btrfs: make extent_range_redirty_for_io return void
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 if (extent_state_cache)
210 kmem_cache_destroy(extent_state_cache);
211 if (extent_buffer_cache)
212 kmem_cache_destroy(extent_buffer_cache);
213 if (btrfs_bioset)
214 bioset_free(btrfs_bioset);
215 }
216
217 void extent_io_tree_init(struct extent_io_tree *tree,
218 struct address_space *mapping)
219 {
220 tree->state = RB_ROOT;
221 tree->ops = NULL;
222 tree->dirty_bytes = 0;
223 spin_lock_init(&tree->lock);
224 tree->mapping = mapping;
225 }
226
227 static struct extent_state *alloc_extent_state(gfp_t mask)
228 {
229 struct extent_state *state;
230
231 state = kmem_cache_alloc(extent_state_cache, mask);
232 if (!state)
233 return state;
234 state->state = 0;
235 state->private = 0;
236 RB_CLEAR_NODE(&state->rb_node);
237 btrfs_leak_debug_add(&state->leak_list, &states);
238 atomic_set(&state->refs, 1);
239 init_waitqueue_head(&state->wq);
240 trace_alloc_extent_state(state, mask, _RET_IP_);
241 return state;
242 }
243
244 void free_extent_state(struct extent_state *state)
245 {
246 if (!state)
247 return;
248 if (atomic_dec_and_test(&state->refs)) {
249 WARN_ON(extent_state_in_tree(state));
250 btrfs_leak_debug_del(&state->leak_list);
251 trace_free_extent_state(state, _RET_IP_);
252 kmem_cache_free(extent_state_cache, state);
253 }
254 }
255
256 static struct rb_node *tree_insert(struct rb_root *root,
257 struct rb_node *search_start,
258 u64 offset,
259 struct rb_node *node,
260 struct rb_node ***p_in,
261 struct rb_node **parent_in)
262 {
263 struct rb_node **p;
264 struct rb_node *parent = NULL;
265 struct tree_entry *entry;
266
267 if (p_in && parent_in) {
268 p = *p_in;
269 parent = *parent_in;
270 goto do_insert;
271 }
272
273 p = search_start ? &search_start : &root->rb_node;
274 while (*p) {
275 parent = *p;
276 entry = rb_entry(parent, struct tree_entry, rb_node);
277
278 if (offset < entry->start)
279 p = &(*p)->rb_left;
280 else if (offset > entry->end)
281 p = &(*p)->rb_right;
282 else
283 return parent;
284 }
285
286 do_insert:
287 rb_link_node(node, parent, p);
288 rb_insert_color(node, root);
289 return NULL;
290 }
291
292 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
293 struct rb_node **prev_ret,
294 struct rb_node **next_ret,
295 struct rb_node ***p_ret,
296 struct rb_node **parent_ret)
297 {
298 struct rb_root *root = &tree->state;
299 struct rb_node **n = &root->rb_node;
300 struct rb_node *prev = NULL;
301 struct rb_node *orig_prev = NULL;
302 struct tree_entry *entry;
303 struct tree_entry *prev_entry = NULL;
304
305 while (*n) {
306 prev = *n;
307 entry = rb_entry(prev, struct tree_entry, rb_node);
308 prev_entry = entry;
309
310 if (offset < entry->start)
311 n = &(*n)->rb_left;
312 else if (offset > entry->end)
313 n = &(*n)->rb_right;
314 else
315 return *n;
316 }
317
318 if (p_ret)
319 *p_ret = n;
320 if (parent_ret)
321 *parent_ret = prev;
322
323 if (prev_ret) {
324 orig_prev = prev;
325 while (prev && offset > prev_entry->end) {
326 prev = rb_next(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 }
329 *prev_ret = prev;
330 prev = orig_prev;
331 }
332
333 if (next_ret) {
334 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
335 while (prev && offset < prev_entry->start) {
336 prev = rb_prev(prev);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 }
339 *next_ret = prev;
340 }
341 return NULL;
342 }
343
344 static inline struct rb_node *
345 tree_search_for_insert(struct extent_io_tree *tree,
346 u64 offset,
347 struct rb_node ***p_ret,
348 struct rb_node **parent_ret)
349 {
350 struct rb_node *prev = NULL;
351 struct rb_node *ret;
352
353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
354 if (!ret)
355 return prev;
356 return ret;
357 }
358
359 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 u64 offset)
361 {
362 return tree_search_for_insert(tree, offset, NULL, NULL);
363 }
364
365 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 struct extent_state *other)
367 {
368 if (tree->ops && tree->ops->merge_extent_hook)
369 tree->ops->merge_extent_hook(tree->mapping->host, new,
370 other);
371 }
372
373 /*
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
379 *
380 * This should be called with the tree lock held.
381 */
382 static void merge_state(struct extent_io_tree *tree,
383 struct extent_state *state)
384 {
385 struct extent_state *other;
386 struct rb_node *other_node;
387
388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
389 return;
390
391 other_node = rb_prev(&state->rb_node);
392 if (other_node) {
393 other = rb_entry(other_node, struct extent_state, rb_node);
394 if (other->end == state->start - 1 &&
395 other->state == state->state) {
396 merge_cb(tree, state, other);
397 state->start = other->start;
398 rb_erase(&other->rb_node, &tree->state);
399 RB_CLEAR_NODE(&other->rb_node);
400 free_extent_state(other);
401 }
402 }
403 other_node = rb_next(&state->rb_node);
404 if (other_node) {
405 other = rb_entry(other_node, struct extent_state, rb_node);
406 if (other->start == state->end + 1 &&
407 other->state == state->state) {
408 merge_cb(tree, state, other);
409 state->end = other->end;
410 rb_erase(&other->rb_node, &tree->state);
411 RB_CLEAR_NODE(&other->rb_node);
412 free_extent_state(other);
413 }
414 }
415 }
416
417 static void set_state_cb(struct extent_io_tree *tree,
418 struct extent_state *state, unsigned *bits)
419 {
420 if (tree->ops && tree->ops->set_bit_hook)
421 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
422 }
423
424 static void clear_state_cb(struct extent_io_tree *tree,
425 struct extent_state *state, unsigned *bits)
426 {
427 if (tree->ops && tree->ops->clear_bit_hook)
428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
429 }
430
431 static void set_state_bits(struct extent_io_tree *tree,
432 struct extent_state *state, unsigned *bits,
433 struct extent_changeset *changeset);
434
435 /*
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
438 *
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
441 *
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
444 */
445 static int insert_state(struct extent_io_tree *tree,
446 struct extent_state *state, u64 start, u64 end,
447 struct rb_node ***p,
448 struct rb_node **parent,
449 unsigned *bits, struct extent_changeset *changeset)
450 {
451 struct rb_node *node;
452
453 if (end < start)
454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
455 end, start);
456 state->start = start;
457 state->end = end;
458
459 set_state_bits(tree, state, bits, changeset);
460
461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
462 if (node) {
463 struct extent_state *found;
464 found = rb_entry(node, struct extent_state, rb_node);
465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
466 "%llu %llu\n",
467 found->start, found->end, start, end);
468 return -EEXIST;
469 }
470 merge_state(tree, state);
471 return 0;
472 }
473
474 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
475 u64 split)
476 {
477 if (tree->ops && tree->ops->split_extent_hook)
478 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
479 }
480
481 /*
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
485 *
486 * Before calling,
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
491 *
492 * The tree locks are not taken by this function. They need to be held
493 * by the caller.
494 */
495 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 struct extent_state *prealloc, u64 split)
497 {
498 struct rb_node *node;
499
500 split_cb(tree, orig, split);
501
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
505 orig->start = split;
506
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
509 if (node) {
510 free_extent_state(prealloc);
511 return -EEXIST;
512 }
513 return 0;
514 }
515
516 static struct extent_state *next_state(struct extent_state *state)
517 {
518 struct rb_node *next = rb_next(&state->rb_node);
519 if (next)
520 return rb_entry(next, struct extent_state, rb_node);
521 else
522 return NULL;
523 }
524
525 /*
526 * utility function to clear some bits in an extent state struct.
527 * it will optionally wake up any one waiting on this state (wake == 1).
528 *
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
531 */
532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
536 {
537 struct extent_state *next;
538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
539
540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
544 }
545 clear_state_cb(tree, state, bits);
546 add_extent_changeset(state, bits_to_clear, changeset, 0);
547 state->state &= ~bits_to_clear;
548 if (wake)
549 wake_up(&state->wq);
550 if (state->state == 0) {
551 next = next_state(state);
552 if (extent_state_in_tree(state)) {
553 rb_erase(&state->rb_node, &tree->state);
554 RB_CLEAR_NODE(&state->rb_node);
555 free_extent_state(state);
556 } else {
557 WARN_ON(1);
558 }
559 } else {
560 merge_state(tree, state);
561 next = next_state(state);
562 }
563 return next;
564 }
565
566 static struct extent_state *
567 alloc_extent_state_atomic(struct extent_state *prealloc)
568 {
569 if (!prealloc)
570 prealloc = alloc_extent_state(GFP_ATOMIC);
571
572 return prealloc;
573 }
574
575 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
576 {
577 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
580 }
581
582 /*
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
586 *
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
589 *
590 * the range [start, end] is inclusive.
591 *
592 * This takes the tree lock, and returns 0 on success and < 0 on error.
593 */
594 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 unsigned bits, int wake, int delete,
596 struct extent_state **cached_state,
597 gfp_t mask, struct extent_changeset *changeset)
598 {
599 struct extent_state *state;
600 struct extent_state *cached;
601 struct extent_state *prealloc = NULL;
602 struct rb_node *node;
603 u64 last_end;
604 int err;
605 int clear = 0;
606
607 btrfs_debug_check_extent_io_range(tree, start, end);
608
609 if (bits & EXTENT_DELALLOC)
610 bits |= EXTENT_NORESERVE;
611
612 if (delete)
613 bits |= ~EXTENT_CTLBITS;
614 bits |= EXTENT_FIRST_DELALLOC;
615
616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 clear = 1;
618 again:
619 if (!prealloc && gfpflags_allow_blocking(mask)) {
620 /*
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
626 */
627 prealloc = alloc_extent_state(mask);
628 }
629
630 spin_lock(&tree->lock);
631 if (cached_state) {
632 cached = *cached_state;
633
634 if (clear) {
635 *cached_state = NULL;
636 cached_state = NULL;
637 }
638
639 if (cached && extent_state_in_tree(cached) &&
640 cached->start <= start && cached->end > start) {
641 if (clear)
642 atomic_dec(&cached->refs);
643 state = cached;
644 goto hit_next;
645 }
646 if (clear)
647 free_extent_state(cached);
648 }
649 /*
650 * this search will find the extents that end after
651 * our range starts
652 */
653 node = tree_search(tree, start);
654 if (!node)
655 goto out;
656 state = rb_entry(node, struct extent_state, rb_node);
657 hit_next:
658 if (state->start > end)
659 goto out;
660 WARN_ON(state->end < start);
661 last_end = state->end;
662
663 /* the state doesn't have the wanted bits, go ahead */
664 if (!(state->state & bits)) {
665 state = next_state(state);
666 goto next;
667 }
668
669 /*
670 * | ---- desired range ---- |
671 * | state | or
672 * | ------------- state -------------- |
673 *
674 * We need to split the extent we found, and may flip
675 * bits on second half.
676 *
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
680 *
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
683 */
684
685 if (state->start < start) {
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
688 err = split_state(tree, state, prealloc, start);
689 if (err)
690 extent_io_tree_panic(tree, err);
691
692 prealloc = NULL;
693 if (err)
694 goto out;
695 if (state->end <= end) {
696 state = clear_state_bit(tree, state, &bits, wake,
697 changeset);
698 goto next;
699 }
700 goto search_again;
701 }
702 /*
703 * | ---- desired range ---- |
704 * | state |
705 * We need to split the extent, and clear the bit
706 * on the first half
707 */
708 if (state->start <= end && state->end > end) {
709 prealloc = alloc_extent_state_atomic(prealloc);
710 BUG_ON(!prealloc);
711 err = split_state(tree, state, prealloc, end + 1);
712 if (err)
713 extent_io_tree_panic(tree, err);
714
715 if (wake)
716 wake_up(&state->wq);
717
718 clear_state_bit(tree, prealloc, &bits, wake, changeset);
719
720 prealloc = NULL;
721 goto out;
722 }
723
724 state = clear_state_bit(tree, state, &bits, wake, changeset);
725 next:
726 if (last_end == (u64)-1)
727 goto out;
728 start = last_end + 1;
729 if (start <= end && state && !need_resched())
730 goto hit_next;
731 goto search_again;
732
733 out:
734 spin_unlock(&tree->lock);
735 if (prealloc)
736 free_extent_state(prealloc);
737
738 return 0;
739
740 search_again:
741 if (start > end)
742 goto out;
743 spin_unlock(&tree->lock);
744 if (gfpflags_allow_blocking(mask))
745 cond_resched();
746 goto again;
747 }
748
749 static void wait_on_state(struct extent_io_tree *tree,
750 struct extent_state *state)
751 __releases(tree->lock)
752 __acquires(tree->lock)
753 {
754 DEFINE_WAIT(wait);
755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
756 spin_unlock(&tree->lock);
757 schedule();
758 spin_lock(&tree->lock);
759 finish_wait(&state->wq, &wait);
760 }
761
762 /*
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
766 */
767 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 unsigned long bits)
769 {
770 struct extent_state *state;
771 struct rb_node *node;
772
773 btrfs_debug_check_extent_io_range(tree, start, end);
774
775 spin_lock(&tree->lock);
776 again:
777 while (1) {
778 /*
779 * this search will find all the extents that end after
780 * our range starts
781 */
782 node = tree_search(tree, start);
783 process_node:
784 if (!node)
785 break;
786
787 state = rb_entry(node, struct extent_state, rb_node);
788
789 if (state->start > end)
790 goto out;
791
792 if (state->state & bits) {
793 start = state->start;
794 atomic_inc(&state->refs);
795 wait_on_state(tree, state);
796 free_extent_state(state);
797 goto again;
798 }
799 start = state->end + 1;
800
801 if (start > end)
802 break;
803
804 if (!cond_resched_lock(&tree->lock)) {
805 node = rb_next(node);
806 goto process_node;
807 }
808 }
809 out:
810 spin_unlock(&tree->lock);
811 }
812
813 static void set_state_bits(struct extent_io_tree *tree,
814 struct extent_state *state,
815 unsigned *bits, struct extent_changeset *changeset)
816 {
817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
818
819 set_state_cb(tree, state, bits);
820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
821 u64 range = state->end - state->start + 1;
822 tree->dirty_bytes += range;
823 }
824 add_extent_changeset(state, bits_to_set, changeset, 1);
825 state->state |= bits_to_set;
826 }
827
828 static void cache_state_if_flags(struct extent_state *state,
829 struct extent_state **cached_ptr,
830 unsigned flags)
831 {
832 if (cached_ptr && !(*cached_ptr)) {
833 if (!flags || (state->state & flags)) {
834 *cached_ptr = state;
835 atomic_inc(&state->refs);
836 }
837 }
838 }
839
840 static void cache_state(struct extent_state *state,
841 struct extent_state **cached_ptr)
842 {
843 return cache_state_if_flags(state, cached_ptr,
844 EXTENT_IOBITS | EXTENT_BOUNDARY);
845 }
846
847 /*
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
850 *
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
854 *
855 * [start, end] is inclusive This takes the tree lock.
856 */
857
858 static int __must_check
859 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
860 unsigned bits, unsigned exclusive_bits,
861 u64 *failed_start, struct extent_state **cached_state,
862 gfp_t mask, struct extent_changeset *changeset)
863 {
864 struct extent_state *state;
865 struct extent_state *prealloc = NULL;
866 struct rb_node *node;
867 struct rb_node **p;
868 struct rb_node *parent;
869 int err = 0;
870 u64 last_start;
871 u64 last_end;
872
873 btrfs_debug_check_extent_io_range(tree, start, end);
874
875 bits |= EXTENT_FIRST_DELALLOC;
876 again:
877 if (!prealloc && gfpflags_allow_blocking(mask)) {
878 prealloc = alloc_extent_state(mask);
879 BUG_ON(!prealloc);
880 }
881
882 spin_lock(&tree->lock);
883 if (cached_state && *cached_state) {
884 state = *cached_state;
885 if (state->start <= start && state->end > start &&
886 extent_state_in_tree(state)) {
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
895 node = tree_search_for_insert(tree, start, &p, &parent);
896 if (!node) {
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
899 err = insert_state(tree, prealloc, start, end,
900 &p, &parent, &bits, changeset);
901 if (err)
902 extent_io_tree_panic(tree, err);
903
904 cache_state(prealloc, cached_state);
905 prealloc = NULL;
906 goto out;
907 }
908 state = rb_entry(node, struct extent_state, rb_node);
909 hit_next:
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
920 if (state->state & exclusive_bits) {
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
925
926 set_state_bits(tree, state, &bits, changeset);
927 cache_state(state, cached_state);
928 merge_state(tree, state);
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
956 if (state->state & exclusive_bits) {
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
964 err = split_state(tree, state, prealloc, start);
965 if (err)
966 extent_io_tree_panic(tree, err);
967
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
972 set_state_bits(tree, state, &bits, changeset);
973 cache_state(state, cached_state);
974 merge_state(tree, state);
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
997 this_end = last_start - 1;
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
1006 err = insert_state(tree, prealloc, start, this_end,
1007 NULL, NULL, &bits, changeset);
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1023 if (state->state & exclusive_bits) {
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
1031 err = split_state(tree, state, prealloc, end + 1);
1032 if (err)
1033 extent_io_tree_panic(tree, err);
1034
1035 set_state_bits(tree, prealloc, &bits, changeset);
1036 cache_state(prealloc, cached_state);
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042 goto search_again;
1043
1044 out:
1045 spin_unlock(&tree->lock);
1046 if (prealloc)
1047 free_extent_state(prealloc);
1048
1049 return err;
1050
1051 search_again:
1052 if (start > end)
1053 goto out;
1054 spin_unlock(&tree->lock);
1055 if (gfpflags_allow_blocking(mask))
1056 cond_resched();
1057 goto again;
1058 }
1059
1060 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1061 unsigned bits, u64 * failed_start,
1062 struct extent_state **cached_state, gfp_t mask)
1063 {
1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1065 cached_state, mask, NULL);
1066 }
1067
1068
1069 /**
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1071 * another
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
1077 * @cached_state: state that we're going to cache
1078 * @mask: the allocation mask
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 */
1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 unsigned bits, unsigned clear_bits,
1088 struct extent_state **cached_state, gfp_t mask)
1089 {
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
1093 struct rb_node **p;
1094 struct rb_node *parent;
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
1098 bool first_iteration = true;
1099
1100 btrfs_debug_check_extent_io_range(tree, start, end);
1101
1102 again:
1103 if (!prealloc && gfpflags_allow_blocking(mask)) {
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
1111 prealloc = alloc_extent_state(mask);
1112 if (!prealloc && !first_iteration)
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
1120 extent_state_in_tree(state)) {
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
1130 node = tree_search_for_insert(tree, start, &p, &parent);
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
1137 err = insert_state(tree, prealloc, start, end,
1138 &p, &parent, &bits, NULL);
1139 if (err)
1140 extent_io_tree_panic(tree, err);
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146 hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
1157 set_state_bits(tree, state, &bits, NULL);
1158 cache_state(state, cached_state);
1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 if (last_end == (u64)-1)
1161 goto out;
1162 start = last_end + 1;
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
1191 err = split_state(tree, state, prealloc, start);
1192 if (err)
1193 extent_io_tree_panic(tree, err);
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
1198 set_state_bits(tree, state, &bits, NULL);
1199 cache_state(state, cached_state);
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
1236 NULL, NULL, &bits, NULL);
1237 if (err)
1238 extent_io_tree_panic(tree, err);
1239 cache_state(prealloc, cached_state);
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
1256
1257 err = split_state(tree, state, prealloc, end + 1);
1258 if (err)
1259 extent_io_tree_panic(tree, err);
1260
1261 set_state_bits(tree, prealloc, &bits, NULL);
1262 cache_state(prealloc, cached_state);
1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268 goto search_again;
1269
1270 out:
1271 spin_unlock(&tree->lock);
1272 if (prealloc)
1273 free_extent_state(prealloc);
1274
1275 return err;
1276
1277 search_again:
1278 if (start > end)
1279 goto out;
1280 spin_unlock(&tree->lock);
1281 if (gfpflags_allow_blocking(mask))
1282 cond_resched();
1283 first_iteration = false;
1284 goto again;
1285 }
1286
1287 /* wrappers around set/clear extent bit */
1288 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1289 gfp_t mask)
1290 {
1291 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1292 NULL, mask);
1293 }
1294
1295 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1296 unsigned bits, gfp_t mask)
1297 {
1298 return set_extent_bit(tree, start, end, bits, NULL,
1299 NULL, mask);
1300 }
1301
1302 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, gfp_t mask,
1304 struct extent_changeset *changeset)
1305 {
1306 /*
1307 * We don't support EXTENT_LOCKED yet, as current changeset will
1308 * record any bits changed, so for EXTENT_LOCKED case, it will
1309 * either fail with -EEXIST or changeset will record the whole
1310 * range.
1311 */
1312 BUG_ON(bits & EXTENT_LOCKED);
1313
1314 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1315 changeset);
1316 }
1317
1318 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1319 unsigned bits, int wake, int delete,
1320 struct extent_state **cached, gfp_t mask)
1321 {
1322 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1323 cached, mask, NULL);
1324 }
1325
1326 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1327 unsigned bits, gfp_t mask)
1328 {
1329 int wake = 0;
1330
1331 if (bits & EXTENT_LOCKED)
1332 wake = 1;
1333
1334 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1335 }
1336
1337 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338 unsigned bits, gfp_t mask,
1339 struct extent_changeset *changeset)
1340 {
1341 /*
1342 * Don't support EXTENT_LOCKED case, same reason as
1343 * set_record_extent_bits().
1344 */
1345 BUG_ON(bits & EXTENT_LOCKED);
1346
1347 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1348 changeset);
1349 }
1350
1351 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1352 struct extent_state **cached_state, gfp_t mask)
1353 {
1354 return set_extent_bit(tree, start, end,
1355 EXTENT_DELALLOC | EXTENT_UPTODATE,
1356 NULL, cached_state, mask);
1357 }
1358
1359 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1360 struct extent_state **cached_state, gfp_t mask)
1361 {
1362 return set_extent_bit(tree, start, end,
1363 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1364 NULL, cached_state, mask);
1365 }
1366
1367 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1368 gfp_t mask)
1369 {
1370 return clear_extent_bit(tree, start, end,
1371 EXTENT_DIRTY | EXTENT_DELALLOC |
1372 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1373 }
1374
1375 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1376 gfp_t mask)
1377 {
1378 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1379 NULL, mask);
1380 }
1381
1382 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1383 struct extent_state **cached_state, gfp_t mask)
1384 {
1385 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1386 cached_state, mask);
1387 }
1388
1389 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1390 struct extent_state **cached_state, gfp_t mask)
1391 {
1392 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1393 cached_state, mask);
1394 }
1395
1396 /*
1397 * either insert or lock state struct between start and end use mask to tell
1398 * us if waiting is desired.
1399 */
1400 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1401 unsigned bits, struct extent_state **cached_state)
1402 {
1403 int err;
1404 u64 failed_start;
1405
1406 while (1) {
1407 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1408 EXTENT_LOCKED, &failed_start,
1409 cached_state, GFP_NOFS, NULL);
1410 if (err == -EEXIST) {
1411 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1412 start = failed_start;
1413 } else
1414 break;
1415 WARN_ON(start > end);
1416 }
1417 return err;
1418 }
1419
1420 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1421 {
1422 return lock_extent_bits(tree, start, end, 0, NULL);
1423 }
1424
1425 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1426 {
1427 int err;
1428 u64 failed_start;
1429
1430 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1431 &failed_start, NULL, GFP_NOFS, NULL);
1432 if (err == -EEXIST) {
1433 if (failed_start > start)
1434 clear_extent_bit(tree, start, failed_start - 1,
1435 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1436 return 0;
1437 }
1438 return 1;
1439 }
1440
1441 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1442 struct extent_state **cached, gfp_t mask)
1443 {
1444 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1445 mask);
1446 }
1447
1448 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1449 {
1450 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1451 GFP_NOFS);
1452 }
1453
1454 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455 {
1456 unsigned long index = start >> PAGE_CACHE_SHIFT;
1457 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1458 struct page *page;
1459
1460 while (index <= end_index) {
1461 page = find_get_page(inode->i_mapping, index);
1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page);
1464 page_cache_release(page);
1465 index++;
1466 }
1467 }
1468
1469 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1470 {
1471 unsigned long index = start >> PAGE_CACHE_SHIFT;
1472 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1473 struct page *page;
1474
1475 while (index <= end_index) {
1476 page = find_get_page(inode->i_mapping, index);
1477 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1478 __set_page_dirty_nobuffers(page);
1479 account_page_redirty(page);
1480 page_cache_release(page);
1481 index++;
1482 }
1483 }
1484
1485 /*
1486 * helper function to set both pages and extents in the tree writeback
1487 */
1488 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1489 {
1490 unsigned long index = start >> PAGE_CACHE_SHIFT;
1491 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1492 struct page *page;
1493
1494 while (index <= end_index) {
1495 page = find_get_page(tree->mapping, index);
1496 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1497 set_page_writeback(page);
1498 page_cache_release(page);
1499 index++;
1500 }
1501 return 0;
1502 }
1503
1504 /* find the first state struct with 'bits' set after 'start', and
1505 * return it. tree->lock must be held. NULL will returned if
1506 * nothing was found after 'start'
1507 */
1508 static struct extent_state *
1509 find_first_extent_bit_state(struct extent_io_tree *tree,
1510 u64 start, unsigned bits)
1511 {
1512 struct rb_node *node;
1513 struct extent_state *state;
1514
1515 /*
1516 * this search will find all the extents that end after
1517 * our range starts.
1518 */
1519 node = tree_search(tree, start);
1520 if (!node)
1521 goto out;
1522
1523 while (1) {
1524 state = rb_entry(node, struct extent_state, rb_node);
1525 if (state->end >= start && (state->state & bits))
1526 return state;
1527
1528 node = rb_next(node);
1529 if (!node)
1530 break;
1531 }
1532 out:
1533 return NULL;
1534 }
1535
1536 /*
1537 * find the first offset in the io tree with 'bits' set. zero is
1538 * returned if we find something, and *start_ret and *end_ret are
1539 * set to reflect the state struct that was found.
1540 *
1541 * If nothing was found, 1 is returned. If found something, return 0.
1542 */
1543 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1544 u64 *start_ret, u64 *end_ret, unsigned bits,
1545 struct extent_state **cached_state)
1546 {
1547 struct extent_state *state;
1548 struct rb_node *n;
1549 int ret = 1;
1550
1551 spin_lock(&tree->lock);
1552 if (cached_state && *cached_state) {
1553 state = *cached_state;
1554 if (state->end == start - 1 && extent_state_in_tree(state)) {
1555 n = rb_next(&state->rb_node);
1556 while (n) {
1557 state = rb_entry(n, struct extent_state,
1558 rb_node);
1559 if (state->state & bits)
1560 goto got_it;
1561 n = rb_next(n);
1562 }
1563 free_extent_state(*cached_state);
1564 *cached_state = NULL;
1565 goto out;
1566 }
1567 free_extent_state(*cached_state);
1568 *cached_state = NULL;
1569 }
1570
1571 state = find_first_extent_bit_state(tree, start, bits);
1572 got_it:
1573 if (state) {
1574 cache_state_if_flags(state, cached_state, 0);
1575 *start_ret = state->start;
1576 *end_ret = state->end;
1577 ret = 0;
1578 }
1579 out:
1580 spin_unlock(&tree->lock);
1581 return ret;
1582 }
1583
1584 /*
1585 * find a contiguous range of bytes in the file marked as delalloc, not
1586 * more than 'max_bytes'. start and end are used to return the range,
1587 *
1588 * 1 is returned if we find something, 0 if nothing was in the tree
1589 */
1590 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1591 u64 *start, u64 *end, u64 max_bytes,
1592 struct extent_state **cached_state)
1593 {
1594 struct rb_node *node;
1595 struct extent_state *state;
1596 u64 cur_start = *start;
1597 u64 found = 0;
1598 u64 total_bytes = 0;
1599
1600 spin_lock(&tree->lock);
1601
1602 /*
1603 * this search will find all the extents that end after
1604 * our range starts.
1605 */
1606 node = tree_search(tree, cur_start);
1607 if (!node) {
1608 if (!found)
1609 *end = (u64)-1;
1610 goto out;
1611 }
1612
1613 while (1) {
1614 state = rb_entry(node, struct extent_state, rb_node);
1615 if (found && (state->start != cur_start ||
1616 (state->state & EXTENT_BOUNDARY))) {
1617 goto out;
1618 }
1619 if (!(state->state & EXTENT_DELALLOC)) {
1620 if (!found)
1621 *end = state->end;
1622 goto out;
1623 }
1624 if (!found) {
1625 *start = state->start;
1626 *cached_state = state;
1627 atomic_inc(&state->refs);
1628 }
1629 found++;
1630 *end = state->end;
1631 cur_start = state->end + 1;
1632 node = rb_next(node);
1633 total_bytes += state->end - state->start + 1;
1634 if (total_bytes >= max_bytes)
1635 break;
1636 if (!node)
1637 break;
1638 }
1639 out:
1640 spin_unlock(&tree->lock);
1641 return found;
1642 }
1643
1644 static noinline void __unlock_for_delalloc(struct inode *inode,
1645 struct page *locked_page,
1646 u64 start, u64 end)
1647 {
1648 int ret;
1649 struct page *pages[16];
1650 unsigned long index = start >> PAGE_CACHE_SHIFT;
1651 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1652 unsigned long nr_pages = end_index - index + 1;
1653 int i;
1654
1655 if (index == locked_page->index && end_index == index)
1656 return;
1657
1658 while (nr_pages > 0) {
1659 ret = find_get_pages_contig(inode->i_mapping, index,
1660 min_t(unsigned long, nr_pages,
1661 ARRAY_SIZE(pages)), pages);
1662 for (i = 0; i < ret; i++) {
1663 if (pages[i] != locked_page)
1664 unlock_page(pages[i]);
1665 page_cache_release(pages[i]);
1666 }
1667 nr_pages -= ret;
1668 index += ret;
1669 cond_resched();
1670 }
1671 }
1672
1673 static noinline int lock_delalloc_pages(struct inode *inode,
1674 struct page *locked_page,
1675 u64 delalloc_start,
1676 u64 delalloc_end)
1677 {
1678 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1679 unsigned long start_index = index;
1680 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1681 unsigned long pages_locked = 0;
1682 struct page *pages[16];
1683 unsigned long nrpages;
1684 int ret;
1685 int i;
1686
1687 /* the caller is responsible for locking the start index */
1688 if (index == locked_page->index && index == end_index)
1689 return 0;
1690
1691 /* skip the page at the start index */
1692 nrpages = end_index - index + 1;
1693 while (nrpages > 0) {
1694 ret = find_get_pages_contig(inode->i_mapping, index,
1695 min_t(unsigned long,
1696 nrpages, ARRAY_SIZE(pages)), pages);
1697 if (ret == 0) {
1698 ret = -EAGAIN;
1699 goto done;
1700 }
1701 /* now we have an array of pages, lock them all */
1702 for (i = 0; i < ret; i++) {
1703 /*
1704 * the caller is taking responsibility for
1705 * locked_page
1706 */
1707 if (pages[i] != locked_page) {
1708 lock_page(pages[i]);
1709 if (!PageDirty(pages[i]) ||
1710 pages[i]->mapping != inode->i_mapping) {
1711 ret = -EAGAIN;
1712 unlock_page(pages[i]);
1713 page_cache_release(pages[i]);
1714 goto done;
1715 }
1716 }
1717 page_cache_release(pages[i]);
1718 pages_locked++;
1719 }
1720 nrpages -= ret;
1721 index += ret;
1722 cond_resched();
1723 }
1724 ret = 0;
1725 done:
1726 if (ret && pages_locked) {
1727 __unlock_for_delalloc(inode, locked_page,
1728 delalloc_start,
1729 ((u64)(start_index + pages_locked - 1)) <<
1730 PAGE_CACHE_SHIFT);
1731 }
1732 return ret;
1733 }
1734
1735 /*
1736 * find a contiguous range of bytes in the file marked as delalloc, not
1737 * more than 'max_bytes'. start and end are used to return the range,
1738 *
1739 * 1 is returned if we find something, 0 if nothing was in the tree
1740 */
1741 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1742 struct extent_io_tree *tree,
1743 struct page *locked_page, u64 *start,
1744 u64 *end, u64 max_bytes)
1745 {
1746 u64 delalloc_start;
1747 u64 delalloc_end;
1748 u64 found;
1749 struct extent_state *cached_state = NULL;
1750 int ret;
1751 int loops = 0;
1752
1753 again:
1754 /* step one, find a bunch of delalloc bytes starting at start */
1755 delalloc_start = *start;
1756 delalloc_end = 0;
1757 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1758 max_bytes, &cached_state);
1759 if (!found || delalloc_end <= *start) {
1760 *start = delalloc_start;
1761 *end = delalloc_end;
1762 free_extent_state(cached_state);
1763 return 0;
1764 }
1765
1766 /*
1767 * start comes from the offset of locked_page. We have to lock
1768 * pages in order, so we can't process delalloc bytes before
1769 * locked_page
1770 */
1771 if (delalloc_start < *start)
1772 delalloc_start = *start;
1773
1774 /*
1775 * make sure to limit the number of pages we try to lock down
1776 */
1777 if (delalloc_end + 1 - delalloc_start > max_bytes)
1778 delalloc_end = delalloc_start + max_bytes - 1;
1779
1780 /* step two, lock all the pages after the page that has start */
1781 ret = lock_delalloc_pages(inode, locked_page,
1782 delalloc_start, delalloc_end);
1783 if (ret == -EAGAIN) {
1784 /* some of the pages are gone, lets avoid looping by
1785 * shortening the size of the delalloc range we're searching
1786 */
1787 free_extent_state(cached_state);
1788 cached_state = NULL;
1789 if (!loops) {
1790 max_bytes = PAGE_CACHE_SIZE;
1791 loops = 1;
1792 goto again;
1793 } else {
1794 found = 0;
1795 goto out_failed;
1796 }
1797 }
1798 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1799
1800 /* step three, lock the state bits for the whole range */
1801 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1802
1803 /* then test to make sure it is all still delalloc */
1804 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1805 EXTENT_DELALLOC, 1, cached_state);
1806 if (!ret) {
1807 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1808 &cached_state, GFP_NOFS);
1809 __unlock_for_delalloc(inode, locked_page,
1810 delalloc_start, delalloc_end);
1811 cond_resched();
1812 goto again;
1813 }
1814 free_extent_state(cached_state);
1815 *start = delalloc_start;
1816 *end = delalloc_end;
1817 out_failed:
1818 return found;
1819 }
1820
1821 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1822 struct page *locked_page,
1823 unsigned clear_bits,
1824 unsigned long page_ops)
1825 {
1826 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1827 int ret;
1828 struct page *pages[16];
1829 unsigned long index = start >> PAGE_CACHE_SHIFT;
1830 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1831 unsigned long nr_pages = end_index - index + 1;
1832 int i;
1833
1834 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1835 if (page_ops == 0)
1836 return;
1837
1838 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1839 mapping_set_error(inode->i_mapping, -EIO);
1840
1841 while (nr_pages > 0) {
1842 ret = find_get_pages_contig(inode->i_mapping, index,
1843 min_t(unsigned long,
1844 nr_pages, ARRAY_SIZE(pages)), pages);
1845 for (i = 0; i < ret; i++) {
1846
1847 if (page_ops & PAGE_SET_PRIVATE2)
1848 SetPagePrivate2(pages[i]);
1849
1850 if (pages[i] == locked_page) {
1851 page_cache_release(pages[i]);
1852 continue;
1853 }
1854 if (page_ops & PAGE_CLEAR_DIRTY)
1855 clear_page_dirty_for_io(pages[i]);
1856 if (page_ops & PAGE_SET_WRITEBACK)
1857 set_page_writeback(pages[i]);
1858 if (page_ops & PAGE_SET_ERROR)
1859 SetPageError(pages[i]);
1860 if (page_ops & PAGE_END_WRITEBACK)
1861 end_page_writeback(pages[i]);
1862 if (page_ops & PAGE_UNLOCK)
1863 unlock_page(pages[i]);
1864 page_cache_release(pages[i]);
1865 }
1866 nr_pages -= ret;
1867 index += ret;
1868 cond_resched();
1869 }
1870 }
1871
1872 /*
1873 * count the number of bytes in the tree that have a given bit(s)
1874 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1875 * cached. The total number found is returned.
1876 */
1877 u64 count_range_bits(struct extent_io_tree *tree,
1878 u64 *start, u64 search_end, u64 max_bytes,
1879 unsigned bits, int contig)
1880 {
1881 struct rb_node *node;
1882 struct extent_state *state;
1883 u64 cur_start = *start;
1884 u64 total_bytes = 0;
1885 u64 last = 0;
1886 int found = 0;
1887
1888 if (WARN_ON(search_end <= cur_start))
1889 return 0;
1890
1891 spin_lock(&tree->lock);
1892 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1893 total_bytes = tree->dirty_bytes;
1894 goto out;
1895 }
1896 /*
1897 * this search will find all the extents that end after
1898 * our range starts.
1899 */
1900 node = tree_search(tree, cur_start);
1901 if (!node)
1902 goto out;
1903
1904 while (1) {
1905 state = rb_entry(node, struct extent_state, rb_node);
1906 if (state->start > search_end)
1907 break;
1908 if (contig && found && state->start > last + 1)
1909 break;
1910 if (state->end >= cur_start && (state->state & bits) == bits) {
1911 total_bytes += min(search_end, state->end) + 1 -
1912 max(cur_start, state->start);
1913 if (total_bytes >= max_bytes)
1914 break;
1915 if (!found) {
1916 *start = max(cur_start, state->start);
1917 found = 1;
1918 }
1919 last = state->end;
1920 } else if (contig && found) {
1921 break;
1922 }
1923 node = rb_next(node);
1924 if (!node)
1925 break;
1926 }
1927 out:
1928 spin_unlock(&tree->lock);
1929 return total_bytes;
1930 }
1931
1932 /*
1933 * set the private field for a given byte offset in the tree. If there isn't
1934 * an extent_state there already, this does nothing.
1935 */
1936 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1937 {
1938 struct rb_node *node;
1939 struct extent_state *state;
1940 int ret = 0;
1941
1942 spin_lock(&tree->lock);
1943 /*
1944 * this search will find all the extents that end after
1945 * our range starts.
1946 */
1947 node = tree_search(tree, start);
1948 if (!node) {
1949 ret = -ENOENT;
1950 goto out;
1951 }
1952 state = rb_entry(node, struct extent_state, rb_node);
1953 if (state->start != start) {
1954 ret = -ENOENT;
1955 goto out;
1956 }
1957 state->private = private;
1958 out:
1959 spin_unlock(&tree->lock);
1960 return ret;
1961 }
1962
1963 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1964 {
1965 struct rb_node *node;
1966 struct extent_state *state;
1967 int ret = 0;
1968
1969 spin_lock(&tree->lock);
1970 /*
1971 * this search will find all the extents that end after
1972 * our range starts.
1973 */
1974 node = tree_search(tree, start);
1975 if (!node) {
1976 ret = -ENOENT;
1977 goto out;
1978 }
1979 state = rb_entry(node, struct extent_state, rb_node);
1980 if (state->start != start) {
1981 ret = -ENOENT;
1982 goto out;
1983 }
1984 *private = state->private;
1985 out:
1986 spin_unlock(&tree->lock);
1987 return ret;
1988 }
1989
1990 /*
1991 * searches a range in the state tree for a given mask.
1992 * If 'filled' == 1, this returns 1 only if every extent in the tree
1993 * has the bits set. Otherwise, 1 is returned if any bit in the
1994 * range is found set.
1995 */
1996 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1997 unsigned bits, int filled, struct extent_state *cached)
1998 {
1999 struct extent_state *state = NULL;
2000 struct rb_node *node;
2001 int bitset = 0;
2002
2003 spin_lock(&tree->lock);
2004 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2005 cached->end > start)
2006 node = &cached->rb_node;
2007 else
2008 node = tree_search(tree, start);
2009 while (node && start <= end) {
2010 state = rb_entry(node, struct extent_state, rb_node);
2011
2012 if (filled && state->start > start) {
2013 bitset = 0;
2014 break;
2015 }
2016
2017 if (state->start > end)
2018 break;
2019
2020 if (state->state & bits) {
2021 bitset = 1;
2022 if (!filled)
2023 break;
2024 } else if (filled) {
2025 bitset = 0;
2026 break;
2027 }
2028
2029 if (state->end == (u64)-1)
2030 break;
2031
2032 start = state->end + 1;
2033 if (start > end)
2034 break;
2035 node = rb_next(node);
2036 if (!node) {
2037 if (filled)
2038 bitset = 0;
2039 break;
2040 }
2041 }
2042 spin_unlock(&tree->lock);
2043 return bitset;
2044 }
2045
2046 /*
2047 * helper function to set a given page up to date if all the
2048 * extents in the tree for that page are up to date
2049 */
2050 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2051 {
2052 u64 start = page_offset(page);
2053 u64 end = start + PAGE_CACHE_SIZE - 1;
2054 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2055 SetPageUptodate(page);
2056 }
2057
2058 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
2059 {
2060 int ret;
2061 int err = 0;
2062 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2063
2064 set_state_private(failure_tree, rec->start, 0);
2065 ret = clear_extent_bits(failure_tree, rec->start,
2066 rec->start + rec->len - 1,
2067 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2068 if (ret)
2069 err = ret;
2070
2071 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2072 rec->start + rec->len - 1,
2073 EXTENT_DAMAGED, GFP_NOFS);
2074 if (ret && !err)
2075 err = ret;
2076
2077 kfree(rec);
2078 return err;
2079 }
2080
2081 /*
2082 * this bypasses the standard btrfs submit functions deliberately, as
2083 * the standard behavior is to write all copies in a raid setup. here we only
2084 * want to write the one bad copy. so we do the mapping for ourselves and issue
2085 * submit_bio directly.
2086 * to avoid any synchronization issues, wait for the data after writing, which
2087 * actually prevents the read that triggered the error from finishing.
2088 * currently, there can be no more than two copies of every data bit. thus,
2089 * exactly one rewrite is required.
2090 */
2091 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2092 struct page *page, unsigned int pg_offset, int mirror_num)
2093 {
2094 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2095 struct bio *bio;
2096 struct btrfs_device *dev;
2097 u64 map_length = 0;
2098 u64 sector;
2099 struct btrfs_bio *bbio = NULL;
2100 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2101 int ret;
2102
2103 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2104 BUG_ON(!mirror_num);
2105
2106 /* we can't repair anything in raid56 yet */
2107 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2108 return 0;
2109
2110 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2111 if (!bio)
2112 return -EIO;
2113 bio->bi_iter.bi_size = 0;
2114 map_length = length;
2115
2116 ret = btrfs_map_block(fs_info, WRITE, logical,
2117 &map_length, &bbio, mirror_num);
2118 if (ret) {
2119 bio_put(bio);
2120 return -EIO;
2121 }
2122 BUG_ON(mirror_num != bbio->mirror_num);
2123 sector = bbio->stripes[mirror_num-1].physical >> 9;
2124 bio->bi_iter.bi_sector = sector;
2125 dev = bbio->stripes[mirror_num-1].dev;
2126 btrfs_put_bbio(bbio);
2127 if (!dev || !dev->bdev || !dev->writeable) {
2128 bio_put(bio);
2129 return -EIO;
2130 }
2131 bio->bi_bdev = dev->bdev;
2132 bio_add_page(bio, page, length, pg_offset);
2133
2134 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2135 /* try to remap that extent elsewhere? */
2136 bio_put(bio);
2137 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2138 return -EIO;
2139 }
2140
2141 btrfs_info_rl_in_rcu(fs_info,
2142 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2143 btrfs_ino(inode), start,
2144 rcu_str_deref(dev->name), sector);
2145 bio_put(bio);
2146 return 0;
2147 }
2148
2149 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2150 int mirror_num)
2151 {
2152 u64 start = eb->start;
2153 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2154 int ret = 0;
2155
2156 if (root->fs_info->sb->s_flags & MS_RDONLY)
2157 return -EROFS;
2158
2159 for (i = 0; i < num_pages; i++) {
2160 struct page *p = eb->pages[i];
2161
2162 ret = repair_io_failure(root->fs_info->btree_inode, start,
2163 PAGE_CACHE_SIZE, start, p,
2164 start - page_offset(p), mirror_num);
2165 if (ret)
2166 break;
2167 start += PAGE_CACHE_SIZE;
2168 }
2169
2170 return ret;
2171 }
2172
2173 /*
2174 * each time an IO finishes, we do a fast check in the IO failure tree
2175 * to see if we need to process or clean up an io_failure_record
2176 */
2177 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2178 unsigned int pg_offset)
2179 {
2180 u64 private;
2181 u64 private_failure;
2182 struct io_failure_record *failrec;
2183 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2184 struct extent_state *state;
2185 int num_copies;
2186 int ret;
2187
2188 private = 0;
2189 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2190 (u64)-1, 1, EXTENT_DIRTY, 0);
2191 if (!ret)
2192 return 0;
2193
2194 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2195 &private_failure);
2196 if (ret)
2197 return 0;
2198
2199 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2200 BUG_ON(!failrec->this_mirror);
2201
2202 if (failrec->in_validation) {
2203 /* there was no real error, just free the record */
2204 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2205 failrec->start);
2206 goto out;
2207 }
2208 if (fs_info->sb->s_flags & MS_RDONLY)
2209 goto out;
2210
2211 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2212 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2213 failrec->start,
2214 EXTENT_LOCKED);
2215 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2216
2217 if (state && state->start <= failrec->start &&
2218 state->end >= failrec->start + failrec->len - 1) {
2219 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2220 failrec->len);
2221 if (num_copies > 1) {
2222 repair_io_failure(inode, start, failrec->len,
2223 failrec->logical, page,
2224 pg_offset, failrec->failed_mirror);
2225 }
2226 }
2227
2228 out:
2229 free_io_failure(inode, failrec);
2230
2231 return 0;
2232 }
2233
2234 /*
2235 * Can be called when
2236 * - hold extent lock
2237 * - under ordered extent
2238 * - the inode is freeing
2239 */
2240 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2241 {
2242 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2243 struct io_failure_record *failrec;
2244 struct extent_state *state, *next;
2245
2246 if (RB_EMPTY_ROOT(&failure_tree->state))
2247 return;
2248
2249 spin_lock(&failure_tree->lock);
2250 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2251 while (state) {
2252 if (state->start > end)
2253 break;
2254
2255 ASSERT(state->end <= end);
2256
2257 next = next_state(state);
2258
2259 failrec = (struct io_failure_record *)(unsigned long)state->private;
2260 free_extent_state(state);
2261 kfree(failrec);
2262
2263 state = next;
2264 }
2265 spin_unlock(&failure_tree->lock);
2266 }
2267
2268 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2269 struct io_failure_record **failrec_ret)
2270 {
2271 struct io_failure_record *failrec;
2272 u64 private;
2273 struct extent_map *em;
2274 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2275 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2276 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2277 int ret;
2278 u64 logical;
2279
2280 ret = get_state_private(failure_tree, start, &private);
2281 if (ret) {
2282 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2283 if (!failrec)
2284 return -ENOMEM;
2285
2286 failrec->start = start;
2287 failrec->len = end - start + 1;
2288 failrec->this_mirror = 0;
2289 failrec->bio_flags = 0;
2290 failrec->in_validation = 0;
2291
2292 read_lock(&em_tree->lock);
2293 em = lookup_extent_mapping(em_tree, start, failrec->len);
2294 if (!em) {
2295 read_unlock(&em_tree->lock);
2296 kfree(failrec);
2297 return -EIO;
2298 }
2299
2300 if (em->start > start || em->start + em->len <= start) {
2301 free_extent_map(em);
2302 em = NULL;
2303 }
2304 read_unlock(&em_tree->lock);
2305 if (!em) {
2306 kfree(failrec);
2307 return -EIO;
2308 }
2309
2310 logical = start - em->start;
2311 logical = em->block_start + logical;
2312 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2313 logical = em->block_start;
2314 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2315 extent_set_compress_type(&failrec->bio_flags,
2316 em->compress_type);
2317 }
2318
2319 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2320 logical, start, failrec->len);
2321
2322 failrec->logical = logical;
2323 free_extent_map(em);
2324
2325 /* set the bits in the private failure tree */
2326 ret = set_extent_bits(failure_tree, start, end,
2327 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2328 if (ret >= 0)
2329 ret = set_state_private(failure_tree, start,
2330 (u64)(unsigned long)failrec);
2331 /* set the bits in the inode's tree */
2332 if (ret >= 0)
2333 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2334 GFP_NOFS);
2335 if (ret < 0) {
2336 kfree(failrec);
2337 return ret;
2338 }
2339 } else {
2340 failrec = (struct io_failure_record *)(unsigned long)private;
2341 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2342 failrec->logical, failrec->start, failrec->len,
2343 failrec->in_validation);
2344 /*
2345 * when data can be on disk more than twice, add to failrec here
2346 * (e.g. with a list for failed_mirror) to make
2347 * clean_io_failure() clean all those errors at once.
2348 */
2349 }
2350
2351 *failrec_ret = failrec;
2352
2353 return 0;
2354 }
2355
2356 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2357 struct io_failure_record *failrec, int failed_mirror)
2358 {
2359 int num_copies;
2360
2361 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2362 failrec->logical, failrec->len);
2363 if (num_copies == 1) {
2364 /*
2365 * we only have a single copy of the data, so don't bother with
2366 * all the retry and error correction code that follows. no
2367 * matter what the error is, it is very likely to persist.
2368 */
2369 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2370 num_copies, failrec->this_mirror, failed_mirror);
2371 return 0;
2372 }
2373
2374 /*
2375 * there are two premises:
2376 * a) deliver good data to the caller
2377 * b) correct the bad sectors on disk
2378 */
2379 if (failed_bio->bi_vcnt > 1) {
2380 /*
2381 * to fulfill b), we need to know the exact failing sectors, as
2382 * we don't want to rewrite any more than the failed ones. thus,
2383 * we need separate read requests for the failed bio
2384 *
2385 * if the following BUG_ON triggers, our validation request got
2386 * merged. we need separate requests for our algorithm to work.
2387 */
2388 BUG_ON(failrec->in_validation);
2389 failrec->in_validation = 1;
2390 failrec->this_mirror = failed_mirror;
2391 } else {
2392 /*
2393 * we're ready to fulfill a) and b) alongside. get a good copy
2394 * of the failed sector and if we succeed, we have setup
2395 * everything for repair_io_failure to do the rest for us.
2396 */
2397 if (failrec->in_validation) {
2398 BUG_ON(failrec->this_mirror != failed_mirror);
2399 failrec->in_validation = 0;
2400 failrec->this_mirror = 0;
2401 }
2402 failrec->failed_mirror = failed_mirror;
2403 failrec->this_mirror++;
2404 if (failrec->this_mirror == failed_mirror)
2405 failrec->this_mirror++;
2406 }
2407
2408 if (failrec->this_mirror > num_copies) {
2409 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2410 num_copies, failrec->this_mirror, failed_mirror);
2411 return 0;
2412 }
2413
2414 return 1;
2415 }
2416
2417
2418 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2419 struct io_failure_record *failrec,
2420 struct page *page, int pg_offset, int icsum,
2421 bio_end_io_t *endio_func, void *data)
2422 {
2423 struct bio *bio;
2424 struct btrfs_io_bio *btrfs_failed_bio;
2425 struct btrfs_io_bio *btrfs_bio;
2426
2427 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2428 if (!bio)
2429 return NULL;
2430
2431 bio->bi_end_io = endio_func;
2432 bio->bi_iter.bi_sector = failrec->logical >> 9;
2433 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2434 bio->bi_iter.bi_size = 0;
2435 bio->bi_private = data;
2436
2437 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2438 if (btrfs_failed_bio->csum) {
2439 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2440 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2441
2442 btrfs_bio = btrfs_io_bio(bio);
2443 btrfs_bio->csum = btrfs_bio->csum_inline;
2444 icsum *= csum_size;
2445 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2446 csum_size);
2447 }
2448
2449 bio_add_page(bio, page, failrec->len, pg_offset);
2450
2451 return bio;
2452 }
2453
2454 /*
2455 * this is a generic handler for readpage errors (default
2456 * readpage_io_failed_hook). if other copies exist, read those and write back
2457 * good data to the failed position. does not investigate in remapping the
2458 * failed extent elsewhere, hoping the device will be smart enough to do this as
2459 * needed
2460 */
2461
2462 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2463 struct page *page, u64 start, u64 end,
2464 int failed_mirror)
2465 {
2466 struct io_failure_record *failrec;
2467 struct inode *inode = page->mapping->host;
2468 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2469 struct bio *bio;
2470 int read_mode;
2471 int ret;
2472
2473 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2474
2475 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2476 if (ret)
2477 return ret;
2478
2479 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2480 if (!ret) {
2481 free_io_failure(inode, failrec);
2482 return -EIO;
2483 }
2484
2485 if (failed_bio->bi_vcnt > 1)
2486 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2487 else
2488 read_mode = READ_SYNC;
2489
2490 phy_offset >>= inode->i_sb->s_blocksize_bits;
2491 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2492 start - page_offset(page),
2493 (int)phy_offset, failed_bio->bi_end_io,
2494 NULL);
2495 if (!bio) {
2496 free_io_failure(inode, failrec);
2497 return -EIO;
2498 }
2499
2500 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2501 read_mode, failrec->this_mirror, failrec->in_validation);
2502
2503 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2504 failrec->this_mirror,
2505 failrec->bio_flags, 0);
2506 if (ret) {
2507 free_io_failure(inode, failrec);
2508 bio_put(bio);
2509 }
2510
2511 return ret;
2512 }
2513
2514 /* lots and lots of room for performance fixes in the end_bio funcs */
2515
2516 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2517 {
2518 int uptodate = (err == 0);
2519 struct extent_io_tree *tree;
2520 int ret = 0;
2521
2522 tree = &BTRFS_I(page->mapping->host)->io_tree;
2523
2524 if (tree->ops && tree->ops->writepage_end_io_hook) {
2525 ret = tree->ops->writepage_end_io_hook(page, start,
2526 end, NULL, uptodate);
2527 if (ret)
2528 uptodate = 0;
2529 }
2530
2531 if (!uptodate) {
2532 ClearPageUptodate(page);
2533 SetPageError(page);
2534 ret = ret < 0 ? ret : -EIO;
2535 mapping_set_error(page->mapping, ret);
2536 }
2537 }
2538
2539 /*
2540 * after a writepage IO is done, we need to:
2541 * clear the uptodate bits on error
2542 * clear the writeback bits in the extent tree for this IO
2543 * end_page_writeback if the page has no more pending IO
2544 *
2545 * Scheduling is not allowed, so the extent state tree is expected
2546 * to have one and only one object corresponding to this IO.
2547 */
2548 static void end_bio_extent_writepage(struct bio *bio)
2549 {
2550 struct bio_vec *bvec;
2551 u64 start;
2552 u64 end;
2553 int i;
2554
2555 bio_for_each_segment_all(bvec, bio, i) {
2556 struct page *page = bvec->bv_page;
2557
2558 /* We always issue full-page reads, but if some block
2559 * in a page fails to read, blk_update_request() will
2560 * advance bv_offset and adjust bv_len to compensate.
2561 * Print a warning for nonzero offsets, and an error
2562 * if they don't add up to a full page. */
2563 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2564 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2565 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2566 "partial page write in btrfs with offset %u and length %u",
2567 bvec->bv_offset, bvec->bv_len);
2568 else
2569 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2570 "incomplete page write in btrfs with offset %u and "
2571 "length %u",
2572 bvec->bv_offset, bvec->bv_len);
2573 }
2574
2575 start = page_offset(page);
2576 end = start + bvec->bv_offset + bvec->bv_len - 1;
2577
2578 end_extent_writepage(page, bio->bi_error, start, end);
2579 end_page_writeback(page);
2580 }
2581
2582 bio_put(bio);
2583 }
2584
2585 static void
2586 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2587 int uptodate)
2588 {
2589 struct extent_state *cached = NULL;
2590 u64 end = start + len - 1;
2591
2592 if (uptodate && tree->track_uptodate)
2593 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2594 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2595 }
2596
2597 /*
2598 * after a readpage IO is done, we need to:
2599 * clear the uptodate bits on error
2600 * set the uptodate bits if things worked
2601 * set the page up to date if all extents in the tree are uptodate
2602 * clear the lock bit in the extent tree
2603 * unlock the page if there are no other extents locked for it
2604 *
2605 * Scheduling is not allowed, so the extent state tree is expected
2606 * to have one and only one object corresponding to this IO.
2607 */
2608 static void end_bio_extent_readpage(struct bio *bio)
2609 {
2610 struct bio_vec *bvec;
2611 int uptodate = !bio->bi_error;
2612 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2613 struct extent_io_tree *tree;
2614 u64 offset = 0;
2615 u64 start;
2616 u64 end;
2617 u64 len;
2618 u64 extent_start = 0;
2619 u64 extent_len = 0;
2620 int mirror;
2621 int ret;
2622 int i;
2623
2624 bio_for_each_segment_all(bvec, bio, i) {
2625 struct page *page = bvec->bv_page;
2626 struct inode *inode = page->mapping->host;
2627
2628 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2629 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2630 bio->bi_error, io_bio->mirror_num);
2631 tree = &BTRFS_I(inode)->io_tree;
2632
2633 /* We always issue full-page reads, but if some block
2634 * in a page fails to read, blk_update_request() will
2635 * advance bv_offset and adjust bv_len to compensate.
2636 * Print a warning for nonzero offsets, and an error
2637 * if they don't add up to a full page. */
2638 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2639 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2640 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2641 "partial page read in btrfs with offset %u and length %u",
2642 bvec->bv_offset, bvec->bv_len);
2643 else
2644 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2645 "incomplete page read in btrfs with offset %u and "
2646 "length %u",
2647 bvec->bv_offset, bvec->bv_len);
2648 }
2649
2650 start = page_offset(page);
2651 end = start + bvec->bv_offset + bvec->bv_len - 1;
2652 len = bvec->bv_len;
2653
2654 mirror = io_bio->mirror_num;
2655 if (likely(uptodate && tree->ops &&
2656 tree->ops->readpage_end_io_hook)) {
2657 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2658 page, start, end,
2659 mirror);
2660 if (ret)
2661 uptodate = 0;
2662 else
2663 clean_io_failure(inode, start, page, 0);
2664 }
2665
2666 if (likely(uptodate))
2667 goto readpage_ok;
2668
2669 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2670 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2671 if (!ret && !bio->bi_error)
2672 uptodate = 1;
2673 } else {
2674 /*
2675 * The generic bio_readpage_error handles errors the
2676 * following way: If possible, new read requests are
2677 * created and submitted and will end up in
2678 * end_bio_extent_readpage as well (if we're lucky, not
2679 * in the !uptodate case). In that case it returns 0 and
2680 * we just go on with the next page in our bio. If it
2681 * can't handle the error it will return -EIO and we
2682 * remain responsible for that page.
2683 */
2684 ret = bio_readpage_error(bio, offset, page, start, end,
2685 mirror);
2686 if (ret == 0) {
2687 uptodate = !bio->bi_error;
2688 offset += len;
2689 continue;
2690 }
2691 }
2692 readpage_ok:
2693 if (likely(uptodate)) {
2694 loff_t i_size = i_size_read(inode);
2695 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2696 unsigned off;
2697
2698 /* Zero out the end if this page straddles i_size */
2699 off = i_size & (PAGE_CACHE_SIZE-1);
2700 if (page->index == end_index && off)
2701 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2702 SetPageUptodate(page);
2703 } else {
2704 ClearPageUptodate(page);
2705 SetPageError(page);
2706 }
2707 unlock_page(page);
2708 offset += len;
2709
2710 if (unlikely(!uptodate)) {
2711 if (extent_len) {
2712 endio_readpage_release_extent(tree,
2713 extent_start,
2714 extent_len, 1);
2715 extent_start = 0;
2716 extent_len = 0;
2717 }
2718 endio_readpage_release_extent(tree, start,
2719 end - start + 1, 0);
2720 } else if (!extent_len) {
2721 extent_start = start;
2722 extent_len = end + 1 - start;
2723 } else if (extent_start + extent_len == start) {
2724 extent_len += end + 1 - start;
2725 } else {
2726 endio_readpage_release_extent(tree, extent_start,
2727 extent_len, uptodate);
2728 extent_start = start;
2729 extent_len = end + 1 - start;
2730 }
2731 }
2732
2733 if (extent_len)
2734 endio_readpage_release_extent(tree, extent_start, extent_len,
2735 uptodate);
2736 if (io_bio->end_io)
2737 io_bio->end_io(io_bio, bio->bi_error);
2738 bio_put(bio);
2739 }
2740
2741 /*
2742 * this allocates from the btrfs_bioset. We're returning a bio right now
2743 * but you can call btrfs_io_bio for the appropriate container_of magic
2744 */
2745 struct bio *
2746 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2747 gfp_t gfp_flags)
2748 {
2749 struct btrfs_io_bio *btrfs_bio;
2750 struct bio *bio;
2751
2752 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2753
2754 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2755 while (!bio && (nr_vecs /= 2)) {
2756 bio = bio_alloc_bioset(gfp_flags,
2757 nr_vecs, btrfs_bioset);
2758 }
2759 }
2760
2761 if (bio) {
2762 bio->bi_bdev = bdev;
2763 bio->bi_iter.bi_sector = first_sector;
2764 btrfs_bio = btrfs_io_bio(bio);
2765 btrfs_bio->csum = NULL;
2766 btrfs_bio->csum_allocated = NULL;
2767 btrfs_bio->end_io = NULL;
2768 }
2769 return bio;
2770 }
2771
2772 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2773 {
2774 struct btrfs_io_bio *btrfs_bio;
2775 struct bio *new;
2776
2777 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2778 if (new) {
2779 btrfs_bio = btrfs_io_bio(new);
2780 btrfs_bio->csum = NULL;
2781 btrfs_bio->csum_allocated = NULL;
2782 btrfs_bio->end_io = NULL;
2783
2784 #ifdef CONFIG_BLK_CGROUP
2785 /* FIXME, put this into bio_clone_bioset */
2786 if (bio->bi_css)
2787 bio_associate_blkcg(new, bio->bi_css);
2788 #endif
2789 }
2790 return new;
2791 }
2792
2793 /* this also allocates from the btrfs_bioset */
2794 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2795 {
2796 struct btrfs_io_bio *btrfs_bio;
2797 struct bio *bio;
2798
2799 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2800 if (bio) {
2801 btrfs_bio = btrfs_io_bio(bio);
2802 btrfs_bio->csum = NULL;
2803 btrfs_bio->csum_allocated = NULL;
2804 btrfs_bio->end_io = NULL;
2805 }
2806 return bio;
2807 }
2808
2809
2810 static int __must_check submit_one_bio(int rw, struct bio *bio,
2811 int mirror_num, unsigned long bio_flags)
2812 {
2813 int ret = 0;
2814 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2815 struct page *page = bvec->bv_page;
2816 struct extent_io_tree *tree = bio->bi_private;
2817 u64 start;
2818
2819 start = page_offset(page) + bvec->bv_offset;
2820
2821 bio->bi_private = NULL;
2822
2823 bio_get(bio);
2824
2825 if (tree->ops && tree->ops->submit_bio_hook)
2826 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2827 mirror_num, bio_flags, start);
2828 else
2829 btrfsic_submit_bio(rw, bio);
2830
2831 bio_put(bio);
2832 return ret;
2833 }
2834
2835 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2836 unsigned long offset, size_t size, struct bio *bio,
2837 unsigned long bio_flags)
2838 {
2839 int ret = 0;
2840 if (tree->ops && tree->ops->merge_bio_hook)
2841 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2842 bio_flags);
2843 BUG_ON(ret < 0);
2844 return ret;
2845
2846 }
2847
2848 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2849 struct writeback_control *wbc,
2850 struct page *page, sector_t sector,
2851 size_t size, unsigned long offset,
2852 struct block_device *bdev,
2853 struct bio **bio_ret,
2854 unsigned long max_pages,
2855 bio_end_io_t end_io_func,
2856 int mirror_num,
2857 unsigned long prev_bio_flags,
2858 unsigned long bio_flags,
2859 bool force_bio_submit)
2860 {
2861 int ret = 0;
2862 struct bio *bio;
2863 int contig = 0;
2864 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2865 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2866
2867 if (bio_ret && *bio_ret) {
2868 bio = *bio_ret;
2869 if (old_compressed)
2870 contig = bio->bi_iter.bi_sector == sector;
2871 else
2872 contig = bio_end_sector(bio) == sector;
2873
2874 if (prev_bio_flags != bio_flags || !contig ||
2875 force_bio_submit ||
2876 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2877 bio_add_page(bio, page, page_size, offset) < page_size) {
2878 ret = submit_one_bio(rw, bio, mirror_num,
2879 prev_bio_flags);
2880 if (ret < 0) {
2881 *bio_ret = NULL;
2882 return ret;
2883 }
2884 bio = NULL;
2885 } else {
2886 if (wbc)
2887 wbc_account_io(wbc, page, page_size);
2888 return 0;
2889 }
2890 }
2891
2892 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2893 GFP_NOFS | __GFP_HIGH);
2894 if (!bio)
2895 return -ENOMEM;
2896
2897 bio_add_page(bio, page, page_size, offset);
2898 bio->bi_end_io = end_io_func;
2899 bio->bi_private = tree;
2900 if (wbc) {
2901 wbc_init_bio(wbc, bio);
2902 wbc_account_io(wbc, page, page_size);
2903 }
2904
2905 if (bio_ret)
2906 *bio_ret = bio;
2907 else
2908 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2909
2910 return ret;
2911 }
2912
2913 static void attach_extent_buffer_page(struct extent_buffer *eb,
2914 struct page *page)
2915 {
2916 if (!PagePrivate(page)) {
2917 SetPagePrivate(page);
2918 page_cache_get(page);
2919 set_page_private(page, (unsigned long)eb);
2920 } else {
2921 WARN_ON(page->private != (unsigned long)eb);
2922 }
2923 }
2924
2925 void set_page_extent_mapped(struct page *page)
2926 {
2927 if (!PagePrivate(page)) {
2928 SetPagePrivate(page);
2929 page_cache_get(page);
2930 set_page_private(page, EXTENT_PAGE_PRIVATE);
2931 }
2932 }
2933
2934 static struct extent_map *
2935 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2936 u64 start, u64 len, get_extent_t *get_extent,
2937 struct extent_map **em_cached)
2938 {
2939 struct extent_map *em;
2940
2941 if (em_cached && *em_cached) {
2942 em = *em_cached;
2943 if (extent_map_in_tree(em) && start >= em->start &&
2944 start < extent_map_end(em)) {
2945 atomic_inc(&em->refs);
2946 return em;
2947 }
2948
2949 free_extent_map(em);
2950 *em_cached = NULL;
2951 }
2952
2953 em = get_extent(inode, page, pg_offset, start, len, 0);
2954 if (em_cached && !IS_ERR_OR_NULL(em)) {
2955 BUG_ON(*em_cached);
2956 atomic_inc(&em->refs);
2957 *em_cached = em;
2958 }
2959 return em;
2960 }
2961 /*
2962 * basic readpage implementation. Locked extent state structs are inserted
2963 * into the tree that are removed when the IO is done (by the end_io
2964 * handlers)
2965 * XXX JDM: This needs looking at to ensure proper page locking
2966 */
2967 static int __do_readpage(struct extent_io_tree *tree,
2968 struct page *page,
2969 get_extent_t *get_extent,
2970 struct extent_map **em_cached,
2971 struct bio **bio, int mirror_num,
2972 unsigned long *bio_flags, int rw,
2973 u64 *prev_em_start)
2974 {
2975 struct inode *inode = page->mapping->host;
2976 u64 start = page_offset(page);
2977 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2978 u64 end;
2979 u64 cur = start;
2980 u64 extent_offset;
2981 u64 last_byte = i_size_read(inode);
2982 u64 block_start;
2983 u64 cur_end;
2984 sector_t sector;
2985 struct extent_map *em;
2986 struct block_device *bdev;
2987 int ret;
2988 int nr = 0;
2989 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2990 size_t pg_offset = 0;
2991 size_t iosize;
2992 size_t disk_io_size;
2993 size_t blocksize = inode->i_sb->s_blocksize;
2994 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2995
2996 set_page_extent_mapped(page);
2997
2998 end = page_end;
2999 if (!PageUptodate(page)) {
3000 if (cleancache_get_page(page) == 0) {
3001 BUG_ON(blocksize != PAGE_SIZE);
3002 unlock_extent(tree, start, end);
3003 goto out;
3004 }
3005 }
3006
3007 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
3008 char *userpage;
3009 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
3010
3011 if (zero_offset) {
3012 iosize = PAGE_CACHE_SIZE - zero_offset;
3013 userpage = kmap_atomic(page);
3014 memset(userpage + zero_offset, 0, iosize);
3015 flush_dcache_page(page);
3016 kunmap_atomic(userpage);
3017 }
3018 }
3019 while (cur <= end) {
3020 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
3021 bool force_bio_submit = false;
3022
3023 if (cur >= last_byte) {
3024 char *userpage;
3025 struct extent_state *cached = NULL;
3026
3027 iosize = PAGE_CACHE_SIZE - pg_offset;
3028 userpage = kmap_atomic(page);
3029 memset(userpage + pg_offset, 0, iosize);
3030 flush_dcache_page(page);
3031 kunmap_atomic(userpage);
3032 set_extent_uptodate(tree, cur, cur + iosize - 1,
3033 &cached, GFP_NOFS);
3034 if (!parent_locked)
3035 unlock_extent_cached(tree, cur,
3036 cur + iosize - 1,
3037 &cached, GFP_NOFS);
3038 break;
3039 }
3040 em = __get_extent_map(inode, page, pg_offset, cur,
3041 end - cur + 1, get_extent, em_cached);
3042 if (IS_ERR_OR_NULL(em)) {
3043 SetPageError(page);
3044 if (!parent_locked)
3045 unlock_extent(tree, cur, end);
3046 break;
3047 }
3048 extent_offset = cur - em->start;
3049 BUG_ON(extent_map_end(em) <= cur);
3050 BUG_ON(end < cur);
3051
3052 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3053 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3054 extent_set_compress_type(&this_bio_flag,
3055 em->compress_type);
3056 }
3057
3058 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3059 cur_end = min(extent_map_end(em) - 1, end);
3060 iosize = ALIGN(iosize, blocksize);
3061 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3062 disk_io_size = em->block_len;
3063 sector = em->block_start >> 9;
3064 } else {
3065 sector = (em->block_start + extent_offset) >> 9;
3066 disk_io_size = iosize;
3067 }
3068 bdev = em->bdev;
3069 block_start = em->block_start;
3070 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3071 block_start = EXTENT_MAP_HOLE;
3072
3073 /*
3074 * If we have a file range that points to a compressed extent
3075 * and it's followed by a consecutive file range that points to
3076 * to the same compressed extent (possibly with a different
3077 * offset and/or length, so it either points to the whole extent
3078 * or only part of it), we must make sure we do not submit a
3079 * single bio to populate the pages for the 2 ranges because
3080 * this makes the compressed extent read zero out the pages
3081 * belonging to the 2nd range. Imagine the following scenario:
3082 *
3083 * File layout
3084 * [0 - 8K] [8K - 24K]
3085 * | |
3086 * | |
3087 * points to extent X, points to extent X,
3088 * offset 4K, length of 8K offset 0, length 16K
3089 *
3090 * [extent X, compressed length = 4K uncompressed length = 16K]
3091 *
3092 * If the bio to read the compressed extent covers both ranges,
3093 * it will decompress extent X into the pages belonging to the
3094 * first range and then it will stop, zeroing out the remaining
3095 * pages that belong to the other range that points to extent X.
3096 * So here we make sure we submit 2 bios, one for the first
3097 * range and another one for the third range. Both will target
3098 * the same physical extent from disk, but we can't currently
3099 * make the compressed bio endio callback populate the pages
3100 * for both ranges because each compressed bio is tightly
3101 * coupled with a single extent map, and each range can have
3102 * an extent map with a different offset value relative to the
3103 * uncompressed data of our extent and different lengths. This
3104 * is a corner case so we prioritize correctness over
3105 * non-optimal behavior (submitting 2 bios for the same extent).
3106 */
3107 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3108 prev_em_start && *prev_em_start != (u64)-1 &&
3109 *prev_em_start != em->orig_start)
3110 force_bio_submit = true;
3111
3112 if (prev_em_start)
3113 *prev_em_start = em->orig_start;
3114
3115 free_extent_map(em);
3116 em = NULL;
3117
3118 /* we've found a hole, just zero and go on */
3119 if (block_start == EXTENT_MAP_HOLE) {
3120 char *userpage;
3121 struct extent_state *cached = NULL;
3122
3123 userpage = kmap_atomic(page);
3124 memset(userpage + pg_offset, 0, iosize);
3125 flush_dcache_page(page);
3126 kunmap_atomic(userpage);
3127
3128 set_extent_uptodate(tree, cur, cur + iosize - 1,
3129 &cached, GFP_NOFS);
3130 if (parent_locked)
3131 free_extent_state(cached);
3132 else
3133 unlock_extent_cached(tree, cur,
3134 cur + iosize - 1,
3135 &cached, GFP_NOFS);
3136 cur = cur + iosize;
3137 pg_offset += iosize;
3138 continue;
3139 }
3140 /* the get_extent function already copied into the page */
3141 if (test_range_bit(tree, cur, cur_end,
3142 EXTENT_UPTODATE, 1, NULL)) {
3143 check_page_uptodate(tree, page);
3144 if (!parent_locked)
3145 unlock_extent(tree, cur, cur + iosize - 1);
3146 cur = cur + iosize;
3147 pg_offset += iosize;
3148 continue;
3149 }
3150 /* we have an inline extent but it didn't get marked up
3151 * to date. Error out
3152 */
3153 if (block_start == EXTENT_MAP_INLINE) {
3154 SetPageError(page);
3155 if (!parent_locked)
3156 unlock_extent(tree, cur, cur + iosize - 1);
3157 cur = cur + iosize;
3158 pg_offset += iosize;
3159 continue;
3160 }
3161
3162 pnr -= page->index;
3163 ret = submit_extent_page(rw, tree, NULL, page,
3164 sector, disk_io_size, pg_offset,
3165 bdev, bio, pnr,
3166 end_bio_extent_readpage, mirror_num,
3167 *bio_flags,
3168 this_bio_flag,
3169 force_bio_submit);
3170 if (!ret) {
3171 nr++;
3172 *bio_flags = this_bio_flag;
3173 } else {
3174 SetPageError(page);
3175 if (!parent_locked)
3176 unlock_extent(tree, cur, cur + iosize - 1);
3177 }
3178 cur = cur + iosize;
3179 pg_offset += iosize;
3180 }
3181 out:
3182 if (!nr) {
3183 if (!PageError(page))
3184 SetPageUptodate(page);
3185 unlock_page(page);
3186 }
3187 return 0;
3188 }
3189
3190 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3191 struct page *pages[], int nr_pages,
3192 u64 start, u64 end,
3193 get_extent_t *get_extent,
3194 struct extent_map **em_cached,
3195 struct bio **bio, int mirror_num,
3196 unsigned long *bio_flags, int rw,
3197 u64 *prev_em_start)
3198 {
3199 struct inode *inode;
3200 struct btrfs_ordered_extent *ordered;
3201 int index;
3202
3203 inode = pages[0]->mapping->host;
3204 while (1) {
3205 lock_extent(tree, start, end);
3206 ordered = btrfs_lookup_ordered_range(inode, start,
3207 end - start + 1);
3208 if (!ordered)
3209 break;
3210 unlock_extent(tree, start, end);
3211 btrfs_start_ordered_extent(inode, ordered, 1);
3212 btrfs_put_ordered_extent(ordered);
3213 }
3214
3215 for (index = 0; index < nr_pages; index++) {
3216 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3217 mirror_num, bio_flags, rw, prev_em_start);
3218 page_cache_release(pages[index]);
3219 }
3220 }
3221
3222 static void __extent_readpages(struct extent_io_tree *tree,
3223 struct page *pages[],
3224 int nr_pages, get_extent_t *get_extent,
3225 struct extent_map **em_cached,
3226 struct bio **bio, int mirror_num,
3227 unsigned long *bio_flags, int rw,
3228 u64 *prev_em_start)
3229 {
3230 u64 start = 0;
3231 u64 end = 0;
3232 u64 page_start;
3233 int index;
3234 int first_index = 0;
3235
3236 for (index = 0; index < nr_pages; index++) {
3237 page_start = page_offset(pages[index]);
3238 if (!end) {
3239 start = page_start;
3240 end = start + PAGE_CACHE_SIZE - 1;
3241 first_index = index;
3242 } else if (end + 1 == page_start) {
3243 end += PAGE_CACHE_SIZE;
3244 } else {
3245 __do_contiguous_readpages(tree, &pages[first_index],
3246 index - first_index, start,
3247 end, get_extent, em_cached,
3248 bio, mirror_num, bio_flags,
3249 rw, prev_em_start);
3250 start = page_start;
3251 end = start + PAGE_CACHE_SIZE - 1;
3252 first_index = index;
3253 }
3254 }
3255
3256 if (end)
3257 __do_contiguous_readpages(tree, &pages[first_index],
3258 index - first_index, start,
3259 end, get_extent, em_cached, bio,
3260 mirror_num, bio_flags, rw,
3261 prev_em_start);
3262 }
3263
3264 static int __extent_read_full_page(struct extent_io_tree *tree,
3265 struct page *page,
3266 get_extent_t *get_extent,
3267 struct bio **bio, int mirror_num,
3268 unsigned long *bio_flags, int rw)
3269 {
3270 struct inode *inode = page->mapping->host;
3271 struct btrfs_ordered_extent *ordered;
3272 u64 start = page_offset(page);
3273 u64 end = start + PAGE_CACHE_SIZE - 1;
3274 int ret;
3275
3276 while (1) {
3277 lock_extent(tree, start, end);
3278 ordered = btrfs_lookup_ordered_extent(inode, start);
3279 if (!ordered)
3280 break;
3281 unlock_extent(tree, start, end);
3282 btrfs_start_ordered_extent(inode, ordered, 1);
3283 btrfs_put_ordered_extent(ordered);
3284 }
3285
3286 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3287 bio_flags, rw, NULL);
3288 return ret;
3289 }
3290
3291 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3292 get_extent_t *get_extent, int mirror_num)
3293 {
3294 struct bio *bio = NULL;
3295 unsigned long bio_flags = 0;
3296 int ret;
3297
3298 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3299 &bio_flags, READ);
3300 if (bio)
3301 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3302 return ret;
3303 }
3304
3305 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3306 get_extent_t *get_extent, int mirror_num)
3307 {
3308 struct bio *bio = NULL;
3309 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3310 int ret;
3311
3312 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3313 &bio_flags, READ, NULL);
3314 if (bio)
3315 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3316 return ret;
3317 }
3318
3319 static noinline void update_nr_written(struct page *page,
3320 struct writeback_control *wbc,
3321 unsigned long nr_written)
3322 {
3323 wbc->nr_to_write -= nr_written;
3324 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3325 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3326 page->mapping->writeback_index = page->index + nr_written;
3327 }
3328
3329 /*
3330 * helper for __extent_writepage, doing all of the delayed allocation setup.
3331 *
3332 * This returns 1 if our fill_delalloc function did all the work required
3333 * to write the page (copy into inline extent). In this case the IO has
3334 * been started and the page is already unlocked.
3335 *
3336 * This returns 0 if all went well (page still locked)
3337 * This returns < 0 if there were errors (page still locked)
3338 */
3339 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3340 struct page *page, struct writeback_control *wbc,
3341 struct extent_page_data *epd,
3342 u64 delalloc_start,
3343 unsigned long *nr_written)
3344 {
3345 struct extent_io_tree *tree = epd->tree;
3346 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3347 u64 nr_delalloc;
3348 u64 delalloc_to_write = 0;
3349 u64 delalloc_end = 0;
3350 int ret;
3351 int page_started = 0;
3352
3353 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3354 return 0;
3355
3356 while (delalloc_end < page_end) {
3357 nr_delalloc = find_lock_delalloc_range(inode, tree,
3358 page,
3359 &delalloc_start,
3360 &delalloc_end,
3361 BTRFS_MAX_EXTENT_SIZE);
3362 if (nr_delalloc == 0) {
3363 delalloc_start = delalloc_end + 1;
3364 continue;
3365 }
3366 ret = tree->ops->fill_delalloc(inode, page,
3367 delalloc_start,
3368 delalloc_end,
3369 &page_started,
3370 nr_written);
3371 /* File system has been set read-only */
3372 if (ret) {
3373 SetPageError(page);
3374 /* fill_delalloc should be return < 0 for error
3375 * but just in case, we use > 0 here meaning the
3376 * IO is started, so we don't want to return > 0
3377 * unless things are going well.
3378 */
3379 ret = ret < 0 ? ret : -EIO;
3380 goto done;
3381 }
3382 /*
3383 * delalloc_end is already one less than the total
3384 * length, so we don't subtract one from
3385 * PAGE_CACHE_SIZE
3386 */
3387 delalloc_to_write += (delalloc_end - delalloc_start +
3388 PAGE_CACHE_SIZE) >>
3389 PAGE_CACHE_SHIFT;
3390 delalloc_start = delalloc_end + 1;
3391 }
3392 if (wbc->nr_to_write < delalloc_to_write) {
3393 int thresh = 8192;
3394
3395 if (delalloc_to_write < thresh * 2)
3396 thresh = delalloc_to_write;
3397 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3398 thresh);
3399 }
3400
3401 /* did the fill delalloc function already unlock and start
3402 * the IO?
3403 */
3404 if (page_started) {
3405 /*
3406 * we've unlocked the page, so we can't update
3407 * the mapping's writeback index, just update
3408 * nr_to_write.
3409 */
3410 wbc->nr_to_write -= *nr_written;
3411 return 1;
3412 }
3413
3414 ret = 0;
3415
3416 done:
3417 return ret;
3418 }
3419
3420 /*
3421 * helper for __extent_writepage. This calls the writepage start hooks,
3422 * and does the loop to map the page into extents and bios.
3423 *
3424 * We return 1 if the IO is started and the page is unlocked,
3425 * 0 if all went well (page still locked)
3426 * < 0 if there were errors (page still locked)
3427 */
3428 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3429 struct page *page,
3430 struct writeback_control *wbc,
3431 struct extent_page_data *epd,
3432 loff_t i_size,
3433 unsigned long nr_written,
3434 int write_flags, int *nr_ret)
3435 {
3436 struct extent_io_tree *tree = epd->tree;
3437 u64 start = page_offset(page);
3438 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3439 u64 end;
3440 u64 cur = start;
3441 u64 extent_offset;
3442 u64 block_start;
3443 u64 iosize;
3444 sector_t sector;
3445 struct extent_state *cached_state = NULL;
3446 struct extent_map *em;
3447 struct block_device *bdev;
3448 size_t pg_offset = 0;
3449 size_t blocksize;
3450 int ret = 0;
3451 int nr = 0;
3452 bool compressed;
3453
3454 if (tree->ops && tree->ops->writepage_start_hook) {
3455 ret = tree->ops->writepage_start_hook(page, start,
3456 page_end);
3457 if (ret) {
3458 /* Fixup worker will requeue */
3459 if (ret == -EBUSY)
3460 wbc->pages_skipped++;
3461 else
3462 redirty_page_for_writepage(wbc, page);
3463
3464 update_nr_written(page, wbc, nr_written);
3465 unlock_page(page);
3466 ret = 1;
3467 goto done_unlocked;
3468 }
3469 }
3470
3471 /*
3472 * we don't want to touch the inode after unlocking the page,
3473 * so we update the mapping writeback index now
3474 */
3475 update_nr_written(page, wbc, nr_written + 1);
3476
3477 end = page_end;
3478 if (i_size <= start) {
3479 if (tree->ops && tree->ops->writepage_end_io_hook)
3480 tree->ops->writepage_end_io_hook(page, start,
3481 page_end, NULL, 1);
3482 goto done;
3483 }
3484
3485 blocksize = inode->i_sb->s_blocksize;
3486
3487 while (cur <= end) {
3488 u64 em_end;
3489 if (cur >= i_size) {
3490 if (tree->ops && tree->ops->writepage_end_io_hook)
3491 tree->ops->writepage_end_io_hook(page, cur,
3492 page_end, NULL, 1);
3493 break;
3494 }
3495 em = epd->get_extent(inode, page, pg_offset, cur,
3496 end - cur + 1, 1);
3497 if (IS_ERR_OR_NULL(em)) {
3498 SetPageError(page);
3499 ret = PTR_ERR_OR_ZERO(em);
3500 break;
3501 }
3502
3503 extent_offset = cur - em->start;
3504 em_end = extent_map_end(em);
3505 BUG_ON(em_end <= cur);
3506 BUG_ON(end < cur);
3507 iosize = min(em_end - cur, end - cur + 1);
3508 iosize = ALIGN(iosize, blocksize);
3509 sector = (em->block_start + extent_offset) >> 9;
3510 bdev = em->bdev;
3511 block_start = em->block_start;
3512 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3513 free_extent_map(em);
3514 em = NULL;
3515
3516 /*
3517 * compressed and inline extents are written through other
3518 * paths in the FS
3519 */
3520 if (compressed || block_start == EXTENT_MAP_HOLE ||
3521 block_start == EXTENT_MAP_INLINE) {
3522 /*
3523 * end_io notification does not happen here for
3524 * compressed extents
3525 */
3526 if (!compressed && tree->ops &&
3527 tree->ops->writepage_end_io_hook)
3528 tree->ops->writepage_end_io_hook(page, cur,
3529 cur + iosize - 1,
3530 NULL, 1);
3531 else if (compressed) {
3532 /* we don't want to end_page_writeback on
3533 * a compressed extent. this happens
3534 * elsewhere
3535 */
3536 nr++;
3537 }
3538
3539 cur += iosize;
3540 pg_offset += iosize;
3541 continue;
3542 }
3543
3544 if (tree->ops && tree->ops->writepage_io_hook) {
3545 ret = tree->ops->writepage_io_hook(page, cur,
3546 cur + iosize - 1);
3547 } else {
3548 ret = 0;
3549 }
3550 if (ret) {
3551 SetPageError(page);
3552 } else {
3553 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3554
3555 set_range_writeback(tree, cur, cur + iosize - 1);
3556 if (!PageWriteback(page)) {
3557 btrfs_err(BTRFS_I(inode)->root->fs_info,
3558 "page %lu not writeback, cur %llu end %llu",
3559 page->index, cur, end);
3560 }
3561
3562 ret = submit_extent_page(write_flags, tree, wbc, page,
3563 sector, iosize, pg_offset,
3564 bdev, &epd->bio, max_nr,
3565 end_bio_extent_writepage,
3566 0, 0, 0, false);
3567 if (ret)
3568 SetPageError(page);
3569 }
3570 cur = cur + iosize;
3571 pg_offset += iosize;
3572 nr++;
3573 }
3574 done:
3575 *nr_ret = nr;
3576
3577 done_unlocked:
3578
3579 /* drop our reference on any cached states */
3580 free_extent_state(cached_state);
3581 return ret;
3582 }
3583
3584 /*
3585 * the writepage semantics are similar to regular writepage. extent
3586 * records are inserted to lock ranges in the tree, and as dirty areas
3587 * are found, they are marked writeback. Then the lock bits are removed
3588 * and the end_io handler clears the writeback ranges
3589 */
3590 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3591 void *data)
3592 {
3593 struct inode *inode = page->mapping->host;
3594 struct extent_page_data *epd = data;
3595 u64 start = page_offset(page);
3596 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3597 int ret;
3598 int nr = 0;
3599 size_t pg_offset = 0;
3600 loff_t i_size = i_size_read(inode);
3601 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3602 int write_flags;
3603 unsigned long nr_written = 0;
3604
3605 if (wbc->sync_mode == WB_SYNC_ALL)
3606 write_flags = WRITE_SYNC;
3607 else
3608 write_flags = WRITE;
3609
3610 trace___extent_writepage(page, inode, wbc);
3611
3612 WARN_ON(!PageLocked(page));
3613
3614 ClearPageError(page);
3615
3616 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3617 if (page->index > end_index ||
3618 (page->index == end_index && !pg_offset)) {
3619 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3620 unlock_page(page);
3621 return 0;
3622 }
3623
3624 if (page->index == end_index) {
3625 char *userpage;
3626
3627 userpage = kmap_atomic(page);
3628 memset(userpage + pg_offset, 0,
3629 PAGE_CACHE_SIZE - pg_offset);
3630 kunmap_atomic(userpage);
3631 flush_dcache_page(page);
3632 }
3633
3634 pg_offset = 0;
3635
3636 set_page_extent_mapped(page);
3637
3638 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3639 if (ret == 1)
3640 goto done_unlocked;
3641 if (ret)
3642 goto done;
3643
3644 ret = __extent_writepage_io(inode, page, wbc, epd,
3645 i_size, nr_written, write_flags, &nr);
3646 if (ret == 1)
3647 goto done_unlocked;
3648
3649 done:
3650 if (nr == 0) {
3651 /* make sure the mapping tag for page dirty gets cleared */
3652 set_page_writeback(page);
3653 end_page_writeback(page);
3654 }
3655 if (PageError(page)) {
3656 ret = ret < 0 ? ret : -EIO;
3657 end_extent_writepage(page, ret, start, page_end);
3658 }
3659 unlock_page(page);
3660 return ret;
3661
3662 done_unlocked:
3663 return 0;
3664 }
3665
3666 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3667 {
3668 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3669 TASK_UNINTERRUPTIBLE);
3670 }
3671
3672 static noinline_for_stack int
3673 lock_extent_buffer_for_io(struct extent_buffer *eb,
3674 struct btrfs_fs_info *fs_info,
3675 struct extent_page_data *epd)
3676 {
3677 unsigned long i, num_pages;
3678 int flush = 0;
3679 int ret = 0;
3680
3681 if (!btrfs_try_tree_write_lock(eb)) {
3682 flush = 1;
3683 flush_write_bio(epd);
3684 btrfs_tree_lock(eb);
3685 }
3686
3687 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3688 btrfs_tree_unlock(eb);
3689 if (!epd->sync_io)
3690 return 0;
3691 if (!flush) {
3692 flush_write_bio(epd);
3693 flush = 1;
3694 }
3695 while (1) {
3696 wait_on_extent_buffer_writeback(eb);
3697 btrfs_tree_lock(eb);
3698 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3699 break;
3700 btrfs_tree_unlock(eb);
3701 }
3702 }
3703
3704 /*
3705 * We need to do this to prevent races in people who check if the eb is
3706 * under IO since we can end up having no IO bits set for a short period
3707 * of time.
3708 */
3709 spin_lock(&eb->refs_lock);
3710 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3711 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3712 spin_unlock(&eb->refs_lock);
3713 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3714 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3715 -eb->len,
3716 fs_info->dirty_metadata_batch);
3717 ret = 1;
3718 } else {
3719 spin_unlock(&eb->refs_lock);
3720 }
3721
3722 btrfs_tree_unlock(eb);
3723
3724 if (!ret)
3725 return ret;
3726
3727 num_pages = num_extent_pages(eb->start, eb->len);
3728 for (i = 0; i < num_pages; i++) {
3729 struct page *p = eb->pages[i];
3730
3731 if (!trylock_page(p)) {
3732 if (!flush) {
3733 flush_write_bio(epd);
3734 flush = 1;
3735 }
3736 lock_page(p);
3737 }
3738 }
3739
3740 return ret;
3741 }
3742
3743 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3744 {
3745 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3746 smp_mb__after_atomic();
3747 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3748 }
3749
3750 static void set_btree_ioerr(struct page *page)
3751 {
3752 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3753 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3754
3755 SetPageError(page);
3756 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3757 return;
3758
3759 /*
3760 * If writeback for a btree extent that doesn't belong to a log tree
3761 * failed, increment the counter transaction->eb_write_errors.
3762 * We do this because while the transaction is running and before it's
3763 * committing (when we call filemap_fdata[write|wait]_range against
3764 * the btree inode), we might have
3765 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3766 * returns an error or an error happens during writeback, when we're
3767 * committing the transaction we wouldn't know about it, since the pages
3768 * can be no longer dirty nor marked anymore for writeback (if a
3769 * subsequent modification to the extent buffer didn't happen before the
3770 * transaction commit), which makes filemap_fdata[write|wait]_range not
3771 * able to find the pages tagged with SetPageError at transaction
3772 * commit time. So if this happens we must abort the transaction,
3773 * otherwise we commit a super block with btree roots that point to
3774 * btree nodes/leafs whose content on disk is invalid - either garbage
3775 * or the content of some node/leaf from a past generation that got
3776 * cowed or deleted and is no longer valid.
3777 *
3778 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3779 * not be enough - we need to distinguish between log tree extents vs
3780 * non-log tree extents, and the next filemap_fdatawait_range() call
3781 * will catch and clear such errors in the mapping - and that call might
3782 * be from a log sync and not from a transaction commit. Also, checking
3783 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3784 * not done and would not be reliable - the eb might have been released
3785 * from memory and reading it back again means that flag would not be
3786 * set (since it's a runtime flag, not persisted on disk).
3787 *
3788 * Using the flags below in the btree inode also makes us achieve the
3789 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3790 * writeback for all dirty pages and before filemap_fdatawait_range()
3791 * is called, the writeback for all dirty pages had already finished
3792 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3793 * filemap_fdatawait_range() would return success, as it could not know
3794 * that writeback errors happened (the pages were no longer tagged for
3795 * writeback).
3796 */
3797 switch (eb->log_index) {
3798 case -1:
3799 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3800 break;
3801 case 0:
3802 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3803 break;
3804 case 1:
3805 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3806 break;
3807 default:
3808 BUG(); /* unexpected, logic error */
3809 }
3810 }
3811
3812 static void end_bio_extent_buffer_writepage(struct bio *bio)
3813 {
3814 struct bio_vec *bvec;
3815 struct extent_buffer *eb;
3816 int i, done;
3817
3818 bio_for_each_segment_all(bvec, bio, i) {
3819 struct page *page = bvec->bv_page;
3820
3821 eb = (struct extent_buffer *)page->private;
3822 BUG_ON(!eb);
3823 done = atomic_dec_and_test(&eb->io_pages);
3824
3825 if (bio->bi_error ||
3826 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3827 ClearPageUptodate(page);
3828 set_btree_ioerr(page);
3829 }
3830
3831 end_page_writeback(page);
3832
3833 if (!done)
3834 continue;
3835
3836 end_extent_buffer_writeback(eb);
3837 }
3838
3839 bio_put(bio);
3840 }
3841
3842 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3843 struct btrfs_fs_info *fs_info,
3844 struct writeback_control *wbc,
3845 struct extent_page_data *epd)
3846 {
3847 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3848 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3849 u64 offset = eb->start;
3850 unsigned long i, num_pages;
3851 unsigned long bio_flags = 0;
3852 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3853 int ret = 0;
3854
3855 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3856 num_pages = num_extent_pages(eb->start, eb->len);
3857 atomic_set(&eb->io_pages, num_pages);
3858 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3859 bio_flags = EXTENT_BIO_TREE_LOG;
3860
3861 for (i = 0; i < num_pages; i++) {
3862 struct page *p = eb->pages[i];
3863
3864 clear_page_dirty_for_io(p);
3865 set_page_writeback(p);
3866 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3867 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3868 -1, end_bio_extent_buffer_writepage,
3869 0, epd->bio_flags, bio_flags, false);
3870 epd->bio_flags = bio_flags;
3871 if (ret) {
3872 set_btree_ioerr(p);
3873 end_page_writeback(p);
3874 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3875 end_extent_buffer_writeback(eb);
3876 ret = -EIO;
3877 break;
3878 }
3879 offset += PAGE_CACHE_SIZE;
3880 update_nr_written(p, wbc, 1);
3881 unlock_page(p);
3882 }
3883
3884 if (unlikely(ret)) {
3885 for (; i < num_pages; i++) {
3886 struct page *p = eb->pages[i];
3887 clear_page_dirty_for_io(p);
3888 unlock_page(p);
3889 }
3890 }
3891
3892 return ret;
3893 }
3894
3895 int btree_write_cache_pages(struct address_space *mapping,
3896 struct writeback_control *wbc)
3897 {
3898 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3899 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3900 struct extent_buffer *eb, *prev_eb = NULL;
3901 struct extent_page_data epd = {
3902 .bio = NULL,
3903 .tree = tree,
3904 .extent_locked = 0,
3905 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3906 .bio_flags = 0,
3907 };
3908 int ret = 0;
3909 int done = 0;
3910 int nr_to_write_done = 0;
3911 struct pagevec pvec;
3912 int nr_pages;
3913 pgoff_t index;
3914 pgoff_t end; /* Inclusive */
3915 int scanned = 0;
3916 int tag;
3917
3918 pagevec_init(&pvec, 0);
3919 if (wbc->range_cyclic) {
3920 index = mapping->writeback_index; /* Start from prev offset */
3921 end = -1;
3922 } else {
3923 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3924 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3925 scanned = 1;
3926 }
3927 if (wbc->sync_mode == WB_SYNC_ALL)
3928 tag = PAGECACHE_TAG_TOWRITE;
3929 else
3930 tag = PAGECACHE_TAG_DIRTY;
3931 retry:
3932 if (wbc->sync_mode == WB_SYNC_ALL)
3933 tag_pages_for_writeback(mapping, index, end);
3934 while (!done && !nr_to_write_done && (index <= end) &&
3935 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3936 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3937 unsigned i;
3938
3939 scanned = 1;
3940 for (i = 0; i < nr_pages; i++) {
3941 struct page *page = pvec.pages[i];
3942
3943 if (!PagePrivate(page))
3944 continue;
3945
3946 if (!wbc->range_cyclic && page->index > end) {
3947 done = 1;
3948 break;
3949 }
3950
3951 spin_lock(&mapping->private_lock);
3952 if (!PagePrivate(page)) {
3953 spin_unlock(&mapping->private_lock);
3954 continue;
3955 }
3956
3957 eb = (struct extent_buffer *)page->private;
3958
3959 /*
3960 * Shouldn't happen and normally this would be a BUG_ON
3961 * but no sense in crashing the users box for something
3962 * we can survive anyway.
3963 */
3964 if (WARN_ON(!eb)) {
3965 spin_unlock(&mapping->private_lock);
3966 continue;
3967 }
3968
3969 if (eb == prev_eb) {
3970 spin_unlock(&mapping->private_lock);
3971 continue;
3972 }
3973
3974 ret = atomic_inc_not_zero(&eb->refs);
3975 spin_unlock(&mapping->private_lock);
3976 if (!ret)
3977 continue;
3978
3979 prev_eb = eb;
3980 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3981 if (!ret) {
3982 free_extent_buffer(eb);
3983 continue;
3984 }
3985
3986 ret = write_one_eb(eb, fs_info, wbc, &epd);
3987 if (ret) {
3988 done = 1;
3989 free_extent_buffer(eb);
3990 break;
3991 }
3992 free_extent_buffer(eb);
3993
3994 /*
3995 * the filesystem may choose to bump up nr_to_write.
3996 * We have to make sure to honor the new nr_to_write
3997 * at any time
3998 */
3999 nr_to_write_done = wbc->nr_to_write <= 0;
4000 }
4001 pagevec_release(&pvec);
4002 cond_resched();
4003 }
4004 if (!scanned && !done) {
4005 /*
4006 * We hit the last page and there is more work to be done: wrap
4007 * back to the start of the file
4008 */
4009 scanned = 1;
4010 index = 0;
4011 goto retry;
4012 }
4013 flush_write_bio(&epd);
4014 return ret;
4015 }
4016
4017 /**
4018 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4019 * @mapping: address space structure to write
4020 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4021 * @writepage: function called for each page
4022 * @data: data passed to writepage function
4023 *
4024 * If a page is already under I/O, write_cache_pages() skips it, even
4025 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4026 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4027 * and msync() need to guarantee that all the data which was dirty at the time
4028 * the call was made get new I/O started against them. If wbc->sync_mode is
4029 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4030 * existing IO to complete.
4031 */
4032 static int extent_write_cache_pages(struct extent_io_tree *tree,
4033 struct address_space *mapping,
4034 struct writeback_control *wbc,
4035 writepage_t writepage, void *data,
4036 void (*flush_fn)(void *))
4037 {
4038 struct inode *inode = mapping->host;
4039 int ret = 0;
4040 int done = 0;
4041 int err = 0;
4042 int nr_to_write_done = 0;
4043 struct pagevec pvec;
4044 int nr_pages;
4045 pgoff_t index;
4046 pgoff_t end; /* Inclusive */
4047 int scanned = 0;
4048 int tag;
4049
4050 /*
4051 * We have to hold onto the inode so that ordered extents can do their
4052 * work when the IO finishes. The alternative to this is failing to add
4053 * an ordered extent if the igrab() fails there and that is a huge pain
4054 * to deal with, so instead just hold onto the inode throughout the
4055 * writepages operation. If it fails here we are freeing up the inode
4056 * anyway and we'd rather not waste our time writing out stuff that is
4057 * going to be truncated anyway.
4058 */
4059 if (!igrab(inode))
4060 return 0;
4061
4062 pagevec_init(&pvec, 0);
4063 if (wbc->range_cyclic) {
4064 index = mapping->writeback_index; /* Start from prev offset */
4065 end = -1;
4066 } else {
4067 index = wbc->range_start >> PAGE_CACHE_SHIFT;
4068 end = wbc->range_end >> PAGE_CACHE_SHIFT;
4069 scanned = 1;
4070 }
4071 if (wbc->sync_mode == WB_SYNC_ALL)
4072 tag = PAGECACHE_TAG_TOWRITE;
4073 else
4074 tag = PAGECACHE_TAG_DIRTY;
4075 retry:
4076 if (wbc->sync_mode == WB_SYNC_ALL)
4077 tag_pages_for_writeback(mapping, index, end);
4078 while (!done && !nr_to_write_done && (index <= end) &&
4079 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4080 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
4081 unsigned i;
4082
4083 scanned = 1;
4084 for (i = 0; i < nr_pages; i++) {
4085 struct page *page = pvec.pages[i];
4086
4087 /*
4088 * At this point we hold neither mapping->tree_lock nor
4089 * lock on the page itself: the page may be truncated or
4090 * invalidated (changing page->mapping to NULL), or even
4091 * swizzled back from swapper_space to tmpfs file
4092 * mapping
4093 */
4094 if (!trylock_page(page)) {
4095 flush_fn(data);
4096 lock_page(page);
4097 }
4098
4099 if (unlikely(page->mapping != mapping)) {
4100 unlock_page(page);
4101 continue;
4102 }
4103
4104 if (!wbc->range_cyclic && page->index > end) {
4105 done = 1;
4106 unlock_page(page);
4107 continue;
4108 }
4109
4110 if (wbc->sync_mode != WB_SYNC_NONE) {
4111 if (PageWriteback(page))
4112 flush_fn(data);
4113 wait_on_page_writeback(page);
4114 }
4115
4116 if (PageWriteback(page) ||
4117 !clear_page_dirty_for_io(page)) {
4118 unlock_page(page);
4119 continue;
4120 }
4121
4122 ret = (*writepage)(page, wbc, data);
4123
4124 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4125 unlock_page(page);
4126 ret = 0;
4127 }
4128 if (!err && ret < 0)
4129 err = ret;
4130
4131 /*
4132 * the filesystem may choose to bump up nr_to_write.
4133 * We have to make sure to honor the new nr_to_write
4134 * at any time
4135 */
4136 nr_to_write_done = wbc->nr_to_write <= 0;
4137 }
4138 pagevec_release(&pvec);
4139 cond_resched();
4140 }
4141 if (!scanned && !done && !err) {
4142 /*
4143 * We hit the last page and there is more work to be done: wrap
4144 * back to the start of the file
4145 */
4146 scanned = 1;
4147 index = 0;
4148 goto retry;
4149 }
4150 btrfs_add_delayed_iput(inode);
4151 return err;
4152 }
4153
4154 static void flush_epd_write_bio(struct extent_page_data *epd)
4155 {
4156 if (epd->bio) {
4157 int rw = WRITE;
4158 int ret;
4159
4160 if (epd->sync_io)
4161 rw = WRITE_SYNC;
4162
4163 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4164 BUG_ON(ret < 0); /* -ENOMEM */
4165 epd->bio = NULL;
4166 }
4167 }
4168
4169 static noinline void flush_write_bio(void *data)
4170 {
4171 struct extent_page_data *epd = data;
4172 flush_epd_write_bio(epd);
4173 }
4174
4175 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4176 get_extent_t *get_extent,
4177 struct writeback_control *wbc)
4178 {
4179 int ret;
4180 struct extent_page_data epd = {
4181 .bio = NULL,
4182 .tree = tree,
4183 .get_extent = get_extent,
4184 .extent_locked = 0,
4185 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4186 .bio_flags = 0,
4187 };
4188
4189 ret = __extent_writepage(page, wbc, &epd);
4190
4191 flush_epd_write_bio(&epd);
4192 return ret;
4193 }
4194
4195 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4196 u64 start, u64 end, get_extent_t *get_extent,
4197 int mode)
4198 {
4199 int ret = 0;
4200 struct address_space *mapping = inode->i_mapping;
4201 struct page *page;
4202 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4203 PAGE_CACHE_SHIFT;
4204
4205 struct extent_page_data epd = {
4206 .bio = NULL,
4207 .tree = tree,
4208 .get_extent = get_extent,
4209 .extent_locked = 1,
4210 .sync_io = mode == WB_SYNC_ALL,
4211 .bio_flags = 0,
4212 };
4213 struct writeback_control wbc_writepages = {
4214 .sync_mode = mode,
4215 .nr_to_write = nr_pages * 2,
4216 .range_start = start,
4217 .range_end = end + 1,
4218 };
4219
4220 while (start <= end) {
4221 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4222 if (clear_page_dirty_for_io(page))
4223 ret = __extent_writepage(page, &wbc_writepages, &epd);
4224 else {
4225 if (tree->ops && tree->ops->writepage_end_io_hook)
4226 tree->ops->writepage_end_io_hook(page, start,
4227 start + PAGE_CACHE_SIZE - 1,
4228 NULL, 1);
4229 unlock_page(page);
4230 }
4231 page_cache_release(page);
4232 start += PAGE_CACHE_SIZE;
4233 }
4234
4235 flush_epd_write_bio(&epd);
4236 return ret;
4237 }
4238
4239 int extent_writepages(struct extent_io_tree *tree,
4240 struct address_space *mapping,
4241 get_extent_t *get_extent,
4242 struct writeback_control *wbc)
4243 {
4244 int ret = 0;
4245 struct extent_page_data epd = {
4246 .bio = NULL,
4247 .tree = tree,
4248 .get_extent = get_extent,
4249 .extent_locked = 0,
4250 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4251 .bio_flags = 0,
4252 };
4253
4254 ret = extent_write_cache_pages(tree, mapping, wbc,
4255 __extent_writepage, &epd,
4256 flush_write_bio);
4257 flush_epd_write_bio(&epd);
4258 return ret;
4259 }
4260
4261 int extent_readpages(struct extent_io_tree *tree,
4262 struct address_space *mapping,
4263 struct list_head *pages, unsigned nr_pages,
4264 get_extent_t get_extent)
4265 {
4266 struct bio *bio = NULL;
4267 unsigned page_idx;
4268 unsigned long bio_flags = 0;
4269 struct page *pagepool[16];
4270 struct page *page;
4271 struct extent_map *em_cached = NULL;
4272 int nr = 0;
4273 u64 prev_em_start = (u64)-1;
4274
4275 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4276 page = list_entry(pages->prev, struct page, lru);
4277
4278 prefetchw(&page->flags);
4279 list_del(&page->lru);
4280 if (add_to_page_cache_lru(page, mapping,
4281 page->index, GFP_NOFS)) {
4282 page_cache_release(page);
4283 continue;
4284 }
4285
4286 pagepool[nr++] = page;
4287 if (nr < ARRAY_SIZE(pagepool))
4288 continue;
4289 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4290 &bio, 0, &bio_flags, READ, &prev_em_start);
4291 nr = 0;
4292 }
4293 if (nr)
4294 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4295 &bio, 0, &bio_flags, READ, &prev_em_start);
4296
4297 if (em_cached)
4298 free_extent_map(em_cached);
4299
4300 BUG_ON(!list_empty(pages));
4301 if (bio)
4302 return submit_one_bio(READ, bio, 0, bio_flags);
4303 return 0;
4304 }
4305
4306 /*
4307 * basic invalidatepage code, this waits on any locked or writeback
4308 * ranges corresponding to the page, and then deletes any extent state
4309 * records from the tree
4310 */
4311 int extent_invalidatepage(struct extent_io_tree *tree,
4312 struct page *page, unsigned long offset)
4313 {
4314 struct extent_state *cached_state = NULL;
4315 u64 start = page_offset(page);
4316 u64 end = start + PAGE_CACHE_SIZE - 1;
4317 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4318
4319 start += ALIGN(offset, blocksize);
4320 if (start > end)
4321 return 0;
4322
4323 lock_extent_bits(tree, start, end, 0, &cached_state);
4324 wait_on_page_writeback(page);
4325 clear_extent_bit(tree, start, end,
4326 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4327 EXTENT_DO_ACCOUNTING,
4328 1, 1, &cached_state, GFP_NOFS);
4329 return 0;
4330 }
4331
4332 /*
4333 * a helper for releasepage, this tests for areas of the page that
4334 * are locked or under IO and drops the related state bits if it is safe
4335 * to drop the page.
4336 */
4337 static int try_release_extent_state(struct extent_map_tree *map,
4338 struct extent_io_tree *tree,
4339 struct page *page, gfp_t mask)
4340 {
4341 u64 start = page_offset(page);
4342 u64 end = start + PAGE_CACHE_SIZE - 1;
4343 int ret = 1;
4344
4345 if (test_range_bit(tree, start, end,
4346 EXTENT_IOBITS, 0, NULL))
4347 ret = 0;
4348 else {
4349 if ((mask & GFP_NOFS) == GFP_NOFS)
4350 mask = GFP_NOFS;
4351 /*
4352 * at this point we can safely clear everything except the
4353 * locked bit and the nodatasum bit
4354 */
4355 ret = clear_extent_bit(tree, start, end,
4356 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4357 0, 0, NULL, mask);
4358
4359 /* if clear_extent_bit failed for enomem reasons,
4360 * we can't allow the release to continue.
4361 */
4362 if (ret < 0)
4363 ret = 0;
4364 else
4365 ret = 1;
4366 }
4367 return ret;
4368 }
4369
4370 /*
4371 * a helper for releasepage. As long as there are no locked extents
4372 * in the range corresponding to the page, both state records and extent
4373 * map records are removed
4374 */
4375 int try_release_extent_mapping(struct extent_map_tree *map,
4376 struct extent_io_tree *tree, struct page *page,
4377 gfp_t mask)
4378 {
4379 struct extent_map *em;
4380 u64 start = page_offset(page);
4381 u64 end = start + PAGE_CACHE_SIZE - 1;
4382
4383 if (gfpflags_allow_blocking(mask) &&
4384 page->mapping->host->i_size > 16 * 1024 * 1024) {
4385 u64 len;
4386 while (start <= end) {
4387 len = end - start + 1;
4388 write_lock(&map->lock);
4389 em = lookup_extent_mapping(map, start, len);
4390 if (!em) {
4391 write_unlock(&map->lock);
4392 break;
4393 }
4394 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4395 em->start != start) {
4396 write_unlock(&map->lock);
4397 free_extent_map(em);
4398 break;
4399 }
4400 if (!test_range_bit(tree, em->start,
4401 extent_map_end(em) - 1,
4402 EXTENT_LOCKED | EXTENT_WRITEBACK,
4403 0, NULL)) {
4404 remove_extent_mapping(map, em);
4405 /* once for the rb tree */
4406 free_extent_map(em);
4407 }
4408 start = extent_map_end(em);
4409 write_unlock(&map->lock);
4410
4411 /* once for us */
4412 free_extent_map(em);
4413 }
4414 }
4415 return try_release_extent_state(map, tree, page, mask);
4416 }
4417
4418 /*
4419 * helper function for fiemap, which doesn't want to see any holes.
4420 * This maps until we find something past 'last'
4421 */
4422 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4423 u64 offset,
4424 u64 last,
4425 get_extent_t *get_extent)
4426 {
4427 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4428 struct extent_map *em;
4429 u64 len;
4430
4431 if (offset >= last)
4432 return NULL;
4433
4434 while (1) {
4435 len = last - offset;
4436 if (len == 0)
4437 break;
4438 len = ALIGN(len, sectorsize);
4439 em = get_extent(inode, NULL, 0, offset, len, 0);
4440 if (IS_ERR_OR_NULL(em))
4441 return em;
4442
4443 /* if this isn't a hole return it */
4444 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4445 em->block_start != EXTENT_MAP_HOLE) {
4446 return em;
4447 }
4448
4449 /* this is a hole, advance to the next extent */
4450 offset = extent_map_end(em);
4451 free_extent_map(em);
4452 if (offset >= last)
4453 break;
4454 }
4455 return NULL;
4456 }
4457
4458 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4459 __u64 start, __u64 len, get_extent_t *get_extent)
4460 {
4461 int ret = 0;
4462 u64 off = start;
4463 u64 max = start + len;
4464 u32 flags = 0;
4465 u32 found_type;
4466 u64 last;
4467 u64 last_for_get_extent = 0;
4468 u64 disko = 0;
4469 u64 isize = i_size_read(inode);
4470 struct btrfs_key found_key;
4471 struct extent_map *em = NULL;
4472 struct extent_state *cached_state = NULL;
4473 struct btrfs_path *path;
4474 struct btrfs_root *root = BTRFS_I(inode)->root;
4475 int end = 0;
4476 u64 em_start = 0;
4477 u64 em_len = 0;
4478 u64 em_end = 0;
4479
4480 if (len == 0)
4481 return -EINVAL;
4482
4483 path = btrfs_alloc_path();
4484 if (!path)
4485 return -ENOMEM;
4486 path->leave_spinning = 1;
4487
4488 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4489 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4490
4491 /*
4492 * lookup the last file extent. We're not using i_size here
4493 * because there might be preallocation past i_size
4494 */
4495 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4496 0);
4497 if (ret < 0) {
4498 btrfs_free_path(path);
4499 return ret;
4500 }
4501 WARN_ON(!ret);
4502 path->slots[0]--;
4503 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4504 found_type = found_key.type;
4505
4506 /* No extents, but there might be delalloc bits */
4507 if (found_key.objectid != btrfs_ino(inode) ||
4508 found_type != BTRFS_EXTENT_DATA_KEY) {
4509 /* have to trust i_size as the end */
4510 last = (u64)-1;
4511 last_for_get_extent = isize;
4512 } else {
4513 /*
4514 * remember the start of the last extent. There are a
4515 * bunch of different factors that go into the length of the
4516 * extent, so its much less complex to remember where it started
4517 */
4518 last = found_key.offset;
4519 last_for_get_extent = last + 1;
4520 }
4521 btrfs_release_path(path);
4522
4523 /*
4524 * we might have some extents allocated but more delalloc past those
4525 * extents. so, we trust isize unless the start of the last extent is
4526 * beyond isize
4527 */
4528 if (last < isize) {
4529 last = (u64)-1;
4530 last_for_get_extent = isize;
4531 }
4532
4533 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4534 &cached_state);
4535
4536 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4537 get_extent);
4538 if (!em)
4539 goto out;
4540 if (IS_ERR(em)) {
4541 ret = PTR_ERR(em);
4542 goto out;
4543 }
4544
4545 while (!end) {
4546 u64 offset_in_extent = 0;
4547
4548 /* break if the extent we found is outside the range */
4549 if (em->start >= max || extent_map_end(em) < off)
4550 break;
4551
4552 /*
4553 * get_extent may return an extent that starts before our
4554 * requested range. We have to make sure the ranges
4555 * we return to fiemap always move forward and don't
4556 * overlap, so adjust the offsets here
4557 */
4558 em_start = max(em->start, off);
4559
4560 /*
4561 * record the offset from the start of the extent
4562 * for adjusting the disk offset below. Only do this if the
4563 * extent isn't compressed since our in ram offset may be past
4564 * what we have actually allocated on disk.
4565 */
4566 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4567 offset_in_extent = em_start - em->start;
4568 em_end = extent_map_end(em);
4569 em_len = em_end - em_start;
4570 disko = 0;
4571 flags = 0;
4572
4573 /*
4574 * bump off for our next call to get_extent
4575 */
4576 off = extent_map_end(em);
4577 if (off >= max)
4578 end = 1;
4579
4580 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4581 end = 1;
4582 flags |= FIEMAP_EXTENT_LAST;
4583 } else if (em->block_start == EXTENT_MAP_INLINE) {
4584 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4585 FIEMAP_EXTENT_NOT_ALIGNED);
4586 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4587 flags |= (FIEMAP_EXTENT_DELALLOC |
4588 FIEMAP_EXTENT_UNKNOWN);
4589 } else if (fieinfo->fi_extents_max) {
4590 u64 bytenr = em->block_start -
4591 (em->start - em->orig_start);
4592
4593 disko = em->block_start + offset_in_extent;
4594
4595 /*
4596 * As btrfs supports shared space, this information
4597 * can be exported to userspace tools via
4598 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4599 * then we're just getting a count and we can skip the
4600 * lookup stuff.
4601 */
4602 ret = btrfs_check_shared(NULL, root->fs_info,
4603 root->objectid,
4604 btrfs_ino(inode), bytenr);
4605 if (ret < 0)
4606 goto out_free;
4607 if (ret)
4608 flags |= FIEMAP_EXTENT_SHARED;
4609 ret = 0;
4610 }
4611 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4612 flags |= FIEMAP_EXTENT_ENCODED;
4613 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4614 flags |= FIEMAP_EXTENT_UNWRITTEN;
4615
4616 free_extent_map(em);
4617 em = NULL;
4618 if ((em_start >= last) || em_len == (u64)-1 ||
4619 (last == (u64)-1 && isize <= em_end)) {
4620 flags |= FIEMAP_EXTENT_LAST;
4621 end = 1;
4622 }
4623
4624 /* now scan forward to see if this is really the last extent. */
4625 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4626 get_extent);
4627 if (IS_ERR(em)) {
4628 ret = PTR_ERR(em);
4629 goto out;
4630 }
4631 if (!em) {
4632 flags |= FIEMAP_EXTENT_LAST;
4633 end = 1;
4634 }
4635 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4636 em_len, flags);
4637 if (ret) {
4638 if (ret == 1)
4639 ret = 0;
4640 goto out_free;
4641 }
4642 }
4643 out_free:
4644 free_extent_map(em);
4645 out:
4646 btrfs_free_path(path);
4647 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4648 &cached_state, GFP_NOFS);
4649 return ret;
4650 }
4651
4652 static void __free_extent_buffer(struct extent_buffer *eb)
4653 {
4654 btrfs_leak_debug_del(&eb->leak_list);
4655 kmem_cache_free(extent_buffer_cache, eb);
4656 }
4657
4658 int extent_buffer_under_io(struct extent_buffer *eb)
4659 {
4660 return (atomic_read(&eb->io_pages) ||
4661 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4662 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4663 }
4664
4665 /*
4666 * Helper for releasing extent buffer page.
4667 */
4668 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4669 {
4670 unsigned long index;
4671 struct page *page;
4672 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4673
4674 BUG_ON(extent_buffer_under_io(eb));
4675
4676 index = num_extent_pages(eb->start, eb->len);
4677 if (index == 0)
4678 return;
4679
4680 do {
4681 index--;
4682 page = eb->pages[index];
4683 if (!page)
4684 continue;
4685 if (mapped)
4686 spin_lock(&page->mapping->private_lock);
4687 /*
4688 * We do this since we'll remove the pages after we've
4689 * removed the eb from the radix tree, so we could race
4690 * and have this page now attached to the new eb. So
4691 * only clear page_private if it's still connected to
4692 * this eb.
4693 */
4694 if (PagePrivate(page) &&
4695 page->private == (unsigned long)eb) {
4696 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4697 BUG_ON(PageDirty(page));
4698 BUG_ON(PageWriteback(page));
4699 /*
4700 * We need to make sure we haven't be attached
4701 * to a new eb.
4702 */
4703 ClearPagePrivate(page);
4704 set_page_private(page, 0);
4705 /* One for the page private */
4706 page_cache_release(page);
4707 }
4708
4709 if (mapped)
4710 spin_unlock(&page->mapping->private_lock);
4711
4712 /* One for when we alloced the page */
4713 page_cache_release(page);
4714 } while (index != 0);
4715 }
4716
4717 /*
4718 * Helper for releasing the extent buffer.
4719 */
4720 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4721 {
4722 btrfs_release_extent_buffer_page(eb);
4723 __free_extent_buffer(eb);
4724 }
4725
4726 static struct extent_buffer *
4727 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4728 unsigned long len)
4729 {
4730 struct extent_buffer *eb = NULL;
4731
4732 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4733 eb->start = start;
4734 eb->len = len;
4735 eb->fs_info = fs_info;
4736 eb->bflags = 0;
4737 rwlock_init(&eb->lock);
4738 atomic_set(&eb->write_locks, 0);
4739 atomic_set(&eb->read_locks, 0);
4740 atomic_set(&eb->blocking_readers, 0);
4741 atomic_set(&eb->blocking_writers, 0);
4742 atomic_set(&eb->spinning_readers, 0);
4743 atomic_set(&eb->spinning_writers, 0);
4744 eb->lock_nested = 0;
4745 init_waitqueue_head(&eb->write_lock_wq);
4746 init_waitqueue_head(&eb->read_lock_wq);
4747
4748 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4749
4750 spin_lock_init(&eb->refs_lock);
4751 atomic_set(&eb->refs, 1);
4752 atomic_set(&eb->io_pages, 0);
4753
4754 /*
4755 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4756 */
4757 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4758 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4759 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4760
4761 return eb;
4762 }
4763
4764 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4765 {
4766 unsigned long i;
4767 struct page *p;
4768 struct extent_buffer *new;
4769 unsigned long num_pages = num_extent_pages(src->start, src->len);
4770
4771 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4772 if (new == NULL)
4773 return NULL;
4774
4775 for (i = 0; i < num_pages; i++) {
4776 p = alloc_page(GFP_NOFS);
4777 if (!p) {
4778 btrfs_release_extent_buffer(new);
4779 return NULL;
4780 }
4781 attach_extent_buffer_page(new, p);
4782 WARN_ON(PageDirty(p));
4783 SetPageUptodate(p);
4784 new->pages[i] = p;
4785 }
4786
4787 copy_extent_buffer(new, src, 0, 0, src->len);
4788 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4789 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4790
4791 return new;
4792 }
4793
4794 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4795 u64 start)
4796 {
4797 struct extent_buffer *eb;
4798 unsigned long len;
4799 unsigned long num_pages;
4800 unsigned long i;
4801
4802 if (!fs_info) {
4803 /*
4804 * Called only from tests that don't always have a fs_info
4805 * available, but we know that nodesize is 4096
4806 */
4807 len = 4096;
4808 } else {
4809 len = fs_info->tree_root->nodesize;
4810 }
4811 num_pages = num_extent_pages(0, len);
4812
4813 eb = __alloc_extent_buffer(fs_info, start, len);
4814 if (!eb)
4815 return NULL;
4816
4817 for (i = 0; i < num_pages; i++) {
4818 eb->pages[i] = alloc_page(GFP_NOFS);
4819 if (!eb->pages[i])
4820 goto err;
4821 }
4822 set_extent_buffer_uptodate(eb);
4823 btrfs_set_header_nritems(eb, 0);
4824 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4825
4826 return eb;
4827 err:
4828 for (; i > 0; i--)
4829 __free_page(eb->pages[i - 1]);
4830 __free_extent_buffer(eb);
4831 return NULL;
4832 }
4833
4834 static void check_buffer_tree_ref(struct extent_buffer *eb)
4835 {
4836 int refs;
4837 /* the ref bit is tricky. We have to make sure it is set
4838 * if we have the buffer dirty. Otherwise the
4839 * code to free a buffer can end up dropping a dirty
4840 * page
4841 *
4842 * Once the ref bit is set, it won't go away while the
4843 * buffer is dirty or in writeback, and it also won't
4844 * go away while we have the reference count on the
4845 * eb bumped.
4846 *
4847 * We can't just set the ref bit without bumping the
4848 * ref on the eb because free_extent_buffer might
4849 * see the ref bit and try to clear it. If this happens
4850 * free_extent_buffer might end up dropping our original
4851 * ref by mistake and freeing the page before we are able
4852 * to add one more ref.
4853 *
4854 * So bump the ref count first, then set the bit. If someone
4855 * beat us to it, drop the ref we added.
4856 */
4857 refs = atomic_read(&eb->refs);
4858 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4859 return;
4860
4861 spin_lock(&eb->refs_lock);
4862 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4863 atomic_inc(&eb->refs);
4864 spin_unlock(&eb->refs_lock);
4865 }
4866
4867 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4868 struct page *accessed)
4869 {
4870 unsigned long num_pages, i;
4871
4872 check_buffer_tree_ref(eb);
4873
4874 num_pages = num_extent_pages(eb->start, eb->len);
4875 for (i = 0; i < num_pages; i++) {
4876 struct page *p = eb->pages[i];
4877
4878 if (p != accessed)
4879 mark_page_accessed(p);
4880 }
4881 }
4882
4883 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4884 u64 start)
4885 {
4886 struct extent_buffer *eb;
4887
4888 rcu_read_lock();
4889 eb = radix_tree_lookup(&fs_info->buffer_radix,
4890 start >> PAGE_CACHE_SHIFT);
4891 if (eb && atomic_inc_not_zero(&eb->refs)) {
4892 rcu_read_unlock();
4893 /*
4894 * Lock our eb's refs_lock to avoid races with
4895 * free_extent_buffer. When we get our eb it might be flagged
4896 * with EXTENT_BUFFER_STALE and another task running
4897 * free_extent_buffer might have seen that flag set,
4898 * eb->refs == 2, that the buffer isn't under IO (dirty and
4899 * writeback flags not set) and it's still in the tree (flag
4900 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4901 * of decrementing the extent buffer's reference count twice.
4902 * So here we could race and increment the eb's reference count,
4903 * clear its stale flag, mark it as dirty and drop our reference
4904 * before the other task finishes executing free_extent_buffer,
4905 * which would later result in an attempt to free an extent
4906 * buffer that is dirty.
4907 */
4908 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4909 spin_lock(&eb->refs_lock);
4910 spin_unlock(&eb->refs_lock);
4911 }
4912 mark_extent_buffer_accessed(eb, NULL);
4913 return eb;
4914 }
4915 rcu_read_unlock();
4916
4917 return NULL;
4918 }
4919
4920 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4921 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4922 u64 start)
4923 {
4924 struct extent_buffer *eb, *exists = NULL;
4925 int ret;
4926
4927 eb = find_extent_buffer(fs_info, start);
4928 if (eb)
4929 return eb;
4930 eb = alloc_dummy_extent_buffer(fs_info, start);
4931 if (!eb)
4932 return NULL;
4933 eb->fs_info = fs_info;
4934 again:
4935 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4936 if (ret)
4937 goto free_eb;
4938 spin_lock(&fs_info->buffer_lock);
4939 ret = radix_tree_insert(&fs_info->buffer_radix,
4940 start >> PAGE_CACHE_SHIFT, eb);
4941 spin_unlock(&fs_info->buffer_lock);
4942 radix_tree_preload_end();
4943 if (ret == -EEXIST) {
4944 exists = find_extent_buffer(fs_info, start);
4945 if (exists)
4946 goto free_eb;
4947 else
4948 goto again;
4949 }
4950 check_buffer_tree_ref(eb);
4951 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4952
4953 /*
4954 * We will free dummy extent buffer's if they come into
4955 * free_extent_buffer with a ref count of 2, but if we are using this we
4956 * want the buffers to stay in memory until we're done with them, so
4957 * bump the ref count again.
4958 */
4959 atomic_inc(&eb->refs);
4960 return eb;
4961 free_eb:
4962 btrfs_release_extent_buffer(eb);
4963 return exists;
4964 }
4965 #endif
4966
4967 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4968 u64 start)
4969 {
4970 unsigned long len = fs_info->tree_root->nodesize;
4971 unsigned long num_pages = num_extent_pages(start, len);
4972 unsigned long i;
4973 unsigned long index = start >> PAGE_CACHE_SHIFT;
4974 struct extent_buffer *eb;
4975 struct extent_buffer *exists = NULL;
4976 struct page *p;
4977 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4978 int uptodate = 1;
4979 int ret;
4980
4981 eb = find_extent_buffer(fs_info, start);
4982 if (eb)
4983 return eb;
4984
4985 eb = __alloc_extent_buffer(fs_info, start, len);
4986 if (!eb)
4987 return NULL;
4988
4989 for (i = 0; i < num_pages; i++, index++) {
4990 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4991 if (!p)
4992 goto free_eb;
4993
4994 spin_lock(&mapping->private_lock);
4995 if (PagePrivate(p)) {
4996 /*
4997 * We could have already allocated an eb for this page
4998 * and attached one so lets see if we can get a ref on
4999 * the existing eb, and if we can we know it's good and
5000 * we can just return that one, else we know we can just
5001 * overwrite page->private.
5002 */
5003 exists = (struct extent_buffer *)p->private;
5004 if (atomic_inc_not_zero(&exists->refs)) {
5005 spin_unlock(&mapping->private_lock);
5006 unlock_page(p);
5007 page_cache_release(p);
5008 mark_extent_buffer_accessed(exists, p);
5009 goto free_eb;
5010 }
5011 exists = NULL;
5012
5013 /*
5014 * Do this so attach doesn't complain and we need to
5015 * drop the ref the old guy had.
5016 */
5017 ClearPagePrivate(p);
5018 WARN_ON(PageDirty(p));
5019 page_cache_release(p);
5020 }
5021 attach_extent_buffer_page(eb, p);
5022 spin_unlock(&mapping->private_lock);
5023 WARN_ON(PageDirty(p));
5024 eb->pages[i] = p;
5025 if (!PageUptodate(p))
5026 uptodate = 0;
5027
5028 /*
5029 * see below about how we avoid a nasty race with release page
5030 * and why we unlock later
5031 */
5032 }
5033 if (uptodate)
5034 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5035 again:
5036 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
5037 if (ret)
5038 goto free_eb;
5039
5040 spin_lock(&fs_info->buffer_lock);
5041 ret = radix_tree_insert(&fs_info->buffer_radix,
5042 start >> PAGE_CACHE_SHIFT, eb);
5043 spin_unlock(&fs_info->buffer_lock);
5044 radix_tree_preload_end();
5045 if (ret == -EEXIST) {
5046 exists = find_extent_buffer(fs_info, start);
5047 if (exists)
5048 goto free_eb;
5049 else
5050 goto again;
5051 }
5052 /* add one reference for the tree */
5053 check_buffer_tree_ref(eb);
5054 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5055
5056 /*
5057 * there is a race where release page may have
5058 * tried to find this extent buffer in the radix
5059 * but failed. It will tell the VM it is safe to
5060 * reclaim the, and it will clear the page private bit.
5061 * We must make sure to set the page private bit properly
5062 * after the extent buffer is in the radix tree so
5063 * it doesn't get lost
5064 */
5065 SetPageChecked(eb->pages[0]);
5066 for (i = 1; i < num_pages; i++) {
5067 p = eb->pages[i];
5068 ClearPageChecked(p);
5069 unlock_page(p);
5070 }
5071 unlock_page(eb->pages[0]);
5072 return eb;
5073
5074 free_eb:
5075 WARN_ON(!atomic_dec_and_test(&eb->refs));
5076 for (i = 0; i < num_pages; i++) {
5077 if (eb->pages[i])
5078 unlock_page(eb->pages[i]);
5079 }
5080
5081 btrfs_release_extent_buffer(eb);
5082 return exists;
5083 }
5084
5085 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5086 {
5087 struct extent_buffer *eb =
5088 container_of(head, struct extent_buffer, rcu_head);
5089
5090 __free_extent_buffer(eb);
5091 }
5092
5093 /* Expects to have eb->eb_lock already held */
5094 static int release_extent_buffer(struct extent_buffer *eb)
5095 {
5096 WARN_ON(atomic_read(&eb->refs) == 0);
5097 if (atomic_dec_and_test(&eb->refs)) {
5098 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5099 struct btrfs_fs_info *fs_info = eb->fs_info;
5100
5101 spin_unlock(&eb->refs_lock);
5102
5103 spin_lock(&fs_info->buffer_lock);
5104 radix_tree_delete(&fs_info->buffer_radix,
5105 eb->start >> PAGE_CACHE_SHIFT);
5106 spin_unlock(&fs_info->buffer_lock);
5107 } else {
5108 spin_unlock(&eb->refs_lock);
5109 }
5110
5111 /* Should be safe to release our pages at this point */
5112 btrfs_release_extent_buffer_page(eb);
5113 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5114 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5115 __free_extent_buffer(eb);
5116 return 1;
5117 }
5118 #endif
5119 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5120 return 1;
5121 }
5122 spin_unlock(&eb->refs_lock);
5123
5124 return 0;
5125 }
5126
5127 void free_extent_buffer(struct extent_buffer *eb)
5128 {
5129 int refs;
5130 int old;
5131 if (!eb)
5132 return;
5133
5134 while (1) {
5135 refs = atomic_read(&eb->refs);
5136 if (refs <= 3)
5137 break;
5138 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5139 if (old == refs)
5140 return;
5141 }
5142
5143 spin_lock(&eb->refs_lock);
5144 if (atomic_read(&eb->refs) == 2 &&
5145 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5146 atomic_dec(&eb->refs);
5147
5148 if (atomic_read(&eb->refs) == 2 &&
5149 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5150 !extent_buffer_under_io(eb) &&
5151 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5152 atomic_dec(&eb->refs);
5153
5154 /*
5155 * I know this is terrible, but it's temporary until we stop tracking
5156 * the uptodate bits and such for the extent buffers.
5157 */
5158 release_extent_buffer(eb);
5159 }
5160
5161 void free_extent_buffer_stale(struct extent_buffer *eb)
5162 {
5163 if (!eb)
5164 return;
5165
5166 spin_lock(&eb->refs_lock);
5167 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5168
5169 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5170 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5171 atomic_dec(&eb->refs);
5172 release_extent_buffer(eb);
5173 }
5174
5175 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5176 {
5177 unsigned long i;
5178 unsigned long num_pages;
5179 struct page *page;
5180
5181 num_pages = num_extent_pages(eb->start, eb->len);
5182
5183 for (i = 0; i < num_pages; i++) {
5184 page = eb->pages[i];
5185 if (!PageDirty(page))
5186 continue;
5187
5188 lock_page(page);
5189 WARN_ON(!PagePrivate(page));
5190
5191 clear_page_dirty_for_io(page);
5192 spin_lock_irq(&page->mapping->tree_lock);
5193 if (!PageDirty(page)) {
5194 radix_tree_tag_clear(&page->mapping->page_tree,
5195 page_index(page),
5196 PAGECACHE_TAG_DIRTY);
5197 }
5198 spin_unlock_irq(&page->mapping->tree_lock);
5199 ClearPageError(page);
5200 unlock_page(page);
5201 }
5202 WARN_ON(atomic_read(&eb->refs) == 0);
5203 }
5204
5205 int set_extent_buffer_dirty(struct extent_buffer *eb)
5206 {
5207 unsigned long i;
5208 unsigned long num_pages;
5209 int was_dirty = 0;
5210
5211 check_buffer_tree_ref(eb);
5212
5213 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5214
5215 num_pages = num_extent_pages(eb->start, eb->len);
5216 WARN_ON(atomic_read(&eb->refs) == 0);
5217 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5218
5219 for (i = 0; i < num_pages; i++)
5220 set_page_dirty(eb->pages[i]);
5221 return was_dirty;
5222 }
5223
5224 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5225 {
5226 unsigned long i;
5227 struct page *page;
5228 unsigned long num_pages;
5229
5230 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5231 num_pages = num_extent_pages(eb->start, eb->len);
5232 for (i = 0; i < num_pages; i++) {
5233 page = eb->pages[i];
5234 if (page)
5235 ClearPageUptodate(page);
5236 }
5237 }
5238
5239 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5240 {
5241 unsigned long i;
5242 struct page *page;
5243 unsigned long num_pages;
5244
5245 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5246 num_pages = num_extent_pages(eb->start, eb->len);
5247 for (i = 0; i < num_pages; i++) {
5248 page = eb->pages[i];
5249 SetPageUptodate(page);
5250 }
5251 }
5252
5253 int extent_buffer_uptodate(struct extent_buffer *eb)
5254 {
5255 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5256 }
5257
5258 int read_extent_buffer_pages(struct extent_io_tree *tree,
5259 struct extent_buffer *eb, u64 start, int wait,
5260 get_extent_t *get_extent, int mirror_num)
5261 {
5262 unsigned long i;
5263 unsigned long start_i;
5264 struct page *page;
5265 int err;
5266 int ret = 0;
5267 int locked_pages = 0;
5268 int all_uptodate = 1;
5269 unsigned long num_pages;
5270 unsigned long num_reads = 0;
5271 struct bio *bio = NULL;
5272 unsigned long bio_flags = 0;
5273
5274 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5275 return 0;
5276
5277 if (start) {
5278 WARN_ON(start < eb->start);
5279 start_i = (start >> PAGE_CACHE_SHIFT) -
5280 (eb->start >> PAGE_CACHE_SHIFT);
5281 } else {
5282 start_i = 0;
5283 }
5284
5285 num_pages = num_extent_pages(eb->start, eb->len);
5286 for (i = start_i; i < num_pages; i++) {
5287 page = eb->pages[i];
5288 if (wait == WAIT_NONE) {
5289 if (!trylock_page(page))
5290 goto unlock_exit;
5291 } else {
5292 lock_page(page);
5293 }
5294 locked_pages++;
5295 if (!PageUptodate(page)) {
5296 num_reads++;
5297 all_uptodate = 0;
5298 }
5299 }
5300 if (all_uptodate) {
5301 if (start_i == 0)
5302 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5303 goto unlock_exit;
5304 }
5305
5306 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5307 eb->read_mirror = 0;
5308 atomic_set(&eb->io_pages, num_reads);
5309 for (i = start_i; i < num_pages; i++) {
5310 page = eb->pages[i];
5311 if (!PageUptodate(page)) {
5312 ClearPageError(page);
5313 err = __extent_read_full_page(tree, page,
5314 get_extent, &bio,
5315 mirror_num, &bio_flags,
5316 READ | REQ_META);
5317 if (err)
5318 ret = err;
5319 } else {
5320 unlock_page(page);
5321 }
5322 }
5323
5324 if (bio) {
5325 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5326 bio_flags);
5327 if (err)
5328 return err;
5329 }
5330
5331 if (ret || wait != WAIT_COMPLETE)
5332 return ret;
5333
5334 for (i = start_i; i < num_pages; i++) {
5335 page = eb->pages[i];
5336 wait_on_page_locked(page);
5337 if (!PageUptodate(page))
5338 ret = -EIO;
5339 }
5340
5341 return ret;
5342
5343 unlock_exit:
5344 i = start_i;
5345 while (locked_pages > 0) {
5346 page = eb->pages[i];
5347 i++;
5348 unlock_page(page);
5349 locked_pages--;
5350 }
5351 return ret;
5352 }
5353
5354 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5355 unsigned long start,
5356 unsigned long len)
5357 {
5358 size_t cur;
5359 size_t offset;
5360 struct page *page;
5361 char *kaddr;
5362 char *dst = (char *)dstv;
5363 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5364 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5365
5366 WARN_ON(start > eb->len);
5367 WARN_ON(start + len > eb->start + eb->len);
5368
5369 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5370
5371 while (len > 0) {
5372 page = eb->pages[i];
5373
5374 cur = min(len, (PAGE_CACHE_SIZE - offset));
5375 kaddr = page_address(page);
5376 memcpy(dst, kaddr + offset, cur);
5377
5378 dst += cur;
5379 len -= cur;
5380 offset = 0;
5381 i++;
5382 }
5383 }
5384
5385 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5386 unsigned long start,
5387 unsigned long len)
5388 {
5389 size_t cur;
5390 size_t offset;
5391 struct page *page;
5392 char *kaddr;
5393 char __user *dst = (char __user *)dstv;
5394 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5395 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5396 int ret = 0;
5397
5398 WARN_ON(start > eb->len);
5399 WARN_ON(start + len > eb->start + eb->len);
5400
5401 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5402
5403 while (len > 0) {
5404 page = eb->pages[i];
5405
5406 cur = min(len, (PAGE_CACHE_SIZE - offset));
5407 kaddr = page_address(page);
5408 if (copy_to_user(dst, kaddr + offset, cur)) {
5409 ret = -EFAULT;
5410 break;
5411 }
5412
5413 dst += cur;
5414 len -= cur;
5415 offset = 0;
5416 i++;
5417 }
5418
5419 return ret;
5420 }
5421
5422 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5423 unsigned long min_len, char **map,
5424 unsigned long *map_start,
5425 unsigned long *map_len)
5426 {
5427 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5428 char *kaddr;
5429 struct page *p;
5430 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5431 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5432 unsigned long end_i = (start_offset + start + min_len - 1) >>
5433 PAGE_CACHE_SHIFT;
5434
5435 if (i != end_i)
5436 return -EINVAL;
5437
5438 if (i == 0) {
5439 offset = start_offset;
5440 *map_start = 0;
5441 } else {
5442 offset = 0;
5443 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5444 }
5445
5446 if (start + min_len > eb->len) {
5447 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5448 "wanted %lu %lu\n",
5449 eb->start, eb->len, start, min_len);
5450 return -EINVAL;
5451 }
5452
5453 p = eb->pages[i];
5454 kaddr = page_address(p);
5455 *map = kaddr + offset;
5456 *map_len = PAGE_CACHE_SIZE - offset;
5457 return 0;
5458 }
5459
5460 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5461 unsigned long start,
5462 unsigned long len)
5463 {
5464 size_t cur;
5465 size_t offset;
5466 struct page *page;
5467 char *kaddr;
5468 char *ptr = (char *)ptrv;
5469 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5470 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5471 int ret = 0;
5472
5473 WARN_ON(start > eb->len);
5474 WARN_ON(start + len > eb->start + eb->len);
5475
5476 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5477
5478 while (len > 0) {
5479 page = eb->pages[i];
5480
5481 cur = min(len, (PAGE_CACHE_SIZE - offset));
5482
5483 kaddr = page_address(page);
5484 ret = memcmp(ptr, kaddr + offset, cur);
5485 if (ret)
5486 break;
5487
5488 ptr += cur;
5489 len -= cur;
5490 offset = 0;
5491 i++;
5492 }
5493 return ret;
5494 }
5495
5496 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5497 unsigned long start, unsigned long len)
5498 {
5499 size_t cur;
5500 size_t offset;
5501 struct page *page;
5502 char *kaddr;
5503 char *src = (char *)srcv;
5504 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5505 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5506
5507 WARN_ON(start > eb->len);
5508 WARN_ON(start + len > eb->start + eb->len);
5509
5510 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5511
5512 while (len > 0) {
5513 page = eb->pages[i];
5514 WARN_ON(!PageUptodate(page));
5515
5516 cur = min(len, PAGE_CACHE_SIZE - offset);
5517 kaddr = page_address(page);
5518 memcpy(kaddr + offset, src, cur);
5519
5520 src += cur;
5521 len -= cur;
5522 offset = 0;
5523 i++;
5524 }
5525 }
5526
5527 void memset_extent_buffer(struct extent_buffer *eb, char c,
5528 unsigned long start, unsigned long len)
5529 {
5530 size_t cur;
5531 size_t offset;
5532 struct page *page;
5533 char *kaddr;
5534 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5535 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5536
5537 WARN_ON(start > eb->len);
5538 WARN_ON(start + len > eb->start + eb->len);
5539
5540 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5541
5542 while (len > 0) {
5543 page = eb->pages[i];
5544 WARN_ON(!PageUptodate(page));
5545
5546 cur = min(len, PAGE_CACHE_SIZE - offset);
5547 kaddr = page_address(page);
5548 memset(kaddr + offset, c, cur);
5549
5550 len -= cur;
5551 offset = 0;
5552 i++;
5553 }
5554 }
5555
5556 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5557 unsigned long dst_offset, unsigned long src_offset,
5558 unsigned long len)
5559 {
5560 u64 dst_len = dst->len;
5561 size_t cur;
5562 size_t offset;
5563 struct page *page;
5564 char *kaddr;
5565 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5566 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5567
5568 WARN_ON(src->len != dst_len);
5569
5570 offset = (start_offset + dst_offset) &
5571 (PAGE_CACHE_SIZE - 1);
5572
5573 while (len > 0) {
5574 page = dst->pages[i];
5575 WARN_ON(!PageUptodate(page));
5576
5577 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5578
5579 kaddr = page_address(page);
5580 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5581
5582 src_offset += cur;
5583 len -= cur;
5584 offset = 0;
5585 i++;
5586 }
5587 }
5588
5589 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5590 {
5591 unsigned long distance = (src > dst) ? src - dst : dst - src;
5592 return distance < len;
5593 }
5594
5595 static void copy_pages(struct page *dst_page, struct page *src_page,
5596 unsigned long dst_off, unsigned long src_off,
5597 unsigned long len)
5598 {
5599 char *dst_kaddr = page_address(dst_page);
5600 char *src_kaddr;
5601 int must_memmove = 0;
5602
5603 if (dst_page != src_page) {
5604 src_kaddr = page_address(src_page);
5605 } else {
5606 src_kaddr = dst_kaddr;
5607 if (areas_overlap(src_off, dst_off, len))
5608 must_memmove = 1;
5609 }
5610
5611 if (must_memmove)
5612 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5613 else
5614 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5615 }
5616
5617 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5618 unsigned long src_offset, unsigned long len)
5619 {
5620 size_t cur;
5621 size_t dst_off_in_page;
5622 size_t src_off_in_page;
5623 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5624 unsigned long dst_i;
5625 unsigned long src_i;
5626
5627 if (src_offset + len > dst->len) {
5628 btrfs_err(dst->fs_info,
5629 "memmove bogus src_offset %lu move "
5630 "len %lu dst len %lu", src_offset, len, dst->len);
5631 BUG_ON(1);
5632 }
5633 if (dst_offset + len > dst->len) {
5634 btrfs_err(dst->fs_info,
5635 "memmove bogus dst_offset %lu move "
5636 "len %lu dst len %lu", dst_offset, len, dst->len);
5637 BUG_ON(1);
5638 }
5639
5640 while (len > 0) {
5641 dst_off_in_page = (start_offset + dst_offset) &
5642 (PAGE_CACHE_SIZE - 1);
5643 src_off_in_page = (start_offset + src_offset) &
5644 (PAGE_CACHE_SIZE - 1);
5645
5646 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5647 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5648
5649 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5650 src_off_in_page));
5651 cur = min_t(unsigned long, cur,
5652 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5653
5654 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5655 dst_off_in_page, src_off_in_page, cur);
5656
5657 src_offset += cur;
5658 dst_offset += cur;
5659 len -= cur;
5660 }
5661 }
5662
5663 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5664 unsigned long src_offset, unsigned long len)
5665 {
5666 size_t cur;
5667 size_t dst_off_in_page;
5668 size_t src_off_in_page;
5669 unsigned long dst_end = dst_offset + len - 1;
5670 unsigned long src_end = src_offset + len - 1;
5671 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5672 unsigned long dst_i;
5673 unsigned long src_i;
5674
5675 if (src_offset + len > dst->len) {
5676 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5677 "len %lu len %lu", src_offset, len, dst->len);
5678 BUG_ON(1);
5679 }
5680 if (dst_offset + len > dst->len) {
5681 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5682 "len %lu len %lu", dst_offset, len, dst->len);
5683 BUG_ON(1);
5684 }
5685 if (dst_offset < src_offset) {
5686 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5687 return;
5688 }
5689 while (len > 0) {
5690 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5691 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5692
5693 dst_off_in_page = (start_offset + dst_end) &
5694 (PAGE_CACHE_SIZE - 1);
5695 src_off_in_page = (start_offset + src_end) &
5696 (PAGE_CACHE_SIZE - 1);
5697
5698 cur = min_t(unsigned long, len, src_off_in_page + 1);
5699 cur = min(cur, dst_off_in_page + 1);
5700 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5701 dst_off_in_page - cur + 1,
5702 src_off_in_page - cur + 1, cur);
5703
5704 dst_end -= cur;
5705 src_end -= cur;
5706 len -= cur;
5707 }
5708 }
5709
5710 int try_release_extent_buffer(struct page *page)
5711 {
5712 struct extent_buffer *eb;
5713
5714 /*
5715 * We need to make sure noboody is attaching this page to an eb right
5716 * now.
5717 */
5718 spin_lock(&page->mapping->private_lock);
5719 if (!PagePrivate(page)) {
5720 spin_unlock(&page->mapping->private_lock);
5721 return 1;
5722 }
5723
5724 eb = (struct extent_buffer *)page->private;
5725 BUG_ON(!eb);
5726
5727 /*
5728 * This is a little awful but should be ok, we need to make sure that
5729 * the eb doesn't disappear out from under us while we're looking at
5730 * this page.
5731 */
5732 spin_lock(&eb->refs_lock);
5733 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5734 spin_unlock(&eb->refs_lock);
5735 spin_unlock(&page->mapping->private_lock);
5736 return 0;
5737 }
5738 spin_unlock(&page->mapping->private_lock);
5739
5740 /*
5741 * If tree ref isn't set then we know the ref on this eb is a real ref,
5742 * so just return, this page will likely be freed soon anyway.
5743 */
5744 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5745 spin_unlock(&eb->refs_lock);
5746 return 0;
5747 }
5748
5749 return release_extent_buffer(eb);
5750 }
This page took 0.189314 seconds and 5 git commands to generate.