ERR_PTR(ret);
4969 goto free_eb;
4970 }
4971
4972 spin_lock(&fs_info->buffer_lock);
4973 ret = radix_tree_insert(&fs_info->buffer_radix,
4974 start >> PAGE_SHIFT, eb);
4975 spin_unlock(&fs_info->buffer_lock);
4976 radix_tree_preload_end();
4977 if (ret == -EEXIST) {
4978 exists = find_extent_buffer(fs_info, start);
4979 if (exists)
4980 goto free_eb;
4981 else
4982 goto again;
4983 }
4984 /* add one reference for the tree */
4985 check_buffer_tree_ref(eb);
4986 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4987
4988 /*
4989 * there is a race where release page may have
4990 * tried to find this extent buffer in the radix
4991 * but failed. It will tell the VM it is safe to
4992 * reclaim the, and it will clear the page private bit.
4993 * We must make sure to set the page private bit properly
4994 * after the extent buffer is in the radix tree so
4995 * it doesn't get lost
4996 */
4997 SetPageChecked(eb->pages[0]);
4998 for (i = 1; i < num_pages; i++) {
4999 p = eb->pages[i];
5000 ClearPageChecked(p);
5001 unlock_page(p);
5002 }
5003 unlock_page(eb->pages[0]);
5004 return eb;
5005
5006 free_eb:
5007 WARN_ON(!atomic_dec_and_test(&eb->refs));
5008 for (i = 0; i < num_pages; i++) {
5009 if (eb->pages[i])
5010 unlock_page(eb->pages[i]);
5011 }
5012
5013 btrfs_release_extent_buffer(eb);
5014 return exists;
5015 }
5016
5017 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5018 {
5019 struct extent_buffer *eb =
5020 container_of(head, struct extent_buffer, rcu_head);
5021
5022 __free_extent_buffer(eb);
5023 }
5024
5025 /* Expects to have eb->eb_lock already held */
5026 static int release_extent_buffer(struct extent_buffer *eb)
5027 {
5028 WARN_ON(atomic_read(&eb->refs) == 0);
5029 if (atomic_dec_and_test(&eb->refs)) {
5030 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5031 struct btrfs_fs_info *fs_info = eb->fs_info;
5032
5033 spin_unlock(&eb->refs_lock);
5034
5035 spin_lock(&fs_info->buffer_lock);
5036 radix_tree_delete(&fs_info->buffer_radix,
5037 eb->start >> PAGE_SHIFT);
5038 spin_unlock(&fs_info->buffer_lock);
5039 } else {
5040 spin_unlock(&eb->refs_lock);
5041 }
5042
5043 /* Should be safe to release our pages at this point */
5044 btrfs_release_extent_buffer_page(eb);
5045 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5046 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5047 __free_extent_buffer(eb);
5048 return 1;
5049 }
5050 #endif
5051 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5052 return 1;
5053 }
5054 spin_unlock(&eb->refs_lock);
5055
5056 return 0;
5057 }
5058
5059 void free_extent_buffer(struct extent_buffer *eb)
5060 {
5061 int refs;
5062 int old;
5063 if (!eb)
5064 return;
5065
5066 while (1) {
5067 refs = atomic_read(&eb->refs);
5068 if (refs <= 3)
5069 break;
5070 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5071 if (old == refs)
5072 return;
5073 }
5074
5075 spin_lock(&eb->refs_lock);
5076 if (atomic_read(&eb->refs) == 2 &&
5077 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5078 atomic_dec(&eb->refs);
5079
5080 if (atomic_read(&eb->refs) == 2 &&
5081 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5082 !extent_buffer_under_io(eb) &&
5083 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5084 atomic_dec(&eb->refs);
5085
5086 /*
5087 * I know this is terrible, but it's temporary until we stop tracking
5088 * the uptodate bits and such for the extent buffers.
5089 */
5090 release_extent_buffer(eb);
5091 }
5092
5093 void free_extent_buffer_stale(struct extent_buffer *eb)
5094 {
5095 if (!eb)
5096 return;
5097
5098 spin_lock(&eb->refs_lock);
5099 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5100
5101 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5102 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5103 atomic_dec(&eb->refs);
5104 release_extent_buffer(eb);
5105 }
5106
5107 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5108 {
5109 unsigned long i;
5110 unsigned long num_pages;
5111 struct page *page;
5112
5113 num_pages = num_extent_pages(eb->start, eb->len);
5114
5115 for (i = 0; i < num_pages; i++) {
5116 page = eb->pages[i];
5117 if (!PageDirty(page))
5118 continue;
5119
5120 lock_page(page);
5121 WARN_ON(!PagePrivate(page));
5122
5123 clear_page_dirty_for_io(page);
5124 spin_lock_irq(&page->mapping->tree_lock);
5125 if (!PageDirty(page)) {
5126 radix_tree_tag_clear(&page->mapping->page_tree,
5127 page_index(page),
5128 PAGECACHE_TAG_DIRTY);
5129 }
5130 spin_unlock_irq(&page->mapping->tree_lock);
5131 ClearPageError(page);
5132 unlock_page(page);
5133 }
5134 WARN_ON(atomic_read(&eb->refs) == 0);
5135 }
5136
5137 int set_extent_buffer_dirty(struct extent_buffer *eb)
5138 {
5139 unsigned long i;
5140 unsigned long num_pages;
5141 int was_dirty = 0;
5142
5143 check_buffer_tree_ref(eb);
5144
5145 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5146
5147 num_pages = num_extent_pages(eb->start, eb->len);
5148 WARN_ON(atomic_read(&eb->refs) == 0);
5149 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5150
5151 for (i = 0; i < num_pages; i++)
5152 set_page_dirty(eb->pages[i]);
5153 return was_dirty;
5154 }
5155
5156 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5157 {
5158 unsigned long i;
5159 struct page *page;
5160 unsigned long num_pages;
5161
5162 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5163 num_pages = num_extent_pages(eb->start, eb->len);
5164 for (i = 0; i < num_pages; i++) {
5165 page = eb->pages[i];
5166 if (page)
5167 ClearPageUptodate(page);
5168 }
5169 }
5170
5171 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5172 {
5173 unsigned long i;
5174 struct page *page;
5175 unsigned long num_pages;
5176
5177 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5178 num_pages = num_extent_pages(eb->start, eb->len);
5179 for (i = 0; i < num_pages; i++) {
5180 page = eb->pages[i];
5181 SetPageUptodate(page);
5182 }
5183 }
5184
5185 int extent_buffer_uptodate(struct extent_buffer *eb)
5186 {
5187 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5188 }
5189
5190 int read_extent_buffer_pages(struct extent_io_tree *tree,
5191 struct extent_buffer *eb, int wait,
5192 get_extent_t *get_extent, int mirror_num)
5193 {
5194 unsigned long i;
5195 struct page *page;
5196 int err;
5197 int ret = 0;
5198 int locked_pages = 0;
5199 int all_uptodate = 1;
5200 unsigned long num_pages;
5201 unsigned long num_reads = 0;
5202 struct bio *bio = NULL;
5203 unsigned long bio_flags = 0;
5204
5205 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5206 return 0;
5207
5208 num_pages = num_extent_pages(eb->start, eb->len);
5209 for (i = 0; i < num_pages; i++) {
5210 page = eb->pages[i];
5211 if (wait == WAIT_NONE) {
5212 if (!trylock_page(page))
5213 goto unlock_exit;
5214 } else {
5215 lock_page(page);
5216 }
5217 locked_pages++;
5218 }
5219 /*
5220 * We need to firstly lock all pages to make sure that
5221 * the uptodate bit of our pages won't be affected by
5222 * clear_extent_buffer_uptodate().
5223 */
5224 for (i = 0; i < num_pages; i++) {
5225 page = eb->pages[i];
5226 if (!PageUptodate(page)) {
5227 num_reads++;
5228 all_uptodate = 0;
5229 }
5230 }
5231
5232 if (all_uptodate) {
5233 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5234 goto unlock_exit;
5235 }
5236
5237 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5238 eb->read_mirror = 0;
5239 atomic_set(&eb->io_pages, num_reads);
5240 for (i = 0; i < num_pages; i++) {
5241 page = eb->pages[i];
5242
5243 if (!PageUptodate(page)) {
5244 if (ret) {
5245 atomic_dec(&eb->io_pages);
5246 unlock_page(page);
5247 continue;
5248 }
5249
5250 ClearPageError(page);
5251 err = __extent_read_full_page(tree, page,
5252 get_extent, &bio,
5253 mirror_num, &bio_flags,
5254 REQ_META);
5255 if (err) {
5256 ret = err;
5257 /*
5258 * We use &bio in above __extent_read_full_page,
5259 * so we ensure that if it returns error, the
5260 * current page fails to add itself to bio and
5261 * it's been unlocked.
5262 *
5263 * We must dec io_pages by ourselves.
5264 */
5265 atomic_dec(&eb->io_pages);
5266 }
5267 } else {
5268 unlock_page(page);
5269 }
5270 }
5271
5272 if (bio) {
5273 err = submit_one_bio(bio, mirror_num, bio_flags);
5274 if (err)
5275 return err;
5276 }
5277
5278 if (ret || wait != WAIT_COMPLETE)
5279 return ret;
5280
5281 for (i = 0; i < num_pages; i++) {
5282 page = eb->pages[i];
5283 wait_on_page_locked(page);
5284 if (!PageUptodate(page))
5285 ret = -EIO;
5286 }
5287
5288 return ret;
5289
5290 unlock_exit:
5291 while (locked_pages > 0) {
5292 locked_pages--;
5293 page = eb->pages[locked_pages];
5294 unlock_page(page);
5295 }
5296 return ret;
5297 }
5298
5299 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5300 unsigned long start,
5301 unsigned long len)
5302 {
5303 size_t cur;
5304 size_t offset;
5305 struct page *page;
5306 char *kaddr;
5307 char *dst = (char *)dstv;
5308 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5309 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5310
5311 WARN_ON(start > eb->len);
5312 WARN_ON(start + len > eb->start + eb->len);
5313
5314 offset = (start_offset + start) & (PAGE_SIZE - 1);
5315
5316 while (len > 0) {
5317 page = eb->pages[i];
5318
5319 cur = min(len, (PAGE_SIZE - offset));
5320 kaddr = page_address(page);
5321 memcpy(dst, kaddr + offset, cur);
5322
5323 dst += cur;
5324 len -= cur;
5325 offset = 0;
5326 i++;
5327 }
5328 }
5329
5330 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5331 unsigned long start,
5332 unsigned long len)
5333 {
5334 size_t cur;
5335 size_t offset;
5336 struct page *page;
5337 char *kaddr;
5338 char __user *dst = (char __user *)dstv;
5339 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5340 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5341 int ret = 0;
5342
5343 WARN_ON(start > eb->len);
5344 WARN_ON(start + len > eb->start + eb->len);
5345
5346 offset = (start_offset + start) & (PAGE_SIZE - 1);
5347
5348 while (len > 0) {
5349 page = eb->pages[i];
5350
5351 cur = min(len, (PAGE_SIZE - offset));
5352 kaddr = page_address(page);
5353 if (copy_to_user(dst, kaddr + offset, cur)) {
5354 ret = -EFAULT;
5355 break;
5356 }
5357
5358 dst += cur;
5359 len -= cur;
5360 offset = 0;
5361 i++;
5362 }
5363
5364 return ret;
5365 }
5366
5367 /*
5368 * return 0 if the item is found within a page.
5369 * return 1 if the item spans two pages.
5370 * return -EINVAL otherwise.
5371 */
5372 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5373 unsigned long min_len, char **map,
5374 unsigned long *map_start,
5375 unsigned long *map_len)
5376 {
5377 size_t offset = start & (PAGE_SIZE - 1);
5378 char *kaddr;
5379 struct page *p;
5380 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5381 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5382 unsigned long end_i = (start_offset + start + min_len - 1) >>
5383 PAGE_SHIFT;
5384
5385 if (i != end_i)
5386 return 1;
5387
5388 if (i == 0) {
5389 offset = start_offset;
5390 *map_start = 0;
5391 } else {
5392 offset = 0;
5393 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5394 }
5395
5396 if (start + min_len > eb->len) {
5397 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5398 "wanted %lu %lu\n",
5399 eb->start, eb->len, start, min_len);
5400 return -EINVAL;
5401 }
5402
5403 p = eb->pages[i];
5404 kaddr = page_address(p);
5405 *map = kaddr + offset;
5406 *map_len = PAGE_SIZE - offset;
5407 return 0;
5408 }
5409
5410 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5411 unsigned long start,
5412 unsigned long len)
5413 {
5414 size_t cur;
5415 size_t offset;
5416 struct page *page;
5417 char *kaddr;
5418 char *ptr = (char *)ptrv;
5419 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5420 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5421 int ret = 0;
5422
5423 WARN_ON(start > eb->len);
5424 WARN_ON(start + len > eb->start + eb->len);
5425
5426 offset = (start_offset + start) & (PAGE_SIZE - 1);
5427
5428 while (len > 0) {
5429 page = eb->pages[i];
5430
5431 cur = min(len, (PAGE_SIZE - offset));
5432
5433 kaddr = page_address(page);
5434 ret = memcmp(ptr, kaddr + offset, cur);
5435 if (ret)
5436 break;
5437
5438 ptr += cur;
5439 len -= cur;
5440 offset = 0;
5441 i++;
5442 }
5443 return ret;
5444 }
5445
5446 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5447 unsigned long start, unsigned long len)
5448 {
5449 size_t cur;
5450 size_t offset;
5451 struct page *page;
5452 char *kaddr;
5453 char *src = (char *)srcv;
5454 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5455 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5456
5457 WARN_ON(start > eb->len);
5458 WARN_ON(start + len > eb->start + eb->len);
5459
5460 offset = (start_offset + start) & (PAGE_SIZE - 1);
5461
5462 while (len > 0) {
5463 page = eb->pages[i];
5464 WARN_ON(!PageUptodate(page));
5465
5466 cur = min(len, PAGE_SIZE - offset);
5467 kaddr = page_address(page);
5468 memcpy(kaddr + offset, src, cur);
5469
5470 src += cur;
5471 len -= cur;
5472 offset = 0;
5473 i++;
5474 }
5475 }
5476
5477 void memset_extent_buffer(struct extent_buffer *eb, char c,
5478 unsigned long start, unsigned long len)
5479 {
5480 size_t cur;
5481 size_t offset;
5482 struct page *page;
5483 char *kaddr;
5484 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5485 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5486
5487 WARN_ON(start > eb->len);
5488 WARN_ON(start + len > eb->start + eb->len);
5489
5490 offset = (start_offset + start) & (PAGE_SIZE - 1);
5491
5492 while (len > 0) {
5493 page = eb->pages[i];
5494 WARN_ON(!PageUptodate(page));
5495
5496 cur = min(len, PAGE_SIZE - offset);
5497 kaddr = page_address(page);
5498 memset(kaddr + offset, c, cur);
5499
5500 len -= cur;
5501 offset = 0;
5502 i++;
5503 }
5504 }
5505
5506 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5507 unsigned long dst_offset, unsigned long src_offset,
5508 unsigned long len)
5509 {
5510 u64 dst_len = dst->len;
5511 size_t cur;
5512 size_t offset;
5513 struct page *page;
5514 char *kaddr;
5515 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5516 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5517
5518 WARN_ON(src->len != dst_len);
5519
5520 offset = (start_offset + dst_offset) &
5521 (PAGE_SIZE - 1);
5522
5523 while (len > 0) {
5524 page = dst->pages[i];
5525 WARN_ON(!PageUptodate(page));
5526
5527 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5528
5529 kaddr = page_address(page);
5530 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5531
5532 src_offset += cur;
5533 len -= cur;
5534 offset = 0;
5535 i++;
5536 }
5537 }
5538
5539 /*
5540 * The extent buffer bitmap operations are done with byte granularity because
5541 * bitmap items are not guaranteed to be aligned to a word and therefore a
5542 * single word in a bitmap may straddle two pages in the extent buffer.
5543 */
5544 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5545 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5546 #define BITMAP_FIRST_BYTE_MASK(start) \
5547 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5548 #define BITMAP_LAST_BYTE_MASK(nbits) \
5549 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5550
5551 /*
5552 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5553 * given bit number
5554 * @eb: the extent buffer
5555 * @start: offset of the bitmap item in the extent buffer
5556 * @nr: bit number
5557 * @page_index: return index of the page in the extent buffer that contains the
5558 * given bit number
5559 * @page_offset: return offset into the page given by page_index
5560 *
5561 * This helper hides the ugliness of finding the byte in an extent buffer which
5562 * contains a given bit.
5563 */
5564 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5565 unsigned long start, unsigned long nr,
5566 unsigned long *page_index,
5567 size_t *page_offset)
5568 {
5569 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5570 size_t byte_offset = BIT_BYTE(nr);
5571 size_t offset;
5572
5573 /*
5574 * The byte we want is the offset of the extent buffer + the offset of
5575 * the bitmap item in the extent buffer + the offset of the byte in the
5576 * bitmap item.
5577 */
5578 offset = start_offset + start + byte_offset;
5579
5580 *page_index = offset >> PAGE_SHIFT;
5581 *page_offset = offset & (PAGE_SIZE - 1);
5582 }
5583
5584 /**
5585 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5586 * @eb: the extent buffer
5587 * @start: offset of the bitmap item in the extent buffer
5588 * @nr: bit number to test
5589 */
5590 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5591 unsigned long nr)
5592 {
5593 char *kaddr;
5594 struct page *page;
5595 unsigned long i;
5596 size_t offset;
5597
5598 eb_bitmap_offset(eb, start, nr, &i, &offset);
5599 page = eb->pages[i];
5600 WARN_ON(!PageUptodate(page));
5601 kaddr = page_address(page);
5602 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5603 }
5604
5605 /**
5606 * extent_buffer_bitmap_set - set an area of a bitmap
5607 * @eb: the extent buffer
5608 * @start: offset of the bitmap item in the extent buffer
5609 * @pos: bit number of the first bit
5610 * @len: number of bits to set
5611 */
5612 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5613 unsigned long pos, unsigned long len)
5614 {
5615 char *kaddr;
5616 struct page *page;
5617 unsigned long i;
5618 size_t offset;
5619 const unsigned int size = pos + len;
5620 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5621 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5622
5623 eb_bitmap_offset(eb, start, pos, &i, &offset);
5624 page = eb->pages[i];
5625 WARN_ON(!PageUptodate(page));
5626 kaddr = page_address(page);
5627
5628 while (len >= bits_to_set) {
5629 kaddr[offset] |= mask_to_set;
5630 len -= bits_to_set;
5631 bits_to_set = BITS_PER_BYTE;
5632 mask_to_set = ~0U;
5633 if (++offset >= PAGE_SIZE && len > 0) {
5634 offset = 0;
5635 page = eb->pages[++i];
5636 WARN_ON(!PageUptodate(page));
5637 kaddr = page_address(page);
5638 }
5639 }
5640 if (len) {
5641 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5642 kaddr[offset] |= mask_to_set;
5643 }
5644 }
5645
5646
5647 /**
5648 * extent_buffer_bitmap_clear - clear an area of a bitmap
5649 * @eb: the extent buffer
5650 * @start: offset of the bitmap item in the extent buffer
5651 * @pos: bit number of the first bit
5652 * @len: number of bits to clear
5653 */
5654 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5655 unsigned long pos, unsigned long len)
5656 {
5657 char *kaddr;
5658 struct page *page;
5659 unsigned long i;
5660 size_t offset;
5661 const unsigned int size = pos + len;
5662 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5663 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5664
5665 eb_bitmap_offset(eb, start, pos, &i, &offset);
5666 page = eb->pages[i];
5667 WARN_ON(!PageUptodate(page));
5668 kaddr = page_address(page);
5669
5670 while (len >= bits_to_clear) {
5671 kaddr[offset] &= ~mask_to_clear;
5672 len -= bits_to_clear;
5673 bits_to_clear = BITS_PER_BYTE;
5674 mask_to_clear = ~0U;
5675 if (++offset >= PAGE_SIZE && len > 0) {
5676 offset = 0;
5677 page = eb->pages[++i];
5678 WARN_ON(!PageUptodate(page));
5679 kaddr = page_address(page);
5680 }
5681 }
5682 if (len) {
5683 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5684 kaddr[offset] &= ~mask_to_clear;
5685 }
5686 }
5687
5688 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5689 {
5690 unsigned long distance = (src > dst) ? src - dst : dst - src;
5691 return distance < len;
5692 }
5693
5694 static void copy_pages(struct page *dst_page, struct page *src_page,
5695 unsigned long dst_off, unsigned long src_off,
5696 unsigned long len)
5697 {
5698 char *dst_kaddr = page_address(dst_page);
5699 char *src_kaddr;
5700 int must_memmove = 0;
5701
5702 if (dst_page != src_page) {
5703 src_kaddr = page_address(src_page);
5704 } else {
5705 src_kaddr = dst_kaddr;
5706 if (areas_overlap(src_off, dst_off, len))
5707 must_memmove = 1;
5708 }
5709
5710 if (must_memmove)
5711 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5712 else
5713 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5714 }
5715
5716 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5717 unsigned long src_offset, unsigned long len)
5718 {
5719 size_t cur;
5720 size_t dst_off_in_page;
5721 size_t src_off_in_page;
5722 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5723 unsigned long dst_i;
5724 unsigned long src_i;
5725
5726 if (src_offset + len > dst->len) {
5727 btrfs_err(dst->fs_info,
5728 "memmove bogus src_offset %lu move "
5729 "len %lu dst len %lu", src_offset, len, dst->len);
5730 BUG_ON(1);
5731 }
5732 if (dst_offset + len > dst->len) {
5733 btrfs_err(dst->fs_info,
5734 "memmove bogus dst_offset %lu move "
5735 "len %lu dst len %lu", dst_offset, len, dst->len);
5736 BUG_ON(1);
5737 }
5738
5739 while (len > 0) {
5740 dst_off_in_page = (start_offset + dst_offset) &
5741 (PAGE_SIZE - 1);
5742 src_off_in_page = (start_offset + src_offset) &
5743 (PAGE_SIZE - 1);
5744
5745 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5746 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5747
5748 cur = min(len, (unsigned long)(PAGE_SIZE -
5749 src_off_in_page));
5750 cur = min_t(unsigned long, cur,
5751 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5752
5753 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5754 dst_off_in_page, src_off_in_page, cur);
5755
5756 src_offset += cur;
5757 dst_offset += cur;
5758 len -= cur;
5759 }
5760 }
5761
5762 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5763 unsigned long src_offset, unsigned long len)
5764 {
5765 size_t cur;
5766 size_t dst_off_in_page;
5767 size_t src_off_in_page;
5768 unsigned long dst_end = dst_offset + len - 1;
5769 unsigned long src_end = src_offset + len - 1;
5770 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5771 unsigned long dst_i;
5772 unsigned long src_i;
5773
5774 if (src_offset + len > dst->len) {
5775 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5776 "len %lu len %lu", src_offset, len, dst->len);
5777 BUG_ON(1);
5778 }
5779 if (dst_offset + len > dst->len) {
5780 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5781 "len %lu len %lu", dst_offset, len, dst->len);
5782 BUG_ON(1);
5783 }
5784 if (dst_offset < src_offset) {
5785 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5786 return;
5787 }
5788 while (len > 0) {
5789 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5790 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5791
5792 dst_off_in_page = (start_offset + dst_end) &
5793 (PAGE_SIZE - 1);
5794 src_off_in_page = (start_offset + src_end) &
5795 (PAGE_SIZE - 1);
5796
5797 cur = min_t(unsigned long, len, src_off_in_page + 1);
5798 cur = min(cur, dst_off_in_page + 1);
5799 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5800 dst_off_in_page - cur + 1,
5801 src_off_in_page - cur + 1, cur);
5802
5803 dst_end -= cur;
5804 src_end -= cur;
5805 len -= cur;
5806 }
5807 }
5808
5809 int try_release_extent_buffer(struct page *page)
5810 {
5811 struct extent_buffer *eb;
5812
5813 /*
5814 * We need to make sure nobody is attaching this page to an eb right
5815 * now.
5816 */
5817 spin_lock(&page->mapping->private_lock);
5818 if (!PagePrivate(page)) {
5819 spin_unlock(&page->mapping->private_lock);
5820 return 1;
5821 }
5822
5823 eb = (struct extent_buffer *)page->private;
5824 BUG_ON(!eb);
5825
5826 /*
5827 * This is a little awful but should be ok, we need to make sure that
5828 * the eb doesn't disappear out from under us while we're looking at
5829 * this page.
5830 */
5831 spin_lock(&eb->refs_lock);
5832 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5833 spin_unlock(&eb->refs_lock);
5834 spin_unlock(&page->mapping->private_lock);
5835 return 0;
5836 }
5837 spin_unlock(&page->mapping->private_lock);
5838
5839 /*
5840 * If tree ref isn't set then we know the ref on this eb is a real ref,
5841 * so just return, this page will likely be freed soon anyway.
5842 */
5843 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5844 spin_unlock(&eb->refs_lock);
5845 return 0;
5846 }
5847
5848 return release_extent_buffer(eb);
5849 }
This page took 0.224392 seconds and 5 git commands to generate.