Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
68 }
69
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
77 }
78 }
79
80 #define btrfs_debug_check_extent_io_range(tree, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 struct extent_io_tree *tree, u64 start, u64 end)
84 {
85 struct inode *inode;
86 u64 isize;
87
88 if (!tree->mapping)
89 return;
90
91 inode = tree->mapping->host;
92 isize = i_size_read(inode);
93 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94 printk_ratelimited(KERN_DEBUG
95 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96 caller, btrfs_ino(inode), isize, start, end);
97 }
98 }
99 #else
100 #define btrfs_leak_debug_add(new, head) do {} while (0)
101 #define btrfs_leak_debug_del(entry) do {} while (0)
102 #define btrfs_leak_debug_check() do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
104 #endif
105
106 #define BUFFER_LRU_MAX 64
107
108 struct tree_entry {
109 u64 start;
110 u64 end;
111 struct rb_node rb_node;
112 };
113
114 struct extent_page_data {
115 struct bio *bio;
116 struct extent_io_tree *tree;
117 get_extent_t *get_extent;
118 unsigned long bio_flags;
119
120 /* tells writepage not to lock the state bits for this range
121 * it still does the unlocking
122 */
123 unsigned int extent_locked:1;
124
125 /* tells the submit_bio code to use a WRITE_SYNC */
126 unsigned int sync_io:1;
127 };
128
129 static noinline void flush_write_bio(void *data);
130 static inline struct btrfs_fs_info *
131 tree_fs_info(struct extent_io_tree *tree)
132 {
133 if (!tree->mapping)
134 return NULL;
135 return btrfs_sb(tree->mapping->host->i_sb);
136 }
137
138 int __init extent_io_init(void)
139 {
140 extent_state_cache = kmem_cache_create("btrfs_extent_state",
141 sizeof(struct extent_state), 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
143 if (!extent_state_cache)
144 return -ENOMEM;
145
146 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
147 sizeof(struct extent_buffer), 0,
148 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
149 if (!extent_buffer_cache)
150 goto free_state_cache;
151
152 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153 offsetof(struct btrfs_io_bio, bio));
154 if (!btrfs_bioset)
155 goto free_buffer_cache;
156
157 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158 goto free_bioset;
159
160 return 0;
161
162 free_bioset:
163 bioset_free(btrfs_bioset);
164 btrfs_bioset = NULL;
165
166 free_buffer_cache:
167 kmem_cache_destroy(extent_buffer_cache);
168 extent_buffer_cache = NULL;
169
170 free_state_cache:
171 kmem_cache_destroy(extent_state_cache);
172 extent_state_cache = NULL;
173 return -ENOMEM;
174 }
175
176 void extent_io_exit(void)
177 {
178 btrfs_leak_debug_check();
179
180 /*
181 * Make sure all delayed rcu free are flushed before we
182 * destroy caches.
183 */
184 rcu_barrier();
185 if (extent_state_cache)
186 kmem_cache_destroy(extent_state_cache);
187 if (extent_buffer_cache)
188 kmem_cache_destroy(extent_buffer_cache);
189 if (btrfs_bioset)
190 bioset_free(btrfs_bioset);
191 }
192
193 void extent_io_tree_init(struct extent_io_tree *tree,
194 struct address_space *mapping)
195 {
196 tree->state = RB_ROOT;
197 tree->ops = NULL;
198 tree->dirty_bytes = 0;
199 spin_lock_init(&tree->lock);
200 tree->mapping = mapping;
201 }
202
203 static struct extent_state *alloc_extent_state(gfp_t mask)
204 {
205 struct extent_state *state;
206
207 state = kmem_cache_alloc(extent_state_cache, mask);
208 if (!state)
209 return state;
210 state->state = 0;
211 state->private = 0;
212 state->tree = NULL;
213 btrfs_leak_debug_add(&state->leak_list, &states);
214 atomic_set(&state->refs, 1);
215 init_waitqueue_head(&state->wq);
216 trace_alloc_extent_state(state, mask, _RET_IP_);
217 return state;
218 }
219
220 void free_extent_state(struct extent_state *state)
221 {
222 if (!state)
223 return;
224 if (atomic_dec_and_test(&state->refs)) {
225 WARN_ON(state->tree);
226 btrfs_leak_debug_del(&state->leak_list);
227 trace_free_extent_state(state, _RET_IP_);
228 kmem_cache_free(extent_state_cache, state);
229 }
230 }
231
232 static struct rb_node *tree_insert(struct rb_root *root,
233 struct rb_node *search_start,
234 u64 offset,
235 struct rb_node *node,
236 struct rb_node ***p_in,
237 struct rb_node **parent_in)
238 {
239 struct rb_node **p;
240 struct rb_node *parent = NULL;
241 struct tree_entry *entry;
242
243 if (p_in && parent_in) {
244 p = *p_in;
245 parent = *parent_in;
246 goto do_insert;
247 }
248
249 p = search_start ? &search_start : &root->rb_node;
250 while (*p) {
251 parent = *p;
252 entry = rb_entry(parent, struct tree_entry, rb_node);
253
254 if (offset < entry->start)
255 p = &(*p)->rb_left;
256 else if (offset > entry->end)
257 p = &(*p)->rb_right;
258 else
259 return parent;
260 }
261
262 do_insert:
263 rb_link_node(node, parent, p);
264 rb_insert_color(node, root);
265 return NULL;
266 }
267
268 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
269 struct rb_node **prev_ret,
270 struct rb_node **next_ret,
271 struct rb_node ***p_ret,
272 struct rb_node **parent_ret)
273 {
274 struct rb_root *root = &tree->state;
275 struct rb_node **n = &root->rb_node;
276 struct rb_node *prev = NULL;
277 struct rb_node *orig_prev = NULL;
278 struct tree_entry *entry;
279 struct tree_entry *prev_entry = NULL;
280
281 while (*n) {
282 prev = *n;
283 entry = rb_entry(prev, struct tree_entry, rb_node);
284 prev_entry = entry;
285
286 if (offset < entry->start)
287 n = &(*n)->rb_left;
288 else if (offset > entry->end)
289 n = &(*n)->rb_right;
290 else
291 return *n;
292 }
293
294 if (p_ret)
295 *p_ret = n;
296 if (parent_ret)
297 *parent_ret = prev;
298
299 if (prev_ret) {
300 orig_prev = prev;
301 while (prev && offset > prev_entry->end) {
302 prev = rb_next(prev);
303 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
304 }
305 *prev_ret = prev;
306 prev = orig_prev;
307 }
308
309 if (next_ret) {
310 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
311 while (prev && offset < prev_entry->start) {
312 prev = rb_prev(prev);
313 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
314 }
315 *next_ret = prev;
316 }
317 return NULL;
318 }
319
320 static inline struct rb_node *
321 tree_search_for_insert(struct extent_io_tree *tree,
322 u64 offset,
323 struct rb_node ***p_ret,
324 struct rb_node **parent_ret)
325 {
326 struct rb_node *prev = NULL;
327 struct rb_node *ret;
328
329 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
330 if (!ret)
331 return prev;
332 return ret;
333 }
334
335 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
336 u64 offset)
337 {
338 return tree_search_for_insert(tree, offset, NULL, NULL);
339 }
340
341 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
342 struct extent_state *other)
343 {
344 if (tree->ops && tree->ops->merge_extent_hook)
345 tree->ops->merge_extent_hook(tree->mapping->host, new,
346 other);
347 }
348
349 /*
350 * utility function to look for merge candidates inside a given range.
351 * Any extents with matching state are merged together into a single
352 * extent in the tree. Extents with EXTENT_IO in their state field
353 * are not merged because the end_io handlers need to be able to do
354 * operations on them without sleeping (or doing allocations/splits).
355 *
356 * This should be called with the tree lock held.
357 */
358 static void merge_state(struct extent_io_tree *tree,
359 struct extent_state *state)
360 {
361 struct extent_state *other;
362 struct rb_node *other_node;
363
364 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
365 return;
366
367 other_node = rb_prev(&state->rb_node);
368 if (other_node) {
369 other = rb_entry(other_node, struct extent_state, rb_node);
370 if (other->end == state->start - 1 &&
371 other->state == state->state) {
372 merge_cb(tree, state, other);
373 state->start = other->start;
374 other->tree = NULL;
375 rb_erase(&other->rb_node, &tree->state);
376 free_extent_state(other);
377 }
378 }
379 other_node = rb_next(&state->rb_node);
380 if (other_node) {
381 other = rb_entry(other_node, struct extent_state, rb_node);
382 if (other->start == state->end + 1 &&
383 other->state == state->state) {
384 merge_cb(tree, state, other);
385 state->end = other->end;
386 other->tree = NULL;
387 rb_erase(&other->rb_node, &tree->state);
388 free_extent_state(other);
389 }
390 }
391 }
392
393 static void set_state_cb(struct extent_io_tree *tree,
394 struct extent_state *state, unsigned long *bits)
395 {
396 if (tree->ops && tree->ops->set_bit_hook)
397 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
398 }
399
400 static void clear_state_cb(struct extent_io_tree *tree,
401 struct extent_state *state, unsigned long *bits)
402 {
403 if (tree->ops && tree->ops->clear_bit_hook)
404 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
405 }
406
407 static void set_state_bits(struct extent_io_tree *tree,
408 struct extent_state *state, unsigned long *bits);
409
410 /*
411 * insert an extent_state struct into the tree. 'bits' are set on the
412 * struct before it is inserted.
413 *
414 * This may return -EEXIST if the extent is already there, in which case the
415 * state struct is freed.
416 *
417 * The tree lock is not taken internally. This is a utility function and
418 * probably isn't what you want to call (see set/clear_extent_bit).
419 */
420 static int insert_state(struct extent_io_tree *tree,
421 struct extent_state *state, u64 start, u64 end,
422 struct rb_node ***p,
423 struct rb_node **parent,
424 unsigned long *bits)
425 {
426 struct rb_node *node;
427
428 if (end < start)
429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
430 end, start);
431 state->start = start;
432 state->end = end;
433
434 set_state_bits(tree, state, bits);
435
436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
437 if (node) {
438 struct extent_state *found;
439 found = rb_entry(node, struct extent_state, rb_node);
440 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
441 "%llu %llu\n",
442 found->start, found->end, start, end);
443 return -EEXIST;
444 }
445 state->tree = tree;
446 merge_state(tree, state);
447 return 0;
448 }
449
450 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
451 u64 split)
452 {
453 if (tree->ops && tree->ops->split_extent_hook)
454 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
455 }
456
457 /*
458 * split a given extent state struct in two, inserting the preallocated
459 * struct 'prealloc' as the newly created second half. 'split' indicates an
460 * offset inside 'orig' where it should be split.
461 *
462 * Before calling,
463 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
464 * are two extent state structs in the tree:
465 * prealloc: [orig->start, split - 1]
466 * orig: [ split, orig->end ]
467 *
468 * The tree locks are not taken by this function. They need to be held
469 * by the caller.
470 */
471 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
472 struct extent_state *prealloc, u64 split)
473 {
474 struct rb_node *node;
475
476 split_cb(tree, orig, split);
477
478 prealloc->start = orig->start;
479 prealloc->end = split - 1;
480 prealloc->state = orig->state;
481 orig->start = split;
482
483 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
484 &prealloc->rb_node, NULL, NULL);
485 if (node) {
486 free_extent_state(prealloc);
487 return -EEXIST;
488 }
489 prealloc->tree = tree;
490 return 0;
491 }
492
493 static struct extent_state *next_state(struct extent_state *state)
494 {
495 struct rb_node *next = rb_next(&state->rb_node);
496 if (next)
497 return rb_entry(next, struct extent_state, rb_node);
498 else
499 return NULL;
500 }
501
502 /*
503 * utility function to clear some bits in an extent state struct.
504 * it will optionally wake up any one waiting on this state (wake == 1).
505 *
506 * If no bits are set on the state struct after clearing things, the
507 * struct is freed and removed from the tree
508 */
509 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
510 struct extent_state *state,
511 unsigned long *bits, int wake)
512 {
513 struct extent_state *next;
514 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
515
516 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
517 u64 range = state->end - state->start + 1;
518 WARN_ON(range > tree->dirty_bytes);
519 tree->dirty_bytes -= range;
520 }
521 clear_state_cb(tree, state, bits);
522 state->state &= ~bits_to_clear;
523 if (wake)
524 wake_up(&state->wq);
525 if (state->state == 0) {
526 next = next_state(state);
527 if (state->tree) {
528 rb_erase(&state->rb_node, &tree->state);
529 state->tree = NULL;
530 free_extent_state(state);
531 } else {
532 WARN_ON(1);
533 }
534 } else {
535 merge_state(tree, state);
536 next = next_state(state);
537 }
538 return next;
539 }
540
541 static struct extent_state *
542 alloc_extent_state_atomic(struct extent_state *prealloc)
543 {
544 if (!prealloc)
545 prealloc = alloc_extent_state(GFP_ATOMIC);
546
547 return prealloc;
548 }
549
550 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
551 {
552 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
553 "Extent tree was modified by another "
554 "thread while locked.");
555 }
556
557 /*
558 * clear some bits on a range in the tree. This may require splitting
559 * or inserting elements in the tree, so the gfp mask is used to
560 * indicate which allocations or sleeping are allowed.
561 *
562 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
563 * the given range from the tree regardless of state (ie for truncate).
564 *
565 * the range [start, end] is inclusive.
566 *
567 * This takes the tree lock, and returns 0 on success and < 0 on error.
568 */
569 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
570 unsigned long bits, int wake, int delete,
571 struct extent_state **cached_state,
572 gfp_t mask)
573 {
574 struct extent_state *state;
575 struct extent_state *cached;
576 struct extent_state *prealloc = NULL;
577 struct rb_node *node;
578 u64 last_end;
579 int err;
580 int clear = 0;
581
582 btrfs_debug_check_extent_io_range(tree, start, end);
583
584 if (bits & EXTENT_DELALLOC)
585 bits |= EXTENT_NORESERVE;
586
587 if (delete)
588 bits |= ~EXTENT_CTLBITS;
589 bits |= EXTENT_FIRST_DELALLOC;
590
591 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
592 clear = 1;
593 again:
594 if (!prealloc && (mask & __GFP_WAIT)) {
595 prealloc = alloc_extent_state(mask);
596 if (!prealloc)
597 return -ENOMEM;
598 }
599
600 spin_lock(&tree->lock);
601 if (cached_state) {
602 cached = *cached_state;
603
604 if (clear) {
605 *cached_state = NULL;
606 cached_state = NULL;
607 }
608
609 if (cached && cached->tree && cached->start <= start &&
610 cached->end > start) {
611 if (clear)
612 atomic_dec(&cached->refs);
613 state = cached;
614 goto hit_next;
615 }
616 if (clear)
617 free_extent_state(cached);
618 }
619 /*
620 * this search will find the extents that end after
621 * our range starts
622 */
623 node = tree_search(tree, start);
624 if (!node)
625 goto out;
626 state = rb_entry(node, struct extent_state, rb_node);
627 hit_next:
628 if (state->start > end)
629 goto out;
630 WARN_ON(state->end < start);
631 last_end = state->end;
632
633 /* the state doesn't have the wanted bits, go ahead */
634 if (!(state->state & bits)) {
635 state = next_state(state);
636 goto next;
637 }
638
639 /*
640 * | ---- desired range ---- |
641 * | state | or
642 * | ------------- state -------------- |
643 *
644 * We need to split the extent we found, and may flip
645 * bits on second half.
646 *
647 * If the extent we found extends past our range, we
648 * just split and search again. It'll get split again
649 * the next time though.
650 *
651 * If the extent we found is inside our range, we clear
652 * the desired bit on it.
653 */
654
655 if (state->start < start) {
656 prealloc = alloc_extent_state_atomic(prealloc);
657 BUG_ON(!prealloc);
658 err = split_state(tree, state, prealloc, start);
659 if (err)
660 extent_io_tree_panic(tree, err);
661
662 prealloc = NULL;
663 if (err)
664 goto out;
665 if (state->end <= end) {
666 state = clear_state_bit(tree, state, &bits, wake);
667 goto next;
668 }
669 goto search_again;
670 }
671 /*
672 * | ---- desired range ---- |
673 * | state |
674 * We need to split the extent, and clear the bit
675 * on the first half
676 */
677 if (state->start <= end && state->end > end) {
678 prealloc = alloc_extent_state_atomic(prealloc);
679 BUG_ON(!prealloc);
680 err = split_state(tree, state, prealloc, end + 1);
681 if (err)
682 extent_io_tree_panic(tree, err);
683
684 if (wake)
685 wake_up(&state->wq);
686
687 clear_state_bit(tree, prealloc, &bits, wake);
688
689 prealloc = NULL;
690 goto out;
691 }
692
693 state = clear_state_bit(tree, state, &bits, wake);
694 next:
695 if (last_end == (u64)-1)
696 goto out;
697 start = last_end + 1;
698 if (start <= end && state && !need_resched())
699 goto hit_next;
700 goto search_again;
701
702 out:
703 spin_unlock(&tree->lock);
704 if (prealloc)
705 free_extent_state(prealloc);
706
707 return 0;
708
709 search_again:
710 if (start > end)
711 goto out;
712 spin_unlock(&tree->lock);
713 if (mask & __GFP_WAIT)
714 cond_resched();
715 goto again;
716 }
717
718 static void wait_on_state(struct extent_io_tree *tree,
719 struct extent_state *state)
720 __releases(tree->lock)
721 __acquires(tree->lock)
722 {
723 DEFINE_WAIT(wait);
724 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
725 spin_unlock(&tree->lock);
726 schedule();
727 spin_lock(&tree->lock);
728 finish_wait(&state->wq, &wait);
729 }
730
731 /*
732 * waits for one or more bits to clear on a range in the state tree.
733 * The range [start, end] is inclusive.
734 * The tree lock is taken by this function
735 */
736 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
737 unsigned long bits)
738 {
739 struct extent_state *state;
740 struct rb_node *node;
741
742 btrfs_debug_check_extent_io_range(tree, start, end);
743
744 spin_lock(&tree->lock);
745 again:
746 while (1) {
747 /*
748 * this search will find all the extents that end after
749 * our range starts
750 */
751 node = tree_search(tree, start);
752 if (!node)
753 break;
754
755 state = rb_entry(node, struct extent_state, rb_node);
756
757 if (state->start > end)
758 goto out;
759
760 if (state->state & bits) {
761 start = state->start;
762 atomic_inc(&state->refs);
763 wait_on_state(tree, state);
764 free_extent_state(state);
765 goto again;
766 }
767 start = state->end + 1;
768
769 if (start > end)
770 break;
771
772 cond_resched_lock(&tree->lock);
773 }
774 out:
775 spin_unlock(&tree->lock);
776 }
777
778 static void set_state_bits(struct extent_io_tree *tree,
779 struct extent_state *state,
780 unsigned long *bits)
781 {
782 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
783
784 set_state_cb(tree, state, bits);
785 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
786 u64 range = state->end - state->start + 1;
787 tree->dirty_bytes += range;
788 }
789 state->state |= bits_to_set;
790 }
791
792 static void cache_state(struct extent_state *state,
793 struct extent_state **cached_ptr)
794 {
795 if (cached_ptr && !(*cached_ptr)) {
796 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
797 *cached_ptr = state;
798 atomic_inc(&state->refs);
799 }
800 }
801 }
802
803 /*
804 * set some bits on a range in the tree. This may require allocations or
805 * sleeping, so the gfp mask is used to indicate what is allowed.
806 *
807 * If any of the exclusive bits are set, this will fail with -EEXIST if some
808 * part of the range already has the desired bits set. The start of the
809 * existing range is returned in failed_start in this case.
810 *
811 * [start, end] is inclusive This takes the tree lock.
812 */
813
814 static int __must_check
815 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
816 unsigned long bits, unsigned long exclusive_bits,
817 u64 *failed_start, struct extent_state **cached_state,
818 gfp_t mask)
819 {
820 struct extent_state *state;
821 struct extent_state *prealloc = NULL;
822 struct rb_node *node;
823 struct rb_node **p;
824 struct rb_node *parent;
825 int err = 0;
826 u64 last_start;
827 u64 last_end;
828
829 btrfs_debug_check_extent_io_range(tree, start, end);
830
831 bits |= EXTENT_FIRST_DELALLOC;
832 again:
833 if (!prealloc && (mask & __GFP_WAIT)) {
834 prealloc = alloc_extent_state(mask);
835 BUG_ON(!prealloc);
836 }
837
838 spin_lock(&tree->lock);
839 if (cached_state && *cached_state) {
840 state = *cached_state;
841 if (state->start <= start && state->end > start &&
842 state->tree) {
843 node = &state->rb_node;
844 goto hit_next;
845 }
846 }
847 /*
848 * this search will find all the extents that end after
849 * our range starts.
850 */
851 node = tree_search_for_insert(tree, start, &p, &parent);
852 if (!node) {
853 prealloc = alloc_extent_state_atomic(prealloc);
854 BUG_ON(!prealloc);
855 err = insert_state(tree, prealloc, start, end,
856 &p, &parent, &bits);
857 if (err)
858 extent_io_tree_panic(tree, err);
859
860 cache_state(prealloc, cached_state);
861 prealloc = NULL;
862 goto out;
863 }
864 state = rb_entry(node, struct extent_state, rb_node);
865 hit_next:
866 last_start = state->start;
867 last_end = state->end;
868
869 /*
870 * | ---- desired range ---- |
871 * | state |
872 *
873 * Just lock what we found and keep going
874 */
875 if (state->start == start && state->end <= end) {
876 if (state->state & exclusive_bits) {
877 *failed_start = state->start;
878 err = -EEXIST;
879 goto out;
880 }
881
882 set_state_bits(tree, state, &bits);
883 cache_state(state, cached_state);
884 merge_state(tree, state);
885 if (last_end == (u64)-1)
886 goto out;
887 start = last_end + 1;
888 state = next_state(state);
889 if (start < end && state && state->start == start &&
890 !need_resched())
891 goto hit_next;
892 goto search_again;
893 }
894
895 /*
896 * | ---- desired range ---- |
897 * | state |
898 * or
899 * | ------------- state -------------- |
900 *
901 * We need to split the extent we found, and may flip bits on
902 * second half.
903 *
904 * If the extent we found extends past our
905 * range, we just split and search again. It'll get split
906 * again the next time though.
907 *
908 * If the extent we found is inside our range, we set the
909 * desired bit on it.
910 */
911 if (state->start < start) {
912 if (state->state & exclusive_bits) {
913 *failed_start = start;
914 err = -EEXIST;
915 goto out;
916 }
917
918 prealloc = alloc_extent_state_atomic(prealloc);
919 BUG_ON(!prealloc);
920 err = split_state(tree, state, prealloc, start);
921 if (err)
922 extent_io_tree_panic(tree, err);
923
924 prealloc = NULL;
925 if (err)
926 goto out;
927 if (state->end <= end) {
928 set_state_bits(tree, state, &bits);
929 cache_state(state, cached_state);
930 merge_state(tree, state);
931 if (last_end == (u64)-1)
932 goto out;
933 start = last_end + 1;
934 state = next_state(state);
935 if (start < end && state && state->start == start &&
936 !need_resched())
937 goto hit_next;
938 }
939 goto search_again;
940 }
941 /*
942 * | ---- desired range ---- |
943 * | state | or | state |
944 *
945 * There's a hole, we need to insert something in it and
946 * ignore the extent we found.
947 */
948 if (state->start > start) {
949 u64 this_end;
950 if (end < last_start)
951 this_end = end;
952 else
953 this_end = last_start - 1;
954
955 prealloc = alloc_extent_state_atomic(prealloc);
956 BUG_ON(!prealloc);
957
958 /*
959 * Avoid to free 'prealloc' if it can be merged with
960 * the later extent.
961 */
962 err = insert_state(tree, prealloc, start, this_end,
963 NULL, NULL, &bits);
964 if (err)
965 extent_io_tree_panic(tree, err);
966
967 cache_state(prealloc, cached_state);
968 prealloc = NULL;
969 start = this_end + 1;
970 goto search_again;
971 }
972 /*
973 * | ---- desired range ---- |
974 * | state |
975 * We need to split the extent, and set the bit
976 * on the first half
977 */
978 if (state->start <= end && state->end > end) {
979 if (state->state & exclusive_bits) {
980 *failed_start = start;
981 err = -EEXIST;
982 goto out;
983 }
984
985 prealloc = alloc_extent_state_atomic(prealloc);
986 BUG_ON(!prealloc);
987 err = split_state(tree, state, prealloc, end + 1);
988 if (err)
989 extent_io_tree_panic(tree, err);
990
991 set_state_bits(tree, prealloc, &bits);
992 cache_state(prealloc, cached_state);
993 merge_state(tree, prealloc);
994 prealloc = NULL;
995 goto out;
996 }
997
998 goto search_again;
999
1000 out:
1001 spin_unlock(&tree->lock);
1002 if (prealloc)
1003 free_extent_state(prealloc);
1004
1005 return err;
1006
1007 search_again:
1008 if (start > end)
1009 goto out;
1010 spin_unlock(&tree->lock);
1011 if (mask & __GFP_WAIT)
1012 cond_resched();
1013 goto again;
1014 }
1015
1016 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1017 unsigned long bits, u64 * failed_start,
1018 struct extent_state **cached_state, gfp_t mask)
1019 {
1020 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1021 cached_state, mask);
1022 }
1023
1024
1025 /**
1026 * convert_extent_bit - convert all bits in a given range from one bit to
1027 * another
1028 * @tree: the io tree to search
1029 * @start: the start offset in bytes
1030 * @end: the end offset in bytes (inclusive)
1031 * @bits: the bits to set in this range
1032 * @clear_bits: the bits to clear in this range
1033 * @cached_state: state that we're going to cache
1034 * @mask: the allocation mask
1035 *
1036 * This will go through and set bits for the given range. If any states exist
1037 * already in this range they are set with the given bit and cleared of the
1038 * clear_bits. This is only meant to be used by things that are mergeable, ie
1039 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1040 * boundary bits like LOCK.
1041 */
1042 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1043 unsigned long bits, unsigned long clear_bits,
1044 struct extent_state **cached_state, gfp_t mask)
1045 {
1046 struct extent_state *state;
1047 struct extent_state *prealloc = NULL;
1048 struct rb_node *node;
1049 struct rb_node **p;
1050 struct rb_node *parent;
1051 int err = 0;
1052 u64 last_start;
1053 u64 last_end;
1054
1055 btrfs_debug_check_extent_io_range(tree, start, end);
1056
1057 again:
1058 if (!prealloc && (mask & __GFP_WAIT)) {
1059 prealloc = alloc_extent_state(mask);
1060 if (!prealloc)
1061 return -ENOMEM;
1062 }
1063
1064 spin_lock(&tree->lock);
1065 if (cached_state && *cached_state) {
1066 state = *cached_state;
1067 if (state->start <= start && state->end > start &&
1068 state->tree) {
1069 node = &state->rb_node;
1070 goto hit_next;
1071 }
1072 }
1073
1074 /*
1075 * this search will find all the extents that end after
1076 * our range starts.
1077 */
1078 node = tree_search_for_insert(tree, start, &p, &parent);
1079 if (!node) {
1080 prealloc = alloc_extent_state_atomic(prealloc);
1081 if (!prealloc) {
1082 err = -ENOMEM;
1083 goto out;
1084 }
1085 err = insert_state(tree, prealloc, start, end,
1086 &p, &parent, &bits);
1087 if (err)
1088 extent_io_tree_panic(tree, err);
1089 cache_state(prealloc, cached_state);
1090 prealloc = NULL;
1091 goto out;
1092 }
1093 state = rb_entry(node, struct extent_state, rb_node);
1094 hit_next:
1095 last_start = state->start;
1096 last_end = state->end;
1097
1098 /*
1099 * | ---- desired range ---- |
1100 * | state |
1101 *
1102 * Just lock what we found and keep going
1103 */
1104 if (state->start == start && state->end <= end) {
1105 set_state_bits(tree, state, &bits);
1106 cache_state(state, cached_state);
1107 state = clear_state_bit(tree, state, &clear_bits, 0);
1108 if (last_end == (u64)-1)
1109 goto out;
1110 start = last_end + 1;
1111 if (start < end && state && state->start == start &&
1112 !need_resched())
1113 goto hit_next;
1114 goto search_again;
1115 }
1116
1117 /*
1118 * | ---- desired range ---- |
1119 * | state |
1120 * or
1121 * | ------------- state -------------- |
1122 *
1123 * We need to split the extent we found, and may flip bits on
1124 * second half.
1125 *
1126 * If the extent we found extends past our
1127 * range, we just split and search again. It'll get split
1128 * again the next time though.
1129 *
1130 * If the extent we found is inside our range, we set the
1131 * desired bit on it.
1132 */
1133 if (state->start < start) {
1134 prealloc = alloc_extent_state_atomic(prealloc);
1135 if (!prealloc) {
1136 err = -ENOMEM;
1137 goto out;
1138 }
1139 err = split_state(tree, state, prealloc, start);
1140 if (err)
1141 extent_io_tree_panic(tree, err);
1142 prealloc = NULL;
1143 if (err)
1144 goto out;
1145 if (state->end <= end) {
1146 set_state_bits(tree, state, &bits);
1147 cache_state(state, cached_state);
1148 state = clear_state_bit(tree, state, &clear_bits, 0);
1149 if (last_end == (u64)-1)
1150 goto out;
1151 start = last_end + 1;
1152 if (start < end && state && state->start == start &&
1153 !need_resched())
1154 goto hit_next;
1155 }
1156 goto search_again;
1157 }
1158 /*
1159 * | ---- desired range ---- |
1160 * | state | or | state |
1161 *
1162 * There's a hole, we need to insert something in it and
1163 * ignore the extent we found.
1164 */
1165 if (state->start > start) {
1166 u64 this_end;
1167 if (end < last_start)
1168 this_end = end;
1169 else
1170 this_end = last_start - 1;
1171
1172 prealloc = alloc_extent_state_atomic(prealloc);
1173 if (!prealloc) {
1174 err = -ENOMEM;
1175 goto out;
1176 }
1177
1178 /*
1179 * Avoid to free 'prealloc' if it can be merged with
1180 * the later extent.
1181 */
1182 err = insert_state(tree, prealloc, start, this_end,
1183 NULL, NULL, &bits);
1184 if (err)
1185 extent_io_tree_panic(tree, err);
1186 cache_state(prealloc, cached_state);
1187 prealloc = NULL;
1188 start = this_end + 1;
1189 goto search_again;
1190 }
1191 /*
1192 * | ---- desired range ---- |
1193 * | state |
1194 * We need to split the extent, and set the bit
1195 * on the first half
1196 */
1197 if (state->start <= end && state->end > end) {
1198 prealloc = alloc_extent_state_atomic(prealloc);
1199 if (!prealloc) {
1200 err = -ENOMEM;
1201 goto out;
1202 }
1203
1204 err = split_state(tree, state, prealloc, end + 1);
1205 if (err)
1206 extent_io_tree_panic(tree, err);
1207
1208 set_state_bits(tree, prealloc, &bits);
1209 cache_state(prealloc, cached_state);
1210 clear_state_bit(tree, prealloc, &clear_bits, 0);
1211 prealloc = NULL;
1212 goto out;
1213 }
1214
1215 goto search_again;
1216
1217 out:
1218 spin_unlock(&tree->lock);
1219 if (prealloc)
1220 free_extent_state(prealloc);
1221
1222 return err;
1223
1224 search_again:
1225 if (start > end)
1226 goto out;
1227 spin_unlock(&tree->lock);
1228 if (mask & __GFP_WAIT)
1229 cond_resched();
1230 goto again;
1231 }
1232
1233 /* wrappers around set/clear extent bit */
1234 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1235 gfp_t mask)
1236 {
1237 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1238 NULL, mask);
1239 }
1240
1241 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1242 unsigned long bits, gfp_t mask)
1243 {
1244 return set_extent_bit(tree, start, end, bits, NULL,
1245 NULL, mask);
1246 }
1247
1248 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1249 unsigned long bits, gfp_t mask)
1250 {
1251 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1252 }
1253
1254 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1255 struct extent_state **cached_state, gfp_t mask)
1256 {
1257 return set_extent_bit(tree, start, end,
1258 EXTENT_DELALLOC | EXTENT_UPTODATE,
1259 NULL, cached_state, mask);
1260 }
1261
1262 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1263 struct extent_state **cached_state, gfp_t mask)
1264 {
1265 return set_extent_bit(tree, start, end,
1266 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1267 NULL, cached_state, mask);
1268 }
1269
1270 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1271 gfp_t mask)
1272 {
1273 return clear_extent_bit(tree, start, end,
1274 EXTENT_DIRTY | EXTENT_DELALLOC |
1275 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1276 }
1277
1278 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1279 gfp_t mask)
1280 {
1281 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1282 NULL, mask);
1283 }
1284
1285 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1286 struct extent_state **cached_state, gfp_t mask)
1287 {
1288 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1289 cached_state, mask);
1290 }
1291
1292 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1293 struct extent_state **cached_state, gfp_t mask)
1294 {
1295 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1296 cached_state, mask);
1297 }
1298
1299 /*
1300 * either insert or lock state struct between start and end use mask to tell
1301 * us if waiting is desired.
1302 */
1303 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1304 unsigned long bits, struct extent_state **cached_state)
1305 {
1306 int err;
1307 u64 failed_start;
1308 while (1) {
1309 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1310 EXTENT_LOCKED, &failed_start,
1311 cached_state, GFP_NOFS);
1312 if (err == -EEXIST) {
1313 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1314 start = failed_start;
1315 } else
1316 break;
1317 WARN_ON(start > end);
1318 }
1319 return err;
1320 }
1321
1322 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1323 {
1324 return lock_extent_bits(tree, start, end, 0, NULL);
1325 }
1326
1327 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1328 {
1329 int err;
1330 u64 failed_start;
1331
1332 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1333 &failed_start, NULL, GFP_NOFS);
1334 if (err == -EEXIST) {
1335 if (failed_start > start)
1336 clear_extent_bit(tree, start, failed_start - 1,
1337 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1338 return 0;
1339 }
1340 return 1;
1341 }
1342
1343 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1344 struct extent_state **cached, gfp_t mask)
1345 {
1346 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1347 mask);
1348 }
1349
1350 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1351 {
1352 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1353 GFP_NOFS);
1354 }
1355
1356 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1357 {
1358 unsigned long index = start >> PAGE_CACHE_SHIFT;
1359 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1360 struct page *page;
1361
1362 while (index <= end_index) {
1363 page = find_get_page(inode->i_mapping, index);
1364 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1365 clear_page_dirty_for_io(page);
1366 page_cache_release(page);
1367 index++;
1368 }
1369 return 0;
1370 }
1371
1372 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1373 {
1374 unsigned long index = start >> PAGE_CACHE_SHIFT;
1375 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1381 account_page_redirty(page);
1382 __set_page_dirty_nobuffers(page);
1383 page_cache_release(page);
1384 index++;
1385 }
1386 return 0;
1387 }
1388
1389 /*
1390 * helper function to set both pages and extents in the tree writeback
1391 */
1392 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1393 {
1394 unsigned long index = start >> PAGE_CACHE_SHIFT;
1395 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1396 struct page *page;
1397
1398 while (index <= end_index) {
1399 page = find_get_page(tree->mapping, index);
1400 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1401 set_page_writeback(page);
1402 page_cache_release(page);
1403 index++;
1404 }
1405 return 0;
1406 }
1407
1408 /* find the first state struct with 'bits' set after 'start', and
1409 * return it. tree->lock must be held. NULL will returned if
1410 * nothing was found after 'start'
1411 */
1412 static struct extent_state *
1413 find_first_extent_bit_state(struct extent_io_tree *tree,
1414 u64 start, unsigned long bits)
1415 {
1416 struct rb_node *node;
1417 struct extent_state *state;
1418
1419 /*
1420 * this search will find all the extents that end after
1421 * our range starts.
1422 */
1423 node = tree_search(tree, start);
1424 if (!node)
1425 goto out;
1426
1427 while (1) {
1428 state = rb_entry(node, struct extent_state, rb_node);
1429 if (state->end >= start && (state->state & bits))
1430 return state;
1431
1432 node = rb_next(node);
1433 if (!node)
1434 break;
1435 }
1436 out:
1437 return NULL;
1438 }
1439
1440 /*
1441 * find the first offset in the io tree with 'bits' set. zero is
1442 * returned if we find something, and *start_ret and *end_ret are
1443 * set to reflect the state struct that was found.
1444 *
1445 * If nothing was found, 1 is returned. If found something, return 0.
1446 */
1447 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1448 u64 *start_ret, u64 *end_ret, unsigned long bits,
1449 struct extent_state **cached_state)
1450 {
1451 struct extent_state *state;
1452 struct rb_node *n;
1453 int ret = 1;
1454
1455 spin_lock(&tree->lock);
1456 if (cached_state && *cached_state) {
1457 state = *cached_state;
1458 if (state->end == start - 1 && state->tree) {
1459 n = rb_next(&state->rb_node);
1460 while (n) {
1461 state = rb_entry(n, struct extent_state,
1462 rb_node);
1463 if (state->state & bits)
1464 goto got_it;
1465 n = rb_next(n);
1466 }
1467 free_extent_state(*cached_state);
1468 *cached_state = NULL;
1469 goto out;
1470 }
1471 free_extent_state(*cached_state);
1472 *cached_state = NULL;
1473 }
1474
1475 state = find_first_extent_bit_state(tree, start, bits);
1476 got_it:
1477 if (state) {
1478 cache_state(state, cached_state);
1479 *start_ret = state->start;
1480 *end_ret = state->end;
1481 ret = 0;
1482 }
1483 out:
1484 spin_unlock(&tree->lock);
1485 return ret;
1486 }
1487
1488 /*
1489 * find a contiguous range of bytes in the file marked as delalloc, not
1490 * more than 'max_bytes'. start and end are used to return the range,
1491 *
1492 * 1 is returned if we find something, 0 if nothing was in the tree
1493 */
1494 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1495 u64 *start, u64 *end, u64 max_bytes,
1496 struct extent_state **cached_state)
1497 {
1498 struct rb_node *node;
1499 struct extent_state *state;
1500 u64 cur_start = *start;
1501 u64 found = 0;
1502 u64 total_bytes = 0;
1503
1504 spin_lock(&tree->lock);
1505
1506 /*
1507 * this search will find all the extents that end after
1508 * our range starts.
1509 */
1510 node = tree_search(tree, cur_start);
1511 if (!node) {
1512 if (!found)
1513 *end = (u64)-1;
1514 goto out;
1515 }
1516
1517 while (1) {
1518 state = rb_entry(node, struct extent_state, rb_node);
1519 if (found && (state->start != cur_start ||
1520 (state->state & EXTENT_BOUNDARY))) {
1521 goto out;
1522 }
1523 if (!(state->state & EXTENT_DELALLOC)) {
1524 if (!found)
1525 *end = state->end;
1526 goto out;
1527 }
1528 if (!found) {
1529 *start = state->start;
1530 *cached_state = state;
1531 atomic_inc(&state->refs);
1532 }
1533 found++;
1534 *end = state->end;
1535 cur_start = state->end + 1;
1536 node = rb_next(node);
1537 total_bytes += state->end - state->start + 1;
1538 if (total_bytes >= max_bytes)
1539 break;
1540 if (!node)
1541 break;
1542 }
1543 out:
1544 spin_unlock(&tree->lock);
1545 return found;
1546 }
1547
1548 static noinline void __unlock_for_delalloc(struct inode *inode,
1549 struct page *locked_page,
1550 u64 start, u64 end)
1551 {
1552 int ret;
1553 struct page *pages[16];
1554 unsigned long index = start >> PAGE_CACHE_SHIFT;
1555 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1556 unsigned long nr_pages = end_index - index + 1;
1557 int i;
1558
1559 if (index == locked_page->index && end_index == index)
1560 return;
1561
1562 while (nr_pages > 0) {
1563 ret = find_get_pages_contig(inode->i_mapping, index,
1564 min_t(unsigned long, nr_pages,
1565 ARRAY_SIZE(pages)), pages);
1566 for (i = 0; i < ret; i++) {
1567 if (pages[i] != locked_page)
1568 unlock_page(pages[i]);
1569 page_cache_release(pages[i]);
1570 }
1571 nr_pages -= ret;
1572 index += ret;
1573 cond_resched();
1574 }
1575 }
1576
1577 static noinline int lock_delalloc_pages(struct inode *inode,
1578 struct page *locked_page,
1579 u64 delalloc_start,
1580 u64 delalloc_end)
1581 {
1582 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1583 unsigned long start_index = index;
1584 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1585 unsigned long pages_locked = 0;
1586 struct page *pages[16];
1587 unsigned long nrpages;
1588 int ret;
1589 int i;
1590
1591 /* the caller is responsible for locking the start index */
1592 if (index == locked_page->index && index == end_index)
1593 return 0;
1594
1595 /* skip the page at the start index */
1596 nrpages = end_index - index + 1;
1597 while (nrpages > 0) {
1598 ret = find_get_pages_contig(inode->i_mapping, index,
1599 min_t(unsigned long,
1600 nrpages, ARRAY_SIZE(pages)), pages);
1601 if (ret == 0) {
1602 ret = -EAGAIN;
1603 goto done;
1604 }
1605 /* now we have an array of pages, lock them all */
1606 for (i = 0; i < ret; i++) {
1607 /*
1608 * the caller is taking responsibility for
1609 * locked_page
1610 */
1611 if (pages[i] != locked_page) {
1612 lock_page(pages[i]);
1613 if (!PageDirty(pages[i]) ||
1614 pages[i]->mapping != inode->i_mapping) {
1615 ret = -EAGAIN;
1616 unlock_page(pages[i]);
1617 page_cache_release(pages[i]);
1618 goto done;
1619 }
1620 }
1621 page_cache_release(pages[i]);
1622 pages_locked++;
1623 }
1624 nrpages -= ret;
1625 index += ret;
1626 cond_resched();
1627 }
1628 ret = 0;
1629 done:
1630 if (ret && pages_locked) {
1631 __unlock_for_delalloc(inode, locked_page,
1632 delalloc_start,
1633 ((u64)(start_index + pages_locked - 1)) <<
1634 PAGE_CACHE_SHIFT);
1635 }
1636 return ret;
1637 }
1638
1639 /*
1640 * find a contiguous range of bytes in the file marked as delalloc, not
1641 * more than 'max_bytes'. start and end are used to return the range,
1642 *
1643 * 1 is returned if we find something, 0 if nothing was in the tree
1644 */
1645 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1646 struct extent_io_tree *tree,
1647 struct page *locked_page, u64 *start,
1648 u64 *end, u64 max_bytes)
1649 {
1650 u64 delalloc_start;
1651 u64 delalloc_end;
1652 u64 found;
1653 struct extent_state *cached_state = NULL;
1654 int ret;
1655 int loops = 0;
1656
1657 again:
1658 /* step one, find a bunch of delalloc bytes starting at start */
1659 delalloc_start = *start;
1660 delalloc_end = 0;
1661 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1662 max_bytes, &cached_state);
1663 if (!found || delalloc_end <= *start) {
1664 *start = delalloc_start;
1665 *end = delalloc_end;
1666 free_extent_state(cached_state);
1667 return 0;
1668 }
1669
1670 /*
1671 * start comes from the offset of locked_page. We have to lock
1672 * pages in order, so we can't process delalloc bytes before
1673 * locked_page
1674 */
1675 if (delalloc_start < *start)
1676 delalloc_start = *start;
1677
1678 /*
1679 * make sure to limit the number of pages we try to lock down
1680 */
1681 if (delalloc_end + 1 - delalloc_start > max_bytes)
1682 delalloc_end = delalloc_start + max_bytes - 1;
1683
1684 /* step two, lock all the pages after the page that has start */
1685 ret = lock_delalloc_pages(inode, locked_page,
1686 delalloc_start, delalloc_end);
1687 if (ret == -EAGAIN) {
1688 /* some of the pages are gone, lets avoid looping by
1689 * shortening the size of the delalloc range we're searching
1690 */
1691 free_extent_state(cached_state);
1692 if (!loops) {
1693 max_bytes = PAGE_CACHE_SIZE;
1694 loops = 1;
1695 goto again;
1696 } else {
1697 found = 0;
1698 goto out_failed;
1699 }
1700 }
1701 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1702
1703 /* step three, lock the state bits for the whole range */
1704 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1705
1706 /* then test to make sure it is all still delalloc */
1707 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1708 EXTENT_DELALLOC, 1, cached_state);
1709 if (!ret) {
1710 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1711 &cached_state, GFP_NOFS);
1712 __unlock_for_delalloc(inode, locked_page,
1713 delalloc_start, delalloc_end);
1714 cond_resched();
1715 goto again;
1716 }
1717 free_extent_state(cached_state);
1718 *start = delalloc_start;
1719 *end = delalloc_end;
1720 out_failed:
1721 return found;
1722 }
1723
1724 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1725 struct page *locked_page,
1726 unsigned long clear_bits,
1727 unsigned long page_ops)
1728 {
1729 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1730 int ret;
1731 struct page *pages[16];
1732 unsigned long index = start >> PAGE_CACHE_SHIFT;
1733 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1734 unsigned long nr_pages = end_index - index + 1;
1735 int i;
1736
1737 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1738 if (page_ops == 0)
1739 return 0;
1740
1741 while (nr_pages > 0) {
1742 ret = find_get_pages_contig(inode->i_mapping, index,
1743 min_t(unsigned long,
1744 nr_pages, ARRAY_SIZE(pages)), pages);
1745 for (i = 0; i < ret; i++) {
1746
1747 if (page_ops & PAGE_SET_PRIVATE2)
1748 SetPagePrivate2(pages[i]);
1749
1750 if (pages[i] == locked_page) {
1751 page_cache_release(pages[i]);
1752 continue;
1753 }
1754 if (page_ops & PAGE_CLEAR_DIRTY)
1755 clear_page_dirty_for_io(pages[i]);
1756 if (page_ops & PAGE_SET_WRITEBACK)
1757 set_page_writeback(pages[i]);
1758 if (page_ops & PAGE_END_WRITEBACK)
1759 end_page_writeback(pages[i]);
1760 if (page_ops & PAGE_UNLOCK)
1761 unlock_page(pages[i]);
1762 page_cache_release(pages[i]);
1763 }
1764 nr_pages -= ret;
1765 index += ret;
1766 cond_resched();
1767 }
1768 return 0;
1769 }
1770
1771 /*
1772 * count the number of bytes in the tree that have a given bit(s)
1773 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1774 * cached. The total number found is returned.
1775 */
1776 u64 count_range_bits(struct extent_io_tree *tree,
1777 u64 *start, u64 search_end, u64 max_bytes,
1778 unsigned long bits, int contig)
1779 {
1780 struct rb_node *node;
1781 struct extent_state *state;
1782 u64 cur_start = *start;
1783 u64 total_bytes = 0;
1784 u64 last = 0;
1785 int found = 0;
1786
1787 if (WARN_ON(search_end <= cur_start))
1788 return 0;
1789
1790 spin_lock(&tree->lock);
1791 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1792 total_bytes = tree->dirty_bytes;
1793 goto out;
1794 }
1795 /*
1796 * this search will find all the extents that end after
1797 * our range starts.
1798 */
1799 node = tree_search(tree, cur_start);
1800 if (!node)
1801 goto out;
1802
1803 while (1) {
1804 state = rb_entry(node, struct extent_state, rb_node);
1805 if (state->start > search_end)
1806 break;
1807 if (contig && found && state->start > last + 1)
1808 break;
1809 if (state->end >= cur_start && (state->state & bits) == bits) {
1810 total_bytes += min(search_end, state->end) + 1 -
1811 max(cur_start, state->start);
1812 if (total_bytes >= max_bytes)
1813 break;
1814 if (!found) {
1815 *start = max(cur_start, state->start);
1816 found = 1;
1817 }
1818 last = state->end;
1819 } else if (contig && found) {
1820 break;
1821 }
1822 node = rb_next(node);
1823 if (!node)
1824 break;
1825 }
1826 out:
1827 spin_unlock(&tree->lock);
1828 return total_bytes;
1829 }
1830
1831 /*
1832 * set the private field for a given byte offset in the tree. If there isn't
1833 * an extent_state there already, this does nothing.
1834 */
1835 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1836 {
1837 struct rb_node *node;
1838 struct extent_state *state;
1839 int ret = 0;
1840
1841 spin_lock(&tree->lock);
1842 /*
1843 * this search will find all the extents that end after
1844 * our range starts.
1845 */
1846 node = tree_search(tree, start);
1847 if (!node) {
1848 ret = -ENOENT;
1849 goto out;
1850 }
1851 state = rb_entry(node, struct extent_state, rb_node);
1852 if (state->start != start) {
1853 ret = -ENOENT;
1854 goto out;
1855 }
1856 state->private = private;
1857 out:
1858 spin_unlock(&tree->lock);
1859 return ret;
1860 }
1861
1862 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1863 {
1864 struct rb_node *node;
1865 struct extent_state *state;
1866 int ret = 0;
1867
1868 spin_lock(&tree->lock);
1869 /*
1870 * this search will find all the extents that end after
1871 * our range starts.
1872 */
1873 node = tree_search(tree, start);
1874 if (!node) {
1875 ret = -ENOENT;
1876 goto out;
1877 }
1878 state = rb_entry(node, struct extent_state, rb_node);
1879 if (state->start != start) {
1880 ret = -ENOENT;
1881 goto out;
1882 }
1883 *private = state->private;
1884 out:
1885 spin_unlock(&tree->lock);
1886 return ret;
1887 }
1888
1889 /*
1890 * searches a range in the state tree for a given mask.
1891 * If 'filled' == 1, this returns 1 only if every extent in the tree
1892 * has the bits set. Otherwise, 1 is returned if any bit in the
1893 * range is found set.
1894 */
1895 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1896 unsigned long bits, int filled, struct extent_state *cached)
1897 {
1898 struct extent_state *state = NULL;
1899 struct rb_node *node;
1900 int bitset = 0;
1901
1902 spin_lock(&tree->lock);
1903 if (cached && cached->tree && cached->start <= start &&
1904 cached->end > start)
1905 node = &cached->rb_node;
1906 else
1907 node = tree_search(tree, start);
1908 while (node && start <= end) {
1909 state = rb_entry(node, struct extent_state, rb_node);
1910
1911 if (filled && state->start > start) {
1912 bitset = 0;
1913 break;
1914 }
1915
1916 if (state->start > end)
1917 break;
1918
1919 if (state->state & bits) {
1920 bitset = 1;
1921 if (!filled)
1922 break;
1923 } else if (filled) {
1924 bitset = 0;
1925 break;
1926 }
1927
1928 if (state->end == (u64)-1)
1929 break;
1930
1931 start = state->end + 1;
1932 if (start > end)
1933 break;
1934 node = rb_next(node);
1935 if (!node) {
1936 if (filled)
1937 bitset = 0;
1938 break;
1939 }
1940 }
1941 spin_unlock(&tree->lock);
1942 return bitset;
1943 }
1944
1945 /*
1946 * helper function to set a given page up to date if all the
1947 * extents in the tree for that page are up to date
1948 */
1949 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1950 {
1951 u64 start = page_offset(page);
1952 u64 end = start + PAGE_CACHE_SIZE - 1;
1953 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1954 SetPageUptodate(page);
1955 }
1956
1957 /*
1958 * When IO fails, either with EIO or csum verification fails, we
1959 * try other mirrors that might have a good copy of the data. This
1960 * io_failure_record is used to record state as we go through all the
1961 * mirrors. If another mirror has good data, the page is set up to date
1962 * and things continue. If a good mirror can't be found, the original
1963 * bio end_io callback is called to indicate things have failed.
1964 */
1965 struct io_failure_record {
1966 struct page *page;
1967 u64 start;
1968 u64 len;
1969 u64 logical;
1970 unsigned long bio_flags;
1971 int this_mirror;
1972 int failed_mirror;
1973 int in_validation;
1974 };
1975
1976 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1977 int did_repair)
1978 {
1979 int ret;
1980 int err = 0;
1981 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1982
1983 set_state_private(failure_tree, rec->start, 0);
1984 ret = clear_extent_bits(failure_tree, rec->start,
1985 rec->start + rec->len - 1,
1986 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1987 if (ret)
1988 err = ret;
1989
1990 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1991 rec->start + rec->len - 1,
1992 EXTENT_DAMAGED, GFP_NOFS);
1993 if (ret && !err)
1994 err = ret;
1995
1996 kfree(rec);
1997 return err;
1998 }
1999
2000 /*
2001 * this bypasses the standard btrfs submit functions deliberately, as
2002 * the standard behavior is to write all copies in a raid setup. here we only
2003 * want to write the one bad copy. so we do the mapping for ourselves and issue
2004 * submit_bio directly.
2005 * to avoid any synchronization issues, wait for the data after writing, which
2006 * actually prevents the read that triggered the error from finishing.
2007 * currently, there can be no more than two copies of every data bit. thus,
2008 * exactly one rewrite is required.
2009 */
2010 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2011 u64 length, u64 logical, struct page *page,
2012 int mirror_num)
2013 {
2014 struct bio *bio;
2015 struct btrfs_device *dev;
2016 u64 map_length = 0;
2017 u64 sector;
2018 struct btrfs_bio *bbio = NULL;
2019 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2020 int ret;
2021
2022 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2023 BUG_ON(!mirror_num);
2024
2025 /* we can't repair anything in raid56 yet */
2026 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2027 return 0;
2028
2029 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2030 if (!bio)
2031 return -EIO;
2032 bio->bi_iter.bi_size = 0;
2033 map_length = length;
2034
2035 ret = btrfs_map_block(fs_info, WRITE, logical,
2036 &map_length, &bbio, mirror_num);
2037 if (ret) {
2038 bio_put(bio);
2039 return -EIO;
2040 }
2041 BUG_ON(mirror_num != bbio->mirror_num);
2042 sector = bbio->stripes[mirror_num-1].physical >> 9;
2043 bio->bi_iter.bi_sector = sector;
2044 dev = bbio->stripes[mirror_num-1].dev;
2045 kfree(bbio);
2046 if (!dev || !dev->bdev || !dev->writeable) {
2047 bio_put(bio);
2048 return -EIO;
2049 }
2050 bio->bi_bdev = dev->bdev;
2051 bio_add_page(bio, page, length, start - page_offset(page));
2052
2053 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2054 /* try to remap that extent elsewhere? */
2055 bio_put(bio);
2056 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2057 return -EIO;
2058 }
2059
2060 printk_ratelimited_in_rcu(KERN_INFO
2061 "BTRFS: read error corrected: ino %lu off %llu "
2062 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2063 start, rcu_str_deref(dev->name), sector);
2064
2065 bio_put(bio);
2066 return 0;
2067 }
2068
2069 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2070 int mirror_num)
2071 {
2072 u64 start = eb->start;
2073 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2074 int ret = 0;
2075
2076 if (root->fs_info->sb->s_flags & MS_RDONLY)
2077 return -EROFS;
2078
2079 for (i = 0; i < num_pages; i++) {
2080 struct page *p = extent_buffer_page(eb, i);
2081 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2082 start, p, mirror_num);
2083 if (ret)
2084 break;
2085 start += PAGE_CACHE_SIZE;
2086 }
2087
2088 return ret;
2089 }
2090
2091 /*
2092 * each time an IO finishes, we do a fast check in the IO failure tree
2093 * to see if we need to process or clean up an io_failure_record
2094 */
2095 static int clean_io_failure(u64 start, struct page *page)
2096 {
2097 u64 private;
2098 u64 private_failure;
2099 struct io_failure_record *failrec;
2100 struct inode *inode = page->mapping->host;
2101 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2102 struct extent_state *state;
2103 int num_copies;
2104 int did_repair = 0;
2105 int ret;
2106
2107 private = 0;
2108 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2109 (u64)-1, 1, EXTENT_DIRTY, 0);
2110 if (!ret)
2111 return 0;
2112
2113 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2114 &private_failure);
2115 if (ret)
2116 return 0;
2117
2118 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2119 BUG_ON(!failrec->this_mirror);
2120
2121 if (failrec->in_validation) {
2122 /* there was no real error, just free the record */
2123 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2124 failrec->start);
2125 did_repair = 1;
2126 goto out;
2127 }
2128 if (fs_info->sb->s_flags & MS_RDONLY)
2129 goto out;
2130
2131 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133 failrec->start,
2134 EXTENT_LOCKED);
2135 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136
2137 if (state && state->start <= failrec->start &&
2138 state->end >= failrec->start + failrec->len - 1) {
2139 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140 failrec->len);
2141 if (num_copies > 1) {
2142 ret = repair_io_failure(fs_info, start, failrec->len,
2143 failrec->logical, page,
2144 failrec->failed_mirror);
2145 did_repair = !ret;
2146 }
2147 ret = 0;
2148 }
2149
2150 out:
2151 if (!ret)
2152 ret = free_io_failure(inode, failrec, did_repair);
2153
2154 return ret;
2155 }
2156
2157 /*
2158 * this is a generic handler for readpage errors (default
2159 * readpage_io_failed_hook). if other copies exist, read those and write back
2160 * good data to the failed position. does not investigate in remapping the
2161 * failed extent elsewhere, hoping the device will be smart enough to do this as
2162 * needed
2163 */
2164
2165 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2166 struct page *page, u64 start, u64 end,
2167 int failed_mirror)
2168 {
2169 struct io_failure_record *failrec = NULL;
2170 u64 private;
2171 struct extent_map *em;
2172 struct inode *inode = page->mapping->host;
2173 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2174 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2175 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2176 struct bio *bio;
2177 struct btrfs_io_bio *btrfs_failed_bio;
2178 struct btrfs_io_bio *btrfs_bio;
2179 int num_copies;
2180 int ret;
2181 int read_mode;
2182 u64 logical;
2183
2184 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2185
2186 ret = get_state_private(failure_tree, start, &private);
2187 if (ret) {
2188 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2189 if (!failrec)
2190 return -ENOMEM;
2191 failrec->start = start;
2192 failrec->len = end - start + 1;
2193 failrec->this_mirror = 0;
2194 failrec->bio_flags = 0;
2195 failrec->in_validation = 0;
2196
2197 read_lock(&em_tree->lock);
2198 em = lookup_extent_mapping(em_tree, start, failrec->len);
2199 if (!em) {
2200 read_unlock(&em_tree->lock);
2201 kfree(failrec);
2202 return -EIO;
2203 }
2204
2205 if (em->start > start || em->start + em->len <= start) {
2206 free_extent_map(em);
2207 em = NULL;
2208 }
2209 read_unlock(&em_tree->lock);
2210
2211 if (!em) {
2212 kfree(failrec);
2213 return -EIO;
2214 }
2215 logical = start - em->start;
2216 logical = em->block_start + logical;
2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2218 logical = em->block_start;
2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2220 extent_set_compress_type(&failrec->bio_flags,
2221 em->compress_type);
2222 }
2223 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2224 "len=%llu\n", logical, start, failrec->len);
2225 failrec->logical = logical;
2226 free_extent_map(em);
2227
2228 /* set the bits in the private failure tree */
2229 ret = set_extent_bits(failure_tree, start, end,
2230 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2231 if (ret >= 0)
2232 ret = set_state_private(failure_tree, start,
2233 (u64)(unsigned long)failrec);
2234 /* set the bits in the inode's tree */
2235 if (ret >= 0)
2236 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2237 GFP_NOFS);
2238 if (ret < 0) {
2239 kfree(failrec);
2240 return ret;
2241 }
2242 } else {
2243 failrec = (struct io_failure_record *)(unsigned long)private;
2244 pr_debug("bio_readpage_error: (found) logical=%llu, "
2245 "start=%llu, len=%llu, validation=%d\n",
2246 failrec->logical, failrec->start, failrec->len,
2247 failrec->in_validation);
2248 /*
2249 * when data can be on disk more than twice, add to failrec here
2250 * (e.g. with a list for failed_mirror) to make
2251 * clean_io_failure() clean all those errors at once.
2252 */
2253 }
2254 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2255 failrec->logical, failrec->len);
2256 if (num_copies == 1) {
2257 /*
2258 * we only have a single copy of the data, so don't bother with
2259 * all the retry and error correction code that follows. no
2260 * matter what the error is, it is very likely to persist.
2261 */
2262 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2263 num_copies, failrec->this_mirror, failed_mirror);
2264 free_io_failure(inode, failrec, 0);
2265 return -EIO;
2266 }
2267
2268 /*
2269 * there are two premises:
2270 * a) deliver good data to the caller
2271 * b) correct the bad sectors on disk
2272 */
2273 if (failed_bio->bi_vcnt > 1) {
2274 /*
2275 * to fulfill b), we need to know the exact failing sectors, as
2276 * we don't want to rewrite any more than the failed ones. thus,
2277 * we need separate read requests for the failed bio
2278 *
2279 * if the following BUG_ON triggers, our validation request got
2280 * merged. we need separate requests for our algorithm to work.
2281 */
2282 BUG_ON(failrec->in_validation);
2283 failrec->in_validation = 1;
2284 failrec->this_mirror = failed_mirror;
2285 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2286 } else {
2287 /*
2288 * we're ready to fulfill a) and b) alongside. get a good copy
2289 * of the failed sector and if we succeed, we have setup
2290 * everything for repair_io_failure to do the rest for us.
2291 */
2292 if (failrec->in_validation) {
2293 BUG_ON(failrec->this_mirror != failed_mirror);
2294 failrec->in_validation = 0;
2295 failrec->this_mirror = 0;
2296 }
2297 failrec->failed_mirror = failed_mirror;
2298 failrec->this_mirror++;
2299 if (failrec->this_mirror == failed_mirror)
2300 failrec->this_mirror++;
2301 read_mode = READ_SYNC;
2302 }
2303
2304 if (failrec->this_mirror > num_copies) {
2305 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2306 num_copies, failrec->this_mirror, failed_mirror);
2307 free_io_failure(inode, failrec, 0);
2308 return -EIO;
2309 }
2310
2311 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2312 if (!bio) {
2313 free_io_failure(inode, failrec, 0);
2314 return -EIO;
2315 }
2316 bio->bi_end_io = failed_bio->bi_end_io;
2317 bio->bi_iter.bi_sector = failrec->logical >> 9;
2318 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2319 bio->bi_iter.bi_size = 0;
2320
2321 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2322 if (btrfs_failed_bio->csum) {
2323 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2324 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2325
2326 btrfs_bio = btrfs_io_bio(bio);
2327 btrfs_bio->csum = btrfs_bio->csum_inline;
2328 phy_offset >>= inode->i_sb->s_blocksize_bits;
2329 phy_offset *= csum_size;
2330 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2331 csum_size);
2332 }
2333
2334 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2335
2336 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2337 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2338 failrec->this_mirror, num_copies, failrec->in_validation);
2339
2340 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2341 failrec->this_mirror,
2342 failrec->bio_flags, 0);
2343 return ret;
2344 }
2345
2346 /* lots and lots of room for performance fixes in the end_bio funcs */
2347
2348 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2349 {
2350 int uptodate = (err == 0);
2351 struct extent_io_tree *tree;
2352 int ret;
2353
2354 tree = &BTRFS_I(page->mapping->host)->io_tree;
2355
2356 if (tree->ops && tree->ops->writepage_end_io_hook) {
2357 ret = tree->ops->writepage_end_io_hook(page, start,
2358 end, NULL, uptodate);
2359 if (ret)
2360 uptodate = 0;
2361 }
2362
2363 if (!uptodate) {
2364 ClearPageUptodate(page);
2365 SetPageError(page);
2366 }
2367 return 0;
2368 }
2369
2370 /*
2371 * after a writepage IO is done, we need to:
2372 * clear the uptodate bits on error
2373 * clear the writeback bits in the extent tree for this IO
2374 * end_page_writeback if the page has no more pending IO
2375 *
2376 * Scheduling is not allowed, so the extent state tree is expected
2377 * to have one and only one object corresponding to this IO.
2378 */
2379 static void end_bio_extent_writepage(struct bio *bio, int err)
2380 {
2381 struct bio_vec *bvec;
2382 u64 start;
2383 u64 end;
2384 int i;
2385
2386 bio_for_each_segment_all(bvec, bio, i) {
2387 struct page *page = bvec->bv_page;
2388
2389 /* We always issue full-page reads, but if some block
2390 * in a page fails to read, blk_update_request() will
2391 * advance bv_offset and adjust bv_len to compensate.
2392 * Print a warning for nonzero offsets, and an error
2393 * if they don't add up to a full page. */
2394 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2395 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2396 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2397 "partial page write in btrfs with offset %u and length %u",
2398 bvec->bv_offset, bvec->bv_len);
2399 else
2400 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2401 "incomplete page write in btrfs with offset %u and "
2402 "length %u",
2403 bvec->bv_offset, bvec->bv_len);
2404 }
2405
2406 start = page_offset(page);
2407 end = start + bvec->bv_offset + bvec->bv_len - 1;
2408
2409 if (end_extent_writepage(page, err, start, end))
2410 continue;
2411
2412 end_page_writeback(page);
2413 }
2414
2415 bio_put(bio);
2416 }
2417
2418 static void
2419 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2420 int uptodate)
2421 {
2422 struct extent_state *cached = NULL;
2423 u64 end = start + len - 1;
2424
2425 if (uptodate && tree->track_uptodate)
2426 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2427 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2428 }
2429
2430 /*
2431 * after a readpage IO is done, we need to:
2432 * clear the uptodate bits on error
2433 * set the uptodate bits if things worked
2434 * set the page up to date if all extents in the tree are uptodate
2435 * clear the lock bit in the extent tree
2436 * unlock the page if there are no other extents locked for it
2437 *
2438 * Scheduling is not allowed, so the extent state tree is expected
2439 * to have one and only one object corresponding to this IO.
2440 */
2441 static void end_bio_extent_readpage(struct bio *bio, int err)
2442 {
2443 struct bio_vec *bvec;
2444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2445 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2446 struct extent_io_tree *tree;
2447 u64 offset = 0;
2448 u64 start;
2449 u64 end;
2450 u64 len;
2451 u64 extent_start = 0;
2452 u64 extent_len = 0;
2453 int mirror;
2454 int ret;
2455 int i;
2456
2457 if (err)
2458 uptodate = 0;
2459
2460 bio_for_each_segment_all(bvec, bio, i) {
2461 struct page *page = bvec->bv_page;
2462 struct inode *inode = page->mapping->host;
2463
2464 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2465 "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
2466 io_bio->mirror_num);
2467 tree = &BTRFS_I(inode)->io_tree;
2468
2469 /* We always issue full-page reads, but if some block
2470 * in a page fails to read, blk_update_request() will
2471 * advance bv_offset and adjust bv_len to compensate.
2472 * Print a warning for nonzero offsets, and an error
2473 * if they don't add up to a full page. */
2474 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2475 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2476 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2477 "partial page read in btrfs with offset %u and length %u",
2478 bvec->bv_offset, bvec->bv_len);
2479 else
2480 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2481 "incomplete page read in btrfs with offset %u and "
2482 "length %u",
2483 bvec->bv_offset, bvec->bv_len);
2484 }
2485
2486 start = page_offset(page);
2487 end = start + bvec->bv_offset + bvec->bv_len - 1;
2488 len = bvec->bv_len;
2489
2490 mirror = io_bio->mirror_num;
2491 if (likely(uptodate && tree->ops &&
2492 tree->ops->readpage_end_io_hook)) {
2493 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2494 page, start, end,
2495 mirror);
2496 if (ret)
2497 uptodate = 0;
2498 else
2499 clean_io_failure(start, page);
2500 }
2501
2502 if (likely(uptodate))
2503 goto readpage_ok;
2504
2505 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2506 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2507 if (!ret && !err &&
2508 test_bit(BIO_UPTODATE, &bio->bi_flags))
2509 uptodate = 1;
2510 } else {
2511 /*
2512 * The generic bio_readpage_error handles errors the
2513 * following way: If possible, new read requests are
2514 * created and submitted and will end up in
2515 * end_bio_extent_readpage as well (if we're lucky, not
2516 * in the !uptodate case). In that case it returns 0 and
2517 * we just go on with the next page in our bio. If it
2518 * can't handle the error it will return -EIO and we
2519 * remain responsible for that page.
2520 */
2521 ret = bio_readpage_error(bio, offset, page, start, end,
2522 mirror);
2523 if (ret == 0) {
2524 uptodate =
2525 test_bit(BIO_UPTODATE, &bio->bi_flags);
2526 if (err)
2527 uptodate = 0;
2528 continue;
2529 }
2530 }
2531 readpage_ok:
2532 if (likely(uptodate)) {
2533 loff_t i_size = i_size_read(inode);
2534 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2535 unsigned offset;
2536
2537 /* Zero out the end if this page straddles i_size */
2538 offset = i_size & (PAGE_CACHE_SIZE-1);
2539 if (page->index == end_index && offset)
2540 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2541 SetPageUptodate(page);
2542 } else {
2543 ClearPageUptodate(page);
2544 SetPageError(page);
2545 }
2546 unlock_page(page);
2547 offset += len;
2548
2549 if (unlikely(!uptodate)) {
2550 if (extent_len) {
2551 endio_readpage_release_extent(tree,
2552 extent_start,
2553 extent_len, 1);
2554 extent_start = 0;
2555 extent_len = 0;
2556 }
2557 endio_readpage_release_extent(tree, start,
2558 end - start + 1, 0);
2559 } else if (!extent_len) {
2560 extent_start = start;
2561 extent_len = end + 1 - start;
2562 } else if (extent_start + extent_len == start) {
2563 extent_len += end + 1 - start;
2564 } else {
2565 endio_readpage_release_extent(tree, extent_start,
2566 extent_len, uptodate);
2567 extent_start = start;
2568 extent_len = end + 1 - start;
2569 }
2570 }
2571
2572 if (extent_len)
2573 endio_readpage_release_extent(tree, extent_start, extent_len,
2574 uptodate);
2575 if (io_bio->end_io)
2576 io_bio->end_io(io_bio, err);
2577 bio_put(bio);
2578 }
2579
2580 /*
2581 * this allocates from the btrfs_bioset. We're returning a bio right now
2582 * but you can call btrfs_io_bio for the appropriate container_of magic
2583 */
2584 struct bio *
2585 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2586 gfp_t gfp_flags)
2587 {
2588 struct btrfs_io_bio *btrfs_bio;
2589 struct bio *bio;
2590
2591 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2592
2593 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2594 while (!bio && (nr_vecs /= 2)) {
2595 bio = bio_alloc_bioset(gfp_flags,
2596 nr_vecs, btrfs_bioset);
2597 }
2598 }
2599
2600 if (bio) {
2601 bio->bi_bdev = bdev;
2602 bio->bi_iter.bi_sector = first_sector;
2603 btrfs_bio = btrfs_io_bio(bio);
2604 btrfs_bio->csum = NULL;
2605 btrfs_bio->csum_allocated = NULL;
2606 btrfs_bio->end_io = NULL;
2607 }
2608 return bio;
2609 }
2610
2611 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2612 {
2613 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2614 }
2615
2616
2617 /* this also allocates from the btrfs_bioset */
2618 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2619 {
2620 struct btrfs_io_bio *btrfs_bio;
2621 struct bio *bio;
2622
2623 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2624 if (bio) {
2625 btrfs_bio = btrfs_io_bio(bio);
2626 btrfs_bio->csum = NULL;
2627 btrfs_bio->csum_allocated = NULL;
2628 btrfs_bio->end_io = NULL;
2629 }
2630 return bio;
2631 }
2632
2633
2634 static int __must_check submit_one_bio(int rw, struct bio *bio,
2635 int mirror_num, unsigned long bio_flags)
2636 {
2637 int ret = 0;
2638 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2639 struct page *page = bvec->bv_page;
2640 struct extent_io_tree *tree = bio->bi_private;
2641 u64 start;
2642
2643 start = page_offset(page) + bvec->bv_offset;
2644
2645 bio->bi_private = NULL;
2646
2647 bio_get(bio);
2648
2649 if (tree->ops && tree->ops->submit_bio_hook)
2650 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2651 mirror_num, bio_flags, start);
2652 else
2653 btrfsic_submit_bio(rw, bio);
2654
2655 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2656 ret = -EOPNOTSUPP;
2657 bio_put(bio);
2658 return ret;
2659 }
2660
2661 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2662 unsigned long offset, size_t size, struct bio *bio,
2663 unsigned long bio_flags)
2664 {
2665 int ret = 0;
2666 if (tree->ops && tree->ops->merge_bio_hook)
2667 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2668 bio_flags);
2669 BUG_ON(ret < 0);
2670 return ret;
2671
2672 }
2673
2674 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2675 struct page *page, sector_t sector,
2676 size_t size, unsigned long offset,
2677 struct block_device *bdev,
2678 struct bio **bio_ret,
2679 unsigned long max_pages,
2680 bio_end_io_t end_io_func,
2681 int mirror_num,
2682 unsigned long prev_bio_flags,
2683 unsigned long bio_flags)
2684 {
2685 int ret = 0;
2686 struct bio *bio;
2687 int nr;
2688 int contig = 0;
2689 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2690 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2691 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2692
2693 if (bio_ret && *bio_ret) {
2694 bio = *bio_ret;
2695 if (old_compressed)
2696 contig = bio->bi_iter.bi_sector == sector;
2697 else
2698 contig = bio_end_sector(bio) == sector;
2699
2700 if (prev_bio_flags != bio_flags || !contig ||
2701 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2702 bio_add_page(bio, page, page_size, offset) < page_size) {
2703 ret = submit_one_bio(rw, bio, mirror_num,
2704 prev_bio_flags);
2705 if (ret < 0)
2706 return ret;
2707 bio = NULL;
2708 } else {
2709 return 0;
2710 }
2711 }
2712 if (this_compressed)
2713 nr = BIO_MAX_PAGES;
2714 else
2715 nr = bio_get_nr_vecs(bdev);
2716
2717 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2718 if (!bio)
2719 return -ENOMEM;
2720
2721 bio_add_page(bio, page, page_size, offset);
2722 bio->bi_end_io = end_io_func;
2723 bio->bi_private = tree;
2724
2725 if (bio_ret)
2726 *bio_ret = bio;
2727 else
2728 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2729
2730 return ret;
2731 }
2732
2733 static void attach_extent_buffer_page(struct extent_buffer *eb,
2734 struct page *page)
2735 {
2736 if (!PagePrivate(page)) {
2737 SetPagePrivate(page);
2738 page_cache_get(page);
2739 set_page_private(page, (unsigned long)eb);
2740 } else {
2741 WARN_ON(page->private != (unsigned long)eb);
2742 }
2743 }
2744
2745 void set_page_extent_mapped(struct page *page)
2746 {
2747 if (!PagePrivate(page)) {
2748 SetPagePrivate(page);
2749 page_cache_get(page);
2750 set_page_private(page, EXTENT_PAGE_PRIVATE);
2751 }
2752 }
2753
2754 static struct extent_map *
2755 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2756 u64 start, u64 len, get_extent_t *get_extent,
2757 struct extent_map **em_cached)
2758 {
2759 struct extent_map *em;
2760
2761 if (em_cached && *em_cached) {
2762 em = *em_cached;
2763 if (extent_map_in_tree(em) && start >= em->start &&
2764 start < extent_map_end(em)) {
2765 atomic_inc(&em->refs);
2766 return em;
2767 }
2768
2769 free_extent_map(em);
2770 *em_cached = NULL;
2771 }
2772
2773 em = get_extent(inode, page, pg_offset, start, len, 0);
2774 if (em_cached && !IS_ERR_OR_NULL(em)) {
2775 BUG_ON(*em_cached);
2776 atomic_inc(&em->refs);
2777 *em_cached = em;
2778 }
2779 return em;
2780 }
2781 /*
2782 * basic readpage implementation. Locked extent state structs are inserted
2783 * into the tree that are removed when the IO is done (by the end_io
2784 * handlers)
2785 * XXX JDM: This needs looking at to ensure proper page locking
2786 */
2787 static int __do_readpage(struct extent_io_tree *tree,
2788 struct page *page,
2789 get_extent_t *get_extent,
2790 struct extent_map **em_cached,
2791 struct bio **bio, int mirror_num,
2792 unsigned long *bio_flags, int rw)
2793 {
2794 struct inode *inode = page->mapping->host;
2795 u64 start = page_offset(page);
2796 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2797 u64 end;
2798 u64 cur = start;
2799 u64 extent_offset;
2800 u64 last_byte = i_size_read(inode);
2801 u64 block_start;
2802 u64 cur_end;
2803 sector_t sector;
2804 struct extent_map *em;
2805 struct block_device *bdev;
2806 int ret;
2807 int nr = 0;
2808 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2809 size_t pg_offset = 0;
2810 size_t iosize;
2811 size_t disk_io_size;
2812 size_t blocksize = inode->i_sb->s_blocksize;
2813 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2814
2815 set_page_extent_mapped(page);
2816
2817 end = page_end;
2818 if (!PageUptodate(page)) {
2819 if (cleancache_get_page(page) == 0) {
2820 BUG_ON(blocksize != PAGE_SIZE);
2821 unlock_extent(tree, start, end);
2822 goto out;
2823 }
2824 }
2825
2826 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2827 char *userpage;
2828 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2829
2830 if (zero_offset) {
2831 iosize = PAGE_CACHE_SIZE - zero_offset;
2832 userpage = kmap_atomic(page);
2833 memset(userpage + zero_offset, 0, iosize);
2834 flush_dcache_page(page);
2835 kunmap_atomic(userpage);
2836 }
2837 }
2838 while (cur <= end) {
2839 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2840
2841 if (cur >= last_byte) {
2842 char *userpage;
2843 struct extent_state *cached = NULL;
2844
2845 iosize = PAGE_CACHE_SIZE - pg_offset;
2846 userpage = kmap_atomic(page);
2847 memset(userpage + pg_offset, 0, iosize);
2848 flush_dcache_page(page);
2849 kunmap_atomic(userpage);
2850 set_extent_uptodate(tree, cur, cur + iosize - 1,
2851 &cached, GFP_NOFS);
2852 if (!parent_locked)
2853 unlock_extent_cached(tree, cur,
2854 cur + iosize - 1,
2855 &cached, GFP_NOFS);
2856 break;
2857 }
2858 em = __get_extent_map(inode, page, pg_offset, cur,
2859 end - cur + 1, get_extent, em_cached);
2860 if (IS_ERR_OR_NULL(em)) {
2861 SetPageError(page);
2862 if (!parent_locked)
2863 unlock_extent(tree, cur, end);
2864 break;
2865 }
2866 extent_offset = cur - em->start;
2867 BUG_ON(extent_map_end(em) <= cur);
2868 BUG_ON(end < cur);
2869
2870 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2871 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2872 extent_set_compress_type(&this_bio_flag,
2873 em->compress_type);
2874 }
2875
2876 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2877 cur_end = min(extent_map_end(em) - 1, end);
2878 iosize = ALIGN(iosize, blocksize);
2879 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2880 disk_io_size = em->block_len;
2881 sector = em->block_start >> 9;
2882 } else {
2883 sector = (em->block_start + extent_offset) >> 9;
2884 disk_io_size = iosize;
2885 }
2886 bdev = em->bdev;
2887 block_start = em->block_start;
2888 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2889 block_start = EXTENT_MAP_HOLE;
2890 free_extent_map(em);
2891 em = NULL;
2892
2893 /* we've found a hole, just zero and go on */
2894 if (block_start == EXTENT_MAP_HOLE) {
2895 char *userpage;
2896 struct extent_state *cached = NULL;
2897
2898 userpage = kmap_atomic(page);
2899 memset(userpage + pg_offset, 0, iosize);
2900 flush_dcache_page(page);
2901 kunmap_atomic(userpage);
2902
2903 set_extent_uptodate(tree, cur, cur + iosize - 1,
2904 &cached, GFP_NOFS);
2905 unlock_extent_cached(tree, cur, cur + iosize - 1,
2906 &cached, GFP_NOFS);
2907 cur = cur + iosize;
2908 pg_offset += iosize;
2909 continue;
2910 }
2911 /* the get_extent function already copied into the page */
2912 if (test_range_bit(tree, cur, cur_end,
2913 EXTENT_UPTODATE, 1, NULL)) {
2914 check_page_uptodate(tree, page);
2915 if (!parent_locked)
2916 unlock_extent(tree, cur, cur + iosize - 1);
2917 cur = cur + iosize;
2918 pg_offset += iosize;
2919 continue;
2920 }
2921 /* we have an inline extent but it didn't get marked up
2922 * to date. Error out
2923 */
2924 if (block_start == EXTENT_MAP_INLINE) {
2925 SetPageError(page);
2926 if (!parent_locked)
2927 unlock_extent(tree, cur, cur + iosize - 1);
2928 cur = cur + iosize;
2929 pg_offset += iosize;
2930 continue;
2931 }
2932
2933 pnr -= page->index;
2934 ret = submit_extent_page(rw, tree, page,
2935 sector, disk_io_size, pg_offset,
2936 bdev, bio, pnr,
2937 end_bio_extent_readpage, mirror_num,
2938 *bio_flags,
2939 this_bio_flag);
2940 if (!ret) {
2941 nr++;
2942 *bio_flags = this_bio_flag;
2943 } else {
2944 SetPageError(page);
2945 if (!parent_locked)
2946 unlock_extent(tree, cur, cur + iosize - 1);
2947 }
2948 cur = cur + iosize;
2949 pg_offset += iosize;
2950 }
2951 out:
2952 if (!nr) {
2953 if (!PageError(page))
2954 SetPageUptodate(page);
2955 unlock_page(page);
2956 }
2957 return 0;
2958 }
2959
2960 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2961 struct page *pages[], int nr_pages,
2962 u64 start, u64 end,
2963 get_extent_t *get_extent,
2964 struct extent_map **em_cached,
2965 struct bio **bio, int mirror_num,
2966 unsigned long *bio_flags, int rw)
2967 {
2968 struct inode *inode;
2969 struct btrfs_ordered_extent *ordered;
2970 int index;
2971
2972 inode = pages[0]->mapping->host;
2973 while (1) {
2974 lock_extent(tree, start, end);
2975 ordered = btrfs_lookup_ordered_range(inode, start,
2976 end - start + 1);
2977 if (!ordered)
2978 break;
2979 unlock_extent(tree, start, end);
2980 btrfs_start_ordered_extent(inode, ordered, 1);
2981 btrfs_put_ordered_extent(ordered);
2982 }
2983
2984 for (index = 0; index < nr_pages; index++) {
2985 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2986 mirror_num, bio_flags, rw);
2987 page_cache_release(pages[index]);
2988 }
2989 }
2990
2991 static void __extent_readpages(struct extent_io_tree *tree,
2992 struct page *pages[],
2993 int nr_pages, get_extent_t *get_extent,
2994 struct extent_map **em_cached,
2995 struct bio **bio, int mirror_num,
2996 unsigned long *bio_flags, int rw)
2997 {
2998 u64 start = 0;
2999 u64 end = 0;
3000 u64 page_start;
3001 int index;
3002 int first_index = 0;
3003
3004 for (index = 0; index < nr_pages; index++) {
3005 page_start = page_offset(pages[index]);
3006 if (!end) {
3007 start = page_start;
3008 end = start + PAGE_CACHE_SIZE - 1;
3009 first_index = index;
3010 } else if (end + 1 == page_start) {
3011 end += PAGE_CACHE_SIZE;
3012 } else {
3013 __do_contiguous_readpages(tree, &pages[first_index],
3014 index - first_index, start,
3015 end, get_extent, em_cached,
3016 bio, mirror_num, bio_flags,
3017 rw);
3018 start = page_start;
3019 end = start + PAGE_CACHE_SIZE - 1;
3020 first_index = index;
3021 }
3022 }
3023
3024 if (end)
3025 __do_contiguous_readpages(tree, &pages[first_index],
3026 index - first_index, start,
3027 end, get_extent, em_cached, bio,
3028 mirror_num, bio_flags, rw);
3029 }
3030
3031 static int __extent_read_full_page(struct extent_io_tree *tree,
3032 struct page *page,
3033 get_extent_t *get_extent,
3034 struct bio **bio, int mirror_num,
3035 unsigned long *bio_flags, int rw)
3036 {
3037 struct inode *inode = page->mapping->host;
3038 struct btrfs_ordered_extent *ordered;
3039 u64 start = page_offset(page);
3040 u64 end = start + PAGE_CACHE_SIZE - 1;
3041 int ret;
3042
3043 while (1) {
3044 lock_extent(tree, start, end);
3045 ordered = btrfs_lookup_ordered_extent(inode, start);
3046 if (!ordered)
3047 break;
3048 unlock_extent(tree, start, end);
3049 btrfs_start_ordered_extent(inode, ordered, 1);
3050 btrfs_put_ordered_extent(ordered);
3051 }
3052
3053 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3054 bio_flags, rw);
3055 return ret;
3056 }
3057
3058 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3059 get_extent_t *get_extent, int mirror_num)
3060 {
3061 struct bio *bio = NULL;
3062 unsigned long bio_flags = 0;
3063 int ret;
3064
3065 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3066 &bio_flags, READ);
3067 if (bio)
3068 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3069 return ret;
3070 }
3071
3072 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3073 get_extent_t *get_extent, int mirror_num)
3074 {
3075 struct bio *bio = NULL;
3076 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3077 int ret;
3078
3079 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3080 &bio_flags, READ);
3081 if (bio)
3082 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3083 return ret;
3084 }
3085
3086 static noinline void update_nr_written(struct page *page,
3087 struct writeback_control *wbc,
3088 unsigned long nr_written)
3089 {
3090 wbc->nr_to_write -= nr_written;
3091 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3092 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3093 page->mapping->writeback_index = page->index + nr_written;
3094 }
3095
3096 /*
3097 * the writepage semantics are similar to regular writepage. extent
3098 * records are inserted to lock ranges in the tree, and as dirty areas
3099 * are found, they are marked writeback. Then the lock bits are removed
3100 * and the end_io handler clears the writeback ranges
3101 */
3102 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3103 void *data)
3104 {
3105 struct inode *inode = page->mapping->host;
3106 struct extent_page_data *epd = data;
3107 struct extent_io_tree *tree = epd->tree;
3108 u64 start = page_offset(page);
3109 u64 delalloc_start;
3110 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3111 u64 end;
3112 u64 cur = start;
3113 u64 extent_offset;
3114 u64 last_byte = i_size_read(inode);
3115 u64 block_start;
3116 u64 iosize;
3117 sector_t sector;
3118 struct extent_state *cached_state = NULL;
3119 struct extent_map *em;
3120 struct block_device *bdev;
3121 int ret;
3122 int nr = 0;
3123 size_t pg_offset = 0;
3124 size_t blocksize;
3125 loff_t i_size = i_size_read(inode);
3126 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3127 u64 nr_delalloc;
3128 u64 delalloc_end;
3129 int page_started;
3130 int compressed;
3131 int write_flags;
3132 unsigned long nr_written = 0;
3133 bool fill_delalloc = true;
3134
3135 if (wbc->sync_mode == WB_SYNC_ALL)
3136 write_flags = WRITE_SYNC;
3137 else
3138 write_flags = WRITE;
3139
3140 trace___extent_writepage(page, inode, wbc);
3141
3142 WARN_ON(!PageLocked(page));
3143
3144 ClearPageError(page);
3145
3146 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3147 if (page->index > end_index ||
3148 (page->index == end_index && !pg_offset)) {
3149 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3150 unlock_page(page);
3151 return 0;
3152 }
3153
3154 if (page->index == end_index) {
3155 char *userpage;
3156
3157 userpage = kmap_atomic(page);
3158 memset(userpage + pg_offset, 0,
3159 PAGE_CACHE_SIZE - pg_offset);
3160 kunmap_atomic(userpage);
3161 flush_dcache_page(page);
3162 }
3163 pg_offset = 0;
3164
3165 set_page_extent_mapped(page);
3166
3167 if (!tree->ops || !tree->ops->fill_delalloc)
3168 fill_delalloc = false;
3169
3170 delalloc_start = start;
3171 delalloc_end = 0;
3172 page_started = 0;
3173 if (!epd->extent_locked && fill_delalloc) {
3174 u64 delalloc_to_write = 0;
3175 /*
3176 * make sure the wbc mapping index is at least updated
3177 * to this page.
3178 */
3179 update_nr_written(page, wbc, 0);
3180
3181 while (delalloc_end < page_end) {
3182 nr_delalloc = find_lock_delalloc_range(inode, tree,
3183 page,
3184 &delalloc_start,
3185 &delalloc_end,
3186 128 * 1024 * 1024);
3187 if (nr_delalloc == 0) {
3188 delalloc_start = delalloc_end + 1;
3189 continue;
3190 }
3191 ret = tree->ops->fill_delalloc(inode, page,
3192 delalloc_start,
3193 delalloc_end,
3194 &page_started,
3195 &nr_written);
3196 /* File system has been set read-only */
3197 if (ret) {
3198 SetPageError(page);
3199 goto done;
3200 }
3201 /*
3202 * delalloc_end is already one less than the total
3203 * length, so we don't subtract one from
3204 * PAGE_CACHE_SIZE
3205 */
3206 delalloc_to_write += (delalloc_end - delalloc_start +
3207 PAGE_CACHE_SIZE) >>
3208 PAGE_CACHE_SHIFT;
3209 delalloc_start = delalloc_end + 1;
3210 }
3211 if (wbc->nr_to_write < delalloc_to_write) {
3212 int thresh = 8192;
3213
3214 if (delalloc_to_write < thresh * 2)
3215 thresh = delalloc_to_write;
3216 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3217 thresh);
3218 }
3219
3220 /* did the fill delalloc function already unlock and start
3221 * the IO?
3222 */
3223 if (page_started) {
3224 ret = 0;
3225 /*
3226 * we've unlocked the page, so we can't update
3227 * the mapping's writeback index, just update
3228 * nr_to_write.
3229 */
3230 wbc->nr_to_write -= nr_written;
3231 goto done_unlocked;
3232 }
3233 }
3234 if (tree->ops && tree->ops->writepage_start_hook) {
3235 ret = tree->ops->writepage_start_hook(page, start,
3236 page_end);
3237 if (ret) {
3238 /* Fixup worker will requeue */
3239 if (ret == -EBUSY)
3240 wbc->pages_skipped++;
3241 else
3242 redirty_page_for_writepage(wbc, page);
3243 update_nr_written(page, wbc, nr_written);
3244 unlock_page(page);
3245 ret = 0;
3246 goto done_unlocked;
3247 }
3248 }
3249
3250 /*
3251 * we don't want to touch the inode after unlocking the page,
3252 * so we update the mapping writeback index now
3253 */
3254 update_nr_written(page, wbc, nr_written + 1);
3255
3256 end = page_end;
3257 if (last_byte <= start) {
3258 if (tree->ops && tree->ops->writepage_end_io_hook)
3259 tree->ops->writepage_end_io_hook(page, start,
3260 page_end, NULL, 1);
3261 goto done;
3262 }
3263
3264 blocksize = inode->i_sb->s_blocksize;
3265
3266 while (cur <= end) {
3267 if (cur >= last_byte) {
3268 if (tree->ops && tree->ops->writepage_end_io_hook)
3269 tree->ops->writepage_end_io_hook(page, cur,
3270 page_end, NULL, 1);
3271 break;
3272 }
3273 em = epd->get_extent(inode, page, pg_offset, cur,
3274 end - cur + 1, 1);
3275 if (IS_ERR_OR_NULL(em)) {
3276 SetPageError(page);
3277 break;
3278 }
3279
3280 extent_offset = cur - em->start;
3281 BUG_ON(extent_map_end(em) <= cur);
3282 BUG_ON(end < cur);
3283 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3284 iosize = ALIGN(iosize, blocksize);
3285 sector = (em->block_start + extent_offset) >> 9;
3286 bdev = em->bdev;
3287 block_start = em->block_start;
3288 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3289 free_extent_map(em);
3290 em = NULL;
3291
3292 /*
3293 * compressed and inline extents are written through other
3294 * paths in the FS
3295 */
3296 if (compressed || block_start == EXTENT_MAP_HOLE ||
3297 block_start == EXTENT_MAP_INLINE) {
3298 /*
3299 * end_io notification does not happen here for
3300 * compressed extents
3301 */
3302 if (!compressed && tree->ops &&
3303 tree->ops->writepage_end_io_hook)
3304 tree->ops->writepage_end_io_hook(page, cur,
3305 cur + iosize - 1,
3306 NULL, 1);
3307 else if (compressed) {
3308 /* we don't want to end_page_writeback on
3309 * a compressed extent. this happens
3310 * elsewhere
3311 */
3312 nr++;
3313 }
3314
3315 cur += iosize;
3316 pg_offset += iosize;
3317 continue;
3318 }
3319 /* leave this out until we have a page_mkwrite call */
3320 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3321 EXTENT_DIRTY, 0, NULL)) {
3322 cur = cur + iosize;
3323 pg_offset += iosize;
3324 continue;
3325 }
3326
3327 if (tree->ops && tree->ops->writepage_io_hook) {
3328 ret = tree->ops->writepage_io_hook(page, cur,
3329 cur + iosize - 1);
3330 } else {
3331 ret = 0;
3332 }
3333 if (ret) {
3334 SetPageError(page);
3335 } else {
3336 unsigned long max_nr = end_index + 1;
3337
3338 set_range_writeback(tree, cur, cur + iosize - 1);
3339 if (!PageWriteback(page)) {
3340 btrfs_err(BTRFS_I(inode)->root->fs_info,
3341 "page %lu not writeback, cur %llu end %llu",
3342 page->index, cur, end);
3343 }
3344
3345 ret = submit_extent_page(write_flags, tree, page,
3346 sector, iosize, pg_offset,
3347 bdev, &epd->bio, max_nr,
3348 end_bio_extent_writepage,
3349 0, 0, 0);
3350 if (ret)
3351 SetPageError(page);
3352 }
3353 cur = cur + iosize;
3354 pg_offset += iosize;
3355 nr++;
3356 }
3357 done:
3358 if (nr == 0) {
3359 /* make sure the mapping tag for page dirty gets cleared */
3360 set_page_writeback(page);
3361 end_page_writeback(page);
3362 }
3363 unlock_page(page);
3364
3365 done_unlocked:
3366
3367 /* drop our reference on any cached states */
3368 free_extent_state(cached_state);
3369 return 0;
3370 }
3371
3372 static int eb_wait(void *word)
3373 {
3374 io_schedule();
3375 return 0;
3376 }
3377
3378 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3379 {
3380 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3381 TASK_UNINTERRUPTIBLE);
3382 }
3383
3384 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3385 struct btrfs_fs_info *fs_info,
3386 struct extent_page_data *epd)
3387 {
3388 unsigned long i, num_pages;
3389 int flush = 0;
3390 int ret = 0;
3391
3392 if (!btrfs_try_tree_write_lock(eb)) {
3393 flush = 1;
3394 flush_write_bio(epd);
3395 btrfs_tree_lock(eb);
3396 }
3397
3398 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3399 btrfs_tree_unlock(eb);
3400 if (!epd->sync_io)
3401 return 0;
3402 if (!flush) {
3403 flush_write_bio(epd);
3404 flush = 1;
3405 }
3406 while (1) {
3407 wait_on_extent_buffer_writeback(eb);
3408 btrfs_tree_lock(eb);
3409 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3410 break;
3411 btrfs_tree_unlock(eb);
3412 }
3413 }
3414
3415 /*
3416 * We need to do this to prevent races in people who check if the eb is
3417 * under IO since we can end up having no IO bits set for a short period
3418 * of time.
3419 */
3420 spin_lock(&eb->refs_lock);
3421 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3422 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3423 spin_unlock(&eb->refs_lock);
3424 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3425 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3426 -eb->len,
3427 fs_info->dirty_metadata_batch);
3428 ret = 1;
3429 } else {
3430 spin_unlock(&eb->refs_lock);
3431 }
3432
3433 btrfs_tree_unlock(eb);
3434
3435 if (!ret)
3436 return ret;
3437
3438 num_pages = num_extent_pages(eb->start, eb->len);
3439 for (i = 0; i < num_pages; i++) {
3440 struct page *p = extent_buffer_page(eb, i);
3441
3442 if (!trylock_page(p)) {
3443 if (!flush) {
3444 flush_write_bio(epd);
3445 flush = 1;
3446 }
3447 lock_page(p);
3448 }
3449 }
3450
3451 return ret;
3452 }
3453
3454 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3455 {
3456 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3457 smp_mb__after_clear_bit();
3458 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3459 }
3460
3461 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3462 {
3463 struct bio_vec *bvec;
3464 struct extent_buffer *eb;
3465 int i, done;
3466
3467 bio_for_each_segment_all(bvec, bio, i) {
3468 struct page *page = bvec->bv_page;
3469
3470 eb = (struct extent_buffer *)page->private;
3471 BUG_ON(!eb);
3472 done = atomic_dec_and_test(&eb->io_pages);
3473
3474 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3475 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3476 ClearPageUptodate(page);
3477 SetPageError(page);
3478 }
3479
3480 end_page_writeback(page);
3481
3482 if (!done)
3483 continue;
3484
3485 end_extent_buffer_writeback(eb);
3486 }
3487
3488 bio_put(bio);
3489 }
3490
3491 static int write_one_eb(struct extent_buffer *eb,
3492 struct btrfs_fs_info *fs_info,
3493 struct writeback_control *wbc,
3494 struct extent_page_data *epd)
3495 {
3496 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3497 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3498 u64 offset = eb->start;
3499 unsigned long i, num_pages;
3500 unsigned long bio_flags = 0;
3501 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3502 int ret = 0;
3503
3504 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3505 num_pages = num_extent_pages(eb->start, eb->len);
3506 atomic_set(&eb->io_pages, num_pages);
3507 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3508 bio_flags = EXTENT_BIO_TREE_LOG;
3509
3510 for (i = 0; i < num_pages; i++) {
3511 struct page *p = extent_buffer_page(eb, i);
3512
3513 clear_page_dirty_for_io(p);
3514 set_page_writeback(p);
3515 ret = submit_extent_page(rw, tree, p, offset >> 9,
3516 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3517 -1, end_bio_extent_buffer_writepage,
3518 0, epd->bio_flags, bio_flags);
3519 epd->bio_flags = bio_flags;
3520 if (ret) {
3521 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3522 SetPageError(p);
3523 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3524 end_extent_buffer_writeback(eb);
3525 ret = -EIO;
3526 break;
3527 }
3528 offset += PAGE_CACHE_SIZE;
3529 update_nr_written(p, wbc, 1);
3530 unlock_page(p);
3531 }
3532
3533 if (unlikely(ret)) {
3534 for (; i < num_pages; i++) {
3535 struct page *p = extent_buffer_page(eb, i);
3536 unlock_page(p);
3537 }
3538 }
3539
3540 return ret;
3541 }
3542
3543 int btree_write_cache_pages(struct address_space *mapping,
3544 struct writeback_control *wbc)
3545 {
3546 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3547 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3548 struct extent_buffer *eb, *prev_eb = NULL;
3549 struct extent_page_data epd = {
3550 .bio = NULL,
3551 .tree = tree,
3552 .extent_locked = 0,
3553 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3554 .bio_flags = 0,
3555 };
3556 int ret = 0;
3557 int done = 0;
3558 int nr_to_write_done = 0;
3559 struct pagevec pvec;
3560 int nr_pages;
3561 pgoff_t index;
3562 pgoff_t end; /* Inclusive */
3563 int scanned = 0;
3564 int tag;
3565
3566 pagevec_init(&pvec, 0);
3567 if (wbc->range_cyclic) {
3568 index = mapping->writeback_index; /* Start from prev offset */
3569 end = -1;
3570 } else {
3571 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3572 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3573 scanned = 1;
3574 }
3575 if (wbc->sync_mode == WB_SYNC_ALL)
3576 tag = PAGECACHE_TAG_TOWRITE;
3577 else
3578 tag = PAGECACHE_TAG_DIRTY;
3579 retry:
3580 if (wbc->sync_mode == WB_SYNC_ALL)
3581 tag_pages_for_writeback(mapping, index, end);
3582 while (!done && !nr_to_write_done && (index <= end) &&
3583 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3584 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3585 unsigned i;
3586
3587 scanned = 1;
3588 for (i = 0; i < nr_pages; i++) {
3589 struct page *page = pvec.pages[i];
3590
3591 if (!PagePrivate(page))
3592 continue;
3593
3594 if (!wbc->range_cyclic && page->index > end) {
3595 done = 1;
3596 break;
3597 }
3598
3599 spin_lock(&mapping->private_lock);
3600 if (!PagePrivate(page)) {
3601 spin_unlock(&mapping->private_lock);
3602 continue;
3603 }
3604
3605 eb = (struct extent_buffer *)page->private;
3606
3607 /*
3608 * Shouldn't happen and normally this would be a BUG_ON
3609 * but no sense in crashing the users box for something
3610 * we can survive anyway.
3611 */
3612 if (WARN_ON(!eb)) {
3613 spin_unlock(&mapping->private_lock);
3614 continue;
3615 }
3616
3617 if (eb == prev_eb) {
3618 spin_unlock(&mapping->private_lock);
3619 continue;
3620 }
3621
3622 ret = atomic_inc_not_zero(&eb->refs);
3623 spin_unlock(&mapping->private_lock);
3624 if (!ret)
3625 continue;
3626
3627 prev_eb = eb;
3628 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3629 if (!ret) {
3630 free_extent_buffer(eb);
3631 continue;
3632 }
3633
3634 ret = write_one_eb(eb, fs_info, wbc, &epd);
3635 if (ret) {
3636 done = 1;
3637 free_extent_buffer(eb);
3638 break;
3639 }
3640 free_extent_buffer(eb);
3641
3642 /*
3643 * the filesystem may choose to bump up nr_to_write.
3644 * We have to make sure to honor the new nr_to_write
3645 * at any time
3646 */
3647 nr_to_write_done = wbc->nr_to_write <= 0;
3648 }
3649 pagevec_release(&pvec);
3650 cond_resched();
3651 }
3652 if (!scanned && !done) {
3653 /*
3654 * We hit the last page and there is more work to be done: wrap
3655 * back to the start of the file
3656 */
3657 scanned = 1;
3658 index = 0;
3659 goto retry;
3660 }
3661 flush_write_bio(&epd);
3662 return ret;
3663 }
3664
3665 /**
3666 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3667 * @mapping: address space structure to write
3668 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3669 * @writepage: function called for each page
3670 * @data: data passed to writepage function
3671 *
3672 * If a page is already under I/O, write_cache_pages() skips it, even
3673 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3674 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3675 * and msync() need to guarantee that all the data which was dirty at the time
3676 * the call was made get new I/O started against them. If wbc->sync_mode is
3677 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3678 * existing IO to complete.
3679 */
3680 static int extent_write_cache_pages(struct extent_io_tree *tree,
3681 struct address_space *mapping,
3682 struct writeback_control *wbc,
3683 writepage_t writepage, void *data,
3684 void (*flush_fn)(void *))
3685 {
3686 struct inode *inode = mapping->host;
3687 int ret = 0;
3688 int done = 0;
3689 int nr_to_write_done = 0;
3690 struct pagevec pvec;
3691 int nr_pages;
3692 pgoff_t index;
3693 pgoff_t end; /* Inclusive */
3694 int scanned = 0;
3695 int tag;
3696
3697 /*
3698 * We have to hold onto the inode so that ordered extents can do their
3699 * work when the IO finishes. The alternative to this is failing to add
3700 * an ordered extent if the igrab() fails there and that is a huge pain
3701 * to deal with, so instead just hold onto the inode throughout the
3702 * writepages operation. If it fails here we are freeing up the inode
3703 * anyway and we'd rather not waste our time writing out stuff that is
3704 * going to be truncated anyway.
3705 */
3706 if (!igrab(inode))
3707 return 0;
3708
3709 pagevec_init(&pvec, 0);
3710 if (wbc->range_cyclic) {
3711 index = mapping->writeback_index; /* Start from prev offset */
3712 end = -1;
3713 } else {
3714 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3715 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3716 scanned = 1;
3717 }
3718 if (wbc->sync_mode == WB_SYNC_ALL)
3719 tag = PAGECACHE_TAG_TOWRITE;
3720 else
3721 tag = PAGECACHE_TAG_DIRTY;
3722 retry:
3723 if (wbc->sync_mode == WB_SYNC_ALL)
3724 tag_pages_for_writeback(mapping, index, end);
3725 while (!done && !nr_to_write_done && (index <= end) &&
3726 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3727 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3728 unsigned i;
3729
3730 scanned = 1;
3731 for (i = 0; i < nr_pages; i++) {
3732 struct page *page = pvec.pages[i];
3733
3734 /*
3735 * At this point we hold neither mapping->tree_lock nor
3736 * lock on the page itself: the page may be truncated or
3737 * invalidated (changing page->mapping to NULL), or even
3738 * swizzled back from swapper_space to tmpfs file
3739 * mapping
3740 */
3741 if (!trylock_page(page)) {
3742 flush_fn(data);
3743 lock_page(page);
3744 }
3745
3746 if (unlikely(page->mapping != mapping)) {
3747 unlock_page(page);
3748 continue;
3749 }
3750
3751 if (!wbc->range_cyclic && page->index > end) {
3752 done = 1;
3753 unlock_page(page);
3754 continue;
3755 }
3756
3757 if (wbc->sync_mode != WB_SYNC_NONE) {
3758 if (PageWriteback(page))
3759 flush_fn(data);
3760 wait_on_page_writeback(page);
3761 }
3762
3763 if (PageWriteback(page) ||
3764 !clear_page_dirty_for_io(page)) {
3765 unlock_page(page);
3766 continue;
3767 }
3768
3769 ret = (*writepage)(page, wbc, data);
3770
3771 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3772 unlock_page(page);
3773 ret = 0;
3774 }
3775 if (ret)
3776 done = 1;
3777
3778 /*
3779 * the filesystem may choose to bump up nr_to_write.
3780 * We have to make sure to honor the new nr_to_write
3781 * at any time
3782 */
3783 nr_to_write_done = wbc->nr_to_write <= 0;
3784 }
3785 pagevec_release(&pvec);
3786 cond_resched();
3787 }
3788 if (!scanned && !done) {
3789 /*
3790 * We hit the last page and there is more work to be done: wrap
3791 * back to the start of the file
3792 */
3793 scanned = 1;
3794 index = 0;
3795 goto retry;
3796 }
3797 btrfs_add_delayed_iput(inode);
3798 return ret;
3799 }
3800
3801 static void flush_epd_write_bio(struct extent_page_data *epd)
3802 {
3803 if (epd->bio) {
3804 int rw = WRITE;
3805 int ret;
3806
3807 if (epd->sync_io)
3808 rw = WRITE_SYNC;
3809
3810 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3811 BUG_ON(ret < 0); /* -ENOMEM */
3812 epd->bio = NULL;
3813 }
3814 }
3815
3816 static noinline void flush_write_bio(void *data)
3817 {
3818 struct extent_page_data *epd = data;
3819 flush_epd_write_bio(epd);
3820 }
3821
3822 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3823 get_extent_t *get_extent,
3824 struct writeback_control *wbc)
3825 {
3826 int ret;
3827 struct extent_page_data epd = {
3828 .bio = NULL,
3829 .tree = tree,
3830 .get_extent = get_extent,
3831 .extent_locked = 0,
3832 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3833 .bio_flags = 0,
3834 };
3835
3836 ret = __extent_writepage(page, wbc, &epd);
3837
3838 flush_epd_write_bio(&epd);
3839 return ret;
3840 }
3841
3842 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3843 u64 start, u64 end, get_extent_t *get_extent,
3844 int mode)
3845 {
3846 int ret = 0;
3847 struct address_space *mapping = inode->i_mapping;
3848 struct page *page;
3849 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3850 PAGE_CACHE_SHIFT;
3851
3852 struct extent_page_data epd = {
3853 .bio = NULL,
3854 .tree = tree,
3855 .get_extent = get_extent,
3856 .extent_locked = 1,
3857 .sync_io = mode == WB_SYNC_ALL,
3858 .bio_flags = 0,
3859 };
3860 struct writeback_control wbc_writepages = {
3861 .sync_mode = mode,
3862 .nr_to_write = nr_pages * 2,
3863 .range_start = start,
3864 .range_end = end + 1,
3865 };
3866
3867 while (start <= end) {
3868 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3869 if (clear_page_dirty_for_io(page))
3870 ret = __extent_writepage(page, &wbc_writepages, &epd);
3871 else {
3872 if (tree->ops && tree->ops->writepage_end_io_hook)
3873 tree->ops->writepage_end_io_hook(page, start,
3874 start + PAGE_CACHE_SIZE - 1,
3875 NULL, 1);
3876 unlock_page(page);
3877 }
3878 page_cache_release(page);
3879 start += PAGE_CACHE_SIZE;
3880 }
3881
3882 flush_epd_write_bio(&epd);
3883 return ret;
3884 }
3885
3886 int extent_writepages(struct extent_io_tree *tree,
3887 struct address_space *mapping,
3888 get_extent_t *get_extent,
3889 struct writeback_control *wbc)
3890 {
3891 int ret = 0;
3892 struct extent_page_data epd = {
3893 .bio = NULL,
3894 .tree = tree,
3895 .get_extent = get_extent,
3896 .extent_locked = 0,
3897 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3898 .bio_flags = 0,
3899 };
3900
3901 ret = extent_write_cache_pages(tree, mapping, wbc,
3902 __extent_writepage, &epd,
3903 flush_write_bio);
3904 flush_epd_write_bio(&epd);
3905 return ret;
3906 }
3907
3908 int extent_readpages(struct extent_io_tree *tree,
3909 struct address_space *mapping,
3910 struct list_head *pages, unsigned nr_pages,
3911 get_extent_t get_extent)
3912 {
3913 struct bio *bio = NULL;
3914 unsigned page_idx;
3915 unsigned long bio_flags = 0;
3916 struct page *pagepool[16];
3917 struct page *page;
3918 struct extent_map *em_cached = NULL;
3919 int nr = 0;
3920
3921 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3922 page = list_entry(pages->prev, struct page, lru);
3923
3924 prefetchw(&page->flags);
3925 list_del(&page->lru);
3926 if (add_to_page_cache_lru(page, mapping,
3927 page->index, GFP_NOFS)) {
3928 page_cache_release(page);
3929 continue;
3930 }
3931
3932 pagepool[nr++] = page;
3933 if (nr < ARRAY_SIZE(pagepool))
3934 continue;
3935 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3936 &bio, 0, &bio_flags, READ);
3937 nr = 0;
3938 }
3939 if (nr)
3940 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3941 &bio, 0, &bio_flags, READ);
3942
3943 if (em_cached)
3944 free_extent_map(em_cached);
3945
3946 BUG_ON(!list_empty(pages));
3947 if (bio)
3948 return submit_one_bio(READ, bio, 0, bio_flags);
3949 return 0;
3950 }
3951
3952 /*
3953 * basic invalidatepage code, this waits on any locked or writeback
3954 * ranges corresponding to the page, and then deletes any extent state
3955 * records from the tree
3956 */
3957 int extent_invalidatepage(struct extent_io_tree *tree,
3958 struct page *page, unsigned long offset)
3959 {
3960 struct extent_state *cached_state = NULL;
3961 u64 start = page_offset(page);
3962 u64 end = start + PAGE_CACHE_SIZE - 1;
3963 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3964
3965 start += ALIGN(offset, blocksize);
3966 if (start > end)
3967 return 0;
3968
3969 lock_extent_bits(tree, start, end, 0, &cached_state);
3970 wait_on_page_writeback(page);
3971 clear_extent_bit(tree, start, end,
3972 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3973 EXTENT_DO_ACCOUNTING,
3974 1, 1, &cached_state, GFP_NOFS);
3975 return 0;
3976 }
3977
3978 /*
3979 * a helper for releasepage, this tests for areas of the page that
3980 * are locked or under IO and drops the related state bits if it is safe
3981 * to drop the page.
3982 */
3983 static int try_release_extent_state(struct extent_map_tree *map,
3984 struct extent_io_tree *tree,
3985 struct page *page, gfp_t mask)
3986 {
3987 u64 start = page_offset(page);
3988 u64 end = start + PAGE_CACHE_SIZE - 1;
3989 int ret = 1;
3990
3991 if (test_range_bit(tree, start, end,
3992 EXTENT_IOBITS, 0, NULL))
3993 ret = 0;
3994 else {
3995 if ((mask & GFP_NOFS) == GFP_NOFS)
3996 mask = GFP_NOFS;
3997 /*
3998 * at this point we can safely clear everything except the
3999 * locked bit and the nodatasum bit
4000 */
4001 ret = clear_extent_bit(tree, start, end,
4002 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4003 0, 0, NULL, mask);
4004
4005 /* if clear_extent_bit failed for enomem reasons,
4006 * we can't allow the release to continue.
4007 */
4008 if (ret < 0)
4009 ret = 0;
4010 else
4011 ret = 1;
4012 }
4013 return ret;
4014 }
4015
4016 /*
4017 * a helper for releasepage. As long as there are no locked extents
4018 * in the range corresponding to the page, both state records and extent
4019 * map records are removed
4020 */
4021 int try_release_extent_mapping(struct extent_map_tree *map,
4022 struct extent_io_tree *tree, struct page *page,
4023 gfp_t mask)
4024 {
4025 struct extent_map *em;
4026 u64 start = page_offset(page);
4027 u64 end = start + PAGE_CACHE_SIZE - 1;
4028
4029 if ((mask & __GFP_WAIT) &&
4030 page->mapping->host->i_size > 16 * 1024 * 1024) {
4031 u64 len;
4032 while (start <= end) {
4033 len = end - start + 1;
4034 write_lock(&map->lock);
4035 em = lookup_extent_mapping(map, start, len);
4036 if (!em) {
4037 write_unlock(&map->lock);
4038 break;
4039 }
4040 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4041 em->start != start) {
4042 write_unlock(&map->lock);
4043 free_extent_map(em);
4044 break;
4045 }
4046 if (!test_range_bit(tree, em->start,
4047 extent_map_end(em) - 1,
4048 EXTENT_LOCKED | EXTENT_WRITEBACK,
4049 0, NULL)) {
4050 remove_extent_mapping(map, em);
4051 /* once for the rb tree */
4052 free_extent_map(em);
4053 }
4054 start = extent_map_end(em);
4055 write_unlock(&map->lock);
4056
4057 /* once for us */
4058 free_extent_map(em);
4059 }
4060 }
4061 return try_release_extent_state(map, tree, page, mask);
4062 }
4063
4064 /*
4065 * helper function for fiemap, which doesn't want to see any holes.
4066 * This maps until we find something past 'last'
4067 */
4068 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4069 u64 offset,
4070 u64 last,
4071 get_extent_t *get_extent)
4072 {
4073 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4074 struct extent_map *em;
4075 u64 len;
4076
4077 if (offset >= last)
4078 return NULL;
4079
4080 while (1) {
4081 len = last - offset;
4082 if (len == 0)
4083 break;
4084 len = ALIGN(len, sectorsize);
4085 em = get_extent(inode, NULL, 0, offset, len, 0);
4086 if (IS_ERR_OR_NULL(em))
4087 return em;
4088
4089 /* if this isn't a hole return it */
4090 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4091 em->block_start != EXTENT_MAP_HOLE) {
4092 return em;
4093 }
4094
4095 /* this is a hole, advance to the next extent */
4096 offset = extent_map_end(em);
4097 free_extent_map(em);
4098 if (offset >= last)
4099 break;
4100 }
4101 return NULL;
4102 }
4103
4104 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4105 {
4106 unsigned long cnt = *((unsigned long *)ctx);
4107
4108 cnt++;
4109 *((unsigned long *)ctx) = cnt;
4110
4111 /* Now we're sure that the extent is shared. */
4112 if (cnt > 1)
4113 return 1;
4114 return 0;
4115 }
4116
4117 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4118 __u64 start, __u64 len, get_extent_t *get_extent)
4119 {
4120 int ret = 0;
4121 u64 off = start;
4122 u64 max = start + len;
4123 u32 flags = 0;
4124 u32 found_type;
4125 u64 last;
4126 u64 last_for_get_extent = 0;
4127 u64 disko = 0;
4128 u64 isize = i_size_read(inode);
4129 struct btrfs_key found_key;
4130 struct extent_map *em = NULL;
4131 struct extent_state *cached_state = NULL;
4132 struct btrfs_path *path;
4133 int end = 0;
4134 u64 em_start = 0;
4135 u64 em_len = 0;
4136 u64 em_end = 0;
4137
4138 if (len == 0)
4139 return -EINVAL;
4140
4141 path = btrfs_alloc_path();
4142 if (!path)
4143 return -ENOMEM;
4144 path->leave_spinning = 1;
4145
4146 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4147 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4148
4149 /*
4150 * lookup the last file extent. We're not using i_size here
4151 * because there might be preallocation past i_size
4152 */
4153 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4154 path, btrfs_ino(inode), -1, 0);
4155 if (ret < 0) {
4156 btrfs_free_path(path);
4157 return ret;
4158 }
4159 WARN_ON(!ret);
4160 path->slots[0]--;
4161 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4162 found_type = btrfs_key_type(&found_key);
4163
4164 /* No extents, but there might be delalloc bits */
4165 if (found_key.objectid != btrfs_ino(inode) ||
4166 found_type != BTRFS_EXTENT_DATA_KEY) {
4167 /* have to trust i_size as the end */
4168 last = (u64)-1;
4169 last_for_get_extent = isize;
4170 } else {
4171 /*
4172 * remember the start of the last extent. There are a
4173 * bunch of different factors that go into the length of the
4174 * extent, so its much less complex to remember where it started
4175 */
4176 last = found_key.offset;
4177 last_for_get_extent = last + 1;
4178 }
4179 btrfs_release_path(path);
4180
4181 /*
4182 * we might have some extents allocated but more delalloc past those
4183 * extents. so, we trust isize unless the start of the last extent is
4184 * beyond isize
4185 */
4186 if (last < isize) {
4187 last = (u64)-1;
4188 last_for_get_extent = isize;
4189 }
4190
4191 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4192 &cached_state);
4193
4194 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4195 get_extent);
4196 if (!em)
4197 goto out;
4198 if (IS_ERR(em)) {
4199 ret = PTR_ERR(em);
4200 goto out;
4201 }
4202
4203 while (!end) {
4204 u64 offset_in_extent = 0;
4205
4206 /* break if the extent we found is outside the range */
4207 if (em->start >= max || extent_map_end(em) < off)
4208 break;
4209
4210 /*
4211 * get_extent may return an extent that starts before our
4212 * requested range. We have to make sure the ranges
4213 * we return to fiemap always move forward and don't
4214 * overlap, so adjust the offsets here
4215 */
4216 em_start = max(em->start, off);
4217
4218 /*
4219 * record the offset from the start of the extent
4220 * for adjusting the disk offset below. Only do this if the
4221 * extent isn't compressed since our in ram offset may be past
4222 * what we have actually allocated on disk.
4223 */
4224 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4225 offset_in_extent = em_start - em->start;
4226 em_end = extent_map_end(em);
4227 em_len = em_end - em_start;
4228 disko = 0;
4229 flags = 0;
4230
4231 /*
4232 * bump off for our next call to get_extent
4233 */
4234 off = extent_map_end(em);
4235 if (off >= max)
4236 end = 1;
4237
4238 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4239 end = 1;
4240 flags |= FIEMAP_EXTENT_LAST;
4241 } else if (em->block_start == EXTENT_MAP_INLINE) {
4242 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4243 FIEMAP_EXTENT_NOT_ALIGNED);
4244 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4245 flags |= (FIEMAP_EXTENT_DELALLOC |
4246 FIEMAP_EXTENT_UNKNOWN);
4247 } else {
4248 unsigned long ref_cnt = 0;
4249
4250 disko = em->block_start + offset_in_extent;
4251
4252 /*
4253 * As btrfs supports shared space, this information
4254 * can be exported to userspace tools via
4255 * flag FIEMAP_EXTENT_SHARED.
4256 */
4257 ret = iterate_inodes_from_logical(
4258 em->block_start,
4259 BTRFS_I(inode)->root->fs_info,
4260 path, count_ext_ref, &ref_cnt);
4261 if (ret < 0 && ret != -ENOENT)
4262 goto out_free;
4263
4264 if (ref_cnt > 1)
4265 flags |= FIEMAP_EXTENT_SHARED;
4266 }
4267 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4268 flags |= FIEMAP_EXTENT_ENCODED;
4269
4270 free_extent_map(em);
4271 em = NULL;
4272 if ((em_start >= last) || em_len == (u64)-1 ||
4273 (last == (u64)-1 && isize <= em_end)) {
4274 flags |= FIEMAP_EXTENT_LAST;
4275 end = 1;
4276 }
4277
4278 /* now scan forward to see if this is really the last extent. */
4279 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4280 get_extent);
4281 if (IS_ERR(em)) {
4282 ret = PTR_ERR(em);
4283 goto out;
4284 }
4285 if (!em) {
4286 flags |= FIEMAP_EXTENT_LAST;
4287 end = 1;
4288 }
4289 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4290 em_len, flags);
4291 if (ret)
4292 goto out_free;
4293 }
4294 out_free:
4295 free_extent_map(em);
4296 out:
4297 btrfs_free_path(path);
4298 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4299 &cached_state, GFP_NOFS);
4300 return ret;
4301 }
4302
4303 static void __free_extent_buffer(struct extent_buffer *eb)
4304 {
4305 btrfs_leak_debug_del(&eb->leak_list);
4306 kmem_cache_free(extent_buffer_cache, eb);
4307 }
4308
4309 static int extent_buffer_under_io(struct extent_buffer *eb)
4310 {
4311 return (atomic_read(&eb->io_pages) ||
4312 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4313 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4314 }
4315
4316 /*
4317 * Helper for releasing extent buffer page.
4318 */
4319 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4320 unsigned long start_idx)
4321 {
4322 unsigned long index;
4323 unsigned long num_pages;
4324 struct page *page;
4325 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4326
4327 BUG_ON(extent_buffer_under_io(eb));
4328
4329 num_pages = num_extent_pages(eb->start, eb->len);
4330 index = start_idx + num_pages;
4331 if (start_idx >= index)
4332 return;
4333
4334 do {
4335 index--;
4336 page = extent_buffer_page(eb, index);
4337 if (page && mapped) {
4338 spin_lock(&page->mapping->private_lock);
4339 /*
4340 * We do this since we'll remove the pages after we've
4341 * removed the eb from the radix tree, so we could race
4342 * and have this page now attached to the new eb. So
4343 * only clear page_private if it's still connected to
4344 * this eb.
4345 */
4346 if (PagePrivate(page) &&
4347 page->private == (unsigned long)eb) {
4348 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4349 BUG_ON(PageDirty(page));
4350 BUG_ON(PageWriteback(page));
4351 /*
4352 * We need to make sure we haven't be attached
4353 * to a new eb.
4354 */
4355 ClearPagePrivate(page);
4356 set_page_private(page, 0);
4357 /* One for the page private */
4358 page_cache_release(page);
4359 }
4360 spin_unlock(&page->mapping->private_lock);
4361
4362 }
4363 if (page) {
4364 /* One for when we alloced the page */
4365 page_cache_release(page);
4366 }
4367 } while (index != start_idx);
4368 }
4369
4370 /*
4371 * Helper for releasing the extent buffer.
4372 */
4373 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4374 {
4375 btrfs_release_extent_buffer_page(eb, 0);
4376 __free_extent_buffer(eb);
4377 }
4378
4379 static struct extent_buffer *
4380 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4381 unsigned long len, gfp_t mask)
4382 {
4383 struct extent_buffer *eb = NULL;
4384
4385 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4386 if (eb == NULL)
4387 return NULL;
4388 eb->start = start;
4389 eb->len = len;
4390 eb->fs_info = fs_info;
4391 eb->bflags = 0;
4392 rwlock_init(&eb->lock);
4393 atomic_set(&eb->write_locks, 0);
4394 atomic_set(&eb->read_locks, 0);
4395 atomic_set(&eb->blocking_readers, 0);
4396 atomic_set(&eb->blocking_writers, 0);
4397 atomic_set(&eb->spinning_readers, 0);
4398 atomic_set(&eb->spinning_writers, 0);
4399 eb->lock_nested = 0;
4400 init_waitqueue_head(&eb->write_lock_wq);
4401 init_waitqueue_head(&eb->read_lock_wq);
4402
4403 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4404
4405 spin_lock_init(&eb->refs_lock);
4406 atomic_set(&eb->refs, 1);
4407 atomic_set(&eb->io_pages, 0);
4408
4409 /*
4410 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4411 */
4412 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4413 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4414 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4415
4416 return eb;
4417 }
4418
4419 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4420 {
4421 unsigned long i;
4422 struct page *p;
4423 struct extent_buffer *new;
4424 unsigned long num_pages = num_extent_pages(src->start, src->len);
4425
4426 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4427 if (new == NULL)
4428 return NULL;
4429
4430 for (i = 0; i < num_pages; i++) {
4431 p = alloc_page(GFP_NOFS);
4432 if (!p) {
4433 btrfs_release_extent_buffer(new);
4434 return NULL;
4435 }
4436 attach_extent_buffer_page(new, p);
4437 WARN_ON(PageDirty(p));
4438 SetPageUptodate(p);
4439 new->pages[i] = p;
4440 }
4441
4442 copy_extent_buffer(new, src, 0, 0, src->len);
4443 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4444 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4445
4446 return new;
4447 }
4448
4449 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4450 {
4451 struct extent_buffer *eb;
4452 unsigned long num_pages = num_extent_pages(0, len);
4453 unsigned long i;
4454
4455 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4456 if (!eb)
4457 return NULL;
4458
4459 for (i = 0; i < num_pages; i++) {
4460 eb->pages[i] = alloc_page(GFP_NOFS);
4461 if (!eb->pages[i])
4462 goto err;
4463 }
4464 set_extent_buffer_uptodate(eb);
4465 btrfs_set_header_nritems(eb, 0);
4466 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4467
4468 return eb;
4469 err:
4470 for (; i > 0; i--)
4471 __free_page(eb->pages[i - 1]);
4472 __free_extent_buffer(eb);
4473 return NULL;
4474 }
4475
4476 static void check_buffer_tree_ref(struct extent_buffer *eb)
4477 {
4478 int refs;
4479 /* the ref bit is tricky. We have to make sure it is set
4480 * if we have the buffer dirty. Otherwise the
4481 * code to free a buffer can end up dropping a dirty
4482 * page
4483 *
4484 * Once the ref bit is set, it won't go away while the
4485 * buffer is dirty or in writeback, and it also won't
4486 * go away while we have the reference count on the
4487 * eb bumped.
4488 *
4489 * We can't just set the ref bit without bumping the
4490 * ref on the eb because free_extent_buffer might
4491 * see the ref bit and try to clear it. If this happens
4492 * free_extent_buffer might end up dropping our original
4493 * ref by mistake and freeing the page before we are able
4494 * to add one more ref.
4495 *
4496 * So bump the ref count first, then set the bit. If someone
4497 * beat us to it, drop the ref we added.
4498 */
4499 refs = atomic_read(&eb->refs);
4500 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4501 return;
4502
4503 spin_lock(&eb->refs_lock);
4504 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4505 atomic_inc(&eb->refs);
4506 spin_unlock(&eb->refs_lock);
4507 }
4508
4509 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4510 {
4511 unsigned long num_pages, i;
4512
4513 check_buffer_tree_ref(eb);
4514
4515 num_pages = num_extent_pages(eb->start, eb->len);
4516 for (i = 0; i < num_pages; i++) {
4517 struct page *p = extent_buffer_page(eb, i);
4518 mark_page_accessed(p);
4519 }
4520 }
4521
4522 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4523 u64 start)
4524 {
4525 struct extent_buffer *eb;
4526
4527 rcu_read_lock();
4528 eb = radix_tree_lookup(&fs_info->buffer_radix,
4529 start >> PAGE_CACHE_SHIFT);
4530 if (eb && atomic_inc_not_zero(&eb->refs)) {
4531 rcu_read_unlock();
4532 mark_extent_buffer_accessed(eb);
4533 return eb;
4534 }
4535 rcu_read_unlock();
4536
4537 return NULL;
4538 }
4539
4540 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4541 u64 start, unsigned long len)
4542 {
4543 unsigned long num_pages = num_extent_pages(start, len);
4544 unsigned long i;
4545 unsigned long index = start >> PAGE_CACHE_SHIFT;
4546 struct extent_buffer *eb;
4547 struct extent_buffer *exists = NULL;
4548 struct page *p;
4549 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4550 int uptodate = 1;
4551 int ret;
4552
4553 eb = find_extent_buffer(fs_info, start);
4554 if (eb)
4555 return eb;
4556
4557 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4558 if (!eb)
4559 return NULL;
4560
4561 for (i = 0; i < num_pages; i++, index++) {
4562 p = find_or_create_page(mapping, index, GFP_NOFS);
4563 if (!p)
4564 goto free_eb;
4565
4566 spin_lock(&mapping->private_lock);
4567 if (PagePrivate(p)) {
4568 /*
4569 * We could have already allocated an eb for this page
4570 * and attached one so lets see if we can get a ref on
4571 * the existing eb, and if we can we know it's good and
4572 * we can just return that one, else we know we can just
4573 * overwrite page->private.
4574 */
4575 exists = (struct extent_buffer *)p->private;
4576 if (atomic_inc_not_zero(&exists->refs)) {
4577 spin_unlock(&mapping->private_lock);
4578 unlock_page(p);
4579 page_cache_release(p);
4580 mark_extent_buffer_accessed(exists);
4581 goto free_eb;
4582 }
4583
4584 /*
4585 * Do this so attach doesn't complain and we need to
4586 * drop the ref the old guy had.
4587 */
4588 ClearPagePrivate(p);
4589 WARN_ON(PageDirty(p));
4590 page_cache_release(p);
4591 }
4592 attach_extent_buffer_page(eb, p);
4593 spin_unlock(&mapping->private_lock);
4594 WARN_ON(PageDirty(p));
4595 mark_page_accessed(p);
4596 eb->pages[i] = p;
4597 if (!PageUptodate(p))
4598 uptodate = 0;
4599
4600 /*
4601 * see below about how we avoid a nasty race with release page
4602 * and why we unlock later
4603 */
4604 }
4605 if (uptodate)
4606 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4607 again:
4608 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4609 if (ret)
4610 goto free_eb;
4611
4612 spin_lock(&fs_info->buffer_lock);
4613 ret = radix_tree_insert(&fs_info->buffer_radix,
4614 start >> PAGE_CACHE_SHIFT, eb);
4615 spin_unlock(&fs_info->buffer_lock);
4616 radix_tree_preload_end();
4617 if (ret == -EEXIST) {
4618 exists = find_extent_buffer(fs_info, start);
4619 if (exists)
4620 goto free_eb;
4621 else
4622 goto again;
4623 }
4624 /* add one reference for the tree */
4625 check_buffer_tree_ref(eb);
4626 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4627
4628 /*
4629 * there is a race where release page may have
4630 * tried to find this extent buffer in the radix
4631 * but failed. It will tell the VM it is safe to
4632 * reclaim the, and it will clear the page private bit.
4633 * We must make sure to set the page private bit properly
4634 * after the extent buffer is in the radix tree so
4635 * it doesn't get lost
4636 */
4637 SetPageChecked(eb->pages[0]);
4638 for (i = 1; i < num_pages; i++) {
4639 p = extent_buffer_page(eb, i);
4640 ClearPageChecked(p);
4641 unlock_page(p);
4642 }
4643 unlock_page(eb->pages[0]);
4644 return eb;
4645
4646 free_eb:
4647 for (i = 0; i < num_pages; i++) {
4648 if (eb->pages[i])
4649 unlock_page(eb->pages[i]);
4650 }
4651
4652 WARN_ON(!atomic_dec_and_test(&eb->refs));
4653 btrfs_release_extent_buffer(eb);
4654 return exists;
4655 }
4656
4657 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4658 {
4659 struct extent_buffer *eb =
4660 container_of(head, struct extent_buffer, rcu_head);
4661
4662 __free_extent_buffer(eb);
4663 }
4664
4665 /* Expects to have eb->eb_lock already held */
4666 static int release_extent_buffer(struct extent_buffer *eb)
4667 {
4668 WARN_ON(atomic_read(&eb->refs) == 0);
4669 if (atomic_dec_and_test(&eb->refs)) {
4670 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4671 struct btrfs_fs_info *fs_info = eb->fs_info;
4672
4673 spin_unlock(&eb->refs_lock);
4674
4675 spin_lock(&fs_info->buffer_lock);
4676 radix_tree_delete(&fs_info->buffer_radix,
4677 eb->start >> PAGE_CACHE_SHIFT);
4678 spin_unlock(&fs_info->buffer_lock);
4679 } else {
4680 spin_unlock(&eb->refs_lock);
4681 }
4682
4683 /* Should be safe to release our pages at this point */
4684 btrfs_release_extent_buffer_page(eb, 0);
4685 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4686 return 1;
4687 }
4688 spin_unlock(&eb->refs_lock);
4689
4690 return 0;
4691 }
4692
4693 void free_extent_buffer(struct extent_buffer *eb)
4694 {
4695 int refs;
4696 int old;
4697 if (!eb)
4698 return;
4699
4700 while (1) {
4701 refs = atomic_read(&eb->refs);
4702 if (refs <= 3)
4703 break;
4704 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4705 if (old == refs)
4706 return;
4707 }
4708
4709 spin_lock(&eb->refs_lock);
4710 if (atomic_read(&eb->refs) == 2 &&
4711 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4712 atomic_dec(&eb->refs);
4713
4714 if (atomic_read(&eb->refs) == 2 &&
4715 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4716 !extent_buffer_under_io(eb) &&
4717 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4718 atomic_dec(&eb->refs);
4719
4720 /*
4721 * I know this is terrible, but it's temporary until we stop tracking
4722 * the uptodate bits and such for the extent buffers.
4723 */
4724 release_extent_buffer(eb);
4725 }
4726
4727 void free_extent_buffer_stale(struct extent_buffer *eb)
4728 {
4729 if (!eb)
4730 return;
4731
4732 spin_lock(&eb->refs_lock);
4733 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4734
4735 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4736 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4737 atomic_dec(&eb->refs);
4738 release_extent_buffer(eb);
4739 }
4740
4741 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4742 {
4743 unsigned long i;
4744 unsigned long num_pages;
4745 struct page *page;
4746
4747 num_pages = num_extent_pages(eb->start, eb->len);
4748
4749 for (i = 0; i < num_pages; i++) {
4750 page = extent_buffer_page(eb, i);
4751 if (!PageDirty(page))
4752 continue;
4753
4754 lock_page(page);
4755 WARN_ON(!PagePrivate(page));
4756
4757 clear_page_dirty_for_io(page);
4758 spin_lock_irq(&page->mapping->tree_lock);
4759 if (!PageDirty(page)) {
4760 radix_tree_tag_clear(&page->mapping->page_tree,
4761 page_index(page),
4762 PAGECACHE_TAG_DIRTY);
4763 }
4764 spin_unlock_irq(&page->mapping->tree_lock);
4765 ClearPageError(page);
4766 unlock_page(page);
4767 }
4768 WARN_ON(atomic_read(&eb->refs) == 0);
4769 }
4770
4771 int set_extent_buffer_dirty(struct extent_buffer *eb)
4772 {
4773 unsigned long i;
4774 unsigned long num_pages;
4775 int was_dirty = 0;
4776
4777 check_buffer_tree_ref(eb);
4778
4779 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4780
4781 num_pages = num_extent_pages(eb->start, eb->len);
4782 WARN_ON(atomic_read(&eb->refs) == 0);
4783 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4784
4785 for (i = 0; i < num_pages; i++)
4786 set_page_dirty(extent_buffer_page(eb, i));
4787 return was_dirty;
4788 }
4789
4790 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4791 {
4792 unsigned long i;
4793 struct page *page;
4794 unsigned long num_pages;
4795
4796 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4797 num_pages = num_extent_pages(eb->start, eb->len);
4798 for (i = 0; i < num_pages; i++) {
4799 page = extent_buffer_page(eb, i);
4800 if (page)
4801 ClearPageUptodate(page);
4802 }
4803 return 0;
4804 }
4805
4806 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4807 {
4808 unsigned long i;
4809 struct page *page;
4810 unsigned long num_pages;
4811
4812 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4813 num_pages = num_extent_pages(eb->start, eb->len);
4814 for (i = 0; i < num_pages; i++) {
4815 page = extent_buffer_page(eb, i);
4816 SetPageUptodate(page);
4817 }
4818 return 0;
4819 }
4820
4821 int extent_buffer_uptodate(struct extent_buffer *eb)
4822 {
4823 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4824 }
4825
4826 int read_extent_buffer_pages(struct extent_io_tree *tree,
4827 struct extent_buffer *eb, u64 start, int wait,
4828 get_extent_t *get_extent, int mirror_num)
4829 {
4830 unsigned long i;
4831 unsigned long start_i;
4832 struct page *page;
4833 int err;
4834 int ret = 0;
4835 int locked_pages = 0;
4836 int all_uptodate = 1;
4837 unsigned long num_pages;
4838 unsigned long num_reads = 0;
4839 struct bio *bio = NULL;
4840 unsigned long bio_flags = 0;
4841
4842 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4843 return 0;
4844
4845 if (start) {
4846 WARN_ON(start < eb->start);
4847 start_i = (start >> PAGE_CACHE_SHIFT) -
4848 (eb->start >> PAGE_CACHE_SHIFT);
4849 } else {
4850 start_i = 0;
4851 }
4852
4853 num_pages = num_extent_pages(eb->start, eb->len);
4854 for (i = start_i; i < num_pages; i++) {
4855 page = extent_buffer_page(eb, i);
4856 if (wait == WAIT_NONE) {
4857 if (!trylock_page(page))
4858 goto unlock_exit;
4859 } else {
4860 lock_page(page);
4861 }
4862 locked_pages++;
4863 if (!PageUptodate(page)) {
4864 num_reads++;
4865 all_uptodate = 0;
4866 }
4867 }
4868 if (all_uptodate) {
4869 if (start_i == 0)
4870 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4871 goto unlock_exit;
4872 }
4873
4874 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4875 eb->read_mirror = 0;
4876 atomic_set(&eb->io_pages, num_reads);
4877 for (i = start_i; i < num_pages; i++) {
4878 page = extent_buffer_page(eb, i);
4879 if (!PageUptodate(page)) {
4880 ClearPageError(page);
4881 err = __extent_read_full_page(tree, page,
4882 get_extent, &bio,
4883 mirror_num, &bio_flags,
4884 READ | REQ_META);
4885 if (err)
4886 ret = err;
4887 } else {
4888 unlock_page(page);
4889 }
4890 }
4891
4892 if (bio) {
4893 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4894 bio_flags);
4895 if (err)
4896 return err;
4897 }
4898
4899 if (ret || wait != WAIT_COMPLETE)
4900 return ret;
4901
4902 for (i = start_i; i < num_pages; i++) {
4903 page = extent_buffer_page(eb, i);
4904 wait_on_page_locked(page);
4905 if (!PageUptodate(page))
4906 ret = -EIO;
4907 }
4908
4909 return ret;
4910
4911 unlock_exit:
4912 i = start_i;
4913 while (locked_pages > 0) {
4914 page = extent_buffer_page(eb, i);
4915 i++;
4916 unlock_page(page);
4917 locked_pages--;
4918 }
4919 return ret;
4920 }
4921
4922 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4923 unsigned long start,
4924 unsigned long len)
4925 {
4926 size_t cur;
4927 size_t offset;
4928 struct page *page;
4929 char *kaddr;
4930 char *dst = (char *)dstv;
4931 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4932 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4933
4934 WARN_ON(start > eb->len);
4935 WARN_ON(start + len > eb->start + eb->len);
4936
4937 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4938
4939 while (len > 0) {
4940 page = extent_buffer_page(eb, i);
4941
4942 cur = min(len, (PAGE_CACHE_SIZE - offset));
4943 kaddr = page_address(page);
4944 memcpy(dst, kaddr + offset, cur);
4945
4946 dst += cur;
4947 len -= cur;
4948 offset = 0;
4949 i++;
4950 }
4951 }
4952
4953 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4954 unsigned long min_len, char **map,
4955 unsigned long *map_start,
4956 unsigned long *map_len)
4957 {
4958 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4959 char *kaddr;
4960 struct page *p;
4961 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4962 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4963 unsigned long end_i = (start_offset + start + min_len - 1) >>
4964 PAGE_CACHE_SHIFT;
4965
4966 if (i != end_i)
4967 return -EINVAL;
4968
4969 if (i == 0) {
4970 offset = start_offset;
4971 *map_start = 0;
4972 } else {
4973 offset = 0;
4974 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4975 }
4976
4977 if (start + min_len > eb->len) {
4978 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4979 "wanted %lu %lu\n",
4980 eb->start, eb->len, start, min_len);
4981 return -EINVAL;
4982 }
4983
4984 p = extent_buffer_page(eb, i);
4985 kaddr = page_address(p);
4986 *map = kaddr + offset;
4987 *map_len = PAGE_CACHE_SIZE - offset;
4988 return 0;
4989 }
4990
4991 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4992 unsigned long start,
4993 unsigned long len)
4994 {
4995 size_t cur;
4996 size_t offset;
4997 struct page *page;
4998 char *kaddr;
4999 char *ptr = (char *)ptrv;
5000 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5001 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5002 int ret = 0;
5003
5004 WARN_ON(start > eb->len);
5005 WARN_ON(start + len > eb->start + eb->len);
5006
5007 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5008
5009 while (len > 0) {
5010 page = extent_buffer_page(eb, i);
5011
5012 cur = min(len, (PAGE_CACHE_SIZE - offset));
5013
5014 kaddr = page_address(page);
5015 ret = memcmp(ptr, kaddr + offset, cur);
5016 if (ret)
5017 break;
5018
5019 ptr += cur;
5020 len -= cur;
5021 offset = 0;
5022 i++;
5023 }
5024 return ret;
5025 }
5026
5027 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5028 unsigned long start, unsigned long len)
5029 {
5030 size_t cur;
5031 size_t offset;
5032 struct page *page;
5033 char *kaddr;
5034 char *src = (char *)srcv;
5035 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5036 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5037
5038 WARN_ON(start > eb->len);
5039 WARN_ON(start + len > eb->start + eb->len);
5040
5041 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5042
5043 while (len > 0) {
5044 page = extent_buffer_page(eb, i);
5045 WARN_ON(!PageUptodate(page));
5046
5047 cur = min(len, PAGE_CACHE_SIZE - offset);
5048 kaddr = page_address(page);
5049 memcpy(kaddr + offset, src, cur);
5050
5051 src += cur;
5052 len -= cur;
5053 offset = 0;
5054 i++;
5055 }
5056 }
5057
5058 void memset_extent_buffer(struct extent_buffer *eb, char c,
5059 unsigned long start, unsigned long len)
5060 {
5061 size_t cur;
5062 size_t offset;
5063 struct page *page;
5064 char *kaddr;
5065 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5066 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5067
5068 WARN_ON(start > eb->len);
5069 WARN_ON(start + len > eb->start + eb->len);
5070
5071 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5072
5073 while (len > 0) {
5074 page = extent_buffer_page(eb, i);
5075 WARN_ON(!PageUptodate(page));
5076
5077 cur = min(len, PAGE_CACHE_SIZE - offset);
5078 kaddr = page_address(page);
5079 memset(kaddr + offset, c, cur);
5080
5081 len -= cur;
5082 offset = 0;
5083 i++;
5084 }
5085 }
5086
5087 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5088 unsigned long dst_offset, unsigned long src_offset,
5089 unsigned long len)
5090 {
5091 u64 dst_len = dst->len;
5092 size_t cur;
5093 size_t offset;
5094 struct page *page;
5095 char *kaddr;
5096 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5097 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5098
5099 WARN_ON(src->len != dst_len);
5100
5101 offset = (start_offset + dst_offset) &
5102 (PAGE_CACHE_SIZE - 1);
5103
5104 while (len > 0) {
5105 page = extent_buffer_page(dst, i);
5106 WARN_ON(!PageUptodate(page));
5107
5108 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5109
5110 kaddr = page_address(page);
5111 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5112
5113 src_offset += cur;
5114 len -= cur;
5115 offset = 0;
5116 i++;
5117 }
5118 }
5119
5120 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5121 {
5122 unsigned long distance = (src > dst) ? src - dst : dst - src;
5123 return distance < len;
5124 }
5125
5126 static void copy_pages(struct page *dst_page, struct page *src_page,
5127 unsigned long dst_off, unsigned long src_off,
5128 unsigned long len)
5129 {
5130 char *dst_kaddr = page_address(dst_page);
5131 char *src_kaddr;
5132 int must_memmove = 0;
5133
5134 if (dst_page != src_page) {
5135 src_kaddr = page_address(src_page);
5136 } else {
5137 src_kaddr = dst_kaddr;
5138 if (areas_overlap(src_off, dst_off, len))
5139 must_memmove = 1;
5140 }
5141
5142 if (must_memmove)
5143 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5144 else
5145 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5146 }
5147
5148 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5149 unsigned long src_offset, unsigned long len)
5150 {
5151 size_t cur;
5152 size_t dst_off_in_page;
5153 size_t src_off_in_page;
5154 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5155 unsigned long dst_i;
5156 unsigned long src_i;
5157
5158 if (src_offset + len > dst->len) {
5159 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5160 "len %lu dst len %lu\n", src_offset, len, dst->len);
5161 BUG_ON(1);
5162 }
5163 if (dst_offset + len > dst->len) {
5164 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5165 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5166 BUG_ON(1);
5167 }
5168
5169 while (len > 0) {
5170 dst_off_in_page = (start_offset + dst_offset) &
5171 (PAGE_CACHE_SIZE - 1);
5172 src_off_in_page = (start_offset + src_offset) &
5173 (PAGE_CACHE_SIZE - 1);
5174
5175 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5176 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5177
5178 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5179 src_off_in_page));
5180 cur = min_t(unsigned long, cur,
5181 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5182
5183 copy_pages(extent_buffer_page(dst, dst_i),
5184 extent_buffer_page(dst, src_i),
5185 dst_off_in_page, src_off_in_page, cur);
5186
5187 src_offset += cur;
5188 dst_offset += cur;
5189 len -= cur;
5190 }
5191 }
5192
5193 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5194 unsigned long src_offset, unsigned long len)
5195 {
5196 size_t cur;
5197 size_t dst_off_in_page;
5198 size_t src_off_in_page;
5199 unsigned long dst_end = dst_offset + len - 1;
5200 unsigned long src_end = src_offset + len - 1;
5201 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5202 unsigned long dst_i;
5203 unsigned long src_i;
5204
5205 if (src_offset + len > dst->len) {
5206 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5207 "len %lu len %lu\n", src_offset, len, dst->len);
5208 BUG_ON(1);
5209 }
5210 if (dst_offset + len > dst->len) {
5211 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5212 "len %lu len %lu\n", dst_offset, len, dst->len);
5213 BUG_ON(1);
5214 }
5215 if (dst_offset < src_offset) {
5216 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5217 return;
5218 }
5219 while (len > 0) {
5220 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5221 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5222
5223 dst_off_in_page = (start_offset + dst_end) &
5224 (PAGE_CACHE_SIZE - 1);
5225 src_off_in_page = (start_offset + src_end) &
5226 (PAGE_CACHE_SIZE - 1);
5227
5228 cur = min_t(unsigned long, len, src_off_in_page + 1);
5229 cur = min(cur, dst_off_in_page + 1);
5230 copy_pages(extent_buffer_page(dst, dst_i),
5231 extent_buffer_page(dst, src_i),
5232 dst_off_in_page - cur + 1,
5233 src_off_in_page - cur + 1, cur);
5234
5235 dst_end -= cur;
5236 src_end -= cur;
5237 len -= cur;
5238 }
5239 }
5240
5241 int try_release_extent_buffer(struct page *page)
5242 {
5243 struct extent_buffer *eb;
5244
5245 /*
5246 * We need to make sure noboody is attaching this page to an eb right
5247 * now.
5248 */
5249 spin_lock(&page->mapping->private_lock);
5250 if (!PagePrivate(page)) {
5251 spin_unlock(&page->mapping->private_lock);
5252 return 1;
5253 }
5254
5255 eb = (struct extent_buffer *)page->private;
5256 BUG_ON(!eb);
5257
5258 /*
5259 * This is a little awful but should be ok, we need to make sure that
5260 * the eb doesn't disappear out from under us while we're looking at
5261 * this page.
5262 */
5263 spin_lock(&eb->refs_lock);
5264 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5265 spin_unlock(&eb->refs_lock);
5266 spin_unlock(&page->mapping->private_lock);
5267 return 0;
5268 }
5269 spin_unlock(&page->mapping->private_lock);
5270
5271 /*
5272 * If tree ref isn't set then we know the ref on this eb is a real ref,
5273 * so just return, this page will likely be freed soon anyway.
5274 */
5275 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5276 spin_unlock(&eb->refs_lock);
5277 return 0;
5278 }
5279
5280 return release_extent_buffer(eb);
5281 }
This page took 0.189045 seconds and 6 git commands to generate.